Sample records for targeting virus-associated autophagy

  1. Autophagy in Measles Virus Infection.

    PubMed

    Rozières, Aurore; Viret, Christophe; Faure, Mathias

    2017-11-24

    Autophagy is a biological process that helps cells to recycle obsolete cellular components and which greatly contributes to maintaining cellular integrity in response to environmental stress factors. Autophagy is also among the first lines of cellular defense against invading microorganisms, including viruses. The autophagic destruction of invading pathogens, a process referred to as xenophagy, involves cytosolic autophagy receptors, such as p62/SQSTM1 (Sequestosome 1) or NDP52/CALCOCO2 (Nuclear Dot 52 KDa Protein/Calcium Binding And Coiled-Coil Domain 2), which bind to microbial components and target them towards growing autophagosomes for degradation. However, most, if not all, infectious viruses have evolved molecular tricks to escape from xenophagy. Many viruses even use autophagy, part of the autophagy pathway or some autophagy-associated proteins, to improve their infectious potential. In this regard, the measles virus, responsible for epidemic measles, has a unique interface with autophagy as the virus can induce multiple rounds of autophagy in the course of infection. These successive waves of autophagy result from distinct molecular pathways and seem associated with anti- and/or pro-measles virus consequences. In this review, we describe what the autophagy-measles virus interplay has taught us about both the biology of the virus and the mechanistic orchestration of autophagy.

  2. Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles

    PubMed Central

    Hafrén, Anders; Macia, Jean-Luc; Love, Andrew J.; Milner, Joel J.; Drucker, Martin; Hofius, Daniel

    2017-01-01

    Autophagy plays a paramount role in mammalian antiviral immunity including direct targeting of viruses and their individual components, and many viruses have evolved measures to antagonize or even exploit autophagy mechanisms for the benefit of infection. In plants, however, the functions of autophagy in host immunity and viral pathogenesis are poorly understood. In this study, we have identified both anti- and proviral roles of autophagy in the compatible interaction of cauliflower mosaic virus (CaMV), a double-stranded DNA pararetrovirus, with the model plant Arabidopsis thaliana. We show that the autophagy cargo receptor NEIGHBOR OF BRCA1 (NBR1) targets nonassembled and virus particle-forming capsid proteins to mediate their autophagy-dependent degradation, thereby restricting the establishment of CaMV infection. Intriguingly, the CaMV-induced virus factory inclusions seem to protect against autophagic destruction by sequestering capsid proteins and coordinating particle assembly and storage. In addition, we found that virus-triggered autophagy prevents extensive senescence and tissue death of infected plants in a largely NBR1-independent manner. This survival function significantly extends the timespan of virus production, thereby increasing the chances for virus particle acquisition by aphid vectors and CaMV transmission. Together, our results provide evidence for the integration of selective autophagy into plant immunity against viruses and reveal potential viral strategies to evade and adapt autophagic processes for successful pathogenesis. PMID:28223514

  3. Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication.

    PubMed

    Meng, Chunchun; Zhou, Zhizhi; Jiang, Ke; Yu, Shengqing; Jia, Lijun; Wu, Yantao; Liu, Yanqing; Meng, Songshu; Ding, Chan

    2012-06-01

    Newcastle disease virus (NDV) can replicate in tumor cells and induce apoptosis in late stages of infection. However, the interaction between NDV and cells in early stages of infection is not well understood. Here, we report that, shortly after infection, NDV triggers the formation of autophagosomes in U251 glioma cells, as demonstrated by an increased number of double-membrane vesicles, GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3) a dot formations, and elevated production of LC3II. Moreover, modulation of NDV-induced autophagy by rapamycin, chloroquine or small interfering RNAs targeting the genes critical for autophagosome formation (Atg5 and Beclin-1) affects virus production, indicating that autophagy may be utilized by NDV to facilitate its own production. Furthermore, the class III phosphatidylinositol 3-kinase (PI3K)/Beclin-1 pathway plays a role in NDV-induced autophagy and virus production. Collectively, our data provide a unique example of a paramyxovirus that uses autophagy to enhance its production.

  4. Distinct Contributions of Autophagy Receptors in Measles Virus Replication.

    PubMed

    Petkova, Denitsa S; Verlhac, Pauline; Rozières, Aurore; Baguet, Joël; Claviere, Mathieu; Kretz-Remy, Carole; Mahieux, Renaud; Viret, Christophe; Faure, Mathias

    2017-05-22

    Autophagy is a potent cell autonomous defense mechanism that engages the lysosomal pathway to fight intracellular pathogens. Several autophagy receptors can recognize invading pathogens in order to target them towards autophagy for their degradation after the fusion of pathogen-containing autophagosomes with lysosomes. However, numerous intracellular pathogens can avoid or exploit autophagy, among which is measles virus (MeV). This virus induces a complete autophagy flux, which is required to improve viral replication. We therefore asked how measles virus interferes with autophagy receptors during the course of infection. We report that in addition to NDP52/CALCOCO₂ and OPTINEURIN/OPTN, another autophagy receptor, namely T6BP/TAXIBP1, also regulates the maturation of autophagosomes by promoting their fusion with lysosomes, independently of any infection. Surprisingly, only two of these receptors, NDP52 and T6BP, impacted measles virus replication, although independently, and possibly through physical interaction with MeV proteins. Thus, our results suggest that a restricted set of autophagosomes is selectively exploited by measles virus to replicate in the course of infection.

  5. Targeting Autophagy in ALK-Associated Cancers

    PubMed Central

    Frentzel, Julie; Sorrentino, Domenico; Giuriato, Sylvie

    2017-01-01

    Autophagy is an evolutionarily conserved catabolic process, which is used by the cells for cytoplasmic quality control. This process is induced following different kinds of stresses e.g., metabolic, environmental, or therapeutic, and acts, in this framework, as a cell survival mechanism. However, under certain circumstances, autophagy has been associated with cell death. This duality has been extensively reported in solid and hematological cancers, and has been observed during both tumor development and cancer therapy. As autophagy plays a critical role at the crossroads between cell survival and cell death, its involvement and therapeutic modulation (either activation or inhibition) are currently intensively studied in cancer biology, to improve treatments and patient outcomes. Over the last few years, studies have demonstrated the occurrence of autophagy in different Anaplastic Lymphoma Kinase (ALK)-associated cancers, notably ALK-positive anaplastic large cell lymphoma (ALCL), non-small cell lung carcinoma (NSCLC), Neuroblastoma (NB), and Rhabdomyosarcoma (RMS). In this review, we will first briefly describe the autophagic process and how it can lead to opposite outcomes in anti-cancer therapies, and we will then focus on what is currently known regarding autophagy in ALK-associated cancers. PMID:29186933

  6. Zika Virus Induces Autophagy in Human Umbilical Vein Endothelial Cells.

    PubMed

    Peng, Haoran; Liu, Bin; Yves, Toure Doueu; He, Yanhua; Wang, Shijie; Tang, Hailin; Ren, Hao; Zhao, Ping; Qi, Zhongtian; Qin, Zhaoling

    2018-05-15

    Autophagy is a common strategy for cell protection; however, some viruses can in turn adopt cellular autophagy to promote viral replication. Zika virus (ZIKV) is the pathogen that causes Zika viral disease, and it is a mosquito-borne virus. However, its pathogenesis, especially the interaction between ZIKV and target cells during the early stages of infection, is still unclear. In this study, we demonstrate that infecting human umbilical vein endothelial cells (HUVEC) with ZIKV triggers cellular autophagy. We observed both an increase in the conversion of LC3-I to LC3-II and increased accumulation of fluorescent cells with LC3 dots, which are considered to be the two key indicators of autophagy. The ratio of LC3-II/GAPDH in each group was significantly increased at different times after ZIKV infection at different MOIs, indicating that the production of lipidated LC3-II increased. Moreover, both the ratio of LC3-II/GAPDH and the expression of viral NS3 protein increased with increasing time of viral infection. The expression level of p62 decreased gradually from 12 h post-infection. Expression profile of double fluorescent protein labelling LC3 indicated that the autophagy induced by ZIKV infection was a complete process. We further investigated the role of autophagy in ZIKV replication. We demonstrated that either the treatment with inhibitors of autophagosomes formation or short hairpin RNA targeting the Beclin-1 gene, which is critical for the formation of autophagosomes, significantly reduced viral production. Taken together, our results indicate that ZIKV infection induces autophagy of HUVEC, and inhibition of ZIKV-induced autophagy restrains viral replication.

  7. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein.

    PubMed

    Liu, Juan; Wang, Hailong; Gu, Jinyan; Deng, Tingjuan; Yuan, Zhuangchuan; Hu, Boli; Xu, Yunbin; Yan, Yan; Zan, Jie; Liao, Min; DiCaprio, Erin; Li, Jianrong; Su, Shuo; Zhou, Jiyong

    2017-04-03

    Autophagy is an essential component of host immunity and used by viruses for survival. However, the autophagy signaling pathways involved in virus replication are poorly documented. Here, we observed that rabies virus (RABV) infection triggered intracellular autophagosome accumulation and results in incomplete autophagy by inhibiting autophagy flux. Subsequently, we found that RABV infection induced the reduction of CASP2/caspase 2 and the activation of AMP-activated protein kinase (AMPK)-AKT-MTOR (mechanistic target of rapamycin) and AMPK-MAPK (mitogen-activated protein kinase) pathways. Further investigation revealed that BECN1/Beclin 1 binding to viral phosphoprotein (P) induced an incomplete autophagy via activating the pathways CASP2-AMPK-AKT-MTOR and CASP2-AMPK-MAPK by decreasing CASP2. Taken together, our data first reveals a crosstalk of BECN1 and CASP2-dependent autophagy pathways by RABV infection.

  8. Hepatitis B virus-triggered autophagy targets TNFRSF10B/death receptor 5 for degradation to limit TNFSF10/TRAIL response.

    PubMed

    Shin, Gu-Choul; Kang, Hong Seok; Lee, Ah Ram; Kim, Kyun-Hwan

    2016-12-01

    Death receptors of TNFSF10/TRAIL (tumor necrosis factor superfamily member 10) contribute to immune surveillance against virus-infected or transformed cells by promoting apoptosis. Many viruses evade antiviral immunity by modulating TNFSF10 receptor signaling, leading to persistent infection. Here, we report that hepatitis B virus (HBV) X protein (HBx) restricts TNFSF10 receptor signaling via macroautophagy/autophagy-mediated degradation of TNFRSF10B/DR5, a TNFSF10 death receptor, and thus permits survival of virus-infected cells. We demonstrate that the expression of the TNFRSF10B protein is dramatically reduced both in liver tissues of chronic hepatitis B patients and in cell lines transfected with HBV or HBx. HBx-mediated downregulation of TNFRSF10B is caused by the lysosomal, but not proteasomal, degradation pathway. Immunoblotting analysis of LC3B and SQSTM1, and microscopy analysis of tandem-fluorescence-tagged LC3B revealed that HBx promotes complete autophagy. Inhibition of autophagy with a pharmacological inhibitor and LC3B knockdown revealed that HBx-induced autophagy is crucial for TNFRSF10B degradation. Immunoprecipitation and GST affinity isolation assays showed that HBx directly interacts with TNFRSF10B and recruits it to phagophores, the precursors to autophagosomes. We confirmed that autophagy activation is related to the downregulation of the TNFRSF10B protein in liver tissues of chronic hepatitis B patients. Inhibition of autophagy enhanced the susceptibility of HBx-infected hepatocytes to TNFSF10. These results identify the dual function of HBx in TNFRSF10B degradation: HBx plays a role as an autophagy receptor-like molecule, which promotes the association of TNFRSF10B with LC3B; HBx is also an autophagy inducer. Our data suggest a molecular mechanism for HBV evasion from TNFSF10-mediated antiviral immunity, which may contribute to chronic HBV infection.

  9. Efficacy of an autophagy-targeted DNA vaccine against avian leukosis virus subgroup J

    USDA-ARS?s Scientific Manuscript database

    Infection with the avian leukosis virus subgroup J (ALV-J) can lead to neoplastic disease in chickens, inflicting significant economic losses to the poultry industry. Recent reports have identified inhibitory effects of ALV-J on autophagy, a process involving in innate and adaptive immunity. Inspire...

  10. Targeting the Autophagy/Lysosomal Degradation Pathway in Parkinson's Disease.

    PubMed

    Rivero-Ríos, Pilar; Madero-Pérez, Jesús; Fernández, Belén; Hilfiker, Sabine

    2016-01-01

    Autophagy is a cellular quality control mechanism crucial for neuronal homeostasis. Defects in autophagy are critically associated with mechanisms underlying Parkinson's disease (PD), a common and debilitating neurodegenerative disorder. Autophagic dysfunction in PD can occur at several stages of the autophagy/lysosomal degradative machinery, contributing to the formation of intracellular protein aggregates and eventual neuronal cell death. Therefore, autophagy inducers may comprise a promising new therapeutic approach to combat neurodegeneration in PD. Several currently available FDA-approved drugs have been shown to enhance autophagy, which may allow for their repurposing for use in novel clinical conditions including PD. This review summarizes our current knowledge of deficits in the autophagy/lysosomal degradation pathways associated with PD, and highlight current approaches which target this pathway as possible means towards novel therapeutic strategies.

  11. Autophagy: A Novel Therapeutic Target for Diabetic Nephropathy.

    PubMed

    Kume, Shinji; Koya, Daisuke

    2015-12-01

    Diabetic nephropathy is a leading cause of end stage renal disease and its occurance is increasing worldwide. The most effective treatment strategy for the condition is intensive treatment to strictly control glycemia and blood pressure using renin-angiotensin system inhibitors. However, a fraction of patients still go on to reach end stage renal disease even under such intensive care. New therapeutic targets for diabetic nephropathy are, therefore, urgently needed. Autophagy is a major catabolic pathway by which mammalian cells degrade macromolecules and organelles to maintain intracellular homeostasis. The accumulation of damaged proteins and organelles is associated with the pathogenesis of diabetic nephropathy. Autophagy in the kidney is activated under some stress conditions, such as oxidative stress and hypoxia in proximal tubular cells, and occurs even under normal conditions in podocytes. These and other accumulating findings have led to a hypothesis that autophagy is involved in the pathogenesis of diabetic nephropathy. Here, we review recent findings underpinning this hypothesis and discuss the advantages of targeting autophagy for the treatment of diabetic nephropathy.

  12. The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies.

    PubMed

    Wang, Lan-Lan; Wang, Xin-Ru; Wei, Xue-Mei; Huang, Huang; Wu, Jian-Xiang; Chen, Xue-Xin; Liu, Shu-Sheng; Wang, Xiao-Wei

    2016-09-01

    Macroautophagy/autophagy plays an important role against pathogen infection in mammals and plants. However, little has been known about the role of autophagy in the interactions of insect vectors with the plant viruses, which they transmit. Begomoviruses are a group of single-stranded DNA viruses and are exclusively transmitted by the whitefly Bemisia tabaci in a circulative manner. In this study, we found that the infection of a begomovirus, tomato yellow leaf curl virus (TYLCV) could activate the autophagy pathway in the Middle East Asia Minor 1 (MEAM1) species of the B. tabaci complex as evidenced by the formation of autophagosomes and ATG8-II. Interestingly, the activation of autophagy led to the subsequent degradation of TYLCV coat protein (CP) and genomic DNA. While feeding the whitefly with 2 autophagy inhibitors (3-methyladenine and bafilomycin A1) and silencing the expression of Atg3 and Atg9 increased the viral load; autophagy activation via feeding of rapamycin notably decreased the amount of viral CP and DNA in the whitefly. Furthermore, we found that activation of whitefly autophagy could inhibit the efficiency of virus transmission; whereas inhibiting autophagy facilitated virus transmission. Taken together, these results indicate that TYLCV infection can activate the whitefly autophagy pathway, which leads to the subsequent degradation of virus. Furthermore, our report proves that an insect vector uses autophagy as an intrinsic antiviral program to repress the infection of a circulative-transmitted plant virus. Our data also demonstrate that TYLCV may replicate and trigger complex interactions with the insect vector.

  13. Autophagy interaction with herpes simplex virus type-1 infection

    PubMed Central

    O'Connell, Douglas; Liang, Chengyu

    2016-01-01

    abstract More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy) and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis. Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation combined with neuropathogenesis may be intimately intertwined demanding further investigation. PMID:26934628

  14. Autophagy of Mitochondria: A Promising Therapeutic Target for Neurodegenerative Disease

    PubMed Central

    Kamat, Pradip K.; Kalani, Anuradha; Kyles, Philip; Tyagi, Suresh C.; Tyagi, Neetu

    2014-01-01

    The autophagic process is the only known mechanism for mitochondrial turnover and it has been speculated that dysfunction of autophagy may result in mitochondrial error and cellular stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is associated with cellular oxidative stress and its impact on neuro-degeneration. This impaired autophagic function may be considered as a possible mechanism in the pathogenesis of several neurodegenerative disorders including: Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington disease (HD). It can be suggested that autophagy dysfunction along with oxidative stress are considered main events in neurodegenerative disorders. New therapeutic approaches have now begun to target mitochondria as a potential drug target. This review discusses evidence supporting the notion that oxidative stress and autophagy are intimately associated with neurodegenerative disease pathogenesis. This review also explores new approaches that can prevent mitochondrial dysfunction, improve neurodegenerative etiology, and also offer possible cures to the aforementioned neurodegenerative diseases. PMID:24807843

  15. Inflammation-Induced, STING-Dependent Autophagy Restricts Zika Virus Infection in the Drosophila Brain.

    PubMed

    Liu, Yuan; Gordesky-Gold, Beth; Leney-Greene, Michael; Weinbren, Nathan L; Tudor, Matthew; Cherry, Sara

    2018-06-09

    The emerging arthropod-borne flavivirus Zika virus (ZIKV) is associated with neurological complications. Innate immunity is essential for the control of virus infection, but the innate immune mechanisms that impact viral infection of neurons remain poorly defined. Using the genetically tractable Drosophila system, we show that ZIKV infection of the adult fly brain leads to NF-kB-dependent inflammatory signaling, which serves to limit infection. ZIKV-dependent NF-kB activation induces the expression of Drosophila stimulator of interferon genes (dSTING) in the brain. dSTING protects against ZIKV by inducing autophagy in the brain. Loss of autophagy leads to increased ZIKV infection of the brain and death of the infected fly, while pharmacological activation of autophagy is protective. These data suggest an essential role for an inflammation-dependent STING pathway in the control of neuronal infection and a conserved role for STING in antimicrobial autophagy, which may represent an ancestral function for this essential innate immune sensor. Copyright © 2018. Published by Elsevier Inc.

  16. Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines.

    PubMed

    Peng, Jiaojiao; Zhu, Shenghe; Hu, Lili; Ye, Pingping; Wang, Yifei; Tian, Qin; Mei, Mingzhu; Chen, Hao; Guo, Xiaofeng

    2016-10-02

    Different rabies virus (RABV) strains have their own biological characteristics, but little is known about their respective impact on autophagy. Therefore, we evaluated whether attenuated RABV HEP-Flury and wild-type RABV GD-SH-01 strains triggered autophagy. We found that GD-SH-01 infection significantly increased the number of autophagy-like vesicles, the accumulation of enhanced green fluorescent protein (EGFP)-LC3 fluorescence puncta and the conversion of LC3-I to LC3-II, while HEP-Flury was not able to induce this phenomenon. When evaluating autophagic flux, we found that GD-SH-01 infection triggers a complete autophagic response in the human neuroblastoma cell line (SK), while autophagosome fusion with lysosomes was inhibited in a mouse neuroblastoma cell line (NA). In these cells, GD-SH-01 led to apoptosis and mitochondrial dysfunction while triggering autophagy, and apoptosis could be decreased by enhancing autophagy. To further identify the virus constituent causing autophagy, 5 chimeric recombinant viruses carrying single genes of HEP-Flury instead of those of GD-SH-01 were rescued. While the HEP-Flury virus carrying the wild-type matrix protein (M) gene of RABV triggered LC3-I to LC3-II conversion in SK and NA cells, replacement of genes of nucleoprotein (N), phosphoprotein (P) and glycoprotein (G) produced only minor autophagy. But no one single structural protein of GD-SH-01 induced autophagy. Moreover, the AMPK signaling pathway was activated by GD-SH-01 in SK. Therefore, our data provide strong evidence that autophagy is induced by GD-SH-01 and can decrease apoptosis in vitro. Furthermore, the M gene of GD-SH-01 may cooperatively induce autophagy.

  17. Autophagy is involved in regulating influenza A virus RNA and protein synthesis associated with both modulation of Hsp90 induction and mTOR/p70S6K signaling pathway.

    PubMed

    Liu, Ge; Zhong, Meigong; Guo, Chaowan; Komatsu, Masaaki; Xu, Jun; Wang, Yifei; Kitazato, Kaio

    2016-03-01

    Influenza A virus (IAV) infection triggers autophagosome formation, but inhibits the fusion of autophagosomes with lysosomes. However, the role of autophagy in IAV replication is still largely unclarified. In this study, we aim to reveal the role of autophagy in IAV replication and the molecular mechanisms underlying the regulation. By using autophagy-deficient (Atg7(-/-)) MEFs, we demonstrated that autophagy deficiency significantly reduced the levels of viral proteins, mRNA and genomic RNAs (vRNAs) without affecting viral entry. We further found that autophagy deficiency lead to a transient increase in phosphorylation of mTOR and its downstream targets including 4E-BP1 and S6 at a very early stage of IAV infection, and markedly suppressed p70S6K phosphorylation at the late stage of IAV infection. Furthermore, autophagy deficiency resulted in impairment of Hsp90 induction in response to IAV infection. These results indicate that IAV regulates autophagy to benefit the accumulation of viral elements (synthesis of viral proteins and genomic RNA) during IAV replication. This regulation is associated with modulation of Hsp90 induction and mTOR/p70S6K signaling pathway. Our results provide important evidence for the role of autophagy in IAV replication and the mechanisms underlying the regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Japanese encephalitis virus replication is negatively regulated by autophagy and occurs on LC3-I- and EDEM1-containing membranes.

    PubMed

    Sharma, Manish; Bhattacharyya, Sankar; Nain, Minu; Kaur, Manpreet; Sood, Vikas; Gupta, Vishal; Khasa, Renu; Abdin, Malik Z; Vrati, Sudhanshu; Kalia, Manjula

    2014-09-01

    Autophagy is a lysosomal degradative pathway that has diverse physiological functions and plays crucial roles in several viral infections. Here we examine the role of autophagy in the life cycle of JEV, a neurotropic flavivirus. JEV infection leads to induction of autophagy in several cell types. JEV replication was significantly enhanced in neuronal cells where autophagy was rendered dysfunctional by ATG7 depletion, and in Atg5-deficient mouse embryonic fibroblasts (MEFs), resulting in higher viral titers. Autophagy was functional during early stages of infection however it becomes dysfunctional as infection progressed resulting in accumulation of misfolded proteins. Autophagy-deficient cells were highly susceptible to virus-induced cell death. We also observed JEV replication complexes that are marked by nonstructural protein 1 (NS1) and dsRNA colocalized with endogenous LC3 but not with GFP-LC3. Colocalization of NS1 and LC3 was also observed in Atg5 deficient MEFs, which contain only the nonlipidated form of LC3. Viral replication complexes furthermore show association with a marker of the ER-associated degradation (ERAD) pathway, EDEM1 (ER degradation enhancer, mannosidase α-like 1). Our data suggest that virus replication occurs on ERAD-derived EDEM1 and LC3-I-positive structures referred to as EDEMosomes. While silencing of ERAD regulators EDEM1 and SEL1L suppressed JEV replication, LC3 depletion exerted a profound inhibition with significantly reduced RNA levels and virus titers. Our study suggests that while autophagy is primarily antiviral for JEV and might have implications for disease progression and pathogenesis of JEV, nonlipidated LC3 plays an important autophagy independent function in the virus life cycle.

  19. Uvrag targeting by Mir125a and Mir351 modulates autophagy associated with Ewsr1 deficiency.

    PubMed

    Kim, Yunha; Kang, Young-Sook; Lee, Na-Young; Kim, Ki Yoon; Hwang, Yu Jin; Kim, Hyun-Wook; Rhyu, Im Joo; Her, Song; Jung, Min-Kyung; Kim, Sun; Lee, Chai-Jin; Ko, Seyoon; Kowall, Neil W; Lee, Sean Bong; Lee, Junghee; Ryu, Hoon

    2015-01-01

    The EWSR1 (EWS RNA-binding protein 1/Ewing Sarcoma Break Point Region 1) gene encodes a RNA/DNA binding protein that is ubiquitously expressed and involved in various cellular processes. EWSR1 deficiency leads to impairment of development and accelerated senescence but the mechanism is not known. Herein, we found that EWSR1 modulates the Uvrag (UV radiation resistance associated) gene at the post-transcription level. Interestingly, EWSR1 deficiency led to the activation of the DROSHA-mediated microprocessor complex and increased the level of Mir125a and Mir351, which directly target Uvrag. Moreover, the Mir125a- and Mir351-mediated reduction of Uvrag was associated with the inhibition of autophagy that was confirmed in ewsr1 knockout (KO) MEFs and ewsr1 KO mice. Taken together, our data indicate that EWSR1 is involved in the post-transcriptional regulation of Uvrag via a miRNA-dependent pathway, resulting in the deregulation of autophagy inhibition. The mechanism of Uvrag and autophagy regulation by EWSR1 provides new insights into the role of EWSR1 deficiency-related cellular dysfunction.

  20. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector.

    PubMed

    Chen, Yong; Chen, Qian; Li, Manman; Mao, Qianzhuo; Chen, Hongyan; Wu, Wei; Jia, Dongsheng; Wei, Taiyun

    2017-11-01

    Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV) in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors.

  1. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector

    PubMed Central

    Mao, Qianzhuo; Chen, Hongyan; Wu, Wei

    2017-01-01

    Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV) in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors. PMID:29125860

  2. Inhibition of Avian Influenza A Virus Replication in Human Cells by Host Restriction Factor TUFM Is Correlated with Autophagy.

    PubMed

    Kuo, Shu-Ming; Chen, Chi-Jene; Chang, Shih-Cheng; Liu, Tzu-Jou; Chen, Yi-Hsiang; Huang, Sheng-Yu; Shih, Shin-Ru

    2017-06-13

    Avian influenza A viruses generally do not replicate efficiently in human cells, but substitution of glutamic acid (Glu, E) for lysine (Lys, K) at residue 627 of avian influenza virus polymerase basic protein 2 (PB2) can serve to overcome host restriction and facilitate human infectivity. Although PB2 residue 627 is regarded as a species-specific signature of influenza A viruses, host restriction factors associated with PB2 627 E have yet to be fully investigated. We conducted immunoprecipitation, followed by differential proteomic analysis, to identify proteins associating with PB2 627 K (human signature) and PB2 627 E (avian signature) of influenza A/WSN/1933(H1N1) virus, and the results indicated that Tu elongation factor, mitochondrial (TUFM), had a higher binding affinity for PB2 627 E than PB2 627 K in transfected human cells. Stronger binding of TUFM to avian-signature PB2 590 G/ 591 Q and PB2 627 E in the 2009 swine-origin pandemic H1N1 and 2013 avian-origin H7N9 influenza A viruses was similarly observed. Viruses carrying avian-signature PB2 627 E demonstrated increased replication in TUFM-deficient cells, but viral replication decreased in cells overexpressing TUFM. Interestingly, the presence of TUFM specifically inhibited the replication of PB2 627 E viruses, but not PB2 627 K viruses. In addition, enhanced levels of interaction between TUFM and PB2 627 E were noted in the mitochondrial fraction of infected cells. Furthermore, TUFM-dependent autophagy was reduced in TUFM-deficient cells infected with PB2 627 E virus; however, autophagy remained consistent in PB2 627 K virus-infected cells. The results suggest that TUFM acts as a host restriction factor that impedes avian-signature influenza A virus replication in human cells in a manner that correlates with autophagy. IMPORTANCE An understanding of the mechanisms that influenza A viruses utilize to shift host tropism and the identification of host restriction factors that can limit infection are both

  3. Single-virus tracking approach to reveal the interaction of Dengue virus with autophagy during the early stage of infection

    NASA Astrophysics Data System (ADS)

    Chu, Li-Wei; Huang, Yi-Lung; Lee, Jin-Hui; Huang, Long-Ying; Chen, Wei-Jun; Lin, Ya-Hsuan; Chen, Jyun-Yu; Xiang, Rui; Lee, Chau-Hwang; Ping, Yueh-Hsin

    2014-01-01

    Dengue virus (DENV) is one of the major infectious pathogens worldwide. DENV infection is a highly dynamic process. Currently, no antiviral drug is available for treating DENV-induced diseases since little is known regarding how the virus interacts with host cells during infection. Advanced molecular imaging technologies are powerful tools to understand the dynamics of intracellular interactions and molecular trafficking. This study exploited a single-virus particle tracking technology to address whether DENV interacts with autophagy machinery during the early stage of infection. Using confocal microscopy and three-dimensional image analysis, we showed that DENV triggered the formation of green fluorescence protein-fused microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta, and DENV-induced autophagosomes engulfed DENV particles within 15-min postinfection. Moreover, single-virus particle tracking revealed that both DENV particles and autophagosomes traveled together during the viral infection. Finally, in the presence of autophagy suppressor 3-methyladenine, the replication of DENV was inhibited and the location of DENV particles spread in cytoplasma. In contrast, the numbers of newly synthesized DENV were elevated and the co-localization of DENV particles and autophagosomes was detected while the cells were treated with autophagy inducer rapamycin. Taken together, we propose that DENV particles interact with autophagosomes at the early stage of viral infection, which promotes the replication of DENV.

  4. Autophagy functions as an antiviral mechanism against geminiviruses in plants

    PubMed Central

    Haxim, Yakupjan; Ismayil, Asigul; Jia, Qi; Wang, Yan; Zheng, Xiyin; Chen, Tianyuan; Qian, Lichao; Liu, Na; Wang, Yunjing; Han, Shaojie; Cheng, Jiaxuan; Qi, Yijun; Hong, Yiguo; Liu, Yule

    2017-01-01

    Autophagy is an evolutionarily conserved process that recycles damaged or unwanted cellular components, and has been linked to plant immunity. However, how autophagy contributes to plant immunity is unknown. Here we reported that the plant autophagic machinery targets the virulence factor βC1 of Cotton leaf curl Multan virus (CLCuMuV) for degradation through its interaction with the key autophagy protein ATG8. A V32A mutation in βC1 abolished its interaction with NbATG8f, and virus carrying βC1V32A showed increased symptoms and viral DNA accumulation in plants. Furthermore, silencing of autophagy-related genes ATG5 and ATG7 reduced plant resistance to the DNA viruses CLCuMuV, Tomato yellow leaf curl virus, and Tomato yellow leaf curl China virus, whereas activating autophagy by silencing GAPC genes enhanced plant resistance to viral infection. Thus, autophagy represents a novel anti-pathogenic mechanism that plays an important role in antiviral immunity in plants. DOI: http://dx.doi.org/10.7554/eLife.23897.001 PMID:28244873

  5. Autophagy induction in tobacco leaves infected by potato virus Y{sup O} and its putative roles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Dabin; Park, Jaeyoung; Oh, Seonhee, E-mail: seonh@chosun.ac.kr

    Autophagy plays a critical role in the innate immune response of plants to pathogen infection. In the present study, we examined autophagy induced by potato virus Y ordinary strain (PVY{sup O}) infection in tobacco (Nicotiana benthamiana). Enzyme-linked immunosorbent assays revealed that the number of virus particles in the plant peaked at 2 weeks post-inoculation and then gradually decreased. Additionally, the amount of virus increased significantly in the 3rd and 4th leaves distal to the inoculated leaf and decreased slightly in the 5th leaf. Within 2 weeks of PVY{sup O} inoculation, the tobacco leaves showed typical symptoms of Potyvirus inoculation, includingmore » mottling, yellowing, a mosaic pattern, and necrotic tissue changes at the inoculated site. Based on an ultrastructural analysis of the PVY{sup O}-infected tobacco leaves, virus aggregates appeared as longitudinal and transverse arrays and pinwheels, which are typical of Potyvirus inoculation. Moreover, PVY{sup O} infection caused changes in the number, size, and shape of chloroplasts, whereas the number of plastogranules increased markedly. Furthermore, double-membrane autophagosome-like vacuoles, including electron-dense materials, laminated structures, and cellular organelles, were found. The induction of autophagy after the PVY{sup O} infection of tobacco leaves was further confirmed by the expression of lipidated microtubule-associated protein 1 light chain 3 (LC3)-II, an autophagy marker and p62, an autophagy adaptor protein. The LC3-II levels increased daily over the 4-week period. Although virus inoculation was performed systemically on the basal leaves of the plants, LC3-II was expressed throughout the leaves and the expression was higher in leaves distal to the inoculated leaf. Moreover, PVY{sup O} infection caused the activation of stress-activated protein kinases/c-Jun N-terminal kinases. Therefore, PVY{sup O} infection-induced autophagy was positively correlated with the virus content

  6. Absence of autophagy promotes apoptosis by modulating the ROS-dependent RLR signaling pathway in classical swine fever virus-infected cells

    PubMed Central

    Pei, Jingjing; Deng, Jieru; Ye, Zuodong; Wang, Jiaying; Gou, Hongchao; Liu, Wenjun; Zhao, Mingqiu; Liao, Ming; Yi, Lin; Chen, Jinding

    2016-01-01

    ABSTRACT A growing number of studies have demonstrated that both macroautophagy/autophagy and apoptosis are important inner mechanisms of cell to maintain homeostasis and participate in the host response to pathogens. We have previously reported that a functional autophagy pathway is trigged by infection of classical swine fever virus (CSFV) and is required for viral replication and release in host cells. However, the interplay of autophagy and apoptosis in CSFV-infected cells has not been clarified. In the present study, we demonstrated that autophagy induction with rapamycin facilitates cellular proliferation after CSFV infection, and that autophagy inhibition by knockdown of essential autophagic proteins BECN1/Beclin 1 or MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) promotes apoptosis via fully activating both intrinsic and extrinsic mechanisms in CSFV-infected cells. We also found that RIG-I-like receptor (RLR) signaling was amplified in autophagy-deficient cells during CSFV infection, which was closely linked to the activation of the intrinsic apoptosis pathway. Moreover, we discovered that virus infection of autophagy-impaired cells results in an increase in copy number of mitochondrial DNA and in the production of reactive oxygen species (ROS), which plays a significant role in enhanced RLR signaling and the activated extrinsic apoptosis pathway in cultured cells. Collectively, these data indicate that CSFV-induced autophagy delays apoptosis by downregulating ROS-dependent RLR signaling and thus contributes to virus persistent infection in host cells. PMID:27463126

  7. Absence of autophagy promotes apoptosis by modulating the ROS-dependent RLR signaling pathway in classical swine fever virus-infected cells.

    PubMed

    Pei, Jingjing; Deng, Jieru; Ye, Zuodong; Wang, Jiaying; Gou, Hongchao; Liu, Wenjun; Zhao, Mingqiu; Liao, Ming; Yi, Lin; Chen, Jinding

    2016-10-02

    A growing number of studies have demonstrated that both macroautophagy/autophagy and apoptosis are important inner mechanisms of cell to maintain homeostasis and participate in the host response to pathogens. We have previously reported that a functional autophagy pathway is trigged by infection of classical swine fever virus (CSFV) and is required for viral replication and release in host cells. However, the interplay of autophagy and apoptosis in CSFV-infected cells has not been clarified. In the present study, we demonstrated that autophagy induction with rapamycin facilitates cellular proliferation after CSFV infection, and that autophagy inhibition by knockdown of essential autophagic proteins BECN1/Beclin 1 or MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) promotes apoptosis via fully activating both intrinsic and extrinsic mechanisms in CSFV-infected cells. We also found that RIG-I-like receptor (RLR) signaling was amplified in autophagy-deficient cells during CSFV infection, which was closely linked to the activation of the intrinsic apoptosis pathway. Moreover, we discovered that virus infection of autophagy-impaired cells results in an increase in copy number of mitochondrial DNA and in the production of reactive oxygen species (ROS), which plays a significant role in enhanced RLR signaling and the activated extrinsic apoptosis pathway in cultured cells. Collectively, these data indicate that CSFV-induced autophagy delays apoptosis by downregulating ROS-dependent RLR signaling and thus contributes to virus persistent infection in host cells.

  8. Immunohistochemical detection of autophagy-related microtubule-associated protein 1 light chain 3 (LC3) in the cerebellums of dogs naturally infected with canine distemper virus.

    PubMed

    Kabak, Y B; Sozmen, M; Yarim, M; Guvenc, T; Karayigit, M O; Gulbahar, M Y

    2015-01-01

    We investigated the expression of microtubule-associated protein 1 light chain 3 (LC3) protein in the cerebellums of dogs infected with canine distemper virus (CDV) using immunohistochemistry to detect autophagy. The cerebellums of 20 dogs infected with CDV were used. Specimens showing demyelination of white matter were considered to have an acute infection, whereas specimens showing signs of severe perivascular cuffing and demyelination of white matter were classified as having chronic CDV. Cerebellar sections were immunostained with CDV and LC3 antibodies. The cytoplasm of Purkinje cells, granular layer cells, motor neurons in large cerebellar ganglia and some neurons in white matter were positive for the LC3 antibody in both the control and CDV-infected dogs. In the infected cerebellums, however, white matter was immunostained more intensely, particularly the neurons and gemistocytic astrocytes in the demyelinated areas, compared to controls. Autophagy also was demonstrated in CDV-positive cells using double immunofluorescence staining. Our findings indicate that increased autophagy in the cerebellum of dogs naturally infected with CDV may play a role in transferring the virus from cell to cell.

  9. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Ying, E-mail: peiying-19802@163.com; Chen, Zhen-Ping, E-mail: 530670663@qq.com; Ju, Huai-Qiang, E-mail: 344464448@qq.com

    2011-02-11

    Research highlights: {yields} We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. {yields} Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. {yields} Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impairedmore » significantly in MEF-atg7{sup -/-} cells (autophagy-defective cells) derived from an atg7{sup -/-} knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.« less

  10. Stimulation of autophagy by the p53 target gene Sestrin2.

    PubMed

    Maiuri, Maria Chiara; Malik, Shoaib Ahmad; Morselli, Eugenia; Kepp, Oliver; Criollo, Alfredo; Mouchel, Pierre-Luc; Carnuccio, Rosa; Kroemer, Guido

    2009-05-15

    The oncosuppressor protein p53 regulates autophagy in a dual fashion. The pool of cytoplasmic p53 protein represses autophagy in a transcription-independent fashion, while the pool of nuclear p53 stimulates autophagy through the transactivation of specific genes. Here we report the discovery that Sestrin2, a novel p53 target gene, is involved in the induction of autophagy. Depletion of Sestrin2 by RNA interference reduced the level of autophagy in a panel of p53-sufficient human cancer cell lines responding to distinct autophagy inducers. In quantitative terms, Sestrin2 depletion was as efficient in preventing autophagy induction as was the depletion of Dram, another p53 target gene. Knockout of either Sestrin2 or Dram reduced autophagy elicited by nutrient depletion, rapamycin, lithium or thapsigargin. Moreover, autophagy induction by nutrient depletion or pharmacological stimuli led to an increase in Sestrin2 expression levels in p53-proficient cells. In strict contrast, the depletion of Sestrin2 or Dram failed to affect autophagy in p53-deficient cells and did not modulate the inhibition of baseline autophagy by a cytoplasmic p53 mutant that was reintroduced into p53-deficient cells. We conclude that Sestrin2 acts as a positive regulator of autophagy in p53-proficient cells.

  11. ACTP: A webserver for predicting potential targets and relevant pathways of autophagy-modulating compounds

    PubMed Central

    Ouyang, Liang; Cai, Haoyang; Liu, Bo

    2016-01-01

    Autophagy (macroautophagy) is well known as an evolutionarily conserved lysosomal degradation process for long-lived proteins and damaged organelles. Recently, accumulating evidence has revealed a series of small-molecule compounds that may activate or inhibit autophagy for therapeutic potential on human diseases. However, targeting autophagy for drug discovery still remains in its infancy. In this study, we developed a webserver called Autophagic Compound-Target Prediction (ACTP) (http://actp.liu-lab.com/) that could predict autophagic targets and relevant pathways for a given compound. The flexible docking of submitted small-molecule compound (s) to potential autophagic targets could be performed by backend reverse docking. The webpage would return structure-based scores and relevant pathways for each predicted target. Thus, these results provide a basis for the rapid prediction of potential targets/pathways of possible autophagy-activating or autophagy-inhibiting compounds without labor-intensive experiments. Moreover, ACTP will be helpful to shed light on identifying more novel autophagy-activating or autophagy-inhibiting compounds for future therapeutic implications. PMID:26824420

  12. Trehalose, an mTOR-Independent Inducer of Autophagy, Inhibits Human Cytomegalovirus Infection in Multiple Cell Types

    PubMed Central

    Belzile, Jean-Philippe; Sabalza, Maite; Craig, Megan; Clark, Elizabeth; Morello, Christopher S.

    2015-01-01

    ABSTRACT Human cytomegalovirus (HCMV) is the major viral cause of birth defects and a serious problem in immunocompromised individuals and has been associated with atherosclerosis. Previous studies have shown that the induction of autophagy can inhibit the replication of several different types of DNA and RNA viruses. The goal of the work presented here was to determine whether constitutive activation of autophagy would also block replication of HCMV. Most prior studies have used agents that induce autophagy via inhibition of the mTOR pathway. However, since HCMV infection alters the sensitivity of mTOR kinase-containing complexes to inhibitors, we sought an alternative method of inducing autophagy. We chose to use trehalose, a nontoxic naturally occurring disaccharide that is found in plants, insects, microorganisms, and invertebrates but not in mammals and that induces autophagy by an mTOR-independent mechanism. Given the many different cell targets of HCMV, we proceeded to determine whether trehalose would inhibit HCMV infection in human fibroblasts, aortic artery endothelial cells, and neural cells derived from human embryonic stem cells. We found that in all of these cell types, trehalose induces autophagy and inhibits HCMV gene expression and production of cell-free virus. Treatment of HCMV-infected neural cells with trehalose also inhibited production of cell-associated virus and partially blocked the reduction in neurite growth and cytomegaly. These results suggest that activation of autophagy by the natural sugar trehalose or other safe mTOR-independent agents might provide a novel therapeutic approach for treating HCMV disease. IMPORTANCE HCMV infects multiple cell types in vivo, establishes lifelong persistence in the host, and can cause serious health problems for fetuses and immunocompromised individuals. HCMV, like all other persistent pathogens, has to finely tune its interplay with the host cellular machinery to replicate efficiently and evade

  13. Canonical and Non-Canonical Autophagy in HIV-1 Replication Cycle

    PubMed Central

    Leymarie, Olivier; Lepont, Leslie; Berlioz-Torrent, Clarisse

    2017-01-01

    Autophagy is a lysosomal-dependent degradative process essential for maintaining cellular homeostasis, and is a key player in innate and adaptive immune responses to intracellular pathogens such as human immunodeficiency virus type 1 (HIV-1). In HIV-1 target cells, autophagy mechanisms can (i) selectively direct viral proteins and viruses for degradation; (ii) participate in the processing and presentation of viral-derived antigens through major histocompatibility complexes; and (iii) contribute to interferon production in response to HIV-1 infection. As a consequence, HIV-1 has evolved different strategies to finely regulate the autophagy pathway to favor its replication and dissemination. HIV-1 notably encodes accessory genes encoding Tat, Nef and Vpu proteins, which are able to perturb and hijack canonical and non-canonical autophagy mechanisms. This review outlines the current knowledge on the complex interplay between autophagy and HIV-1 replication cycle, providing an overview of the autophagy-mediated molecular processes deployed both by infected cells to combat the virus and by HIV-1 to evade antiviral response. PMID:28946621

  14. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p.

    PubMed

    Wang, Kun; Liu, Cui-Yun; Zhou, Lu-Yu; Wang, Jian-Xun; Wang, Man; Zhao, Bing; Zhao, Wen-Ke; Xu, Shi-Jun; Fan, Li-Hua; Zhang, Xiao-Jie; Feng, Chang; Wang, Chao-Qun; Zhao, Yan-Fang; Li, Pei-Feng

    2015-04-10

    The abnormal autophagy is associated with a variety of cardiovascular diseases. Long noncoding RNAs (lncRNAs) are emerging as new factors in gene regulation, but how lncRNAs operate in the regulation of autophagy in the heart is unclear. Here we report that a long noncoding RNA, named autophagy promoting factor (APF), can regulate autophagic cell death by targeting miR-188-3p and ATG7. The results show that miR-188-3p suppresses autophagy and myocardial infarction by targeting ATG7. Further, we find that APF lncRNA regulates miR-188-3p, and thus affects ATG7 expression, autophagic cell death and myocardial infarction. Our present study reveals a novel regulating model of autophagic programme, which comprises APF, miR-188-3p and ATG7 in the heart. Modulation of their levels may serve as potential targets and diagnostic tools for novel therapeutic strategies of myocardial infarction and heart failure.

  15. Targeting BRAF V600E and Autophagy in Pediatric Brain Tumors

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0414 TITLE: Targeting BRAF V600E and Autophagy in Pediatric Brain Tumors PRINCIPAL INVESTIGATOR: Jean Mulcahy...29 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-14-1-0414 Targeting BRAF V600E and Autophagy in Pediatric Brain Tumors 5b. GRANT...ABSTRACT 200 words most significant findings 15. SUBJECT TERMS autophagy , BRAF, brain tumor. pediatric 16. SECURITY CLASSIFICATION OF: 17

  16. Hepatitis C Virus Infection Induces Autophagy as a Prosurvival Mechanism to Alleviate Hepatic ER-Stress Response

    PubMed Central

    Dash, Srikanta; Chava, Srinivas; Aydin, Yucel; Chandra, Partha K.; Ferraris, Pauline; Chen, Weina; Balart, Luis A.; Wu, Tong; Garry, Robert F.

    2016-01-01

    Hepatitis C virus (HCV) infection frequently leads to chronic liver disease, liver cirrhosis and hepatocellular carcinoma (HCC). The molecular mechanisms by which HCV infection leads to chronic liver disease and HCC are not well understood. The infection cycle of HCV is initiated by the attachment and entry of virus particles into a hepatocyte. Replication of the HCV genome inside hepatocytes leads to accumulation of large amounts of viral proteins and RNA replication intermediates in the endoplasmic reticulum (ER), resulting in production of thousands of new virus particles. HCV-infected hepatocytes mount a substantial stress response. How the infected hepatocyte integrates the viral-induced stress response with chronic infection is unknown. The unfolded protein response (UPR), an ER-associated cellular transcriptional response, is activated in HCV infected hepatocytes. Over the past several years, research performed by a number of laboratories, including ours, has shown that HCV induced UPR robustly activates autophagy to sustain viral replication in the infected hepatocyte. Induction of the cellular autophagy response is required to improve survival of infected cells by inhibition of cellular apoptosis. The autophagy response also inhibits the cellular innate antiviral program that usually inhibits HCV replication. In this review, we discuss the physiological implications of the HCV-induced chronic ER-stress response in the liver disease progression. PMID:27223299

  17. The Cellular Autophagy Pathway Modulates Human T-Cell Leukemia Virus Type 1 Replication

    PubMed Central

    Tang, Sai-Wen; Chen, Chia-Yen; Klase, Zachary; Zane, Linda

    2013-01-01

    Autophagy, a general homeostatic process for degradation of cytosolic proteins or organelles, has been reported to modulate the replication of many viruses. The role of autophagy in human T-cell leukemia virus type 1 (HTLV-1) replication has, however, been uncharacterized. Here, we report that HTLV-1 infection increases the accumulation of autophagosomes and that this accumulation increases HTLV-1 production. We found that the HTLV-1 Tax protein increases cellular autophagosome accumulation by acting to block the fusion of autophagosomes to lysosomes, preventing the degradation of the former by the latter. Interestingly, the inhibition of cellular autophagosome-lysosome fusion using bafilomycin A increased the stability of the Tax protein, suggesting that cellular degradation of Tax occurs in part through autophagy. Our current findings indicate that by interrupting the cell's autophagic process, Tax exerts a positive feedback on its own stability. PMID:23175371

  18. Human T-Cell Leukemia Virus Type 1 Tax-Deregulated Autophagy Pathway and c-FLIP Expression Contribute to Resistance against Death Receptor-Mediated Apoptosis

    PubMed Central

    Wang, Weimin; Zhou, Jiansuo; Shi, Juan; Zhang, Yaxi; Liu, Shilian

    2014-01-01

    ABSTRACT The human T-cell leukemia virus type 1 (HTLV-1) Tax protein is considered to play a central role in the process that leads to adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 Tax-expressing cells show resistance to apoptosis induced by Fas ligand (FasL) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). The regulation of Tax on the autophagy pathway in HeLa cells and peripheral T cells was recently reported, but the function and underlying molecular mechanism of the Tax-regulated autophagy are not yet well defined. Here, we report that HTLV-1 Tax deregulates the autophagy pathway, which plays a protective role during the death receptor (DR)-mediated apoptosis of human U251 astroglioma cells. The cellular FLICE-inhibitory protein (c-FLIP), which is upregulated by Tax, also contributes to the resistance against DR-mediated apoptosis. Both Tax-induced autophagy and Tax-induced c-FLIP expression require Tax-induced activation of IκB kinases (IKK). Furthermore, Tax-induced c-FLIP expression is regulated through the Tax-IKK-NF-κB signaling pathway, whereas Tax-triggered autophagy depends on the activation of IKK but not the activation of NF-κB. In addition, DR-mediated apoptosis is correlated with the degradation of Tax, which can be facilitated by the inhibitors of autophagy. IMPORTANCE Our study reveals that Tax-deregulated autophagy is a protective mechanism for DR-mediated apoptosis. The molecular mechanism of Tax-induced autophagy is also illuminated, which is different from Tax-increased c-FLIP. Tax can be degraded via manipulation of autophagy and TRAIL-induced apoptosis. These results outline a complex regulatory network between and among apoptosis, autophagy, and Tax and also present evidence that autophagy represents a new possible target for therapeutic intervention for the HTVL-1 related diseases. PMID:24352466

  19. miR-14 regulates autophagy during developmental cell death by targeting ip3-kinase 2.

    PubMed

    Nelson, Charles; Ambros, Victor; Baehrecke, Eric H

    2014-11-06

    Macroautophagy (autophagy) is a lysosome-dependent degradation process that has been implicated in age-associated diseases. Autophagy is involved in both cell survival and cell death, but little is known about the mechanisms that distinguish its use during these distinct cell fates. Here, we identify the microRNA miR-14 as being both necessary and sufficient for autophagy during developmentally regulated cell death in Drosophila. Loss of miR-14 prevented induction of autophagy during salivary gland cell death, but had no effect on starvation-induced autophagy in the fat body. Moreover, misexpression of miR-14 was sufficient to prematurely induce autophagy in salivary glands, but not in the fat body. Importantly, miR-14 regulates this context-specific autophagy through its target, inositol 1,4,5-trisphosphate kinase 2 (ip3k2), thereby affecting inositol 1,4,5-trisphosphate (IP3) signaling and calcium levels during salivary gland cell death. This study provides in vivo evidence of microRNA regulation of autophagy through modulation of IP3 signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy.

    PubMed

    Zhang, Jin; Wang, Guan; Zhou, Yuxin; Chen, Yi; Ouyang, Liang; Liu, Bo

    2018-05-01

    Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process for the clearance of damaged or superfluous proteins and organelles. Accumulating studies have recently revealed that autophagy is closely related to a variety of types of cancer; however, elucidation of its Janus role of either tumor-suppressive or tumor-promoting still remains to be discovered. In this review, we focus on summarizing the context-dependent role of autophagy and its complicated molecular mechanisms in different types of cancer. Moreover, we discuss a series of small-molecule compounds targeting autophagy-related proteins or the autophagic process for potential cancer therapy. Taken together, these findings would shed new light on exploiting the intricate mechanisms of autophagy and relevant small-molecule compounds as potential anti-cancer drugs to improve targeted cancer therapy.

  1. Antimicrobial autophagy: a conserved innate immune response in Drosophila.

    PubMed

    Moy, Ryan H; Cherry, Sara

    2013-01-01

    Autophagy is a highly conserved degradative pathway that has rapidly emerged as a critical component of immunity and host defense. Studies have implicated autophagy genes in restricting the replication of a diverse array of pathogens, including bacteria, viruses and protozoans. However, in most cases, the in vivo role of antimicrobial autophagy against pathogens has been undefined. Drosophila provides a genetically tractable model system that can be easily adapted to study autophagy in innate immunity, and recent studies in flies have demonstrated that autophagy is an essential antimicrobial response against bacteria and viruses in vivo. These findings reveal striking conservation of antimicrobial autophagy between flies and mammals, and in particular, the role of pathogen-associated pattern recognition in triggering this response. This review discusses our current understanding of antimicrobial autophagy in Drosophila and its potential relevance to human immunity. Copyright © 2013 S. Karger AG, Basel.

  2. Autophagy as an emerging therapy target for ovarian carcinoma

    PubMed Central

    Zhan, Lei; Zhang, Yu; Wang, Wenyan; Song, Enxue; Fan, Yijun; Li, Jun; Wei, Bing

    2016-01-01

    Autophagy is a conserved cellular self-digestion pathway for maintenance of homeostasis under basal and stressed conditions. Autophagy plays pivotal roles in the pathogenesis of many diseases, such as aging-related diseases, autoimmune diseases, cardiovascular diseases, and cancers. Of special note is that accumulating data suggest an intimate relationship between autophagy and ovarian carcinoma. Autophagy is well identified to act as either as a tumor-suppressor or as a tumor-promoter in ovarian carcinoma. The exact function of autophagy in ovarian carcinoma is highly dependent on the circumstances of cancer including hypoxic, nutrient-deficient, chemotherapy and so on. However, the mechanism underlying autophagy associated with ovarian carcinoma remains elusive, the precise role of autophagy in ovarian carcinoma also remains undetermined. In this review, we tried to sum up and discuss recent research achievements of autophagy in ovarian cancer. Moreover, waves of novel therapies ways for ovarian carcinoma based on the functions of autophagy were collected. PMID:27825125

  3. Autophagy as a Therapeutic Target in Cardiovascular Disease

    PubMed Central

    Nemchenko, Andriy; Chiong, Mario; Turer, Aslan; Lavandero, Sergio; Hill, Joseph A.

    2011-01-01

    The epidemic of heart failure continues apace, and development of novel therapies with clinical efficacy has lagged. Now, important insights into the molecular circuitry of cardiovascular autophagy have raised the prospect that this cellular pathway of protein quality control may be a target of clinical relevance. Whereas basal levels of autophagy are required for cell survival, excessive levels – or perhaps distinct forms of autophagic flux – contribute to disease pathogenesis. Our challenge will be to distinguish mechanisms that drive adaptive versus maladaptive autophagy and to manipulate those pathways for therapeutic gain. Recent evidence suggests this may be possible. Here, we review the fundamental biology of autophagy and its role in a variety of forms of cardiovascular disease. We discuss ways in which this evolutionarily conserved catabolic mechanism can be manipulated, discuss studies presently underway in heart disease, and provide our perspective on where this exciting field may lead in the future. PMID:21723289

  4. Immunotherapy targeting folate receptor induces cell death associated with autophagy in ovarian cancer

    PubMed Central

    Wen, Yunfei; Graybill, Whitney S.; Previs, Rebecca A.; Hu, Wei; Ivan, Cristina; Mangala, Lingegowda S.; Zand, Behrouz; Nick, Alpa M.; Jennings, Nicholas B.; Dalton, Heather J.; Sehgal, Vasudha; Ram, Prahlad; Lee, Ju-Seog; Vivas-Mejia, Pablo E.; Coleman, Robert L.; Sood, Anil K.

    2014-01-01

    Purpose Cancer cells are highly dependent on folate metabolism, making them susceptible to drugs that inhibit folate receptor activities. Targeting overexpressed folate receptor alpha (FRα) in cancer cells offers a therapeutic opportunity. We investigated the functional mechanisms of MORAB-003 (farletuzumab), a humanized monoclonal antibody against FRα, in ovarian cancer models. Experimental Design We first examined FRα expression in an array of human ovarian cancer cell lines and then assessed the in vivo effect of MORAB-003 on tumor growth and progression in several orthotopic mouse models of ovarian cancer derived from these cell lines. Molecular mechanisms of tumor cell death induced by MORAB-003 were investigated by cDNA and protein expression profiling analysis. Mechanistic studies were performed to determine the role of autophagy in MORAB-003–induced cell death. Results MORAB-003 significantly decreased tumor growth in the high-FRα IGROV1 and SKOV3ip1 models but not in the low-FRα A2780 model. MORAB-003 reduced proliferation but had no significant effect on apoptosis. Protein expression and cDNA microarray analyses showed that MORAB-003 regulated an array of autophagy-related genes. It also significantly increased expression of LC3 isoform II and enriched autophagic vacuolization. Blocking autophagy with hydroxychloroquine or bafilomycin A1 reversed the growth inhibition induced by MORAB-003. In add, alteration of FOLR1 gene copy number significantly correlated with shorter disease-free survival in patients with ovarian serous cystadenocarcinoma. Conclusions MORAB-003 displays prominent antitumor activity in ovarian cancer models expressing FRα at high levels. Blockade of folate receptor by MORAB-003 induced sustained autophagy and suppressed cell proliferation. PMID:25416196

  5. Autophagy in Alcohol-Induced Multiorgan Injury: Mechanisms and Potential Therapeutic Targets

    PubMed Central

    Wang, Shaogui; Ni, Hong-Min; Huang, Heqing

    2014-01-01

    Autophagy is a genetically programmed, evolutionarily conserved intracellular degradation pathway involved in the trafficking of long-lived proteins and cellular organelles to the lysosome for degradation to maintain cellular homeostasis. Alcohol consumption leads to injury in various tissues and organs including liver, pancreas, heart, brain, and muscle. Emerging evidence suggests that autophagy is involved in alcohol-induced tissue injury. Autophagy serves as a cellular protective mechanism against alcohol-induced tissue injury in most tissues but could be detrimental in heart and muscle. This review summarizes current knowledge about the role of autophagy in alcohol-induced injury in different tissues/organs and its potential molecular mechanisms as well as possible therapeutic targets based on modulation of autophagy. PMID:25140315

  6. ULK1, mammalian target of rapamycin, and mitochondria: linking nutrient availability and autophagy.

    PubMed

    Kundu, Mondira

    2011-05-15

    A fundamental function of autophagy conserved from yeast to mammals is mobilization of macromolecules during times of limited nutrient availability, permitting organisms to survive under starvation conditions. In yeast, autophagy is initiated following nitrogen or carbon deprivation, and autophagy mutants die rapidly under these conditions. Similarly, in mammals, autophagy is upregulated in most organs following initiation of starvation, and is critical for survival in the perinatal period following abrupt termination of the placental nutrient supply. The nutrient-sensing kinase, mammalian target of rapamycin, coordinates cellular proliferation and growth with nutrient availability, at least in part by regulating protein synthesis and autophagy-mediated degradation. This review focusses on the regulation of autophagy by Tor, a mammalian target of rapamycin, and Ulk1, a mammalian homolog of Atg1, in response to changes in nutrient availability. Given the importance of mitochondria in maintaining bioenergetic homestasis, and potentially as a source of membrane for autophagosomes during starvation, possible roles for mitochondria in this process are also discussed.

  7. Autophagic compound database: A resource connecting autophagy-modulating compounds, their potential targets and relevant diseases.

    PubMed

    Deng, Yiqi; Zhu, Lingjuan; Cai, Haoyang; Wang, Guan; Liu, Bo

    2018-06-01

    Autophagy, a highly conserved lysosomal degradation process in eukaryotic cells, can digest long-lived proteins and damaged organelles through vesicular trafficking pathways. Nowadays, mechanisms of autophagy have been gradually elucidated and thus the discovery of small-molecule drugs targeting autophagy has always been drawing much attention. So far, some autophagy-related web servers have been available online to facilitate scientists to obtain the information relevant to autophagy conveniently, such as HADb, CTLPScanner, iLIR server and ncRDeathDB. However, to the best of our knowledge, there is not any web server available about the autophagy-modulating compounds. According to published articles, all the compounds and their relations with autophagy were anatomized. Subsequently, an online Autophagic Compound Database (ACDB) (http://www.acdbliulab.com/) was constructed, which contained information of 357 compounds with 164 corresponding signalling pathways and potential targets in different diseases. We achieved a great deal of information of autophagy-modulating compounds, including compounds, targets/pathways and diseases. ACDB is a valuable resource for users to access to more than 300 curated small-molecule compounds correlated with autophagy. Autophagic compound database will facilitate to the discovery of more novel therapeutic drugs in the near future. © 2017 John Wiley & Sons Ltd.

  8. ULK1, Mammalian Target of Rapamycin, and Mitochondria: Linking Nutrient Availability and Autophagy

    PubMed Central

    2011-01-01

    Abstract A fundamental function of autophagy conserved from yeast to mammals is mobilization of macromolecules during times of limited nutrient availability, permitting organisms to survive under starvation conditions. In yeast, autophagy is initiated following nitrogen or carbon deprivation, and autophagy mutants die rapidly under these conditions. Similarly, in mammals, autophagy is upregulated in most organs following initiation of starvation, and is critical for survival in the perinatal period following abrupt termination of the placental nutrient supply. The nutrient-sensing kinase, mammalian target of rapamycin, coordinates cellular proliferation and growth with nutrient availability, at least in part by regulating protein synthesis and autophagy-mediated degradation. This review focusses on the regulation of autophagy by Tor, a mammalian target of rapamycin, and Ulk1, a mammalian homolog of Atg1, in response to changes in nutrient availability. Given the importance of mitochondria in maintaining bioenergetic homestasis, and potentially as a source of membrane for autophagosomes during starvation, possible roles for mitochondria in this process are also discussed. Antioxid. Redox Signal. 14, 1953–1958. PMID:21235397

  9. Targeting disease through novel pathways of apoptosis and autophagy.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Wang, Shaohui

    2012-12-01

    Apoptosis and autophagy impact cell death in multiple systems of the body. Development of new therapeutic strategies that target these processes must address their complex role during developmental cell growth as well as during the modulation of toxic cellular environments. Novel signaling pathways involving Wnt1-inducible signaling pathway protein 1 (WISP1), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), β-catenin and mammalian target of rapamycin (mTOR) govern apoptotic and autophagic pathways during oxidant stress that affect the course of a broad spectrum of disease entities including Alzheimer's disease, Parkinson's disease, myocardial injury, skeletal system trauma, immune system dysfunction and cancer progression. Implications of potential biological and clinical outcome for these signaling pathways are presented. The CCN family member WISP1 and its intimate relationship with canonical and non-canonical wingless signaling pathways of PI3K, Akt1, β-catenin and mTOR offer an exciting approach for governing the pathways of apoptosis and autophagy especially in clinical disorders that are currently without effective treatments. Future studies that can elucidate the intricate role of these cytoprotective pathways during apoptosis and autophagy can further the successful translation and development of these cellular targets into robust and safe clinical therapeutic strategies.

  10. A pathway of targeted autophagy is induced by DNA damage in budding yeast

    PubMed Central

    Eapen, Vinay V.; Waterman, David P.; Bernard, Amélie; Schiffmann, Nathan; Sayas, Enrich; Kamber, Roarke; Lemos, Brenda; Memisoglu, Gonen; Ang, Jessie; Mazella, Allison; Chuartzman, Silvia G.; Loewith, Robbie J.; Schuldiner, Maya; Denic, Vladimir; Klionsky, Daniel J.; Haber, James E.

    2017-01-01

    Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response. PMID:28154131

  11. A pathway of targeted autophagy is induced by DNA damage in budding yeast.

    PubMed

    Eapen, Vinay V; Waterman, David P; Bernard, Amélie; Schiffmann, Nathan; Sayas, Enrich; Kamber, Roarke; Lemos, Brenda; Memisoglu, Gonen; Ang, Jessie; Mazella, Allison; Chuartzman, Silvia G; Loewith, Robbie J; Schuldiner, Maya; Denic, Vladimir; Klionsky, Daniel J; Haber, James E

    2017-02-14

    Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response.

  12. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers.

    PubMed

    Sarkar, Sovan

    2013-10-01

    Autophagy is an intracellular degradation pathway essential for cellular and energy homoeostasis. It functions in the clearance of misfolded proteins and damaged organelles, as well as recycling of cytosolic components during starvation to compensate for nutrient deprivation. This process is regulated by mTOR (mammalian target of rapamycin)-dependent and mTOR-independent pathways that are amenable to chemical perturbations. Several small molecules modulating autophagy have been identified that have potential therapeutic application in diverse human diseases, including neurodegeneration. Neurodegeneration-associated aggregation-prone proteins are predominantly degraded by autophagy and therefore stimulating this process with chemical inducers is beneficial in a wide range of transgenic disease models. Emerging evidence indicates that compromised autophagy contributes to the aetiology of various neurodegenerative diseases related to protein conformational disorders by causing the accumulation of mutant proteins and cellular toxicity. Combining the knowledge of autophagy dysfunction and the mechanism of drug action may thus be rational for designing targeted therapy. The present review describes the cellular signalling pathways regulating mammalian autophagy and highlights the potential therapeutic application of autophagy inducers in neurodegenerative disorders.

  13. Zinc and Autophagy

    PubMed Central

    Liuzzi, Juan P.; Guo, Liang; Yoo, Changwon; Stewart, Tiffanie S

    2014-01-01

    Autophagy is a highly conserved degradative process through which cells overcome stressful conditions. Inasmuch as faulty autophagy has been associated with aging, neuronal degeneration disorders, diabetes, and fatty liver, autophagy is regarded as a potential therapeutic target. This review summarizes the present state of knowledge concerning the role of zinc in the regulation of autophagy, the role of autophagy in zinc metabolism, and the potential role of autophagy as a mediator of the protective effects of zinc. Data from in vitro studies consistently support the notion that zinc is critical for early and late autophagy. Studies have shown inhibition of early and late autophagy in cells cultured in medium treated with zinc chelators. Conversely, excess zinc added to the medium has shown to potentiate the stimulation of autophagy by tamoxifen, H2O2, ethanol and dopamine. The potential role of autophagy in zinc homeostasis has just begun to be investigated.Increasing evidence indicates that autophagy dysregulation causes significant changes in cellular zinc homeostasis. Autophagy may mediate the protective effect of zinc against lipid accumulation, apoptosis and inflammation by promoting degradation of lipid droplets, inflammasomes, p62/SQSTM1 and damaged mitochondria.Studies with humans and animal models are necessary to determine whether autophagy is influenced by zinc intake. PMID:25012760

  14. Hepatitis C Virus NS5A Protein Promotes the Lysosomal Degradation of Hepatocyte Nuclear Factor 1α via Chaperone-Mediated Autophagy.

    PubMed

    Matsui, Chieko; Deng, Lin; Minami, Nanae; Abe, Takayuki; Koike, Kazuhiko; Shoji, Ikuo

    2018-07-01

    Hepatitis C virus (HCV) infection is closely associated with type 2 diabetes. We reported that HCV infection induces the lysosomal degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) via interaction with HCV nonstructural protein 5A (NS5A) protein, thereby suppressing GLUT2 gene expression. The molecular mechanisms of selective degradation of HNF-1α caused by NS5A are largely unknown. Chaperone-mediated autophagy (CMA) is a selective lysosomal degradation pathway. Here, we investigated whether CMA is involved in the selective degradation of HNF-1α in HCV-infected cells and observed that the pentapeptide spanning from amino acid (aa) 130 to aa 134 of HNF-1α matches the rule for the CMA-targeting motif, also known as KFERQ motif. A cytosolic chaperone protein, heat shock cognate protein of 70 kDa (HSC70), and a lysosomal membrane protein, lysosome-associated membrane protein type 2A (LAMP-2A), are key components of CMA. Immunoprecipitation analysis revealed that HNF-1α was coimmunoprecipitated with HSC70, whereas the Q130A mutation (mutation of Q to A at position 130) of HNF-1α disrupted the interaction with HSC70, indicating that the CMA-targeting motif of HNF-1α is important for the association with HSC70. Immunoprecipitation analysis revealed that increasing amounts of NS5A enhanced the association of HNF-1α with HSC70. To determine whether LAMP-2A plays a role in the degradation of HNF-1α protein, we knocked down LAMP-2A mRNA by RNA interference; this knockdown by small interfering RNA (siRNA) recovered the level of HNF-1α protein in HCV J6/JFH1-infected cells. This result suggests that LAMP-2A is required for the degradation of HNF-1α. Immunofluorescence study revealed colocalization of NS5A and HNF-1α in the lysosome. Based on our findings, we propose that HCV NS5A interacts with HSC70 and recruits HSC70 to HNF-1α, thereby promoting the lysosomal degradation of HNF-1α via CMA. IMPORTANCE Many viruses use a protein degradation system, such as

  15. Arsenite-induced autophagy is associated with proteotoxicity in human lymphoblastoid cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolt, Alicia M.; Zhao, Fei; Pacheco, Samantha

    2012-10-15

    Epidemiological studies of arsenic-exposed populations have provided evidence that arsenic exposure in humans is associated with immunosuppression. Previously, we have reported that arsenite-induced toxicity is associated with the induction of autophagy in human lymphoblastoid cell lines (LCL). Autophagy is a cellular process that functions in the degradation of damaged cellular components, including protein aggregates formed by misfolded or damaged proteins. Accumulation of misfolded or damaged proteins in the endoplasmic reticulum (ER) lumen causes ER stress and activates the unfolded protein response (UPR). In an effort to investigate the mechanism of autophagy induction by arsenite in the LCL model, we examinedmore » the potential contribution of ER stress and activation of the UPR. LCL exposed to sodium arsenite for 8-days induced expression of UPR-activated genes, including CHOP and GRP78, at the RNA and the protein level. Evidence for activation of the three arms of the UPR was observed. The arsenite-induced activation of the UPR was associated with an accumulation of protein aggregates containing p62 and LC3, proteins with established roles in the sequestration and autophagic clearance of protein aggregates. Taken together, these data provide evidence that arsenite-induced autophagy is associated with the generation of ER stress, activation of the UPR, and formation of protein aggregates that may be targeted to the lysosome for degradation. -- Highlights: ► Arsenite induces endoplasmic reticulum stress and the unfolded protein response. ► Arsenite induces the formation of protein aggregates that contain p62 and LC3-II. ► Time-course data suggests that arsenite-induced autophagy precedes ER stress.« less

  16. MIR506 induces autophagy-related cell death in pancreatic cancer cells by targeting the STAT3 pathway.

    PubMed

    Sun, Longhao; Hu, Limei; Cogdell, David; Lu, Li; Gao, Chao; Tian, Weijun; Zhang, Zhixiang; Kang, Ya'an; Fleming, Jason B; Zhang, Wei

    2017-04-03

    Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and lethal cancer. The role of autophagy in the pathobiology of PDAC is intricate, with opposing functions manifested in different cellular contexts. MIR506 functions as a tumor suppressor in many cancer types through the regulation of multiple pathways. In this study, we hypothesized that MIR506 exerted a tumor suppression function in PDAC by inducing autophagy-related cell death. Our results provided evidence that downregulation of MIR506 expression was associated with disease progression in human PDAC. MIR506 triggered autophagic flux in PDAC cells, which led to autophagy-related cell death through direct targeting of the STAT3 (signal transducer and activator of transcription 3)-BCL2-BECN1 axis. Silencing and inhibiting STAT3 recapitulated the effects of MIR506, whereas forced expression of STAT3 abrogated the effects of MIR506. We propose that the apoptosis-inhibitory protein BCL2, which also inhibits induction of autophagy by blocking BECN1, was inhibited by MIR506 through targeting STAT3, thus augmenting BECN1 and promoting autophagy-related cell death. Silencing BECN1 and overexpression of BCL2 abrogated the effects of MIR506. These findings expand the known mechanisms of MIR506-mediated tumor suppression to activation of autophagy-related cell death and suggest a strategy for using MIR506 as an anti-STAT3 approach to PDAC treatment.

  17. ATG proteins: Are we always looking at autophagy?

    PubMed

    Mauthe, Mario; Reggiori, Fulvio

    2016-12-01

    Autophagy is an intracellular degradation pathway that is regulated by the autophagy-related (ATG) proteins. For a long time it has been thought that ATG proteins were exclusively required for autophagy, but recent experimental evidence has revealed that these proteins are part of other cellular pathways, individually or as a functional group. To estimate the extent of these so-called unconventional functions of the ATG proteins, we decided to perform an unbiased siRNA screen targeting the entire ATG proteome and used viral replication as the readout. Our results have uncovered that a surprisingly high number of ATG proteins (36%) have a positive or negative role in promoting virus replication outside their classical role in autophagy. With the increasing knowledge about ATG protein unconventional functions and our investigation results, the interpretations about the possible involvement of autophagy in cellular or organismal functions that solely rely on the depletion of a single ATG protein, should be considered cautiously.

  18. HIV life cycle, innate immunity and autophagy in the central nervous system.

    PubMed

    Meulendyke, Kelly A; Croteau, Joshua D; Zink, M Christine

    2014-11-01

    In this era of modern combination antiretroviral therapy (cART) HIV-associated neurocognitive disorders (HAND) continue to affect a large portion of the infected population. In this review, we highlight recent discoveries that help to define the interplay between HIV life cycle, the innate immune system and cellular autophagy in the context of the central nervous system (CNS). Investigators have recently elucidated themes in HAND, which place it in a unique framework. Cells of macrophage lineage and probably astrocytes play a role in disseminating virus through the CNS. Each of these cell types responds to a diverse population of constantly evolving virus existing in an inflammatory environment. This occurs though the failure of both host antiviral mechanisms, such as autophagy, and innate immunological signalling pathways to control viral replication. The newest findings detailed in this review help define why HIV CNS disease is a difficult target for therapeutics and create hope that these new mechanisms may be exploited to attenuate viral replication and eliminate disease.

  19. Targeted pulmonary delivery of inducers of host macrophage autophagy as a potential host-directed chemotherapy of tuberculosis.

    PubMed

    Gupta, Anuradha; Misra, Amit; Deretic, Vojo

    2016-07-01

    One of the promising host-directed chemotherapeutic interventions in tuberculosis (TB) is based on inducing autophagy as an immune effector. Here we consider the strengths and weaknesses of potential autophagy-based pharmacological intervention. Using the existing drugs that induce autophagy is an option, but it has limitations given the broad role of autophagy in most cells, tissues, and organs. Thus, it may be desirable that the agent being used to modulate autophagy is applied in a targeted manner, e.g. delivered to affected tissues, with infected macrophages being an obvious choice. This review addresses the advantages and disadvantages of delivering drugs to induce autophagy in M. tuberculosis-infected macrophages. One option, already being tested in models, is to design particles for inhalation delivery to lung macrophages. The choice of drugs, drug release kinetics and intracellular residence times, non-target cell exposure and feasibility of use by patients is discussed. We term here this (still experimental) approach, of compartment-targeting, autophagy-based, host-directed therapy as "Track-II antituberculosis chemotherapy." Copyright © 2016. Published by Elsevier B.V.

  20. Autophagy Facilitates Salmonella Replication in HeLa Cells

    PubMed Central

    Yu, Hong B.; Croxen, Matthew A.; Marchiando, Amanda M.; Ferreira, Rosana B. R.; Cadwell, Ken; Foster, Leonard J.; Finlay, B. Brett

    2014-01-01

    ABSTRACT Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. PMID:24618251

  1. Dengue Virus Inhibition of Autophagic Flux and Dependency of Viral Replication on Proteasomal Degradation of the Autophagy Receptor p62

    PubMed Central

    Metz, Philippe; Chiramel, Abhilash; Chatel-Chaix, Laurent; Alvisi, Gualtiero; Bankhead, Peter; Mora-Rodríguez, Rodrigo; Long, Gang; Hamacher-Brady, Anne

    2015-01-01

    ABSTRACT Autophagic flux involves formation of autophagosomes and their degradation by lysosomes. Autophagy can either promote or restrict viral replication. In the case of Dengue virus (DENV), several studies report that autophagy supports the viral replication cycle, and describe an increase of autophagic vesicles (AVs) following infection. However, it is unknown how autophagic flux is altered to result in increased AVs. To address this question and gain insight into the role of autophagy during DENV infection, we established an unbiased, image-based flow cytometry approach to quantify autophagic flux under normal growth conditions and in response to activation by nutrient deprivation or the mTOR inhibitor Torin1. We found that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Early after infection, basal and activated autophagic flux was enhanced. However, during established replication, basal and Torin1-activated autophagic flux was blocked, while autophagic flux activated by nutrient deprivation was reduced, indicating a block to AV formation and reduced AV degradation capacity. During late infection AV levels increased as a result of inefficient fusion of autophagosomes with lysosomes. In addition, endolysosomal trafficking was suppressed, while lysosomal activities were increased. We further determined that DENV infection progressively reduced levels of the autophagy receptor SQSTM1/p62 via proteasomal degradation. Importantly, stable overexpression of p62 significantly suppressed DENV replication, suggesting a novel role for p62 as a viral restriction factor. Overall, our findings indicate that in the course of DENV infection, autophagy shifts from a supporting to an antiviral role, which is countered by DENV. IMPORTANCE Autophagic flux is a dynamic process starting with the formation of autophagosomes and ending with their degradation after fusion with lysosomes. Autophagy impacts the

  2. The Association of Palmitoylethanolamide with Luteolin Decreases Autophagy in Spinal Cord Injury.

    PubMed

    Siracusa, Rosalba; Paterniti, Irene; Bruschetta, Giuseppe; Cordaro, Marika; Impellizzeri, Daniela; Crupi, Rosalia; Cuzzocrea, Salvatore; Esposito, Emanuela

    2016-08-01

    Spinal cord injury (SCI) is a devastating condition of the central nervous system (CNS) often resulting in severe functional impairment and for which there are not yet restorative therapies. In the present study, we performed a widely used model of SCI to determine the neuroprotective propriety of palmitoylethanolamide (PEA) and the antioxidant effect of a flavonoid luteolin (Lut), given as a co-ultramicronized compound co-ultraPEALut. In particular, by western blot analysis and immunofluorescence staining, we investigated whether this compound (at the dose of 1 mg/kg) was able to modulate autophagy. Our results showed that treatment with co-ultraPEALut after SCI reduced the expression of proteins promoter of autophagy such as Beclin-1 and microtubule-associated protein 1A/1B-light chain 3 (MAP-LC3). In contrast, this compound decreased the levels of mammalian target of rapamycin (mTOR), p-Akt, and p-70S6K which are proteins that inhibit autophagy. These data confirmed that the protective role of co-ultraPEALut is associated with inhibition of excessive autophagy and regulation of protein degradation. Therefore, treatment with co-ultraPEALut could be considered as a possible therapeutic approach in an acute traumatic lesion like SCI.

  3. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling

    PubMed Central

    Tal, Michal Caspi; Sasai, Miwa; Lee, Heung Kyu; Yordy, Brian; Shadel, Gerald S.; Iwasaki, Akiko

    2009-01-01

    Autophagy is a highly conserved process that maintains homeostasis by clearing damaged organelles and long-lived proteins. The consequences of deficiency in autophagy manifest in a variety of pathological states including neurodegenerative diseases, inflammatory disorders, and cancer. Here, we studied the role of autophagy in the homeostatic regulation of innate antiviral defense. Single-stranded RNA viruses are recognized by the members of the RIG-I-like receptors (RLRs) in the cytosol. RLRs signal through IPS-1, resulting in the production of the key antiviral cytokines, type I IFNs. Autophagy-defective Atg5−/− cells exhibited enhanced RLR signaling, increased IFN secretion, and resistance to infection by vesicular stomatitis virus. In the absence of autophagy, cells accumulated dysfunctional mitochondria, as well as mitochondria-associated IPS-1. Reactive oxygen species (ROS) associated with the dysfunctional mitochondria were largely responsible for the enhanced RLR signaling in Atg5−/− cells, as antioxidant treatment blocked the excess RLR signaling. In addition, autophagy-independent increase in mitochondrial ROS by treatment of cells with rotenone was sufficient to amplify RLR signaling in WT cells. These data indicate that autophagy contributes to homeostatic regulation of innate antiviral defense through the clearance of dysfunctional mitochondria, and revealed that ROS associated with mitochondria play a key role in potentiating RLR signaling. PMID:19196953

  4. Genetic ablation or pharmacologic inhibition of autophagy mitigated NSAID-associated gastric damages.

    PubMed

    Ock, Chan Young; Park, Jong-Min; Han, Young-Min; Jeong, Migyeong; Kim, Mi-Young; Lee, Ho Jae; Hahm, Ki Baik

    2017-04-01

    Non-steroidal anti-inflammatory drug (NSAID)-associated endoplasmic reticulum (ER) stress (a cyclooxygenase-2-independent mechanism) and consequent autophagic cell death are responsible for NSAID-associated gastric damage. Therefore, alleviating cytotoxicity executed via ER stress and autophagy can be a strategy to prevent NSAID-associated gastric damage. Here, we explored whether genetic or pharmacologic inhibition of autophagy can mitigate NSAID-associated gastric damage in in vitro and in vivo models. To examine the effects of genetic inhibition of NSAID-associated autophagy, we administered indomethacin to RGM1 gastric mucosal cells transfected with shPERK, siLC3B, or shATG5 and microtubule-associated protein light chain 3B knock-out (LC3B -/- ) mice. 3-Methyladenine (3-MA) or chloroquine (CQ) was used for pharmacologic inhibition of autophagy in both models. Indomethacin administration increased the expression of ER stress proteins including GRP78, ATF6, and CHOP. Indomethacin provoked the appearance of autophagic vesicles with the increased expression of ATG5 and LC3B-II. Genetic ablation of various ER stress genes significantly attenuated indomethacin-induced autophagy and apoptosis (p < 0.01), whereas knock-down of either ATG5 or LC3B significantly reduced indomethacin-induced cytotoxicity (p < 0.01). Testing each of the genes implicated in ER stress and autophagy showed that indomethacin leads to gastric cell apoptosis through autophagy induction consequent to ER stress. Pharmacological inhibition of autophagy with either 3-MA or CQ in rats or genetic ablation of LC3B in mice all had a significant rescuing effect against indomethacin-associated gastric damage (p < 0.01) and a decrease in molecular markers of autophagic and apoptotic gastric cells. In conclusion, preemptive autophagy inhibition can be a potential strategy to mitigate NSAID-associated gastric damage. NSAID administration triggered ER stress and subsequent autophagy. Inhibition of

  5. Analysis of the Contribution of Hemocytes and Autophagy to Drosophila Antiviral Immunity

    PubMed Central

    Lamiable, Olivier; Arnold, Johan; de Faria, Isaque Joao da Silva; Olmo, Roenick Proveti; Bergami, Francesco; Meignin, Carine; Hoffmann, Jules A.; Marques, Joao Trindade

    2016-01-01

    ABSTRACT Antiviral immunity in the model organism Drosophila melanogaster involves the broadly active intrinsic mechanism of RNA interference (RNAi) and virus-specific inducible responses. Here, using a panel of six viruses, we investigated the role of hemocytes and autophagy in the control of viral infections. Injection of latex beads to saturate phagocytosis, or genetic depletion of hemocytes, resulted in decreased survival and increased viral titers following infection with Cricket paralysis virus (CrPV), Flock House virus (FHV), and vesicular stomatitis virus (VSV) but had no impact on Drosophila C virus (DCV), Sindbis virus (SINV), and Invertebrate iridescent virus 6 (IIV6) infection. In the cases of CrPV and FHV, apoptosis was induced in infected cells, which were phagocytosed by hemocytes. In contrast, VSV did not trigger any significant apoptosis but we confirmed that the autophagy gene Atg7 was required for full virus resistance, suggesting that hemocytes use autophagy to recognize the virus. However, this recognition does not depend on the Toll-7 receptor. Autophagy had no impact on DCV, CrPV, SINV, or IIV6 infection and was required for replication of the sixth virus, FHV. Even in the case of VSV, the increases in titers were modest in Atg7 mutant flies, suggesting that autophagy does not play a major role in antiviral immunity in Drosophila. Altogether, our results indicate that, while autophagy plays a minor role, phagocytosis contributes to virus-specific immune responses in insects. IMPORTANCE Phagocytosis and autophagy are two cellular processes that involve lysosomal degradation and participate in Drosophila immunity. Using a panel of RNA and DNA viruses, we have addressed the contribution of phagocytosis and autophagy in the control of viral infections in this model organism. We show that, while autophagy plays a minor role, phagocytosis contributes to virus-specific immune responses in Drosophila. This work brings to the front a novel facet of

  6. A Bim-targeting strategy overcomes adaptive bortezomib resistance in myeloma through a novel link between autophagy and apoptosis

    PubMed Central

    Chen, Shuang; Zhang, Yu; Zhou, Liang; Leng, Yun; Lin, Hui; Kmieciak, Maciej; Pei, Xin-Yan; Jones, Richard; Orlowski, Robert Z.; Dai, Yun

    2014-01-01

    Bim contributes to resistance to various standard and novel agents. Here we demonstrate that Bim plays a functional role in bortezomib resistance in multiple myeloma (MM) cells and that targeting Bim by combining histone deacetylase inhibitors (HDACIs) with BH3 mimetics (eg, ABT-737) overcomes bortezomib resistance. BH3-only protein profiling revealed high Bim levels (Bimhi) in most MM cell lines and primary CD138+ MM samples. Whereas short hairpin RNA Bim knockdown conferred bortezomib resistance in Bimhi cells, adaptive bortezomib-resistant cells displayed marked Bim downregulation. HDACI upregulated Bim and, when combined with ABT-737, which released Bim from Bcl-2/Bcl-xL, potently killed bortezomib-resistant cells. These events were correlated with Bim-associated autophagy attenuation, whereas Bim knockdown sharply increased autophagy in Bimhi cells. In Bimlow cells, autophagy disruption by chloroquine (CQ) was required for HDACI/ABT-737 to induce Bim expression and lethality. CQ also further enhanced HDACI/ABT-737 lethality in bortezomib-resistant cells. Finally, HDACI failed to diminish autophagy or potentiate ABT-737–induced apoptosis in bim−/− mouse embryonic fibroblasts. Thus, Bim deficiency represents a novel mechanism of adaptive bortezomib resistance in MM cells, and Bim-targeting strategies combining HDACIs (which upregulate Bim) and BH3 mimetics (which unleash Bim from antiapoptotic proteins) overcomes such resistance, in part by disabling cytoprotective autophagy. PMID:25208888

  7. Celastrol Induces Autophagy by Targeting AR/miR-101 in Prostate Cancer Cells

    PubMed Central

    Guo, Jianquan; Huang, Xuemei; Wang, Hui; Yang, Huanjie

    2015-01-01

    Autophagy is an evolutionarily conserved process responsible for the degradation and recycling of cytoplasmic components through autolysosomes. Targeting AR axis is a standard strategy for prostate cancer treatment; however, the role of AR in autophagic processes is still not fully understood. In the present study, we found that AR played a negative role in AR degrader celastrol-induced autophagy. Knockdown of AR in AR-positive prostate cancer cells resulted in enhanced autophagy. Ectopic expression of AR in AR-negative prostate cancer cells, or gain of function of the AR signaling in AR-positive cells, led to suppression of autophagy. Since miR-101 is an inhibitor of autophagy and its expression was decreased along with AR in the process of celastrol-induced autophagy, we hypothesize that AR inhibits autophagy through transactivation of miR-101. AR binding site was defined in the upstream of miR-101 gene by luciferase reporter and ChIP assays. MiR-101 expression correlated with AR status in prostate cancer cell lines. The inhibition of celastrol-induced autophagy by AR was compromised by blocking miR-101; while transfection of miR-101 led to inhibition of celastrol-induced autophagy in spite of AR depletion. Furthermore, mutagenesis of the AR binding site in miR-101 gene led to decreased suppression of autophagy by AR. Finally, autophagy inhibition by miR-101 mimic was found to enhance the cytotoxic effect of celastrol in prostate cancer cells. Our results demonstrate that AR inhibits autophagy via transactivation of miR-101, thus combination of miR-101 mimics with celastrol may represent a promising therapeutic approach for treating prostate cancer. PMID:26473737

  8. Virus recognition by Toll-7 activates antiviral autophagy in Drosophila.

    PubMed

    Nakamoto, Margaret; Moy, Ryan H; Xu, Jie; Bambina, Shelly; Yasunaga, Ari; Shelly, Spencer S; Gold, Beth; Cherry, Sara

    2012-04-20

    Innate immunity is highly conserved and relies on pattern recognition receptors (PRRs) such as Toll-like receptors (identified through their homology to Drosophila Toll) for pathogen recognition. Although Drosophila Toll is vital for immune recognition and defense, roles for the other eight Drosophila Tolls in immunity have remained elusive. Here we have shown that Toll-7 is a PRR both in vitro and in adult flies; loss of Toll-7 led to increased vesicular stomatitis virus (VSV) replication and mortality. Toll-7, along with additional uncharacterized Drosophila Tolls, was transcriptionally induced by VSV infection. Furthermore, Toll-7 interacted with VSV at the plasma membrane and induced antiviral autophagy independently of the canonical Toll signaling pathway. These data uncover an evolutionarily conserved role for a second Drosophila Toll receptor that links viral recognition to autophagy and defense and suggest that other Drosophila Tolls may restrict specific as yet untested pathogens, perhaps via noncanonical signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Initiation of Autophagy by Photodynamic Therapy

    PubMed Central

    Kessel, David; Oleinick, Nancy L.

    2010-01-01

    Photodynamic therapy (PDT) involves the irradiation of photosensitized cells with light. Depending on localization of the photosensitizing agent, the process can induce photodamage to the endoplasmic reticulum (ER), mitochondria, plasma membrane, and/or lysosomes. When ER or mitochondria are targeted, antiapoptotic proteins of the Bcl-2 family are especially sensitive to photodamage. Both apoptosis and autophagy can occur after PDT, autophagy being associated with enhanced survival at low levels of photodamage to some cells. Autophagy can become a cell-death pathway if apoptosis is inhibited or when cells attempt to recycle damaged constituents beyond their capacity for recovery. While techniques associated with characterization of autophagy are generally applicable, PDT introduces additional factors related to unknown sites of photodamage that may alter autophagic pathways. This chapter discusses issues that may arise in assessing autophagy after cellular photodamage. PMID:19216899

  10. Beclin 1 is involved in regulation of apoptosis and autophagy during replication of ectromelia virus in permissive L929 cells.

    PubMed

    Martyniszyn, Lech; Szulc, Lidia; Boratyńska, Anna; Niemiałtowski, Marek G

    2011-12-01

    Several reports have brought to light new and interesting findings on the involvement of autophagy and apoptosis in pathogenesis of viral and bacterial diseases, as well as presentation of foreign antigens. Our model studies focused on the involvement of apoptosis during replication of highly virulent Moscow strain of ectromelia virus (ECTV-MOS). Here, we show evidence that autophagy is induced during mousepox replication in a cell line. Fluorescence microscopy revealed increase of LC3 (microtubule-associated protein 1 light chain 3) aggregation in infected as opposed to non-infected control L929 cells. Furthermore, Western blot analysis showed that replication of ECTV-MOS in L929 cells led to the increase in LC3-II (marker of autophagic activity) expression. Beclin 1 strongly colocalized with extranuclear viral replication centers in infected cells, whereas expression of Bcl-2 decreased in those centers as shown by fluorescence microscopy. Loss of Beclin 1-Bcl-2 interaction may lead to autophagy in virus-infected L929 cells. To assess if Beclin 1 has a role in regulation of apoptosis during ECTV-MOS infection, we used small interfering RNA directed against beclin 1 following infection. Early and late apoptotic cells were analyzed by flow cytometry after AnnexinV and propidium iodide staining. Silencing of beclin 1 resulted in decreased percentage of early and late apoptotic cells in the late stage of ECTV-MOS infection in L929 cells. We conclude that Beclin 1 plays an important role in regulation of both, autophagy and apoptosis, during ECTV-MOS replication in L929 permissive cells.

  11. Analysis of the Contribution of Hemocytes and Autophagy to Drosophila Antiviral Immunity.

    PubMed

    Lamiable, Olivier; Arnold, Johan; de Faria, Isaque Joao da Silva; Olmo, Roenick Proveti; Bergami, Francesco; Meignin, Carine; Hoffmann, Jules A; Marques, Joao Trindade; Imler, Jean-Luc

    2016-06-01

    Antiviral immunity in the model organism Drosophila melanogaster involves the broadly active intrinsic mechanism of RNA interference (RNAi) and virus-specific inducible responses. Here, using a panel of six viruses, we investigated the role of hemocytes and autophagy in the control of viral infections. Injection of latex beads to saturate phagocytosis, or genetic depletion of hemocytes, resulted in decreased survival and increased viral titers following infection with Cricket paralysis virus (CrPV), Flock House virus (FHV), and vesicular stomatitis virus (VSV) but had no impact on Drosophila C virus (DCV), Sindbis virus (SINV), and Invertebrate iridescent virus 6 (IIV6) infection. In the cases of CrPV and FHV, apoptosis was induced in infected cells, which were phagocytosed by hemocytes. In contrast, VSV did not trigger any significant apoptosis but we confirmed that the autophagy gene Atg7 was required for full virus resistance, suggesting that hemocytes use autophagy to recognize the virus. However, this recognition does not depend on the Toll-7 receptor. Autophagy had no impact on DCV, CrPV, SINV, or IIV6 infection and was required for replication of the sixth virus, FHV. Even in the case of VSV, the increases in titers were modest in Atg7 mutant flies, suggesting that autophagy does not play a major role in antiviral immunity in Drosophila Altogether, our results indicate that, while autophagy plays a minor role, phagocytosis contributes to virus-specific immune responses in insects. Phagocytosis and autophagy are two cellular processes that involve lysosomal degradation and participate in Drosophila immunity. Using a panel of RNA and DNA viruses, we have addressed the contribution of phagocytosis and autophagy in the control of viral infections in this model organism. We show that, while autophagy plays a minor role, phagocytosis contributes to virus-specific immune responses in Drosophila This work brings to the front a novel facet of antiviral host defense

  12. miR-125b is downregulated in systemic lupus erythematosus patients and inhibits autophagy by targeting UVRAG.

    PubMed

    Cao, Wenting; Qian, Ge; Luo, Wen; Liu, Xin; Pu, Yunjing; Hu, Guilan; Han, Lulu; Yuan, Limei; A, Xiao; Deng, Danqi

    2018-03-01

    Systemic lupus erythematosus (SLE) is a severe autoimmune disease and the pathogenesis remains incompletely understood. This study aimed to investigate the role of miR-125b in the pathogenesis of SLE and explore the underlying mechanism. Compared to healthy controls, the expression of miR-125b decreased in peripheral blood mononuclear cells (PBMCs) of SLE patients. In addition, PBMCs exposed to ultraviolet B had lower miR-125b level compared to those unexposed to radiation. We identified UV radiation resistance associated gene (UVRAG) as a target of miR-125b. Jurkat cells treated with miR-125b-5p agomir showed reduced levels of ATG7, Beclin-1 and LC3 II and decreased autophagy. In contrast, Jurkat cells treated with miR-125b-5p antagomir showed increased levels of ATG7, Beclin-1 and LC3 II and increased autophagy. Furthermore, Jurkat cells transfected with UVRAG expression vector showed higher expression of ATG7, Beclin-1 and LC3 II and increased autophagy. Conversely, cells transfected with UVRAG siRNA had lower expression of ATG7, Beclin-1 and LC3 II and decreased autophagy. Taken together, our data demonstrate that Ultraviolet B radiation can downregulate miR-125b-5p and increase UVRAG expression and autophagy activity in PBMCs of SLE patients. These findings help explain how ultraviolet B exacerbates SLE and suggest that UVRAG is a potential therapeutic target for SLE. Copyright © 2018. Published by Elsevier Masson SAS.

  13. A Bim-targeting strategy overcomes adaptive bortezomib resistance in myeloma through a novel link between autophagy and apoptosis.

    PubMed

    Chen, Shuang; Zhang, Yu; Zhou, Liang; Leng, Yun; Lin, Hui; Kmieciak, Maciej; Pei, Xin-Yan; Jones, Richard; Orlowski, Robert Z; Dai, Yun; Grant, Steven

    2014-10-23

    Bim contributes to resistance to various standard and novel agents. Here we demonstrate that Bim plays a functional role in bortezomib resistance in multiple myeloma (MM) cells and that targeting Bim by combining histone deacetylase inhibitors (HDACIs) with BH3 mimetics (eg, ABT-737) overcomes bortezomib resistance. BH3-only protein profiling revealed high Bim levels (Bim(hi)) in most MM cell lines and primary CD138(+) MM samples. Whereas short hairpin RNA Bim knockdown conferred bortezomib resistance in Bim(hi) cells, adaptive bortezomib-resistant cells displayed marked Bim downregulation. HDACI upregulated Bim and, when combined with ABT-737, which released Bim from Bcl-2/Bcl-xL, potently killed bortezomib-resistant cells. These events were correlated with Bim-associated autophagy attenuation, whereas Bim knockdown sharply increased autophagy in Bim(hi) cells. In Bim(low) cells, autophagy disruption by chloroquine (CQ) was required for HDACI/ABT-737 to induce Bim expression and lethality. CQ also further enhanced HDACI/ABT-737 lethality in bortezomib-resistant cells. Finally, HDACI failed to diminish autophagy or potentiate ABT-737-induced apoptosis in bim(-/-) mouse embryonic fibroblasts. Thus, Bim deficiency represents a novel mechanism of adaptive bortezomib resistance in MM cells, and Bim-targeting strategies combining HDACIs (which upregulate Bim) and BH3 mimetics (which unleash Bim from antiapoptotic proteins) overcomes such resistance, in part by disabling cytoprotective autophagy. © 2014 by The American Society of Hematology.

  14. Autophagy Is an Innate Mechanism Associated with Leprosy Polarization

    PubMed Central

    Andrade, Priscila Ribeiro; Ferreira, Helen; Nery, José Augusto da Costa; Côrte-Real, Suzana; da Silva, Gilberto Marcelo Sperandio; Rosa, Patricia Sammarco; Fabri, Mario; Sarno, Euzenir Nunes

    2017-01-01

    Leprosy is a chronic infectious disease that may present different clinical forms according to the immune response of the host. Levels of IFN-γ are significantly raised in paucibacillary tuberculoid (T-lep) when compared with multibacillary lepromatous (L-lep) patients. IFN-γ primes macrophages for inflammatory activation and induces the autophagy antimicrobial mechanism. The involvement of autophagy in the immune response against Mycobacterium leprae remains unexplored. Here, we demonstrated by different autophagic assays that LC3-positive autophagosomes were predominantly observed in T-lep when compared with L-lep lesions and skin-derived macrophages. Accumulation of the autophagic receptors SQSTM1/p62 and NBR1, expression of lysosomal antimicrobial peptides and colocalization analysis of autolysosomes revealed an impairment of the autophagic flux in L-lep cells, which was restored by IFN-γ or rapamycin treatment. Autophagy PCR array gene-expression analysis revealed a significantly upregulation of autophagy genes (BECN1, GPSM3, ATG14, APOL1, and TPR) in T-lep cells. Furthermore, an upregulation of autophagy genes (TPR, GFI1B and GNAI3) as well as LC3 levels was observed in cells of L-lep patients that developed type 1 reaction (T1R) episodes, an acute inflammatory condition associated with increased IFN-γ levels. Finally, we observed increased BCL2 expression in L-lep cells that could be responsible for the blockage of BECN1-mediated autophagy. In addition, in vitro studies demonstrated that dead, but not live M. leprae can induce autophagy in primary and lineage human monocytes, and that live mycobacteria can reduce the autophagy activation triggered by dead mycobacteria, suggesting that M. leprae may hamper the autophagic machinery as an immune escape mechanism. Together, these results indicate that autophagy is an important innate mechanism associated with the M. leprae control in skin macrophages. PMID:28056107

  15. Targeting SQSTM1/p62 Induces Cargo Loading Failure and Converts Autophagy to Apoptosis via NBK/Bik

    PubMed Central

    Chen, Shuang; Zhou, Liang; Zhang, Yu; Leng, Yun; Pei, Xin-Yan; Lin, Hui; Jones, Richard; Orlowski, Robert Z.

    2014-01-01

    In selective autophagy, the adaptor protein SQSTM1/p62 plays a critical role in recognizing/loading cargo (e.g., malfolded proteins) into autophagosomes for lysosomal degradation. Here we report that whereas SQSTM1/p62 levels fluctuated in a time-dependent manner during autophagy, inhibition or knockdown of Cdk9/cyclin T1 transcriptionally downregulated SQSTM1/p62 but did not affect autophagic flux. These interventions, or short hairpin RNA (shRNA) directly targeting SQSTM1/p62, resulted in cargo loading failure and inefficient autophagy, phenomena recently described for Huntington's disease neurons. These events led to the accumulation of the BH3-only protein NBK/Bik on endoplasmic reticulum (ER) membranes, most likely by blocking loading and autophagic degradation of NBK/Bik, culminating in apoptosis. Whereas NBK/Bik upregulation was further enhanced by disruption of distal autophagic events (e.g., autophagosome maturation) by chloroquine (CQ) or Lamp2 shRNA, it was substantially diminished by inhibition of autophagy initiation (e.g., genetically by shRNA targeting Ulk1, beclin-1, or Atg5 or pharmacologically by 3-methyladenine [3-MA] or spautin-1), arguing that NBK/Bik accumulation stems from inefficient autophagy. Finally, NBK/Bik knockdown markedly attenuated apoptosis in vitro and in vivo. Together, these findings identify novel cross talk between autophagy and apoptosis, wherein targeting SQSTM1/p62 converts cytoprotective autophagy to an inefficient form due to cargo loading failure, leading to NBK/Bik accumulation, which triggers apoptosis. PMID:25002530

  16. p62 as a therapeutic target for inhibition of autophagy in prostate cancer.

    PubMed

    Wang, Lei; Kim, Donghern; Wise, James T F; Shi, Xianglin; Zhang, Zhuo; DiPaola, Robert S

    2018-04-01

    To test the hypothesis that p62 is an optimal target for autophagy inhibition and Verteporfin, a clinically available drug approved by FDA to treat macular degeneration that inhibits autophagy by targeting p62 protein, can be developed clinically to improve therapy for advanced prostate cancer. Forced expression of p62 in PC-3 cells and normal prostate epithelial cells, RWPE-1 and PZ-HPV7, were carried out by transfection of these cells with pcDNA3.1/p62 or p62 shRNA plasmid. Autophagosomes and autophagic flux were measured by transfection of tandem fluorescence protein mCherry-GFP-LC3 construct. Apoptosis was measured by Annexin V/PI staining. Tumorigenesis was measured by a xenograft tumor growth model. Verteporfin inhibited cell growth and colony formation in PC-3 cells. Verteporfin generated crosslinked p62 oligomers, resulting in inhibition of autophagy and constitutive activation of Nrf2 as well as its target genes, Bcl-2 and TNF-α. In normal prostate epithelial cells, forced expression of p62 caused constitutive Nrf2 activation, development of apoptosis resistance, and Verteporfin treatment exhibited inhibitory effects. Verteporfin treatment also inhibited starvation-induced autophagic flux of these cells. Verteporfin inhibited tumorigenesis of both normal prostate epithelial cells with p62 expression and prostate cancer cells and decreased p62, constitutive Nrf2, and Bcl-xL in xenograft tumor tissues, indicating that p62 can be developed as a drug target against prostate cancer. p62 has a high potential to be developed as a therapeutic target. Verteporfin represents a prototypical agent with therapeutic potential against prostate cancer through inhibition of autophagy by a novel mechanism of p62 inhibition. © 2018 Wiley Periodicals, Inc.

  17. Targeting Autophagy Sensitizes BRAF-Mutant Thyroid Cancer to Vemurafenib

    PubMed Central

    Wang, Weibin; Kang, Helen; Zhao, Yinu; Min, Irene; Wyrwas, Brian; Moore, Maureen; Teng, Lisong; Zarnegar, Rasa; Jiang, Xuejun

    2017-01-01

    Context: The RAF inhibitor vemurafenib has provided a major advance for the treatment of patients with BRAF-mutant metastatic melanoma. However, BRAF-mutant thyroid cancer is relatively resistant to vemurafenib, and the reason for this disparity remains unclear. Anticancer therapy–induced autophagy can trigger adaptive drug resistance in a variety of cancer types and treatments. To date, role of autophagy during BRAF inhibition in thyroid cancer remains unknown. Objective: In this study, we investigate if autophagy is activated in vemurafenib-treated BRAF-mutant thyroid cancer cells, and whether autophagy inhibition improves or impairs the treatment efficacy of vemurafenib. Design: Autophagy level was determined by western blot assay and transmission electron microscopy. The combined effects of autophagy inhibitor and vemurafenib were assessed in terms of cell viability in vitro and tumor growth rate in vivo. Whether the endoplasmic reticulum (ER) stress was in response to vemurafenib-induced autophagy was also analyzed. Results: Vemurafenib induced a high level of autophagy in BRAF-mutant thyroid cancer cells. Inhibition of autophagy by either a pharmacological inhibitor or interfering RNA knockdown of essential autophagy genes augmented vemurafenib-induced cell death. Vemurafenib-induced autophagy was independent of MAPK signaling pathway and was mediated through the ER stress response. Finally, administration of vemurafenib with the autophagy inhibitor hydroxychloroquine promoted more pronounced tumor suppression in vivo. Conclusions: Our data demonstrate that vemurafenib induces ER stress response–mediated autophagy in thyroid cancer and autophagy inhibition may be a beneficial strategy to sensitize BRAF-mutant thyroid cancer to vemurafenib. PMID:27754804

  18. Targeting Autophagy Sensitizes BRAF-Mutant Thyroid Cancer to Vemurafenib.

    PubMed

    Wang, Weibin; Kang, Helen; Zhao, Yinu; Min, Irene; Wyrwas, Brian; Moore, Maureen; Teng, Lisong; Zarnegar, Rasa; Jiang, Xuejun; Fahey, Thomas J

    2017-02-01

    The RAF inhibitor vemurafenib has provided a major advance for the treatment of patients with BRAF-mutant metastatic melanoma. However, BRAF-mutant thyroid cancer is relatively resistant to vemurafenib, and the reason for this disparity remains unclear. Anticancer therapy-induced autophagy can trigger adaptive drug resistance in a variety of cancer types and treatments. To date, role of autophagy during BRAF inhibition in thyroid cancer remains unknown. In this study, we investigate if autophagy is activated in vemurafenib-treated BRAF-mutant thyroid cancer cells, and whether autophagy inhibition improves or impairs the treatment efficacy of vemurafenib. Autophagy level was determined by western blot assay and transmission electron microscopy. The combined effects of autophagy inhibitor and vemurafenib were assessed in terms of cell viability in vitro and tumor growth rate in vivo. Whether the endoplasmic reticulum (ER) stress was in response to vemurafenib-induced autophagy was also analyzed. Vemurafenib induced a high level of autophagy in BRAF-mutant thyroid cancer cells. Inhibition of autophagy by either a pharmacological inhibitor or interfering RNA knockdown of essential autophagy genes augmented vemurafenib-induced cell death. Vemurafenib-induced autophagy was independent of MAPK signaling pathway and was mediated through the ER stress response. Finally, administration of vemurafenib with the autophagy inhibitor hydroxychloroquine promoted more pronounced tumor suppression in vivo. Our data demonstrate that vemurafenib induces ER stress response-mediated autophagy in thyroid cancer and autophagy inhibition may be a beneficial strategy to sensitize BRAF-mutant thyroid cancer to vemurafenib. Copyright © 2017 by the Endocrine Society

  19. Autophagy in protists

    PubMed Central

    Duszenko, Michael; Ginger, Michael L; Brennand, Ana; Gualdrón-López, Melisa; Colombo, Maria-Isabel; Coombs, Graham H; Coppens, Isabelle; Jayabalasingham, Bamini; Langsley, Gordon; de Castro, Solange Lisboa; Menna-Barreto, Rubem; Mottram, Jeremy C; Navarro, Miguel; Rigden, Daniel J; Romano, Patricia S; Stoka, Veronika; Turk, Boris

    2011-01-01

    Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles and defense against parasitic invaders. During the past 10–20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target. PMID:20962583

  20. The role of autophagy in cardiac hypertrophy

    PubMed Central

    Li, Lanfang; Xu, Jin; He, Lu; Peng, Lijun; Zhong, Qiaoqing; Chen, Linxi; Jiang, Zhisheng

    2016-01-01

    Autophagy is conserved in nature from lower eukaryotes to mammals and is an important self-cannibalizing, degradative process that contributes to the elimination of superfluous materials. Cardiac hypertrophy is primarily characterized by excess protein synthesis, increased cardiomyocyte size, and thickened ventricular walls and is a major risk factor that promotes arrhythmia and heart failure. In recent years, cardiomyocyte autophagy has been considered to play a role in controlling the hypertrophic response. However, the beneficial or aggravating role of cardiomyocyte autophagy in cardiac hypertrophy remains controversial. The exact mechanism of cardiomyocyte autophagy in cardiac hypertrophy requires further study. In this review, we summarize the controversies associated with autophagy in cardiac hypertrophy and provide insights into the role of autophagy in the development of cardiac hypertrophy. We conclude that future studies should emphasize the relationship between autophagy and the different stages of cardiac hypertrophy, as well as the autophagic flux and selective autophagy. Autophagy will be a potential therapeutic target for cardiac hypertrophy. PMID:27084518

  1. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment.

    PubMed

    Yoshida, Go J

    2017-03-09

    The 2016 Nobel Prize in Physiology or Medicine was awarded to the researcher that discovered autophagy, which is an evolutionally conserved catabolic process which degrades cytoplasmic constituents and organelles in the lysosome. Autophagy plays a crucial role in both normal tissue homeostasis and tumor development and is necessary for cancer cells to adapt efficiently to an unfavorable tumor microenvironment characterized by hypo-nutrient conditions. This protein degradation process leads to amino acid recycling, which provides sufficient amino acid substrates for cellular survival and proliferation. Autophagy is constitutively activated in cancer cells due to the deregulation of PI3K/Akt/mTOR signaling pathway, which enables them to adapt to hypo-nutrient microenvironment and exhibit the robust proliferation at the pre-metastatic niche. That is why just the activation of autophagy with mTOR inhibitor often fails in vain. In contrast, disturbance of autophagy-lysosome flux leads to endoplasmic reticulum (ER) stress and an unfolded protein response (UPR), which finally leads to increased apoptotic cell death in the tumor tissue. Accumulating evidence suggests that autophagy has a close relationship with programmed cell death, while uncontrolled autophagy itself often induces autophagic cell death in tumor cells. Autophagic cell death was originally defined as cell death accompanied by large-scale autophagic vacuolization of the cytoplasm. However, autophagy is a "double-edged sword" for cancer cells as it can either promote or suppress the survival and proliferation in the tumor microenvironment. Furthermore, several studies of drug re-positioning suggest that "conventional" agents used to treat diseases other than cancer can have antitumor therapeutic effects by activating/suppressing autophagy. Because of ever increasing failure rates and high cost associated with anticancer drug development, this therapeutic development strategy has attracted increasing

  2. Autophagy and cardiovascular aging: lesson learned from rapamycin.

    PubMed

    Nair, Sreejayan; Ren, Jun

    2012-06-01

    The biological aging process is commonly associated with increased risk of cardiovascular diseases. Several theories have been put forward for aging-associated deterioration in ventricular function, including attenuation of growth hormone (insulin-like growth factors and insulin) signaling, loss of DNA replication and repair, histone acetylation and accumulation of reactive oxygen species. Recent evidence has depicted a rather unique role of autophagy as another important pathway in the regulation of longevity and senescence. Autophagy is a predominant cytoprotective (rather than self-destructive) process. It carries a prominent role in determination of lifespan. Reduced autophagy has been associated with aging, leading to accumulation of dysfunctional or damaged proteins and organelles. To the contrary, measures such as caloric restriction and exercise may promote autophagy to delay aging and associated comorbidities. Stimulation of autophagy using rapamycin may represent a novel strategy to prolong lifespan and combat aging-associated diseases. Rapamycin regulates autophagy through inhibition of the nutrient-sensing molecule mammalian target of rapamycin (mTOR). Inhibition of mTOR through rapamycin and caloric restriction promotes longevity. The purpose of this review is to recapitulate some of the recent advances in an effort to better understand the interplay between rapamycin-induced autophagy and decelerating cardiovascular aging.

  3. Long non-coding RNAs involved in autophagy regulation

    PubMed Central

    Yang, Lixian; Wang, Hanying; Shen, Qi; Feng, Lifeng; Jin, Hongchuan

    2017-01-01

    Autophagy degrades non-functioning or damaged proteins and organelles to maintain cellular homeostasis in a physiological or pathological context. Autophagy can be protective or detrimental, depending on its activation status and other conditions. Therefore, autophagy has a crucial role in a myriad of pathophysiological processes. From the perspective of autophagy-related (ATG) genes, the molecular dissection of autophagy process and the regulation of its level have been largely unraveled. However, the discovery of long non-coding RNAs (lncRNAs) provides a new paradigm of gene regulation in almost all important biological processes, including autophagy. In this review, we highlight recent advances in autophagy-associated lncRNAs and their specific autophagic targets, as well as their relevance to human diseases such as cancer, cardiovascular disease, diabetes and cerebral ischemic stroke. PMID:28981093

  4. Targeting autophagy enhances apatinib-induced apoptosis via endoplasmic reticulum stress for human colorectal cancer.

    PubMed

    Cheng, Xi; Feng, Haoran; Wu, Haoxuan; Jin, Zhijian; Shen, Xiaonan; Kuang, Jie; Huo, Zhen; Chen, Xianze; Gao, Haoji; Ye, Feng; Ji, Xiaopin; Jing, Xiaoqian; Zhang, Yaqi; Zhang, Tao; Qiu, Weihua; Zhao, Ren

    2018-05-30

    Apatinib, a novel tyrosine kinase inhibitor (TKI), has been confirmed for its efficacy and safety in the treatment of advanced gastric carcinoma and some other solid tumors. However, the direct functional mechanisms of tumor lethality mediated by apatinib have not yet been fully characterized, and the precise mechanisms of drug resistance are largely unknown. Here, in this study, we demonstrated that apatinib could induce both apoptosis and autophagy in human colorectal cancer (CRC) via a mechanism that involved endoplasmic reticulum (ER) stress. Moreover, activation of the IRE1α pathway from apatinib-induced ER stress is responsible for the induction of autophagy; however, blocking autophagy could enhance the apoptosis in apatinib-treated human CRC cell lines. Furthermore, the combination of apatinib with autophagy inhibitor chloroquine (CQ) tends to have the most significant anti-tumor effect of CRC both in vitro and in vivo. Overall, our data show that because apatinib treatment could induce ER stress-related apoptosis and protective autophagy in human CRC cell lines, targeting autophagy is a promising therapeutic strategy to relieve apatinib drug resistance in CRC. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Targeting AMPK-ULK1-mediated autophagy for combating BET inhibitor resistance in acute myeloid leukemia stem cells.

    PubMed

    Jang, Ji Eun; Eom, Ju-In; Jeung, Hoi-Kyung; Cheong, June-Won; Lee, Jung Yeon; Kim, Jin Seok; Min, Yoo Hong

    2017-04-03

    Bromodomain and extraterminal domain (BET) inhibitors are promising epigenetic agents for the treatment of various subsets of acute myeloid leukemia (AML). However, the resistance of leukemia stem cells (LSCs) to BET inhibitors remains a major challenge. In this study, we evaluated the mechanisms underlying LSC resistance to the BET inhibitor JQ1. We evaluated the levels of apoptosis and macroautophagy/autophagy induced by JQ1 in LSC-like leukemia cell lines and primary CD34 + CD38 - leukemic blasts obtained from AML cases with normal karyotype without recurrent mutations. JQ1 effectively induced apoptosis in a concentration-dependent manner in JQ1-sensitive AML cells. However, in JQ1-resistant AML LSCs, JQ1 induced little apoptosis and led to upregulation of BECN1/Beclin 1, increased LC3 lipidation, formation of autophagosomes, and downregulation of SQSTM1/p62. Inhibition of autophagy by pharmacological inhibitors or knockdown of BECN1 using specific siRNA enhanced JQ1-induced apoptosis in resistant cells, indicating that prosurvival autophagy occurred in these cells. Independent of MTOR signaling, activation of the AMPK (p-Thr172)-ULK1 (p-Ser555) pathway was found to be associated with JQ1-induced autophagy in resistant cells. AMPK inhibition using the pharmacological inhibitor compound C or by knockdown of PRKAA/AMPKα suppressed autophagy and promoted JQ1-induced apoptosis in AML LSCs. These findings revealed that prosurvival autophagy was one of the mechanisms involved in the resistance of AML LSCs to JQ1. Targeting the AMPK-ULK1 pathway or inhibition of autophagy could be an effective therapeutic strategy for combating resistance to BET inhibitors in AML and other types of cancer.

  6. Autophagy triggered by magnolol derivative negatively regulates angiogenesis

    PubMed Central

    Kumar, S; Guru, S K; Pathania, A S; Kumar, A; Bhushan, S; Malik, F

    2013-01-01

    Angiogenesis has a key role in the tumor progression and metastasis; targeting endothelial cell proliferation has emerged as a promising therapeutic strategy for the prevention of cancer. Previous studies have revealed a complex association between the process of angiogenesis and autophagy and its outcome on tumorigenesis. Autophagy, also known as type-II cell death, has been identified as an alternative way of cell killing in apoptotic-resistant cancer cells. However, its involvement in chemoresistance and tumor promotion is also well known. In this study, we used a derivate of natural product magnolol (Ery5), a potent autophagy inducer, to study the association between the autophagy and angiogenesis in both in vitro and in vivo model system. We found that the robust autophagy triggered by Ery5, inhibited angiogenesis and caused cell death independent of the apoptosis in human umbilical cord vein endothelial cells and PC-3 cells. Ery5 induced autophagy effectively inhibited cell proliferation, migration, invasion and tube formation. We further demonstrated that Ery5-mediated autophagy and subsequent inhibition of angiogenesis was reversed when autophagy was inhibited through 3-methyl adenine and knocking down of key autophagy proteins ATG7 and microtubule-associated protein light chain 3. While evaluating the negative regulation of autophagy on angiogenesis, it was interesting to find that angiogenic environment produced by the treatment of VEGF and CoCl2 remarkably downregulated the autophagy and autophagic cell death induced by Ery5. These studies, while disclosing the vital role of autophagy in the regulation of angiogenesis, also suggest that the potent modulators of autophagy can lead to the development of effective therapeutics in apoptosis-resistant cancer. PMID:24176847

  7. Autophagy is essential for effector CD8 T cell survival and memory formation

    PubMed Central

    Xu, Xiaojin; Araki, Koichi; Li, Shuzhao; Han, Jin-Hwan; Ye, Lilin; Tan, Wendy G.; Konieczny, Bogumila T.; Bruinsma, Monique W.; Martinez, Jennifer; Pearce, Erika L; Green, Douglas R.; Jones, Dean P.; Virgin, Herbert W.; Ahmed, Rafi

    2014-01-01

    The importance of autophagy in memory CD8 T cell differentiation in vivo is not well defined. We show here that autophagy is dynamically regulated in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection. Autophagy decreased in activated proliferating T cells, and was then upregulated at the peak of the effector T cell response. Consistent with this model, deletion of the key autophagy genes Atg7 or Atg5 in virus-specific CD8 T cells had minimal effect on generating effector cells but greatly enhanced their death during the contraction phase resulting in compromised memory formation. These findings provide insight into when autophagy is needed during effector and memory T cell differentiation in vivo and also warrant a re-examination of our current concepts about the relationship between T cell activation and autophagy. PMID:25362489

  8. Glucosamine Activates Autophagy In Vitro and In Vivo

    PubMed Central

    Caramés, Beatriz; Kiosses, William B.; Akasaki, Yukio; Brinson, Diana C.; Eap, William; Koziol, James; Lotz, Martin K.

    2013-01-01

    Objectives Aging-associated changes in articular cartilage represent a main Osteoarthritis (OA) risk factor. Autophagy is an essential cellular homeostasis mechanism. Aging-associated or experimental defects in autophagy contribute to organismal and tissue specific aging while enhancement of autophagy may protect against certain aging related pathologies such as OA. The objective of this study was to determine whether glucosamine (GlcN) could activate autophagy. Methods Chondrocytes from normal human articular cartilage were treated with GlcN (0.1-10 mM). Autophagy activation and phosphorylation levels of Akt, FoxO3 and ribosomal protein S6 (prbS6) were determined by Western blotting. Autophagosome formation was analyzed by microscopy. Transgenic reporter mice with green fluorescent protein fused to LC3 (GFP-LC3 mice) were used to test changes in autophagy in response to starvation and GlcN administration. Results GlcN treatment of chondrocytes activated autophagy as indicated by increased of LC3-II levels, formation of LC3 puncta and increased LC3 turnover. This was associated with GlcN-mediated inhibition of Akt, FoxO3 and mTOR pathway. Administration of GlcN to GFP-LC3 mice markedly activated autophagy in articular cartilage. Conclusions GlcN modulates molecular targets of the autophagy pathway in vitro and in vivo and the enhancement of autophagy was mainly dependent on the Akt/FoxO and mTOR pathway. These findings suggest that GlcN is an effective autophagy activator and motivate future studies on its efficacy in modifying aging-related cellular changes and supporting joint health. PMID:23606170

  9. Autophagy diminishes the early interferon-β response to influenza A virus resulting in differential expression of interferon-stimulated genes.

    PubMed

    Perot, Brieuc P; Boussier, Jeremy; Yatim, Nader; Rossman, Jeremy S; Ingersoll, Molly A; Albert, Matthew L

    2018-05-10

    Influenza A virus (IAV) infection perturbs metabolic pathways such as autophagy, a stress-induced catabolic pathway that crosstalks with cellular inflammatory responses. However, the impact of autophagy perturbation on IAV gene expression or host cell responses remains disputed. Discrepant results may be a reflection of in vivo studies using cell-specific autophagy-related (Atg) gene-deficient mouse strains, which do not delineate modification of developmental programmes from more proximal effects on inflammatory response. In vitro experiments can be confounded by gene expression divergence in wild-type cultivated cell lines, as compared to those experiencing long-term absence of autophagy. With the goal to investigate cellular processes within cells that are competent or incompetent for autophagy, we generated a novel experimental cell line in which autophagy can be restored by ATG5 protein stabilization in an otherwise Atg5-deficient background. We confirmed that IAV induced autophagosome formation and p62 accumulation in infected cells and demonstrated that perturbation of autophagy did not impact viral infection or replication in ATG5-stablized cells. Notably, the induction of interferon-stimulated genes (ISGs) by IAV was diminished when cells were autophagy competent. We further demonstrated that, in the absence of ATG5, IAV-induced interferon-β (IFN-β) expression was increased as compared to levels in autophagy-competent lines, a mechanism that was independent of IAV non-structural protein 1. In sum, we report that induction of autophagy by IAV infection reduces ISG expression in infected cells by limiting IFN-β expression, which may benefit viral replication and spread.

  10. The emergence of noncoding RNAs as Heracles in autophagy.

    PubMed

    Zhang, Jian; Wang, Peiyuan; Wan, Lin; Xu, Shouping; Pang, Da

    2017-06-03

    Macroautophagy/autophagy is a catabolic process that is widely found in nature. Over the past few decades, mounting evidence has indicated that noncoding RNAs, ranging from small noncoding RNAs to long noncoding RNAs (lncRNAs) and even circular RNAs (circRNAs), mediate the transcriptional and post-transcriptional regulation of autophagy-related genes by participating in autophagy regulatory networks. The differential expression of noncoding RNAs affects autophagy levels at different physiological and pathological stages, including embryonic proliferation and differentiation, cellular senescence, and even diseases such as cancer. We summarize the current knowledge regarding noncoding RNA dysregulation in autophagy and investigate the molecular regulatory mechanisms underlying noncoding RNA involvement in autophagy regulatory networks. Then, we integrate public resources to predict autophagy-related noncoding RNAs across species and discuss strategies for and the challenges of identifying autophagy-related noncoding RNAs. This article will deepen our understanding of the relationship between noncoding RNAs and autophagy, and provide new insights to specifically target noncoding RNAs in autophagy-associated therapeutic strategies.

  11. Role and regulation of autophagy in heat stress responses of tomato plants

    PubMed Central

    Zhou, Jie; Wang, Jian; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    As sessile organisms, plants are constantly exposed to a wide spectrum of stress conditions such as high temperature, which causes protein misfolding. Misfolded proteins are highly toxic and must be efficiently removed to reduce cellular proteotoxic stress if restoration of native conformations is unsuccessful. Although selective autophagy is known to function in protein quality control by targeting degradation of misfolded and potentially toxic proteins, its role and regulation in heat stress responses have not been analyzed in crop plants. In the present study, we found that heat stress induced expression of autophagy-related (ATG) genes and accumulation of autophagosomes in tomato plants. Virus-induced gene silencing (VIGS) of tomato ATG5 and ATG7 genes resulted in increased sensitivity of tomato plants to heat stress based on both increased development of heat stress symptoms and compromised photosynthetic parameters of heat-stressed leaf tissues. Silencing of tomato homologs for the selective autophagy receptor NBR1, which targets ubiquitinated protein aggregates, also compromised tomato heat tolerance. To better understand the regulation of heat-induced autophagy, we found that silencing of tomato ATG5, ATG7, or NBR1 compromised heat-induced expression of not only the targeted genes but also other autophagy-related genes. Furthermore, we identified two tomato genes encoding proteins highly homologous to Arabidopsis WRKY33 transcription factor, which has been previously shown to interact physically with an autophagy protein. Silencing of tomato WRKY33 genes compromised tomato heat tolerance and reduced heat-induced ATG gene expression and autophagosome accumulation. Based on these results, we propose that heat-induced autophagy in tomato is subject to cooperative regulation by both WRKY33 and ATG proteins and plays a critical role in tomato heat tolerance, mostly likely through selective removal of heat-induced protein aggregates. PMID:24817875

  12. Piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways.

    PubMed

    Wang, Hongfei; Wang, Yongqiang; Gao, Hongmei; Wang, Bing; Dou, Lin; Li, Yin

    2018-02-01

    Piperlongumine is an alkaloid compound extracted from Piper longum L. It is a chemical substance with various pharmacological effects and medicinal value, including anti-tumor, lipid metabolism regulatory, antiplatelet aggregation and analgesic properties. The present study aimed to understand whether piperlongumine induces the apoptosis and autophagy of leukemic cells, and to identify the mechanism involved. Cell viability and autophagy were detected using MTT, phenazine methyl sulfate and trypan blue exclusion assays. The apoptosis rate was calculated using flow cytometry. The protein expression levels of microtubule-associated protein 1A/1B-light chain 3, Akt and mechanistic target of rapamycin (mTOR) were measured using western blotting. The cell growth of leukemic cells was completely inhibited following treatment with piperlongumine, and marked apoptosis was also induced. Dead cells as a result of autophagy were stained using immunofluorescence and observed under a light microscope. Phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was suppressed by treatment with piperlongumine, while p38 signaling and caspase-3 activity were induced by treatment with piperlongumine. It was concluded that piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways.

  13. miR-153 regulates apoptosis and autophagy of cardiomyocytes by targeting Mcl-1.

    PubMed

    Zou, Yuhai; Liu, Wenting; Zhang, Jinxia; Xiang, Dingcheng

    2016-07-01

    MicroRNAs (miRs) are a class of important regulators, which are involved in the regulation of apoptosis. Oxidative stress‑induced apoptosis is the predominant factor accounting for cardiac ischemia‑reperfusion injury. miR‑153 has been previously shown to have an antitumor effect in cancer. However, whether miR‑153 is involved in oxidative stress‑induced apoptosis in the heart remains to be elucidated. To this end, the present study used reverse transcription‑quantitative polymerase chain reaction to detect miR-153 levels upon oxidative stress, and evaluated apoptosis, autophagy and expression of critical genes by western blotting. A luciferase assay was also used to confirm the potential target gene. In the present study, it was found that the expression of miR‑153 was significantly increased upon H2O2 stimulation, and the inhibition of endogenous miR‑153 decreased apoptosis. To further identify the mechanism underlying the pro‑apoptotic effect of miR‑153, the present study analyzed the 3'untranslated region of myeloid cell leukemia‑1 (Mcl‑1), and found that Mcl‑1 was potentially targeted by miR‑153. The forced expression of miR‑153 inhibited the expression of Mcl‑1 and luciferase activity, which was reversed by its antisense inhibitor. Furthermore, it was shown that the inhibition of miR‑153 induced autophagy during oxidative stress, and that its effects of autophagy induction and apoptosis inhibition were efficiently abrogated by Mcl‑1 small interfering RNA. In conclusion, the results of the present study elucidated a novel mechanism by which miR‑153 regulates the survival of cardimyocytes during oxidative stress through the modulation of apoptosis and autophagy. These effects may be mediated directly by targeting Mcl‑1. These finding revealed the potential clinical value of miR‑153 in the treatment of cardiovascular disease.

  14. Identification of Small Molecule Inhibitors of Phosphatidylinositol 3-Kinase and Autophagy*

    PubMed Central

    Farkas, Thomas; Daugaard, Mads; Jäättelä, Marja

    2011-01-01

    Macroautophagy (hereafter autophagy) is a lysosomal catabolic pathway that controls cellular homeostasis and survival. It has recently emerged as an attractive target for the treatment of a variety of degenerative diseases and cancer. The targeting of autophagy has, however, been hampered by the lack of specific small molecule inhibitors. Thus, we screened two small molecule kinase inhibitor libraries for inhibitors of rapamycin-induced autophagic flux. The three most potent inhibitors identified conferred profound inhibition of autophagic flux by inhibiting the formation of autophagosomes. Notably, the autophagy inhibitory effects of all three compounds were independent of their established kinase targets, i.e. ataxia telangiectasia mutated for KU55933, protein kinase C for Gö6976, and Janus kinase 3 for Jak3 inhibitor VI. Instead, we identified phosphatidylinositol 3-kinase (PtdIns3K) as a direct target of KU55933 and Gö6976. Importantly, and in contrast to the currently available inhibitors of autophagosome formation (e.g. 3-methyladenine), none of the three compounds inhibited the cell survival promoting class I phosphoinositide 3-kinase-Akt signaling at the concentrations required for effective autophagy inhibition. Accordingly, they proved to be valuable tools for investigations of autophagy-associated cell death and survival. Employing KU55399, we demonstrated that autophagy protects amino acid-starved cells against both apoptosis and necroptosis. Taken together, our data introduce new possibilities for the experimental study of autophagy and can form a basis for the development of clinically relevant autophagy inhibitors. PMID:21930714

  15. Glutaminolysis and autophagy in cancer

    PubMed Central

    Villar, Victor H; Merhi, Faten; Djavaheri-Mergny, Mojgan; Durán, Raúl V

    2015-01-01

    The remarkable metabolic differences between cancer cells and normal cells result in the potential for targeted cancer therapy. The upregulation of glutaminolysis provides energetic advantages to cancer cells. The recently described link between glutaminolysis and autophagy, mediated by MTORC1, may constitute an attractive target for therapeutic strategies. A combination of therapies targeting simultane-ously cell signaling, cancer metabolism, and autophagy can solve therapy resistance and tumor relapse problems, commonly observed in patients treated with most of the current targeted therapies. In this review we summarize the mechanistic link between glutaminolysis and autophagy, and discuss the impacts of these processes on cancer progression and the potential for therapeutic intervention. PMID:26054373

  16. miR-26a suppresses autophagy in swine Sertoli cells by targeting ULK2.

    PubMed

    Ran, M; Li, Z; Cao, R; Weng, B; Peng, F; He, C; Chen, B

    2018-05-14

    A large number of microRNAs (miRNAs) have been detected from porcine testicular tissues thanks to the development of high-throughput sequencing technology. However, the regulatory roles of most identified miRNAs in swine testicular development or spermatogenesis are poorly understood. In our previous study, ULK2 (uncoordinated-51-like kinase 2) was predicted as a target gene of miR-26a. In this study, we aimed to investigate the role of miR-26a in swine Sertoli cell autophagy. The relative expression of miR-26a and ULK2 levels has a significant negative correlation (R 2  = .5964, p ≤ .01) in nine developmental stages of swine testicular tissue. Dual-luciferase reporter assay results show that miR-26a directly targets the 3'UTR of the ULK2 gene (position 618-624). In addition, both the mRNA and protein expression of ULK2 were downregulated by miR-26a in swine Sertoli cells. These results indicate that miR-26a targets the ULK2 gene and downregulates its expression in swine Sertoli cells. Based on the expression of marker genes (LC3, p62 and Beclin-1), overexpression of miR-26a or knock-down of ULK2 inhibits swine Sertoli cell autophagy. Taken together, these findings demonstrate that miR-26a suppresses autophagy in swine Sertoli cells by targeting ULK2. © 2018 Blackwell Verlag GmbH.

  17. Autophagy induction by histone deacetylase inhibitors inhibits HIV type 1.

    PubMed

    Campbell, Grant R; Bruckman, Rachel S; Chu, Yen-Lin; Spector, Stephen A

    2015-02-20

    Histone deacetylase inhibitors (HDACi) are being evaluated in a "shock-and-kill" therapeutic approach to reverse human immunodeficiency virus type-1 (HIV) latency from CD4(+) T cells. Using this approach, HDACi have induced HIV RNA synthesis in latently infected cells from some patients. The hope is that the increase in viral production will lead to killing of the infected cell either by the virus itself or by the patient's immune system, a "sterilizing cure." Although administered within the context of combination antiretroviral therapy, the infection of bystander cells remains a concern. In this study, we investigated the effect of HDACi (belinostat, givinostat, panobinostat, romidepsin, and vorinostat) on the productive infection of macrophages. We demonstrate that the HDACi tested do not alter the initial susceptibility of macrophages to HIV infection. However, we demonstrate that HDACi decrease HIV release from macrophages in a dose-dependent manner (belinostat < givinostat < vorinostat < panobinostat < romidepsin) via degradation of intracellular HIV through the canonical autophagy pathway. This mechanism involves unc-51-like autophagy-activating kinase 1 (ULK1) and the inhibition of the mammalian target of rapamycin and requires the formation of autophagosomes and their maturation into autolysosomes in the absence of increased cell death. These data provide further evidence in support of a role for autophagy in the control of HIV infection and suggest that careful consideration of off-target effects will be essential if HDACi are to be a component of a multipronged approach to eliminate latently infected cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Moderate mammalian target of rapamycin inhibition induces autophagy in HTR8/SVneo cells via O-linked β-N-acetylglucosamine signaling.

    PubMed

    Zhang, Qiuxia; Na, Quan; Song, Weiwei

    2017-10-01

    Autophagy, a highly regulated process with a dual role (pro-survival or pro-death), has been implicated in adverse pregnancy outcomes. The aim of this study was to explore the mechanism whereby mammalian target of rapamycin (mTOR) signaling regulates autophagy by modulating protein O-GlcNAcylation in human trophoblasts. HTR8/SVneo cells were incubated in serum-free medium for different time intervals or treated with varying doses of Torin1. Protein expression and cell apoptosis were detected by immunoblotting and flow cytometry, respectively. Short-term serum starvation or slight suppression of mTOR signaling promoted autophagy and decreased apoptosis in HTR8/SVneo cells. Conversely, prolonged serum starvation or excessive inhibition of mTOR reduced autophagy and enhanced cell apoptosis. Both serum starvation and mTOR signaling suppression reduced protein O-GlcNAcylation. Upregulation and downregulation of O-linked β-N-acetylglucosamine (O-GlcNAc) levels attenuated and augmented autophagy, respectively. Moderate mTOR inhibition-induced autophagy was blocked by upregulation of protein O-GlcNAcylation. Furthermore, immunoprecipitation studies revealed that Beclin1 and synaptosome associated protein 29 (SNAP29) could be O-GlcNAcylated, and that slight mTOR inhibition resulted in decreased O-GlcNAc modification of Beclin1 and SNAP29. Notably, we observed an inverse correlation between phosphorylation (Ser15) and O-GlcNAcylation of Beclin1. mTOR signaling inhibition played dual roles in regulating autophagy and apoptosis in HTR8/SVneo cells. Moderate mTOR suppression might induce autophagy via modulating O-GlcNAcylation of Beclin1 and SNAP29. Moreover, the negative interplay between Beclin1 O-GlcNAcylation and phosphorylation (Ser15) may be involved in autophagy regulation by mTOR signaling. © 2017 Japan Society of Obstetrics and Gynecology.

  19. Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities.

    PubMed

    Menzies, Fiona M; Fleming, Angeleen; Caricasole, Andrea; Bento, Carla F; Andrews, Stephen P; Ashkenazi, Avraham; Füllgrabe, Jens; Jackson, Anne; Jimenez Sanchez, Maria; Karabiyik, Cansu; Licitra, Floriana; Lopez Ramirez, Ana; Pavel, Mariana; Puri, Claudia; Renna, Maurizio; Ricketts, Thomas; Schlotawa, Lars; Vicinanza, Mariella; Won, Hyeran; Zhu, Ye; Skidmore, John; Rubinsztein, David C

    2017-03-08

    Autophagy is a conserved pathway that delivers cytoplasmic contents to the lysosome for degradation. Here we consider its roles in neuronal health and disease. We review evidence from mouse knockout studies demonstrating the normal functions of autophagy as a protective factor against neurodegeneration associated with intracytoplasmic aggregate-prone protein accumulation as well as other roles, including in neuronal stem cell differentiation. We then describe how autophagy may be affected in a range of neurodegenerative diseases. Finally, we describe how autophagy upregulation may be a therapeutic strategy in a wide range of neurodegenerative conditions and consider possible pathways and druggable targets that may be suitable for this objective. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukseree, Supawadee; Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok; Rossiter, Heidemarie

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Heremore » we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.« less

  1. A small-molecule activator induces ULK1-modulating autophagy-associated cell death in triple negative breast cancer.

    PubMed

    Ouyang, Liang; Zhang, Lan; Fu, Leilei; Liu, Bo

    2017-04-03

    ULK1 (unc-51 like autophagy activating kinase 1) is well known to be required to initiate the macroautophagy/autophagy process, and thus activation of ULK1-modulating autophagy/autophagy-associated cell death (ACD) may be a possible therapeutic strategy in triple negative breast cancer (TNBC). Here, our integrated The Cancer Genome Atlas (TCGA) data set, tissue microarray-based analyses and multiple biologic evaluations together demonstrate a new small-molecule activator of ULK1 for better understanding of how ULK1, the mammalian homolog of yeast Atg1, as a potential drug target can regulate ACD by the ULK complex (ULK1-ATG13-RB1CC1/FIP200-ATG101), as well as other possible ULK1 interactors, including ATF3, RAD21 and CASP3/caspase3 in TNBC. Moreover, such new inspiring findings may help us discover that this activator of ULK1 (LYN-1604) with its anti-tumor activity and ACD-modulating mechanisms can be further exploited as a small-molecule candidate drug for future TNBC therapy.

  2. The invasion of tobacco mosaic virus RNA induces endoplasmic reticulum stress-related autophagy in HeLa cells

    PubMed Central

    Li, Li; Wang, Li; Xiao, Ruijing; Zhu, Guoguo; Li, Yan; Liu, Changxuan; Yang, Ru; Tang, Zhiqing; Li, Jie; Huang, Wei; Chen, Lang; Zheng, Xiaoling; He, Yuling; Tan, Jinquan

    2011-01-01

    The ability of human cells to defend against viruses originating from distant species has long been ignored. Owing to the pressure of natural evolution and human exploration, some of these viruses may be able to invade human beings. If their ‘fresh’ host had no defences, the viruses could cause a serious pandemic, as seen with HIV, SARS (severe acute respiratory syndrome) and avian influenza virus that originated from chimpanzees, the common palm civet and birds, respectively. It is unknown whether the human immune system could tolerate invasion with a plant virus. To model such an alien virus invasion, we chose TMV (tobacco mosaic virus) and used human epithelial carcinoma cells (HeLa cells) as its ‘fresh’ host. We established a reliable system for transfecting TMV-RNA into HeLa cells and found that TMV-RNA triggered autophagy in HeLa cells as shown by the appearance of autophagic vacuoles, the conversion of LC3-I (light chain protein 3-I) to LC3-II, the up-regulated expression of Beclin1 and the accumulation of TMV protein on autophagosomal membranes. We observed suspected TMV virions in HeLa cells by TEM (transmission electron microscopy). Furthermore, we found that TMV-RNA was translated into CP (coat protein) in the ER (endoplasmic reticulum) and that TMV-positive RNA translocated from the cytoplasm to the nucleolus. Finally, we detected greatly increased expression of GRP78 (78 kDa glucose-regulated protein), a typical marker of ERS (ER stress) and found that the formation of autophagosomes was closely related to the expanded ER membrane. Taken together, our data indicate that HeLa cells used ERS and ERS-related autophagy to defend against TMV-RNA. PMID:21729006

  3. Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy

    PubMed Central

    Rolando, Monica; Escoll, Pedro; Nora, Tamara; Botti, Joëlle; Boitez, Valérie; Daniels, Craig; Abraham, Gilu; Stogios, Peter J.; Skarina, Tatiana; Christophe, Charlotte; Dervins-Ravault, Delphine; Cazalet, Christel; Hilbi, Hubert; Rupasinghe, Thusitha W. T.; Tull, Dedreia; McConville, Malcolm J.; Ong, Sze Ying; Hartland, Elizabeth L.; Codogno, Patrice; Levade, Thierry; Naderer, Thomas; Savchenko, Alexei; Buchrieser, Carmen

    2016-01-01

    Autophagy is an essential component of innate immunity, enabling the detection and elimination of intracellular pathogens. Legionella pneumophila, an intracellular pathogen that can cause a severe pneumonia in humans, is able to modulate autophagy through the action of effector proteins that are translocated into the host cell by the pathogen’s Dot/Icm type IV secretion system. Many of these effectors share structural and sequence similarity with eukaryotic proteins. Indeed, phylogenetic analyses have indicated their acquisition by horizontal gene transfer from a eukaryotic host. Here we report that L. pneumophila translocates the effector protein sphingosine-1 phosphate lyase (LpSpl) to target the host sphingosine biosynthesis and to curtail autophagy. Our structural characterization of LpSpl and its comparison with human SPL reveals high structural conservation, thus supporting prior phylogenetic analysis. We show that LpSpl possesses S1P lyase activity that was abrogated by mutation of the catalytic site residues. L. pneumophila triggers the reduction of several sphingolipids critical for macrophage function in an LpSpl-dependent and -independent manner. LpSpl activity alone was sufficient to prevent an increase in sphingosine levels in infected host cells and to inhibit autophagy during macrophage infection. LpSpl was required for efficient infection of A/J mice, highlighting an important virulence role for this effector. Thus, we have uncovered a previously unidentified mechanism used by intracellular pathogens to inhibit autophagy, namely the disruption of host sphingolipid biosynthesis. PMID:26831115

  4. Autophagic machinery activated by dengue virus enhances virus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.-R.; Lei, H.-Y.; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan

    2008-05-10

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that ismore » favorable for viral replication.« less

  5. Anti- and pro-tumor functions of autophagy.

    PubMed

    Morselli, Eugenia; Galluzzi, Lorenzo; Kepp, Oliver; Vicencio, José-Miguel; Criollo, Alfredo; Maiuri, Maria Chiara; Kroemer, Guido

    2009-09-01

    Autophagy constitutes one of the major responses to stress in eukaryotic cells, and is regulated by a complex network of signaling cascades. Not surprisingly, autophagy is implicated in multiple pathological processes, including infection by pathogens, inflammatory bowel disease, neurodegeneration and cancer. Both oncogenesis and tumor survival are influenced by perturbations of the molecular machinery that controls autophagy. Numerous oncoproteins, including phosphatidylinositol 3-kinase, Akt1 and anti-apoptotic members of the Bcl-2 family suppress autophagy. Conversely, several tumor suppressor proteins (e.g., Atg4c; beclin 1; Bif-1; BH3-only proteins; death-associated protein kinase 1; LKB1/STK11; PTEN; UVRAG) promote the autophagic pathway. This does not entirely apply to p53, one of the most important tumor suppressor proteins, which regulates autophagy in an ambiguous fashion, depending on its subcellular localization. Irrespective of the controversial role of p53, basal levels of autophagy appear to inhibit tumor development. On the contrary, chemotherapy- and metabolic stress-induced activation of the autophagic pathway reportedly contribute to the survival of formed tumors, thereby favoring resistance. In this context, autophagy inhibition would represent a major therapeutic target for chemosensitization. Here, we will review the current knowledge on the dual role of autophagy as an anti- and pro-tumor mechanism.

  6. Precision autophagy directed by receptor regulators - emerging examples within the TRIM family.

    PubMed

    Kimura, Tomonori; Mandell, Michael; Deretic, Vojo

    2016-03-01

    Selective autophagy entails cooperation between target recognition and assembly of the autophagic apparatus. Target recognition is conducted by receptors that often recognize tags, such as ubiquitin and galectins, although examples of selective autophagy independent of these tags are emerging. It is less known how receptors cooperate with the upstream autophagic regulators, beyond the well-characterized association of receptors with Atg8 or its homologs, such as LC3B (encoded by MAP1LC3B), on autophagic membranes. The molecular details of the emerging role in autophagy of the family of proteins called TRIMs shed light on the coordination between cargo recognition and the assembly and activation of the principal autophagy regulators. In their autophagy roles, TRIMs act both as receptors and as platforms ('receptor regulators') for the assembly of the core autophagy regulators, such as ULK1 and Beclin 1 in their activated state. As autophagic receptors, TRIMs can directly recognize endogenous or exogenous targets, obviating a need for intermediary autophagic tags, such as ubiquitin and galectins. The receptor and regulatory features embodied within the same entity allow TRIMs to govern cargo degradation in a highly exact process termed 'precision autophagy'. © 2016. Published by The Company of Biologists Ltd.

  7. The intersection between growth factors, autophagy and ER stress: A new target to treat neurodegenerative diseases?

    PubMed

    Garcia-Huerta, Paula; Troncoso-Escudero, Paulina; Jerez, Carolina; Hetz, Claudio; Vidal, Rene L

    2016-10-15

    One of the salient features of most neurodegenerative diseases is the aggregation of specific proteins in the brain. This proteostasis imbalance is proposed as a key event triggering the neurodegenerative cascade. The unfolded protein response (UPR) and autophagy pathways are emerging as critical processes implicated in handling disease-related misfolded proteins. However, in some conditions, perturbations in the buffering capacity of the proteostasis network may be part of the etiology of the disease. Thus, pharmacological or gene therapy strategies to enhance autophagy or UPR responses are becoming an attractive target for disease intervention. Here, we discuss current evidence depicting the complex involvement of autophagy and ER stress in brain diseases. Novel pathways to modulate protein misfolding are discussed including the relation between aging and growth factor signaling. This article is part of a Special Issue entitled SI:Autophagy. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death

    PubMed Central

    Liu, S; Sarkar, C; Dinizo, M; Faden, A I; Koh, E Y; Lipinski, M M; Wu, J

    2015-01-01

    Autophagy is a catabolic mechanism facilitating degradation of cytoplasmic proteins and organelles in a lysosome-dependent manner. Autophagy flux is necessary for normal neuronal homeostasis and its dysfunction contributes to neuronal cell death in several neurodegenerative diseases. Elevated autophagy has been reported after spinal cord injury (SCI); however, its mechanism, cell type specificity and relationship to cell death are unknown. Using a rat model of contusive SCI, we observed accumulation of LC3-II-positive autophagosomes starting at posttrauma day 1. This was accompanied by a pronounced accumulation of autophagy substrate protein p62, indicating that early elevation of autophagy markers reflected disrupted autophagosome degradation. Levels of lysosomal protease cathepsin D and numbers of cathepsin-D-positive lysosomes were also decreased at this time, suggesting that lysosomal damage may contribute to the observed defect in autophagy flux. Normalization of p62 levels started by day 7 after SCI, and was associated with increased cathepsin D levels. At day 1 after SCI, accumulation of autophagosomes was pronounced in ventral horn motor neurons and dorsal column oligodendrocytes and microglia. In motor neurons, disruption of autophagy strongly correlated with evidence of endoplasmic reticulum (ER) stress. As autophagy is thought to protect against ER stress, its disruption after SCI could contribute to ER-stress-induced neuronal apoptosis. Consistently, motor neurons showing disrupted autophagy co-expressed ER-stress-associated initiator caspase 12 and cleaved executioner caspase 3. Together, these findings indicate that SCI causes lysosomal dysfunction that contributes to autophagy disruption and associated ER-stress-induced neuronal apoptosis. PMID:25569099

  9. Adeno-associated virus Rep-mediated targeting of integrase-defective retroviral vector DNA circles into human chromosome 19

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shuohao; Kawabe, Yoshinori; Ito, Akira

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Adeno-associated virus (AAV) is capable of targeted integration in human cells. Black-Right-Pointing-Pointer Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. Black-Right-Pointing-Pointer A targeted integration system of IDRV DNA using the AAV integration mechanism. Black-Right-Pointing-Pointer Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors,more » therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.« less

  10. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer.

    PubMed

    Eritja, Núria; Chen, Bo-Juen; Rodríguez-Barrueco, Ruth; Santacana, Maria; Gatius, Sònia; Vidal, August; Martí, Maria Dolores; Ponce, Jordi; Bergadà, Laura; Yeramian, Andree; Encinas, Mario; Ribera, Joan; Reventós, Jaume; Boyd, Jeff; Villanueva, Alberto; Matias-Guiu, Xavier; Dolcet, Xavier; Llobet-Navàs, David

    2017-03-04

    Targeted therapies in endometrial cancer (EC) using kinase inhibitors rarely result in complete tumor remission and are frequently challenged by the appearance of refractory cell clones, eventually resulting in disease relapse. Dissecting adaptive mechanisms is of vital importance to circumvent clinical drug resistance and improve the efficacy of targeted agents in EC. Sorafenib is an FDA-approved multitarget tyrosine and serine/threonine kinase inhibitor currently used to treat hepatocellular carcinoma, advanced renal carcinoma and radioactive iodine-resistant thyroid carcinoma. Unfortunately, sorafenib showed very modest effects in a multi-institutional phase II trial in advanced uterine carcinoma patients. Here, by leveraging RNA-sequencing data from the Cancer Cell Line Encyclopedia and cell survival studies from compound-based high-throughput screenings we have identified the lysosomal pathway as a potential compartment involved in the resistance to sorafenib. By performing additional functional biology studies we have demonstrated that this resistance could be related to macroautophagy/autophagy. Specifically, our results indicate that sorafenib triggers a mechanistic MAPK/JNK-dependent early protective autophagic response in EC cells, providing an adaptive response to therapeutic stress. By generating in vivo subcutaneous EC cell line tumors, lung metastatic assays and primary EC orthoxenografts experiments, we demonstrate that targeting autophagy enhances sorafenib cytotoxicity and suppresses tumor growth and pulmonary metastasis progression. In conclusion, sorafenib induces the activation of a protective autophagic response in EC cells. These results provide insights into the unopposed resistance of advanced EC to sorafenib and highlight a new strategy for therapeutic intervention in recurrent EC.

  11. Demarcation of Viral Shelters Results in Destruction by Membranolytic GTPases: Antiviral Function of Autophagy Proteins and Interferon-Inducible GTPases

    PubMed Central

    Brown, Hailey M.; Biering, Scott B.; Zhu, Allen; Choi, Jayoung; Hwang, Seungmin

    2018-01-01

    A hallmark of positive-sense RNA viruses is the formation of membranous shelters for safe replication in the cytoplasm. Once considered invisible to the immune system, these viral shelters are now found to be antagonized through the cooperation of autophagy proteins and anti-microbial GTPases. This coordinated effort of autophagy proteins guiding GTPases functions against not only the shelters of viruses but also cytoplasmic vacuoles containing bacteria or protozoa, suggesting a broad immune-defense mechanism against disparate vacuolar pathogens. Fundamental questions regarding this process remain: how the host recognizes these membranous structures as a target, how the autophagy proteins bring the GTPases to the shelters, and how the recruited GTPases disrupt these shelters. In this review we discuss these questions, the answers to which will significantly advance our understanding of the response to vacuole-like structures of pathogens, thereby paving the way for the development of broadly effective anti-microbial strategies for public health. PMID:29603284

  12. Demarcation of Viral Shelters Results in Destruction by Membranolytic GTPases: Antiviral Function of Autophagy Proteins and Interferon-Inducible GTPases.

    PubMed

    Brown, Hailey M; Biering, Scott B; Zhu, Allen; Choi, Jayoung; Hwang, Seungmin

    2018-06-01

    A hallmark of positive-sense RNA viruses is the formation of membranous shelters for safe replication in the cytoplasm. Once considered invisible to the immune system, these viral shelters are now found to be antagonized through the cooperation of autophagy proteins and anti-microbial GTPases. This coordinated effort of autophagy proteins guiding GTPases functions against not only the shelters of viruses but also cytoplasmic vacuoles containing bacteria or protozoa, suggesting a broad immune-defense mechanism against disparate vacuolar pathogens. Fundamental questions regarding this process remain: how the host recognizes these membranous structures as a target, how the autophagy proteins bring the GTPases to the shelters, and how the recruited GTPases disrupt these shelters. In this review, these questions are discussed, the answers to which will significantly advance our understanding of the response to vacuole-like structures of pathogens, thereby paving the way for the development of broadly effective anti-microbial strategies for public health. © 2018 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  13. Concanavalin A: A potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wen-wen; Yu, Jia-ying; Xu, Huai-long

    2011-10-22

    Highlights: {yields} ConA induces cancer cell death targeting apoptosis and autophagy. {yields} ConA inhibits cancer cell angiogenesis. {yields} ConA is utilized in pre-clinical and clinical trials. -- Abstract: Concanavalin A (ConA), a Ca{sup 2+}/Mn{sup 2+}-dependent and mannose/glucose-binding legume lectin, has drawn a rising attention for its remarkable anti-proliferative and anti-tumor activities to a variety of cancer cells. ConA induces programmed cell death via mitochondria-mediated, P73-Foxo1a-Bim apoptosis and BNIP3-mediated mitochondrial autophagy. Through IKK-NF-{kappa}B-COX-2, SHP-2-MEK-1-ERK, and SHP-2-Ras-ERK anti-angiogenic pathways, ConA would inhibit cancer cell survival. In addition, ConA stimulates cell immunity and generates an immune memory, resisting to the same genotypic tumor.more » These biological findings shed light on new perspectives of ConA as a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis in pre-clinical or clinical trials for cancer therapeutics.« less

  14. Alternative autophagy, brefeldin A and viral trafficking pathways.

    PubMed

    Grose, Charles; Klionsky, Daniel J

    2016-09-01

    Two topics that have attracted recent attention in the field of autophagy concern the source of the membrane that is used to form the autophagosome during macroautophagy and the role of noncanonical autophagic pathways. The 2 topics may converge when considering the intersection of autophagy with viral infection. We suggest that noncanonical autophagy, which is sensitive to treatment with brefeldin A, may converge with the infectious cycles of certain DNA and RNA viruses that utilize membrane from the ER and cis-Golgi.

  15. Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo

    PubMed Central

    Sheen, Joon-Ho; Zoncu, Roberto; Kim, Dohoon; Sabatini, David M.

    2011-01-01

    SUMMARY Autophagy is of increasing interest as a target for cancer therapy. We find that leucine deprivation causes the caspase-dependent apoptotic death of melanoma cells because it fails to appropriately activate autophagy. Hyperactivation of the RAS-MEK pathway, which is common in melanoma, prevents leucine deprivation from inhibiting mTORC1, the main repressor of autophagy under nutrient-rich conditions. In an in vivo tumor xenograft model, the combination of a leucine-free diet and an autophagy inhibitor synergistically suppresses the growth of human melanoma tumors and triggers widespread apoptosis of the cancer cells. Together, our study represents proof of principle that anti-cancer effects can be obtained with a combination of autophagy inhibition and strategies to deprive tumors of leucine. PMID:21575862

  16. MiR224-3p inhibits hypoxia-induced autophagy by targeting autophagy-related genes in human glioblastoma cells.

    PubMed

    Guo, Xing; Xue, Hao; Guo, Xiaofan; Gao, Xiao; Xu, Shugang; Yan, Shaofeng; Han, Xiao; Li, Tong; Shen, Jie; Li, Gang

    2015-12-08

    Human glioblastoma multiforme (GBM) is a malignant solid tumor characterized by severe hypoxia. Autophagy plays a protective role in cancer cells under hypoxia. However, the microRNA (miRNA)-related molecular mechanisms underlying hypoxia-reduced autophagy remain poorly understood in GBM. In this study, we performed a miRNA microarray analysis on GBM cells and found that numerous miRNAs were differentially expressed under hypoxic conditions. Further research showed that miR224-3p, one of the significantly down-regulated miRNAs, was involved in regulating hypoxia-induced autophagy in GBM cells. Overexpression of miR224-3p abolished hypoxia-induced autophagy, whereas knocking down endogenous miR224-3p increased autophagic activity under normoxia. In addition, we demonstrated that miR224-3p inhibited autophagy by directly suppressing the expression of two autophagy-related genes (ATGs), ATG5 and FAK family-interacting protein of 200 kDa (FIP200). Furthermore, in vitro, miR224-3p attenuated cell proliferation and promoted hypoxia-induced apoptosis, and in vivo, overexpression of miR224-3p inhibited tumorigenesis of GBM cells. Collectively, our study identified a novel hypoxia-down-regulated miRNA, miR224-3p, as a key modulator of autophagy by inhibiting ATGs in GBM cells.

  17. Crosstalk between autophagy and apoptosis in RAW 264.7 macrophages infected with ectromelia orthopoxvirus.

    PubMed

    Martyniszyn, Lech; Szulc-Dąbrowska, Lidia; Boratyńska-Jasińska, Anna; Struzik, Justyna; Winnicka, Anna; Niemiałtowski, Marek

    2013-10-01

    Several studies have provided evidence that complex relationships between autophagic and apoptotic cell death pathways occur in cancer and virus-infected cells. Previously, we demonstrated that infection of macrophages with Moscow strain of ectromelia virus (ECTV-MOS) induces apoptosis under in vitro and in vivo conditions. Here, we found that autophagy was induced in RAW 264.7 cells during infection with ECTV-MOS. Silencing of beclin 1, an autophagy-related gene, reduced the percentage of late apoptotic cells in virus-infected RAW 264.7 macrophages. Pharmacological modulation of autophagy by wortmannin (inhibitor) or rapamycin (inductor) did not affect or cause increased apoptosis in ECTV-MOS-infected RAW 264.7 cells, respectively. Meantime, blocking apoptosis by a pan-caspase inhibitor, Z-VAD-FMK, increased the formation of autophagosomes in infected macrophages. Taken together, three important points arise from our study. First, autophagy may co-occur with apoptosis in RAW 264.7 cells exposed to ECTV-MOS. Second, at later stages of infection, autophagy may partially participate in the execution of macrophage cell death by enhancing apoptosis. Third, when apoptosis is blocked infected macrophages undergo increased autophagy. Our results provide new information about the relationship between autophagy and apoptosis in ECTV-MOS-infected macrophages.

  18. Autophagy-associated proteins BAG3 and p62 in testicular cancer.

    PubMed

    Bartsch, Georg; Jennewein, Lukas; Harter, Patrick N; Antonietti, Patrick; Blaheta, Roman A; Kvasnicka, Hans-Michael; Kögel, Donat; Haferkamp, Axel; Mittelbronn, Michel; Mani, Jens

    2016-03-01

    Testicular germ cell tumors (TGCT) represent the most common malignant tumor group in the age group of 20 to 40-years old men. The potentially curable effect of cytotoxic therapy in TGCT is mediated mainly by the induction of apoptosis. Autophagy has been discussed as an alternative mechanism of cell death but also of treatment resistance in various types of tumors. However, in TGCT the expression and role of core autophagy-associated factors is hitherto unknown. We designed the study in order to evaluate the potential role of autophagy-associated factors in the development and progression of testicular cancers. Eighty-four patients were assessed for autophagy (BAG3, p62) and apoptosis (cleaved caspase 3) markers using immunohistochemistry (IHC) on tissue micro- arrays. In addition, western blot analyses of frozen tissue of seminoma and non-seminoma were performed. Our findings show that BAG3 was significantly upregulated in seminoma as compared to non-seminoma but not to normal testicular tissue. No significant difference of p62 expression was detected between neoplastic and normal tissue or between seminoma and non-seminoma. BAG3 and p62 showed distinct loco‑regional expression patterns in normal and neoplastic human testicular tissues. In contrast to the autophagic markers, apoptosis rate was significantly higher in testicular tumors as compared to normal testicular tissue, but not between different TGCT subtypes. The present study, for the first time, examined the expression of central autophagy proteins BAG3 and p62 in testicular cancer. Our findings imply that in general apoptosis but not autophagy induction differs between normal and neoplastic testis tissue.

  19. Lack of Connection Between Midgut Cell Autophagy Gene Expression and BmCPV Infection in the Midgut of Bombyx mori

    PubMed Central

    Yang, Xiaobing; Wu, Suli; Wu, Yongpeng; Liu, Yang; Qian, Yonghua; Jiao, Feng

    2015-01-01

    Autophagy is associated with multiple biological processes and has protective and defensive functions with respect to immunity, inflammation, and resistance to microbial infection. In this experiment, we wished to investigate whether autophagy is a factor in the midgut cell response of Bombyx mori to infection by the B. mori cytoplasmic polyhedrosis virus (BmCPV). Our results indicated that the expression of three autophagy-related genes (BmAtg8, BmAtg5, and BmAtg7) in the midgut did not change greatly after BmCPV infection in B. mori. Basal ATG8/ATG8PE protein expression was detected in different B. mori tissues by using western blot analysis. Immunohistochemistry showed that the ATG8/ATG8PE proteins were located mainly in the cytoplasm. ATG8/ATG8PE protein levels decreased at 12 and 16 h after BmCPV infection. Our results indicate that autophagy responded slightly to BmCPV infection, but could not prevent the invasion and replication of the virus. PMID:26163666

  20. Mouse Norovirus infection promotes autophagy induction to facilitate replication but prevents final autophagosome maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Donnell, Tanya B.; Hyde, Jennifer L.; Mintern, Justine D.

    Autophagy is a cellular process used to eliminate intracellular pathogens. Many viruses however are able to manipulate this cellular process for their own advantage. Here we demonstrate that Mouse Norovirus (MNV) infection induces autophagy but does not appear to utilise the autophagosomal membrane for establishment and formation of the viral replication complex. We have observed that MNV infection results in lipidation and recruitment of LC3 to the autophagosome membrane but prevents subsequent fusion of the autophagosomes with lysosomes, as SQSTM1 (an autophagy receptor) accumulates and Lysosome-Associated Membrane Protein1 is sequestered to the MNV replication complex (RC) rather than to autophagosomes.more » We have additionally observed that chemical modulation of autophagy differentially affects MNV replication. From this study we can conclude that MNV infection induces autophagy, however suppresses the final maturation step of this response, indicating that autophagy induction contributes to MNV replication independently of RC biogenesis. - Highlights: • MNV induces autophagy in infected murine macrophages. • MNV does not utilise autophagosomal membranes for replication. • The MNV-induced autophagosomes do not fuse with lysosomes. • MNV sequesters SQSTM1 to prevent autophagy degradation and turnover. • Chemical modulation of autophagy enhances MNV replication.« less

  1. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells.

    PubMed

    Goulielmaki, Maria; Koustas, Evangelos; Moysidou, Eirini; Vlassi, Margarita; Sasazuki, Takehiko; Shirasawa, Senji; Zografos, George; Oikonomou, Eftychia; Pintzas, Alexander

    2016-02-23

    Autophagy is the basic catabolic mechanism that involves cell degradation of unnecessary or dysfunctional cellular components. Autophagy has a controversial role in cancer--both in protecting against tumor progression by isolation of damaged organelles, or by potentially contributing to cancer growth. The impact of autophagy in RAS induced transformation still remains to be further analyzed based on the differential effect of RAS isoforms and tumor cell context. In the present study, the effect of KRAS/BRAF/PIK3CA oncogenic pathways on the autophagic cell properties and on main components of the autophagic machinery like p62 (SQSTM1), Beclin-1 (BECN1) and MAP1LC3 (LC3) in colon cancer cells was investigated. This study provides evidence that BRAF oncogene induces the expression of key autophagic markers, like LC3 and BECN1 in colorectal tumor cells. Herein, PI3K/AKT/MTOR inhibitors induce autophagic tumor properties, whereas RAF/MEK/ERK signalling inhibitors reduce expression of autophagic markers. Based on the ineffectiveness of BRAFV600E inhibitors in BRAFV600E bearing colorectal tumors, the BRAF related autophagic properties in colorectal cancer cells are further exploited, by novel combinatorial anti-cancer protocols. Strong evidence is provided here that pre-treatment of autophagy inhibitor 3-MA followed by its combination with BRAFV600E targeting drug PLX4720 can synergistically sensitize resistant colorectal tumors. Notably, colorectal cancer cells are very sensitive to mono-treatments of another autophagy inhibitor, Bafilomycin A1. The findings of this study are expected to provide novel efficient protocols for treatment of otherwise resistant colorectal tumors bearing BRAFV600E, by exploiting the autophagic properties induced by BRAF oncogene.

  2. Thyroid hormone suppresses hepatocarcinogenesis via DAPK2 and SQSTM1-dependent selective autophagy.

    PubMed

    Chi, Hsiang-Cheng; Chen, Shen-Liang; Tsai, Chung-Ying; Chuang, Wen-Yu; Huang, Ya-Hui; Tsai, Ming-Ming; Wu, Sheng-Ming; Sun, Cheng-Pu; Yeh, Chau-Ting; Lin, Kwang-Huei

    2016-12-01

    Recent studies have demonstrated a critical association between disruption of cellular thyroid hormone (TH) signaling and the incidence of hepatocellular carcinoma (HCC), but the underlying mechanisms remain largely elusive. Here, we showed that disruption of TH production results in a marked increase in progression of diethylnitrosamine (DEN)-induced HCC in a murine model, and conversely, TH administration suppresses the carcinogenic process via activation of autophagy. Inhibition of autophagy via treatment with chloroquine (CQ) or knockdown of ATG7 (autophagy-related 7) via adeno-associated virus (AAV) vectors, suppressed the protective effects of TH against DEN-induced hepatic damage and development of HCC. The involvement of autophagy in TH-mediated protection was further supported by data showing transcriptional activation of DAPK2 (death-associated protein kinase 2; a serine/threonine protein kinase), which enhanced the phosphorylation of SQSTM1/p62 (sequestosome 1) to promote selective autophagic clearance of protein aggregates. Ectopic expression of DAPK2 further attenuated DEN-induced hepatoxicity and DNA damage though enhanced autophagy, whereas, knockdown of DAPK2 displayed the opposite effect. The pathological significance of the TH-mediated hepatoprotective effect by DAPK2 was confirmed by the concomitant decrease in the expression of THRs and DAPK2 in matched HCC tumor tissues. Taken together, these findings indicate that TH promotes selective autophagy via induction of DAPK2-SQSTM1 cascade, which in turn protects hepatocytes from DEN-induced hepatotoxicity or carcinogenesis.

  3. WNK1 is an unexpected autophagy inhibitor.

    PubMed

    Gallolu Kankanamalage, Sachith; Lee, A-Young; Wichaidit, Chonlarat; Lorente-Rodriguez, Andres; Shah, Akansha M; Stippec, Steve; Whitehurst, Angelique W; Cobb, Melanie H

    2017-05-04

    Autophagy is a cellular degradation pathway that is essential to maintain cellular physiology, and deregulation of autophagy leads to multiple diseases in humans. In a recent study, we discovered that the protein kinase WNK1 (WNK lysine deficient protein kinase 1) is an inhibitor of autophagy. The loss of WNK1 increases both basal and starvation-induced autophagy. In addition, the depletion of WNK1 increases the activation of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex, which is required to induce autophagy. Moreover, the loss of WNK1 increases the expression of ULK1 (unc-51 like kinase 1), which is upstream of the PtdIns3K complex. It also increases the pro-autophagic phosphorylation of ULK1 at Ser555 and the activation of AMPK (AMP-activated protein kinase), which is responsible for that phosphorylation. The inhibition of AMPK by compound C decreases the magnitude of autophagy induction following WNK1 loss; however, it does not prevent autophagy induction. We found that the UVRAG (UV radiation resistance associated gene), which is a component of the PtdIns3K, binds to the N-terminal region of WNK1. Moreover, WNK1 partially colocalizes with UVRAG and this colocalization decreases when autophagy is stimulated in cells. The loss of WNK1 also alters the cellular distribution of UVRAG. The depletion of the downstream target of WNK1, OXSR1/OSR1 (oxidative-stress responsive 1) has no effect on autophagy, whereas the depletion of its relative STK39/SPAK (serine/threonine kinase 39) induces autophagy under nutrient-rich and starved conditions.

  4. The dual role of autophagy under hypoxia-involvement of interaction between autophagy and apoptosis.

    PubMed

    Li, Mengmeng; Tan, Jin; Miao, Yuyang; Lei, Ping; Zhang, Qiang

    2015-06-01

    Hypoxia is one of severe cellular stress and it is well known to be associated with a worse outcome since a lack of oxygen accelerates the induction of apoptosis. Autophagy, an important and evolutionarily conserved mechanism for maintaining cellular homeostasis, is closely related to the apoptosis caused by hypoxia. Generally autophagy blocks the induction of apoptosis and inhibits the activation of apoptosis-associated caspase which could reduce cellular injury. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis, which could aggravate cell damage under hypoxia condition. In addition, the activation of apoptosis-related proteins-caspase can also degrade autophagy-related proteins, such as Atg3, Atg4, Beclin1 protein, inhibiting autophagy. Although the relationship between autophagy and apoptosis has been known for rather complex for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This short review discusses and summarizes the dual role of autophagy and the interaction and molecular regulatory mechanisms between autophagy and apoptosis under hypoxia.

  5. Role of Autophagy in Glycogen Breakdown and Its Relevance to Chloroquine Myopathy

    PubMed Central

    Zirin, Jonathan; Nieuwenhuis, Joppe; Perrimon, Norbert

    2013-01-01

    Several myopathies are associated with defects in autophagic and lysosomal degradation of glycogen, but it remains unclear how glycogen is targeted to the lysosome and what significance this process has for muscle cells. We have established a Drosophila melanogaster model to study glycogen autophagy in skeletal muscles, using chloroquine (CQ) to simulate a vacuolar myopathy that is completely dependent on the core autophagy genes. We show that autophagy is required for the most efficient degradation of glycogen in response to starvation. Furthermore, we show that CQ-induced myopathy can be improved by reduction of either autophagy or glycogen synthesis, the latter possibly due to a direct role of Glycogen Synthase in regulating autophagy through its interaction with Atg8. PMID:24265594

  6. In vivo induction of autophagy in splenocytes of C57BL/6 and BALB/c mice infected with ectromelia orthopoxvirus.

    PubMed

    Martyniszyn, L; Szulc-Dabrowska, L; Boratyńska-Jasińska, A; Badowska-Kozakiewicz, A M; Niemiałtowski, M G

    2013-01-01

    Autophagy is a self-degradation process of cellular components. It plays both antiviral and pro-viral roles in the life cycle of different viruses and the pathogenesis of different viral diseases. In this study, we evaluated autophagy induction in splenocytes of ectromelia virus (ECTV)-resistant C57BL/6 and ECTV-susceptible BALB/c mice during infection with the Moscow strain of the ectromelia virus (ECTV-MOS). Autophagy was analyzed using the Western blot method by assessing type II microtubule-associated protein 1 (MAP1) light chain 3 (LC3) and Beclin 1 expression levels relative to beta-actin. Results indicated an increased ratio of LC3-II to beta-actin in splenocytes of C57BL/6 mice only at 7 day post infection (d.p.i.) compared to uninfected animals. LC3-II/beta-actin and Beclin 1/beta-actin ratios in splenocytes of BALB/c mice increased at 5 d.p.i. and remained high until day 14 and 7 p.i., respectively. We confirmed the formation of autophagosome structures in the spleen of BALB/c mice by transmission electron microscopy (TEM). Moreover, autophagy accompanied necrosis in the splenocytes of infected animals. Results suggest that ECTV-MOS induced autophagy, especially in the spleen of the susceptible mouse strain, may support viral replication and promote cell necrosis.

  7. Intrauterine growth retardation promotes fetal intestinal autophagy in rats via the mechanistic target of rapamycin pathway

    PubMed Central

    WANG, Chao; ZHANG, Ruiming; ZHOU, Le; HE, Jintian; HUANG, Qiang; SIYAL, Farman A; ZHANG, Lili; ZHONG, Xiang; WANG, Tian

    2017-01-01

    Intrauterine growth retardation (IUGR) impairs fetal intestinal development, and is associated with high perinatal morbidity and mortality. However, the mechanism underlying this intestinal injury is largely unknown. We aimed to investigate this mechanism through analysis of intestinal autophagy and related signaling pathways in a rat model of IUGR. Normal weight (NW) and IUGR fetuses were obtained from primiparous rats via ad libitum food intake and 50% food restriction, respectively. Maternal serum parameters, fetal body weight, organ weights, and fetal blood glucose were determined. Intestinal apoptosis, autophagy, and the mechanistic target of rapamycin (mTOR) signaling pathway were analyzed. The results indicated that maternal 50% food restriction reduced maternal serum glucose, bilirubin, and total cholesterol and produced IUGR fetuses, which had decreased body weight; blood glucose; and weights of the small intestine, stomach, spleen, pancreas, and kidney. Decreased Bcl-2 and increased Casp9 mRNA expression was observed in IUGR fetal intestines. Analysis of intestinal autophagy showed that the mRNA expression of WIPI1, MAP1LC3B, Atg5, and Atg14 was also increased, while the protein levels of p62 were decreased in IUGR fetuses. Compared to NW fetuses, IUGR fetuses showed decreased mTOR protein levels and enhanced mRNA expression of ULK1 and Beclin1 in the small intestine. In summary, the results indicated that maternal 50% food restriction on gestational days 10–21 reduced maternal serum glucose, bilirubin, and total cholesterol contents, and produced IUGR fetuses that had low blood glucose and reduced small intestine weight. Intestinal injury of IUGR fetuses caused by maternal food restriction might be due to enhanced apoptosis and autophagy via the mTOR signaling pathway. PMID:28855439

  8. Bacterial Pathogens versus Autophagy: Implications for Therapeutic Interventions

    PubMed Central

    Kimmey, Jacqueline M.; Stallings, Christina L.

    2016-01-01

    Research in recent years has focused significantly on the role of selective macroautophagy in targeting intracellular pathogens for lysosomal degradation, a process termed xenophagy. In this review we evaluate the proposed roles for xenophagy in controlling bacterial infection, highlighting the concept that successful pathogens have evolved ways to subvert or exploit this defense, minimizing the actual effectiveness of xenophagy in innate immunity. Instead, studies in animal models have revealed that autophagy-associated proteins often function outside of xenophagy to influence bacterial pathogenesis. In light of current efforts to manipulate autophagy and the development of host-directed therapies to fight bacterial infections, we also discuss the implications stemming from the complicated relationship that exists between autophagy and bacterial pathogens. PMID:27866924

  9. Engineering adeno-associated virus 2 vectors for targeted gene delivery to atherosclerotic lesions.

    PubMed

    White, K; Büning, H; Kritz, A; Janicki, H; McVey, J; Perabo, L; Murphy, G; Odenthal, M; Work, L M; Hallek, M; Nicklin, S A; Baker, A H

    2008-03-01

    Targeted delivery of biological agents to atherosclerotic plaques may provide a novel treatment and/or useful tool for imaging of atherosclerosis in vivo. However, there are no known viral vectors that possess the desired tropism. Two plaque-targeting peptides, CAPGPSKSC (CAP) and CNHRYMQMC (CNH) were inserted into the capsid of adeno-associated virus 2 (AAV2) to assess vector retargeting. AAV2-CNH produced significantly higher levels of transduction than unmodified AAV2 in human, murine and rat endothelial cells, whereas transduction of nontarget HeLa cells was unaltered. Transduction studies and surface plasmon resonance suggest that AAV2-CNH uses membrane type 1 matrix metalloproteinase as a surface receptor. AAV2-CAP only produced higher levels of transduction in rat endothelial cells, possibly because the virus was found to be affected by proteasomal degradation. In vivo substantially higher levels of both peptide-modified AAV2 vectors was detected in the brachiocephalic artery (site of advanced atherosclerotic plaques) and aorta, whereas reduced levels were detected in all other organs examined. These results suggest that in the AAV2 platform the peptides are exposed on the capsid surface in a way that enables efficient receptor binding and so creates effective atherosclerotic plaque targeted vectors.

  10. mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaojun; Department of General Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 710000; Zhong, Xiaomin

    2013-02-15

    Highlights: ► Gene set enrichment analysis indicated mir-30d might regulate the autophagy pathway. ► mir-30d represses the expression of BECN1, BNIP3L, ATG12, ATG5 and ATG2. ► BECN1, BNIP3L, ATG12, ATG5 and ATG2 are direct targets of mir-30d. ► mir-30d inhibits autophagosome formation and LC3B-I conversion to LC3B-II. ► mir-30d regulates the autophagy process. -- Abstract: In human epithelial cancers, the microRNA (miRNA) mir-30d is amplified with high frequency and serves as a critical oncomir by regulating metastasis, apoptosis, proliferation, and differentiation. Autophagy, a degradation pathway for long-lived protein and organelles, regulates the survival and death of many cell types. Increasingmore » evidence suggests that autophagy plays an important function in epithelial tumor initiation and progression. Using a combined bioinformatics approach, gene set enrichment analysis, and miRNA target prediction, we found that mir-30d might regulate multiple genes in the autophagy pathway including BECN1, BNIP3L, ATG12, ATG5, and ATG2. Our further functional experiments demonstrated that the expression of these core proteins in the autophagy pathway was directly suppressed by mir-30d in cancer cells. Finally, we showed that mir-30d regulated the autophagy process by inhibiting autophagosome formation and LC3B-I conversion to LC3B-II. Taken together, our results provide evidence that the oncomir mir-30d impairs the autophagy process by targeting multiple genes in the autophagy pathway. This result will contribute to understanding the molecular mechanism of mir-30d in tumorigenesis and developing novel cancer therapy strategy.« less

  11. Toxoplasma gondii induces FAK-Src-STAT3 signaling during infection of host cells that prevents parasite targeting by autophagy.

    PubMed

    Portillo, Jose-Andres C; Muniz-Feliciano, Luis; Lopez Corcino, Yalitza; Lee, So Jung; Van Grol, Jennifer; Parsons, Sarah J; Schiemman, William P; Subauste, Carlos S

    2017-10-01

    Targeting of Toxoplasma gondii by autophagy is an effective mechanism by which host cells kill the protozoan. Thus, the parasite must avoid autophagic targeting to survive. Here we show that the mammalian cytoplasmic molecule Focal Adhesion Kinase (FAK) becomes activated during invasion of host cells. Activated FAK appears to accompany the formation of the moving junction (as assessed by expression the parasite protein RON4). FAK activation was inhibited by approaches that impaired β1 and β3 integrin signaling. FAK caused activation of Src that in turn mediated Epidermal Growth Factor Receptor (EGFR) phosphorylation at the unique Y845 residue. Expression of Src-resistant Y845F EGFR mutant markedly inhibited ROP16-independent activation of STAT3 in host cells. Activation of FAK, Y845 EGFR or STAT3 prevented activation of PKR and eIF2α, key stimulators of autophagy. Genetic or pharmacologic inhibition of FAK, Src, EGFR phosphorylation at Y845, or STAT3 caused accumulation of the autophagy protein LC3 and LAMP-1 around the parasite and parasite killing dependent on autophagy proteins (ULK1 and Beclin 1) and lysosomal enzymes. Parasite killing was inhibited by expression of dominant negative PKR. Thus, T. gondii activates a FAK→Src→Y845-EGFR→STAT3 signaling axis within mammalian cells, thereby enabling the parasite to survive by avoiding autophagic targeting through a mechanism likely dependent on preventing activation of PKR and eIF2α.

  12. Lack of Connection Between Midgut Cell Autophagy Gene Expression and BmCPV Infection in the Midgut of Bombyx mori.

    PubMed

    Yang, Xiaobing; Wu, Suli; Wu, Yongpeng; Liu, Yang; Qian, Yonghua; Jiao, Feng

    2015-01-01

    Autophagy is associated with multiple biological processes and has protective and defensive functions with respect to immunity, inflammation, and resistance to microbial infection. In this experiment, we wished to investigate whether autophagy is a factor in the midgut cell response of Bombyx mori to infection by the B. mori cytoplasmic polyhedrosis virus (BmCPV). Our results indicated that the expression of three autophagy-related genes (BmAtg8, BmAtg5, and BmAtg7) in the midgut did not change greatly after BmCPV infection in B. mori. Basal ATG8/ATG8PE protein expression was detected in different B. mori tissues by using western blot analysis. Immunohistochemistry showed that the ATG8/ATG8PE proteins were located mainly in the cytoplasm. ATG8/ATG8PE protein levels decreased at 12 and 16 h after BmCPV infection. Our results indicate that autophagy responded slightly to BmCPV infection, but could not prevent the invasion and replication of the virus. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  13. Detecting Autophagy and Autophagy Flux in Chronic Myeloid Leukemia Cells Using a Cyto-ID Fluorescence Spectrophotometric Assay.

    PubMed

    Guo, Sujuan; Pridham, Kevin J; Sheng, Zhi

    2016-01-01

    Autophagy is a catabolic process whereby cellular components are degraded to fuel cells for longer survival during stress. Hence, autophagy plays a vital role in determining cell fate and is central for homeostasis and pathogenesis of many human diseases including chronic myeloid leukemia (CML). It has been well established that autophagy is important for the leukemogenesis as well as drug resistance in CML. Thus, autophagy is an intriguing therapeutic target. However, current approaches that detect autophagy lack reliability and often fail to provide quantitative measurements. To overcome this hurdle and facilitate the development of autophagy-related therapies, we have recently developed an autophagy assay termed as the Cyto-ID fluorescence spectrophotometric assay. This method uses a cationic fluorescence dye, Cyto-ID, which specifically labels autophagic compartments and is detected by a spectrophotometer to permit a large-scale and quantitative analysis. As such, it allows rapid, reliable, and quantitative detection of autophagy and estimation of autophagy flux. In this chapter, we further provide technical details of this method and step-by-step protocols for measuring autophagy or autophagy flux in CML cell lines as well as primary hematopoietic cells.

  14. Recombinant adeno-associated virus targets passenger gene expression to cones in primate retina

    NASA Astrophysics Data System (ADS)

    Mancuso, Katherine; Hendrickson, Anita E.; Connor, Thomas B., Jr.; Mauck, Matthew C.; Kinsella, James J.; Hauswirth, William W.; Neitz, Jay; Neitz, Maureen

    2007-05-01

    Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy of photoreceptor-based diseases. Previous studies have demonstrated that rAAV serotypes 2 and 5 can transduce both rod and cone photoreceptors in rodents and dogs, and it can target rods, but not cones in primates. Here we report that using a human cone-specific enhancer and promoter to regulate expression of a green fluorescent protein (GFP) reporter gene in an rAAV-5 vector successfully targeted expression of the reporter gene to primate cones, and the time course of GFP expression was able to be monitored in a living animal using the RetCam II digital imaging system.

  15. Role of Autophagy in Metabolic Syndrome-Associated Heart Disease

    PubMed Central

    Ren, Sidney Y.; Xu, Xihui

    2014-01-01

    Metabolic syndrome (MetS) is a constellation of multiple metabolic risk factors including abdominal obesity, glucose intolerance, insulin resistance, dyslipidemia and hypertension. Over the past decades, the prevalence of metabolic syndrome has increased dramatically, imposing a devastating, pandemic health threat. More importantly, individuals with metabolic syndrome are at an increased risk of diabetes mellitus and overall cardiovascular diseases. One of the common comorbidities of metabolic syndrome is heart anomalies leading to the loss of cardiomyocytes, cardiac dysfunction and ultimately heart failure. Up-to-date, a plethora cell signaling pathways have been postulated for the pathogenesis of cardiac complications in obesity including lipotoxicity, inflammation, oxidative stress, apoptosis and sympathetic overactivation although the precise mechanism of action underscoring obesity-associated heart dysfunction remains elusive. Recent evidence has indicated a potential role of protein quality control in components of metabolic syndrome. Within the protein quality control system, the autophagy-lysosome pathway is an evolutionarily conserved pathway responsible for bulk degradation of large intracellular organelles and protein aggregates. Autophagy has been demonstrated to play an indispensible role in the maintenance of cardiac geometry and function under both physiological and pathological conditions. Accumulating studies have demonstrated that autophagy plays a pivotal role in the etiology of cardiac anomalies under obesity and metabolic syndrome. In this mini review, we will discuss on how autophagy is involved in the regulation of cardiac function in obesity and metabolic syndrome. PMID:24810277

  16. Crosstalk between Autophagy and Apoptosis: Potential and Emerging Therapeutic Targets for Cardiac Diseases.

    PubMed

    Li, Meng; Gao, Ping; Zhang, Junping

    2016-03-03

    Autophagy is a cell survival process which is related to breaking down and reusing cytoplasm components. Moreover, autophagy regulates cell death under certain conditions. Apoptosis has the characteristics of chromatin agglutination and the shrinking of nuclear and apoptosis body form. Even if the mechanisms of autophagy and apoptosis have differences, some proteins modulate both autophagy and apoptosis. Crosstalk between them exists. This review highlights recent advances in the interaction of autophagy and apoptosis and its importance in the development of cardiovascular diseases.

  17. Fluorescence microscopy: A tool to study autophagy

    NASA Astrophysics Data System (ADS)

    Rai, Shashank; Manjithaya, Ravi

    2015-08-01

    Autophagy is a cellular recycling process through which a cell degrades old and damaged cellular components such as organelles and proteins and the degradation products are reused to provide energy and building blocks. Dysfunctional autophagy is reported in several pathological situations. Hence, autophagy plays an important role in both cellular homeostasis and diseased conditions. Autophagy can be studied through various techniques including fluorescence based microscopy. With the advancements of newer technologies in fluorescence microscopy, several novel processes of autophagy have been discovered which makes it an essential tool for autophagy research. Moreover, ability to tag fluorescent proteins with sub cellular targets has enabled us to evaluate autophagy processes in real time under fluorescent microscope. In this article, we demonstrate different aspects of autophagy in two different model organisms i.e. yeast and mammalian cells, with the help of fluorescence microscopy.

  18. Epstein-Barr virus-associated lymphomas.

    PubMed

    Shannon-Lowe, Claire; Rickinson, Alan B; Bell, Andrew I

    2017-10-19

    Epstein-Barr virus (EBV), originally discovered through its association with Burkitt lymphoma, is now aetiologically linked to a remarkably wide range of lymphoproliferative lesions and malignant lymphomas of B-, T- and NK-cell origin. Some occur as rare accidents of virus persistence in the B lymphoid system, while others arise as a result of viral entry into unnatural target cells. The early finding that EBV is a potent B-cell growth transforming agent hinted at a simple oncogenic mechanism by which this virus could promote lymphomagenesis. In reality, the pathogenesis of EBV-associated lymphomas involves a complex interplay between different patterns of viral gene expression and cellular genetic changes. Here we review recent developments in our understanding of EBV-associated lymphomagenesis in both the immunocompetent and immunocompromised host.This article is part of the themed issue 'Human oncogenic viruses'. © 2017 The Authors.

  19. Clearance of autophagy-associated dying retinal pigment epithelial cells – a possible source for inflammation in age-related macular degeneration

    PubMed Central

    Szatmári-Tóth, M; Kristóf, E; Veréb, Z; Akhtar, S; Facskó, A; Fésüs, L; Kauppinen, A; Kaarniranta, K; Petrovski, G

    2016-01-01

    Retinal pigment epithelial (RPE) cells can undergo different forms of cell death, including autophagy-associated cell death during age-related macular degeneration (AMD). Failure of macrophages or dendritic cells (DCs) to engulf the different dying cells in the retina may result in the accumulation of debris and progression of AMD. ARPE-19 and primary human RPE cells undergo autophagy-associated cell death upon serum depletion and oxidative stress induced by hydrogen peroxide (H2O2). Autophagy was revealed by elevated light-chain-3 II (LC3-II) expression and electron microscopy, while autophagic flux was confirmed by blocking the autophago-lysosomal fusion using chloroquine (CQ) in these cells. The autophagy-associated dying RPE cells were engulfed by human macrophages, DCs and living RPE cells in an increasing and time-dependent manner. Inhibition of autophagy by 3-methyladenine (3-MA) decreased the engulfment of the autophagy-associated dying cells by macrophages, whereas sorting out the GFP-LC3-positive/autophagic cell population or treatment by the glucocorticoid triamcinolone (TC) enhanced it. Increased amounts of IL-6 and IL-8 were released when autophagy-associated dying RPEs were engulfed by macrophages. Our data suggest that cells undergoing autophagy-associated cell death engage in clearance mechanisms guided by professional and non-professional phagocytes, which is accompanied by inflammation as part of an in vitro modeling of AMD pathogenesis. PMID:27607582

  20. Crosstalk between Autophagy and Apoptosis: Potential and Emerging Therapeutic Targets for Cardiac Diseases

    PubMed Central

    Li, Meng; Gao, Ping; Zhang, Junping

    2016-01-01

    Autophagy is a cell survival process which is related to breaking down and reusing cytoplasm components. Moreover, autophagy regulates cell death under certain conditions. Apoptosis has the characteristics of chromatin agglutination and the shrinking of nuclear and apoptosis body form. Even if the mechanisms of autophagy and apoptosis have differences, some proteins modulate both autophagy and apoptosis. Crosstalk between them exists. This review highlights recent advances in the interaction of autophagy and apoptosis and its importance in the development of cardiovascular diseases. PMID:26950124

  1. Cross-cancer profiling of molecular alterations within the human autophagy interaction network

    PubMed Central

    Lebovitz, Chandra B; Robertson, A Gordon; Goya, Rodrigo; Jones, Steven J; Morin, Ryan D; Marra, Marco A; Gorski, Sharon M

    2015-01-01

    Aberrant activation or disruption of autophagy promotes tumorigenesis in various preclinical models of cancer, but whether the autophagy pathway is a target for recurrent molecular alteration in human cancer patient samples is unknown. To address this outstanding question, we surveyed 211 human autophagy-associated genes for tumor-related alterations to DNA sequence and RNA expression levels and examined their association with patient survival outcomes in multiple cancer types with sequence data from The Cancer Genome Atlas consortium. We found 3 (RB1CC1/FIP200, ULK4, WDR45/WIPI4) and one (ATG7) core autophagy genes to be under positive selection for somatic mutations in endometrial carcinoma and clear cell renal carcinoma, respectively, while 29 autophagy regulators and pathway interactors, including previously identified KEAP1, NFE2L2, and MTOR, were significantly mutated in 6 of the 11 cancer types examined. Gene expression analyses revealed that GABARAPL1 and MAP1LC3C/LC3C transcripts were less abundant in breast cancer and non-small cell lung cancers than in matched normal tissue controls; ATG4D transcripts were increased in lung squamous cell carcinoma, as were ATG16L2 transcripts in kidney cancer. Unsupervised clustering of autophagy-associated mRNA levels in tumors stratified patient overall survival in 3 of 9 cancer types (acute myeloid leukemia, clear cell renal carcinoma, and head and neck cancer). These analyses provide the first comprehensive resource of recurrently altered autophagy-associated genes in human tumors, and highlight cancer types and subtypes where perturbed autophagy may be relevant to patient overall survival. PMID:26208877

  2. Treatment Induced Autophagy Associated with Tumor Dormancy and Relapse

    DTIC Science & Technology

    2016-07-01

    for the autophagy gene , ATG5 (Figure 2A). Figure 2B confirms that autophagy was inhibited based on interference with the degradation of p62/SQSTM1 and...post IR (6Gy) LC.3.B GAPDH Figure 2. Silencing of autophagy in MMC cells. (A) Sh RNA mediated silencing of the autophagy gene , ATG5, in MMC cells...they sleep ? J Pharmacol Exp Ther 2012; 343(3):763-78. 9. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec

  3. Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission.

    PubMed

    Cilia, Michelle; Peter, Kari A; Bereman, Michael S; Howe, Kevin; Fish, Tara; Smith, Dawn; Gildow, Fredrick; MacCoss, Michael J; Thannhauser, Theodore W; Gray, Stewart M

    2012-01-01

    Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a) that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b) that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions.

  4. Discovery and Targeted LC-MS/MS of Purified Polerovirus Reveals Differences in the Virus-Host Interactome Associated with Altered Aphid Transmission

    PubMed Central

    Howe, Kevin; Fish, Tara; Smith, Dawn; Gildow, Fredrick; MacCoss, Michael J.; Thannhauser, Theodore W.; Gray, Stewart M.

    2012-01-01

    Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a) that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b) that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions. PMID:23118947

  5. Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy

    PubMed Central

    Vidal, Rene L.; Figueroa, Alicia; Court, Felipe A.; Thielen, Peter; Molina, Claudia; Wirth, Craig; Caballero, Benjamin; Kiffin, Roberta; Segura-Aguilar, Juan; Cuervo, Ana Maria; Glimcher, Laurie H.; Hetz, Claudio

    2012-01-01

    Mutations leading to expansion of a poly-glutamine track in Huntingtin (Htt) cause Huntington's disease (HD). Signs of endoplasmic reticulum (ER) stress have been recently reported in animal models of HD, associated with the activation of the unfolded protein response (UPR). Here we have investigated the functional contribution of ER stress to HD by targeting the expression of two main UPR transcription factors, XBP1 and ATF4 (activating transcription factor 4), in full-length mutant Huntingtin (mHtt) transgenic mice. XBP1-deficient mice were more resistant to developing disease features, associated with improved neuronal survival and motor performance, and a drastic decrease in mHtt levels. The protective effects of XBP1 deficiency were associated with enhanced macroautophagy in both cellular and animal models of HD. In contrast, ATF4 deficiency did not alter mHtt levels. Although, XBP1 mRNA splicing was observed in the striatum of HD transgenic brains, no changes in the levels of classical ER stress markers were detected in symptomatic animals. At the mechanistic level, we observed that XBP1 deficiency led to augmented expression of Forkhead box O1 (FoxO1), a key transcription factor regulating autophagy in neurons. In agreement with this finding, ectopic expression of FoxO1 enhanced autophagy and mHtt clearance in vitro. Our results provide strong evidence supporting an involvement of XBP1 in HD pathogenesis probably due to an ER stress-independent mechanism involving the control of FoxO1 and autophagy levels. PMID:22337954

  6. Blocking the association of HDAC4 with MAP1S accelerates autophagy clearance of mutant Huntingtin

    PubMed Central

    Yue, Fei; Li, Wenjiao; Zou, Jing; Chen, Qi; Xu, Guibin; Huang, Hai; Xu, Zhen; Zhang, Sheng; Gallinari, Paola; Wang, Fen; McKeehan, Wallace L.; Liu, Leyuan

    2015-01-01

    Autophagy controls and executes the turnover of abnormally aggregated proteins. MAP1S interacts with the autophagy marker LC3 and positively regulates autophagy flux. HDAC4 associates with the aggregation-prone mutant huntingtin protein (mHTT) that causes Huntington's disease, and colocalizes with it in cytosolic inclusions. It was suggested HDAC4 interacts with MAP1S in a yeast two-hybrid screening. Here, we found that MAP1S interacts with HDAC4 via a HDAC4-binding domain (HBD). HDAC4 destabilizes MAP1S, suppresses autophagy flux and promotes the accumulation of mHTT aggregates. This occurs by an increase in the deacetylation of the acetylated MAP1S. Either suppression of HDAC4 with siRNA or overexpression of the MAP1S HBD leads to stabilization of MAP1S, activation of autophagy flux and clearance of mHTT aggregates. Therefore, specific interruption of the HDAC4-MAP1S interaction with short peptides or small molecules to enhance autophagy flux may relieve the toxicity of mHTT associated with Huntington's disease and improve symptoms of HD patients. PMID:26540094

  7. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway

    PubMed Central

    Williams, Andrea; Sarkar, Sovan; Cuddon, Paul; Ttofi, Evangelia K.; Saiki, Shinji; Siddiqi, Farah H.; Jahreiss, Luca; Fleming, Angeleen; Pask, Dean; Goldsmith, Paul; O’Kane, Cahir J.; Floto, R. Andres; Rubinsztein, David C.

    2009-01-01

    Autophagy is a major clearance route for intracellular aggregate-prone proteins causing diseases like Huntington’s disease. Autophagy induction with the mTOR inhibitor, rapamycin, accelerates clearance of these toxic substrates. As rapamycin has non-trivial side effects, we screened FDA-approved drugs to identify novel autophagy-inducing pathways. We found that L-type Ca2+ channel antagonists, the K+ATP channel opener minoxidil, and the Gi signaling activator clonidine, induce autophagy. These drugs revealed a cyclical mTOR-independent pathway regulating autophagy, where cAMP regulates IP3 levels, influencing calpain activity, which completes the cycle by cleaving and activating Gsα, which regulates cAMP levels. This pathway has numerous potential points where autophagy can be induced and we provide proof-of-principle for therapeutic relevance in Huntington’s disease using mammalian cell, fly and zebrafish models. Our data also suggest that insults that elevate intracytosolic Ca2+, like excitotoxicity, will inhibit autophagy, thus retarding clearance of aggregate-prone proteins. PMID:18391949

  8. Autophagy and Cancer

    PubMed Central

    Mah, Li Yen; Ryan, Kevin M.

    2012-01-01

    (Macro)autophagy is a cellular membrane trafficking process that serves to deliver cytoplasmic constituents to lysosomes for degradation. At basal levels, it is critical for maintaining cytoplasmic as well as genomic integrity and is therefore key to maintaining cellular homeostasis. Autophagy is also highly adaptable and can be modified to digest specific cargoes to bring about selective effects in response to numerous forms of intracellular and extracellular stress. It is not a surprise, therefore, that autophagy has a fundamental role in cancer and that perturbations in autophagy can contribute to malignant disease. We review here the roles of autophagy in various aspects of tumor suppression including the response of cells to nutrient and hypoxic stress, the control of programmed cell death, and the connection to tumor-associated immune responses. PMID:22166310

  9. Downregulation of SIRT1 signaling underlies hepatic autophagy impairment in glycogen storage disease type Ia

    PubMed Central

    Cho, Jun-Ho; Pan, Chi-Jiunn; Anduaga, Javier

    2017-01-01

    A deficiency in glucose-6-phosphatase-α (G6Pase-α) in glycogen storage disease type Ia (GSD-Ia) leads to impaired glucose homeostasis and metabolic manifestations including hepatomegaly caused by increased glycogen and neutral fat accumulation. A recent report showed that G6Pase-α deficiency causes impairment in autophagy, a recycling process important for cellular metabolism. However, the molecular mechanism underlying defective autophagy is unclear. Here we show that in mice, liver-specific knockout of G6Pase-α (L-G6pc-/-) leads to downregulation of sirtuin 1 (SIRT1) signaling that activates autophagy via deacetylation of autophagy-related (ATG) proteins and forkhead box O (FoxO) family of transcriptional factors which transactivate autophagy genes. Consistently, defective autophagy in G6Pase-α-deficient liver is characterized by attenuated expressions of autophagy components, increased acetylation of ATG5 and ATG7, decreased conjugation of ATG5 and ATG12, and reduced autophagic flux. We further show that hepatic G6Pase-α deficiency results in activation of carbohydrate response element-binding protein, a lipogenic transcription factor, increased expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), a lipid regulator, and suppressed expression of PPAR-α, a master regulator of fatty acid β-oxidation, all contributing to hepatic steatosis and downregulation of SIRT1 expression. An adenovirus vector-mediated increase in hepatic SIRT1 expression corrects autophagy defects but does not rectify metabolic abnormalities associated with G6Pase-α deficiency. Importantly, a recombinant adeno-associated virus (rAAV) vector-mediated restoration of hepatic G6Pase-α expression corrects metabolic abnormalities, restores SIRT1-FoxO signaling, and normalizes defective autophagy. Taken together, these data show that hepatic G6Pase-α deficiency-mediated down-regulation of SIRT1 signaling underlies defective hepatic autophagy in GSD-Ia. PMID:28558013

  10. Discovery of host-targeted covalent inhibitors of dengue virus

    PubMed Central

    de Wispelaere, Mélissanne; Carocci, Margot; Liang, Yanke; Liu, Qingsong; Sun, Eileen; Vetter, Michael L.; Wang, Jinhua; Gray, Nathanael S.; Yang, Priscilla L.

    2017-01-01

    We report here on an approach targeting the host reactive cysteinome to identify inhibitors of host factors required for the infectious cycle of Flaviviruses and other viruses. We used two parallel cellular phenotypic screens to identify a series of covalent inhibitors, exemplified by QL-XII-47, that are active against dengue virus. We show that the compounds effectively block viral protein expression and that this inhibition is associated with repression of downstream processes of the infectious cycle, and thus significantly contributes to the potent antiviral activity of these compounds. We demonstrate that QL-XII-47’s antiviral activity requires selective, covalent modification of a host target by showing that the compound's antiviral activity is recapitulated when cells are preincubated with QL-XII-47 and then washed prior to viral infection and by showing that QL-XII-47R, a non-reactive analog, lacks antiviral activity at concentrations more than 20-fold higher than QL-XII-47's IC90. QL-XII-47’s inhibition of Zika virus, West Nile virus, hepatitis C virus, and poliovirus further suggests that it acts via a target mediating inhibition of these other medically relevant viruses. These results demonstrate the utility of screens targeting the host reactive cysteinome for rapid identification of compounds with potent antiviral activity. PMID:28034743

  11. GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma by inducing autophagy

    PubMed Central

    Kim, Mihwa; Jung, Ji-Yeon; Choi, Seungho; Lee, Hyunseung; Morales, Liza D.; Koh, Jeong-Tae; Kim, Sun Hun; Choi, Yoo-Duk; Choi, Chan; Slaga, Thomas J.; Kim, Won Jae; Kim, Dae Joon

    2017-01-01

    ABSTRACT Recent progress in chemotherapy has significantly increased its efficacy, yet the development of chemoresistance remains a major drawback. In this study, we show that GFRA1/GFRα1 (GDNF family receptor α 1), contributes to cisplatin-induced chemoresistance by regulating autophagy in osteosarcoma. We demonstrate that cisplatin treatment induced GFRA1 expression in human osteosarcoma cells. Induction of GFRA1 expression reduced cisplatin-induced apoptotic cell death and it significantly increased osteosarcoma cell survival via autophagy. GFRA1 regulates AMPK-dependent autophagy by promoting SRC phosphorylation independent of proto-oncogene RET kinase. Cisplatin-resistant osteosarcoma cells showed NFKB1/NFκB-mediated GFRA1 expression. GFRA1 expression promoted tumor formation and growth in mouse xenograft models and inhibition of autophagy in a GFRA1-expressing xenograft mouse model during cisplatin treatment effectively reduced tumor growth and increased survival. In cisplatin-treated patients, treatment period and metastatic status were associated with GFRA1-mediated autophagy. These findings suggest that GFRA1-mediated autophagy is a promising novel target for overcoming cisplatin resistance in osteosarcoma. PMID:27754745

  12. GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma by inducing autophagy.

    PubMed

    Kim, Mihwa; Jung, Ji-Yeon; Choi, Seungho; Lee, Hyunseung; Morales, Liza D; Koh, Jeong-Tae; Kim, Sun Hun; Choi, Yoo-Duk; Choi, Chan; Slaga, Thomas J; Kim, Won Jae; Kim, Dae Joon

    2017-01-02

    Recent progress in chemotherapy has significantly increased its efficacy, yet the development of chemoresistance remains a major drawback. In this study, we show that GFRA1/GFRα1 (GDNF family receptor α 1), contributes to cisplatin-induced chemoresistance by regulating autophagy in osteosarcoma. We demonstrate that cisplatin treatment induced GFRA1 expression in human osteosarcoma cells. Induction of GFRA1 expression reduced cisplatin-induced apoptotic cell death and it significantly increased osteosarcoma cell survival via autophagy. GFRA1 regulates AMPK-dependent autophagy by promoting SRC phosphorylation independent of proto-oncogene RET kinase. Cisplatin-resistant osteosarcoma cells showed NFKB1/NFκB-mediated GFRA1 expression. GFRA1 expression promoted tumor formation and growth in mouse xenograft models and inhibition of autophagy in a GFRA1-expressing xenograft mouse model during cisplatin treatment effectively reduced tumor growth and increased survival. In cisplatin-treated patients, treatment period and metastatic status were associated with GFRA1-mediated autophagy. These findings suggest that GFRA1-mediated autophagy is a promising novel target for overcoming cisplatin resistance in osteosarcoma.

  13. Characterization of the Autophagy Marker Protein Atg8 Reveals Atypical Features of Autophagy in Plasmodium falciparum

    PubMed Central

    Allanki, Aparna Devi; Sijwali, Puran Singh

    2014-01-01

    Conventional autophagy is a lysosome-dependent degradation process that has crucial homeostatic and regulatory functions in eukaryotic organisms. As malaria parasites must dispose a number of self and host cellular contents, we investigated if autophagy in malaria parasites is similar to the conventional autophagy. Genome wide analysis revealed a partial autophagy repertoire in Plasmodium, as homologs for only 15 of the 33 yeast autophagy proteins could be identified, including the autophagy marker Atg8. To gain insights into autophagy in malaria parasites, we investigated Plasmodium falciparum Atg8 (PfAtg8) employing techniques and conditions that are routinely used to study autophagy. Atg8 was similarly expressed and showed punctate localization throughout the parasite in both asexual and sexual stages; it was exclusively found in the pellet fraction as an integral membrane protein, which is in contrast to the yeast or mammalian Atg8 that is distributed among cytosolic and membrane fractions, and suggests for a constitutive autophagy. Starvation, the best known autophagy inducer, decreased PfAtg8 level by almost 3-fold compared to the normally growing parasites. Neither the Atg8-associated puncta nor the Atg8 expression level was significantly altered by treatment of parasites with routinely used autophagy inhibitors (cysteine (E64) and aspartic (pepstatin) protease inhibitors, the kinase inhibitor 3-methyladenine, and the lysosomotropic agent chloroquine), indicating an atypical feature of autophagy. Furthermore, prolonged inhibition of the major food vacuole protease activity by E64 and pepstatin did not cause accumulation of the Atg8-associated puncta in the food vacuole, suggesting that autophagy is primarily not meant for degradative function in malaria parasites. Atg8 showed partial colocalization with the apicoplast; doxycycline treatment, which disrupts apicoplast, did not affect Atg8 localization, suggesting a role, but not exclusive, in apicoplast

  14. Autophagy and Mis-targeting of Therapeutic Enzyme in Skeletal Muscle in Pompe Disease

    PubMed Central

    Fukuda, Tokiko; Ahearn, Meghan; Roberts, Ashley; Mattaliano, Robert J.; Zaal, Kristien; Ralston, Evelyn; Plotz, Paul H.; Raben, Nina

    2009-01-01

    Enzyme replacement therapy (ERT) became a reality for patients with Pompe disease, a fatal cardiomyopathy and skeletal muscle myopathy caused by a deficiency of glycogen-degrading lysosomal enzyme acid alpha-glucosidase (GAA). The therapy, which relies on receptor-mediated endocytosis of recombinant human GAA (rhGAA), appears to be effective in cardiac muscle, but less so in skeletal muscle. We have previously shown a profound disturbance of the lysosomal degradative pathway (autophagy) in therapy-resistant muscle of GAA knockout mice (KO). Our findings here demonstrate a progressive age-dependent autophagic build-up in addition to enlargement of glycogen-filled lysosomes in multiple muscle groups in the KO. Trafficking and processing of the therapeutic enzyme along the endocytic pathway appear to be affected by the autophagy. Confocal microscopy of live single muscle fibers exposed to fluorescently labeled rhGAA indicates that a significant portion of the endocytosed enzyme in the KO was trapped as a partially processed form in the autophagic areas instead of reaching its target – the lysosomes. A fluid-phase endocytic marker was similarly mis-targeted and accumulated in vesicular structures within the autophagic areas. These findings may explain why ERT often falls short of reversing the disease process, and point to new avenues for the development of pharmacological intervention. PMID:17008131

  15. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    PubMed

    Vanrell, María Cristina; Losinno, Antonella Denisse; Cueto, Juan Agustín; Balcazar, Darío; Fraccaroli, Laura Virginia; Carrillo, Carolina; Romano, Patricia Silvia

    2017-11-01

    Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients) to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  16. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Cheng-Yi; Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan; Kuan, Yu-Hsiang

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and geneticmore » silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.« less

  17. Dihydroptychantol A, a macrocyclic bisbibenzyl derivative, induces autophagy and following apoptosis associated with p53 pathway in human osteosarcoma U2OS cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xia; School of Ocean, Shandong University, Weihai 264209; Wu, William K.K.

    2011-03-01

    Dihydroptychantol A (DHA), a novel macrocyclic bisbibenzyl compound extracted from liverwort Asterella angusta, has antifungal and multi-drug resistance reversal properties. Here, the chemically synthesized DHA was employed to test its anti-cancer activities in human osteosarcoma U2OS cells. Our results demonstrated that DHA induced autophagy followed by apoptotic cell death accompanied with G{sub 2}/M-phase cell cycle arrest in U2OS cells. DHA-induced autophagy was morphologically characterized by the formation of double membrane-bound autophagic vacuoles recognizable at the ultrastructural level. DHA also increased the levels of LC3-II, a marker of autophagy. Surprisingly, DHA-mediated apoptotic cell death was potentiated by the autophagy inhibitor 3-methyladenine,more » suggesting that autophagy may play a protective role that impedes the eventual cell death. Furthermore, p53 was shown to be involved in DHA-meditated autophagy and apoptosis. In this connection, DHA increased nuclear expression of p53, induced p53 phosphorylation, and upregulated p53 target gene p21{sup Waf1/Cip1}. In contrast, cytoplasmic p53 was reduced by DHA, which contributed to the stimulation of autophagy. In relation to the cell cycle, DHA decreased the expression of cyclin B{sub 1}, a cyclin required for progression through the G{sub 2}/M phase. Taken together, DHA induces G{sub 2}/M-phase cell cycle arrest and apoptosis in U2OS cells. DHA-induced apoptosis was preceded by the induction of protective autophagy. DHA-mediated autophagy and apoptosis are associated with the cytoplasmic and nuclear functions of p53.« less

  18. Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A.

    PubMed

    Abdul Rahim, Siti Aminah; Dirkse, Anne; Oudin, Anais; Schuster, Anne; Bohler, Jill; Barthelemy, Vanessa; Muller, Arnaud; Vallar, Laurent; Janji, Bassam; Golebiewska, Anna; Niclou, Simone P

    2017-09-05

    Hypoxia is negatively associated with glioblastoma (GBM) patient survival and contributes to tumour resistance. Anti-angiogenic therapy in GBM further increases hypoxia and activates survival pathways. The aim of this study was to determine the role of hypoxia-induced autophagy in GBM. Pharmacological inhibition of autophagy was applied in combination with bevacizumab in GBM patient-derived xenografts (PDXs). Sensitivity towards inhibitors was further tested in vitro under normoxia and hypoxia, followed by transcriptomic analysis. Genetic interference was done using ATG9A-depleted cells. We find that GBM cells activate autophagy as a survival mechanism to hypoxia, although basic autophagy appears active under normoxic conditions. Although single agent chloroquine treatment in vivo significantly increased survival of PDXs, the combination with bevacizumab resulted in a synergistic effect at low non-effective chloroquine dose. ATG9A was consistently induced by hypoxia, and silencing of ATG9A led to decreased proliferation in vitro and delayed tumour growth in vivo. Hypoxia-induced activation of autophagy was compromised upon ATG9A depletion. This work shows that inhibition of autophagy is a promising strategy against GBM and identifies ATG9 as a novel target in hypoxia-induced autophagy. Combination with hypoxia-inducing agents may provide benefit by allowing to decrease the effective dose of autophagy inhibitors.

  19. Selective autophagy: ubiquitin-mediated recognition and beyond.

    PubMed

    Kraft, Claudine; Peter, Matthias; Hofmann, Kay

    2010-09-01

    Eukaryotic cells use autophagy and the ubiquitin-proteasome system as their major protein degradation pathways. Whereas the ubiquitin-proteasome system is involved in the rapid degradation of proteins, autophagy pathways can selectively remove protein aggregates and damaged or excess organelles. Proteasome-mediated degradation requires previous ubiquitylation of the cargo, which is then recognized by ubiquitin receptors directing it to 26S proteasomes. Although autophagy has long been viewed as a random cytoplasmic degradation system, the involvement of ubiquitin as a specificity factor for selective autophagy is rapidly emerging. Recent evidence also suggests active crosstalk between proteasome-mediated degradation and selective autophagy. Here, we discuss the molecular mechanisms that link autophagy and the proteasome system, as well as the emerging roles of ubiquitin and ubiquitin-binding proteins in selective autophagy. On the basis of the evolutionary history of autophagic ubiquitin receptors, we propose a common origin for metazoan ubiquitin-dependent autophagy and the cytoplasm-to-vacuole targeting pathway of yeast.

  20. MIR144* inhibits antimicrobial responses against Mycobacterium tuberculosis in human monocytes and macrophages by targeting the autophagy protein DRAM2.

    PubMed

    Kim, Jin Kyung; Lee, Hye-Mi; Park, Ki-Sun; Shin, Dong-Min; Kim, Tae Sung; Kim, Yi Sak; Suh, Hyun-Woo; Kim, Soo Yeon; Kim, In Soo; Kim, Jin-Man; Son, Ji-Woong; Sohn, Kyung Mok; Jung, Sung Soo; Chung, Chaeuk; Han, Sang-Bae; Yang, Chul-Su; Jo, Eun-Kyeong

    2017-02-01

    Autophagy is an important antimicrobial effector process that defends against Mycobacterium tuberculosis (Mtb), the human pathogen causing tuberculosis (TB). MicroRNAs (miRNAs), endogenous noncoding RNAs, are involved in various biological functions and act as post-transcriptional regulators to target mRNAs. The process by which miRNAs affect antibacterial autophagy and host defense mechanisms against Mtb infections in human monocytes and macrophages is largely uncharacterized. In this study, we show that Mtb significantly induces the expression of MIR144*/hsa-miR-144-5p, which targets the 3'-untranslated region of DRAM2 (DNA damage regulated autophagy modulator 2) in human monocytes and macrophages. Mtb infection downregulated, whereas the autophagy activators upregulated, DRAM2 expression in human monocytes and macrophages by activating AMP-activated protein kinase. In addition, overexpression of MIR144* decreased DRAM2 expression and formation of autophagosomes in human monocytes, whereas inhibition of MIR144* had the opposite effect. Moreover, the levels of MIR144* were elevated, whereas DRAM2 levels were reduced, in human peripheral blood cells and tissues in TB patients, indicating the clinical significance of MIR144* and DRAM2 in human TB. Notably, DRAM2 interacted with BECN1 and UVRAG, essential components of the autophagic machinery, leading to displacement of RUBCN from the BECN1 complex and enhancement of Ptdlns3K activity. Furthermore, MIR144* and DRAM2 were critically involved in phagosomal maturation and enhanced antimicrobial effects against Mtb. Our findings identify a previously unrecognized role of human MIR144* in the inhibition of antibacterial autophagy and the innate host immune response to Mtb. Additionally, these data reveal that DRAM2 is a key coordinator of autophagy activation that enhances antimicrobial activity against Mtb.

  1. The pancreatitis-associated protein VMP1, a key regulator of inducible autophagy, promotes Kras(G12D)-mediated pancreatic cancer initiation.

    PubMed

    Loncle, C; Molejon, M I; Lac, S; Tellechea, J I; Lomberk, G; Gramatica, L; Fernandez Zapico, M F; Dusetti, N; Urrutia, R; Iovanna, J L

    2016-07-14

    Both clinical and experimental evidence have firmly established that chronic pancreatitis, in particular in the context of Kras oncogenic mutations, predisposes to pancreatic ductal adenocarcinoma (PDAC). However, the repertoire of molecular mediators of pancreatitis involved in Kras-mediated initiation of pancreatic carcinogenesis remains to be fully defined. In this study we demonstrate a novel role for vacuole membrane protein 1 (VMP1), a pancreatitis-associated protein critical for inducible autophagy, in the regulation of Kras-induced PDAC initiation. Using a newly developed genetically engineered model, we demonstrate that VMP1 increases the ability of Kras to give rise to preneoplastic lesions, pancreatic intraepithelial neoplasias (PanINs). This promoting effect of VMP1 on PanIN formation is due, at least in part, by an increase in cell proliferation combined with a decrease in apoptosis. Using chloroquine, an inhibitor of autophagy, we show that this drug antagonizes the effect of VMP1 on PanIN formation. Thus, we conclude that VMP1-mediated autophagy cooperate with Kras to promote PDAC initiation. These findings are of significant medical relevance, molecules targeting autophagy are currently being tested along chemotherapeutic agents to treat PDAC and other tumors in human trials.

  2. Autophagy regulating kinases as potential therapeutic targets for age-related macular degeneration.

    PubMed

    Kaarniranta, Kai; Kauppinen, Anu; Blasiak, Janusz; Salminen, Antero

    2012-11-01

    Age-related macular degeneration (AMD) is the leading cause of central vision loss in the elderly in the developed countries. The number of AMD patients will double during the next decades due to increasing number of aged people. Chronic oxidative stress, inflammation and accumulation of protein-rich deposits both in the retinal pigment epithelium lysosomes and under the retinal pigment epithelium herald the onset of AMD. The disease can be divided into dry and wet AMD forms. The dry form of the disease is more prevalent accounting for up to 90% of all cases. Continued intraocular injections are the current treatment strategy to prevent progression of wet AMD. It is a major challenge to develop new drugs that could prevent or at least ease the symptoms of the increasing population of AMD patients. Since AMD pathology is clearly associated with accumulated protein deposits, the autophagy clearance system might represent a potential future therapeutic target for AMD as is thoroughly discussed here.

  3. Ubiquitin-coated nanodiamonds bind to autophagy receptors for entry into the selective autophagy pathway.

    PubMed

    Liu, Kuang-Kai; Qiu, Wei-Ru; Naveen Raj, Emmanuel; Liu, Huei-Fang; Huang, Hou-Syun; Lin, Yu-Wei; Chang, Chien-Jen; Chen, Ting-Hua; Chen, Chinpiao; Chang, Huan-Cheng; Hwang, Jenn-Kang; Chao, Jui-I

    2017-01-02

    Selective macroautophagy/autophagy plays a pivotal role in the processing of foreign pathogens and cellular components to maintain homeostasis in human cells. To date, numerous studies have demonstrated the uptake of nanoparticles by cells, but their intracellular processing through selective autophagy remains unclear. Here we show that carbon-based nanodiamonds (NDs) coated with ubiquitin (Ub) bind to autophagy receptors (SQSTM1 [sequestosome 1], OPTN [optineurin], and CALCOCO2/NDP52 [calcium binding and coiled-coil domain 2]) and are then linked to MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) for entry into the selective autophagy pathway. NDs are ultimately delivered to lysosomes. Ectopically expressed SQSTM1-green fluorescence protein (GFP) could bind to the Ub-coated NDs. By contrast, the Ub-associated domain mutant of SQSTM1 (ΔUBA)-GFP did not bind to the Ub-coated NDs. Chloroquine, an autophagy inhibitor, prevented the ND-containing autophagosomes from fusing with lysosomes. Furthermore, autophagy receptors OPTN and CALCOCO2/NDP52, involved in the processing of bacteria, were found to be involved in the selective autophagy of NDs. However, ND particles located in the lysosomes of cells did not induce mitotic blockage, senescence, or cell death. Single ND clusters in the lysosomes of cells were observed in the xenografted human lung tumors of nude mice. This study demonstrated for the first time that Ub-coated nanoparticles bind to autophagy receptors for entry into the selective autophagy pathway, facilitating their delivery to lysosomes.

  4. New frontiers in the treatment of colorectal cancer: Autophagy and the unfolded protein response as promising targets

    PubMed Central

    Chen, Qi Min; Hudecki, Andrzej; Moghadam, Adel Rezaei; Owji, Ali Akbar

    2017-01-01

    ABSTRACT Colorectal cancer (CRC), despite numerous therapeutic and screening attempts, still remains a major life-threatening malignancy. CRC etiology entails both genetic and environmental factors. Macroautophagy/autophagy and the unfolded protein response (UPR) are fundamental mechanisms involved in the regulation of cellular responses to environmental and genetic stresses. Both pathways are interconnected and regulate cellular responses to apoptotic stimuli. In this review, we address the epidemiology and risk factors of CRC, including genetic mutations leading to the occurrence of the disease. Next, we discuss mutations of genes related to autophagy and the UPR in CRC. Then, we discuss how autophagy and the UPR are involved in the regulation of CRC and how they associate with obesity and inflammatory responses in CRC. Finally, we provide perspectives for the modulation of autophagy and the UPR as new therapeutic options for CRC treatment. PMID:28358273

  5. New frontiers in the treatment of colorectal cancer: Autophagy and the unfolded protein response as promising targets.

    PubMed

    Mokarram, Pooneh; Albokashy, Mohammed; Zarghooni, Maryam; Moosavi, Mohammad Amin; Sepehri, Zahra; Chen, Qi Min; Hudecki, Andrzej; Sargazi, Aliyeh; Alizadeh, Javad; Moghadam, Adel Rezaei; Hashemi, Mohammad; Movassagh, Hesam; Klonisch, Thomas; Owji, Ali Akbar; Łos, Marek J; Ghavami, Saeid

    2017-05-04

    Colorectal cancer (CRC), despite numerous therapeutic and screening attempts, still remains a major life-threatening malignancy. CRC etiology entails both genetic and environmental factors. Macroautophagy/autophagy and the unfolded protein response (UPR) are fundamental mechanisms involved in the regulation of cellular responses to environmental and genetic stresses. Both pathways are interconnected and regulate cellular responses to apoptotic stimuli. In this review, we address the epidemiology and risk factors of CRC, including genetic mutations leading to the occurrence of the disease. Next, we discuss mutations of genes related to autophagy and the UPR in CRC. Then, we discuss how autophagy and the UPR are involved in the regulation of CRC and how they associate with obesity and inflammatory responses in CRC. Finally, we provide perspectives for the modulation of autophagy and the UPR as new therapeutic options for CRC treatment.

  6. BAG3-dependent noncanonical autophagy induced by proteasome inhibition in HepG2 cells.

    PubMed

    Liu, Bao-Qin; Du, Zhen-Xian; Zong, Zhi-Hong; Li, Chao; Li, Ning; Zhang, Qiang; Kong, De-Hui; Wang, Hua-Qin

    2013-06-01

    Emerging lines of evidence have shown that blockade of ubiquitin-proteasome system (UPS) activates autophagy. The molecular players that regulate the relationship between them remain to be elucidated. Bcl-2 associated athanogene 3 (BAG3) is a member of the BAG co-chaperone family that regulates the ATPase activity of heat shock protein 70 (HSP70) chaperone family. Studies on BAG3 have demonstrated that it plays multiple roles in physiological and pathological processes, including antiapoptotic activity, signal transduction, regulatory role in virus infection, cell adhesion and migration. Recent studies have attracted much attention on its role in initiation of autophagy. The current study, for the first time, demonstrates that proteasome inhibitors elicit noncanonical autophagy, which was not suppressed by inhibitors of class III phosphatidylinositol 3-kinase (PtdIns3K) or shRNA against Beclin 1 (BECN1). In addition, we demonstrate that BAG3 is ascribed to activation of autophagy elicited by proteasome inhibitors and MAPK8/9/10 (also known as JNK1/2/3 respectively) activation is also implicated via upregulation of BAG3. Moreover, we found that noncanonical autophagy mediated by BAG3 suppresses responsiveness of HepG2 cells to proteasome inhibitors.

  7. Autophagic flux without a block differentiates varicella-zoster virus infection from herpes simplex virus infection.

    PubMed

    Buckingham, Erin M; Carpenter, John E; Jackson, Wallen; Zerboni, Leigh; Arvin, Ann M; Grose, Charles

    2015-01-06

    Autophagy is a process by which misfolded and damaged proteins are sequestered into autophagosomes, before degradation in and recycling from lysosomes. We have extensively studied the role of autophagy in varicella-zoster virus (VZV) infection, and have observed that vesicular cells are filled with >100 autophagosomes that are easily detectable after immunolabeling for the LC3 protein. To confirm our hypothesis that increased autophagosome formation was not secondary to a block, we examined all conditions of VZV infection as well as carrying out two assessments of autophagic flux. We first investigated autophagy in human skin xenografts in the severe combined immunodeficiency (SCID) mouse model of VZV pathogenesis, and observed that autophagosomes were abundant in infected human skin tissues. We next investigated autophagy following infection with sonically prepared cell-free virus in cultured cells. Under these conditions, autophagy was detected in a majority of infected cells, but was much less than that seen after an infected-cell inoculum. In other words, inoculation with lower-titered cell-free virus did not reflect the level of stress to the VZV-infected cell that was seen after inoculation of human skin in the SCID mouse model or monolayers with higher-titered infected cells. Finally, we investigated VZV-induced autophagic flux by two different methods (radiolabeling proteins and a dual-colored LC3 plasmid); both showed no evidence of a block in autophagy. Overall, therefore, autophagy within a VZV-infected cell was remarkably different from autophagy within an HSV-infected cell, whose genome contains two modifiers of autophagy, ICP34.5 and US11, not present in VZV.

  8. MicroRNA-let-7a regulates cell autophagy by targeting Rictor in gastric cancer cell lines MGC-803 and SGC-7901.

    PubMed

    Fan, Hao; Jiang, Mingkun; Li, Bowen; He, Yu; Huang, Chi; Luo, Dakui; Xu, Hao; Yang, Li; Zhou, Jundong

    2018-03-01

    miR-let-7a is the most widely studied miRNA, whose functions have been well-established by scientists in both carcinogenesis and progression of human cancer, including gastric cancer (GC). However, to date there is a lack of information concerning the relationship between miR-let-7a and cellular autophagy. Using western blotting and immunofluorescence, we determined that upregulation of miR-let-7a led to increased cellular autophagic level, whereas miR-let-7a suppression decreased autophagy activity in GC cells. To further elucidate the mechanisms underlying this, we screened potential targets of miR-let-7a using bioinformatics analyses, validated by a series of assays. Our results indicated that Rptor independent companion of mTOR complex 2 (Rictor) was a direct target of miR-let-7a. In addition, rescue experiments in vitro showed that miR-let-7a promoted cellular autophagic level by inhibiting Rictor expression in GC cells. Furthermore, as an upstream executor of Akt-mTOR signaling pathway, we found that Rictor elaborated its effect on autophagy by phosphorylating Akt and mTOR, and this regulatory process could also be mediated by miR-let-7a. Taken together, our results present a novel role for miR-let-7a in GC which modulates autophagy by targeting Rictor, following the regulation of Akt-mTOR signal pathway.

  9. TRIM-directed selective autophagy regulates immune activation.

    PubMed

    Kimura, Tomonori; Jain, Ashish; Choi, Seong Won; Mandell, Michael A; Johansen, Terje; Deretic, Vojo

    2017-05-04

    Selectivity of autophagy is achieved by target recognition; however, the number of autophagy receptors identified so far is limited. In this study we demonstrate that a subset of tripartite motif (TRIM) proteins mediate selective autophagy of key regulators of inflammatory signaling. MEFV/TRIM20, and TRIM21 act as autophagic receptors recognizing their cognate targets and delivering them for autophagic degradation. MEFV recognizes the inflammasome components NLRP3, CASP1 and NLRP1, whereas TRIM21 specifically recognizes the activated, dimeric from of IRF3 inducing type I interferon gene expression. MEFV and TRIM21 have a second activity, whereby they act not only as receptors but also recruit and organize key components of autophagic machinery consisting of ULK1, BECN1, ATG16L1, and mammalian homologs of Atg8, with a preference for GABARAP. MEFV capacity to organize the autophagy apparatus is affected by common mutations causing familial Mediterranean fever. These findings reveal a general mode of action of TRIMs as autophagic receptor-regulators performing a highly-selective type of autophagy (precision autophagy), with MEFV specializing in the suppression of inflammasome and CASP1 activation engendering IL1B/interleukin-1β production and implicated in the form of cell death termed pyroptosis, whereas TRIM21 dampens type I interferon responses.

  10. Cross-talk between miR-471-5p and autophagy component proteins regulates LC3-associated phagocytosis (LAP) of apoptotic germ cells.

    PubMed

    Panneerdoss, Subbarayalu; Viswanadhapalli, Suryavathi; Abdelfattah, Nourhan; Onyeagucha, Benjamin C; Timilsina, Santosh; Mohammad, Tabrez A; Chen, Yidong; Drake, Michael; Vuori, Kristiina; Kumar, T Rajendra; Rao, Manjeet K

    2017-09-19

    Phagocytic clearance of apoptotic germ cells by Sertoli cells is vital for germ cell development and differentiation. Here, using a tissue-specific miRNA transgenic mouse model, we show that interaction between miR-471-5p and autophagy member proteins regulates clearance of apoptotic germ cells via LC3-associated phagocytosis (LAP). Transgenic mice expressing miR-471-5p in Sertoli cells show increased germ cell apoptosis and compromised male fertility. Those effects are due to defective engulfment and impaired LAP-mediated clearance of apoptotic germ cells as miR-471-5p transgenic mice show lower levels of Dock180, LC3, Atg12, Becn1, Rab5 and Rubicon in Sertoli cells. Our results reveal that Dock180 interacts with autophagy member proteins to constitute a functional LC3-dependent phagocytic complex. We find that androgen regulates Sertoli cell phagocytosis by controlling expression of miR-471-5p and its target proteins. These findings suggest that recruitment of autophagy machinery is essential for efficient clearance of apoptotic germ cells by Sertoli cells using LAP.Although phagocytic clearance of apoptotic germ cells by Sertoli cells is essential for spermatogenesis, little of the mechanism is known. Here the authors show that Sertoli cells employ LC3-associated phagocytosis (LAP) by recruiting autophagy member proteins to clear apoptotic germ cells.

  11. A heterotypic bystander effect for tumor cell killing after adeno-associated virus/phage-mediated, vascular-targeted suicide gene transfer.

    PubMed

    Trepel, Martin; Stoneham, Charlotte A; Eleftherohorinou, Hariklia; Mazarakis, Nicholas D; Pasqualini, Renata; Arap, Wadih; Hajitou, Amin

    2009-08-01

    Suicide gene transfer is the most commonly used cytotoxic approach in cancer gene therapy; however, a successful suicide gene therapy depends on the generation of efficient targeted systemic gene delivery vectors. We recently reported that selective systemic delivery of suicide genes such as herpes simplex virus thymidine kinase (HSVtk) to tumor endothelial cells through a novel targeted adeno-associated virus/phage vector leads to suppression of tumor growth. This marked effect has been postulated to result primarily from the death of cancer cells by hypoxia following the targeted disruption of tumor blood vessels. Here, we investigated whether an additional mechanism of action is involved. We show that there is a heterotypic "bystander" effect between endothelial cells expressing the HSVtk suicide gene and tumor cells. Treatment of cocultures of HSVtk-transduced endothelial cells and non-HSVtk-transduced tumor cells with ganciclovir results in the death of both endothelial and tumor cells. Blocking of this effect by 18alpha-glycyrrhetinic acid indicates that gap junctions between endothelial and tumor cells are largely responsible for this phenomenon. Moreover, the observed bystander killing is mediated by connexins 43 and 26, which are expressed in endothelial and tumor cell types. Finally, this heterotypic bystander effect is accompanied by a suppression of tumor growth in vivo that is independent of primary gene transfer into host-derived tumor vascular endothelium. These findings add an alternative nonmutually exclusive and potentially synergistic cytotoxic mechanism to cancer gene therapy based on targeted adeno-associated virus/phage and further support the promising role of nonmalignant tumor stromal cells as therapeutic targets.

  12. Ubiquitin-coated nanodiamonds bind to autophagy receptors for entry into the selective autophagy pathway

    PubMed Central

    Liu, Kuang-Kai; Qiu, Wei-Ru; Naveen Raj, Emmanuel; Liu, Huei-Fang; Huang, Hou-Syun; Lin, Yu-Wei; Chang, Chien-Jen; Chen, Ting-Hua; Chen, Chinpiao; Chang, Huan-Cheng; Hwang, Jenn-Kang; Chao, Jui-I

    2017-01-01

    ABSTRACT Selective macroautophagy/autophagy plays a pivotal role in the processing of foreign pathogens and cellular components to maintain homeostasis in human cells. To date, numerous studies have demonstrated the uptake of nanoparticles by cells, but their intracellular processing through selective autophagy remains unclear. Here we show that carbon-based nanodiamonds (NDs) coated with ubiquitin (Ub) bind to autophagy receptors (SQSTM1 [sequestosome 1], OPTN [optineurin], and CALCOCO2/NDP52 [calcium binding and coiled-coil domain 2]) and are then linked to MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) for entry into the selective autophagy pathway. NDs are ultimately delivered to lysosomes. Ectopically expressed SQSTM1-green fluorescence protein (GFP) could bind to the Ub-coated NDs. By contrast, the Ub-associated domain mutant of SQSTM1 (ΔUBA)-GFP did not bind to the Ub-coated NDs. Chloroquine, an autophagy inhibitor, prevented the ND-containing autophagosomes from fusing with lysosomes. Furthermore, autophagy receptors OPTN and CALCOCO2/NDP52, involved in the processing of bacteria, were found to be involved in the selective autophagy of NDs. However, ND particles located in the lysosomes of cells did not induce mitotic blockage, senescence, or cell death. Single ND clusters in the lysosomes of cells were observed in the xenografted human lung tumors of nude mice. This study demonstrated for the first time that Ub-coated nanoparticles bind to autophagy receptors for entry into the selective autophagy pathway, facilitating their delivery to lysosomes. PMID:27846374

  13. Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics.

    PubMed

    Börlin, Christoph S; Lang, Verena; Hamacher-Brady, Anne; Brady, Nathan R

    2014-09-10

    Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3

  14. Epstein–Barr virus-associated lymphomas

    PubMed Central

    Shannon-Lowe, Claire; Rickinson, Alan B.

    2017-01-01

    Epstein–Barr virus (EBV), originally discovered through its association with Burkitt lymphoma, is now aetiologically linked to a remarkably wide range of lymphoproliferative lesions and malignant lymphomas of B-, T- and NK-cell origin. Some occur as rare accidents of virus persistence in the B lymphoid system, while others arise as a result of viral entry into unnatural target cells. The early finding that EBV is a potent B-cell growth transforming agent hinted at a simple oncogenic mechanism by which this virus could promote lymphomagenesis. In reality, the pathogenesis of EBV-associated lymphomas involves a complex interplay between different patterns of viral gene expression and cellular genetic changes. Here we review recent developments in our understanding of EBV-associated lymphomagenesis in both the immunocompetent and immunocompromised host. This article is part of the themed issue ‘Human oncogenic viruses’. PMID:28893938

  15. Autophagy in osteoblasts is involved in mineralization and bone homeostasis

    PubMed Central

    Nollet, Marie; Santucci-Darmanin, Sabine; Breuil, Véronique; Al-Sahlanee, Rasha; Cros, Chantal; Topi, Majlinda; Momier, David; Samson, Michel; Pagnotta, Sophie; Cailleteau, Laurence; Battaglia, Séverine; Farlay, Delphine; Dacquin, Romain; Barois, Nicolas; Jurdic, Pierre; Boivin, Georges; Heymann, Dominique; Lafont, Frank; Lu, Shi Shou; Dempster, David W; Carle, Georges F; Pierrefite-Carle, Valérie

    2014-01-01

    Bone remodeling is a tightly controlled mechanism in which osteoblasts (OB), the cells responsible for bone formation, osteoclasts (OC), the cells specialized for bone resorption, and osteocytes, the multifunctional mechanosensing cells embedded in the bone matrix, are the main actors. Increased oxidative stress in OB, the cells producing and mineralizing bone matrix, has been associated with osteoporosis development but the role of autophagy in OB has not yet been addressed. This is the goal of the present study. We first show that the autophagic process is induced in OB during mineralization. Then, using knockdown of autophagy-essential genes and OB-specific autophagy-deficient mice, we demonstrate that autophagy deficiency reduces mineralization capacity. Moreover, our data suggest that autophagic vacuoles could be used as vehicles in OB to secrete apatite crystals. In addition, autophagy-deficient OB exhibit increased oxidative stress and secretion of the receptor activator of NFKB1 (TNFSF11/RANKL), favoring generation of OC, the cells specialized in bone resorption. In vivo, we observed a 50% reduction in trabecular bone mass in OB-specific autophagy-deficient mice. Taken together, our results show for the first time that autophagy in OB is involved both in the mineralization process and in bone homeostasis. These findings are of importance for mineralized tissues which extend from corals to vertebrates and uncover new therapeutic targets for calcified tissue-related metabolic pathologies. PMID:25484092

  16. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment.

    PubMed

    Sakurai, Yasuteru; Kolokoltsov, Andrey A; Chen, Cheng-Chang; Tidwell, Michael W; Bauta, William E; Klugbauer, Norbert; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Davey, Robert A

    2015-02-27

    Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy. Copyright © 2015, American Association for the Advancement of Science.

  17. Mitochondria mediate septin cage assembly to promote autophagy of Shigella.

    PubMed

    Sirianni, Andrea; Krokowski, Sina; Lobato-Márquez, Damián; Buranyi, Stephen; Pfanzelter, Julia; Galea, Dieter; Willis, Alexandra; Culley, Siân; Henriques, Ricardo; Larrouy-Maumus, Gerald; Hollinshead, Michael; Sancho-Shimizu, Vanessa; Way, Michael; Mostowy, Serge

    2016-07-01

    Septins, cytoskeletal proteins with well-characterised roles in cytokinesis, form cage-like structures around cytosolic Shigella flexneri and promote their targeting to autophagosomes. However, the processes underlying septin cage assembly, and whether they influence S. flexneri proliferation, remain to be established. Using single-cell analysis, we show that the septin cages inhibit S. flexneri proliferation. To study mechanisms of septin cage assembly, we used proteomics and found mitochondrial proteins associate with septins in S. flexneri-infected cells. Strikingly, mitochondria associated with S. flexneri promote septin assembly into cages that entrap bacteria for autophagy. We demonstrate that the cytosolic GTPase dynamin-related protein 1 (Drp1) interacts with septins to enhance mitochondrial fission. To avoid autophagy, actin-polymerising Shigella fragment mitochondria to escape from septin caging. Our results demonstrate a role for mitochondria in anti-Shigella autophagy and uncover a fundamental link between septin assembly and mitochondria. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Co-targeting of EGFR and autophagy signaling is an emerging treatment strategy in metastatic colorectal cancer.

    PubMed

    Koustas, Evangelos; Karamouzis, Michalis V; Mihailidou, Chrysovalantou; Schizas, Dimitrios; Papavassiliou, Athanasios G

    2017-06-28

    The epidermal growth factor receptor (EGFR) and its associated pathway is a critical key regulator of CRC development and progression. The monoclonal antibodies (MoAbs) cetuximab and panitumumab, directed against EGFR, represent a major step forward in the treatment of metastatic colorectal cancer (mCRC), in terms of progression-free survival and overall survival in several clinical trials. However, the activity of anti-EGFR MoAbs appears to be limited to a subset of patients with mCRC. Studies have highlighted that acquired-resistance to anti-EGFR MoAbs biochemically converge into Ras/Raf/Mek/Erk and PI3K/Akt/mTOR pathways. Recent data also suggest that acquired-resistance to anti-EGFR MoAbs is accompanied by inhibition of EGFR internalization, ubiqutinization, degradation and prolonged downregulation. It is well established that autophagy, a self-cannibalization process, is considered to be associated with resistance to the anti-EGFR MoAbs therapy. Additionally, autophagy induced by anti-EGFR MoAbs acts as a protective response in cancer cells. Thus, inhibition of autophagy after treatment with EGFR MoAbs can result in autophagic cell death. A combination therapy comprising of anti-EGFR MoAbs and autophagy inhibitors would represent a multi-pronged approach that could be evolved into an active therapeutic strategy in mCRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Staying young at heart: autophagy and adaptation to cardiac aging.

    PubMed

    Leon, Leonardo J; Gustafsson, Åsa B

    2016-06-01

    Aging is a predominant risk factor for developing cardiovascular disease. Therefore, the cellular processes that contribute to aging are attractive targets for therapeutic interventions that can delay or prevent the development of age-related diseases. Our understanding of the underlying mechanisms that contribute to the decline in cell and tissue functions with age has greatly advanced over the past decade. Classical hallmarks of aging cells include increased levels of reactive oxygen species, DNA damage, accumulation of dysfunctional organelles, oxidized proteins and lipids. These all contribute to a progressive decline in the normal physiological function of the cell and to the onset of age-related conditions. A major cause of the aging process is progressive loss of cellular quality control. Autophagy is an important quality control pathway and is necessary to maintain cardiac homeostasis and to adapt to stress. A reduction in autophagy has been observed in a number of aging models and there is compelling evidence that enhanced autophagy delays aging and extends life span. Enhancing autophagy counteracts age-associated accumulation of protein aggregates and damaged organelles in cells. In this review, we discuss the functional role of autophagy in maintaining homeostasis in the heart, and how a decline is associated with accelerated cardiac aging. We also evaluate therapeutic approaches being researched in an effort to maintain a healthy young heart. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Zinc starvation induces autophagy in yeast

    PubMed Central

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-01-01

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. PMID:28264932

  1. Endoplasmic Reticulum Stress Is Associated With Autophagy and Cardiomyocyte Remodeling in Experimental and Human Atrial Fibrillation.

    PubMed

    Wiersma, Marit; Meijering, Roelien A M; Qi, Xiao-Yan; Zhang, Deli; Liu, Tao; Hoogstra-Berends, Femke; Sibon, Ody C M; Henning, Robert H; Nattel, Stanley; Brundel, Bianca J J M

    2017-10-24

    Derailment of proteostasis, the homeostasis of production, function, and breakdown of proteins, contributes importantly to the self-perpetuating nature of atrial fibrillation (AF), the most common heart rhythm disorder in humans. Autophagy plays an important role in proteostasis by degrading aberrant proteins and organelles. Herein, we investigated the role of autophagy and its activation pathway in experimental and clinical AF. Tachypacing of HL-1 atrial cardiomyocytes causes a gradual and significant activation of autophagy, as evidenced by enhanced LC3B-II expression, autophagic flux and autophagosome formation, and degradation of p62, resulting in reduction of Ca 2+ amplitude. Autophagy is activated downstream of endoplasmic reticulum (ER) stress: blocking ER stress by the chemical chaperone 4-phenyl butyrate, overexpression of the ER chaperone-protein heat shock protein A5, or overexpression of a phosphorylation-blocked mutant of eukaryotic initiation factor 2α (eIF2α) prevents autophagy activation and Ca 2+ -transient loss in tachypaced HL-1 cardiomyocytes. Moreover, pharmacological inhibition of ER stress in tachypaced Drosophila confirms its role in derailing cardiomyocyte function. In vivo treatment with sodium salt of phenyl butyrate protected atrial-tachypaced dog cardiomyocytes from electrical remodeling (action potential duration shortening, L-type Ca 2+ -current reduction), cellular Ca 2+ -handling/contractile dysfunction, and ER stress and autophagy; it also attenuated AF progression. Finally, atrial tissue from patients with persistent AF reveals activation of autophagy and induction of ER stress, which correlates with markers of cardiomyocyte damage. These results identify ER stress-associated autophagy as an important pathway in AF progression and demonstrate the potential therapeutic action of the ER-stress inhibitor 4-phenyl butyrate. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  2. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injurymore » associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.« less

  3. Functional characterization of EI24-induced autophagy in the degradation of RING-domain E3 ligases

    PubMed Central

    Devkota, Sushil; Jeong, Hyobin; Kim, Yunmi; Ali, Muhammad; Roh, Jae-il; Hwang, Daehee; Lee, Han-Woong

    2016-01-01

    ABSTRACT Historically, the ubiquitin-proteasome system (UPS) and autophagy pathways were believed to be independent; however, recent data indicate that these pathways engage in crosstalk. To date, the players mediating this crosstalk have been elusive. Here, we show experimentally that EI24 (EI24, autophagy associated transmembrane protein), a key component of basal macroautophagy/autophagy, degrades 14 physiologically important E3 ligases with a RING (really interesting new gene) domain, whereas 5 other ligases were not degraded. Based on the degradation results, we built a statistical model that predicts the RING E3 ligases targeted by EI24 using partial least squares discriminant analysis. Of 381 RING E3 ligases examined computationally, our model predicted 161 EI24 targets. Those targets are primarily involved in transcription, proteolysis, cellular bioenergetics, and apoptosis and regulated by TP53 and MTOR signaling. Collectively, our work demonstrates that EI24 is an essential player in UPS-autophagy crosstalk via degradation of RING E3 ligases. These results indicate a paradigm shift regarding the fate of E3 ligases. PMID:27541728

  4. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia

    PubMed Central

    Chen, Wenqi; Sun, Yinyi; Liu, Kangyong; Sun, Xiaojiang

    2014-01-01

    Evidence suggests that autophagy may be a new therapeutic target for stroke, but whether activation of autophagy increases or decreases the rate of neuronal death is still under debate. This review summarizes the potential role and possible signaling pathway of autophagy in neuronal survival after cerebral ischemia and proposes that autophagy has dual effects. PMID:25206784

  5. PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy.

    PubMed

    Ruf, Stefanie; Heberle, Alexander Martin; Langelaar-Makkinje, Miriam; Gelino, Sara; Wilkinson, Deepti; Gerbeth, Carolin; Schwarz, Jennifer Jasmin; Holzwarth, Birgit; Warscheid, Bettina; Meisinger, Chris; van Vugt, Marcel A T M; Baumeister, Ralf; Hansen, Malene; Thedieck, Kathrin

    2017-03-04

    Mechanistic target of rapamycin complex 1 (MTORC1) and polo like kinase 1 (PLK1) are major drivers of cancer cell growth and proliferation, and inhibitors of both protein kinases are currently being investigated in clinical studies. To date, MTORC1's and PLK1's functions are mostly studied separately, and reports on their mutual crosstalk are scarce. Here, we identify PLK1 as a physical MTORC1 interactor in human cancer cells. PLK1 inhibition enhances MTORC1 activity under nutrient sufficiency and in starved cells, and PLK1 directly phosphorylates the MTORC1 component RPTOR/RAPTOR in vitro. PLK1 and MTORC1 reside together at lysosomes, the subcellular site where MTORC1 is active. Consistent with an inhibitory role of PLK1 toward MTORC1, PLK1 overexpression inhibits lysosomal association of the PLK1-MTORC1 complex, whereas PLK1 inhibition promotes lysosomal localization of MTOR. PLK1-MTORC1 binding is enhanced by amino acid starvation, a condition known to increase autophagy. MTORC1 inhibition is an important step in autophagy activation. Consistently, PLK1 inhibition mitigates autophagy in cancer cells both under nutrient starvation and sufficiency, and a role of PLK1 in autophagy is also observed in the invertebrate model organism Caenorhabditis elegans. In summary, PLK1 inhibits MTORC1 and thereby positively contributes to autophagy. Since autophagy is increasingly recognized to contribute to tumor cell survival and growth, we propose that cautious monitoring of MTORC1 and autophagy readouts in clinical trials with PLK1 inhibitors is needed to develop strategies for optimized (combinatorial) cancer therapies targeting MTORC1, PLK1, and autophagy.

  6. Discordant signaling and autophagy response to fasting in hearts of obese mice: Implications for ischemia tolerance

    PubMed Central

    Kooren, Joel A.; Parker, Sarah J.; Tucker, Kyle C.; Ravindran, Nandini; Ito, Bruce R.; Huang, Chengqun; Venkatraman, Vidya; Van Eyk, Jennifer E.; Gottlieb, Roberta A.; Mentzer, Robert M.

    2016-01-01

    Autophagy is regulated by nutrient and energy status and plays an adaptive role during nutrient deprivation and ischemic stress. Metabolic syndrome (MetS) is a hypernutritive state characterized by obesity, dyslipidemia, elevated fasting blood glucose levels, and insulin resistance. It has also been associated with impaired autophagic flux and larger-sized infarcts. We hypothesized that diet-induced obesity (DIO) affects nutrient sensing, explaining the observed cardiac impaired autophagy. We subjected male friend virus B NIH (FVBN) mice to a high-fat diet, which resulted in increased weight gain, fat deposition, hyperglycemia, insulin resistance, and larger infarcts after myocardial ischemia-reperfusion. Autophagic flux was impaired after 4 wk on a high-fat diet. To interrogate nutrient-sensing pathways, DIO mice were subjected to overnight fasting, and hearts were processed for biochemical and proteomic analysis. Obese mice failed to upregulate LC3-II or to clear p62/SQSTM1 after fasting, although mRNA for LC3B and p62/SQSTM1 were appropriately upregulated in both groups, demonstrating an intact transcriptional response to fasting. Energy- and nutrient-sensing signal transduction pathways [AMPK and mammalian target of rapamycin (mTOR)] also responded appropriately to fasting, although mTOR was more profoundly suppressed in obese mice. Proteomic quantitative analysis of the hearts under fed and fasted conditions revealed broad changes in protein networks involved in oxidative phosphorylation, autophagy, oxidative stress, protein homeostasis, and contractile machinery. In many instances, the fasting response was quite discordant between lean and DIO mice. Network analysis implicated the peroxisome proliferator-activated receptor and mTOR regulatory nodes. Hearts of obese mice exhibited impaired autophagy, altered proteome, and discordant response to nutrient deprivation. PMID:27199111

  7. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis.

    PubMed

    Zhang, Jintao; Yi, Man; Zha, Longying; Chen, Siqiang; Li, Zhijia; Li, Cheng; Gong, Mingxing; Deng, Hong; Chu, Xinwei; Chen, Jiehua; Zhang, Zheqing; Mao, Limei; Sun, Suxia

    2016-01-01

    Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells. Human colorectal cancer cell lines (HCT-116 and HT-29) were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining), and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot. Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II), beclin-1, and autophagocytosis-associated protein (Atg)3. The autophagy inhibitors 3-methyladenine (3-MA) and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin) and genetic (si

  8. Inhibition of mTOR-Dependent Autophagy Sensitizes Leukemic Cells to Cytarabine-Induced Apoptotic Death

    PubMed Central

    Arsikin, Katarina; Mircic, Aleksandar; Suzin-Zivkovic, Violeta; Perovic, Vladimir; Bogdanovic, Andrija; Paunovic, Verica; Markovic, Ivanka; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2014-01-01

    The present study investigated the role of autophagy, a cellular self-digestion process, in the cytotoxicity of antileukemic drug cytarabine towards human leukemic cell lines (REH, HL-60, MOLT-4) and peripheral blood mononuclear cells from leukemic patients. The induction of autophagy was confirmed by acridine orange staining of intracellular acidic vesicles, electron microscopy visualization of autophagic vacuoles, as well as by the increase in autophagic proteolysis and autophagic flux, demonstrated by immunoblot analysis of p62 downregulation and LC3-I conversion to autophagosome-associated LC3-II in the presence of proteolysis inhibitors, respectively. Moreover, the expression of autophagy-related genes Atg4, Atg5 and Atg7 was stimulated by cytarabine in REH cells. Cytarabine reduced the phosphorylation of the major negative regulator of autophagy, mammalian target of rapamycin (mTOR), and its downstream target p70S6 kinase in REH cells, which was associated with downregulation of mTOR activator Akt and activation of extracellular signal- regulated kinase. Cytarabine had no effect on the activation of mTOR inhibitor AMP-activated protein kinase. Leucine, an mTOR activator, reduced both cytarabine-induced autophagy and cytotoxicity. Accordingly, pharmacological downregulation of autophagy with bafilomycin A1 and chloroquine, or RNA interference-mediated knockdown of LC3β or p62, markedly increased oxidative stress, mitochondrial depolarization, caspase activation and subsequent DNA fragmentation and apoptotic death in cytarabine-treated REH cells. Cytarabine also induced mTOR-dependent cytoprotective autophagy in HL-60 and MOLT-4 leukemic cell lines, as well as primary leukemic cells, but not normal leukocytes. These data suggest that the therapeutic efficiency of cytarabine in leukemic patients could be increased by the inhibition of the mTOR-dependent autophagic response. PMID:24714637

  9. Inhibition of mTOR-dependent autophagy sensitizes leukemic cells to cytarabine-induced apoptotic death.

    PubMed

    Bosnjak, Mihajlo; Ristic, Biljana; Arsikin, Katarina; Mircic, Aleksandar; Suzin-Zivkovic, Violeta; Perovic, Vladimir; Bogdanovic, Andrija; Paunovic, Verica; Markovic, Ivanka; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2014-01-01

    The present study investigated the role of autophagy, a cellular self-digestion process, in the cytotoxicity of antileukemic drug cytarabine towards human leukemic cell lines (REH, HL-60, MOLT-4) and peripheral blood mononuclear cells from leukemic patients. The induction of autophagy was confirmed by acridine orange staining of intracellular acidic vesicles, electron microscopy visualization of autophagic vacuoles, as well as by the increase in autophagic proteolysis and autophagic flux, demonstrated by immunoblot analysis of p62 downregulation and LC3-I conversion to autophagosome-associated LC3-II in the presence of proteolysis inhibitors, respectively. Moreover, the expression of autophagy-related genes Atg4, Atg5 and Atg7 was stimulated by cytarabine in REH cells. Cytarabine reduced the phosphorylation of the major negative regulator of autophagy, mammalian target of rapamycin (mTOR), and its downstream target p70S6 kinase in REH cells, which was associated with downregulation of mTOR activator Akt and activation of extracellular signal- regulated kinase. Cytarabine had no effect on the activation of mTOR inhibitor AMP-activated protein kinase. Leucine, an mTOR activator, reduced both cytarabine-induced autophagy and cytotoxicity. Accordingly, pharmacological downregulation of autophagy with bafilomycin A1 and chloroquine, or RNA interference-mediated knockdown of LC3β or p62, markedly increased oxidative stress, mitochondrial depolarization, caspase activation and subsequent DNA fragmentation and apoptotic death in cytarabine-treated REH cells. Cytarabine also induced mTOR-dependent cytoprotective autophagy in HL-60 and MOLT-4 leukemic cell lines, as well as primary leukemic cells, but not normal leukocytes. These data suggest that the therapeutic efficiency of cytarabine in leukemic patients could be increased by the inhibition of the mTOR-dependent autophagic response.

  10. Inducing autophagy

    PubMed Central

    Harder, Lea M; Bunkenborg, Jakob; Andersen, Jens S

    2014-01-01

    Autophagy is a lysosomal-mediated catabolic process, which through degradation of different cytoplasmic components aids in maintaining cellular homeostasis and survival during exposure to extra- or intracellular stresses. Ammonia is a potential toxic and stress-inducing byproduct of glutamine catabolism, which has recently been found to induce autophagy in an MTOR independent way and support cancer cell survival. In this study, quantitative phosphoproteomics was applied to investigate the initial signaling events linking ammonia to the induction of autophagy. The MTOR inhibitor rapamycin was used as a reference treatment to emphasize the differences between an MTOR-dependent and -independent autophagy-induction. By this means 5901 phosphosites were identified of which 626 were treatment-specific regulated and 175 were coregulated. Investigation of the ammonia-specific regulated sites supported that MTOR activity was not affected, but indicated increased MAPK3 activity, regulation of proteins involved in Rho signal transduction, and a novel phosphorylation motif, serine-proline-threonine (SPT), which could be linked to cytoskeleton-associated proteins. MAPK3 could not be identified as the primary driver of ammonia-induced autophagy but instead the data suggested an upregulation of AMPK and the unfolded protein response (UPR), which might link ammonia to autophagy induction. Support of UPR induction was further obtained from the finding of increased protein levels of the ER stress markers DDIT3/CHOP and HSPA5 during ammonia treatment. The large-scale data set presented here comprises extensive high-quality quantitative information on phosphoprotein regulation in response to 2 very different autophagy inducers and should therefore be considered a general resource for the community. PMID:24300666

  11. NF-κB as a target for oncogenic viruses

    PubMed Central

    Sun, Shao-Cong; Cesarman, Ethel

    2013-01-01

    NF-κB is a pivotal transcription factor that controls cell survival and proliferation in diverse physiological processes. The activity of NF-κB is tightly controlled through its cytoplasmic sequestration by specific inhibitors, IκBs. Various cellular stimuli induce the activation of an IκB kinase (IKK), which phosphorylates IκBs and triggers their proteasomal degradation, causing nuclear translocation of activated NF-κB. Under normal conditions, the activation of NF-κB occurs transiently, thus ensuring rapid but temporary induction of target genes. Deregulated NF-κB activation contributes to the development of various diseases, including cancers and immunological disorders. Accumulated studies demonstrate that the NF-κB signaling pathway is a target of several human oncogenic viruses, including the human T-cell leukemia virus type 1 (HTLV1), the Kaposi sarcoma-associated herpesvirus (KSHV), and the Epstein bar virus (EBV). These viruses encode specific oncoproteins that target different signaling components of the NF-κB pathway, leading to persistent activation of NF-κB. This chapter will discuss the molecular mechanisms by which NF-κB is activated by the viral oncoproteins. PMID:20845110

  12. Autophagy-inducing peptides from mammalian VSV and fish VHSV rhabdoviral G glycoproteins (G) as models for the development of new therapeutic molecules

    PubMed Central

    García-Valtanen, Pablo; Ortega-Villaizán, María del Mar; Martínez-López, Alicia; Medina-Gali, Regla; Pérez, Luis; Mackenzie, Simon; Figueras, Antonio; Coll, Julio M; Estepa, Amparo

    2014-01-01

    It has not been elucidated whether or not autophagy is induced by rhabdoviral G glycoproteins (G) in vertebrate organisms for which rhabdovirus infection is lethal. Our work provides the first evidence that both mammalian (vesicular stomatitis virus, VSV) and fish (viral hemorrhagic septicemia virus, VHSV, and spring viremia carp virus, SVCV) rhabdoviral Gs induce an autophagic antiviral program in vertebrate cell lines. The transcriptomic profiles obtained from zebrafish genetically immunized with either Gsvcv or Gvhsv suggest that autophagy is induced shortly after immunization and therefore, it may be an important component of the strong antiviral immune responses elicited by these viral proteins. Pepscan mapping of autophagy-inducing linear determinants of Gvhsv and Gvsv showed that peptides located in their fusion domains induce autophagy. Altogether these results suggest that strategies aimed at modulating autophagy could be used for the prevention and treatment of rhabdoviral infections such as rabies, which causes thousands of human deaths every year. PMID:25046110

  13. IL17A augments autophagy in Mycobacterium tuberculosis-infected monocytes from patients with active tuberculosis in association with the severity of the disease.

    PubMed

    Tateosian, Nancy Liliana; Pellegrini, Joaquín Miguel; Amiano, Nicolás Oscar; Rolandelli, Agustín; Casco, Nicolás; Palmero, Domingo Juan; Colombo, María Isabel; García, Verónica Edith

    2017-07-03

    During mycobacterial infection, macroautophagy/autophagy, a process modulated by cytokines, is essential for mounting successful host responses. Autophagy collaborates with human immune responses against Mycobacterium tuberculosis (Mt) in association with specific IFNG secreted against the pathogen. However, IFNG alone is not sufficient to the complete bacterial eradication, and other cytokines might be required. Actually, induction of Th1 and Th17 immune responses are required for protection against Mt. Accordingly, we showed that IL17A and IFNG expression in lymphocytes from tuberculosis patients correlates with disease severity. Here we investigate the role of IFNG and IL17A during autophagy in monocytes infected with Mt H37Rv or the mutant MtΔRD1. Patients with active disease were classified as high responder (HR) or low responder (LR) according to their T cell responses against Mt. IL17A augmented autophagy in infected monocytes from HR patients through a mechanism that activated MAPK1/ERK2-MAPK3/ERK1 but, during infection of monocytes from LR patients, IL17A had no effect on the autophagic response. In contrast, addition of IFNG to infected monocytes, increased autophagy by activating MAPK14/p38 α both in HR and LR patients. Interestingly, proteins codified in the RD1 region did not interfere with IFNG and IL17A autophagy induction. Therefore, in severe tuberculosis patients' monocytes, IL17A was unable to augment autophagy because of a defect in the MAPK1/3 signaling pathway. In contrast, both IFNG and IL17A increased autophagy levels in patients with strong immunity to Mt, promoting mycobacterial killing. Our findings might contribute to recognize new targets for the development of novel therapeutic tools to fight the pathogen.

  14. A comprehensive glossary of autophagy-related molecules and processes.

    PubMed

    Klionsky, Daniel J; Codogno, Patrice; Cuervo, Ana Maria; Deretic, Vojo; Elazar, Zvulun; Fueyo-Margareto, Juan; Gewirtz, David A; Kroemer, Guido; Levine, Beth; Mizushima, Noboru; Rubinsztein, David C; Thumm, Michael; Tooze, Sharon A

    2010-05-01

    Autophagy is a rapidly expanding field in the sense that our knowledge about the molecular mechanism and its connections to a wide range of physiological processes has increased substantially in the past decade. Similarly, the vocabulary associated with autophagy has grown concomitantly. This fact makes it difficult for readers, even those who work in the field, to keep up with the ever-expanding terminology associated with the various autophagy-related processes. Accordingly, we have developed a comprehensive glossary of autophagy-related terms that is meant to provide a quick reference for researchers who need a brief reminder of the regulatory effects of transcription factors or chemical agents that induce or inhibit autophagy, the function of the autophagy-related proteins, or the role of accessory machinery or structures that are associated with autophagy.

  15. Coffee induces autophagy in vivo

    PubMed Central

    Pietrocola, Federico; Malik, Shoaib Ahmad; Mariño, Guillermo; Vacchelli, Erika; Senovilla, Laura; Chaba, Kariman; Niso-Santano, Mireia; Maiuri, Maria Chiara; Madeo, Frank; Kroemer, Guido

    2014-01-01

    Epidemiological studies and clinical trials revealed that chronic consumption coffee is associated with the inhibition of several metabolic diseases as well as reduction in overall and cause-specific mortality. We show that both natural and decaffeinated brands of coffee similarly rapidly trigger autophagy in mice. One to 4 h after coffee consumption, we observed an increase in autophagic flux in all investigated organs (liver, muscle, heart) in vivo, as indicated by the increased lipidation of LC3B and the reduction of the abundance of the autophagic substrate sequestosome 1 (p62/SQSTM1). These changes were accompanied by the inhibition of the enzymatic activity of mammalian target of rapamycin complex 1 (mTORC1), leading to the reduced phosphorylation of p70S6K, as well as by the global deacetylation of cellular proteins detectable by immunoblot. Immunohistochemical analyses of transgenic mice expressing a GFP–LC3B fusion protein confirmed the coffee-induced relocation of LC3B to autophagosomes, as well as general protein deacetylation. Altogether, these results indicate that coffee triggers 2 phenomena that are also induced by nutrient depletion, namely a reduction of protein acetylation coupled to an increase in autophagy. We speculate that polyphenols contained in coffee promote health by stimulating autophagy. PMID:24769862

  16. Mitigation of autophagy ameliorates hepatocellular damage following ischemia-reperfusion injury in murine steatotic liver

    PubMed Central

    Kolachala, Vasantha L.; Jiang, Rong; Abramowsky, Carlos; Shenoi, Asha; Kosters, Astrid; Pavuluri, Haritha; Anania, Frank; Kirk, Allan D.

    2014-01-01

    Ischemia-reperfusion injury (IRI) is a common clinical consequence of hepatic surgery, cardiogenic shock, and liver transplantation. A steatotic liver is particularly vulnerable to IRI, responding with extensive hepatocellular injury. Autophagy, a lysosomal pathway balancing cell survival and cell death, is engaged in IRI, although its role in IRI of a steatotic liver is unclear. The role of autophagy was investigated in high-fat diet (HFD)-fed mice exposed to IRI in vivo and in steatotic hepatocytes exposed to hypoxic IRI (HIRI) in vitro. Two inhibitors of autophagy, 3-methyladenine and bafilomycin A1, protected the steatotic hepatocytes from HIRI. Exendin 4 (Ex4), a glucagon-like peptide 1 analog, also led to suppression of autophagy, as evidenced by decreased autophagy-associated proteins [microtubule-associated protein 1A/1B-light chain 3 (LC3) II, p62, high-mobility group protein B1, beclin-1, and autophagy-related protein 7], reduced hepatocellular damage, and improved mitochondrial structure and function in HFD-fed mice exposed to IRI. Decreased autophagy was further demonstrated by reversal of a punctate pattern of LC3 and decreased autophagic flux after IRI in HFD-fed mice. Under the same conditions, the effects of Ex4 were reversed by the competitive antagonist exendin 9-39. The present study suggests that, in IRI of hepatic steatosis, treatment of hepatocytes with Ex4 mitigates autophagy, ameliorates hepatocellular injury, and preserves mitochondrial integrity. These data suggest that therapies targeting autophagy, by Ex4 treatment in particular, may ameliorate the effects of IRI in highly prevalent steatotic liver. PMID:25258410

  17. Zinc starvation induces autophagy in yeast.

    PubMed

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-05-19

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Autophagy and bacterial infection: an evolving arms race.

    PubMed

    Choy, Augustine; Roy, Craig R

    2013-09-01

    Autophagy is an important membrane transport pathway that is conserved among eukaryotic cells. Although first described as an intracellular catabolic pathway used to break down self-components, autophagy has been found to play an important role in the elimination of intracellular pathogens. A variety of host mechanisms exist for recognizing and targeting intracellular bacteria to autophagosomes. Several intracellular bacteria have evolved ways to manipulate, inhibit, or avoid autophagy in order to survive in the cell. Thus, the autophagy pathway can be viewed as an evolutionarily conserved host response to infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Autophagy mediates degradation of nuclear lamina.

    PubMed

    Dou, Zhixun; Xu, Caiyue; Donahue, Greg; Shimi, Takeshi; Pan, Ji-An; Zhu, Jiajun; Ivanov, Andrejs; Capell, Brian C; Drake, Adam M; Shah, Parisha P; Catanzaro, Joseph M; Ricketts, M Daniel; Lamark, Trond; Adam, Stephen A; Marmorstein, Ronen; Zong, Wei-Xing; Johansen, Terje; Goldman, Robert D; Adams, Peter D; Berger, Shelley L

    2015-11-05

    Macroautophagy (hereafter referred to as autophagy) is a catabolic membrane trafficking process that degrades a variety of cellular constituents and is associated with human diseases. Although extensive studies have focused on autophagic turnover of cytoplasmic materials, little is known about the role of autophagy in degrading nuclear components. Here we report that the autophagy machinery mediates degradation of nuclear lamina components in mammals. The autophagy protein LC3/Atg8, which is involved in autophagy membrane trafficking and substrate delivery, is present in the nucleus and directly interacts with the nuclear lamina protein lamin B1, and binds to lamin-associated domains on chromatin. This LC3-lamin B1 interaction does not downregulate lamin B1 during starvation, but mediates its degradation upon oncogenic insults, such as by activated RAS. Lamin B1 degradation is achieved by nucleus-to-cytoplasm transport that delivers lamin B1 to the lysosome. Inhibiting autophagy or the LC3-lamin B1 interaction prevents activated RAS-induced lamin B1 loss and attenuates oncogene-induced senescence in primary human cells. Our study suggests that this new function of autophagy acts as a guarding mechanism protecting cells from tumorigenesis.

  20. Emerging connections between RNA and autophagy.

    PubMed

    Frankel, Lisa B; Lubas, Michal; Lund, Anders H

    2017-01-02

    Macroautophagy/autophagy is a key catabolic process, essential for maintaining cellular homeostasis and survival through the removal and recycling of unwanted cellular material. Emerging evidence has revealed intricate connections between the RNA and autophagy research fields. While a majority of studies have focused on protein, lipid and carbohydrate catabolism via autophagy, accumulating data supports the view that several types of RNA and associated ribonucleoprotein complexes are specifically recruited to phagophores (precursors to autophagosomes) and subsequently degraded in the lysosome/vacuole. Moreover, recent studies have revealed a substantial number of novel autophagy regulators with RNA-related functions, indicating roles for RNA and associated proteins not only as cargo, but also as regulators of this process. In this review, we discuss widespread evidence of RNA catabolism via autophagy in yeast, plants and animals, reviewing the molecular mechanisms and biological importance in normal physiology, stress and disease. In addition, we explore emerging evidence of core autophagy regulation mediated by RNA-binding proteins and noncoding RNAs, and point to gaps in our current knowledge of the connection between RNA and autophagy. Finally, we discuss the pathological implications of RNA-protein aggregation, primarily in the context of neurodegenerative disease.

  1. Advances in Virus-Directed Therapeutics against Epstein-Barr Virus-Associated Malignancies

    PubMed Central

    Ghosh, Sajal K.; Perrine, Susan P.; Faller, Douglas V.

    2012-01-01

    Epstein-Barr virus (EBV) is the causal agent in the etiology of Burkitt's lymphoma and nasopharyngeal carcinoma and is also associated with multiple human malignancies, including Hodgkin's and non-Hodgkin's lymphoma, and posttransplantation lymphoproliferative disease, as well as sporadic cancers of other tissues. A causal relationship of EBV to these latter malignancies remains controversial, although the episomic EBV genome in most of these cancers is clonal, suggesting infection very early in the development of the tumor and a possible role for EBV in the genesis of these diseases. Furthermore, the prognosis of these tumors is invariably poor when EBV is present, compared to their EBV-negative counterparts. The physical presence of EBV in these tumors represents a potential “tumor-specific” target for therapeutic approaches. While treatment options for other types of herpesvirus infections have evolved and improved over the last two decades, however, therapies directed at EBV have lagged. A major constraint to pharmacological intervention is the shift from lytic infection to a latent pattern of gene expression, which persists in those tumors associated with the virus. In this paper we provide a brief account of new virus-targeted therapeutic approaches against EBV-associated malignancies. PMID:22500168

  2. Viral Replication Complexes Are Targeted by LC3-Guided Interferon-Inducible GTPases.

    PubMed

    Biering, Scott B; Choi, Jayoung; Halstrom, Rachel A; Brown, Hailey M; Beatty, Wandy L; Lee, Sanghyun; McCune, Broc T; Dominici, Erin; Williams, Lelia E; Orchard, Robert C; Wilen, Craig B; Yamamoto, Masahiro; Coers, Jörn; Taylor, Gregory A; Hwang, Seungmin

    2017-07-12

    All viruses with positive-sense RNA genomes replicate on membranous structures in the cytoplasm called replication complexes (RCs). RCs provide an advantageous microenvironment for viral replication, but it is unknown how the host immune system counteracts these structures. Here we show that interferon-gamma (IFNG) disrupts the RC of murine norovirus (MNV) via evolutionarily conserved autophagy proteins and the induction of IFN-inducible GTPases, which are known to destroy the membrane of vacuoles containing bacteria, protists, or fungi. The MNV RC was marked by the microtubule-associated-protein-1-light-chain-3 (LC3) conjugation system of autophagy and then targeted by immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs) upon their induction by IFNG. Further, the LC3 conjugation system and the IFN-inducible GTPases were necessary to inhibit MNV replication in mice and human cells. These data suggest that viral RCs can be marked and antagonized by a universal immune defense mechanism targeting diverse pathogens replicating in cytosolic membrane structures. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA-associated vasculitis

    PubMed Central

    Tang, S; Zhang, Y; Yin, S-W; Gao, X-J; Shi, W-W; Wang, Y; Huang, X; Wang, L; Zou, L-Y; Zhao, J-H; Huang, Y-J; Shan, L-Y; Gounni, A S; Wu, Y-Z; Zhang, J-B

    2015-01-01

    Increasing evidence indicates that aberrant neutrophil extracellular trap (NET) formation could contribute to the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Recent research has provided evidence that a novel type of ANCA autoantibody, anti-lysosomal membrane protein-2 (LAMP-2) antibody, may have a pathogenic role in AAV. We have shown previously that anti-LAMP-2 antibody-stimulated NET formation contains autoantigens and anti-microbial peptides. The current study sought to determine whether LAMP-2, as a novel antigen of ANCA, was present on NETs in AAV patients, the influence of the anti-LAMP-2 antibody on the neutrophil apoptosis rate and the role of autophagy in anti-LAMP-2 antibody-induced NET formation. NET formation was assessed using immunofluorescence microscopy, scanning electron microscopy or live cell imaging. The neutrophil apoptosis rate was analysed using fluorescence activated cell sorting (FACS). Autophagy was detected using LC3B accumulation and transmission electron microscopy. The results showed that enhanced NET formation, which contains LAMP-2, was observed in kidney biopsies and neutrophils from AAV patients. The apoptosis rate decreased significantly in human neutrophils stimulated with anti-LAMP-2 antibody, and this effect was attenuated by the inhibitors of autophagy 3-methyladenine (3MA) and 2-morpholin-4-yl-8-phenylchromen-4-one (LY294002). The anti-LAMP-2 antibody-stimulated NET formation was unaffected by benzyloxycarbonyl-Val- Ala-Asp (OMe)-fluoromethylketone (zVAD-fmk) and necrostatin-1 (Nec-1), which are inhibitors of apoptosis and necrosis, respectively, but was inhibited by 3MA and LY294002. Moreover, the proportion of LC3BI that was converted to LC3BII increased significantly (P = 0·0057), and massive vacuolizations that exhibited characteristics typical of autophagy were detected in neutrophils stimulated with anti-LAMP-2 antibody. Our results provide further evidence that

  4. Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA-associated vasculitis.

    PubMed

    Tang, S; Zhang, Y; Yin, S-W; Gao, X-J; Shi, W-W; Wang, Y; Huang, X; Wang, L; Zou, L-Y; Zhao, J-H; Huang, Y-J; Shan, L-Y; Gounni, A S; Wu, Y-Z; Zhang, J-B

    2015-06-01

    Increasing evidence indicates that aberrant neutrophil extracellular trap (NET) formation could contribute to the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Recent research has provided evidence that a novel type of ANCA autoantibody, anti-lysosomal membrane protein-2 (LAMP-2) antibody, may have a pathogenic role in AAV. We have shown previously that anti-LAMP-2 antibody-stimulated NET formation contains autoantigens and anti-microbial peptides. The current study sought to determine whether LAMP-2, as a novel antigen of ANCA, was present on NETs in AAV patients, the influence of the anti-LAMP-2 antibody on the neutrophil apoptosis rate and the role of autophagy in anti-LAMP-2 antibody-induced NET formation. NET formation was assessed using immunofluorescence microscopy, scanning electron microscopy or live cell imaging. The neutrophil apoptosis rate was analysed using fluorescence activated cell sorting (FACS). Autophagy was detected using LC3B accumulation and transmission electron microscopy. The results showed that enhanced NET formation, which contains LAMP-2, was observed in kidney biopsies and neutrophils from AAV patients. The apoptosis rate decreased significantly in human neutrophils stimulated with anti-LAMP-2 antibody, and this effect was attenuated by the inhibitors of autophagy 3-methyladenine (3MA) and 2-morpholin-4-yl-8-phenylchromen-4-one (LY294002). The anti-LAMP-2 antibody-stimulated NET formation was unaffected by benzyloxycarbonyl-Val- Ala-Asp (OMe)-fluoromethylketone (zVAD-fmk) and necrostatin-1 (Nec-1), which are inhibitors of apoptosis and necrosis, respectively, but was inhibited by 3MA and LY294002. Moreover, the proportion of LC3BI that was converted to LC3BII increased significantly (P=0.0057), and massive vacuolizations that exhibited characteristics typical of autophagy were detected in neutrophils stimulated with anti-LAMP-2 antibody. Our results provide further evidence that autophagy is

  5. Yeast chronological lifespan and proteotoxic stress: is autophagy good or bad?

    PubMed

    Sampaio-Marques, Belém; Felgueiras, Carolina; Silva, Alexandra; Rodrigues, Fernando; Ludovico, Paula

    2011-10-01

    Autophagy, a highly conserved proteolytic mechanism of quality control, is essential for the maintenance of metabolic and cellular homoeostasis and for an efficient cellular response to stress. Autophagy declines with aging and is believed to contribute to different aspects of the aging phenotype. The nutrient-sensing pathways PKA (protein kinase A), Sch9 and TOR (target of rapamycin), involved in the regulation of yeast lifespan, also converge on a common targeted process: autophagy. The molecular mechanisms underlying the regulation of autophagy and aging by these signalling pathways in yeast, with special attention to the TOR pathway, are discussed in the present paper. The question of whether or not autophagy could contribute to yeast cell death occurring during CLS (chronological lifespan) is discussed in the light of our findings obtained after autophagy activation promoted by proteotoxic stress. Autophagy progressively increases in cells expressing the aggregation-prone protein α-synuclein and seems to participate in the early cell death and shortening of CLS under these conditions, highlighting that autophagic activity should be maintained below physiological levels to exert its promising anti-aging effects.

  6. Induction of autophagy contributes to crizotinib resistance in ALK-positive lung cancer.

    PubMed

    Ji, Cheng; Zhang, Li; Cheng, Yan; Patel, Raj; Wu, Hao; Zhang, Yi; Wang, Mian; Ji, Shundong; Belani, Chandra P; Yang, Jin-Ming; Ren, Xingcong

    2014-05-01

    Use of the inhibitor of ALK fusion onco-protein, crizotinib (PF02341066), has achieved impressive clinical efficacy in patients with ALK-positive non-small cell lung cancer. Nevertheless, acquired resistance to this drug occurs inevitably in approximately a year, limiting the therapeutic benefits of this novel targeted therapy. In this study, we found that autophagy was induced in crizonitib-resistant lung cancer cells and contributed to drug resistance. We observed that ALK was downregulated in the crizotinib-resistant lung cancer cell line, H3122CR-1, and this was causally associated with autophagy induction. The degree of crizotinib resistance correlated with autophagic activity. Activation of autophagy in crizotinib-resistant H3122CR-1 cells involved alteration of the Akt/mTOR signaling pathway. Furthermore, we demonstrated that chloroquine, an inhibitor of autophagy, could restore sensitivity of H3122CR-1 to crizotinib and enhance its efficacy against drug-resistant lung cancer. Thus, modulating autophagy may be worth exploring as a new strategy to overcome acquired crizonitib resistance in ALK-positive lung cancer.

  7. Autophagy inhibitors reduce avian-reovirus-mediated apoptosis in cultured cells and in chicken embryos.

    PubMed

    Duan, Shipeng; Cheng, Jinghua; Li, Chenxi; Yu, Liping; Zhang, Xiaorong; Jiang, Ke; Wang, Yupeng; Xu, Jiansheng; Wu, Yantao

    2015-07-01

    Avian reovirus (ARV)-induced apoptosis contributes to the pathogenesis of reovirus in infected chickens. However, methods for effectively reducing ARV-triggered apoptosis remain to be explored. Here, we show that pretreatment with chloroquine (CQ) or E64d plus pepstatin A decreases ARV-mediated apoptosis in chicken DF-1 cells. By acting as autophagy inhibitors, CQ and E64d plus pepstatin A increase microtubule-associated protein 1 light chain 3-II (LC3II) accumulation in ARV-infected cells, which results in decreased ARV protein synthesis and virus yield and thereby contributes to the reduction of apoptosis. Furthermore, ARV-mediated apoptosis in the bursa, heart and intestines of chicken embryos is attenuated by CQ and E64d plus pepstatin A treatment. Importantly, treatment with these autophagy inhibitors increases the survival of infected chicken embryos. Together, our data suggest that pharmacological inhibition of autophagy might represent a novel strategy for reducing ARV-mediated apoptosis.

  8. Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/ Src signaling in triple negative breast cancer cells.

    PubMed

    Hamurcu, Zuhal; Delibaşı, Nesrin; Geçene, Seda; Şener, Elif Funda; Dönmez-Altuntaş, Hamiyet; Özkul, Yusuf; Canatan, Halit; Ozpolat, Bulent

    2018-03-01

    Autophagy is a catabolic process for degrading dysfunctional proteins and organelles, and closely associated with cancer cell survival under therapeutic, metabolic stress, hypoxia, starvation and lack of growth factors, contributing to resistance to therapies. However, the role of autophagy in breast cancer cells is not well understood. In the present study, we investigated the role of autophagy in highly aggressive and metastatic triple negative breast cancer (TNBC) and non-metastatic breast cancer cells and demonstrated that the knockdown of autophagy-related genes (LC3 and Beclin-1) inhibited autophagy and significantly suppressed cell proliferation, colony formation, migration/invasion and induced apoptosis in MDA-MB-231 and BT-549 TNBC cells. Knockdown of LC3 and Beclin-1 led to inhibition of multiple proto-oncogenic signaling pathways, including cyclin D1, uPAR/integrin-β1/Src, and PARP1. In conclusion, our study suggests that LC3 and Beclin-1 are required for cell proliferation, survival, migration and invasion, and may contribute to tumor growth and progression of highly aggressive and metastatic TNBC cells and therapeutic targeting of autophagy genes may be a potential therapeutic strategy for TNBC in breast cancer.

  9. Targeted entry of enveloped viruses: measles and herpes simplex virus I.

    PubMed

    Navaratnarajah, Chanakha K; Miest, Tanner S; Carfi, Andrea; Cattaneo, Roberto

    2012-02-01

    We compare the receptor-based mechanisms that a small RNA virus and a larger DNA virus have evolved to drive the fusion of viral and cellular membranes. Both systems rely on tight control over triggering the concerted refolding of a trimeric fusion protein. While measles virus entry depends on a receptor-binding protein and a fusion protein only, the herpes simplex virus (HSV) is more complex and requires four viral proteins. Nevertheless, in both viruses a receptor-binding protein is required for triggering the membrane fusion process. Moreover, specificity domains can be appended to these receptor-binding proteins to target virus entry to cells expressing a designated receptor. We discuss how principles established with measles and HSV can be applied to targeting other enveloped viruses, and alternatively how retargeted envelopes can be fitted on foreign capsids. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses.

    PubMed

    Pentland, Ieisha; Parish, Joanna L

    2015-07-06

    All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF) is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human papillomavirus (HPV) utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.

  11. Autophagy

    PubMed Central

    Bhogal, Ricky H.; Weston, Christopher J.; Curbishley, Stuart M.; Adams, David H.; Afford, Simon C.

    2012-01-01

    The role of autophagy in the response of human hepatocytes to oxidative stress remains unknown. Understanding this process may have important implications for the understanding of basic liver epithelial cell biology and the responses of hepatocytes during liver disease. To address this we isolated primary hepatocytes from human liver tissue and exposed them ex vivo to hypoxia and hypoxia-reoxygenation (H-R). We showed that oxidative stress increased hepatocyte autophagy in a reactive oxygen species (ROS) and class III PtdIns3K-dependent manner. Specifically, mitochondrial ROS and NADPH oxidase were found to be key regulators of autophagy. Autophagy involved the upregulation of BECN1, LC3A, Atg7, Atg5 and Atg 12 during hypoxia and H-R. Autophagy was seen to occur within the mitochondria of the hepatocyte and inhibition of autophagy resulted in the lowering a mitochondrial membrane potential and onset of cell death. Autophagic responses were primarily observed in the large peri-venular (PV) hepatocyte subpopulation. Inhibition of autophagy, using 3-methyladenine, increased apoptosis during H-R. Specifically, PV human hepatocytes were more susceptible to apoptosis after inhibition of autophagy. These findings show for the first time that during oxidative stress autophagy serves as a cell survival mechanism for primary human hepatocytes. PMID:22302008

  12. Suppression of autophagy impedes glioblastoma development and induces senescence.

    PubMed

    Gammoh, Noor; Fraser, Jane; Puente, Cindy; Syred, Heather M; Kang, Helen; Ozawa, Tatsuya; Lam, Du; Acosta, Juan Carlos; Finch, Andrew J; Holland, Eric; Jiang, Xuejun

    2016-09-01

    The function of macroautophagy/autophagy during tumor initiation or in established tumors can be highly distinct and context-dependent. To investigate the role of autophagy in gliomagenesis, we utilized a KRAS-driven glioblastoma mouse model in which autophagy is specifically disrupted via RNAi against Atg7, Atg13 or Ulk1. Inhibition of autophagy strongly reduced glioblastoma development, demonstrating its critical role in promoting tumor formation. Further supporting this finding is the observation that tumors originating from Atg7-shRNA injections escaped the knockdown effect and thereby still underwent functional autophagy. In vitro, autophagy inhibition suppressed the capacity of KRAS-expressing glial cells to form oncogenic colonies or to survive low serum conditions. Molecular analyses revealed that autophagy-inhibited glial cells were unable to maintain active growth signaling under growth-restrictive conditions and were prone to undergo senescence. Overall, these results demonstrate that autophagy is crucial for glioma initiation and growth, and is a promising therapeutic target for glioblastoma treatment.

  13. Interactions between Autophagy and Inhibitory Cytokines

    PubMed Central

    Wu, Tian-tian; Li, Wei-Min; Yao, Yong-Ming

    2016-01-01

    Autophagy is a degradative pathway that plays an essential role in maintaining cellular homeostasis. Most early studies of autophagy focused on its involvement in age-associated degeneration and nutrient deprivation. However, the immunological functions of autophagy have become more widely studied in recent years. Autophagy has been shown to be an intrinsic cellular defense mechanism in the innate and adaptive immune responses. Cytokines belong to a broad and loose category of proteins and are crucial for innate and adaptive immunity. Inhibitory cytokines have evolved to permit tolerance to self while also contributing to the eradication of invading pathogens. Interactions between inhibitory cytokines and autophagy have recently been reported, revealing a novel mechanism by which autophagy controls the immune response. In this review, we discuss interactions between autophagy and the regulatory cytokines IL-10, transforming growth factor-β, and IL-27. We also mention possible interactions between two newly discovered cytokines, IL-35 and IL-37, and autophagy. PMID:27313501

  14. Autophagy in alcohol-induced liver diseases

    PubMed Central

    Dolganiuc, Angela; Thomes, Paul G.; Ding, Wen-Xing; Lemasters, John J.; Donohue, Terrence M.

    2013-01-01

    Alcohol is the most abused substance worldwide and a significant source of liver injury; the mechanisms of alcohol-induced liver disease are not fully understood. Significant cellular toxicity and impairment of protein synthesis and degradation occur in alcohol-exposed liver cells, along with changes in energy balance and modified responses to pathogens. Autophagy is the process of cellular catabolism through the lysosomal-dependent machinery, which maintains a balance among protein synthesis, degradation, and recycling of self. Autophagy is part of normal homeostasis and it can be triggered by multiple factors that threaten cell integrity including starvation, toxins, or pathogens. Multiple factors regulate autophagy; survival and preservation of cellular integrity at the expense of inadequately-folded proteins and damaged high energy-generating intracellular organelles are prominent targets of autophagy in pathologic conditions. Coincidentally, inadequately-folded proteins accumulate and high energy-generating intracellular organelles, such as mitochondria, are damaged by alcohol abuse; these alcohol-induced pathological findings prompted investigation of the role of autophagy in the pathogenesis of alcohol-induced liver damage. Our review summarizes the current knowledge about the role and implications of autophagy in alcohol-induced liver disease. PMID:22551004

  15. Nucleic acid-based vaccines targeting respiratory syncytial virus: Delivering the goods.

    PubMed

    Smith, Trevor R F; Schultheis, Katherine; Broderick, Kate E

    2017-11-02

    Respiratory syncytial virus (RSV) is a massive medical burden on a global scale. Infants, children and the elderly represent the vulnerable populations. Currently there is no approved vaccine to protect against the disease. Vaccine development has been hindered by several factors including vaccine enhanced disease (VED) associated with formalin-inactivated RSV vaccines, inability of target populations to raise protective immune responses after vaccination or natural viral infection, and a lack of consensus concerning the most appropriate virus-associated target antigen. However, with recent advances in the molecular understanding of the virus, and design of highly characterized vaccines with enhanced immunogenicity there is new belief a RSV vaccine is possible. One promising approach is nucleic acid-based vaccinology. Both DNA and mRNA RSV vaccines are showing promising results in clinically relevant animal models, supporting their transition into humans. Here we will discuss this strategy to target RSV, and the ongoing studies to advance the nucleic acid vaccine platform as a viable option to protect vulnerable populations from this important disease.

  16. Knockdown of p62/sequestosome 1 attenuates autophagy and inhibits colorectal cancer cell growth.

    PubMed

    Ren, Feng; Shu, Guoshun; Liu, Ganglei; Liu, Dongcai; Zhou, Jiapeng; Yuan, Lianwen; Zhou, Jianping

    2014-01-01

    p62/sequestosome-1 is a multifunctional adapter protein implicated in selective autophagy, cell signaling pathways, and tumorigenesis, and plays an important role at the crossroad between autophagy and cancer. But, the connection between autophagy and cancer is complex and in some cases contradictory. Human colorectal cancer tissues from patients were analyzed for expression of p62 and Microtubule-associated protein light chain 3 (LC3, an autophagosome marker) using immunostaining, western blotting, real-time PCR, and confocal microscopy. To study the effects of p62 on autophagy and cell growth, shRNA for p62 was applied and cell growth curve was monitored in human colorectal cancer cell. In vivo experiments were done using the mouse xenograft model. We showed that up-regulated expression of p62 and LC3 in colorectal cancer tissues. We also demonstrated that specifically knockdown the expression of p62 showed significantly inhibitory effects not only on autophagy activation, but also on tumor growth both in vitro and xenograft tumors model. The ectopic overexpression of p62 and autophagy activation contributes to colorectal tumorigenesis. p62 and autophagy will be therapy targets for the treatment of colorectal cancer.

  17. Targeting the MIR34C-5p-ATG4B-autophagy axis enhances the sensitivity of cervical cancer cells to pirarubicin.

    PubMed

    Wu, Yaran; Ni, Zhenhong; Yan, Xiaojing; Dai, Xufang; Hu, Changjiang; Zheng, Yingru; He, Fengtian; Lian, Jiqin

    2016-07-02

    Pirarubicin (THP) is a newer generation anthracycline anticancer drug. In the clinic, THP and THP-based combination therapies have been demonstrated to be effective against various tumors without severe side effects. However, previous clinical studies have shown that most patients with cervical cancer are not sensitive to THP treatment, and the associated mechanisms are not clear. Consistent with the clinical study, we confirmed that cervical cancer cells were resistant to THP in vitro and in vivo. Our data demonstrated that THP induced a protective macroautophagy/autophagy response in cervical cancer cells, and suppression of this autophagy dramatically enhanced the cytotoxicity of THP. By scanning the mRNA level change of autophagy-related genes, we found that the upregulation of ATG4B (autophagy-related 4B cysteine peptidase) plays an important role in THP-induced autophagy. Moreover, THP increased the mRNA level of ATG4B in cervical cancer cells by promoting mRNA stability without influencing its transcription. Furthermore, THP triggered a downregulation of MIR34C-5p, which was associated with the upregulation of ATG4B and autophagy induction. Overexpression of MIR34C-5p significantly decreased the level of ATG4B and attenuated autophagy, accompanied by enhanced cell death and apoptosis in THP-treated cervical cancer cells. These results for the first time reveal the presence of a MIR34C-5p-ATG4B-autophagy signaling axis in THP-treated cervical cancer cells in vitro and in vivo, and the axis, at least partially, accounts for the THP nonsensitivity in cervical cancer patients. This study may provide a new insight for improving the chemotherapeutic effect of THP, which may be beneficial to the further clinical application of THP in cervical cancer treatment.

  18. Targeting the MIR34C-5p-ATG4B-autophagy axis enhances the sensitivity of cervical cancer cells to pirarubicin

    PubMed Central

    Wu, Yaran; Ni, Zhenhong; Yan, Xiaojing; Dai, Xufang; Hu, Changjiang; Zheng, Yingru; He, Fengtian; Lian, Jiqin

    2016-01-01

    ABSTRACT Pirarubicin (THP) is a newer generation anthracycline anticancer drug. In the clinic, THP and THP-based combination therapies have been demonstrated to be effective against various tumors without severe side effects. However, previous clinical studies have shown that most patients with cervical cancer are not sensitive to THP treatment, and the associated mechanisms are not clear. Consistent with the clinical study, we confirmed that cervical cancer cells were resistant to THP in vitro and in vivo. Our data demonstrated that THP induced a protective macroautophagy/autophagy response in cervical cancer cells, and suppression of this autophagy dramatically enhanced the cytotoxicity of THP. By scanning the mRNA level change of autophagy-related genes, we found that the upregulation of ATG4B (autophagy-related 4B cysteine peptidase) plays an important role in THP-induced autophagy. Moreover, THP increased the mRNA level of ATG4B in cervical cancer cells by promoting mRNA stability without influencing its transcription. Furthermore, THP triggered a downregulation of MIR34C-5p, which was associated with the upregulation of ATG4B and autophagy induction. Overexpression of MIR34C-5p significantly decreased the level of ATG4B and attenuated autophagy, accompanied by enhanced cell death and apoptosis in THP-treated cervical cancer cells. These results for the first time reveal the presence of a MIR34C-5p-ATG4B-autophagy signaling axis in THP-treated cervical cancer cells in vitro and in vivo, and the axis, at least partially, accounts for the THP nonsensitivity in cervical cancer patients. This study may provide a new insight for improving the chemotherapeutic effect of THP, which may be beneficial to the further clinical application of THP in cervical cancer treatment. PMID:27097054

  19. Cocaine induces astrocytosis through ER stress-mediated activation of autophagy

    PubMed Central

    Periyasamy, Palsamy; Guo, Ming-Lei; Buch, Shilpa

    2016-01-01

    ABSTRACT Cocaine is known to induce inflammation, thereby contributing in part, to the pathogenesis of neurodegeneration. A recent study from our lab has revealed a link between macroautophagy/autophagy and microglial activation. The current study was aimed at investigating whether cocaine could also mediate activation of astrocytes and, whether this process involved induction of autophagy. Our findings demonstrated that cocaine mediated the activation of astrocytes by altering the levels of autophagy markers, such as BECN1, ATG5, MAP1LC3B-II, and SQSTM1 in both human A172 astrocytoma cells and primary human astrocytes. Furthermore, cocaine treatment resulted in increased formation of endogenous MAP1LC3B puncta in human astrocytes. Additionally, astrocytes transfected with the GFP-MAP1LC3B plasmid also demonstrated cocaine-mediated upregulation of the green fluorescent MAP1LC3B puncta. Cocaine-mediated induction of autophagy involved upstream activation of ER stress proteins such as EIF2AK3, ERN1, ATF6 since blockage of autophagy using either pharmacological or gene-silencing approaches, had no effect on cocaine-mediated induction of ER stress. Using both pharmacological and gene-silencing approaches to block either ER stress or autophagy, our findings demonstrated that cocaine-induced activation of astrocytes (measured by increased levels of GFAP) involved sequential activation of ER stress and autophagy. Cocaine-mediated-increased upregulation of GFAP correlated with increased expression of proinflammatory mediators such as TNF, IL1B, and IL6. In conclusion, these findings reveal an association between ER stress-mediated autophagy and astrogliosis in cocaine-treated astrocytes. Intervention of ER stress and/or autophagy signaling would thus be promising therapeutic targets for abrogating cocaine-mediated neuroinflammation. PMID:27337297

  20. Cocaine induces astrocytosis through ER stress-mediated activation of autophagy.

    PubMed

    Periyasamy, Palsamy; Guo, Ming-Lei; Buch, Shilpa

    2016-08-02

    Cocaine is known to induce inflammation, thereby contributing in part, to the pathogenesis of neurodegeneration. A recent study from our lab has revealed a link between macroautophagy/autophagy and microglial activation. The current study was aimed at investigating whether cocaine could also mediate activation of astrocytes and, whether this process involved induction of autophagy. Our findings demonstrated that cocaine mediated the activation of astrocytes by altering the levels of autophagy markers, such as BECN1, ATG5, MAP1LC3B-II, and SQSTM1 in both human A172 astrocytoma cells and primary human astrocytes. Furthermore, cocaine treatment resulted in increased formation of endogenous MAP1LC3B puncta in human astrocytes. Additionally, astrocytes transfected with the GFP-MAP1LC3B plasmid also demonstrated cocaine-mediated upregulation of the green fluorescent MAP1LC3B puncta. Cocaine-mediated induction of autophagy involved upstream activation of ER stress proteins such as EIF2AK3, ERN1, ATF6 since blockage of autophagy using either pharmacological or gene-silencing approaches, had no effect on cocaine-mediated induction of ER stress. Using both pharmacological and gene-silencing approaches to block either ER stress or autophagy, our findings demonstrated that cocaine-induced activation of astrocytes (measured by increased levels of GFAP) involved sequential activation of ER stress and autophagy. Cocaine-mediated-increased upregulation of GFAP correlated with increased expression of proinflammatory mediators such as TNF, IL1B, and IL6. In conclusion, these findings reveal an association between ER stress-mediated autophagy and astrogliosis in cocaine-treated astrocytes. Intervention of ER stress and/or autophagy signaling would thus be promising therapeutic targets for abrogating cocaine-mediated neuroinflammation.

  1. Expression analysis of LC3B and p62 indicates intact activated autophagy is associated with an unfavorable prognosis in colon cancer.

    PubMed

    Niklaus, Monique; Adams, Olivia; Berezowska, Sabina; Zlobec, Inti; Graber, Franziska; Slotta-Huspenina, Julia; Nitsche, Ulrich; Rosenberg, Robert; Tschan, Mario P; Langer, Rupert

    2017-08-15

    Autophagy is a lysosomal degradation and recycling process implicated in cancer progression and therapy resistance. We assessed the impact of basal autophagy in colon cancer (CC) in vitro and ex vivo . Functional autophagy was demonstrated in CC cell lines (LoVo; HT-29) showing a dose-dependent increase of the autophagy markers LC3B, p62 and autophagic vesciles upon increasing concentrations of the autophagy inhibitor chloroquine, which was demonstrated by immunoblotting, immunofluorescence and electron microscopy. Next, tissue microarrays with 292 primary resected CC, with cores from different tumor regions, and normal mucosa were analyzed by immunohistochemistry for LC3B and p62. CC tissue showed LC3B dot-like, p62 dot-like, cytoplasmic and nuclear staining in various levels without significant intratumoral heterogeneity. Tumoral LC3B and p62 expression was significantly higher than in normal tissue (p<0.001). No associations between staining patterns and pathological features (e.g. TNM categories; grading) were observed. Both low LC3B dot-like and low p62 dot-like-cytoplasmic staining were associated with worse overall survival (p=0.005 and p=0.002). The best prognostic discrimination, however, was seen for a combination of LC3B dot-like/p62 dot-like-cytoplasmic staining: high expression of both markers, indicative of impaired activated autophagy, was associated with the best overall survival. In contrast, high LC3B dot-like/low p62 dot-like-cytoplasmic expression, indicative of intact activated autophagy, was associated with the worst outcome (p<0.001 in univariate and HR=0.751; CI=0.607-0.928; p=0.008 in multivariate analysis). These specific expression patterns of LC3B and p62 pointing to different states of autophagy associated with diverging clinical outcomes highlighte the potential significance of basal autophagy in CC biology.

  2. EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers

    PubMed Central

    Wilson, Joanna B.; Manet, Evelyne; Fahraeus, Robin

    2018-01-01

    The presence of the Epstein-Barr virus (EBV)-encoded nuclear antigen-1 (EBNA1) protein in all EBV-carrying tumours constitutes a marker that distinguishes the virus-associated cancer cells from normal cells and thereby offers opportunities for targeted therapeutic intervention. EBNA1 is essential for viral genome maintenance and also for controlling viral gene expression and without EBNA1, the virus cannot persist. EBNA1 itself has been linked to cell transformation but the underlying mechanism of its oncogenic activity has been unclear. However, recent data are starting to shed light on its growth-promoting pathways, suggesting that targeting EBNA1 can have a direct growth suppressing effect. In order to carry out its tasks, EBNA1 interacts with cellular factors and these interactions are potential therapeutic targets, where the aim would be to cripple the virus and thereby rid the tumour cells of any oncogenic activity related to the virus. Another strategy to target EBNA1 is to interfere with its expression. Controlling the rate of EBNA1 synthesis is critical for the virus to maintain a sufficient level to support viral functions, while at the same time, restricting expression is equally important to prevent the immune system from detecting and destroying EBNA1-positive cells. To achieve this balance EBNA1 has evolved a unique repeat sequence of glycines and alanines that controls its own rate of mRNA translation. As the underlying molecular mechanisms for how this repeat suppresses its own rate of synthesis in cis are starting to be better understood, new therapeutic strategies are emerging that aim to modulate the translation of the EBNA1 mRNA. If translation is induced, it could increase the amount of EBNA1-derived antigenic peptides that are presented to the major histocompatibility (MHC) class I pathway and thus, make EBV-carrying cancers better targets for the immune system. If translation is further suppressed, this would provide another means to cripple

  3. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Chenglong; Zheng, Haining; Huang, Shanshan

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytesmore » to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK.« less

  4. MAOA-a novel decision maker of apoptosis and autophagy in hormone refractory neuroendocrine prostate cancer cells

    PubMed Central

    Lin, Yi-Cheng; Chang, Yi-Ting; Campbell, Mel; Lin, Tzu-Ping; Pan, Chin-Chen; Lee, Hsin-Chen; Shih, Jean C.; Chang, Pei-Ching

    2017-01-01

    Autophagy and apoptosis are two well-controlled mechanisms regulating cell fate. An understanding of decision-making between these two pathways is in its infancy. Monoamine oxidase A (MAOA) is a mitochondrial enzyme that is well-known in psychiatric research. Emerging reports showed that overexpression MAOA is associated with prostate cancer (PCa). Here, we show that MAOA is involved in mediating neuroendocrine differentiation of PCa cells, a feature associated with hormone-refractory PCa (HRPC), a lethal type of disease. Following recent reports showing that NED of PCa requires down-regulation of repressor element-1 silencing transcription factor (REST) and activation of autophagy; we observe that MAOA is a novel direct target gene of REST. Reactive oxygen species (ROS) produced by overexpressed MAOA plays an essential role in inhibiting apoptosis and activating autophagy in NED PCa cells. MAOA inhibitors significantly reduced NED and autophagy activation of PCa cells. Our results here show MAOA as a new decision-maker for activating autophagy and MAOA inhibitors may be useful as a potential therapy for neuroendocrine tumors. PMID:28402333

  5. MAOA-a novel decision maker of apoptosis and autophagy in hormone refractory neuroendocrine prostate cancer cells.

    PubMed

    Lin, Yi-Cheng; Chang, Yi-Ting; Campbell, Mel; Lin, Tzu-Ping; Pan, Chin-Chen; Lee, Hsin-Chen; Shih, Jean C; Chang, Pei-Ching

    2017-04-12

    Autophagy and apoptosis are two well-controlled mechanisms regulating cell fate. An understanding of decision-making between these two pathways is in its infancy. Monoamine oxidase A (MAOA) is a mitochondrial enzyme that is well-known in psychiatric research. Emerging reports showed that overexpression MAOA is associated with prostate cancer (PCa). Here, we show that MAOA is involved in mediating neuroendocrine differentiation of PCa cells, a feature associated with hormone-refractory PCa (HRPC), a lethal type of disease. Following recent reports showing that NED of PCa requires down-regulation of repressor element-1 silencing transcription factor (REST) and activation of autophagy; we observe that MAOA is a novel direct target gene of REST. Reactive oxygen species (ROS) produced by overexpressed MAOA plays an essential role in inhibiting apoptosis and activating autophagy in NED PCa cells. MAOA inhibitors significantly reduced NED and autophagy activation of PCa cells. Our results here show MAOA as a new decision-maker for activating autophagy and MAOA inhibitors may be useful as a potential therapy for neuroendocrine tumors.

  6. The role of autophagy in Parkinson's disease: rotenone-based modeling

    PubMed Central

    2013-01-01

    Background Autophagy-mediated self-digestion of cytoplasmic inclusions may be protective against neurodegenerative diseases such as Parkinson’s disease (PD). However, excessive autophagic activation evokes autophagic programmed cell death. Methods In this study, we aimed at exploring the role of autophagy in the pathogenesis of rotenone-induced cellular and animal models for PD. Results Reactive oxygen species over-generation, mitochondrial membrane potential reduction or apoptosis rate elevation occurred in a dose-dependent fashion in rotenone-treated human neuroblastoma cell line SH-SY5Y. The time- and dose-dependent increases in autophagic marker microtubule-associated protein1 light chain 3 (LC3) expression and decreases in autophagic adaptor protein P62 were observed in this cellular model. LC3-positive autophagic vacuoles were colocalized with alpha-synuclein-overexpressed aggregations. Moreover, the number of autophagic vacuoles was increased in rotenone-based PD models in vitro and in vivo. Conclusions These data, along with our previous finding showing rotenone-induced toxicity was prevented by the autophagy enhancers and was aggravated by the autophagy inhibitors in SH-SY5Y, suggest that autophagy contributes to the pathogenesis of PD, attenuates the rotenone toxicity and possibly represents a new subcellular target for treating PD. PMID:23497442

  7. Targeting autophagy to modulate cell survival: a comparative analysis in cancer, normal and embryonic cells.

    PubMed

    Divac Rankov, Aleksandra; Ljujić, Mila; Petrić, Marija; Radojković, Dragica; Pešić, Milica; Dinić, Jelena

    2017-11-01

    Autophagy is linked to multiple cancer-related signaling pathways, and represents a defense mechanism for cancer cells under therapeutic stress. The crosstalk between apoptosis and autophagy is essential for both tumorigenesis and embryonic development. We studied the influence of autophagy on cell survival in pro-apoptotic conditions induced by anticancer drugs in three model systems: human cancer cells (NCI-H460, COR-L23 and U87), human normal cells (HaCaT and MRC-5) and zebrafish embryos (Danio rerio). Autophagy induction with AZD2014 and tamoxifen antagonized the pro-apoptotic effect of chemotherapeutics doxorubicin and cisplatin in cell lines, while autophagy inhibition by wortmannin and chloroquine synergized the action of both anticancer agents. This effect was further verified by assessing cleaved caspase-3 and PARP-1 levels. Autophagy inhibitors significantly increased both apoptotic markers when applied in combination with doxorubicin while autophagy inducers had the opposite effect. In a similar manner, autophagy induction in zebrafish embryos prevented cisplatin-induced apoptosis in the tail region while autophagy inhibition increased cell death in the tail and retina of cisplatin-treated animals. Autophagy modulation with direct inhibitors of the PI3kinase/Akt/mTOR pathway (AZD2014 and wortmannin) triggered the cellular response to anticancer drugs more effectively in NCI-H460 and zebrafish embryonic models compared to HaCaT suggesting that these modulators are selective towards rapidly proliferating cells. Therefore, evaluating the autophagic properties of chemotherapeutics could help determine more accurately the fate of different cell types under treatment. Our study underlines the importance of testing autophagic activity of potential anticancer agents in a comparative approach to develop more rational anticancer therapeutic strategies.

  8. Lifespan extension without fertility reduction following dietary addition of the autophagy activator Torin1 in Drosophila melanogaster.

    PubMed

    Mason, Janet S; Wileman, Tom; Chapman, Tracey

    2018-01-01

    Autophagy is a highly conserved mechanism for cellular repair that becomes progressively down-regulated during normal ageing. Hence, manipulations that activate autophagy could increase lifespan. Previous reports show that manipulations to the autophagy pathway can result in longevity extension in yeast, flies, worms and mammals. Under standard nutrition, autophagy is inhibited by the nutrient sensing kinase Target of Rapamycin (TOR). Therefore, manipulations of TOR that increase autophagy may offer a mechanism for extending lifespan. Ideally, such manipulations should be specific and minimise off-target effects, and it is important to discover additional methods for 'clean' lifespan manipulation. Here we report an initial study into the effect of up-regulating autophagy on lifespan and fertility in Drosophila melanogaster by dietary addition of Torin1. Activation of autophagy using this selective TOR inhibitor was associated with significantly increased lifespan in both sexes. Torin1 induced a dose-dependent increase in lifespan in once-mated females. There was no evidence of a trade-off between longevity and fecundity or fertility. Torin1-fed females exhibited significantly elevated fecundity, but also elevated egg infertility, resulting in no net change in overall fertility. This supports the idea that lifespan can be extended without trade-offs in fertility and suggest that Torin1 may be a useful tool with which to pursue anti-ageing research.

  9. Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia

    PubMed Central

    Folkerts, Hendrik; Hilgendorf, Susan; Wierenga, Albertus T J; Jaques, Jennifer; Mulder, André B; Coffer, Paul J; Schuringa, Jan Jacob; Vellenga, Edo

    2017-01-01

    Here we have explored whether inhibition of autophagy can be used as a treatment strategy for acute myeloid leukemia (AML). Steady-state autophagy was measured in leukemic cell lines and primary human CD34+ AML cells with a large variability in basal autophagy between AMLs observed. The autophagy flux was higher in AMLs classified as poor risk, which are frequently associated with TP53 mutations (TP53mut), compared with favorable- and intermediate-risk AMLs. In addition, the higher flux was associated with a higher expression level of several autophagy genes, but was not affected by alterations in p53 expression by knocking down p53 or overexpression of wild-type p53 or p53R273H. AML CD34+ cells were more sensitive to the autophagy inhibitor hydroxychloroquine (HCQ) than normal bone marrow CD34+ cells. Similar, inhibition of autophagy by knockdown of ATG5 or ATG7 triggered apoptosis, which coincided with increased expression of p53. In contrast to wild-type p53 AML (TP53wt), HCQ treatment did not trigger a BAX and PUMA-dependent apoptotic response in AMLs harboring TP53mut. To further characterize autophagy in the leukemic stem cell-enriched cell fraction AML CD34+ cells were separated into ROSlow and ROShigh subfractions. The immature AML CD34+-enriched ROSlow cells maintained higher basal autophagy and showed reduced survival upon HCQ treatment compared with ROShigh cells. Finally, knockdown of ATG5 inhibits in vivo maintenance of AML CD34+ cells in NSG mice. These results indicate that targeting autophagy might provide new therapeutic options for treatment of AML since it affects the immature AML subfraction. PMID:28703806

  10. Autophagy-related prognostic signature for breast cancer.

    PubMed

    Gu, Yunyan; Li, Pengfei; Peng, Fuduan; Zhang, Mengmeng; Zhang, Yuanyuan; Liang, Haihai; Zhao, Wenyuan; Qi, Lishuang; Wang, Hongwei; Wang, Chenguang; Guo, Zheng

    2016-03-01

    Autophagy is a process that degrades intracellular constituents, such as long-lived or damaged proteins and organelles, to buffer metabolic stress under starvation conditions. Deregulation of autophagy is involved in the progression of cancer. However, the predictive value of autophagy for breast cancer prognosis remains unclear. First, based on gene expression profiling, we found that autophagy genes were implicated in breast cancer. Then, using the Cox proportional hazard regression model, we detected autophagy prognostic signature for breast cancer in a training dataset. We identified a set of eight autophagy genes (BCL2, BIRC5, EIF4EBP1, ERO1L, FOS, GAPDH, ITPR1 and VEGFA) that were significantly associated with overall survival in breast cancer. The eight autophagy genes were assigned as a autophagy-related prognostic signature for breast cancer. Based on the autophagy-related signature, the training dataset GSE21653 could be classified into high-risk and low-risk subgroups with significantly different survival times (HR = 2.72, 95% CI = (1.91, 3.87); P = 1.37 × 10(-5)). Inactivation of autophagy was associated with shortened survival of breast cancer patients. The prognostic value of the autophagy-related signature was confirmed in the testing dataset GSE3494 (HR = 2.12, 95% CI = (1.48, 3.03); P = 1.65 × 10(-3)) and GSE7390 (HR = 1.76, 95% CI = (1.22, 2.54); P = 9.95 × 10(-4)). Further analysis revealed that the prognostic value of the autophagy signature was independent of known clinical prognostic factors, including age, tumor size, grade, estrogen receptor status, progesterone receptor status, ERBB2 status, lymph node status and TP53 mutation status. Finally, we demonstrated that the autophagy signature could also predict distant metastasis-free survival for breast cancer. © 2015 Wiley Periodicals, Inc.

  11. Macrophage Autophagy and Bacterial Infections

    PubMed Central

    Bah, Aïcha; Vergne, Isabelle

    2017-01-01

    Autophagy is a well-conserved lysosomal degradation pathway that plays key roles in bacterial infections. One of the most studied is probably xenophagy, the selective capture and degradation of intracellular bacteria by lysosomes. However, the impact of autophagy goes beyond xenophagy and involves intensive cross-talks with other host defense mechanisms. In addition, autophagy machinery can have non-canonical functions such as LC3-associated phagocytosis. In this review, we intend to summarize the current knowledge on the many functions of autophagy proteins in cell defenses with a focus on bacteria–macrophage interaction. We also present the strategies developed by pathogens to evade or to exploit this machinery in order to establish a successful infection. Finally, we discuss the opportunities and challenges of autophagy manipulation in improving therapeutics and vaccines against bacterial pathogens. PMID:29163544

  12. A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy-lysosome pathway.

    PubMed

    Arsham, Andrew M; Neufeld, Thomas P

    2009-06-29

    The highly conserved autophagy-lysosome pathway is the primary mechanism for breakdown and recycling of macromolecular and organellar cargo in the eukaryotic cell. Autophagy has recently been implicated in protection against cancer, neurodegeneration, and infection, and interest is increasing in additional roles of autophagy in human health, disease, and aging. To search for novel cytoprotective features of this pathway, we carried out a genetic mosaic screen for mutations causing increased lysosomal and/or autophagic activity in the Drosophila melanogaster larval fat body. By combining Drosophila genetics with live-cell imaging of the fluorescent dye LysoTracker Red and fixed-cell imaging of autophagy-specific fluorescent protein markers, the screen was designed to identify essential metazoan genes whose disruption causes increased flux through the autophagy-lysosome pathway. The screen identified a large number of genes associated with the protein synthesis and ER-secretory pathways (e.g. aminoacyl tRNA synthetases, Oligosaccharyl transferase, Sec61alpha), and with mitochondrial function and dynamics (e.g. Rieske iron-sulfur protein, Dynamin-related protein 1). We also observed that increased lysosomal and autophagic activity were consistently associated with decreased cell size. Our work demonstrates that disruption of the synthesis, transport, folding, or glycosylation of ER-targeted proteins at any of multiple steps leads to autophagy induction. In addition to illuminating cytoprotective features of autophagy in response to cellular damage, this screen establishes a genetic methodology for investigating cell biological phenotypes in live cells, in the context of viable wild type organisms.

  13. Discordant signaling and autophagy response to fasting in hearts of obese mice: Implications for ischemia tolerance.

    PubMed

    Andres, Allen M; Kooren, Joel A; Parker, Sarah J; Tucker, Kyle C; Ravindran, Nandini; Ito, Bruce R; Huang, Chengqun; Venkatraman, Vidya; Van Eyk, Jennifer E; Gottlieb, Roberta A; Mentzer, Robert M

    2016-07-01

    Autophagy is regulated by nutrient and energy status and plays an adaptive role during nutrient deprivation and ischemic stress. Metabolic syndrome (MetS) is a hypernutritive state characterized by obesity, dyslipidemia, elevated fasting blood glucose levels, and insulin resistance. It has also been associated with impaired autophagic flux and larger-sized infarcts. We hypothesized that diet-induced obesity (DIO) affects nutrient sensing, explaining the observed cardiac impaired autophagy. We subjected male friend virus B NIH (FVBN) mice to a high-fat diet, which resulted in increased weight gain, fat deposition, hyperglycemia, insulin resistance, and larger infarcts after myocardial ischemia-reperfusion. Autophagic flux was impaired after 4 wk on a high-fat diet. To interrogate nutrient-sensing pathways, DIO mice were subjected to overnight fasting, and hearts were processed for biochemical and proteomic analysis. Obese mice failed to upregulate LC3-II or to clear p62/SQSTM1 after fasting, although mRNA for LC3B and p62/SQSTM1 were appropriately upregulated in both groups, demonstrating an intact transcriptional response to fasting. Energy- and nutrient-sensing signal transduction pathways [AMPK and mammalian target of rapamycin (mTOR)] also responded appropriately to fasting, although mTOR was more profoundly suppressed in obese mice. Proteomic quantitative analysis of the hearts under fed and fasted conditions revealed broad changes in protein networks involved in oxidative phosphorylation, autophagy, oxidative stress, protein homeostasis, and contractile machinery. In many instances, the fasting response was quite discordant between lean and DIO mice. Network analysis implicated the peroxisome proliferator-activated receptor and mTOR regulatory nodes. Hearts of obese mice exhibited impaired autophagy, altered proteome, and discordant response to nutrient deprivation. Copyright © 2016 the American Physiological Society.

  14. Targeting Pediatric Glioma with Apoptosis and Autophagy Manipulation

    DTIC Science & Technology

    2014-10-01

    hypothesis that late stage autophagosome fusion with the lysosome and degradation of the components and recycling of the macronutrients is critical to...inhibition of this upregulation at late stages of autophagy we can impair the recycling of these important macronutrients and improve glioma cell

  15. Autophagy and its implication in human oral diseases.

    PubMed

    Tan, Ya-Qin; Zhang, Jing; Zhou, Gang

    2017-02-01

    Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis.

  16. Autophagy and its implication in human oral diseases

    PubMed Central

    Tan, Ya-Qin; Zhang, Jing; Zhou, Gang

    2017-01-01

    ABSTRACT Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis. PMID:27764582

  17. Autophagy postpones apoptotic cell death in PRRSV infection through Bad-Beclin1 interaction.

    PubMed

    Zhou, Ao; Li, Shuaifeng; Khan, Faheem Ahmed; Zhang, Shujun

    2016-01-01

    Autophagy and apoptosis play significant roles in PRRSV infection and replication. However, the interaction between these 2 processes in PRRSV replication is still far from been completely understood. In our studies, the exposure of MARC-145 cells to PRRSV confirmed the activation of autophagy and subsequent induction of apoptosis. The inhibition of autophagy by 3-methyladenine (3-MA) caused a significant increase in PRRSV-induced apoptosis, showing a potential connection between both mechanisms. Moreover, we observed an increase in Bad expression (a pro-apoptotic protein) and Beclin1 (an autophagy regulator) in virus-infected cells up to 36h. Co-immunoprecipitation assays showed the formation of Bad and Beclin1 complex in PRRSV infected cells. Accordingly, Bad co-localized with Beclin1 in MARC-145 infected cells. Knockdown of Beclin1 significantly decreased PRRSV replication and PRRSV-induced autophagy, while Bad silencing resulted in increased autophagy and enhanced viral replication. Furthermore, PRRSV infection phosphorylated Bad (Ser112) to promote cellular survival. These results demonstrate that autophagy can favor PRRSV replication by postponing apoptosis through the formation of a Bad-Beclin1 complex.

  18. Posttranslational modification of autophagy-related proteins in macroautophagy

    PubMed Central

    Xie, Yangchun; Kang, Rui; Sun, Xiaofang; Zhong, Meizuo; Huang, Jin; Klionsky, Daniel J.; Tang, Daolin

    2014-01-01

    Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been identified as controlling these complicated membrane dynamics during macroautophagy in yeast; approximately half of these genes are clearly conserved up to human, and there are additional genes whose products function in autophagy in higher eukaryotes that are not found in yeast. The function of the ATG proteins, in particular their ability to interact with a number of macroautophagic regulators, is modulated by posttranslational modifications (PTMs) such as phosphorylation, glycosylation, ubiquitination, acetylation, lipidation, and proteolysis. In this review, we summarize our current knowledge of the role of ATG protein PTMs and their functional relevance in macroautophagy. Unraveling how these PTMs regulate ATG protein function during macroautophagy will not only reveal fundamental mechanistic insights into the regulatory process, but also provide new therapeutic targets for the treatment of autophagy-associated diseases. PMID:25484070

  19. BAX inhibitor-1 regulates autophagy by controlling the IRE1α branch of the unfolded protein response

    PubMed Central

    Castillo, Karen; Rojas-Rivera, Diego; Lisbona, Fernanda; Caballero, Benjamín; Nassif, Melissa; Court, Felipe A; Schuck, Sebastian; Ibar, Consuelo; Walter, Peter; Sierralta, Jimena; Glavic, Alvaro; Hetz, Claudio

    2011-01-01

    Both autophagy and apoptosis are tightly regulated processes playing a central role in tissue homeostasis. Bax inhibitor 1 (BI-1) is a highly conserved protein with a dual role in apoptosis and endoplasmic reticulum (ER) stress signalling through the regulation of the ER stress sensor inositol requiring kinase 1 α (IRE1α). Here, we describe a novel function of BI-1 in the modulation of autophagy. BI-1-deficient cells presented a faster and stronger induction of autophagy, increasing LC3 flux and autophagosome formation. These effects were associated with enhanced cell survival under nutrient deprivation. Repression of autophagy by BI-1 was dependent on cJun-N terminal kinase (JNK) and IRE1α expression, possibly due to a displacement of TNF-receptor associated factor-2 (TRAF2) from IRE1α. Targeting BI-1 expression in flies altered autophagy fluxes and salivary gland degradation. BI-1 deficiency increased flies survival under fasting conditions. Increased expression of autophagy indicators was observed in the liver and kidney of bi-1-deficient mice. In summary, we identify a novel function of BI-1 in multicellular organisms, and suggest a critical role of BI-1 as a stress integrator that modulates autophagy levels and other interconnected homeostatic processes. PMID:21926971

  20. BAX inhibitor-1 regulates autophagy by controlling the IRE1α branch of the unfolded protein response.

    PubMed

    Castillo, Karen; Rojas-Rivera, Diego; Lisbona, Fernanda; Caballero, Benjamín; Nassif, Melissa; Court, Felipe A; Schuck, Sebastian; Ibar, Consuelo; Walter, Peter; Sierralta, Jimena; Glavic, Alvaro; Hetz, Claudio

    2011-09-16

    Both autophagy and apoptosis are tightly regulated processes playing a central role in tissue homeostasis. Bax inhibitor 1 (BI-1) is a highly conserved protein with a dual role in apoptosis and endoplasmic reticulum (ER) stress signalling through the regulation of the ER stress sensor inositol requiring kinase 1 α (IRE1α). Here, we describe a novel function of BI-1 in the modulation of autophagy. BI-1-deficient cells presented a faster and stronger induction of autophagy, increasing LC3 flux and autophagosome formation. These effects were associated with enhanced cell survival under nutrient deprivation. Repression of autophagy by BI-1 was dependent on cJun-N terminal kinase (JNK) and IRE1α expression, possibly due to a displacement of TNF-receptor associated factor-2 (TRAF2) from IRE1α. Targeting BI-1 expression in flies altered autophagy fluxes and salivary gland degradation. BI-1 deficiency increased flies survival under fasting conditions. Increased expression of autophagy indicators was observed in the liver and kidney of bi-1-deficient mice. In summary, we identify a novel function of BI-1 in multicellular organisms, and suggest a critical role of BI-1 as a stress integrator that modulates autophagy levels and other interconnected homeostatic processes.

  1. Autophagy modulation as a potential therapeutic target for diverse diseases

    PubMed Central

    Rubinsztein, David C.; Codogno, Patrice; Levine, Beth

    2012-01-01

    Autophagy is an essential, conserved lysosomal degradation pathway that controls the quality of the cytoplasm by eliminating protein aggregates and damaged organelles. It begins when double-membraned autophagosomes engulf portions of the cytoplasm, which is followed by fusion of these vesicles with lysosomes and degradation of the autophagic contents. In addition to its vital homeostatic role, this degradation pathway is involved in various human disorders, including metabolic conditions, neurodegenerative diseases, cancers and infectious diseases. This article provides an overview of the mechanisms and regulation of autophagy, the role of this pathway in disease and strategies for therapeutic modulation. PMID:22935804

  2. Coming back: autophagy in cachexia.

    PubMed

    Penna, Fabio; Baccino, Francesco M; Costelli, Paola

    2014-05-01

    Cachexia is a complex syndrome characterized by body weight loss, tissue wasting, systemic inflammation, metabolic abnormalities, and altered nutritional status. One of the most prominent features of cachexia is the loss of muscle mass, mainly because of increased protein degradation rates. This review is aimed at discussing the involvement of autophagy in the pathogenesis of muscle wasting in cachexia. Modulations of muscle mass in the adult reflect an imbalance between protein synthesis and degradation rates. Muscle depletion in cachexia is associated with increased protein breakdown, mainly involving the pathways dependent on ubiquitin-proteasome and autophagy-lysosomes. This latter, in particular, was considered not relevant for a long time. Just in the last years, autophagy was shown to contribute to the pathogenesis of muscle wasting not only in myopathies because of intrinsic muscle defects, but also in muscle depletion associated with conditions such as sepsis, chronic obstructive pulmonary disease, glucocorticoid treatment, cancer cachexia, and aging. The present review highlights that both excess and defective autophagy are relevant to the onset of muscle depletion, and draws some considerations about possible therapeutic intervention aimed at modulating autophagy in order to improve muscle trophism. http://links.lww.com/COCN/A5.

  3. Human Diversity in a Cell Surface Receptor that Inhibits Autophagy.

    PubMed

    Chaudhary, Anu; Leite, Mara; Kulasekara, Bridget R; Altura, Melissa A; Ogahara, Cassandra; Weiss, Eli; Fu, Wenqing; Blanc, Marie-Pierre; O'Keeffe, Michael; Terhorst, Cox; Akey, Joshua M; Miller, Samuel I

    2016-07-25

    Mutations in genes encoding autophagy proteins have been associated with human autoimmune diseases, suggesting that diversity in autophagy responses could be associated with disease susceptibility or severity. A cellular genome-wide association study (GWAS) screen was performed to explore normal human diversity in responses to rapamycin, a microbial product that induces autophagy. Cells from several human populations demonstrated variability in expression of a cell surface receptor, CD244 (SlamF4, 2B4), that correlated with changes in rapamycin-induced autophagy. High expression of CD244 and receptor activation with its endogenous ligand CD48 inhibited starvation- and rapamycin-induced autophagy by promoting association of CD244 with the autophagy complex proteins Vps34 and Beclin-1. The association of CD244 with this complex reduced Vps34 lipid kinase activity. Lack of CD244 is associated with auto-antibody production in mice, and lower expression of human CD244 has previously been implicated in severity of human rheumatoid arthritis and systemic lupus erythematosus, indicating that increased autophagy as a result of low levels of CD244 may alter disease outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Autophagy in stem cells

    PubMed Central

    Guan, Jun-Lin; Simon, Anna Katharina; Prescott, Mark; Menendez, Javier A.; Liu, Fei; Wang, Fen; Wang, Chenran; Wolvetang, Ernst; Vazquez-Martin, Alejandro; Zhang, Jue

    2013-01-01

    Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future. PMID:23486312

  5. Autophagy in the eye: implications for ocular cell health.

    PubMed

    Frost, Laura S; Mitchell, Claire H; Boesze-Battaglia, Kathleen

    2014-07-01

    Autophagy, a catabolic process by which a cell "eats" itself, turning over its own cellular constituents, plays a key role in cellular homeostasis. In an effort to maintain normal cellular function, autophagy is often up-regulated in response to environmental stresses and excessive organelle damage to facilitate aggregated protein removal. In the eye, virtually all cell types from those comprising the cornea in the front of the eye to the retinal pigment epithelium (RPE) providing a protective barrier for the retina at the back of the eye, rely on one or more aspects of autophagy to maintain structure and/or normal physiological function. In the lens autophagy plays a critical role in lens fiber cell maturation and the formation of the organelle free zone. Numerous studies delineating the role of Atg5, Vsp34 as well as FYCO1 in maintenance of lens transparency are discussed. Corneal endothelial dystrophies are also characterized as having elevated levels of autophagic proteins. Therefore, novel modulators of autophagy such as lithium and melatonin are proposed as new therapeutic strategies for this group of dystrophies. In addition, we summarize how corneal Herpes Simplex Virus (HSV-1) infection subverts the cornea's response to infection by inhibiting the normal autophagic response. Using glaucoma models we analyze the relative contribution of autophagy to cell death and cell survival. The cytoprotective role of autophagy is further discussed in an analysis of photoreceptor cell heath and function. We focus our analysis on the current understanding of autophagy in photoreceptor and RPE health, specifically on the diverse role of autophagy in rods and cones as well as its protective role in light induced degeneration. Lastly, in the RPE we highlight hybrid phagocytosis-autophagy pathways. This comprehensive review allows us to speculate on how alterations in various stages of autophagy contribute to glaucoma and retinal degenerations. Copyright © 2014 Elsevier Ltd

  6. Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding.

    PubMed

    Cha-Molstad, Hyunjoo; Sung, Ki Sa; Hwang, Joonsung; Kim, Kyoung A; Yu, Ji Eun; Yoo, Young Dong; Jang, Jun Min; Han, Dong Hoon; Molstad, Michael; Kim, Jung Gi; Lee, Yoon Jee; Zakrzewska, Adriana; Kim, Su-Hyeon; Kim, Sung Tae; Kim, Sun Yong; Lee, Hee Gu; Soung, Nak Kyun; Ahn, Jong Seog; Ciechanover, Aaron; Kim, Bo Yeon; Kwon, Yong Tae

    2015-07-01

    We show that ATE1-encoded Arg-transfer RNA transferase (R-transferase) of the N-end rule pathway mediates N-terminal arginylation of multiple endoplasmic reticulum (ER)-residing chaperones, leading to their cytosolic relocalization and turnover. N-terminal arginylation of BiP (also known as GRP78), protein disulphide isomerase and calreticulin is co-induced with autophagy during innate immune responses to cytosolic foreign DNA or proteasomal inhibition, associated with increased ubiquitylation. Arginylated BiP (R-BiP) is induced by and associated with cytosolic misfolded proteins destined for p62 (also known as sequestosome 1, SQSTM1) bodies. R-BiP binds the autophagic adaptor p62 through the interaction of its N-terminal arginine with the p62 ZZ domain. This allosterically induces self-oligomerization and aggregation of p62 and increases p62 interaction with LC3, leading to p62 targeting to autophagosomes and selective lysosomal co-degradation of R-BiP and p62 together with associated cargoes. In this autophagic mechanism, Nt-arginine functions as a delivery determinant, a degron and an activating ligand. Bioinformatics analysis predicts that many ER residents use arginylation to regulate non-ER processes.

  7. A Novel Role of Proline Oxidase in HIV-1 Envelope Glycoprotein-induced Neuronal Autophagy*

    PubMed Central

    Pandhare, Jui; Dash, Sabyasachi; Jones, Bobby; Villalta, Fernando; Dash, Chandravanu

    2015-01-01

    Proline oxidase (POX) catalytically converts proline to pyrroline-5-carboxylate. This catabolic conversion generates reactive oxygen species (ROS) that triggers cellular signaling cascades including autophagy and apoptosis. This study for the first time demonstrates a role of POX in HIV-1 envelope glycoprotein (gp120)-induced neuronal autophagy. HIV-1 gp120 is a neurotoxic factor and is involved in HIV-1-associated neurological disorders. However, the mechanism of gp120-mediated neurotoxicity remains unclear. Using SH-SY5Y neuroblastoma cells as a model, this study demonstrates that gp120 treatment induced POX expression and catalytic activity. Concurrently, gp120 also increased intracellular ROS levels. However, increased ROS had a minimal effect on neuronal apoptosis. Further investigation indicated that the immediate cellular response to increased ROS paralleled with induction of autophagy markers, beclin-1 and LC3-II. These data lead to the hypothesis that neuronal autophagy is activated as a cellular protective response to the toxic effects of gp120. A direct and functional role of POX in gp120-mediated neuronal autophagy was examined by inhibition and overexpression studies. Inhibition of POX activity by a competitive inhibitor “dehydroproline” decreased ROS levels concomitant with reduced neuronal autophagy. Conversely, overexpression of POX in neuronal cells increased ROS levels and activated ROS-dependent autophagy. Mechanistic studies suggest that gp120 induces POX by targeting p53. Luciferase reporter assays confirm that p53 drives POX transcription. Furthermore, data demonstrate that gp120 induces p53 via binding to the CXCR4 co-receptor. Collectively, these results demonstrate a novel role of POX as a stress response metabolic regulator in HIV-1 gp120-associated neuronal autophagy. PMID:26330555

  8. Autophagy and Human Neurodegenerative Diseases-A Fly's Perspective.

    PubMed

    Kim, Myungjin; Ho, Allison; Lee, Jun Hee

    2017-07-23

    Neurodegenerative diseases in humans are frequently associated with prominent accumulation of toxic protein inclusions and defective organelles. Autophagy is a process of bulk lysosomal degradation that eliminates these harmful substances and maintains the subcellular environmental quality. In support of autophagy's importance in neuronal homeostasis, several genetic mutations that interfere with autophagic processes were found to be associated with familial neurodegenerative disorders. In addition, genetic mutations in autophagy-regulating genes provoked neurodegenerative phenotypes in animal models. The Drosophila model significantly contributed to these recent developments, which led to the theory that autophagy dysregulation is one of the major underlying causes of human neurodegenerative disorders. In the current review, we discuss how studies using Drosophila enhanced our understanding of the relationship between autophagy and neurodegenerative processes.

  9. Analysis of Autophagy Genes in Microalgae: Chlorella as a Potential Model to Study Mechanism of Autophagy

    PubMed Central

    Jiang, Qiao; Zhao, Li; Dai, Junbiao; Wu, Qingyu

    2012-01-01

    Background Microalgae, with the ability to mitigate CO2 emission and produce carbohydrates and lipids, are considered one of the most promising resources for producing bioenergy. Recently, we discovered that autophagy plays a critical role in the metabolism of photosynthetic system and lipids production. So far, more than 30-autophagy related (ATG) genes in all subtypes of autophagy have been identified. However, compared with yeast and mammals, in silico and experimental research of autophagy pathways in microalgae remained limited and fragmentary. Principal Findings In this article, we performed a genome-wide analysis of ATG genes in 7 microalgae species and explored their distributions, domain structures and evolution. Eighteen “core autophagy machinery” proteins, four mammalian-specific ATG proteins and more than 30 additional proteins (including “receptor-adaptor” complexes) in all subtypes of autophagy were analyzed. Data revealed that receptor proteins in cytoplasm-to-vacuole targeting and mitophagy seem to be absent in microalgae. However, most of the “core autophagy machinery” and mammalian-specific proteins are conserved among microalgae, except for the ATG9-cycling system in Chlamydomonas reinhardtii and the second ubiquitin-like protein conjugation complex in several algal species. The catalytic and binding residues in ATG3, ATG5, ATG7, ATG8, ATG10 and ATG12 are also conserved and the phylogenetic tree of ATG8 coincides well with the phylogenies. Chlorella contains the entire set of the core autophagy machinery. In addition, RT-PCR analysis verified that all crucial ATG genes tested are expressed during autophagy in both Chlorella and Chlamydomonas reinhardtii. Finally, we discovered that addition of 3-Methyladenine (a PI3K specific inhibitor) could suppress the formation of autophagic vacuoles in Chlorella. Conclusions Taken together, Chlorella may represent a potential model organism to investigate autophagy pathways in photosynthetic

  10. Role of autophagy in cancer prevention

    PubMed Central

    Chen, Hsin-Yi; White, Eileen

    2011-01-01

    Macroautophagy (autophagy hereafter) is a catabolic process by which cells degrade intracellular components in lysosomes. This cellular garbage disposal and intracellular recycling provided by autophagy serves to maintain cellular homeostasis by eliminating superfluous or damaged proteins and organelles, and invading microbes, or to provide substrates for energy generation and biosynthesis in stress. Thus, autophagy promotes the health of cells and animals and is critical for development, differentiation and maintenance of cell function and for the host defense against pathogens. Deregulation of autophagy is linked to susceptibility to various disorders including degenerative diseases, metabolic syndrome, aging, infectious diseases and cancer. Autophagic activity emerges as a critical factor in development and progression of diseases that are associated with increased cancer risk as well as in different stages of cancer. Given that cancer is a complex process and autophagy exerts its effect in multiple ways, role of autophagy in tumorigenesis is context-dependent. As a cytoprotective survival pathway, autophagy prevents chronic tissue damage and cell death that can lead to cancer initiation and progression. As such, stimulation or restoration of autophagy may prevent cancer. By contrast, once cancer occurs, cancer cells may utilize autophagy to enhance fitness to survive with altered metabolism and in the hostile tumor microenvironment. In this setting autophagy inhibition would instead become a strategy for therapy of established cancers. PMID:21733821

  11. Regulation of autophagy by cytoplasmic p53

    PubMed Central

    Tasdemir, Ezgi; Maiuri, M. Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M.; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2009-01-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that knockout, knockdown or pharmacological inhibition of p53 can induce autophagy in human, mouse and nematode cells. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53-/- cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53. PMID:18454141

  12. PICALM modulates autophagy activity and tau accumulation

    PubMed Central

    Moreau, Kevin; Fleming, Angeleen; Imarisio, Sara; Lopez Ramirez, Ana; Mercer, Jacob L.; Jimenez-Sanchez, Maria; Bento, Carla F.; Puri, Claudia; Zavodszky, Eszter; Siddiqi, Farah; Lavau, Catherine P.; Betton, Maureen; O’Kane, Cahir J.; Wechsler, Daniel S.; Rubinsztein, David C.

    2014-01-01

    Genome-wide association studies have identified several loci associated with Alzheimer’s disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models. CALM influences autophagy by regulating the endocytosis of SNAREs, such as VAMP2, VAMP3 and VAMP8, which have diverse effects on different stages of the autophagy pathway, from autophagosome formation to autophagosome degradation. This study suggests that the AD genetic risk factor CALM modulates autophagy, and this may affect disease in a number of ways including modulation of tau turnover. PMID:25241929

  13. Apigenin Alleviates Endotoxin-Induced Myocardial Toxicity by Modulating Inflammation, Oxidative Stress, and Autophagy

    PubMed Central

    Li, Fang; Lang, Fangfang; Zhang, Huilin; Xu, Liangdong; Wang, Yidan; Zhai, Chunxiao

    2017-01-01

    Apigenin, a component in daily diets, demonstrates antioxidant and anti-inflammatory properties. Here, we intended to explore the mechanism of apigenin-mediated endotoxin-induced myocardial injury and its role in the interplay among inflammation, oxidative stress, and autophagy. In our lipopolysaccharide- (LPS-) induced myocardial injury model, apigenin ameliorated cardiac injury (lactate dehydrogenase (LDH) and creatine kinase (CK)), cell death (TUNEL staining, DNA fragmentation, and PARP activity), and tissue damage (cardiac troponin I (cTnI) and cardiac myosin light chain-1 (cMLC1)) and improved cardiac function (ejection fraction (EF) and end diastolic left ventricular inner dimension (LVID)). Apigenin also alleviated endotoxin-induced myocardial injury by modulating oxidative stress (nitrotyrosine and protein carbonyl) and inflammatory cytokines (TNF-α, IL-1β, MIP-1α, and MIP-2) along with their master regulator NFκB. Apigenin modulated redox homeostasis, and its anti-inflammatory role might be associated with its ability to control autophagy. Autophagy (determined by LAMP1, ATG5, and p62), its transcriptional regulator transcription factor EB (TFEB), and downstream target genes including vacuolar protein sorting-associated protein 11 (Vps11) and microtubule-associated proteins 1A/1B light chain 3B (Map1lc3) were modulated by apigenin. Thus, our study demonstrated that apigenin may lead to potential development of new target in sepsis treatment or other myocardial oxidative and/or inflammation-induced injuries. PMID:28828145

  14. Apigenin Alleviates Endotoxin-Induced Myocardial Toxicity by Modulating Inflammation, Oxidative Stress, and Autophagy.

    PubMed

    Li, Fang; Lang, Fangfang; Zhang, Huilin; Xu, Liangdong; Wang, Yidan; Zhai, Chunxiao; Hao, Enkui

    2017-01-01

    Apigenin, a component in daily diets, demonstrates antioxidant and anti-inflammatory properties. Here, we intended to explore the mechanism of apigenin-mediated endotoxin-induced myocardial injury and its role in the interplay among inflammation, oxidative stress, and autophagy. In our lipopolysaccharide- (LPS-) induced myocardial injury model, apigenin ameliorated cardiac injury (lactate dehydrogenase (LDH) and creatine kinase (CK)), cell death (TUNEL staining, DNA fragmentation, and PARP activity), and tissue damage (cardiac troponin I (cTnI) and cardiac myosin light chain-1 (cMLC1)) and improved cardiac function (ejection fraction (EF) and end diastolic left ventricular inner dimension (LVID)). Apigenin also alleviated endotoxin-induced myocardial injury by modulating oxidative stress (nitrotyrosine and protein carbonyl) and inflammatory cytokines (TNF- α , IL-1 β , MIP-1 α , and MIP-2) along with their master regulator NF κ B. Apigenin modulated redox homeostasis, and its anti-inflammatory role might be associated with its ability to control autophagy. Autophagy (determined by LAMP1, ATG5, and p62), its transcriptional regulator transcription factor EB (TFEB), and downstream target genes including vacuolar protein sorting-associated protein 11 (Vps11) and microtubule-associated proteins 1A/1B light chain 3B (Map1lc3) were modulated by apigenin. Thus, our study demonstrated that apigenin may lead to potential development of new target in sepsis treatment or other myocardial oxidative and/or inflammation-induced injuries.

  15. Autophagy: controlling cell fate in rheumatic diseases.

    PubMed

    Rockel, Jason S; Kapoor, Mohit

    2016-09-01

    Autophagy, an endogenous process necessary for the turnover of organelles, maintains cellular homeostasis and directs cell fate. Alterations to the regulation of autophagy contribute to the progression of various rheumatic diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), osteoarthritis (OA) and systemic sclerosis (SSc). Implicit in the progression of these diseases are cell-type-specific responses to surrounding factors that alter autophagy: chondrocytes within articular cartilage show decreased autophagy in OA, leading to rapid cell death and cartilage degeneration; fibroblasts from patients with SSc have restricted autophagy, similar to that seen in aged dermal fibroblasts; fibroblast-like synoviocytes from RA joints show altered autophagy, which contributes to synovial hyperplasia; and dysregulation of autophagy in haematopoietic lineage cells alters their function and maturation in SLE. Various upstream mechanisms also contribute to these diseases by regulating autophagy as part of their signalling cascades. In this Review, we discuss the links between autophagy, immune responses, fibrosis and cellular fates as they relate to pathologies associated with rheumatic diseases. Therapies in clinical use, and in preclinical or clinical development, are also discussed in relation to their effects on autophagy in rheumatic diseases.

  16. Sulforaphane-induced autophagy flux prevents prion protein-mediated neurotoxicity through AMPK pathway.

    PubMed

    Lee, J-H; Jeong, J-K; Park, S-Y

    2014-10-10

    Prion diseases are neurodegenerative and infectious disorders that involve accumulation of misfolded scrapie prion protein, and which are characterized by spongiform degeneration. Autophagy, a major homeostatic process responsible for the degradation of cytoplasmic components, has garnered attention as the potential target for neurodegenerative diseases such as prion disease. We focused on protective effects of sulforaphane found in cruciferous vegetables on prion-mediated neurotoxicity and the mechanism of sulforaphane related to autophagy. In human neuroblastoma cells, sulforaphane protected prion protein (PrP) (106-126)-mediated neurotoxicity and increased autophagy flux marker microtubule-associated protein 1 light chain 3-II protein levels, following a decrease of p62 protein level. Pharmacological and genetical inhibition of autophagy by 3MA, wortmannin and knockdown of autophagy-related 5 (ATG5) led to block the effect of sulforaphane against PrP (106-126)-induced neurotoxicity. Furthermore we demonstrated that both sulforaphane-induced autophagy and protective effect of sulforaphane against PrP (106-126)-induced neurotoxicity are dependent on the AMP-activated protein kinase (AMPK) signaling. The present results indicated that sulforaphane of cruciferous vegetables enhanced autophagy flux led to the protection effects against prion-mediated neurotoxicity, which was regulated by AMPK signaling pathways in human neuron cells. Our data also suggest that sulforaphane has a potential value as a therapeutic tool in neurodegenerative disease including prion diseases. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Interplay between cell cycle and autophagy induced by boswellic acid analog

    PubMed Central

    Pathania, Anup S.; Guru, Santosh K.; Kumar, Suresh; Kumar, Ashok; Ahmad, Masroor; Bhushan, Shashi; Sharma, Parduman R.; Mahajan, Priya; Shah, Bhahwal A.; Sharma, Simmi; Nargotra, Amit; Vishwakarma, Ram; Korkaya, Hasan; Malik, Fayaz

    2016-01-01

    In this study, we investigated the role of autophagy induced by boswellic acid analog BA145 on cell cycle progression in pancreatic cancer cells. BA145 induced robust autophagy in pancreatic cancer cell line PANC-1 and exhibited cell proliferation inhibition by inducing cells to undergo G2/M arrest. Inhibition of G2/M progression was associated with decreased expression of cyclin A, cyclin B, cyclin E, cdc2, cdc25c and CDK-1. Pre-treatment of cells with autophagy inhibitors or silencing the expression of key autophagy genes abrogated BA145 induced G2/M arrest and downregulation of cell cycle regulatory proteins. It was further observed that BA145 induced autophagy by targeting mTOR kinase (IC50 1 μM), leading to reduced expression of p-mTOR, p-p70S6K (T389), p-4EBP (T37/46) and p-S6 (S240/244). Notably, inhibition of mTOR signalling by BA145 was followed by attendant activation of AKT and its membrane translocation. Inhibition of Akt through pharmacological inhibitors or siRNAs enhanced BA145 mediated autophagy, G2/M arrest and reduced expression of G2/M regulators. Further studies revealed that BA145 arbitrated inhibition of mTOR led to the activation of Akt through IGFR/PI3k/Akt feedback loop. Intervention in IGFR/PI3k/Akt loop further depreciated Akt phosphorylation and its membrane translocation that culminates in augmented autophagy with concomitant G2/M arrest and cell death. PMID:27680387

  18. Silibinin negatively contributes to primary cilia length via autophagy regulated by histone deacetylase 6 in confluent mouse embryo fibroblast 3T3-L1 cells.

    PubMed

    Xu, Qian; Liu, Wei; Liu, Xiaoling; Liu, Weiwei; Wang, Hongju; Yao, Guodong; Zang, Linghe; Hayashi, Toshihiko; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2016-09-01

    Primary cilium is a cellular antenna, signalling as a sensory organelle. Numerous pathological manifestation is associated with change of its length. Although the interaction between autophagy and primary cilia has been suggested, the role of autophagy in primary cilia length is largely unknown. In this study the primary cilia were immunostained and observed by using confocal fluorescence microscopy, and we found that silibinin, a natural flavonoid, shortened the length of primary cilia, meanwhile it also induced autophagy in 3T3-L1 cells. This study was designed to investigate the significance of silibinin-induced autophagy in primary ciliary structure in confluent mouse embryo fibroblast 3T3-L1 cells. Either blocking the autophagic flux with pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), or transfection of siRNA targeting LC3 inhibited the reduction of cilia length caused by silibinin exposure. Autophagy induced by silibinin decreased expressions of the cilia-associated proteins, such as IFT88, KIF3a and Ac-tubulin, while 3-MA restored it, indicating that autophagy induced by silibinin led to a reduction of primary cilia length. Histone deacetylase 6 (HDAC6), which was suggested as a mediator of autophagy, was up-regulated by silibinin in a time-dependent manner. In addition, 3T3-L1 cells treated with siRNA against HDAC6 had a reduced autophagic level and were protected from silibinin-induced cilia shortening. Taken together, we conclude that the HDAC6-mediated autophagy negatively regulates primary cilia length during silibinin treatment and has the potential to serve as a therapeutic target for primary cilia-associated ciliopathies. These findings thus provide new information about the potential link between autophagy and primary cilia.

  19. Autophagy Impairment Is Associated With Increased Inflammasome Activation and Reversal Reaction Development in Multibacillary Leprosy

    PubMed Central

    de Mattos Barbosa, Mayara Garcia; de Andrade Silva, Bruno Jorge; Assis, Tayná Quintella; da Silva Prata, Rhana Berto; Ferreira, Helen; Andrade, Priscila Ribeiro; da Paixão de Oliveira, Jéssica Araújo; Sperandio da Silva, Gilberto Marcelo; da Costa Nery, José Augusto; Sarno, Euzenir Nunes; Pinheiro, Roberta Olmo

    2018-01-01

    Leprosy reactions are responsible for incapacities in leprosy and represent the major cause of permanent neuropathy. The identification of biomarkers able to identify patients more prone to develop reaction could contribute to adequate clinical management and the prevention of disability. Reversal reaction may occur in unstable borderline patients and also in lepromatous patients. To identify biomarker signature profiles related with the reversal reaction onset, multibacillary patients were recruited and classified accordingly the occurrence or not of reversal reaction during or after multidrugtherapy. Analysis of skin lesion cells at diagnosis of multibacillary leprosy demonstrated that in the group that developed reaction (T1R) in the future there was a downregulation of autophagy associated with the overexpression of TLR2 and MLST8. The autophagy impairment in T1R group was associated with increased expression of NLRP3, caspase-1 (p10) and IL-1β production. In addition, analysis of IL-1β production in serum from multibacillary patients demonstrated that patients who developed reversal reaction have significantly increased concentrations of IL-1β at diagnosis, suggesting that the pattern of innate immune responses could predict the reactional episode outcome. In vitro analysis demonstrated that the blockade of autophagy with 3-methyladenine (3-MA) in Mycobacterium leprae-stimulated human primary monocytes increased the assembly of NLRP3 specks assembly, and it was associated with an increase of IL-1β and IL-6 production. Together, our data suggest an important role for autophagy in multibacillary leprosy patients to avoid exacerbated inflammasome activation and the onset of reversal reaction.

  20. Fluoride-Induced Autophagy via the Regulation of Phosphorylation of Mammalian Targets of Rapamycin in Mice Leydig Cells.

    PubMed

    Zhang, Jianhai; Zhu, Yuchen; Shi, Yan; Han, Yongli; Liang, Chen; Feng, Zhiyuan; Zheng, Heping; Eng, Michelle; Wang, Jundong

    2017-10-11

    Fluoride is known to impair testicular function and decrease testosterone levels, yet the underlying mechanisms remain inconclusive. The objective of this study is to investigate the roles of autophagy in fluoride-induced male reproductive toxicity using both in vivo and in vitro Leydig cell models. Using transmission electron microscopy and monodansylcadaverine staining, we observed increasing numbers of autophagosomes in testicular tissue, especially in Leydig cells of fluoride-exposed mice. Further study revealed that fluoride increased the levels of mRNA and protein expression of autophagy markers LC3, Beclin1, and Atg 5 in primary Leydig cells. Furthermore, fluoride inhibited the phosphorylation of mammalian targets of rapamycin and 4EBP1, which in turn resulted in a decrease in the levels of AKT and PI3K mRNA expression, as well as an elevation of the level of AMPK expression in both testes and primary Leydig cells. Additionally, fluoride exposure significantly changed the mRNA expression of the PDK1, TSC, and Atg13 regulator genes in primary Leydig cells but not in testicular cells. Taken together, our findings highlight the roles of autophagy in fluoride-induced testicular and Leydig cell damage and contribute to the elucidation of the underlying mechanisms of fluoride-induced male reproductive toxicity.

  1. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections

    PubMed Central

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters. PMID:25714877

  2. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections.

    PubMed

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters.

  3. mTOR Pathways in Cancer and Autophagy.

    PubMed

    Paquette, Mathieu; El-Houjeiri, Leeanna; Pause, Arnim

    2018-01-12

    TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer.

  4. Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk

    PubMed Central

    Petherick, Katy J; Williams, Ann C; Lane, Jon D; Ordóñez-Morán, Paloma; Huelsken, Joerg; Collard, Tracey J; Smartt, Helena JM; Batson, Jennifer; Malik, Karim; Paraskeva, Chris; Greenhough, Alexander

    2013-01-01

    The Wnt/β-catenin signalling and autophagy pathways each play important roles during development, adult tissue homeostasis and tumorigenesis. Here we identify the Wnt/β-catenin signalling pathway as a negative regulator of both basal and stress-induced autophagy. Manipulation of β-catenin expression levels in vitro and in vivo revealed that β-catenin suppresses autophagosome formation and directly represses p62/SQSTM1 (encoding the autophagy adaptor p62) via TCF4. Furthermore, we show that during nutrient deprivation β-catenin is selectively degraded via the formation of a β-catenin–LC3 complex, attenuating β-catenin/TCF-driven transcription and proliferation to favour adaptation during metabolic stress. Formation of the β-catenin–LC3 complex is mediated by a W/YXXI/L motif and LC3-interacting region (LIR) in β-catenin, which is required for interaction with LC3 and non-proteasomal degradation of β-catenin. Thus, Wnt/β-catenin represses autophagy and p62 expression, while β-catenin is itself targeted for autophagic clearance in autolysosomes upon autophagy induction. These findings reveal a regulatory feedback mechanism that place β-catenin at a key cellular integration point coordinating proliferation with autophagy, with implications for targeting these pathways for cancer therapy. PMID:23736261

  5. MTORC1 Regulates both General Autophagy and Mitophagy Induction after Oxidative Phosphorylation Uncoupling.

    PubMed

    Bartolomé, Alberto; García-Aguilar, Ana; Asahara, Shun-Ichiro; Kido, Yoshiaki; Guillén, Carlos; Pajvani, Utpal B; Benito, Manuel

    2017-09-11

    The mechanistic target of rapamycin complex 1 (MTORC1) is a critical negative regulator of general autophagy. We hypothesized that MTORC1 may specifically regulate autophagic clearance of damaged mitochondria. To test this, we used cells lacking tuberous sclerosis complex 2 (TSC2 -/-), which show constitutive MTORC1 activation. TSC2 -/- cells show MTORC1-dependent impaired autophagic flux after chemical uncoupling of mitochondria, increased mitochondrial protein aging and accumulation of p62/SQSTM1 positive mitochondria. Mitochondrial autophagy (mitophagy) was also deficient in cells lacking TSC2, associated with altered expression of PTEN-induced kinase 1 (PINK1) and PARK2 translocation to uncoupled mitochondria, all of which were recovered by MTORC1 inhibition or expression of constitutively active FoxO1. These data prove the necessity of intact MTORC1 signaling to regulate two synergistic processes required for clearance of damaged mitochondria: 1) general autophagy initiation, and 2) PINK1/PARK2-mediated selective targeting of uncoupled mitochondria to the autophagic machinery. Copyright © 2017 American Society for Microbiology.

  6. Disruption of microtubules in plants suppresses macroautophagy and triggers starch excess-associated chloroplast autophagy

    PubMed Central

    Wang, Yan; Zheng, Xiyin; Yu, Bingjie; Han, Shaojie; Guo, Jiangbo; Tang, Haiping; Yu, Alice Yunzi L; Deng, Haiteng; Hong, Yiguo; Liu, Yule

    2015-01-01

    Microtubules, the major components of cytoskeleton, are involved in various fundamental biological processes in plants. Recent studies in mammalian cells have revealed the importance of microtubule cytoskeleton in autophagy. However, little is known about the roles of microtubules in plant autophagy. Here, we found that ATG6 interacts with TUB8/β-tubulin 8 and colocalizes with microtubules in Nicotiana benthamiana. Disruption of microtubules by either silencing of tubulin genes or treatment with microtubule-depolymerizing agents in N. benthamiana reduces autophagosome formation during upregulation of nocturnal or oxidation-induced macroautophagy. Furthermore, a blockage of leaf starch degradation occurred in microtubule-disrupted cells and triggered a distinct ATG6-, ATG5- and ATG7-independent autophagic pathway termed starch excess-associated chloroplast autophagy (SEX chlorophagy) for clearance of dysfunctional chloroplasts. Our findings reveal that an intact microtubule network is important for efficient macroautophagy and leaf starch degradation. PMID:26566764

  7. Foot-and-mouth disease virus infection suppresses autophagy and NF-кB antiviral responses via degradation of ATG5-ATG12 by 3Cpro

    PubMed Central

    Fan, Xuxu; Han, Shichong; Yan, Dan; Gao, Yuan; Wei, Yanquan; Liu, Xiangtao; Liao, Ying; Guo, Huichen; Sun, Shiqi

    2017-01-01

    Autophagy-related protein ATG5-ATG12 is an essential complex for the autophagophore elongation in autophagy, which has been reported to be involved in foot-and-mouth disease virus (FMDV) replication. Previous reports show that ATG5-ATG12 positively or negatively regulates type I interferon (IFN-α/β) pathway during virus infection. In this study, we found that FMDV infection rapidly induced LC3 lipidation and GFP-LC3 subcellular redistribution at the early infection stage in PK-15 cells. Along with infection time course to 2–5 h.p.i., the levels of LC3II and ATG5-ATG12 were gradually reduced. Further study showed that ATG5-ATG12 was degraded by viral protein 3Cpro, demonstrating that FMDV suppresses autophagy along with viral protein production. Depletion of ATG5-ATG12 by siRNA knock down significantly increased the FMDV yields, whereas overexpression of ATG5-ATG12 had the opposite effects, suggesting that degradation of ATG5-ATG12 benefits virus growth. Further experiment showed that overexpression of ATG5-ATG12 positively regulated NF-кB pathway during FMDV infection, marked with promotion of IKKα/β phosphorylation and IκBα degradation, inhibition of p65 degradation, and facilitation of p65 nuclear translocation. Meanwhile, ATG5-ATG12 also promoted the phosphorylation of TBK1 and activation of IRF3 via preventing TRAF3 degradation. The positive regulation of NF-кB and IRF3 pathway by ATG5-ATG12 resulted in enhanced expression of IFN-β, chemokines/cytokines, and IFN stimulated genes, including anti-viral protein PKR. Altogether, above findings suggest that ATG5-ATG12 positively regulate anti-viral NF-κB and IRF3 signaling during FMDV infection, thereby limiting FMDV proliferation. FMDV has evolved mechanisms to counteract the antiviral function of ATG5-ATG12, via degradation of them by viral protein 3Cpro. PMID:28102839

  8. Foot-and-mouth disease virus infection suppresses autophagy and NF-кB antiviral responses via degradation of ATG5-ATG12 by 3Cpro.

    PubMed

    Fan, Xuxu; Han, Shichong; Yan, Dan; Gao, Yuan; Wei, Yanquan; Liu, Xiangtao; Liao, Ying; Guo, Huichen; Sun, Shiqi

    2017-01-19

    Autophagy-related protein ATG5-ATG12 is an essential complex for the autophagophore elongation in autophagy, which has been reported to be involved in foot-and-mouth disease virus (FMDV) replication. Previous reports show that ATG5-ATG12 positively or negatively regulates type I interferon (IFN-α/β) pathway during virus infection. In this study, we found that FMDV infection rapidly induced LC3 lipidation and GFP-LC3 subcellular redistribution at the early infection stage in PK-15 cells. Along with infection time course to 2-5 h.p.i., the levels of LC3II and ATG5-ATG12 were gradually reduced. Further study showed that ATG5-ATG12 was degraded by viral protein 3C pro , demonstrating that FMDV suppresses autophagy along with viral protein production. Depletion of ATG5-ATG12 by siRNA knock down significantly increased the FMDV yields, whereas overexpression of ATG5-ATG12 had the opposite effects, suggesting that degradation of ATG5-ATG12 benefits virus growth. Further experiment showed that overexpression of ATG5-ATG12 positively regulated NF-кB pathway during FMDV infection, marked with promotion of IKKα/β phosphorylation and IκBα degradation, inhibition of p65 degradation, and facilitation of p65 nuclear translocation. Meanwhile, ATG5-ATG12 also promoted the phosphorylation of TBK1 and activation of IRF3 via preventing TRAF3 degradation. The positive regulation of NF-кB and IRF3 pathway by ATG5-ATG12 resulted in enhanced expression of IFN-β, chemokines/cytokines, and IFN stimulated genes, including anti-viral protein PKR. Altogether, above findings suggest that ATG5-ATG12 positively regulate anti-viral NF-κB and IRF3 signaling during FMDV infection, thereby limiting FMDV proliferation. FMDV has evolved mechanisms to counteract the antiviral function of ATG5-ATG12, via degradation of them by viral protein 3C pro .

  9. Autophagy postpones apoptotic cell death in PRRSV infection through Bad-Beclin1 interaction

    PubMed Central

    Zhou, Ao; Li, Shuaifeng; Khan, Faheem Ahmed; Zhang, Shujun

    2016-01-01

    Autophagy and apoptosis play significant roles in PRRSV infection and replication. However, the interaction between these 2 processes in PRRSV replication is still far from been completely understood. In our studies, the exposure of MARC-145 cells to PRRSV confirmed the activation of autophagy and subsequent induction of apoptosis. The inhibition of autophagy by 3-methyladenine (3-MA) caused a significant increase in PRRSV-induced apoptosis, showing a potential connection between both mechanisms. Moreover, we observed an increase in Bad expression (a pro-apoptotic protein) and Beclin1 (an autophagy regulator) in virus-infected cells up to 36h. Co-immunoprecipitation assays showed the formation of Bad and Beclin1 complex in PRRSV infected cells. Accordingly, Bad co-localized with Beclin1 in MARC-145 infected cells. Knockdown of Beclin1 significantly decreased PRRSV replication and PRRSV-induced autophagy, while Bad silencing resulted in increased autophagy and enhanced viral replication. Furthermore, PRRSV infection phosphorylated Bad (Ser112) to promote cellular survival. These results demonstrate that autophagy can favor PRRSV replication by postponing apoptosis through the formation of a Bad-Beclin1 complex. PMID:26670824

  10. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol.

    PubMed

    Morselli, Eugenia; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Maiuri, Maria Chiara; Tavernarakis, Nektarios; Madeo, Frank; Kroemer, Guido

    2009-12-23

    Although autophagy has widely been conceived as a self-destructive mechanism that causes cell death, accumulating evidence suggests that autophagy usually mediates cytoprotection, thereby avoiding the apoptotic or necrotic demise of stressed cells. Recent evidence produced by our groups demonstrates that autophagy is also involved in pharmacological manipulations that increase longevity. Exogenous supply of the polyamine spermidine can prolong the lifespan of (while inducing autophagy in) yeast, nematodes and flies. Similarly, resveratrol can trigger autophagy in cells from different organisms, extend lifespan in nematodes, and ameliorate the fitness of human cells undergoing metabolic stress. These beneficial effects are lost when essential autophagy modulators are genetically or pharmacologically inactivated, indicating that autophagy is required for the cytoprotective and/or anti-aging effects of spermidine and resveratrol. Genetic and functional studies indicate that spermidine inhibits histone acetylases, while resveratrol activates the histone deacetylase Sirtuin 1 to confer cytoprotection/longevity. Although it remains elusive whether the same histones (or perhaps other nuclear or cytoplasmic proteins) act as the downstream targets of spermidine and resveratrol, these results point to an essential role of protein hypoacetylation in autophagy control and in the regulation of longevity.

  11. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol

    PubMed Central

    Morselli, Eugenia; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Maiuri, Maria Chiara; Tavernarakis, Nektarios; Madeo, Frank; Kroemer, Guido

    2009-01-01

    Although autophagy has widely been conceived as a self-destructive mechanism that causes cell death, accumulating evidence suggests that autophagy usually mediates cytoprotection, thereby avoiding the apoptotic or necrotic demise of stressed cells. Recent evidence produced by our groups demonstrates that autophagy is also involved in pharmacological manipulations that increase longevity. Exogenous supply of the polyamine spermidine can prolong the lifespan of (while inducing autophagy in) yeast, nematodes and flies. Similarly, resveratrol can trigger autophagy in cells from different organisms, extend lifespan in nematodes, and ameliorate the fitness of human cells undergoing metabolic stress. These beneficial effects are lost when essential autophagy modulators are genetically or pharmacologically inactivated, indicating that autophagy is required for the cytoprotective and/or anti-aging effects of spermidine and resveratrol. Genetic and functional studies indicate that spermidine inhibits histone acetylases, while resveratrol activates the histone deacetylase Sirtuin 1 to confer cytoprotection/longevity. Although it remains elusive whether the same histones (or perhaps other nuclear or cytoplasmic proteins) act as the downstream targets of spermidine and resveratrol, these results point to an essential role of protein hypoacetylation in autophagy control and in the regulation of longevity. PMID:20157579

  12. Oncolytic Adenovirus With Temozolomide Induces Autophagy and Antitumor Immune Responses in Cancer Patients

    PubMed Central

    Liikanen, Ilkka; Ahtiainen, Laura; Hirvinen, Mari LM; Bramante, Simona; Cerullo, Vincenzo; Nokisalmi, Petri; Hemminki, Otto; Diaconu, Iulia; Pesonen, Sari; Koski, Anniina; Kangasniemi, Lotta; Pesonen, Saila K; Oksanen, Minna; Laasonen, Leena; Partanen, Kaarina; Joensuu, Timo; Zhao, Fang; Kanerva, Anna; Hemminki, Akseli

    2013-01-01

    Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum—a possible indicator of immune response—increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy. PMID:23546299

  13. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    PubMed Central

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2015-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. PMID:24398106

  14. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi; Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu; Xie, Xiaoyan

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cellmore » lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery. -- Highlights: •FGFR1 antagonist inhibits cell viability in FGFR1-amplified breast cancer cells. •FGFR1 antagonist induces autophagy in FGFR1-amplified breast cancer cells. •FGFR1 antagonist-induced autophagy is protective. •FGFR1 antagonist induces autophagy by inhibiting Akt/mTOR pathway.« less

  15. Pan-Bcl-2 inhibitor Obatoclax is a potent late stage autophagy inhibitor in colorectal cancer cells independent of canonical autophagy signaling.

    PubMed

    Koehler, Bruno Christian; Jassowicz, Adam; Scherr, Anna-Lena; Lorenz, Stephan; Radhakrishnan, Praveen; Kautz, Nicole; Elssner, Christin; Weiss, Johanna; Jaeger, Dirk; Schneider, Martin; Schulze-Bergkamen, Henning

    2015-11-19

    Colorectal cancer is the third most common malignancy in humans and novel therapeutic approaches are urgently needed. Autophagy is an evolutionarily highly conserved cellular process by which cells collect unnecessary organelles or misfolded proteins and subsequently degrade them in vesicular structures in order to refuel cells with energy. Dysregulation of the complex autophagy signaling network has been shown to contribute to the onset and progression of cancer in various models. The Bcl-2 family of proteins comprises central regulators of apoptosis signaling and has been linked to processes involved in autophagy. The antiapoptotic members of the Bcl-2 family of proteins have been identified as promising anticancer drug targets and small molecules inhibiting those proteins are in clinical trials. Flow cytometry and colorimetric assays were used to assess cell growth and cell death. Long term 3D cell culture was used to assess autophagy in a tissue mimicking environment in vitro. RNA interference was applied to modulate autophagy signaling. Immunoblotting and q-RT PCR were used to investigate autophagy signaling. Immunohistochemistry and fluorescence microscopy were used to detect autophagosome formation and autophagy flux. This study demonstrates that autophagy inhibition by obatoclax induces cell death in colorectal cancer (CRC) cells in an autophagy prone environment. Here, we demonstrate that pan-Bcl-2 inhibition by obatoclax causes a striking, late stage inhibition of autophagy in CRC cells. In contrast, ABT-737, a Mcl-1 sparing Bcl-2 inhibitor, failed to interfere with autophagy signaling. Accumulation of p62 as well as Light Chain 3 (LC3) was observed in cells treated with obatoclax. Autophagy inhibition caused by obatoclax is further augmented in stressful conditions such as starvation. Furthermore, our data demonstrate that inhibition of autophagy caused by obatoclax is independent of the essential pro-autophagy proteins Beclin-1, Atg7 and Atg12. The

  16. Autophagy and ageing: implications for age-related neurodegenerative diseases.

    PubMed

    Carroll, Bernadette; Hewitt, Graeme; Korolchuk, Viktor I

    2013-01-01

    Autophagy is a process of lysosome-dependent intracellular degradation that participates in the liberation of resources including amino acids and energy to maintain homoeostasis. Autophagy is particularly important in stress conditions such as nutrient starvation and any perturbation in the ability of the cell to activate or regulate autophagy can lead to cellular dysfunction and disease. An area of intense research interest is the role and indeed the fate of autophagy during cellular and organismal ageing. Age-related disorders are associated with increased cellular stress and assault including DNA damage, reduced energy availability, protein aggregation and accumulation of damaged organelles. A reduction in autophagy activity has been observed in a number of ageing models and its up-regulation via pharmacological and genetic methods can alleviate age-related pathologies. In particular, autophagy induction can enhance clearance of toxic intracellular waste associated with neurodegenerative diseases and has been comprehensively demonstrated to improve lifespan in yeast, worms, flies, rodents and primates. The situation, however, has been complicated by the identification that autophagy up-regulation can also occur during ageing. Indeed, in certain situations, reduced autophagosome induction may actually provide benefits to ageing cells. Future studies will undoubtedly improve our understanding of exactly how the multiple signals that are integrated to control appropriate autophagy activity change during ageing, what affect this has on autophagy and to what extent autophagy contributes to age-associated pathologies. Identification of mechanisms that influence a healthy lifespan is of economic, medical and social importance in our 'ageing' world.

  17. Autophagy-Regulating microRNAs and Cancer

    PubMed Central

    Gozuacik, Devrim; Akkoc, Yunus; Ozturk, Deniz Gulfem; Kocak, Muhammed

    2017-01-01

    Macroautophagy (autophagy herein) is a cellular stress response and a survival pathway that is responsible for the degradation of long-lived proteins, protein aggregates, as well as damaged organelles in order to maintain cellular homeostasis. Consequently, abnormalities of autophagy are associated with a number of diseases, including Alzheimers’s disease, Parkinson’s disease, and cancer. According to the current view, autophagy seems to serve as a tumor suppressor in the early phases of cancer formation, yet in later phases, autophagy may support and/or facilitate tumor growth, spread, and contribute to treatment resistance. Therefore, autophagy is considered as a stage-dependent dual player in cancer. microRNAs (miRNAs) are endogenous non-coding small RNAs that negatively regulate gene expression at a post-transcriptional level. miRNAs control several fundamental biological processes, and autophagy is no exception. Furthermore, accumulating data in the literature indicate that dysregulation of miRNA expression contribute to the mechanisms of cancer formation, invasion, metastasis, and affect responses to chemotherapy or radiotherapy. Therefore, considering the importance of autophagy for cancer biology, study of autophagy-regulating miRNA in cancer will allow a better understanding of malignancies and lead to the development of novel disease markers and therapeutic strategies. The potential to provide study of some of these cancer-related miRNAs were also implicated in autophagy regulation. In this review, we will focus on autophagy, miRNA, and cancer connection, and discuss its implications for cancer biology and cancer treatment. PMID:28459042

  18. The cyclin-dependent kinase PITSLRE/CDK11 is required for successful autophagy.

    PubMed

    Wilkinson, Simon; Croft, Daniel R; O'Prey, Jim; Meedendorp, Arenda; O'Prey, Margaret; Dufès, Christine; Ryan, Kevin M

    2011-11-01

    (Macro)autophagy is a membrane-trafficking process that serves to sequester cellular constituents in organelles termed autophagosomes, which target their degradation in the lysosome. Autophagy operates at basal levels in all cells where it serves as a homeostatic mechanism to maintain cellular integrity. The levels and cargoes of autophagy can, however, change in response to a variety of stimuli, and perturbations in autophagy are known to be involved in the aetiology of various human diseases. Autophagy must therefore be tightly controlled. We report here that the Drosophila cyclin-dependent kinase PITSLRE is a modulator of autophagy. Loss of the human PITSLRE orthologue, CDK11, initially appears to induce autophagy, but at later time points CDK11 is critically required for autophagic flux and cargo digestion. Since PITSLRE/CDK11 regulates autophagy in both Drosophila and human cells, this kinase represents a novel phylogenetically conserved component of the autophagy machinery.

  19. Activated cathepsin L is associated with the switch from autophagy to apoptotic death of SH-SY5Y cells exposed to 6-hydroxydopamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lingyun, E-mail: lingyunlee@126.com; Experimental Center, The Second Affiliated Hospital of Soochow University, Suzhou 215004; Gao, Luyan

    Autophagy and apoptosis are common responses to pathological damage in the process of Parkinson's disease (PD), and lysosome dysfunction may contribute to the etiology of PD's neurodegenerative process. In this study, we demonstrated that the neurotoxin 6-hydroxydopamine (6-OHDA) increased autophagy in SH-SY5Y cells, as determined by detection of the lysosome marker lysosomal-associated membrane protein1, the autophagy protein light chain 3 (LC3)-II and the autophagy substrate P62 protein. Meanwhile, autophagy repression with 3-methyladenine accelerated the activation of caspase-3 and PARP and aggravated the cell apoptotic death induced by 6-OHDA. Furthermore, we found that 6-OHDA treatment resulted in a transient increase inmore » the intracellular and nuclear expression of cathepsin L (CTSL). The CTSL inhibitor, Z-FY-CHO, could promote autophagy, decrease accumulation of P62, and block activation of caspase-3 and PARP. Taken together, these results suggest that activation of autophagy may primarily be a protective process in SH-SY5Y cell death induced by 6-OHDA, and the nuclear translocation of CTSL could enhance the cell apoptotic cascade via disturbing autophagy-apoptotic systems in SH-SY5Y cells. Our findings highlight the potential role of CTSL in the cross talk between autophagy and apoptosis, which might be considered a therapeutic strategy for treatment of pathologic conditions associated with neurodegeneration. - Highlights: • Inhibition of autophagy aggravated the cell apoptotic death in SH-SY5Y cells. • Activation of cathepsin L impaired the autophagy pathway. • Activation of cathepsin L enhanced the cell apoptotic cascade. • Cathepsin L involves in the cross talk between autophagy and apoptosis.« less

  20. Bag3-Induced Autophagy Is Associated with Degradation of JCV Oncoprotein, T-Ag

    PubMed Central

    Sariyer, Ilker Kudret; Merabova, Nana; Patel, Prem Kumer; Knezevic, Tijana; Rosati, Alessandra; Turco, Maria C.; Khalili, Kamel

    2012-01-01

    JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag), in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag) family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases. PMID:22984599

  1. Bag3-induced autophagy is associated with degradation of JCV oncoprotein, T-Ag.

    PubMed

    Sariyer, Ilker Kudret; Merabova, Nana; Patel, Prem Kumer; Knezevic, Tijana; Rosati, Alessandra; Turco, Maria C; Khalili, Kamel

    2012-01-01

    JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag), in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag) family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases.

  2. Autophagy as an Emerging Common Pathomechanism in Inherited Peripheral Neuropathies

    PubMed Central

    Haidar, Mansour; Timmerman, Vincent

    2017-01-01

    The inherited peripheral neuropathies (IPNs) comprise a growing list of genetically heterogeneous diseases. With mutations in more than 80 genes being reported to cause IPNs, a wide spectrum of functional consequences is expected to follow this genotypic diversity. Hence, the search for a common pathomechanism among the different phenotypes has become the holy grail of functional research into IPNs. During the last decade, studies on several affected genes have shown a direct and/or indirect correlation with autophagy. Autophagy, a cellular homeostatic process, is required for the removal of cell aggregates, long-lived proteins and dead organelles from the cell in double-membraned vesicles destined for the lysosomes. As an evolutionarily highly conserved process, autophagy is essential for the survival and proper functioning of the cell. Recently, neuronal cells have been shown to be particularly vulnerable to disruption of the autophagic pathway. Furthermore, autophagy has been shown to be affected in various common neurodegenerative diseases of both the central and the peripheral nervous system including Alzheimer’s, Parkinson’s, and Huntington’s diseases. In this review we provide an overview of the genes involved in hereditary neuropathies which are linked to autophagy and we propose the disruption of the autophagic flux as an emerging common pathomechanism. We also shed light on the different steps of the autophagy pathway linked to these genes. Finally, we review the concept of autophagy being a therapeutic target in IPNs, and the possibilities and challenges of this pathway-specific targeting. PMID:28553203

  3. iLIR@viral: A web resource for LIR motif-containing proteins in viruses.

    PubMed

    Jacomin, Anne-Claire; Samavedam, Siva; Charles, Hannah; Nezis, Ioannis P

    2017-10-03

    Macroautophagy/autophagy has been shown to mediate the selective lysosomal degradation of pathogenic bacteria and viruses (xenophagy), and to contribute to the activation of innate and adaptative immune responses. Autophagy can serve as an antiviral defense mechanism but also as a proviral process during infection. Atg8-family proteins play a central role in the autophagy process due to their ability to interact with components of the autophagy machinery as well as selective autophagy receptors and adaptor proteins. Such interactions are usually mediated through LC3-interacting region (LIR) motifs. So far, only one viral protein has been experimentally shown to have a functional LIR motif, leaving open a vast field for investigation. Here, we have developed the iLIR@viral database ( http://ilir.uk/virus/ ) as a freely accessible web resource listing all the putative canonical LIR motifs identified in viral proteins. Additionally, we used a curated text-mining analysis of the literature to identify novel putative LIR motif-containing proteins (LIRCPs) in viruses. We anticipate that iLIR@viral will assist with elucidating the full complement of LIRCPs in viruses.

  4. Drosophila Fip200 is an essential regulator of autophagy that attenuates both growth and aging.

    PubMed

    Kim, Myungjin; Park, Hae Li; Park, Hwan-Woo; Ro, Seung-Hyun; Nam, Samuel G; Reed, John M; Guan, Jun-Lin; Lee, Jun Hee

    2013-08-01

    Autophagy-related 1 (Atg1)/Unc-51-like protein kinases (ULKs) are evolutionarily conserved proteins that play critical physiological roles in controlling autophagy, cell growth and neurodevelopment. RB1-inducible coiled-coil 1 (RB1CC1), also known as PTK2/FAK family-interacting protein of 200 kDa (FIP200) is a recently discovered binding partner of ULK1. Here we isolated the Drosophila RB1CC1/FIP200 homolog (Fip200/CG1347) and showed that it mediates Atg1-induced autophagy as a genetically downstream component in diverse physiological contexts. Fip200 loss-of-function mutants experienced severe mobility loss associated with neuronal autophagy defects and neurodegeneration. The Fip200 mutants were also devoid of both developmental and starvation-induced autophagy in salivary gland and fat body, while having no defects in axonal transport and projection in developing neurons. Interestingly, moderate downregulation of Fip200 accelerated both developmental growth and aging, accompanied by target of rapamycin (Tor) signaling upregulation. These results suggest that Fip200 is a critical downstream component of Atg1 and specifically mediates Atg1's autophagy-, aging- and growth-regulating functions.

  5. Drosophila Fip200 is an essential regulator of autophagy that attenuates both growth and aging

    PubMed Central

    Kim, Myungjin; Park, Hae Li; Park, Hwan-Woo; Ro, Seung-Hyun; Nam, Samuel G.; Reed, John M.; Guan, Jun-Lin; Lee, Jun Hee

    2013-01-01

    Autophagy-related 1 (Atg1)/Unc-51-like protein kinases (ULKs) are evolutionarily conserved proteins that play critical physiological roles in controlling autophagy, cell growth and neurodevelopment. RB1-inducible coiled-coil 1 (RB1CC1), also known as PTK2/FAK family-interacting protein of 200 kDa (FIP200) is a recently discovered binding partner of ULK1. Here we isolated the Drosophila RB1CC1/FIP200 homolog (Fip200/CG1347) and showed that it mediates Atg1-induced autophagy as a genetically downstream component in diverse physiological contexts. Fip200 loss-of-function mutants experienced severe mobility loss associated with neuronal autophagy defects and neurodegeneration. The Fip200 mutants were also devoid of both developmental and starvation-induced autophagy in salivary gland and fat body, while having no defects in axonal transport and projection in developing neurons. Interestingly, moderate downregulation of Fip200 accelerated both developmental growth and aging, accompanied by target of rapamycin (Tor) signaling upregulation. These results suggest that Fip200 is a critical downstream component of Atg1 and specifically mediates Atg1’s autophagy-, aging- and growth-regulating functions. PMID:23819996

  6. Regulation of autophagy by cytoplasmic p53.

    PubMed

    Tasdemir, Ezgi; Maiuri, M Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2008-06-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53(-/-) cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.

  7. Antimony trichloride induces a loss of cell viability via reactive oxygen species-dependent autophagy in A549 cells.

    PubMed

    Zhao, Xinyuan; Xing, Fengjun; Cong, Yewen; Zhuang, Yin; Han, Muxi; Wu, Zhiqiang; Yu, Shali; Wei, Haiyan; Wang, Xiaoke; Chen, Gang

    2017-12-01

    Antimony (Sb) is one of the most prevalent heavy metals and frequently leads to biological toxicity. Although autophagy is believed to be involved in metal-associated cytotoxicity, there is no evidence of its involvement following exposure. Moreover, the underlying mechanism of autophagy remains unclear. In this study, treatment with antimony trichloride caused autophagy in a dose- and time-dependent manner in A549 cells but did not affect the level of Atg5 or Atg7 mRNA expression. Furthermore, Sb enhanced autophagic flux while upregulating p62 gene and protein levels. The classic mechanistic target of rapamycin (mTOR) pathway is not involved in Sb-induced autophagy. However, Sb-induced autophagy and the upregulation of p62 were inhibited by treatment with the antioxidant N-acetylcysteine (NAC). Subsequent analyses demonstrated that the inhibition of autophagy protected A549 cells from a loss of cell viability, while the activation of autophagy by rapamycin had the opposite effect. These data suggest that reactive oxygen species-dependent autophagy mediates Sb-stimulated cell viability loss in A549 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress

    PubMed Central

    Liang, Jingjing; Sagum, Cari A.; Bedford, Mark T.; Sudol, Marius; Han, Ziying

    2017-01-01

    Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles. PMID:28076420

  9. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress.

    PubMed

    Liang, Jingjing; Sagum, Cari A; Bedford, Mark T; Sidhu, Sachdev S; Sudol, Marius; Han, Ziying; Harty, Ronald N

    2017-01-01

    Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.

  10. Kinases Involved in Both Autophagy and Mitosis.

    PubMed

    Li, Zhiyuan; Zhang, Xin

    2017-08-31

    Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.

  11. Kinases Involved in Both Autophagy and Mitosis

    PubMed Central

    2017-01-01

    Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations. PMID:28858266

  12. Induction of autophagy by depolarization of mitochondria.

    PubMed

    Lyamzaev, Konstantin G; Tokarchuk, Artem V; Panteleeva, Alisa A; Mulkidjanian, Armen Y; Skulachev, Vladimir P; Chernyak, Boris V

    2018-03-13

    Mitochondrial dysfunction plays a crucial role in the macroautophagy/autophagy cascade. In a recently published study Sun et al. described the induction of autophagy by the membranophilic triphenylphosphonium (TPP)-based cation 10-(6'-ubiquinonyl) decyltriphenylphosphonium (MitoQ) in HepG2 cells (Sun C, et al. "MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential [PMMP]", Autophagy 2017, 13:730-738.). Sun et al. suggested that MitoQ adsorbed to the inner mitochondrial membrane with its cationic moiety remaining in the intermembrane space, adding a large number of positive charges and establishing a "pseudo-mitochondrial membrane potential," which blocked the ATP synthase. Here we argue that the suggested mechanism for generation of the "pseudo-mitochondrial membrane potential" is physically implausible and contradicts earlier findings on the electrophoretic displacements of membranophilic cations within and through phospholipid membranes. We provide evidence that TPP-cations dissipated the mitochondrial membrane potential in HepG2 cells and that the induction of autophagy in carcinoma cells by TPP-cations correlated with the uncoupling of oxidative phosphorylation. The mild uncoupling of oxidative phosphorylation by various mitochondria-targeted penetrating cations may contribute to their reported therapeutic effects via inducing both autophagy and mitochondria-selective mitophagy.

  13. 17-AAG and Apoptosis, Autophagy, and Mitophagy in Canine Osteosarcoma Cell Lines.

    PubMed

    Massimini, M; Palmieri, C; De Maria, R; Romanucci, M; Malatesta, D; De Martinis, M; Maniscalco, L; Ciccarelli, A; Ginaldi, L; Buracco, P; Bongiovanni, L; Della Salda, L

    2017-05-01

    Canine osteosarcoma is highly resistant to current chemotherapy; thus, clarifying the mechanisms of tumor cell resistance to treatments is an urgent need. We tested the geldanamycin derivative 17-AAG (17-allylamino-17-demethoxygeldanamycin) prototype of Hsp90 (heat shock protein 90) inhibitors in 2 canine osteosarcoma cell lines, D22 and D17, derived from primary and metastatic tumors, respectively. With the aim to understand the interplay between cell death, autophagy, and mitophagy, in light of the dual effect of autophagy in regulating cancer cell viability and death, D22 and D17 cells were treated with different concentrations of 17-AAG (0.5 μM, 1 μM) for 24 and 48 hours. 17-AAG-induced apoptosis, necrosis, autophagy, and mitophagy were assessed by transmission electron microscopy, flow cytometry, and immunofluorescence. A simultaneous increase in apoptosis, autophagy, and mitophagy was observed only in the D22 cell line, while D17 cells showed low levels of apoptotic cell death. These results reveal differential cell response to drug-induced stress depending on tumor cell type. Therefore, pharmacological treatments based on proapoptotic chemotherapy in association with autophagy regulators would benefit from a predictive in vitro screening of the target cell type.

  14. Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration.

    PubMed

    Kaarniranta, Kai; Tokarz, Paulina; Koskela, Ali; Paterno, Jussi; Blasiak, Janusz

    2017-04-01

    Age-related macular degeneration (AMD) is an eye disease underlined by the degradation of retinal pigment epithelium (RPE) cells, photoreceptors, and choriocapillares, but the exact mechanism of cell death in AMD is not completely clear. This mechanism is important for prevention of and therapeutic intervention in AMD, which is a hardly curable disease. Present reports suggest that both apoptosis and pyroptosis (cell death dependent on caspase-1) as well as necroptosis (regulated necrosis dependent on the proteins RIPK3 and MLKL, caspase-independent) can be involved in the AMD-related death of RPE cells. Autophagy, a cellular clearing system, plays an important role in AMD pathogenesis, and this role is closely associated with the activation of the NLRP3 inflammasome, a central event for advanced AMD. Autophagy can play a role in apoptosis, pyroptosis, and necroptosis, but its contribution to AMD-specific cell death is not completely clear. Autophagy can be involved in the regulation of proteins important for cellular antioxidative defense, including Nrf2, which can interact with p62/SQSTM, a protein essential for autophagy. As oxidative stress is implicated in AMD pathogenesis, autophagy can contribute to this disease by deregulation of cellular defense against the stress. However, these and other interactions do not explain the mechanisms of RPE cell death in AMD. In this review, we present basic mechanisms of autophagy and its involvement in AMD pathogenesis and try to show a regulatory role of autophagy in RPE cell death. This can result in considering the genes and proteins of autophagy as molecular targets in AMD prevention and therapy.

  15. A comprehensive glossary of autophagy-related molecules and processes (2nd edition).

    PubMed

    Klionsky, Daniel J; Baehrecke, Eric H; Brumell, John H; Chu, Charleen T; Codogno, Patrice; Cuervo, Ana Marie; Debnath, Jayanta; Deretic, Vojo; Elazar, Zvulun; Eskelinen, Eeva-Liisa; Finkbeiner, Steven; Fueyo-Margareto, Juan; Gewirtz, David; Jäättelä, Marja; Kroemer, Guido; Levine, Beth; Melia, Thomas J; Mizushima, Noboru; Rubinsztein, David C; Simonsen, Anne; Thorburn, Andrew; Thumm, Michael; Tooze, Sharon A

    2011-11-01

    The study of autophagy is rapidly expanding, and our knowledge of the molecular mechanism and its connections to a wide range of physiological processes has increased substantially in the past decade. The vocabulary associated with autophagy has grown concomitantly. In fact, it is difficult for readers--even those who work in the field--to keep up with the ever-expanding terminology associated with the various autophagy-related processes. Accordingly, we have developed a comprehensive glossary of autophagy-related terms that is meant to provide a quick reference for researchers who need a brief reminder of the regulatory effects of transcription factors and chemical agents that induce or inhibit autophagy, the function of the autophagy-related proteins, and the roles of accessory components and structures that are associated with autophagy.

  16. Nuclear autophagy: An evolutionarily conserved mechanism of nuclear degradation in the cytoplasm.

    PubMed

    Luo, Majing; Zhao, Xueya; Song, Ying; Cheng, Hanhua; Zhou, Rongjia

    2016-11-01

    Macroautophagy/autophagy is a catabolic process that is essential for cellular homeostasis. Studies on autophagic degradation of cytoplasmic components have generated interest in nuclear autophagy. Although its mechanisms and roles have remained elusive, tremendous progress has been made toward understanding nuclear autophagy. Nuclear autophagy is evolutionarily conserved in eukaryotes that may target various nuclear components through a series of processes, including nuclear sensing, nuclear export, autophagic substrate encapsulation and autophagic degradation in the cytoplasm. However, the molecular processes and regulatory mechanisms involved in nuclear autophagy remain largely unknown. Numerous studies have highlighted the importance of nuclear autophagy in physiological and pathological processes such as cancer. This review focuses on current advances in nuclear autophagy and provides a summary of its research history and landmark discoveries to offer new perspectives.

  17. Endosome-mediated autophagy

    PubMed Central

    Kondylis, Vangelis; van Nispen tot Pannerden, Hezder E.; van Dijk, Suzanne; ten Broeke, Toine; Wubbolts, Richard; Geerts, Willie J.; Seinen, Cor; Mutis, Tuna; Heijnen, Harry F.G.

    2013-01-01

    Activation of TLR signaling has been shown to induce autophagy in antigen-presenting cells (APCs). Using high-resolution microscopy approaches, we show that in LPS-stimulated dendritic cells (DCs), autophagosomes emerge from MHC class II compartments (MIICs) and harbor both the molecular machinery for antigen processing and the autophagosome markers LC3 and ATG16L1. This ENdosome-Mediated Autophagy (ENMA) appears to be the major type of autophagy in DCs, as similar structures were observed upon established autophagy-inducing conditions (nutrient deprivation, rapamycin) and under basal conditions in the presence of bafilomycin A1. Autophagosome formation was not significantly affected in DCs expressing ATG4BC74A mutant and atg4b−/− bone marrow DCs, but the degradation of the autophagy substrate SQSTM1/p62 was largely impaired. Furthermore, we demonstrate that the previously described DC aggresome-like LPS-induced structures (DALIS) contain vesicular membranes, and in addition to SQSTM1 and ubiquitin, they are positive for LC3. LC3 localization on DALIS is independent of its lipidation. MIIC-driven autophagosomes preferentially engulf the LPS-induced SQSTM1-positive DALIS, which become later degraded in autolysosomes. DALIS-associated membranes also contain ATG16L1, ATG9 and the Q-SNARE VTI1B, suggesting that they may represent (at least in part) a membrane reservoir for autophagosome expansion. We propose that ENMA constitutes an unconventional, APC-specific type of autophagy, which mediates the processing and presentation of cytosolic antigens by MHC class II machinery, and/or the selective clearance of toxic by-products of elevated ROS/RNS production in activated DCs, thereby promoting their survival. PMID:23481895

  18. Non-canonical autophagy: an exception or an underestimated form of autophagy?

    PubMed

    Scarlatti, Francesca; Maffei, Roberta; Beau, Isabelle; Ghidoni, Riccardo; Codogno, Patrice

    2008-11-01

    Macroautophagy (hereafter called autophagy) is a dynamic and evolutionarily conserved process used to sequester and degrade cytoplasm and entire organelles in a sequestering vesicle with a double membrane, known as the autophagosome, which ultimately fuses with a lysosome to degrade its autophagic cargo. Recently, we have unraveled two distinct forms of autophagy in cancer cells, which we term canonical and non-canonical autophagy. In contrast to classical or canonical autophagy, non-canonical autophagy is a process that does not require the entire set of autophagy-related (Atg) proteins in particular Beclin 1, to form the autophagosome. Non-canonical autophagy is therefore not blocked by the knockdown of Beclin 1 or of its binding partner hVps34. Moreover overexpression of Bcl-2, which is known to block canonical starvation-induced autophagy by binding to Beclin 1, is unable to reverse the non-canonical autophagy triggered by the polyphenol resveratrol in the breast cancer MCF-7 cell line. In MCF-7 cells, at least, non-canonical autophagy is involved in the caspase-independent cell death induced by resveratrol.

  19. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury

    PubMed Central

    Zhang, Yi; Jiang, Ge; Sauler, Maor; Lee, Patty J.

    2013-01-01

    The lung endothelium is a major target for inflammatory and oxidative stress. Heme oxygenase-1 (HO-1) induction is a crucial defense mechanism during oxidant challenges, such as hyperoxia. The role of lung endothelial HO-1during hyperoxia in vivo is not well defined. We engineered lentiviral vectors with microRNA (miRNA) sequences controlled by vascular endothelium cadherin (VE-cad) to study the specific role of lung endothelial HO-1. Wild-type (WT) murine lung endothelial cells (MLECs) or WT mice were treated with lentivirus and exposed to hyperoxia (95% oxygen). We detected HO-1 knockdown (∼55%) specifically in the lung endothelium. MLECs and lungs showed approximately a 2-fold increase in apoptosis and ROS generation after HO-1 silencing. We also demonstrate for the first time that silencing endothelial HO-1 has the same effect on lung injury and survival as silencing HO-1 in multiple lung cell types and that HO-1 regulates caspase 3 activation and autophagy in endothelium during hyperoxia. These studies demonstrate the utility of endothelial-targeted gene silencing in vivo using lentiviral miRNA constructs to assess gene function and that endothelial HO-1 is an important determinant of survival during hyperoxia.—Zhang, Y., Jiang, G., Sauler, M., Lee, P. J. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury. PMID:23771928

  20. The inositol trisphosphate receptor in the control of autophagy.

    PubMed

    Criollo, Alfredo; Vicencio, José Miguel; Tasdemir, Ezgi; Maiuri, M Chiara; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    The second messenger myo-inositol-1,4,5-trisphosphate (IP(3)) acts on the IP(3) receptor (IP(3)R), an IP(3)-activated Ca(2+) channel of the endoplasmic reticulum (ER). The IP(3)R agonist IP(3) inhibits starvation-induced autophagy. The IP(3)R antagonist xestospongin B induces autophagy in human cells through a pathway that requires the obligate contribution of Beclin-1, Atg5, Atg10, Atg12 and hVps34, yet is inhibited by ER-targeted Bcl-2 or Bcl-XL, two proteins that physically interact with IP(3)R. Autophagy can also be induced by depletion of the IP(3)R by small interfering RNAs. Autophagy induction by IP(3)R blockade cannot be explained by changes in steady state levels of Ca(2+) in the endoplasmic reticulum (ER) and the cytosol. Autophagy induction by IP(3)R blockade is effective in cells lacking the obligate mediator of ER stress IRE1. In contrast, IRE1 is required for autophagy induced by ER stress-inducing agents such a tunicamycin or thapsigargin. These findings suggest that there are several distinct pathways through which autophagy can be initiated at the level of the ER.

  1. Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die.

    PubMed

    Hwang, Jee-Yeon; Gertner, Michael; Pontarelli, Fabrizio; Court-Vazquez, Brenda; Bennett, Michael Vander Laan; Ofengeim, Dimitry; Zukin, Ruth Suzanne

    2017-02-01

    The mammalian target of rapamycin (mTOR) is a key regulator of cell growth, autophagy, translation, and survival. Dysregulation of mTOR signaling is associated with cancer, diabetes, and autism. However, a role for mTOR signaling in neuronal death is not well delineated. Here we show that global ischemia triggers a transient increase in mTOR phosphorylation at S2448, whereas decreasing p-mTOR and functional activity in selectively vulnerable hippocampal CA1 neurons. The decrease in mTOR coincides with an increase in biochemical markers of autophagy, pS317-ULK-1, pS14-Beclin-1, and LC3-II, a decrease in the cargo adaptor p62, and an increase in autophagic flux, a functional readout of autophagy. This is significant in that autophagy, a catabolic process downstream of mTORC1, promotes the formation of autophagosomes that capture and target cytoplasmic components to lysosomes. Inhibitors of the lysosomal (but not proteasomal) pathway rescued the ischemia-induced decrease in mTOR, consistent with degradation of mTOR via the autophagy/lysosomal pathway. Administration of the mTORC1 inhibitor rapamycin or acute knockdown of mTOR promotes autophagy and attenuates ischemia-induced neuronal death, indicating an inverse causal relation between mTOR, autophagy, and neuronal death. Our findings identify a novel and previously unappreciated mechanism by which mTOR self-regulates its own levels in hippocampal neurons in a clinically relevant model of ischemic stroke.

  2. Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells.

    PubMed

    Sotthibundhu, Areechun; McDonagh, Katya; von Kriegsheim, Alexander; Garcia-Munoz, Amaya; Klawiter, Agnieszka; Thompson, Kerry; Chauhan, Kapil Dev; Krawczyk, Janusz; McInerney, Veronica; Dockery, Peter; Devine, Michael J; Kunath, Tilo; Barry, Frank; O'Brien, Timothy; Shen, Sanbing

    2016-11-15

    Cellular reprogramming is a stressful process, which requires cells to engulf somatic features and produce and maintain stemness machineries. Autophagy is a process to degrade unwanted proteins and is required for the derivation of induced pluripotent stem cells (iPSCs). However, the role of autophagy during iPSC maintenance remains undefined. Human iPSCs were investigated by microscopy, immunofluorescence, and immunoblotting to detect autophagy machinery. Cells were treated with rapamycin to activate autophagy and with bafilomycin to block autophagy during iPSC maintenance. High concentrations of rapamycin treatment unexpectedly resulted in spontaneous formation of round floating spheres of uniform size, which were analyzed for differentiation into three germ layers. Mass spectrometry was deployed to reveal altered protein expression and pathways associated with rapamycin treatment. We demonstrate that human iPSCs express high basal levels of autophagy, including key components of APMKα, ULK1/2, BECLIN-1, ATG13, ATG101, ATG12, ATG3, ATG5, and LC3B. Block of autophagy by bafilomycin induces iPSC death and rapamycin attenuates the bafilomycin effect. Rapamycin treatment upregulates autophagy in iPSCs in a dose/time-dependent manner. High concentration of rapamycin reduces NANOG expression and induces spontaneous formation of round and uniformly sized embryoid bodies (EBs) with accelerated differentiation into three germ layers. Mass spectrometry analysis identifies actin cytoskeleton and adherens junctions as the major targets of rapamycin in mediating iPSC detachment and differentiation. High levels of basal autophagy activity are present during iPSC derivation and maintenance. Rapamycin alters expression of actin cytoskeleton and adherens junctions, induces uniform EB formation, and accelerates differentiation. IPSCs are sensitive to enzyme dissociation and require a lengthy differentiation time. The shape and size of EBs also play a role in the heterogeneity of

  3. METACASPASE9 modulates autophagy to confine cell death to the target cells during Arabidopsis vascular xylem differentiation

    PubMed Central

    Escamez, Sacha; André, Domenique; Zhang, Bo; Bollhöner, Benjamin; Pesquet, Edouard; Tuominen, Hannele

    2016-01-01

    ABSTRACT We uncovered that the level of autophagy in plant cells undergoing programmed cell death determines the fate of the surrounding cells. Our approach consisted of using Arabidopsis thaliana cell cultures capable of differentiating into two different cell types: vascular tracheary elements (TEs) that undergo programmed cell death (PCD) and protoplast autolysis, and parenchymatic non-TEs that remain alive. The TE cell type displayed higher levels of autophagy when expression of the TE-specific METACASPASE9 (MC9) was reduced using RNAi (MC9-RNAi). Misregulation of autophagy in the MC9-RNAi TEs coincided with ectopic death of the non-TEs, implying the existence of an autophagy-dependent intercellular signalling from within the TEs towards the non-TEs. Viability of the non-TEs was restored when AUTOPHAGY2 (ATG2) was downregulated specifically in MC9-RNAi TEs, demonstrating the importance of autophagy in the spatial confinement of cell death. Our results suggest that other eukaryotic cells undergoing PCD might also need to tightly regulate their level of autophagy to avoid detrimental consequences for the surrounding cells. PMID:26740571

  4. TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease.

    PubMed

    Wang, Tao; Lao, Uyen; Edgar, Bruce A

    2009-09-07

    Target of rapamycin (TOR) signaling is a regulator of cell growth. TOR activity can also enhance cell death, and the TOR inhibitor rapamycin protects cells against proapoptotic stimuli. Autophagy, which can protect against cell death, is negatively regulated by TOR, and disruption of autophagy by mutation of Atg5 or Atg7 can lead to neurodegeneration. However, the implied functional connection between TOR signaling, autophagy, and cell death or degeneration has not been rigorously tested. Using the Drosophila melanogaster visual system, we show in this study that hyperactivation of TOR leads to photoreceptor cell death in an age- and light-dependent manner and that this is because of TOR's ability to suppress autophagy. We also find that genetically inhibiting TOR or inducing autophagy suppresses cell death in Drosophila models of Huntington's disease and phospholipase C (norpA)-mediated retinal degeneration. Thus, our data indicate that TOR induces cell death by suppressing autophagy and provide direct genetic evidence that autophagy alleviates cell death in several common types of neurodegenerative disease.

  5. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

    PubMed

    Liu, Guan-Ting; Kung, Hsiu-Ni; Chen, Chung-Kuan; Huang, Cheng; Wang, Yung-Li; Yu, Cheng-Pu; Lee, Chung-Pei

    2018-02-26

    Although a vesicular nucleocytoplasmic transport system is believed to exist in eukaryotic cells, the features of this pathway are mostly unknown. Here, we report that the BFRF1 protein of the Epstein-Barr virus improves vesicular transport of nuclear envelope (NE) to facilitate the translocation and clearance of nuclear components. BFRF1 expression induces vesicles that selectively transport nuclear components to the cytoplasm. With the use of aggregation-prone proteins as tools, we found that aggregated nuclear proteins are dispersed when these BFRF1-induced vesicles are formed. BFRF1-containing vesicles engulf the NE-associated aggregates, exit through from the NE, and putatively fuse with autophagic vacuoles. Chemical treatment and genetic ablation of autophagy-related factors indicate that autophagosome formation and autophagy-linked FYVE protein-mediated autophagic proteolysis are involved in this selective clearance of nuclear proteins. Remarkably, vesicular transport, elicited by BFRF1, also attenuated nuclear aggregates accumulated in neuroblastoma cells. Accordingly, induction of NE-derived vesicles by BFRF1 facilitates nuclear protein translocation and clearance, suggesting that autophagy-coupled transport of nucleus-derived vesicles can be elicited for nuclear component catabolism in mammalian cells.-Liu, G.-T., Kung, H.-N., Chen, C.-K., Huang, C., Wang, Y.-L., Yu, C.-P., Lee, C.-P. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

  6. Targeting BCR-ABL-Independent TKI Resistance in Chronic Myeloid Leukemia by mTOR and Autophagy Inhibition.

    PubMed

    Mitchell, Rebecca; Hopcroft, Lisa E M; Baquero, Pablo; Allan, Elaine K; Hewit, Kay; James, Daniel; Hamilton, Graham; Mukhopadhyay, Arunima; O'Prey, Jim; Hair, Alan; Melo, Junia V; Chan, Edmond; Ryan, Kevin M; Maguer-Satta, Véronique; Druker, Brian J; Clark, Richard E; Mitra, Subir; Herzyk, Pawel; Nicolini, Franck E; Salomoni, Paolo; Shanks, Emma; Calabretta, Bruno; Holyoake, Tessa L; Helgason, G Vignir

    2018-05-01

    Imatinib and second-generation tyrosine kinase inhibitors (TKIs) nilotinib and dasatinib have statistically significantly improved the life expectancy of chronic myeloid leukemia (CML) patients; however, resistance to TKIs remains a major clinical challenge. Although ponatinib, a third-generation TKI, improves outcomes for patients with BCR-ABL-dependent mechanisms of resistance, including the T315I mutation, a proportion of patients may have or develop BCR-ABL-independent resistance and fail ponatinib treatment. By modeling ponatinib resistance and testing samples from these CML patients, it is hoped that an alternative drug target can be identified and inhibited with a novel compound. Two CML cell lines with acquired BCR-ABL-independent resistance were generated following culture in ponatinib. RNA sequencing and gene ontology (GO) enrichment were used to detect aberrant transcriptional response in ponatinib-resistant cells. A validated oncogene drug library was used to identify US Food and Drug Administration-approved drugs with activity against TKI-resistant cells. Validation was performed using bone marrow (BM)-derived cells from TKI-resistant patients (n = 4) and a human xenograft mouse model (n = 4-6 mice per group). All statistical tests were two-sided. We show that ponatinib-resistant CML cells can acquire BCR-ABL-independent resistance mediated through alternative activation of mTOR. Following transcriptomic analysis and drug screening, we highlight mTOR inhibition as an alternative therapeutic approach in TKI-resistant CML cells. Additionally, we show that catalytic mTOR inhibitors induce autophagy and demonstrate that genetic or pharmacological inhibition of autophagy sensitizes ponatinib-resistant CML cells to death induced by mTOR inhibition in vitro (% number of colonies of control[SD], NVP-BEZ235 vs NVP-BEZ235+HCQ: 45.0[17.9]% vs 24.0[8.4]%, P = .002) and in vivo (median survival of NVP-BEZ235- vs NVP-BEZ235+HCQ-treated mice: 38.5 days vs 47

  7. Selective autophagy mediated by autophagic adapter proteins

    PubMed Central

    Lamark, Trond

    2011-01-01

    Mounting evidence suggests that autophagy is a more selective process than originally anticipated. The discovery and characterization of autophagic adapters, like p62 and NBR1, has provided mechanistic insight into this process. p62 and NBR1 are both selectively degraded by autophagy and able to act as cargo receptors for degradation of ubiquitinated substrates. A direct interaction between these autophagic adapters and the autophagosomal marker protein LC3, mediated by a so-called LIR (LC3-interacting region) motif, their inherent ability to polymerize or aggregate as well as their ability to specifically recognize substrates are required for efficient selective autophagy. These three required features of autophagic cargo receptors are evolutionarily conserved and also employed in the yeast cytoplasm-to-vacuole targeting (Cvt) pathway and in the degradation of P granules in C. elegans. Here, we review the mechanistic basis of selective autophagy in mammalian cells discussing the degradation of misfolded proteins, p62 bodies, aggresomes, mitochondria and invading bacteria. The emerging picture of selective autophagy affecting the regulation of cell signaling with consequences for oxidative stress responses, tumorigenesis and innate immunity is also addressed. PMID:21189453

  8. Autophagy is dispensable for Kmt2a/Mll-Mllt3/Af9 AML maintenance and anti-leukemic effect of chloroquine.

    PubMed

    Chen, Xiaoyi; Clark, Jason; Wunderlich, Mark; Fan, Cuiqing; Davis, Ashley; Chen, Song; Guan, Jun-Lin; Mulloy, James C; Kumar, Ashish; Zheng, Yi

    2017-05-04

    Recently, macroautophagy/autophagy has emerged as a promising target in various types of solid tumor treatment. However, the impact of autophagy on acute myeloid leukemia (AML) maintenance and the validity of autophagy as a viable target in AML therapy remain unclear. Here we show that Kmt2a/Mll-Mllt3/Af9 AML (MA9-AML) cells have high autophagy flux compared with normal bone marrow cells, but autophagy-specific targeting, either through Rb1cc1-disruption to abolish autophagy initiation, or via Atg5-disruption to prevent phagophore (the autophagosome precursor) membrane elongation, does not affect the growth or survival of MA9-AML cells, either in vitro or in vivo. Mechanistically, neither Atg5 nor Rb1cc1 disruption impairs endolysosome formation or survival signaling pathways. The autophagy inhibitor chloroquine shows autophagy-independent anti-leukemic effects in vitro but has no efficacy in vivo likely due to limited achievable drug efficacy in blood. Further, vesicular exocytosis appears to mediate chloroquine resistance in AML cells, and exocytotic inhibition significantly enhances the anti-leukemic effect of chloroquine. Thus, chloroquine can induce leukemia cell death in vitro in an autophagy-independent manner but with inadequate efficacy in vivo, and vesicular exocytosis is a possible mechanism of chloroquine resistance in MA9-AML. This study also reveals that autophagy-specific targeting is unlikely to benefit MA9-AML therapy.

  9. Basal autophagy prevents autoactivation or enhancement of inflammatory signals by targeting monomeric MyD88.

    PubMed

    Into, Takeshi; Horie, Toshi; Inomata, Megumi; Gohda, Jin; Inoue, Jun-Ichiro; Murakami, Yukitaka; Niida, Shumpei

    2017-04-21

    Autophagy, the processes of delivery of intracellular components to lysosomes, regulates induction of inflammation. Inducible macroautophagy degrades inflammasomes and dysfunctional mitochondria to downregulate inflammatory signals. Nonetheless, the effects of constitutive basal autophagy on inflammatory signals are largely unknown. Here, we report a previously unknown effect of basal autophagy. Lysosomal inhibition induced weak inflammatory signals in the absence of a cellular stimulus and in the presence of a nutrient supply, and their induction was impaired by MyD88 deficiency. During lysosomal inhibition, MyD88 was accumulated, and overabundant MyD88 autoactivated downstream signaling or enhanced TLR/IL-1R-mediated signaling. MyD88 is probably degraded via basal microautophagy because macroautophagy inhibitors, ATG5 deficiency, and an activator of chaperone-mediated autophagy did not affect MyD88. Analysis using a chimeric protein whose monomerization/dimerization can be switched revealed that monomeric MyD88 is susceptible to degradation. Immunoprecipitation of monomeric MyD88 revealed its interaction with TRAF6. In TRAF6-deficient cells, degradation of basal MyD88 was enhanced, suggesting that TRAF6 participates in protection from basal autophagy. Thus, basal autophagy lowers monomeric MyD88 expression, and thereby autoactivation of inflammatory signals is prevented. Given that impairment of lysosomes occurs in various settings, our results provide novel insights into the etiology of inflammatory signals that affect consequences of inflammation.

  10. Autophagy in Saccharomyces cerevisiae requires the monomeric GTP-binding proteins, Arl1 and Ypt6.

    PubMed

    Yang, Shu; Rosenwald, Anne G

    2016-10-02

    Macroautophagy/autophagy is a cellular degradation process that sequesters organelles or proteins into a double-membrane structure called the phagophore; this transient compartment matures into an autophagosome, which then fuses with the lysosome or vacuole to allow hydrolysis of the cargo. Factors that control membrane traffic are also essential for each step of autophagy. Here we demonstrate that 2 monomeric GTP-binding proteins in Saccharomyces cerevisiae, Arl1 and Ypt6, which belong to the Arf/Arl/Sar protein family and the Rab family, respectively, and control endosome-trans-Golgi traffic, are also necessary for starvation-induced autophagy under high temperature stress. Using established autophagy-specific assays we found that cells lacking either ARL1 or YPT6, which exhibit synthetic lethality with one another, were unable to undergo autophagy at an elevated temperature, although autophagy proceeds normally at normal growth temperature; specifically, strains lacking one or the other of these genes are unable to construct the autophagosome because these 2 proteins are required for proper traffic of Atg9 to the phagophore assembly site (PAS) at the restrictive temperature. Using degron technology to construct an inducible arl1Δ ypt6Δ double mutant, we demonstrated that cells lacking both genes show defects in starvation-inducted autophagy at the permissive temperature. We also found Arl1 and Ypt6 participate in autophagy by targeting the Golgi-associated retrograde protein (GARP) complex to the PAS to regulate the anterograde trafficking of Atg9. Our data show that these 2 membrane traffic regulators have novel roles in autophagy.

  11. Parkinson disease: a role for autophagy?

    PubMed

    Yang, Qian; Mao, Zixu

    2010-08-01

    Autophagy is a term used to describe the process by which lysosomes degrade intracellular components. Known originally as an adaptive response to nutrient deprivation, autophagy has now been recognized to play important roles in several human disorders including neurodegenerative diseases. Experimental results from genetic, cellular, and toxicological studies indicate that many of the etiological factors associated with Parkinson disease (PD) can perturb the autophagic process in various model systems. Thus, the emerging data support the view that dysregulation of autophagy may play a critical role in the pathogenic process of PD.

  12. Temporal Pattern and Crosstalk of Necroptosis Markers with Autophagy and Apoptosis Associated Proteins in Ischemic Hippocampus.

    PubMed

    Ryan, Fari; Khodagholi, Fariba; Dargahi, Leila; Minai-Tehrani, Dariush; Ahmadiani, Abolhassan

    2018-01-08

    Necroptosis, a novel type of programmed cell death, has been recently implicated as a possible mechanism for cerebral ischemia-reperfusion (I/R) injury. We herein studied time-dependent changes of necroptosis markers along with apoptosis- and autophagy-associated proteins in rat hippocampus at 1, 3, 6, 12, 24, and 48 h after global cerebral I/R injury. Furthermore, to determine the cross talk between autophagy and necroptosis, we examined the effects of pretreatment with bafilomycin-A1 (Baf-A1), as a late-stage autophagy inhibitor, on necroptosis. Highest levels of receptor-interacting protein 1 and 3 (RIP1 and RIP3), as key mediators of necroptosis, were observed at 24 h after reperfusion. Alongside, activity of glutamate dehydrogenase (GLUD1), downstream enzyme of RIP3, was increased. Peak time of necroptosis was subsequent to caspase-3-dependent cell death that peaked at 12 h of reperfusion but concurrent with autophagy. Administration of Baf-A1 could attenuate necroptosis, verified by decrease in RIP1 and RIP3 protein levels, as well as GLUD1 activity. However, there was no significant change in caspase-3-dependent cell death. Taken together, our results highlight that global cerebral I/R activates necroptosis that could be triggered by autophagy and interacts reversely with caspase-3-dependent apoptosis.

  13. Here, there be dragons: charting autophagy-related alterations in human tumors.

    PubMed

    Lebovitz, Chandra B; Bortnik, Svetlana B; Gorski, Sharon M

    2012-03-01

    Macroautophagy (or autophagy) is a catabolic cellular process that is both homeostatic and stress adaptive. Normal cells rely on basal levels of autophagy to maintain cellular integrity (via turnover of long-lived proteins and damaged organelles) and increased levels of autophagy to buoy cell survival during various metabolic stresses (via nutrient and energy provision through lysosomal degradation of cytoplasmic components). Autophagy can function in both tumor suppression and tumor progression, and is under investigation in clinical trials as a novel target for anticancer therapy. However, its role in cancer pathogenesis has yet to be fully explored. In particular, it remains unknown whether in vitro observations will be applicable to human cancer patients. Another outstanding question is whether there exists tumor-specific selection for alterations in autophagy function. In this review, we survey reported mutations in autophagy genes and key autophagy regulators identified in human tumor samples and summarize the literature regarding expression levels of autophagy genes and proteins in various cancer tissues. Although it is too early to draw inferences from this collection of in vivo studies of autophagy-related alterations in human cancers, their results highlight the challenges that must be overcome before we can accurately assess the scope of autophagy's predicted role in tumorigenesis.

  14. Nrf2-p62 autophagy pathway and its response to oxidative stress in hepatocellular carcinoma.

    PubMed

    Bartolini, Desirée; Dallaglio, Katiuscia; Torquato, Pierangelo; Piroddi, Marta; Galli, Francesco

    2018-03-01

    Deregulation of autophagy is proposed to play a key pathogenic role in hepatocellular carcinoma (HCC), the most common primary malignancy of the liver and the third leading cause of cancer death. Autophagy is an evolutionarily conserved catabolic process activated to degrade and recycle cell's components. Under stress conditions, such as oxidative stress and nutrient deprivation, autophagy is an essential survival pathway that operates in harmony with other stress response pathways. These include the redox-sensitive transcription complex Nrf2-Keap1 that controls groups of genes with roles in detoxification and antioxidant processes, intermediary metabolism, and cell cycle regulation. Recently, a functional association between a dysfunctional autophagy and Nrf2 pathway activation has been identified in HCC. This appears to occur through the physical interaction of the autophagy adaptor p62 with the Nrf2 inhibitor Keap1, thus leading to increased stabilization and transcriptional activity of Nrf2, a key event in reprogramming metabolic and stress response pathways of proliferating hepatocarcinoma cells. These emerging molecular mechanisms and the therapeutic perspective of targeting Nrf2-p62 interaction in HCC are discussed in this paper along with the prognostic value of autophagy in this type of cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Viruses Associated with Human Cancer

    PubMed Central

    McLaughlin-Drubin, Margaret E.; Munger, Karl

    2008-01-01

    It is estimated that viral infections contribute to 15–20% of all human cancers. As obligatory intracellular parasites, viruses encode proteins that reprogram host cellular signaling pathways that control proliferation, differentiation, cell death, genomic integrity, and recognition by the immune system. These cellular processes are governed by complex and redundant regulatory networks and are surveyed by sentinel mechanisms that ensure that aberrant cells are removed from the proliferative pool. Given that the genome size of a virus is highly restricted to ensure packaging within an infectious structure, viruses must target cellular regulatory nodes with limited redundancy and need to inactivate surveillance mechanisms that would normally recognize and extinguish such abnormal cells. In many cases, key proteins in these same regulatory networks are subject to mutation in non-virally associated diseases and cancers. Oncogenic viruses have thus served as important experimental models to identify and molecularly investigate such cellular networks. These include the discovery of oncogenes and tumor suppressors, identification of regulatory networks that are critical for maintenance of genomic integrity, and processes that govern immune surveillance. PMID:18201576

  16. Polycystin-2-dependent control of cardiomyocyte autophagy.

    PubMed

    Criollo, Alfredo; Altamirano, Francisco; Pedrozo, Zully; Schiattarella, Gabriele G; Li, Dan L; Rivera-Mejías, Pablo; Sotomayor-Flores, Cristian; Parra, Valentina; Villalobos, Elisa; Battiprolu, Pavan K; Jiang, Nan; May, Herman I; Morselli, Eugenia; Somlo, Stefan; de Smedt, Humbert; Gillette, Thomas G; Lavandero, Sergio; Hill, Joseph A

    2018-05-01

    Considerable evidence points to critical roles of intracellular Ca 2+ homeostasis in the modulation and control of autophagic activity. Yet, underlying molecular mechanisms remain unknown. Mutations in the gene (pkd2) encoding polycystin-2 (PC2) are associated with autosomal dominant polycystic kidney disease (ADPKD), the most common inherited nephropathy. PC2 has been associated with impaired Ca 2+ handling in cardiomyocytes and indirect evidence suggests that this protein may be involved in autophagic control. Here, we investigated the role for PC2 as an essential regulator of Ca 2+ homeostasis and autophagy. Activation of autophagic flux triggered by mTOR inhibition either pharmacologically (rapamycin) or by means of nutrient depletion was suppressed in cells depleted of PC2. Moreover, cardiomyocyte-specific PC2 knockout mice (αMhc-cre;Pkd2 F/F mice) manifested impaired autophagic flux in the setting of nutrient deprivation. Stress-induced autophagy was blunted by intracellular Ca 2+ chelation using BAPTA-AM, whereas removal of extracellular Ca 2+ had no effect, pointing to a role of intracellular Ca 2+ homeostasis in stress-induced cardiomyocyte autophagy. To determine the link between stress-induced autophagy and PC2-induced Ca 2+ mobilization, we over-expressed either wild-type PC2 (WT) or a Ca 2+ -channel deficient PC2 mutant (PC2-D509V). PC2 over-expression increased autophagic flux, whereas PC2-D509V expression did not. Importantly, autophagy induction triggered by PC2 over-expression was attenuated by BAPTA-AM, supporting a model of PC2-dependent control of autophagy through intracellular Ca 2+ . Furthermore, PC2 ablation was associated with impaired Ca 2+ handling in cardiomyocytes marked by partial depletion of sarcoplasmic reticulum Ca 2+ stores. Finally, we provide evidence that Ca 2+ -mediated autophagy elicited by PC2 is a mechanism conserved across multiple cell types. Together, this study unveils PC2 as a novel regulator of autophagy acting

  17. Cytoplastic Glyceraldehyde-3-Phosphate Dehydrogenases Interact with ATG3 to Negatively Regulate Autophagy and Immunity in Nicotiana benthamiana

    PubMed Central

    Han, Shaojie; Wang, Yan; Zheng, Xiyin; Jia, Qi; Zhao, Jinping; Bai, Fan; Hong, Yiguo; Liu, Yule

    2015-01-01

    Autophagy as a conserved catabolic pathway can respond to reactive oxygen species (ROS) and plays an important role in degrading oxidized proteins in plants under various stress conditions. However, how ROS regulates autophagy in response to oxidative stresses is largely unknown. Here, we show that autophagy-related protein 3 (ATG3) interacts with the cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPCs) to regulate autophagy in Nicotiana benthamiana plants. We found that oxidative stress inhibits the interaction of ATG3 with GAPCs. Silencing of GAPCs significantly activates ATG3-dependent autophagy, while overexpression of GAPCs suppresses autophagy in N. benthamiana plants. Moreover, silencing of GAPCs enhances N gene-mediated cell death and plant resistance against both incompatible pathogens Tobacco mosaic virus and Pseudomonas syringae pv tomato DC3000, as well as compatible pathogen P. syringae pv tabaci. These results indicate that GAPCs have multiple functions in the regulation of autophagy, hypersensitive response, and plant innate immunity. PMID:25829441

  18. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging.

    PubMed

    Lemasters, John J

    2005-01-01

    In autophagy, portions of cytoplasm are sequestered into autophagosomes and delivered to lysosomes for degradation. Long assumed to be a random process, increasing evidence suggests that autophagy of mitochondria, peroxisomes, and possibly other organelles is selective. A recent paper (Kissova et al., J. Biol. Chem. 2004;279:39068-39074) shows in yeast that a specific outer membrane protein, Uth1p, is required for efficient mitochondrial autophagy. For this selective autophagy of mitochondria, we propose the term "mitophagy" to emphasize the non-random nature of the process. Mitophagy may play a key role in retarding accumulation of somatic mutations of mtDNA with aging.

  19. Seeking new anti-cancer agents from autophagy-regulating natural products.

    PubMed

    Hua, Fang; Shang, Shuang; Hu, Zhuo-Wei

    2017-04-01

    Natural products are an important original source of many widely used drugs, including anti-cancer drugs. Early research efforts for seeking anti-cancer therapy from the natural products are mainly focused on the compounds with cytotoxicity capability. The good examples include vinblastine, vincristine, the camptothecin derivatives; topotecan, irinotecan, epipodophyllotoxin derivatives and paclitaxel. In a recent decade, the fundamental progression has been made in the understanding of molecular and cellular mechanisms regarding tumor initiation, metastasis, therapeutic resistance, immune escape, and relapse, which provide a great opportunity for the development of new mechanism-based anticancer drugs, especially drugs against new molecular and cellular targets. Autophagy, a critical cell homeostasis mechanism and promising drug target involved in a verity of human diseases including cancer, can be modulated by many compounds derived from natural products. In this review, we'll give a short introduction of autophagy and discuss the roles of autophagy in the tumorigenesis and progression. And then, we summarize the accumulated evidences to show the anti-tumor effects of several compounds derived from natural products through modulation of autophagy activity.

  20. Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow

    PubMed Central

    Vion, Anne-Clemence; Hammoutene, Adel; Poisson, Johanne; Lasselin, Juliette; Devue, Cecile; Pic, Isabelle; Dupont, Nicolas; Busse, Johanna; Stark, Konstantin; Lafaurie-Janvore, Julie; Barakat, Abdul I.; Loyer, Xavier; Souyri, Michele; Viollet, Benoit; Julia, Pierre; Tedgui, Alain; Codogno, Patrice; Rautou, Pierre-Emmanuel

    2017-01-01

    It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins to maintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α–induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation. PMID:28973855

  1. Autophagy in lung disease pathogenesis and therapeutics

    PubMed Central

    Ryter, Stefan W.; Choi, Augustine M.K.

    2015-01-01

    Autophagy, a cellular pathway for the degradation of damaged organelles and proteins, has gained increasing importance in human pulmonary diseases, both as a modulator of pathogenesis and as a potential therapeutic target. In this pathway, cytosolic cargos are sequestered into autophagosomes, which are delivered to the lysosomes where they are enzymatically degraded and then recycled as metabolic precursors. Autophagy exerts an important effector function in the regulation of inflammation, and immune system functions. Selective pathways for autophagic degradation of cargoes may have variable significance in disease pathogenesis. Among these, the autophagic clearance of bacteria (xenophagy) may represent a crucial host defense mechanism in the pathogenesis of sepsis and inflammatory diseases. Our recent studies indicate that the autophagic clearance of mitochondria, a potentially protective program, may aggravate the pathogenesis of chronic obstructive pulmonary disease by activating cell death programs. We report similar findings with respect to the autophagic clearance of cilia components, which can contribute to airways dysfunction in chronic lung disease. In certain diseases such as pulmonary hypertension, autophagy may confer protection by modulating proliferation and cell death. In other disorders, such as idiopathic pulmonary fibrosis and cystic fibrosis, impaired autophagy may contribute to pathogenesis. In lung cancer, autophagy has multiple consequences by limiting carcinogenesis, modulating therapeutic effectiveness, and promoting tumor cell survival. In this review we highlight the multiple functions of autophagy and its selective autophagy subtypes that may be of significance to the pathogenesis of human disease, with an emphasis on lung disease and therapeutics. PMID:25617802

  2. Effect of PPARG on AGEs-induced AKT/MTOR signaling-associated human chondrocytes autophagy.

    PubMed

    Wang, Zhao-Jun; Zhang, Hai-Bin; Chen, Cheng; Huang, Hao; Liang, Jian-Xia

    2018-02-17

    Accumulation of advanced glycation end products (AGEs) in articular cartilage is thought to represent a major risk factor for osteoarthritis development. In this study we aimed to probe the role of AGEs in human chondrocytes and to determine the impact of the peroxisome proliferator-activated receptor-γ (PPARG) on AGEs-induced cell autophagy. Cell viability was measured after human chondrocytes were treated with different concentrations of AGEs with or without the PPARG inhibitor, T0070907, or agonist, pioglitazone. Autophagy activation markers (MAP2LC3, BECN1 and SQSTM1/P62), expression of PPARG and the phosphorylation levels of Akt/MTOR were determined by Western blotting; autophagosome formation was analyzed by transmission electron microscopy (TEM); autophagic flux was detected with mRFP-GFP-LC3 tandem construct. Low doses of AGEs over a short amount of time stimulated chondrocyte proliferation and autophagy by limiting phosphorylation of Akt/MTOR signaling. The addition of PPARG inhibitor T0070907 lead to defective autophagy. High dose and long exposure to AGEs inhibited cell viability and autophagy by increasing phosphorylation levels of Akt/MTOR signaling. The agonist, pioglitazone, was shown to protect cell autophagy in a dose-dependent manner. Our findings suggest AGEs can downregulate PPARG and that PPARG maintains cell viability by activating the Akt/MTOR signaling pathway as well as inducing chondrocyte autophagy. © 2018 International Federation for Cell Biology.

  3. CIP2A oncoprotein controls cell growth and autophagy through mTORC1 activation

    PubMed Central

    Puustinen, Pietri; Rytter, Anna; Mortensen, Monika; Kohonen, Pekka; Moreira, José M.

    2014-01-01

    mTORC1 (mammalian target of rapamycin complex 1) integrates information regarding availability of nutrients and energy to coordinate protein synthesis and autophagy. Using ribonucleic acid interference screens for autophagy-regulating phosphatases in human breast cancer cells, we identify CIP2A (cancerous inhibitor of PP2A [protein phosphatase 2A]) as a key modulator of mTORC1 and autophagy. CIP2A associates with mTORC1 and acts as an allosteric inhibitor of mTORC1-associated PP2A, thereby enhancing mTORC1-dependent growth signaling and inhibiting autophagy. This regulatory circuit is reversed by ubiquitination and p62/SQSTM1-dependent autophagic degradation of CIP2A and subsequent inhibition of mTORC1 activity. Consistent with CIP2A’s reported ability to protect c-Myc against proteasome-mediated degradation, autophagic degradation of CIP2A upon mTORC1 inhibition leads to destabilization of c-Myc. These data characterize CIP2A as a distinct regulator of mTORC1 and reveals mTORC1-dependent control of CIP2A degradation as a mechanism that links mTORC1 activity with c-Myc stability to coordinate cellular metabolism, growth, and proliferation. PMID:24590173

  4. Aldehyde dedydrogenase-2 plays a beneficial role in ameliorating chronic alcohol-induced hepatic steatosis and inflammation through regulation of autophagy.

    PubMed

    Guo, Rui; Xu, Xihui; Babcock, Sara A; Zhang, Yingmei; Ren, Jun

    2015-03-01

    Mitochondrial aldehyde dehydrogenase (ALDH2) plays a critical role in the detoxification of the ethanol metabolite acetaldehyde. This study was designed to examine the impact of global ALDH2 overexpression on alcohol-induced hepatic steatosis. Wild type Friend virus B (FVB) and ALDH2 transgenic mice were placed on a 4% alcohol or control diet for 12 weeks. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin and cholesterol, hepatic triglyceride, steatosis, fat metabolism-related proteins, pro-inflammatory cytokines, glutathione (GSH), oxidized glutathione (GSSG), autophagy and autophagy signalling were examined. The role of autophagy was evaluated in alcohol dehydrogenase 1 (ADH1)-transfected human hepatocellular liver carcinoma cells (VA-13) treated with or without the autophagy inducer rapamycin and lysosomal inhibitors. Chronic alcohol intake led to elevated AST-, ALT-levels, bilirubin, AST/ALT ratio, cholesterol, hepatic triglycerides and hepatic fat deposition as evidenced by H&E and Oil Red O staining. Hepatic fat deposition was associated with disturbed levels of fat metabolism-related proteins (fatty acid synthase, SCD1), upregulated interleukin-6, TNF-α, cyclooxygenase, oxidative stress, and loss of autophagy, effects which were attenuated or ablated by the ALDH2 transgene. Moreover, ethanol (100 mM) and acetaldehyde (100 and 500 μM) increased levels of IL-6 and IFN-γ, and suppressed autophagy in VA-13 cells, effects which were markedly alleviated by rapamycin. In addition, lysosomal inhibitors mimicked ethanol-induced p62 accumulation with little additive effect with ethanol. Ethanol significantly suppressed LC3 conversion in the presence of lysosomal inhibitors. In summary, our results revealed that ALDH2 plays a beneficial role in ameliorating chronic alcohol intake-induced hepatic steatosis and inflammation through regulation of autophagy. Copyright © 2014 European Association for the Study of the Liver

  5. Autophagy is the predominant process induced by arsenite in human lymphoblastoid cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolt, Alicia M.; Byrd, Randi M.; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.ed

    2010-05-01

    Arsenic is a widespread environmental toxicant with a diverse array of molecular targets and associated diseases, making the identification of the critical mechanisms and pathways of arsenic-induced cytotoxicity a challenge. In a variety of experimental models, over a range of arsenic exposure levels, apoptosis is a commonly identified arsenic-induced cytotoxic pathway. Human lymphoblastoid cell lines (LCL) have been used as a model system in arsenic toxicology for many years, but the exact mechanism of arsenic-induced cytotoxicity in LCL is still unknown. We investigated the cytotoxicity of sodium arsenite in LCL 18564 using a set of complementary markers for cell deathmore » pathways. Markers indicative of apoptosis (phosphatidylserine externalization, PARP cleavage, and sensitivity to caspase inhibition) were uniformly negative in arsenite exposed cells. Interestingly, electron microscopy, acidic vesicle fluorescence, and expression of LC3 in LCL 18564 identified autophagy as an arsenite-induced process that was associated with cytotoxicity. Autophagy, a cellular programmed response that is associated with both cellular stress adaptation as well as cell death appears to be the predominant process in LCL cytotoxicity induced by arsenite. It is unclear, however, whether LCL autophagy is an effector mechanism of arsenite cytotoxicity or alternatively a cellular compensatory mechanism. The ability of arsenite to induce autophagy in lymphoblastoid cell lines introduces a potentially novel mechanistic explanation of the well-characterized in vitro and in vivo toxicity of arsenic to lymphoid cells.« less

  6. Dissecting the Functions of Autophagy in Breast Cancer-Associated Fibroblasts

    DTIC Science & Technology

    2015-10-01

    normally provide structural integrity and extracellular matrix remodeling required for proper mammary gland development, transition to an “activated...autophagy deficient MMFs into the “cleared” mammary glands of C57B/6 mice. Clearing the mammary gland (removing the mammary epithelium ) allows the...right 4th inguinal mammary gland of each female is cleared of mammary epithelium and 500,000 MMFs, either autophagy competent (lsl-RFP+/+;AdCre) or

  7. Dengue Virus Subverts Host Innate Immunity by Targeting Adaptor Protein MAVS

    PubMed Central

    He, Zhenjian; Zhu, Xun; Wen, Weitao; Yuan, Jie; Hu, Yiwen; Chen, Jiahui; An, Shu; Dong, Xinhuai; Lin, Cuiji; Yu, Jianchen; Wu, Jueheng; Yang, Yi; Cai, Junchao; Li, Jun

    2016-01-01

    ABSTRACT Dengue virus (DENV) is the most common mosquito-borne virus infecting humans and is currently a serious global health challenge. To establish infection in its host cells, DENV must subvert the production and/or antiviral effects of interferon (IFN). The aim of this study was to understand the mechanisms by which DENV suppresses IFN production. We determined that DENV NS4A interacts with mitochondrial antiviral signaling protein (MAVS), which was previously found to activate NF-κB and IFN regulatory factor 3 (IRF3), thus inducing type I IFN in the mitochondrion-associated endoplasmic reticulum membranes (MAMs). We further demonstrated that NS4A is associated with the N-terminal CARD-like (CL) domain and the C-terminal transmembrane (TM) domain of MAVS. This association prevented the binding of MAVS to RIG-I, resulting in the repression of RIG-I-induced IRF3 activation and, consequently, the abrogation of IFN production. Collectively, our findings illustrate a new molecular mechanism by which DENV evades the host immune system and suggest new targets for anti-DENV strategies. IMPORTANCE Type I interferon (IFN) constitutes the first line of host defense against invading viruses. To successfully establish infection, dengue virus (DENV) must counteract either the production or the function of IFN. The mechanism by which DENV suppresses IFN production is poorly understood and characterized. In this study, we demonstrate that the DENV NS4A protein plays an important role in suppressing interferon production through binding MAVS and disrupting the RIG-I–MAVS interaction in mitochondrion-associated endoplasmic reticulum membranes (MAMs). Our study reveals that MAVS is a novel host target of NS4A and provides a molecular mechanism for DENV evasion of the host innate immune response. These findings have important implications for understanding the pathogenesis of DENV and may provide new insights into using NS4A as a therapeutic and/or prevention target. PMID

  8. Autophagy in the eye: Development, degeneration, and aging.

    PubMed

    Boya, Patricia; Esteban-Martínez, Lorena; Serrano-Puebla, Ana; Gómez-Sintes, Raquel; Villarejo-Zori, Beatriz

    2016-11-01

    Autophagy is a catabolic pathway that promotes the degradation and recycling of cellular components. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. In response to stress, autophagy mediates the degradation of cell components, which are recycled to generate the nutrients and building blocks required to sustain cellular homeostasis. Moreover, it plays an important role in cellular quality control, particularly in neurons, in which the total burden of altered proteins and damaged organelles cannot be reduced by redistribution to daughter cells through cell division. Research has only begun to examine the role of autophagy in the visual system. The retina, a light-sensitive tissue, detects and transmits electrical impulses through the optic nerve to the visual cortex in the brain. Both the retina and the eye are exposed to a variety of environmental insults and stressors, including genetic mutations and age-associated alterations that impair their function. Here, we review the main studies that have sought to explain autophagy's importance in visual function. We describe the role of autophagy in retinal development and cell differentiation, and discuss the implications of autophagy dysregulation both in physiological aging and in important diseases such as age-associated macular degeneration and glaucoma. We also address the putative role of autophagy in promoting photoreceptor survival and discuss how selective autophagy could provide alternative means of protecting retinal cells. The findings reviewed here underscore the important role of autophagy in maintaining proper retinal function and highlight novel therapeutic approaches for blindness and other diseases of the eye. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. DARPin-targeting of Measles Virus: Unique Bispecificity, Effective Oncolysis, and Enhanced Safety

    PubMed Central

    Friedrich, Katrin; Hanauer, Jan RH; Prüfer, Steffen; Münch, Robert C; Völker, Iris; Filippis, Christodoulos; Jost, Christian; Hanschmann, Kay-Martin; Cattaneo, Roberto; Peng, Kah-Whye; Plückthun, Andreas; Buchholz, Christian J; Cichutek, Klaus; Mühlebach, Michael D

    2013-01-01

    Oncolytic virotherapy is an emerging treatment modality that uses replication-competent viruses to destroy cancers. Many naturally occurring viruses have a preferential, although nonexclusive, tropism for tumors and tumor cells. In addition, specific targeting of cancer cells can be achieved at the virus entry level. We optimized retargeting of cell entry by elongating the measles virus attachment protein with designed ankyrin repeat proteins (DARPins), while simultaneously ablating entry through the natural receptors. DARPin-targeted viruses were strongly attenuated in off-target tissue, thereby enhancing safety, but completely eliminated tumor xenografts. Taking advantage of the unique properties of DARPins of being fused without generating folding problems, we generated a virus simultaneous targeting two different tumor markers. The bispecific virus retained the original oncolytic efficacy, while providing proof of concept for a strategy to counteract issues of resistance development. Thus, DARPin-targeting opens new prospects for the development of personalized, targeted therapeutics. PMID:23380817

  10. An executioner caspase regulates autophagy.

    PubMed

    Hou, Y C Claire; Hannigan, Adrienne M; Gorski, Sharon M

    2009-05-01

    The relationships between autophagy and cell death are complex and still not well understood. To advance our understanding of the molecular connections between autophagy and apoptosis, we performed an RNAi-based screen of Drosophila melanogaster apoptosis-related genes for their ability to enhance or suppress starvation-induced autophagy. We discovered that six apoptosis-related genes, Dcp-1, hid, Bruce, buffy, debcl and p53 as well as Ras/Raf/MAPK signaling pathway components play a role in autophagy regulation in Drosophila cultured cells. Our study also provides the first in vivo evidence that the effector caspase Dcp-1 and IAP protein Bruce regulate both autophagy and starvation-induced cell death at two nutrient status checkpoints, germarium and mid-oogenesis, in the Drosophila ovary. Analysis of degenerating mid-stage egg chambers in DmAtg1 and DmAtg7 mutants reveal a reduction in TUNEL staining though DNA condensation appears unaffected. Based on these and previous findings, we propose here a putative molecular pathway that might regulate the sensitivity threshold of apoptotic and autophagic responses. We also discuss multiple interpretations of the Atg mutant egg chamber TUNEL phenotype that are consistent with a possible role for autophagy in either suppressing or enhancing the efficiency of cell degradation and/or promoting cell clearance associated with the death process.

  11. Berberine inhibits enterovirus 71 replication by downregulating the MEK/ERK signaling pathway and autophagy.

    PubMed

    Wang, Huiqiang; Li, Ke; Ma, Linlin; Wu, Shuo; Hu, Jin; Yan, Haiyan; Jiang, Jiandong; Li, Yuhuan

    2017-01-11

    The MEK-ERK signaling pathway and autophagy play an important role for enterovirus71(EV71) replication. Inhibition of MEK-ERK signaling pathway and autophagy is shown to impair EV71 replication. Berberine (BBR), an isoquinoline alkaloid isolated from Berberis vulgaris L., has been reported to have ability to regulate this signaling pathway and autophagy. Herein, we want to determine whether berberine can inhibit EV71 infection by downregulating the MEK/ERK signaling pathway and autophagy. The antiviral effect of berberine was determined by cytopathic effect (CPE) assay, western blotting assay and qRT-PCR assay. The mechanism of BBR anti-virus was determined by western blotting assay and immunofluorescence assay. We showed that berberine does-dependently reduced EV71 RNA and protein synthesis, which was, at least in part, the result of inhibition of activation of MEK/ERK signaling pathway. Furthermore, we found that berberine suppressed the EV71-induced autophagy by activating AKT protein and inhibiting the phosphorylation of JNK and PI3KIII. BBR inhibited EV71 replication by downregulating autophagy and MEK/ERK signaling pathway. These findings suggest that BBR may be a potential agent or supplement against EV71 infection.

  12. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death.

    PubMed

    Armstrong, Jane L; Hill, David S; McKee, Christopher S; Hernandez-Tiedra, Sonia; Lorente, Mar; Lopez-Valero, Israel; Eleni Anagnostou, Maria; Babatunde, Fiyinfoluwa; Corazzari, Marco; Redfern, Christopher P F; Velasco, Guillermo; Lovat, Penny E

    2015-06-01

    Although the global incidence of cutaneous melanoma is increasing, survival rates for patients with metastatic disease remain <10%. Novel treatment strategies are therefore urgently required, particularly for patients bearing BRAF/NRAS wild-type tumors. Targeting autophagy is a means to promote cancer cell death in chemotherapy-resistant tumors, and the aim of this study was to test the hypothesis that cannabinoids promote autophagy-dependent apoptosis in melanoma. Treatment with Δ(9)-Tetrahydrocannabinol (THC) resulted in the activation of autophagy, loss of cell viability, and activation of apoptosis, whereas cotreatment with chloroquine or knockdown of Atg7, but not Beclin-1 or Ambra1, prevented THC-induced autophagy and cell death in vitro. Administration of Sativex-like (a laboratory preparation comprising equal amounts of THC and cannabidiol (CBD)) to mice bearing BRAF wild-type melanoma xenografts substantially inhibited melanoma viability, proliferation, and tumor growth paralleled by an increase in autophagy and apoptosis compared with standard single-agent temozolomide. Collectively, our findings suggest that THC activates noncanonical autophagy-mediated apoptosis of melanoma cells, suggesting that cytotoxic autophagy induction with Sativex warrants clinical evaluation for metastatic disease.

  13. Regulation of the autophagy protein LC3 by phosphorylation

    PubMed Central

    Cherra, Salvatore J.; Kulich, Scott M.; Uechi, Guy; Balasubramani, Manimalha; Mountzouris, John; Day, Billy W.

    2010-01-01

    Macroautophagy is a major catabolic pathway that impacts cell survival, differentiation, tumorigenesis, and neurodegeneration. Although bulk degradation sustains carbon sources during starvation, autophagy contributes to shrinkage of differentiated neuronal processes. Identification of autophagy-related genes has spurred rapid advances in understanding the recruitment of microtubule-associated protein 1 light chain 3 (LC3) in autophagy induction, although braking mechanisms remain less understood. Using mass spectrometry, we identified a direct protein kinase A (PKA) phosphorylation site on LC3 that regulates its participation in autophagy. Both metabolic (rapamycin) and pathological (MPP+) inducers of autophagy caused dephosphorylation of endogenous LC3. The pseudophosphorylated LC3 mutant showed reduced recruitment to autophagosomes, whereas the nonphosphorylatable mutant exhibited enhanced puncta formation. Finally, autophagy-dependent neurite shortening induced by expression of a Parkinson disease–associated G2019S mutation in leucine-rich repeat kinase 2 was inhibited by dibutyryl–cyclic adenosine monophosphate, cytoplasmic expression of the PKA catalytic subunit, or the LC3 phosphorylation mimic. These data demonstrate a role for phosphorylation in regulating LC3 activity. PMID:20713600

  14. Autophagy regulates UBC9 levels during viral-mediated tumorigenesis

    PubMed Central

    Mattoscio, Domenico; Casadio, Chiara; Miccolo, Claudia; Maffini, Fausto; Raimondi, Andrea; Tacchetti, Carlo; Gheit, Tarik; Tagliabue, Marta; Galimberti, Viviana E.; De Lorenzi, Francesca; Chiesa, Fausto; Ansarin, Mohssen; Tommasino, Massimo

    2017-01-01

    UBC9, the sole E2-conjugating enzyme required for SUMOylation, is a key regulator of essential cellular functions and, as such, is frequently altered in cancers. Along these lines, we recently reported that its expression gradually increases during early stages of human papillomavirus (HPV)-mediated cervical lesions transformation. However, a better understanding of how UBC9 is exploited by transforming viral oncoproteins is still needed. In the present study, we show that in human samples HPV drives UBC9 up-regulation also in very early steps of head and neck tumorigenesis, pointing to the important role for UBC9 in the HPV-mediated carcinogenic program. Moreover, using HPV-infected pre-cancerous tissues and primary human keratinocytes as the natural host of the virus, we investigate the pathological meaning and the cellular mechanisms responsible for UBC9 de-regulation in an oncoviral context. Our results show that UBC9 overexpression is promoted by transforming viral proteins to increase host cells’ resistance to apoptosis. In addition, ultrastuctural, pharmacological and genetic approaches crucially unveil that UBC9 is physiologically targeted by autophagy in human cells. However, the presence of HPV E6/E7 oncoproteins negatively impacts the autophagic process through selective inhibition of autophagosome-lysosome fusion, finally leading to p53 dependent UBC9 accumulation during viral-induced cellular transformation. Therefore, our study elucidates how UBC9 is manipulated by HPV oncoproteins, details the physiological mechanism by which UBC9 is degraded in cells, and identifies how HPV E6/E7 impact on autophagy. These findings point to UBC9 and autophagy as novel hallmarks of HPV oncogenesis, and open innovative avenues towards the treatment of HPV-related malignancies. PMID:28253371

  15. The autophagic tumor stroma model of cancer or "battery-operated tumor growth": A simple solution to the autophagy paradox.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Whitaker-Menezes, Diana; Pavlides, Stephanos; Chiavarina, Barbara; Bonuccelli, Gloria; Casey, Trimmer; Tsirigos, Aristotelis; Migneco, Gemma; Witkiewicz, Agnieszka; Balliet, Renee; Mercier, Isabelle; Wang, Chengwang; Flomenberg, Neal; Howell, Anthony; Lin, Zhao; Caro, Jaime; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2010-11-01

    The role of autophagy in tumorigenesis is controversial. Both autophagy inhibitors (chloroquine) and autophagy promoters (rapamycin) block tumorigenesis by unknown mechanism(s). This is called the "Autophagy Paradox". We have recently reported a simple solution to this paradox. We demonstrated that epithelial cancer cells use oxidative stress to induce autophagy in the tumor microenvironment. As a consequence, the autophagic tumor stroma generates recycled nutrients that can then be used as chemical building blocks by anabolic epithelial cancer cells. This model results in a net energy transfer from the tumor stroma to epithelial cancer cells (an energy imbalance), thereby promoting tumor growth. This net energy transfer is both unilateral and vectorial, from the tumor stroma to the epithelial cancer cells, representing a true host-parasite relationship. We have termed this new paradigm "The Autophagic Tumor Stroma Model of Cancer Cell Metabolism" or "Battery-Operated Tumor Growth". In this sense, autophagy in the tumor stroma serves as a "battery" to fuel tumor growth, progression and metastasis, independently of angiogenesis. Using this model, the systemic induction of autophagy will prevent epithelial cancer cells from using recycled nutrients, while the systemic inhibiton of autophagy will prevent stromal cells from producing recycled nutrients-both effectively "starving" cancer cells. We discuss the idea that tumor cells could become resistant to the systemic induction of autophagy, by the upregulation of natural endogenous autophagy inhibitors in cancer cells. Alternatively, tumor cells could also become resistant to the systemic induction of autophagy, by the genetic silencing/deletion of pro-autophagic molecules, such as Beclin1. If autophagy resistance develops in cancer cells, then the systemic inhibition of autophagy would provide a therapeutic solution to this type of drug resistance, as it would still target autophagy in the tumor stroma. As such, an

  16. Increased leptin by hypoxic-preconditioning promotes autophagy of mesenchymal stem cells and protects them from apoptosis.

    PubMed

    Wang, LiHan; Hu, XinYang; Zhu, Wei; Jiang, Zhi; Zhou, Yu; Chen, PanPan; Wang, JianAn

    2014-02-01

    Autophagy is the basic catabolic progress involved in cell degradation of unnecessary or dysfunctional cellular components. It has been proven that autophagy could be utilized for cell survival under stresses. Hypoxic-preconditioning (HPC) could reduce apoptosis induced by ischemia and hypoxia/serum deprivation (H/SD) in bone marrow-derived mesenchymal stem cells (BMSCs). Previous studies have shown that both leptin signaling and autophagy activation were involved in the protection against apoptosis induced by various stress, including ischemia-reperfusion. However, it has never been fully understood how leptin was involved in the protective effects conferred by autophagy. In the present study, we demonstrated that HPC can induce autophagy in BMSCs by increased LC3-II/LC3-I ratio and autophagosome formation. Interestingly, similar effects were also observed when BMSCs were pretreated with rapamycin. The beneficial effects offered by HPC were absent when BMSCs were incubated with autophagy inhibitor, 3-methyladenine (3-MA). In addition, down-regulated leptin expression by leptin-shRNA also attenuated HPC-induced autophagy in BMSCs, which in turn was associated with increased apoptosis after exposed to sustained H/SD. Furthermore, increased AMP-activated protein kinase phosphorylation and decreased mammalian target of rapamycin phosphorylation that were observed in HPC-treated BMSCs can also be attenuated by down-regulation of leptin expression. Our data suggests that leptin has impact on HPC-induced autophagy in BMSCs which confers protection against apoptosis under H/SD, possibly through modulating both AMPK and mTOR pathway.

  17. The globally disseminated M1T1 clone of Group A Streptococcus evades autophagy for intracellular replication

    PubMed Central

    Barnett, Timothy C.; Liebl, David; Seymour, Lisa M.; Gillen, Christine M.; Lim, Jin Yan; LaRock, Christopher N.; Davies, Mark R.; Schulz, Benjamin L.; Nizet, Victor; Teasdale, Rohan D.; Walker, Mark J.

    2014-01-01

    SUMMARY Autophagy is reported to be an important innate immune defence against the intracellular bacterial pathogen Group A Streptococcus (GAS). However, the GAS strains examined to-date belong to serotypes infrequently associated with human disease. We find that the globally disseminated serotype M1T1 clone of GAS can evade autophagy and replicate efficiently in the cytosol of infected cells. Cytosolic M1T1 GAS (strain 5448), but not M6 GAS (strain JRS4), avoids ubiquitylation and recognition by the host autophagy marker LC3 and ubiquitin-LC3 adaptor proteins NDP52, p62 and NBR1. Expression of SpeB, a streptococcal cysteine protease, is critical for this process, as an isogenic M1T1 ΔspeB mutant is targeted to autophagy and attenuated for intracellular replication. SpeB degrades p62, NDP52 and NBR1 in vitro and within the host cell cytosol. These results uncover a proteolytic mechanism utilized by GAS to escape the host autophagy pathway which may underpin the success of the M1T1 clone. PMID:24331465

  18. Rilmenidine promotes MTOR-independent autophagy in the mutant SOD1 mouse model of amyotrophic lateral sclerosis without slowing disease progression

    PubMed Central

    Perera, Nirma D.; Sheean, Rebecca K.; Lau, Chew L.; Shin, Yea Seul; Beart, Philip M.; Horne, Malcolm K.; Turner, Bradley J.

    2018-01-01

    ABSTRACT Macroautophagy/autophagy is the main intracellular catabolic pathway in neurons that eliminates misfolded proteins, aggregates and damaged organelles associated with ageing and neurodegeneration. Autophagy is regulated by both MTOR-dependent and -independent pathways. There is increasing evidence that autophagy is compromised in neurodegenerative disorders, which may contribute to cytoplasmic sequestration of aggregation-prone and toxic proteins in neurons. Genetic or pharmacological modulation of autophagy to promote clearance of misfolded proteins may be a promising therapeutic avenue for these disorders. Here, we demonstrate robust autophagy induction in motor neuronal cells expressing SOD1 or TARDBP/TDP-43 mutants linked to amyotrophic lateral sclerosis (ALS). Treatment of these cells with rilmenidine, an anti-hypertensive agent and imidazoline-1 receptor agonist that induces autophagy, promoted autophagic clearance of mutant SOD1 and efficient mitophagy. Rilmenidine administration to mutant SOD1G93A mice upregulated autophagy and mitophagy in spinal cord, leading to reduced soluble mutant SOD1 levels. Importantly, rilmenidine increased autophagosome abundance in motor neurons of SOD1G93A mice, suggesting a direct action on target cells. Despite robust induction of autophagy in vivo, rilmenidine worsened motor neuron degeneration and symptom progression in SOD1G93A mice. These effects were associated with increased accumulation and aggregation of insoluble and misfolded SOD1 species outside the autophagy pathway, and severe mitochondrial depletion in motor neurons of rilmenidine-treated mice. These findings suggest that rilmenidine treatment may drive disease progression and neurodegeneration in this mouse model due to excessive mitophagy, implying that alternative strategies to beneficially stimulate autophagy are warranted in ALS. PMID:28980850

  19. Targeted Deletion of Autophagy Genes Atg5 or Atg7 in the Chondrocytes Promotes Caspase-Dependent Cell Death and Leads to Mild Growth Retardation.

    PubMed

    Vuppalapati, Karuna K; Bouderlique, Thibault; Newton, Phillip T; Kaminskyy, Vitaliy O; Wehtje, Henrik; Ohlsson, Claes; Zhivotovsky, Boris; Chagin, Andrei S

    2015-12-01

    Longitudinal bone growth takes place in epiphyseal growth plates located in the ends of long bones. The growth plate consists of chondrocytes traversing from the undifferentiated (resting zone) to the terminally differentiated (hypertrophic zone) stage. Autophagy is an intracellular catabolic process of lysosome-dependent recycling of intracellular organelles and protein complexes. Autophagy is activated during nutritionally depleted or hypoxic conditions in order to facilitate cell survival. Chondrocytes in the middle of the growth plate are hypoxic and nutritionally depleted owing to the avascular nature of the growth plate. Accordingly, autophagy may facilitate their survival. To explore the role of autophagy in chondrocyte survival and constitutional bone growth, we generated mice with cartilage-specific ablation of either Atg5 (Atg5cKO) or Atg7 (Atg7cKO) by crossing Atg5 or Atg7 floxed mice with cartilage-specific collagen type 2 promoter-driven Cre. Both Atg5cKO and Atg7cKO mice showed growth retardation associated with enhanced chondrocyte cell death and decreased cell proliferation. Similarly, inhibition of autophagy by Bafilomycin A1 (Baf) or 3-methyladenine (3MA) promoted cell death in cultured slices of human growth plate tissue. To delineate the underlying mechanisms we employed ex vivo cultures of mouse metatarsal bones and RCJ3.IC5.18 rat chondrogenic cell line. Baf or 3MA impaired metatarsal bone growth associated with processing of caspase-3 and massive cell death. Similarly, treatment of RCJ3.IC5.18 chondrogenic cells by Baf also showed massive cell death and caspase-3 cleavage. This was associated with activation of caspase-9 and cytochrome C release. Altogether, our data suggest that autophagy is important for chondrocyte survival, and inhibition of this process leads to stunted growth and caspase-dependent death of chondrocytes. © 2015 American Society for Bone and Mineral Research.

  20. Nuclear Export Inhibition Enhances HLH-30/TFEB Activity, Autophagy, and Lifespan.

    PubMed

    Silvestrini, Melissa J; Johnson, Joseph R; Kumar, Anita V; Thakurta, Tara G; Blais, Karine; Neill, Zachary A; Marion, Sarah W; St Amand, Victoria; Reenan, Robert A; Lapierre, Louis R

    2018-05-15

    Transcriptional modulation of the process of autophagy involves the transcription factor HLH-30/TFEB. In order to systematically determine the regulatory network of HLH-30/TFEB, we performed a genome-wide RNAi screen in C. elegans and found that silencing the nuclear export protein XPO-1/XPO1 enhances autophagy by significantly enriching HLH-30 in the nucleus, which is accompanied by proteostatic benefits and improved longevity. Lifespan extension via xpo-1 silencing requires HLH-30 and autophagy, overlapping mechanistically with several established longevity models. Selective XPO1 inhibitors recapitulated the effect on autophagy and lifespan observed by silencing xpo-1 and protected ALS-afflicted flies from neurodegeneration. XPO1 inhibition in HeLa cells enhanced TFEB nuclear localization, autophagy, and lysosome biogenesis without affecting mTOR activity, revealing a conserved regulatory mechanism for HLH-30/TFEB. Altogether, our study demonstrates that altering the nuclear export of HLH-30/TFEB can regulate autophagy and establishes the rationale of targeting XPO1 to stimulate autophagy in order to prevent neurodegeneration. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. C-myb Regulates Autophagy for Pulp Vitality in Glucose Oxidative Stress.

    PubMed

    Lee, Y H; Kim, H S; Kim, J S; Yu, M K; Cho, S D; Jeon, J G; Yi, H K

    2016-04-01

    Diabetes mellitus is closely related to oral-complicated diseases by oxidative stress. This study investigates whether cellular myeloblastosis (c-myb) could protect human dental pulp cells against glucose oxidative stress and regulate autophagy activity for pulp vitality. Diabetes mellitus was induced by streptozotocin in Sprague-Dawley rats, and their pulp tissue in teeth was analyzed in terms of pulp cavity and molecules by hematoxylin and eosin and immunohistochemistry staining. Human dental pulp cells were serially subcultured and treated with glucose oxidase in the presence of elevated glucose to generate glucose oxidative stress. The replication-deficient adenovirus c-myb and small interfering RNA c-myb were introduced for c-myb expression. The pulp tissue from the diabetic rats was structurally different from normal tissue in terms of narrow pulp capacity, reduced c-myb, and dentinogenesis molecules. Glucose oxidase treatment decreased c-myb and dentinogenesis molecules (bone morphogenetic protein 2 and 7, dentin matrix protein 1, and dentin sialophosphoprotein) in human dental pulp cells. However, overexpression of c-myb by adenovirus c-myb increased dentinogenesis, autophagy molecules (autophagy protein 5, microtubule-associated protein 1A/1B-light chain 3, and Beclin-1), and cell survival via p-AMPK/AKT signaling even with glucose oxidative stress. In contrast, the lack of c-myb decreased the above molecules and cell survival by downregulating p-AMPK/AKT signaling. The results indicate that diabetes leads to irreversible damage to dental pulp, which is related to downexpression of autophagy via the p-AMPK/AKT pathway by decline of c-myb. The findings of this study provide a new insight that c-myb could ameliorate autophagy activity and that it is applicable for monitoring complicated diseases of dental pulp. The involvement of c-myb in pulp pathology could serve a therapeutic target in oral-complicated diseases. © International & American Associations

  2. Phytochemicals as potent modulators of autophagy for cancer therapy.

    PubMed

    Moosavi, Mohammad Amin; Haghi, Atousa; Rahmati, Marveh; Taniguchi, Hiroaki; Mocan, Andrei; Echeverría, Javier; Gupta, Vijai K; Tzvetkov, Nikolay T; Atanasov, Atanas G

    2018-06-28

    The dysregulation of autophagy is involved in the pathogenesis of a broad range of diseases, and accordingly universal research efforts have focused on exploring novel compounds with autophagy-modulating properties. While a number of synthetic autophagy modulators have been identified as promising cancer therapy candidates, autophagy-modulating phytochemicals have also attracted attention as potential treatments with minimal side effects. In this review, we firstly highlight the importance of autophagy and its relevance in the pathogenesis and treatment of cancer. Subsequently, we present the data on common phytochemicals and their mechanism of action as autophagy modulators. Finally, we discuss the challenges associated with harnessing the autophagic potential of phytochemicals for cancer therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Autophagy and Alpha-Synuclein: Relevance to Parkinson's Disease and Related Synucleopathies.

    PubMed

    Xilouri, Maria; Brekk, Oeystein Roed; Stefanis, Leonidas

    2016-02-01

    Evidence from human postmortem material, transgenic mice, and cellular/animal models of PD link alpha-synuclein accumulation to alterations in the autophagy lysosomal pathway. Conversely, alpha-synuclein mutations related to PD pathogenesis, as well as post-translational modifications of the wild-type protein, result in the generation of aberrant species that may impair further the function of the autophagy lysosomal pathway, thus generating a vicious cycle leading to neuronal death. Moreover, PD-linked mutations in lysosomal-related genes, such as glucocerebrosidase, have been also shown to contribute to alpha-synuclein accumulation and related toxicity, indicating that lysosomal dysfunction may, in part, account for the neurodegeneration observed in synucleinopathies. In the current review, we summarize findings related to the inter-relationship between alpha-synuclein and lysosomal proteolytic pathways, focusing especially on recent experimental strategies based on the manipulation of the autophagy lysosomal pathway to counteract alpha-synuclein-mediated neurotoxicity in vivo. Pinpointing the factors that regulate alpha-synuclein association to the lysosome may represent potential targets for therapeutic interventions in PD and related synucleinopathies. © 2016 International Parkinson and Movement Disorder Society.

  4. The coming of age of chaperone-mediated autophagy.

    PubMed

    Kaushik, Susmita; Cuervo, Ana Maria

    2018-06-01

    Chaperone-mediated autophagy (CMA) was the first studied process that indicated that degradation of intracellular components by the lysosome can be selective - a concept that is now well accepted for other forms of autophagy. Lysosomes can degrade cellular cytosol in a nonspecific manner but can also discriminate what to target for degradation with the involvement of a degradation tag, a chaperone and a sophisticated mechanism to make the selected proteins cross the lysosomal membrane through a dedicated translocation complex. Recent studies modulating CMA activity in vivo using transgenic mouse models have demonstrated that selectivity confers on CMA the ability to participate in the regulation of multiple cellular functions. Timely degradation of specific cellular proteins by CMA modulates, for example, glucose and lipid metabolism, DNA repair, cellular reprograming and the cellular response to stress. These findings expand the physiological relevance of CMA beyond its originally identified role in protein quality control and reveal that CMA failure with age may aggravate diseases, such as ageing-associated neurodegeneration and cancer.

  5. The role of HBV-induced autophagy in HBV replication and HBV related-HCC.

    PubMed

    Xie, Mingjie; Yang, Zhenggang; Liu, Yanning; Zheng, Min

    2018-04-27

    Hepatitis B virus (HBV) is infecting about 364 million people around the world. It can cause various diseases, such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). However, the present anti-viral treatment in clinics is limited; studies for new therapies are highly desired. Autophagy is a crucial and major catabolic process in the maintenance of normal intracellular homeostasis in host cells. Host cells use this unique process to degrade and recycle long-lived proteins, damaged organelles, and various pathogens for keeping the normal physiological functions. Recently, published studies indicated that HBV can induce autophagy in host cells; this autophagic response is involved in viral replication and pathogenesis. Several viral proteins, such as surface and X proteins, are assumed to be responsible for inducing autophagy in HBV infection. This review briefly summarizes some important mechanisms involved in HBV-induced autophagy and provides a novel perspective on therapies of HBV infection and HBV-related HCC. Copyright © 2017. Published by Elsevier Inc.

  6. RNF166 Determines Recruitment of Adaptor Proteins during Antibacterial Autophagy.

    PubMed

    Heath, Robert J; Goel, Gautam; Baxt, Leigh A; Rush, Jason S; Mohanan, Vishnu; Paulus, Geraldine L C; Jani, Vijay; Lassen, Kara G; Xavier, Ramnik J

    2016-11-22

    Xenophagy is a form of selective autophagy that involves the targeting and elimination of intracellular pathogens through several recognition, recruitment, and ubiquitination events. E3 ubiquitin ligases control substrate selectivity in the ubiquitination cascade; however, systematic approaches to map the role of E3 ligases in antibacterial autophagy have been lacking. We screened more than 600 putative human E3 ligases, identifying E3 ligases that are required for adaptor protein recruitment and LC3-bacteria colocalization, critical steps in antibacterial autophagy. An unbiased informatics approach pinpointed RNF166 as a key gene that interacts with the autophagy network and controls the recruitment of ubiquitin as well as the autophagy adaptors p62 and NDP52 to bacteria. Mechanistic studies demonstrated that RNF166 catalyzes K29- and K33-linked polyubiquitination of p62 at residues K91 and K189. Thus, our study expands the catalog of E3 ligases that mediate antibacterial autophagy and identifies a critical role for RNF166 in this process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Rapamycin Promotes the Survival and Adipogenesis of Ischemia-Challenged Adipose Derived Stem Cells by Improving Autophagy.

    PubMed

    Li, Chichi; Ye, Lechi; Yang, Li; Yu, Xiaofang; He, Yucang; Chen, Zhuojie; Li, Liqun; Zhang, Dan

    2017-01-01

    Ischemia is one of the main causes of the high rate of absorption of transplanted autologous fat. Autophagy allows cells to survive by providing energy under starvation. Rapamycin has been found to play a role in promoting autophagy. In this study, we investigated whether rapamycin participates in the survival and adipogenesis of ischemia-challenged adipose-derived stem cells (ADSCs) by regulating autophagy. Before the cells were exposed to oxygen-glucose deprivation (OGD), a simulated ischemic microenvironment, the level of autophagy was reduced or increased by lentiviral transfection with short hairpin RNA targeting microtubule-associated protein 1-light chain 3 gene (shRNA-LC3) or treatment with rapamycin, respectively. The level of autophagy was assessed by western blotting, transmission electron microscopythen the apoptosis ratio was determined through terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and flow cytometry. Adipogenesis was further evaluated by oil red O staining and the expressions level of some specific proteins for adipocytes. shRNA-LC3 and rapamycin treatment effectively decreased and improved the level of autophagy in cells with or without OGD challenge, respectively. In addition, autophagy inhibition increased the apoptosis rate and activated caspase-3 expression level in response to OGD, and these were markedly inhibited by rapamycin preconditioning. During adipogenesis, autophagy inhibition decreased not only oil droplet accumulation but also lipoprotein lipase (LPL) and peroxisome proliferator-activated receptor gamma (PPARγ) expression in cells with or without OGD challenge. However, autophagy promotion by rapamycin increased oil droplet accumulation and LPL and PPARγ expression. Rapamycin may promote the survival and adipogenesis of ischemia-challenged ADSCs by upregulating autophagy. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. Bone marrow mesenchymal stem cells protect against n-hexane-induced neuropathy through beclin 1-independent inhibition of autophagy.

    PubMed

    Hao, Jie; Li, Shuangyue; Shi, Xiaoxia; Qian, Zhiqiang; Sun, Yijie; Wang, Dunjia; Zhou, Xueying; Qu, Hongxin; Hu, Shuhai; Zuo, Enjun; Zhang, Cong; Hou, Liyan; Wang, Qingshan; Piao, Fengyuan

    2018-03-14

    Chronic exposure to n-hexane, a widely used organic solvent in industry, induces central-peripheral neuropathy, which is mediated by its active metabolite, 2,5-hexanedione (HD). We recently reported that transplantation of bone marrow-mesenchymal stem cells (BMSC) significantly ameliorated HD-induced neuronal damage and motor deficits in rats. However, the mechanisms remain unclear. Here, we reported that inhibition of HD-induced autophagy contributed to BMSC-afforded protection. BMSC transplantation significantly reduced the levels of microtubule-associated protein 1 light chain 3-II (LC3-II) and the degradation of sequestosome-1 (p62) in the spinal cord and sciatic nerve of HD-intoxicated rats. Downregulation of autophagy by BMSC was also confirmed in VSC4.1 cells exposed to HD. Moreover, inhibition of autophagy by PIK III mitigated the neurotoxic effects of HD and, meanwhile, abolished BMSC-afforded neuroprotection. Furthermore, we found that BMSC failed to interfere with Beclin 1, but promoted activation of mammalian target of rapamycin (mTOR). Unc-like kinse 1 (ULK1) was further recognized as the downstream target of mTOR responsible for BMSC-mediated inhibition of autophagy. Altogether, BMSC transplantation potently ameliorated HD-induced autophagy through beclin 1-independent activation of mTOR pathway, providing a novel insight for the therapeutic effects of BMSC against n-hexane and other environmental toxicants-induced neurotoxicity.

  9. MiR-216a: a link between endothelial dysfunction and autophagy

    PubMed Central

    Menghini, R; Casagrande, V; Marino, A; Marchetti, V; Cardellini, M; Stoehr, R; Rizza, S; Martelli, E; Greco, S; Mauriello, A; Ippoliti, A; Martelli, F; Lauro, R; Federici, M

    2014-01-01

    Endothelial dysfunction and impaired autophagic activity have a crucial role in aging-related diseases such as cardiovascular dysfunction and atherosclerosis. We have identified miR-216a as a microRNA that is induced during endothelial aging and, according to the computational analysis, among its targets includes two autophagy-related genes, Beclin1 (BECN1) and ATG5. Therefore, we have evaluated the role of miR-216a as a molecular component involved in the loss of autophagic function during endothelial aging. The inverse correlation between miR-216a and autophagic genes was conserved during human umbilical vein endothelial cells (HUVECs) aging and in vivo models of human atherosclerosis and heart failure. Luciferase experiments indicated BECN1, but not ATG5 as a direct target of miR-216a. HUVECs were transfected in order to modulate miR-216a expression and stimulated with 100 μg/ml oxidized low-density lipoprotein (ox-LDL) to induce a stress repairing autophagic process. We found that in young HUVECs, miR-216a overexpression repressed BECN1 and ATG5 expression and the ox-LDL induced autophagy, as evaluated by microtubule-associated protein 1 light chain 3 (LC3B) analysis and cytofluorimetric assay. Moreover, miR-216a stimulated ox-LDL accumulation and monocyte adhesion in HUVECs. Conversely, inhibition of miR-216a in old HUVECs rescued the ability to induce a protective autophagy in response to ox-LDL stimulus. In conclusion, mir-216a controls ox-LDL induced autophagy in HUVECs by regulating intracellular levels of BECN1 and may have a relevant role in the pathogenesis of cardiovascular disorders and atherosclerosis. PMID:24481443

  10. Age-dependent molecular alterations in the autophagy pathway in HIVE patients and in a gp120 tg mouse model: reversal with beclin-1 gene transfer.

    PubMed

    Fields, Jerel; Dumaop, Wilmar; Rockenstein, Edward; Mante, Michael; Spencer, Brian; Grant, Igor; Ellis, Ron; Letendre, Scott; Patrick, Christina; Adame, Anthony; Masliah, Eliezer

    2013-02-01

    Aged (>50 years old) human immunodeficiency virus (HIV) patients are the fastest-growing segment of the HIV-infected population in the USA and despite antiretroviral therapy, HIV-associated neurocognitive disorder (HAND) prevalence has increased or remained the same among this group. Autophagy is an intracellular clearance pathway for aggregated proteins and aged organelles; dysregulation of autophagy is implicated in the pathogenesis of Parkinson's disease, Alzheimer's disease, and HAND. Here, we hypothesized that dysregulated autophagy may contribute to aging-related neuropathology in HIV-infected individuals. To explore this possibility, we surveyed autophagy marker levels in postmortem brain samples from a cohort of well-characterized <50 years old (young) and >50 years old (aged) HIV+ and HIV encephalitis (HIVE) patients. Detailed clinical and neuropathological data showed the young and aged HIVE patients had higher viral load, increased neuroinflammation and elevated neurodegeneration; however, aged HIVE postmortem brain tissues showed the most severe neurodegenerative pathology. Interestingly, young HIVE patients displayed an increase in beclin-1, cathepsin-D and light chain (LC)3, but these autophagy markers were reduced in aged HIVE cases compared to age-matched HIV+ donors. Similar alterations in autophagy markers were observed in aged gp120 transgenic (tg) mice; beclin-1 and LC3 were decreased in aged gp120 tg mice while mTor levels were increased. Lentivirus-mediated beclin-1 gene transfer, that is known to activate autophagy pathways, increased beclin-1, LC3, and microtubule-associated protein 2 expression while reducing glial fibrillary acidic protein and Iba1 expression in aged gp120 tg mice. These data indicate differential alterations in the autophagy pathway in young versus aged HIVE patients and that autophagy reactivation may ameliorate the neurodegenerative phenotype in these patients.

  11. Molecular mechanisms of autophagy in the cardiovascular system.

    PubMed

    Gatica, Damián; Chiong, Mario; Lavandero, Sergio; Klionsky, Daniel J

    2015-01-30

    Autophagy is a catabolic recycling pathway triggered by various intra- or extracellular stimuli that is conserved from yeast to mammals. During autophagy, diverse cytosolic constituents are enveloped by double-membrane vesicles, autophagosomes, which later fuse with lysosomes or the vacuole to degrade their cargo. Dysregulation in autophagy is associated with a diverse range of pathologies including cardiovascular disease, the leading cause of death in the world. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been characterized widely in cardiomyocytes, cardiac fibroblasts, endothelial cells, and vascular smooth muscle cells. In all cases, a window of optimal autophagic activity seems to be critical to the maintenance of cardiovascular homeostasis and function; excessive or insufficient levels of autophagic flux can each contribute to heart disease pathogenesis. Here, we review the molecular mechanisms that govern autophagosome formation and analyze the link between autophagy and cardiovascular disease. © 2015 American Heart Association, Inc.

  12. System-wide Benefits of Intermeal Fasting by Autophagy.

    PubMed

    Martinez-Lopez, Nuria; Tarabra, Elena; Toledo, Miriam; Garcia-Macia, Marina; Sahu, Srabani; Coletto, Luisa; Batista-Gonzalez, Ana; Barzilai, Nir; Pessin, Jeffrey E; Schwartz, Gary J; Kersten, Sander; Singh, Rajat

    2017-12-05

    Autophagy failure is associated with metabolic insufficiency. Although caloric restriction (CR) extends healthspan, its adherence in humans is poor. We established an isocaloric twice-a-day (ITAD) feeding model wherein ITAD-fed mice consume the same food amount as ad libitum controls but at two short windows early and late in the diurnal cycle. We hypothesized that ITAD feeding will provide two intervals of intermeal fasting per circadian period and induce autophagy. We show that ITAD feeding modifies circadian autophagy and glucose/lipid metabolism that correlate with feeding-driven changes in circulating insulin. ITAD feeding decreases adiposity and, unlike CR, enhances muscle mass. ITAD feeding drives energy expenditure, lowers lipid levels, suppresses gluconeogenesis, and prevents age/obesity-associated metabolic defects. Using liver-, adipose-, myogenic-, and proopiomelanocortin neuron-specific autophagy-null mice, we mapped the contribution of tissue-specific autophagy to system-wide benefits of ITAD feeding. Our studies suggest that consuming two meals a day without CR could prevent the metabolic syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Autophagy Driven by a Master Regulator of Hematopoiesis

    PubMed Central

    Kang, Yoon-A; Sanalkumar, Rajendran; O'Geen, Henriette; Linnemann, Amelia K.; Chang, Chan-Jung; Bouhassira, Eric E.; Farnham, Peggy J.; Keles, Sunduz

    2012-01-01

    Developmental and homeostatic remodeling of cellular organelles is mediated by a complex process termed autophagy. The cohort of proteins that constitute the autophagy machinery functions in a multistep biochemical pathway. Though components of the autophagy machinery are broadly expressed, autophagy can occur in specialized cellular contexts, and mechanisms underlying cell-type-specific autophagy are poorly understood. We demonstrate that the master regulator of hematopoiesis, GATA-1, directly activates transcription of genes encoding the essential autophagy component microtubule-associated protein 1 light chain 3B (LC3B) and its homologs (MAP1LC3A, GABARAP, GABARAPL1, and GATE-16). In addition, GATA-1 directly activates genes involved in the biogenesis/function of lysosomes, which mediate autophagic protein turnover. We demonstrate that GATA-1 utilizes the forkhead protein FoxO3 to activate select autophagy genes. GATA-1-dependent LC3B induction is tightly coupled to accumulation of the active form of LC3B and autophagosomes, which mediate mitochondrial clearance as a critical step in erythropoiesis. These results illustrate a novel mechanism by which a master regulator of development establishes a genetic network to instigate cell-type-specific autophagy. PMID:22025678

  14. Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury

    PubMed Central

    Su, Feifei; Myers, Valerie D.; Knezevic, Tijana; Wang, JuFang; Gao, Erhe; Madesh, Muniswamy; Tahrir, Farzaneh G.; Gupta, Manish K.; Gordon, Jennifer; Rabinowitz, Joseph; Tilley, Douglas G.; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl-2–associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9–expressing (rAAV9-expressing) BAG3 or GFP and subjected to I/R. To elucidate molecular mechanisms by which BAG3 protects against I/R injury, neonatal mouse ventricular cardiomyocytes (NMVCs) in which BAG3 levels were modified by adenovirus expressing (Ad-expressing) BAG3 or siBAG3 were exposed to hypoxia/reoxygenation (H/R). H/R significantly reduced NMVC BAG3 levels, which were associated with enhanced expression of apoptosis markers, decreased expression of autophagy markers, and reduced autophagy flux. The deleterious effects of H/R on apoptosis and autophagy were recapitulated by knockdown of BAG3 with Ad-siBAG3 and were rescued by Ad-BAG3. In vivo, treatment of mice with rAAV9-BAG3 prior to I/R significantly decreased infarct size and improved left ventricular function when compared with mice receiving rAAV9-GFP and improved markers of autophagy and apoptosis. These findings suggest that BAG3 may provide a therapeutic target in patients undergoing reperfusion after myocardial infarction. PMID:27882354

  15. Variable Effects of Autophagy Induction by Trehalose on Herpesviruses Depending on Conditions of Infection.

    PubMed

    Meier, Jeffery L; Grose, Charles

    2017-03-01

    Trehalose is a non-reducing sugar formed from two glucose units. Trehalose induces abundant autophagy in cultured cells and also reduces the rate of aggregation of the huntingtin protein in the animal model of Huntington disease, a chronic neurological disease in humans. The mechanism of this effect on autophagy is now known to be caused by starvation secondary to inhibition of a family of glucose transporters known as the solute carrier 2 or the glucose transporter family. Variable effects of trehalose treatment have been observed during infections with two herpesviruses-human cytomegalovirus and varicella-zoster virus. The reasons for differing results have now been delineated. These differences are caused by two variables in conditions of infection: timing of addition of trehalose and type of inoculum (cell-free virus vs. infected cells). When monolayers pretreated with trehalose were inoculated with cell-free virus, there was a decline in virus spread by as much as 93 percent when compared with untreated monolayers. However, when monolayers were inoculated with infected cells rather than cell-free virus, there was no decline in virus spread. These results demonstrated that the effect of trehalose was limited to monolayers that were starved when inoculated with cell-free virus. In contrast, sufficient virus was already present in infected cell inocula so as to minimize any inhibitory effect of a starved monolayer. These results also showed that trehalose did not specifically inhibit a herpesvirus; rather, addition of trehalose to cell culture media altered the intracellular environment.

  16. PEBP1, a RAF kinase inhibitory protein, negatively regulates starvation-induced autophagy by direct interaction with LC3.

    PubMed

    Noh, Hae Sook; Hah, Young-Sool; Zada, Sahib; Ha, Ji Hye; Sim, Gyujin; Hwang, Jin Seok; Lai, Trang Huyen; Nguyen, Huynh Quoc; Park, Jae-Yong; Kim, Hyun Joon; Byun, June-Ho; Hahm, Jong Ryeal; Kang, Kee Ryeon; Kim, Deok Ryong

    2016-11-01

    Autophagy plays a critical role in maintaining cell homeostasis in response to various stressors through protein conjugation and activation of lysosome-dependent degradation. MAP1LC3B/LC3B (microtubule- associated protein 1 light chain 3 β) is conjugated with phosphatidylethanolamine (PE) in the membranes and regulates initiation of autophagy through interaction with many autophagy-related proteins possessing an LC3-interacting region (LIR) motif, which is composed of 2 hydrophobic amino acids (tryptophan and leucine) separated by 2 non-conserved amino acids (WXXL). In this study, we identified a new putative LIR motif in PEBP1/RKIP (phosphatidylethanolamine binding protein 1) that was originally isolated as a PE-binding protein and also a cellular inhibitor of MAPK/ERK signaling. PEBP1 was specifically bound to PE-unconjugated LC3 in cells, and mutation (WXXL mutated to AXXA) of this LIR motif disrupted its interaction with LC3 proteins. Interestingly, overexpression of PEBP1 significantly inhibited starvation-induced autophagy by activating the AKT and MTORC1 (mechanistic target of rapamycin [serine/threonine kinase] complex 1) signaling pathway and consequently suppressing the ULK1 (unc-51 like autophagy activating kinase 1) activity. In contrast, ablation of PEBP1 expression dramatically promoted the autophagic process under starvation conditions. Furthermore, PEBP1 lacking the LIR motif highly stimulated starvation-induced autophagy through the AKT-MTORC1-dependent pathway. PEBP1 phosphorylation at Ser153 caused dissociation of LC3 from the PEBP1-LC3 complex for autophagy induction. PEBP1-dependent suppression of autophagy was not associated with the MAPK pathway. These findings suggest that PEBP1 can act as a negative mediator in autophagy through stimulation of the AKT-MTORC1 pathway and direct interaction with LC3.

  17. Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving unconventional LC3 lipidation.

    PubMed

    Jacquin, Elise; Leclerc-Mercier, Stéphanie; Judon, Celine; Blanchard, Emmanuelle; Fraitag, Sylvie; Florey, Oliver

    2017-05-04

    The modulation of canonical macroautophagy/autophagy for therapeutic benefit is an emerging strategy of medical and pharmaceutical interest. Many drugs act to inhibit autophagic flux by targeting lysosome function, while others were developed to activate the pathway. Here, we report the surprising finding that many therapeutically relevant autophagy modulators with lysosomotropic and ionophore properties, classified as inhibitors of canonical autophagy, are also capable of activating a parallel noncanonical autophagy pathway that drives MAP1LC3/LC3 lipidation on endolysosomal membranes. Further, we provide the first evidence supporting drug-induced noncanonical autophagy in vivo using the local anesthetic lidocaine and human skin biopsies. In addition, we find that several published inducers of autophagy and mitophagy are also potent activators of noncanonical autophagy. Together, our data raise important issues regarding the interpretation of LC3 lipidation data and the use of autophagy modulators, and highlight the need for a greater understanding of the functional consequences of noncanonical autophagy.

  18. Early Steps in Autophagy Depend on Direct Phosphorylation of Atg9 by the Atg1 Kinase

    PubMed Central

    Papinski, Daniel; Schuschnig, Martina; Reiter, Wolfgang; Wilhelm, Larissa; Barnes, Christopher A.; Maiolica, Alessio; Hansmann, Isabella; Pfaffenwimmer, Thaddaeus; Kijanska, Monika; Stoffel, Ingrid; Lee, Sung Sik; Brezovich, Andrea; Lou, Jane Hua; Turk, Benjamin E.; Aebersold, Ruedi; Ammerer, Gustav; Peter, Matthias; Kraft, Claudine

    2014-01-01

    Summary Bulk degradation of cytoplasmic material is mediated by a highly conserved intracellular trafficking pathway termed autophagy. This pathway is characterized by the formation of double-membrane vesicles termed autophagosomes engulfing the substrate and transporting it to the vacuole/lysosome for breakdown and recycling. The Atg1/ULK1 kinase is essential for this process; however, little is known about its targets and the means by which it controls autophagy. Here we have screened for Atg1 kinase substrates using consensus peptide arrays and identified three components of the autophagy machinery. The multimembrane-spanning protein Atg9 is a direct target of this kinase essential for autophagy. Phosphorylated Atg9 is then required for the efficient recruitment of Atg8 and Atg18 to the site of autophagosome formation and subsequent expansion of the isolation membrane, a prerequisite for a functioning autophagy pathway. These findings show that the Atg1 kinase acts early in autophagy by regulating the outgrowth of autophagosomal membranes. PMID:24440502

  19. Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night.

    PubMed

    Mathew, Robin; White, Eileen

    2011-02-01

    Autophagy is the mechanism by which cells consume parts of themselves to survive starvation and stress. This self-cannibalization limits cell death and tissue inflammation, recycles energy and biosynthetic substrates and removes damaged proteins and organelles, accumulation of which is toxic. In normal tissues, autophagy-mediated damage mitigation may suppress tumorigenesis, while in advanced tumors macromolecular recycling may support survival by buffering metabolic demand under stress. As a result, autophagy-activation in normal cells may suppress tumorigenesis, while autophagy inhibition may be beneficial for the therapy of established tumors. The mechanisms by which autophagy supports cancer cell metabolism are slowly emerging. As cancer is being increasingly recognized as a metabolic disease, how autophagy-mediated catabolism impacts cellular and mammalian metabolism and tumor growth is of great interest. Most cancer therapeutics induce autophagy, either directly by modulating signaling pathways that control autophagy in the case of many targeted therapies, or indirectly in the case of cytotoxic therapy. However, the functional consequence of autophagy induction in the context of cancer therapy is not yet clear. A better understanding of how autophagy modulates cell metabolism under various cellular stresses and the consequences of this on tumorigenesis will help develop better therapeutic strategies against cancer prevention and treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors

    PubMed Central

    Mulcahy Levy, Jean M; Zahedi, Shadi; Griesinger, Andrea M; Morin, Andrew; Davies, Kurtis D; Aisner, Dara L; Kleinschmidt-DeMasters, BK; Fitzwalter, Brent E; Goodall, Megan L; Thorburn, Jacqueline; Amani, Vladimir; Donson, Andrew M; Birks, Diane K; Mirsky, David M; Hankinson, Todd C; Handler, Michael H; Green, Adam L; Vibhakar, Rajeev; Foreman, Nicholas K; Thorburn, Andrew

    2017-01-01

    Kinase inhibitors are effective cancer therapies, but tumors frequently develop resistance. Current strategies to circumvent resistance target the same or parallel pathways. We report here that targeting a completely different process, autophagy, can overcome multiple BRAF inhibitor resistance mechanisms in brain tumors. BRAFV600Emutations occur in many pediatric brain tumors. We previously reported that these tumors are autophagy-dependent and a patient was successfully treated with the autophagy inhibitor chloroquine after failure of the BRAFV600E inhibitor vemurafenib, suggesting autophagy inhibition overcame the kinase inhibitor resistance. We tested this hypothesis in vemurafenib-resistant brain tumors. Genetic and pharmacological autophagy inhibition overcame molecularly distinct resistance mechanisms, inhibited tumor cell growth, and increased cell death. Patients with resistance had favorable clinical responses when chloroquine was added to vemurafenib. This provides a fundamentally different strategy to circumvent multiple mechanisms of kinase inhibitor resistance that could be rapidly tested in clinical trials in patients with BRAFV600E brain tumors. DOI: http://dx.doi.org/10.7554/eLife.19671.001 PMID:28094001

  1. SHMT2 and the BRCC36/BRISC deubiquitinase regulate HIV-1 Tat K63-ubiquitylation and destruction by autophagy.

    PubMed

    Xu, Muyu; Moresco, James J; Chang, Max; Mukim, Amey; Smith, Davey; Diedrich, Jolene K; Yates, John R; Jones, Katherine A

    2018-05-23

    HIV-1 Tat is a key regulator of viral transcription, however little is known about the mechanisms that control its turnover in T cells. Here we use a novel proteomics technique, called DiffPOP, to identify the molecular target of JIB-04, a small molecule compound that potently and selectively blocks HIV-1 Tat expression, transactivation, and virus replication in T cell lines. Mass-spectrometry analysis of whole-cell extracts from 2D10 Jurkat T cells revealed that JIB-04 targets Serine Hydroxymethyltransferase 2 (SHMT2), a regulator of glycine biosynthesis and an adaptor for the BRCC36 K63Ub-specific deubiquitinase in the BRISC complex. Importantly, knockdown of SHMT1,2 or BRCC36, or exposure of cells to JIB-04, strongly increased Tat K63Ub-dependent destruction via autophagy. Moreover, point mutation of multiple lysines in Tat, or knockdown of BRCC36 or SHMT1,2, was sufficient to prevent destruction of Tat by JIB-04. We conclude that HIV-1 Tat levels are regulated through K63Ub-selective autophagy mediated through SHMT1,2 and the BRCC36 deubiquitinase.

  2. Chimeric adeno-associated virus and bacteriophage: a potential targeted gene therapy vector for malignant glioma.

    PubMed

    Asavarut, Paladd; O'Neill, Kevin; Syed, Nelofer; Hajitou, Amin

    2014-01-01

    The incipient development of gene therapy for cancer has fuelled its progression from bench to bedside in mere decades. Of all malignancies that exist, gliomas are the largest class of brain tumors, and are renowned for their aggressiveness and resistance to therapy. In order for gene therapy to achieve clinical success, a multitude of barriers ranging from glioma tumor physiology to vector biology must be overcome. Many viral gene delivery systems have been subjected to clinical investigation; however, with highly limited success. In this review, the current progress and challenges of gene therapy for malignant glioma are discussed. Moreover, we highlight the hybrid adeno-associated virus and bacteriophage vector as a potential candidate for targeted gene delivery to brain tumors.

  3. Elevated Mirc1/Mir17-92 cluster expression negatively regulates autophagy and CFTR (cystic fibrosis transmembrane conductance regulator) function in CF macrophages.

    PubMed

    Tazi, Mia F; Dakhlallah, Duaa A; Caution, Kyle; Gerber, Madelyn M; Chang, Sheng-Wei; Khalil, Hany; Kopp, Benjamin T; Ahmed, Amr E; Krause, Kathrin; Davis, Ian; Marsh, Clay; Lovett-Racke, Amy E; Schlesinger, Larry S; Cormet-Boyaka, Estelle; Amer, Amal O

    2016-11-01

    Cystic fibrosis (CF) is a fatal, genetic disorder that critically affects the lungs and is directly caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in defective CFTR function. Macroautophagy/autophagy is a highly regulated biological process that provides energy during periods of stress and starvation. Autophagy clears pathogens and dysfunctional protein aggregates within macrophages. However, this process is impaired in CF patients and CF mice, as their macrophages exhibit limited autophagy activity. The study of microRNAs (Mirs), and other noncoding RNAs, continues to offer new therapeutic targets. The objective of this study was to elucidate the role of Mirs in dysregulated autophagy-related genes in CF macrophages, and then target them to restore this host-defense function and improve CFTR channel function. We identified the Mirc1/Mir17-92 cluster as a potential negative regulator of autophagy as CF macrophages exhibit decreased autophagy protein expression and increased cluster expression when compared to wild-type (WT) counterparts. The absence or reduced expression of the cluster increases autophagy protein expression, suggesting the canonical inverse relationship between Mirc1/Mir17-92 and autophagy gene expression. An in silico study for targets of Mirs that comprise the cluster suggested that the majority of the Mirs target autophagy mRNAs. Those targets were validated by luciferase assays. Notably, the ability of macrophages expressing mutant F508del CFTR to transport halide through their membranes is compromised and can be restored by downregulation of these inherently elevated Mirs, via restoration of autophagy. In vivo, downregulation of Mir17 and Mir20a partially restored autophagy expression and hence improved the clearance of Burkholderia cenocepacia. Thus, these data advance our understanding of mechanisms underlying the pathobiology of CF and provide a new therapeutic platform for restoring CFTR function

  4. The Autophagy Enhancer Spermidine Reverses Arterial Aging

    PubMed Central

    LaRocca, Thomas J.; Gioscia-Ryan, Rachel A.; Hearon, Christopher M.; Seals, Douglas R.

    2013-01-01

    Arterial aging, characterized by stiffening of large elastic arteries and the development of arterial endothelial dysfunction, increases cardiovascular disease (CVD) risk. We tested the hypothesis that spermidine, a nutrient associated with the anti-aging process autophagy, would improve arterial aging. Aortic pulse wave velocity (aPWV), a measure of arterial stiffness, was ~20% greater in old (O, 28 months) compared with young C57BL6 mice (Y, 4 months, P < 0.05). Arterial endothelium-dependent dilation (EDD), a measure of endothelial function, was ~25% lower in O (P < 0.05 vs. Y) due to reduced nitric oxide (NO) bioavailability. These impairments were associated with greater arterial oxidative stress (nitrotyrosine), superoxide production, and protein cross-linking (advanced glycation end-products, AGEs) in O (all P < 0.05). Spermidine supplementation normalized aPWV, restored NO-mediated EDD and reduced nitrotyrosine, superoxide, AGEs and collagen in O. These effects of spermidine were associated with enhanced arterial expression of autophagy markers, and in vitro experiments demonstrated that vascular protection by spermidine was autophagy-dependent. Our results indicate that spermidine exerts a potent anti-aging influence on arteries by increasing NO bioavailability, reducing oxidative stress, modifying structural factors and enhancing autophagy. Spermidine may be a promising nutraceutical treatment for arterial aging and prevention of age-associated CVD. PMID:23612189

  5. Pravastatin Protects Against Avascular Necrosis of Femoral Head via Autophagy.

    PubMed

    Liao, Yun; Zhang, Ping; Yuan, Bo; Li, Ling; Bao, Shisan

    2018-01-01

    Autophagy serves as a stress response and may contribute to the pathogenesis of avascular necrosis of the femoral head induced by steroids. Statins promote angiogenesis and ameliorate endothelial functions through apoptosis inhibition and necrosis of endothelial progenitor cells, however the process used by statins to modulate autophagy in avascular necrosis of the femoral head remains unclear. This manuscript determines whether pravastatin protects against dexamethasone-induced avascular necrosis of the femoral head by activating endothelial progenitor cell autophagy. Pravastatin was observed to enhance the autophagy activity in endothelial progenitor cells, specifically by upregulating LC3-II/Beclin-1 (autophagy related proteins), and autophagosome formation in vivo and in vitro . An autophagy inhibitor, 3-MA, reduced pravastatin protection in endothelial progenitor cells exposed to dexamethasone by attenuating pravastatin-induced autophagy. Adenosine monophosphate-activated protein kinase (AMPK) is a key autophagy regulator by sensing cellular energy changes, and indirectly suppressing activation of the mammalian target of rapamycin (mTOR). We found that phosphorylation of AMPK was upregulated however phosphorylation of mTOR was downregulated in pravastatin-treated endothelial progenitor cells, which was attenuated by AMPK inhibitor compound C. Furthermore, liver kinase B1 (a phosphorylase of AMPK) knockdown eliminated pravastatin regulated autophagy protein LC3-II in endothelial progenitor cells in vitro . We therefore demonstrated pravastatin rescued endothelial progenitor cells from dexamethasone-induced autophagy dysfunction through the AMPK-mTOR signaling pathway in a liver kinase B1-dependent manner. Our results provide useful information for the development of novel therapeutics for management of glucocorticoids-induced avascular necrosis of the femoral head.

  6. Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition

    PubMed Central

    Park, Dohyun; Jeong, Heeyoon; Lee, Mi Nam; Koh, Ara; Kwon, Ohman; Yang, Yong Ryoul; Noh, Jungeun; Suh, Pann-Ghill; Park, Hwangseo; Ryu, Sung Ho

    2016-01-01

    Resveratrol (RSV) is a natural polyphenol that has a beneficial effect on health, and resveratrol-induced autophagy has been suggested to be a key process in mediating many beneficial effects of resveratrol, such as reduction of inflammation and induction of cancer cell death. Although various resveratrol targets have been suggested, the molecule that mediates resveratrol-induced autophagy remains unknown. Here, we demonstrate that resveratrol induces autophagy by directly inhibiting the mTOR-ULK1 pathway. We found that inhibition of mTOR activity and presence of ULK1 are required for autophagy induction by resveratrol. In line with this mTOR dependency, we found that resveratrol suppresses the viability of MCF7 cells but not of SW620 cells, which are mTOR inhibitor sensitive and insensitive cancer cells, respectively. We also found that resveratrol-induced cancer cell suppression occurred ULK1 dependently. For the mechanism of action of resveratrol on mTOR inhibition, we demonstrate that resveratrol directly inhibits mTOR. We found that resveratrol inhibits mTOR by docking onto the ATP-binding pocket of mTOR (i.e., it competes with ATP). We propose mTOR as a novel direct target of resveratrol, and inhibition of mTOR is necessary for autophagy induction. PMID:26902888

  7. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates

    PubMed Central

    Egan, Daniel F.; Chun, Matthew G.H.; Vamos, Mitchell; Zou, Haixia; Rong, Juan; Miller, Chad J.; Lou, Hua Jane; Raveendra-Panickar, Dhanya; Yang, Chih-Cheng; Sheffler, Douglas J.; Teriete, Peter; Asara, John M.; Turk, Benjamin E.; Cosford, Nicholas D. P.; Shaw, Reuben J.

    2015-01-01

    Summary Many tumors become addicted to autophagy for survival, suggesting inhibition of autophagy as a potential broadly-applicable cancer therapy. ULK1/Atg1 is the only serine/threonine kinase in the core autophagy pathway and thus represents an excellent drug target. Despite recent advances in the understanding of ULK1 activation by nutrient deprivation, how ULK1 promotes autophagy remains poorly understood. Here, we screened degenerate peptide libraries to deduce the optimal ULK1 substrate motif and discovered fifteen phosphorylation sites in core autophagy proteins that were verified as in vivo ULK1 targets. We utilized these ULK1 substrates to perform a cell-based screen to identify and characterize a potent ULK1 small molecule inhibitor. The compound SBI-0206965 is a highly selective ULK1 kinase inhibitor in vitro and suppressed ULK1-mediated phosphorylation events in cells, regulating autophagy and cell survival. SBI-0206965 greatly synergized with mTOR inhibitors to kill tumor cells, providing a strong rationale for their combined use in the clinic. PMID:26118643

  8. Carrot yellow leaf virus is associated with carrot internal necrosis.

    PubMed

    Adams, Ian P; Skelton, Anna; Macarthur, Roy; Hodges, Tobias; Hinds, Howard; Flint, Laura; Nath, Palash Deb; Boonham, Neil; Fox, Adrian

    2014-01-01

    Internal necrosis of carrot has been observed in UK carrots for at least 10 years, and has been anecdotally linked to virus infection. In the 2009 growing season some growers had up to 10% of yield with these symptoms. Traditional diagnostic methods are targeted towards specific pathogens. By using a metagenomic approach with high throughput sequencing technology, other, as yet unidentified causes of root necrosis were investigated. Additionally a statistical analysis has shown which viruses are most closely associated with disease symptoms. Carrot samples were collected from a crop exhibiting root necrosis (102 Affected: 99 Unaffected) and tested for the presence of the established carrot viruses: Carrot red leaf virus (CtRLV), Carrot mottle virus (CMoV), Carrot red leaf associated viral RNA (CtRLVaRNA) and Parsnip yellow fleck virus (PYFV). The presence of these viruses was not associated with symptomatic carrot roots either as single viruses or in combinations. A sub-sample of carrots of mixed symptom status was subjected to MiSeq sequencing. The results from these tests suggested Carrot yellow leaf virus (CYLV) was associated with symptomatic roots. Additionally a novel Torradovirus, a novel Closterovirus and two novel Betaflexiviradae related plant viruses were detected. A specific diagnostic test was designed for CYLV. Of the 102 affected carrots, 98% were positive for CYLV compared to 22% of the unaffected carrots. From these data we conclude that although we have yet to practically demonstrate a causal link, CYLV appears to be strongly associated with the presence of necrosis of carrots.

  9. Carrot yellow leaf virus Is Associated with Carrot Internal Necrosis

    PubMed Central

    Adams, Ian P.; Skelton, Anna; Macarthur, Roy; Hodges, Tobias; Hinds, Howard; Flint, Laura; Nath, Palash Deb; Boonham, Neil; Fox, Adrian

    2014-01-01

    Internal necrosis of carrot has been observed in UK carrots for at least 10 years, and has been anecdotally linked to virus infection. In the 2009 growing season some growers had up to 10% of yield with these symptoms. Traditional diagnostic methods are targeted towards specific pathogens. By using a metagenomic approach with high throughput sequencing technology, other, as yet unidentified causes of root necrosis were investigated. Additionally a statistical analysis has shown which viruses are most closely associated with disease symptoms. Carrot samples were collected from a crop exhibiting root necrosis (102 Affected: 99 Unaffected) and tested for the presence of the established carrot viruses: Carrot red leaf virus (CtRLV), Carrot mottle virus (CMoV), Carrot red leaf associated viral RNA (CtRLVaRNA) and Parsnip yellow fleck virus (PYFV). The presence of these viruses was not associated with symptomatic carrot roots either as single viruses or in combinations. A sub-sample of carrots of mixed symptom status was subjected to MiSeq sequencing. The results from these tests suggested Carrot yellow leaf virus (CYLV) was associated with symptomatic roots. Additionally a novel Torradovirus, a novel Closterovirus and two novel Betaflexiviradae related plant viruses were detected. A specific diagnostic test was designed for CYLV. Of the 102 affected carrots, 98% were positive for CYLV compared to 22% of the unaffected carrots. From these data we conclude that although we have yet to practically demonstrate a causal link, CYLV appears to be strongly associated with the presence of necrosis of carrots. PMID:25365290

  10. Autophagy and kidney inflammation.

    PubMed

    Kimura, Tomonori; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2017-06-03

    Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases.

  11. Role of autophagy in high linear energy transfer radiation-induced cytotoxicity to tumor cells

    PubMed Central

    Jin, Xiaodong; Liu, Yan; Ye, Fei; Liu, Xiongxiong; Furusawa, Yoshiya; Wu, Qingfeng; Li, Feifei; Zheng, Xiaogang; Dai, Zhongying; Li, Qiang

    2014-01-01

    Heavy-ion radiotherapy has a potential advantage over conventional radiotherapy due to improved dose distribution and a higher biological effectiveness in cancer therapy. However, there is a little information currently available on the cellular and molecular basis for heavy-ion irradiation-induced cell death. Autophagy, as a novel important target to improve anticancer therapy, has recently attracted considerable attention. In this study, the effect of autophagy induced by high linear energy transfer (LET) carbon ions was examined in various tumor cell lines. To our knowledge, our study is the first to reveal that high-LET carbon ions could induce autophagy in various tumor cells effectively, and the autophagic level in the irradiated cells increased in a dose- and LET-dependent manner. The ability of carbon ions to inhibit the activation of the PI3K/Akt pathway rose with increasing their LET. Moreover, modulation of autophagy in tumor cells could modify their sensitivity to high-LET radiation, and inhibiting autophagy accelerated apoptotic cell death, resulting in an increase in radiosensitivity. Our data imply that targeting autophagy might enhance the effectiveness of heavy-ion radiotherapy. PMID:24731006

  12. Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis.

    PubMed

    Barth, J M I; Szabad, J; Hafen, E; Köhler, K

    2011-06-01

    Autophagy, an evolutionarily conserved lysosome-mediated degradation, promotes cell survival under starvation and is controlled by insulin/target of rapamycin (TOR) signaling. In Drosophila, nutrient depletion induces autophagy in the fat body. Interestingly, nutrient availability and insulin/TOR signaling also influence the size and structure of Drosophila ovaries, however, the role of nutrient signaling and autophagy during this process remains to be elucidated. Here, we show that starvation induces autophagy in germline cells (GCs) and in follicle cells (FCs) in Drosophila ovaries. This process is mediated by the ATG machinery and involves the upregulation of Atg genes. We further demonstrate that insulin/TOR signaling controls autophagy in FCs and GCs. The analysis of chimeric females reveals that autophagy in FCs, but not in GCs, is required for egg development. Strikingly, when animals lack Atg gene function in both cell types, ovaries develop normally, suggesting that the incompatibility between autophagy-competent GCs and autophagy-deficient FCs leads to defective egg development. As egg morphogenesis depends on a tightly linked signaling between FCs and GCs, we propose a model in which autophagy is required for the communication between these two cell types. Our data establish an important function for autophagy during oogenesis and contributes to the understanding of the role of autophagy in animal development.

  13. Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1

    PubMed Central

    Haim, Yulia; Blüher, Matthias; Slutsky, Noa; Goldstein, Nir; Klöting, Nora; Harman-Boehm, Ilana; Kirshtein, Boris; Ginsberg, Doron; Gericke, Martin; Guiu Jurado, Esther; Kovsan, Julia; Tarnovscki, Tanya; Kachko, Leonid; Bashan, Nava; Gepner, Yiftach; Shai, Iris; Rudich, Assaf

    2015-01-01

    Autophagy genes' expression is upregulated in visceral fat in human obesity, associating with obesity-related cardio-metabolic risk. E2F1 (E2F transcription factor 1) was shown in cancer cells to transcriptionally regulate autophagy. We hypothesize that E2F1 regulates adipocyte autophagy in obesity, associating with endocrine/metabolic dysfunction, thereby, representing non-cell-cycle function of this transcription factor. E2F1 protein (N=69) and mRNA (N=437) were elevated in visceral fat of obese humans, correlating with increased expression of ATG5 (autophagy-related 5), MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β), but not with proliferation/cell-cycle markers. Elevated E2F1 mainly characterized the adipocyte fraction, whereas MKI67 (marker of proliferation Ki-67) was elevated in the stromal-vascular fraction of adipose tissue. In human visceral fat explants, chromatin-immunoprecipitation revealed body mass index (BMI)-correlated increase in E2F1 binding to the promoter of MAP1LC3B, but not to the classical cell cycle E2F1 target, CCND1 (cyclin D1). Clinically, omental fat E2F1 expression correlated with insulin resistance, circulating free-fatty-acids (FFA), and with decreased circulating ADIPOQ/adiponectin, associations attenuated by adjustment for autophagy genes. Overexpression of E2F1 in HEK293 cells enhanced promoter activity of several autophagy genes and autophagic flux, and sensitized to further activation of autophagy by TNF. Conversely, mouse embryonic fibroblast (MEF)-derived adipocytes from e2f1 knockout mice (e2f1−/−) exhibited lower autophagy gene expression and flux, were more insulin sensitive, and secreted more ADIPOQ. Furthermore, e2f1−/− MEF-derived adipocytes, and autophagy-deficient (by Atg7 siRNA) adipocytes were resistant to cytokines-induced decrease in ADIPOQ secretion. Jointly, upregulated E2F1 sensitizes adipose tissue autophagy to inflammatory stimuli, linking visceral obesity to adipose and systemic

  14. Autophagy inducers in cancer.

    PubMed

    Russo, Maria; Russo, Gian Luigi

    2018-07-01

    Autophagy is a complex, physiological process devoted to degrade and recycle cellular components. Proteins and organelles are first phagocytized by autophagosomes, then digested in lysosomes, and finally recycled to be utilized again during cellular metabolism. Moreover, autophagy holds an important role in the physiopathology of several diseases. In cancer, excellent works demonstrated the dual functions of autophagy in tumour biology: autophagy activation can promote cancer cells survival (protective autophagy), or contribute to cancer cell death (cytotoxic/nonprotective autophagy). A better understanding of the dichotomy roles of autophagy in cancer biology can help to identify or design new drugs able to induce/enhance (or block) autophagic flux. These features will necessary be tissue-dependent and confined to a specific time of treatment. The intent of this review is to focus on the different potentialities of autophagy inducers in cancer prevention versus therapy in order to elicit a desirable clinical response. Few promising synthetic and natural compounds have been identified and the pros and cons of their role in autophagy regulation is reviewed here. In the complex framework of autophagy modulation, "connecting the dots" is not a simple work and the lack of clinical studies further complicates the scenario, but the final goal to obtain clinically relevant autophagy inducers can reveal an unexpected landscape. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Severe Burn-Induced Intestinal Epithelial Barrier Dysfunction Is Associated With Endoplasmic Reticulum Stress and Autophagy in Mice

    PubMed Central

    Huang, Yalan; Feng, Yanhai; Wang, Yu; Wang, Pei; Wang, Fengjun; Ren, Hui

    2018-01-01

    The disruption of intestinal barrier plays a vital role in the pathophysiological changes after severe burn injury, however, the underlying mechanisms are poorly understood. Severe burn causes the disruption of intestinal tight junction (TJ) barrier. Previous studies have shown that endoplasmic reticulum (ER) stress and autophagy are closely associated with the impairment of intestinal mucosa. Thus, we hypothesize that ER stress and autophagy are likely involved in burn injury-induced intestinal epithelial barrier dysfunction. Mice received a 30% total body surface area (TBSA) full-thickness burn, and were sacrificed at 0, 1, 2, 6, 12 and 24 h postburn. The results showed that intestinal permeability was increased significantly after burn injury, accompanied by the damage of mucosa and the alteration of TJ proteins. Severe burn induced ER stress, as indicated by increased intraluminal chaperone binding protein (BIP), CCAAT/enhancer-binding protein homologous protein (CHOP) and inositol-requiring enzyme 1(IRE1)/X-box binding protein 1 splicing (XBP1). Autophagy was activated after burn injury, as evidenced by the increase of autophagy related protein 5 (ATG5), Beclin 1 and LC3II/LC3I ratio and the decrease of p62. Besides, the number of autophagosomes was also increased after burn injury. The levels of p-PI3K(Ser191), p-PI3K(Ser262), p-AKT(Ser473), and p-mTOR were decreased postburn, suggesting that autophagy-related PI3K/AKT/mTOR pathway is involved in the intestinal epithelial barrier dysfunction following severe burn. In summary, severe burn injury induces the ER stress and autophagy in intestinal epithelia, leading to the disruption of intestinal barrier. PMID:29740349

  16. Combined autophagy and proteasome inhibition

    PubMed Central

    Vogl, Dan T; Stadtmauer, Edward A; Tan, Kay-See; Heitjan, Daniel F; Davis, Lisa E; Pontiggia, Laura; Rangwala, Reshma; Piao, Shengfu; Chang, Yunyoung C; Scott, Emma C; Paul, Thomas M; Nichols, Charles W; Porter, David L; Kaplan, Janeen; Mallon, Gayle; Bradner, James E; Amaravadi, Ravi K

    2014-01-01

    The efficacy of proteasome inhibition for myeloma is limited by therapeutic resistance, which may be mediated by activation of the autophagy pathway as an alternative mechanism of protein degradation. Preclinical studies demonstrate that autophagy inhibition with hydroxychloroquine augments the antimyeloma efficacy of the proteasome inhibitor bortezomib. We conducted a phase I trial combining bortezomib and hydroxychloroquine for relapsed or refractory myeloma. We enrolled 25 patients, including 11 (44%) refractory to prior bortezomib. No protocol-defined dose-limiting toxicities occurred, and we identified a recommended phase 2 dose of hydroxychloroquine 600 mg twice daily with standard doses of bortezomib, at which we observed dose-related gastrointestinal toxicity and cytopenias. Of 22 patients evaluable for response, 3 (14%) had very good partial responses, 3 (14%) had minor responses, and 10 (45%) had a period of stable disease. Electron micrographs of bone marrow plasma cells collected at baseline, after a hydroxychloroquine run-in, and after combined therapy showed therapy-associated increases in autophagic vacuoles, consistent with the combined effects of increased trafficking of misfolded proteins to autophagic vacuoles and inhibition of their degradative capacity. Combined targeting of proteasomal and autophagic protein degradation using bortezomib and hydroxychloroquine is therefore feasible and a potentially useful strategy for improving outcomes in myeloma therapy. PMID:24991834

  17. Autophagy in Drosophila melanogaster.

    PubMed

    McPhee, Christina K; Baehrecke, Eric H

    2009-09-01

    Macroautophagy (autophagy) is a bulk cytoplasmic degradation process that is conserved from yeast to mammals. Autophagy is an important cellular response to starvation and stress, and plays critical roles in development, cell death, aging, immunity, and cancer. The fruit fly Drosophila melanogaster provides an excellent model system to study autophagy in vivo, in the context of a developing organism. Autophagy (atg) genes and their regulators are conserved in Drosophila, and autophagy is induced in response to nutrient starvation and hormones during development. In this review we provide an overview of how Drosophila research has contributed to our understanding of the role and regulation of autophagy in cell survival, growth, nutrient utilization, and cell death. Recent Drosophila research has also provided important mechanistic information about the role of autophagy in protein aggregation disorders, neurodegeneration, aging, and innate immunity. Differences in the role of autophagy in specific contexts and/or cell types suggest that there may be cell-context-specific regulators of autophagy, and studies in Drosophila are well-suited to yield discoveries about this specificity.

  18. Autophagy and kidney inflammation

    PubMed Central

    Kimura, Tomonori; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2017-01-01

    ABSTRACT Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases. PMID:28441075

  19. Identifying Early Target Cells of Nipah Virus Infection in Syrian Hamsters

    PubMed Central

    Baseler, Laura; Scott, Dana P.; Saturday, Greg; Horne, Eva; Rosenke, Rebecca; Thomas, Tina; Meade-White, Kimberly; Haddock, Elaine; Feldmann, Heinz

    2016-01-01

    Background Nipah virus causes respiratory and neurologic disease with case fatality rates up to 100% in individual outbreaks. End stage lesions have been described in the respiratory and nervous systems, vasculature and often lymphoid organs in fatal human cases; however, the initial target organs of Nipah virus infection have not been identified. Here, we detected the initial target tissues and cells of Nipah virus and tracked virus dissemination during the early phase of infection in Syrian hamsters inoculated with a Nipah virus isolate from Malaysia (NiV-M) or Bangladesh (NiV-B). Methodology/Principal Findings Syrian hamsters were euthanized between 4 and 48 hours post intranasal inoculation and tissues were collected and analyzed for the presence of viral RNA, viral antigen and infectious virus. Virus replication was first detected at 8 hours post inoculation (hpi). Nipah virus initially targeted type I pneumocytes, bronchiolar respiratory epithelium and alveolar macrophages in the lung and respiratory and olfactory epithelium lining the nasal turbinates. By 16 hpi, virus disseminated to epithelial cells lining the larynx and trachea. Although the pattern of viral dissemination was similar for both virus isolates, the rate of spread was slower for NiV-B. Infectious virus was not detected in the nervous system or blood and widespread vascular infection and lesions within lymphoid organs were not observed, even at 48 hpi. Conclusions/Significance Nipah virus initially targets the respiratory system. Virus replication in the brain and infection of blood vessels in non-respiratory tissues does not occur during the early phase of infection. However, virus replicates early in olfactory epithelium and may serve as the first step towards nervous system dissemination, suggesting that development of vaccines that block virus dissemination or treatments that can access the brain and spinal cord and directly inhibit virus replication may be necessary for preventing central

  20. Identifying Early Target Cells of Nipah Virus Infection in Syrian Hamsters.

    PubMed

    Baseler, Laura; Scott, Dana P; Saturday, Greg; Horne, Eva; Rosenke, Rebecca; Thomas, Tina; Meade-White, Kimberly; Haddock, Elaine; Feldmann, Heinz; de Wit, Emmie

    2016-11-01

    Nipah virus causes respiratory and neurologic disease with case fatality rates up to 100% in individual outbreaks. End stage lesions have been described in the respiratory and nervous systems, vasculature and often lymphoid organs in fatal human cases; however, the initial target organs of Nipah virus infection have not been identified. Here, we detected the initial target tissues and cells of Nipah virus and tracked virus dissemination during the early phase of infection in Syrian hamsters inoculated with a Nipah virus isolate from Malaysia (NiV-M) or Bangladesh (NiV-B). Syrian hamsters were euthanized between 4 and 48 hours post intranasal inoculation and tissues were collected and analyzed for the presence of viral RNA, viral antigen and infectious virus. Virus replication was first detected at 8 hours post inoculation (hpi). Nipah virus initially targeted type I pneumocytes, bronchiolar respiratory epithelium and alveolar macrophages in the lung and respiratory and olfactory epithelium lining the nasal turbinates. By 16 hpi, virus disseminated to epithelial cells lining the larynx and trachea. Although the pattern of viral dissemination was similar for both virus isolates, the rate of spread was slower for NiV-B. Infectious virus was not detected in the nervous system or blood and widespread vascular infection and lesions within lymphoid organs were not observed, even at 48 hpi. Nipah virus initially targets the respiratory system. Virus replication in the brain and infection of blood vessels in non-respiratory tissues does not occur during the early phase of infection. However, virus replicates early in olfactory epithelium and may serve as the first step towards nervous system dissemination, suggesting that development of vaccines that block virus dissemination or treatments that can access the brain and spinal cord and directly inhibit virus replication may be necessary for preventing central nervous system pathology.

  1. Casein kinase 1α–dependent feedback loop controls autophagy in RAS-driven cancers

    PubMed Central

    Cheong, Jit Kong; Zhang, Fuquan; Chua, Pei Jou; Bay, Boon Huat; Thorburn, Andrew; Virshup, David M.

    2015-01-01

    Activating mutations in the RAS oncogene are common in cancer but are difficult to therapeutically target. RAS activation promotes autophagy, a highly regulated catabolic process that metabolically buffers cells in response to diverse stresses. Here we report that casein kinase 1α (CK1α), a ubiquitously expressed serine/threonine kinase, is a key negative regulator of oncogenic RAS–induced autophagy. Depletion or pharmacologic inhibition of CK1α enhanced autophagic flux in oncogenic RAS–driven human fibroblasts and multiple cancer cell lines. FOXO3A, a master longevity mediator that transcriptionally regulates diverse autophagy genes, was a critical target of CK1α, as depletion of CK1α reduced levels of phosphorylated FOXO3A and increased expression of FOXO3A-responsive genes. Oncogenic RAS increased CK1α protein abundance via activation of the PI3K/AKT/mTOR pathway. In turn, elevated levels of CK1α increased phosphorylation of nuclear FOXO3A, thereby inhibiting transactivation of genes critical for RAS-induced autophagy. In both RAS-driven cancer cells and murine xenograft models, pharmacologic CK1α inactivation synergized with lysosomotropic agents to inhibit growth and promote tumor cell death. Together, our results identify a kinase feedback loop that influences RAS-dependent autophagy and suggest that targeting CK1α-regulated autophagy offers a potential therapeutic opportunity to treat oncogenic RAS–driven cancers. PMID:25798617

  2. MRP8/14 induces autophagy to eliminate intracellular Mycobacterium bovis BCG.

    PubMed

    Wang, Jinli; Huang, Chunyu; Wu, Minhao; Zhong, Qiu; Yang, Kun; Li, Miao; Zhan, Xiaoxia; Wen, Jinsheng; Zhou, Lin; Huang, Xi

    2015-04-01

    To explore the role of myeloid-related protein 8/14 in mycobacterial infection. The mRNA and protein expression levels of MRP8 or MRP14 were measured by real-time PCR and flow cytometry, respectively. Role of MRP8/14 was tested by overexpression or RNA interference assays. Flow cytometry and colony forming unit were used to test the phagocytosis and the survival of intracellular Mycobacterium bovis BCG (BCG), respectively. Autophagy mediated by MRP8/14 was detected by Western blot and immunofluorescence. The colocalization of BCG phagosomes with autophagosomes or lysosomes was by detected by confocal microscopy. ROS production was detected by flow cytometry. MRP8/14 expressions were up-regulated in human monocytic THP1 cells and primary macrophages after mycobacterial challenge. Silencing of MRP8/14 suppressed bacterial killing, but had no influence on the phagocytosis of BCG. Importantly, silencing MRP8/14 decreased autophagy and BCG phagosome maturation in THP1-derived macrophages, thereby increasing the BCG survival. Additionally, we demonstrated that MRP8/14 promoted autophagy in a ROS-dependent manner. The present study revealed a novel role of MRP8/14 in the autophagy-mediated elimination of intracellular BCG by promoting ROS generation, which may provide a promising therapeutic target for tuberculosis and other intracellular bacterial infectious diseases. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  3. MicroRNAs responding to southern rice black-streaked dwarf virus infection and their target genes associated with symptom development in rice.

    PubMed

    Xu, Donglin; Mou, Guiping; Wang, Kang; Zhou, Guohui

    2014-09-22

    Southern rice black-streaked dwarf virus (SRBSDV) is a recently emerged rice virus that has spread across Asia. This devastating virus causes rice plants to produce a variety of symptoms during different growth stages. MicroRNAs (miRNAs) comprise a large group of 21-24-nt RNA molecules that are important regulators of plant development processes and stress responses. In this study, we used microarray profiling to investigate rice miRNAs responding to SRBSDV infection at 3, 9, 15, and 20 days post-inoculation (dpi). Expression levels of 56 miRNAs were altered in SRBSDV-infected rice plants, with these changes classified into eight different regulation patterns according to their temporal expression dynamics. Fourteen miRNAs belonging to six families (miR164, R396, R530, R1846, R1858, and R2097) were significantly regulated at 20 dpi. We used RT-qPCR to search for expression level correlations between members of these families and their putative targets at 3, 9, and 15 dpi. Some members of the miR164, R396, R530, and R1846 families were found to be positively or negatively correlated with their respective targets during 3-15 days after SRBSDV infection, whereas in more cases the rice miRNAs were not in correlation with their targets along the post-inoculation period, suggesting that some additional factors may be involved in rice miRNA-target interactions. The reported functions of rice genes targeted by the miR164, R396, R530, R1846, and R1858 families indicated that these genes are associated with symptom development. These results provide insights into miRNA-mediated SRBSDV-rice interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. RNase L Cleavage Products Promote Switch from Autophagy to Apoptosis by Caspase-Mediated Cleavage of Beclin-1

    PubMed Central

    Siddiqui, Mohammad Adnan; Mukherjee, Sushovita; Manivannan, Praveen; Malathi, Krishnamurthy

    2015-01-01

    Autophagy and apoptosis share regulatory molecules enabling crosstalk in pathways that affect cellular homeostasis including response to viral infections and survival of tumor cells. Ribonuclease L (RNase L) is an antiviral endonuclease that is activated in virus-infected cells and cleaves viral and cellular single-stranded RNAs to produce small double-stranded RNAs with roles in amplifying host responses. Activation of RNase L induces autophagy and apoptosis in many cell types. However, the mechanism by which RNase L mediates crosstalk between these two pathways remains unclear. Here we show that small dsRNAs produced by RNase L promote a switch from autophagy to apoptosis by caspase-mediated cleavage of Beclin-1, terminating autophagy. The caspase 3-cleaved C-terminal fragment of Beclin-1 enhances apoptosis by translocating to the mitochondria along with proapoptotic protein, Bax, and inducing release of cytochrome C to the cytosol. Cleavage of Beclin-1 determines switch to apoptosis since expression of caspase-resistant Beclin-1 inhibits apoptosis and sustains autophagy. Moreover, inhibiting RNase L-induced autophagy promotes cell death and inhibiting apoptosis prolongs autophagy in a cross-inhibitory mechanism. Our results demonstrate a novel role of RNase L generated small RNAs in cross-talk between autophagy and apoptosis that impacts the fate of cells during viral infections and cancer. PMID:26263979

  5. Autophagy Enhances Memory Erasure through Synaptic Destabilization.

    PubMed

    Shehata, Mohammad; Abdou, Kareem; Choko, Kiriko; Matsuo, Mina; Nishizono, Hirofumi; Inokuchi, Kaoru

    2018-04-11

    There is substantial interest in memory reconsolidation as a target for the treatment of anxiety disorders, such as post-traumatic stress disorder. However, its applicability is restricted by reconsolidation-resistant boundary conditions that constrain the initial memory destabilization. In this study, we investigated whether the induction of synaptic protein degradation through autophagy modulation, a major protein degradation pathway, can enhance memory destabilization upon retrieval and whether it can be used to overcome these conditions. Here, using male mice in an auditory fear reconsolidation model, we showed that autophagy contributes to memory destabilization and its induction can be used to enhance erasure of a reconsolidation-resistant auditory fear memory that depended on AMPAR endocytosis. Using male mice in a contextual fear reconsolidation model, autophagy induction in the amygdala or in the hippocampus enhanced fear or contextual memory destabilization, respectively. The latter correlated with AMPAR degradation in the spines of the contextual memory-ensemble cells. Using male rats in an in vivo LTP reconsolidation model, autophagy induction enhanced synaptic destabilization in an NMDAR-dependent manner. These data indicate that induction of synaptic protein degradation can enhance both synaptic and memory destabilization upon reactivation and that autophagy inducers have the potential to be used as a therapeutic tool in the treatment of anxiety disorders. SIGNIFICANCE STATEMENT It has been reported that inhibiting synaptic protein degradation prevents memory destabilization. However, whether the reverse relation is true and whether it can be used to enhance memory destabilization are still unknown. Here we addressed this question on the behavioral, molecular, and synaptic levels, and showed that induction of autophagy, a major protein degradation pathway, can enhance memory and synaptic destabilization upon reactivation. We also show that autophagy

  6. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    PubMed

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  7. Store-operated calcium entry-activated autophagy protects EPC proliferation via the CAMKK2-MTOR pathway in ox-LDL exposure.

    PubMed

    Yang, Jie; Yu, Jie; Li, Dongdong; Yu, Sanjiu; Ke, Jingbin; Wang, Lianyou; Wang, Yanwei; Qiu, Youzhu; Gao, Xubin; Zhang, Jihang; Huang, Lan

    2017-01-02

    Improving biological functions of endothelial progenitor cells (EPCs) is beneficial to maintaining endothelium homeostasis and promoting vascular re-endothelialization. Because macroautophagy/autophagy has been documented as a double-edged sword in cell functions, its effects on EPCs remain to be elucidated. This study was designed to explore the role and molecular mechanisms of store-operated calcium entry (SOCE)-activated autophagy in proliferation of EPCs under hypercholesterolemia. We employed oxidized low-density lipoprotein (ox-LDL) to mimic hypercholesterolemia in bone marrow-derived EPCs from rat. Ox-LDL dose-dependently activated autophagy flux, while inhibiting EPC proliferation. Importantly, inhibition of autophagy either by silencing Atg7 or by 3-methyladenine treatment, further aggravated proliferative inhibition by ox-LDL, suggesting the protective effects of autophagy against ox-LDL. Interestingly, ox-LDL increased STIM1 expression and intracellular Ca 2+ concentration. Either Ca 2+ chelators or deficiency in STIM1 attenuated ox-LDL-induced autophagy activation, confirming the involvement of SOCE in the process. Furthermore, CAMKK2 (calcium/calmodulin-dependent protein kinase kinase 2, β) activation and MTOR (mechanistic target of rapamycin [serine/threonine kinase]) deactivation were associated with autophagy modulation. Together, our results reveal a novel signaling pathway of SOCE-CAMKK2 in the regulation of autophagy and offer new insights into the important roles of autophagy in maintaining proliferation and promoting the survival capability of EPCs. This may be beneficial to improving EPC transplantation efficacy and enhancing vascular re-endothelialization in patients with hypercholesterolemia.

  8. Licochalcone A induces autophagy through PI3K/Akt/mTOR inactivation and autophagy suppression enhances Licochalcone A-induced apoptosis of human cervical cancer cells.

    PubMed

    Tsai, Jen-Pi; Lee, Chien-Hsing; Ying, Tsung-Ho; Lin, Chu-Liang; Lin, Chia-Liang; Hsueh, Jung-Tsung; Hsieh, Yi-Hsien

    2015-10-06

    The use of dietary bioactive compounds in chemoprevention can potentially reverse, suppress, or even prevent cancer progression. However, the effects of licochalcone A (LicA) on apoptosis and autophagy in cervical cancer cells have not yet been clearly elucidated. In this study, LicA treatment was found to significantly induce the apoptotic and autophagic capacities of cervical cancer cells in vitro and in vivo. MTT assay results showed dose- and time-dependent cytotoxicity in four cervical cancer cell lines treated with LicA. We found that LicA induced mitochondria-dependent apoptosis in SiHa cells, with decreasing Bcl-2 expression. LicA also induced autophagy effects were examined by identifying accumulation of Atg5, Atg7, Atg12 and microtubule-associated protein 1 light chain 3 (LC3)-II. Treatment with autophagy-specific inhibitors (3-methyladenine and bafilomycin A1) enhanced LicA-induced apoptosis. In addition, we suggested the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of mTOR pathway by LicA. Furthermore, the inhibition of PI3K/Akt by LY294002/si-Akt or of mTOR by rapamycin augmented LicA-induced apoptosis and autophagy. Finally, the in vivo mice bearing a SiHa xenograft, LicA dosed at 10 or 20 mg/kg significantly inhibited tumor growth. Our findings demonstrate the chemotherapeutic potential of LicA for treatment of human cervical cancer.

  9. Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging.

    PubMed

    Plaza-Zabala, Ainhoa; Sierra-Torre, Virginia; Sierra, Amanda

    2017-03-09

    Autophagy is emerging as a core regulator of Central Nervous System (CNS) aging and neurodegeneration. In the brain, it has mostly been studied in neurons, where the delivery of toxic molecules and organelles to the lysosome by autophagy is crucial for neuronal health and survival. However, we propose that the (dys)regulation of autophagy in microglia also affects innate immune functions such as phagocytosis and inflammation, which in turn contribute to the pathophysiology of aging and neurodegenerative diseases. Herein, we first describe the basic concepts of autophagy and its regulation, discuss key aspects for its accurate monitoring at the experimental level, and summarize the evidence linking autophagy impairment to CNS senescence and disease. We focus on acute, chronic, and autoimmunity-mediated neurodegeneration, including ischemia/stroke, Alzheimer's, Parkinson's, and Huntington's diseases, and multiple sclerosis. Next, we describe the actual and potential impact of autophagy on microglial phagocytic and inflammatory function. Thus, we provide evidence of how autophagy may affect microglial phagocytosis of apoptotic cells, amyloid-β, synaptic material, and myelin debris, and regulate the progression of age-associated neurodegenerative diseases. We also discuss data linking autophagy to the regulation of the microglial inflammatory phenotype, which is known to contribute to age-related brain dysfunction. Overall, we update the current knowledge of autophagy and microglia, and highlight as yet unexplored mechanisms whereby autophagy in microglia may contribute to CNS disease and senescence.

  10. Therapeutic Strategies against Epstein-Barr Virus-Associated Cancers Using Proteasome Inhibitors

    PubMed Central

    Hui, Kwai Fung; Tam, Kam Pui

    2017-01-01

    Epstein-Barr virus (EBV) is closely associated with several lymphomas (endemic Burkitt lymphoma, Hodgkin lymphoma and nasal NK/T-cell lymphoma) and epithelial cancers (nasopharyngeal carcinoma and gastric carcinoma). To maintain its persistence in the host cells, the virus manipulates the ubiquitin-proteasome system to regulate viral lytic reactivation, modify cell cycle checkpoints, prevent apoptosis and evade immune surveillance. In this review, we aim to provide an overview of the mechanisms by which the virus manipulates the ubiquitin-proteasome system in EBV-associated lymphoid and epithelial malignancies, to evaluate the efficacy of proteasome inhibitors on the treatment of these cancers and discuss potential novel viral-targeted treatment strategies against the EBV-associated cancers. PMID:29160853

  11. Therapeutic Strategies against Epstein-Barr Virus-Associated Cancers Using Proteasome Inhibitors.

    PubMed

    Hui, Kwai Fung; Tam, Kam Pui; Chiang, Alan Kwok Shing

    2017-11-21

    Epstein-Barr virus (EBV) is closely associated with several lymphomas (endemic Burkitt lymphoma, Hodgkin lymphoma and nasal NK/T-cell lymphoma) and epithelial cancers (nasopharyngeal carcinoma and gastric carcinoma). To maintain its persistence in the host cells, the virus manipulates the ubiquitin-proteasome system to regulate viral lytic reactivation, modify cell cycle checkpoints, prevent apoptosis and evade immune surveillance. In this review, we aim to provide an overview of the mechanisms by which the virus manipulates the ubiquitin-proteasome system in EBV-associated lymphoid and epithelial malignancies, to evaluate the efficacy of proteasome inhibitors on the treatment of these cancers and discuss potential novel viral-targeted treatment strategies against the EBV-associated cancers.

  12. Variable Effects of Autophagy Induction by Trehalose on Herpesviruses Depending on Conditions of Infection

    PubMed Central

    Meier, Jeffery L.; Grose, Charles

    2017-01-01

    Trehalose is a non-reducing sugar formed from two glucose units. Trehalose induces abundant autophagy in cultured cells and also reduces the rate of aggregation of the huntingtin protein in the animal model of Huntington disease, a chronic neurological disease in humans. The mechanism of this effect on autophagy is now known to be caused by starvation secondary to inhibition of a family of glucose transporters known as the solute carrier 2 or the glucose transporter family. Variable effects of trehalose treatment have been observed during infections with two herpesviruses—human cytomegalovirus and varicella-zoster virus. The reasons for differing results have now been delineated. These differences are caused by two variables in conditions of infection: timing of addition of trehalose and type of inoculum (cell-free virus vs. infected cells). When monolayers pretreated with trehalose were inoculated with cell-free virus, there was a decline in virus spread by as much as 93 percent when compared with untreated monolayers. However, when monolayers were inoculated with infected cells rather than cell-free virus, there was no decline in virus spread. These results demonstrated that the effect of trehalose was limited to monolayers that were starved when inoculated with cell-free virus. In contrast, sufficient virus was already present in infected cell inocula so as to minimize any inhibitory effect of a starved monolayer. These results also showed that trehalose did not specifically inhibit a herpesvirus; rather, addition of trehalose to cell culture media altered the intracellular environment. PMID:28356891

  13. Autophagy contributes to resistance of tumor cells to ionizing radiation.

    PubMed

    Chaachouay, Hassan; Ohneseit, Petra; Toulany, Mahmoud; Kehlbach, Rainer; Multhoff, Gabriele; Rodemann, H Peter

    2011-06-01

    Autophagy signaling is a novel important target to improve anticancer therapy. To study the role of autophagy on resistance of tumor cells to ionizing radiation (IR), breast cancer cell lines differing in their intrinsic radiosensitivity were used. Breast cancer cell lines MDA-MB-231 and HBL-100 were examined with respect to clonogenic cell survival and induction of autophagy after radiation exposure and pharmacological interference of the autophagic process. As marker for autophagy the appearance of LC3-I and LC3-II proteins was analyzed by SDS-PAGE and Western blotting. Formation of autophagic vacuoles was monitored by immunofluorescence staining of LC3. LC3-I and LC3-II formation differs markedly in radioresistant MDA-MB-231 versus radiosensitive HBL-100 cells. Western blot analyses of LC3-II/LC3-I ratio indicated marked induction of autophagy by IR in radioresistant MDA-MB-231 cells, but not in radiosensitive HBL-100 cells. Indirect immunofluorescence analysis of LC3-II positive vacuoles confirmed this differential effect. Pre-treatment with 3-methyladenine (3-MA) antagonized IR-induced autophagy. Likewise, pretreatment of radioresistant MDA-231 cells with autophagy inhibitors 3-MA or chloroquine (CQ) significantly reduced clonogenic survival of irradiated cells. Our data clearly indicate that radioresistant breast tumor cells show a strong post-irradiation induction of autophagy, which thus serves as a protective and pro-survival mechanism in radioresistance. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Human Cytomegalovirus Replication Is Inhibited by the Autophagy-Inducing Compounds Trehalose and SMER28 through Distinctively Different Mechanisms.

    PubMed

    Clark, Alex E; Sabalza, Maite; Gordts, Philip L S M; Spector, Deborah H

    2018-03-15

    Human cytomegalovirus (HCMV) is the top viral cause of birth defects worldwide, and current therapies have high toxicity. We previously reported that the mTOR-independent autophagy-inducing disaccharide trehalose inhibits HCMV replication in multiple cell types. Here, we examine the mechanism of inhibition and introduce the autophagy inducer SMER28 as an additional inhibitor of HCMV acting through a different mechanism. We find that trehalose induces vacuolation and acidification of vacuoles and that debris, including debris with an appearance consistent with that of abnormal virions, is present in multivesicular bodies. Trehalose treatment increased the levels of Rab7, a protein required for lysosomal biogenesis and fusion, and slightly decreased the levels of Rab11, which is associated with recycling endosomes. We also present evidence that trehalose can promote autophagy without altering cellular glucose uptake. We show that SMER28 inhibits HCMV at the level of early protein production and interferes with viral genome replication in a cell type-dependent fashion. Finally, we show that SMER28 treatment does not cause the vacuolation, acidification, or redistribution of Rab7 associated with trehalose treatment and shows only a modest and cell type-dependent effect on autophagy. We propose a model in which the reciprocal effects on Rab7 and Rab11 induced by trehalose contribute to the redirection of enveloped virions from the plasma membrane to acidified compartments and subsequent degradation, and SMER28 treatment results in decreased expression levels of early and late proteins, reducing the number of virions produced without the widespread vacuolation characteristic of trehalose treatment. IMPORTANCE There is a need for less toxic HCMV antiviral drugs, and modulation of autophagy to control viral infection is a new strategy that takes advantage of virus dependence on autophagy inhibition. The present study extends our previous work on trehalose by showing a

  15. Suppression of Lysosome Function Induces Autophagy via a Feedback Down-regulation of MTOR Complex 1 (MTORC1) Activity*

    PubMed Central

    Li, Min; Khambu, Bilon; Zhang, Hao; Kang, Jeong-Han; Chen, Xiaoyun; Chen, Daohong; Vollmer, Laura; Liu, Pei-Qing; Vogt, Andreas; Yin, Xiao-Ming

    2013-01-01

    Autophagy can be activated via MTORC1 down-regulation by amino acid deprivation and by certain chemicals such as rapamycin, torin, and niclosamide. Lysosome is the degrading machine for autophagy but has also been linked to MTORC1 activation through the Rag/RRAG GTPase pathway. This association raises the question of whether lysosome can be involved in the initiation of autophagy. Toward this end, we found that niclosamide, an MTORC1 inhibitor, was able to inhibit lysosome degradation and increase lysosomal permeability. Niclosamide was ineffective in inhibiting MTORC1 in cells expressing constitutively activated Rag proteins, suggesting that its inhibitory effects were targeted to the Rag-MTORC1 signaling system. This places niclosamide in the same category of bafilomycin A1 and concanamycin A, inhibitors of the vacuolar H+-ATPase, for its dependence on Rag GTPase in suppression of MTORC1. Surprisingly, classical lysosome inhibitors such as chloroquine, E64D, and pepstatin A were also able to inhibit MTORC1 in a Rag-dependent manner. These lysosome inhibitors were able to activate early autophagy events represented by ATG16L1 and ATG12 puncta formation. Our work established a link between the functional status of the lysosome in general to the Rag-MTORC1 signaling axis and autophagy activation. Thus, the lysosome is not only required for autophagic degradation but also affects autophagy activation. Lysosome inhibitors can have a dual effect in suppressing autophagy degradation and in initiating autophagy. PMID:24174532

  16. Blockade of Treg Cell Differentiation and Function by the Interleukin-21-Mechanistic Target of Rapamycin Axis Via Suppression of Autophagy in Patients With Systemic Lupus Erythematosus.

    PubMed

    Kato, Hiroshi; Perl, Andras

    2018-03-01

    The mechanistic target of rapamycin (mTOR) has become a therapeutic target in systemic lupus erythematosus (SLE). In T cells, mTOR plays a central role in lineage specification, including development of regulatory cells (Treg cells). This study sought to investigate whether mTOR is activated within Treg cells and whether this contributes to the depletion and dysfunction of Treg cells in patients with SLE. Activities of mTOR complexes 1 (mTORC1) and 2 (mTORC2) were examined by quantifying phosphorylation of translation initiation factor 4E-binding protein 1, S6 kinase, and Akt in SLE patients relative to age- and sex-matched female healthy control subjects. Polarization of Treg cells from naive CD4+ T cells was assessed in the presence of interleukin-6 (IL-6), IL-17, and IL-21. The suppressor function of sorted CD4+CD25+ Treg cells was measured by determining their impact on the proliferation of autologous CD4+CD25- responder T cells. Treg cell expression of FoxP3, GATA-3, and CTLA-4 was monitored by flow cytometry. Autophagy was assessed using immunoblotting of light chain 3 lipidation. The effect of mTOR blockade was evaluated by testing the impact of rapamycin treatment on Treg cell function. SLE Treg cells exhibited increased activities of mTORC1 and mTORC2, whereas autophagy, the expression of GATA-3 and CTLA-4, and the suppressor function of Treg cells were diminished. IL-21, but not IL-6 or IL-17, blocked the development of Treg cells. IL-21 stimulated mTORC1 and mTORC2, and it abrogated the autophagy, differentiation, and function of Treg cells. Moreover, IL-21 constrained the expression of GATA-3 and CTLA-4 selectively in Treg cells. In turn, blockade of mTORC1 by 3-day rapamycin treatment enhanced transforming growth factor β production, while dual blockade of mTORC1 and mTORC2 by 4-week rapamycin treatment induced autophagy, restored the expression of GATA-3 and CTLA-4, and corrected Treg cell function. IL-21-driven mTOR activation is a pharmacologically

  17. Autophagy mediates HIF2α degradation and suppresses renal tumorigenesis

    PubMed Central

    Liu, Xian-De; Yao, Jun; Tripathi, Durga Nand; Ding, Zhiyong; Xu, Yi; Sun, Mianen; Zhang, Jiangwei; Bai, Shanshan; German, Peter; Hoang, Anh; Zhou, Lijun; Jonasch, Darius; Zhang, Xuesong; Conti, Claudio J.; Efstathiou, Eleni; Tannir, Nizar M; Eissa, N. Tony; Mills, Gordon B.; Walker, Cheryl Lyn; Jonasch, Eric

    2014-01-01

    Autophagy is a conserved process involved in lysosomal degradation of protein aggregates and damaged organelles. The role of autophagy in cancer is a topic of intense debate, and the underlying mechanism is still not clear. The hypoxia inducible factor 2α (HIF2α), an oncogenic transcription factor implicated in renal tumorigenesis, is known to be degraded by the ubiquitin-proteasome system (UPS). Here we report that HIF2α is in part constitutively degraded by autophagy. HIF2α interacts with autophagy-lysosome system components. Inhibition of autophagy increases HIF2α, while induction of autophagy decreases HIF2α. The E3 ligase von Hippel Lindau (VHL) and autophagy receptor protein p62 are required for autophagic degradation of HIF2α. There is a compensatory interaction between the UPS and autophagy in HIF2α degradation. Autophagy inactivation redirects HIF2α to proteasomal degradation, while proteasome inhibition induces autophagy and increases the HIF2α-p62 interaction. Importantly, clear cell renal cell carcinoma (ccRCC) is frequently associated with mono-allelic loss and/or mutation of autophagy related gene ATG7, and low expression level of autophagy genes correlates with ccRCC progression. The protein levels of ATG7 and beclin 1 are also reduced in ccRCC tumors. This study indicates that autophagy plays an anticancer role in ccRCC tumorigenesis, and suggests that constitutive autophagic degradation of HIF2α is a novel tumor suppression mechanism. PMID:24998849

  18. Microenvironmental autophagy promotes tumour growth.

    PubMed

    Katheder, Nadja S; Khezri, Rojyar; O'Farrell, Fergal; Schultz, Sebastian W; Jain, Ashish; Rahman, Mohammed M; Schink, Kay O; Theodossiou, Theodossis A; Johansen, Terje; Juhász, Gábor; Bilder, David; Brech, Andreas; Stenmark, Harald; Rusten, Tor Erik

    2017-01-19

    As malignant tumours develop, they interact intimately with their microenvironment and can activate autophagy, a catabolic process which provides nutrients during starvation. How tumours regulate autophagy in vivo and whether autophagy affects tumour growth is controversial. Here we demonstrate, using a well characterized Drosophila melanogaster malignant tumour model, that non-cell-autonomous autophagy is induced both in the tumour microenvironment and systemically in distant tissues. Tumour growth can be pharmacologically restrained using autophagy inhibitors, and early-stage tumour growth and invasion are genetically dependent on autophagy within the local tumour microenvironment. Induction of autophagy is mediated by Drosophila tumour necrosis factor and interleukin-6-like signalling from metabolically stressed tumour cells, whereas tumour growth depends on active amino acid transport. We show that dormant growth-impaired tumours from autophagy-deficient animals reactivate tumorous growth when transplanted into autophagy-proficient hosts. We conclude that transformed cells engage surrounding normal cells as active and essential microenvironmental contributors to early tumour growth through nutrient-generating autophagy.

  19. Exploring autophagy with Gene Ontology

    PubMed Central

    2018-01-01

    ABSTRACT Autophagy is a fundamental cellular process that is well conserved among eukaryotes. It is one of the strategies that cells use to catabolize substances in a controlled way. Autophagy is used for recycling cellular components, responding to cellular stresses and ridding cells of foreign material. Perturbations in autophagy have been implicated in a number of pathological conditions such as neurodegeneration, cardiac disease and cancer. The growing knowledge about autophagic mechanisms needs to be collected in a computable and shareable format to allow its use in data representation and interpretation. The Gene Ontology (GO) is a freely available resource that describes how and where gene products function in biological systems. It consists of 3 interrelated structured vocabularies that outline what gene products do at the biochemical level, where they act in a cell and the overall biological objectives to which their actions contribute. It also consists of ‘annotations’ that associate gene products with the terms. Here we describe how we represent autophagy in GO, how we create and define terms relevant to autophagy researchers and how we interrelate those terms to generate a coherent view of the process, therefore allowing an interoperable description of its biological aspects. We also describe how annotation of gene products with GO terms improves data analysis and interpretation, hence bringing a significant benefit to this field of study. PMID:29455577

  20. Autophagy-induced KDR/VEGFR-2 activation promotes the formation of vasculogenic mimicry by glioma stem cells.

    PubMed

    Wu, Hai-Bo; Yang, Shuai; Weng, Hai-Yan; Chen, Qian; Zhao, Xi-Long; Fu, Wen-Juan; Niu, Qin; Ping, Yi-Fang; Wang, Ji Ming; Zhang, Xia; Yao, Xiao-Hong; Bian, Xiu-Wu

    2017-09-02

    Antiangiogenesis with bevacizumab, an antibody against vascular endothelial growth factor (VEGF), has been used for devascularization to limit the growth of malignant glioma. However, the benefits are transient due to elusive mechanisms underlying resistance to the antiangiogenic therapy. Glioma stem cells (GSCs) are capable of forming vasculogenic mimicry (VM), an alternative microvascular circulation independent of VEGF-driven angiogenesis. Herein, we report that the formation of VM was promoted by bevacizumab-induced macroautophagy/autophagy in GSCs, which was associated with tumor resistance to antiangiogenic therapy. We established a 3-dimensional collagen scaffold to examine the formation of VM and autophagy by GSCs, and found that rapamycin increased the number of VM and enhanced KDR/VEGFR-2 phosphorylation. Treatment with chloroquine, or knockdown of the autophagy gene ATG5, inhibited the formation of VM and KDR phosphorylation in GSCs. Notably, neutralization of GSCs-produced VEGF with bevacizumab failed to recapitulate the effect of chloroquine treatment and ATG5 knockdown, suggesting that autophagy-promoted formation of VM was independent of tumor cell-derived VEGF. ROS was elevated when autophagy was induced in GSCs and activated KDR phosphorylation through the phosphoinositide 3-kinase (PI3K)-AKT pathway. A ROS inhibitor, N-acetylcysteine, abolished KDR phosphorylation and the formation of VM by GSCs. By examination of the specimens from 95 patients with glioblastoma, we found that ATG5 and p-KDR expression was strongly associated with the density of VM in tumors and poor clinical outcome. Our results thus demonstrate a crucial role of autophagy in the formation of VM by GSCs, which may serve as a therapeutic target in drug-resistant glioma.

  1. Selenium Deficiency Induces Autophagy in Immune Organs of Chickens.

    PubMed

    Khoso, Pervez Ahmed; Pan, Tingru; Wan, Na; Yang, Zijiang; Liu, Ci; Li, Shu

    2017-05-01

    The aim of the present study was to investigate the effects of selenium (Se) deficiency on autophagy-related genes and on ultrastructural changes in the spleen, bursa of Fabricius, and thymus of chickens. The Se deficiency group was fed a basal diet containing Se at 0.033 mg/kg and the control group was fed the same basal diet containing Se at 0.15 mg/kg. The messenger RNA (mRNA) levels of the autophagy genes microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, Beclin 1, dynein, autophagy associated gene 5 (ATG5), and target of rapamycin complex 1 (TORC1) were assessed using real-time qPCR. The protein levels of LC3-II, Beclin 1, and dynein were investigated using western blot analysis. Furthermore, the ultrastructure was observed using an electron microscope. The results indicated that spleen mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of LC3-II, Beclin 1, and dynein were increased in the Se deficiency group compared with the control group. In the bursa of Fabricius, the mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of Beclin 1 and dynein were increased; furthermore, the protein level of LC3-II was decreased in the Se deficiency group compared to the control group. In the thymus, the mRNA levels of LC3-I, Beclin 1, and ATG5 increased; the levels of LC3-II, dynein, and TORC1 were decreased; the protein level of Beclin 1 increased; and the levels of LC3-II and dynein decreased in the Se deficiency group compared to those in the control group. Further cellular morphological changes, such as autophagy vacuoles, autolysosomes, and lysosomal degradation, were observed in the spleen, bursa of Fabricius, and thymus of the Se-deficiency group. In summary, Se deficiency caused changes in autophagy-related genes, which increased the autophagic process and also caused structural damages to the immune organs of chickens.

  2. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy

    PubMed Central

    Ganesan, Raja; Hos, Nina Judith; Gutierrez, Saray; Fischer, Julia; Stepek, Joanna Magdalena; Daglidu, Evmorphia; Krönke, Martin

    2017-01-01

    During intracellular infections, autophagy significantly contributes to the elimination of pathogens, regulation of pro-inflammatory signaling, secretion of immune mediators and in coordinating the adaptive immune system. Intracellular pathogens such as S. Typhimurium have evolved mechanisms to circumvent autophagy. However, the regulatory mechanisms targeted by S. Typhimurium to modulate autophagy have not been fully resolved. Here we report that cytosolic energy loss during S. Typhimurium infection triggers transient activation of AMPK, an important checkpoint of mTOR activity and autophagy. The activation of AMPK is regulated by LKB1 in a cytosolic complex containing Sirt1 and LKB1, where Sirt1 is required for deacetylation and subsequent activation of LKB1. S. Typhimurium infection targets Sirt1, LKB1 and AMPK to lysosomes for rapid degradation resulting in the disruption of the AMPK-mediated regulation of mTOR and autophagy. The degradation of cytosolic Sirt1/LKB1/AMPK complex was not observed with two mutant strains of S. Typhimurium, ΔssrB and ΔssaV, both compromising the pathogenicity island 2 (SPI2). The results highlight virulence factor-dependent degradation of host cell proteins as a previously unrecognized strategy of S. Typhimurium to evade autophagy. PMID:28192515

  3. Regulation of Mitochondrial Dynamics and Autophagy by the Mitochondria-Associated Membrane.

    PubMed

    Tagaya, Mitsuo; Arasaki, Kohei

    2017-01-01

    Mitochondria are powerhouses and central to metabolism in cells. They are highly dynamic organelles that continuously fuse, divide, and move along the cytoskeleton to form the mitochondrial network. The fusion and fission are catalyzed by four dynamin-related GTPases in mammals that are controlled by a variety of protein-protein interactions and posttranslational modifications. Mitochondrial dynamics and metabolism are linked and regulate each other. Starvation induces mitochondrial elongation, which enables the mitochondria to produce energy more efficiently and to escape from autophagic degradation. Damaged portions of mitochondria are removed from the healthy parts by division, and subsequently degraded via a specific mode of autophagy termed mitophagy. Recent studies shed light on the contribution of the endoplasmic reticulum to mitochondrial dynamics and the cooperation of the two organelles for the progression of autophagy including mitophagy. A subdomain of the endoplasmic reticulum apposed to mitochondria is called the mitochondria-associated membrane (MAM), which comprises a unique set of proteins that interact with mitochondrial proteins. Here we review our current understanding of the molecular mechanisms of mitochondrial dynamics and mitochondria-related processes in the context of the interaction with the endoplasmic reticulum.

  4. The NOTCH1-autophagy interaction: Regulating self-eating for survival.

    PubMed

    Sarin, Apurva; Marcel, Nimi

    2017-02-01

    T-cell subsets in the mammalian immune system use varied mechanisms for survival, a demand imposed by the diverse and dynamic niches that they function in. In a recent study, we showed that survival of natural T-regulatory cells (Tregs) was determined by spatially regulated NOTCH1 activity signaling leading to the activation of macroautophagy/autophagy. While this interaction was revealed in experimental conditions of limited nutrient availability in vitro, the consequences of this interaction were confirmed in the context of immune physiology. Consistently, disrupting NOTCH signaling or the autophagy cascade was deleterious to Tregs. At the molecular level, ligand-activated NOTCH1, which is enriched outside the nucleus in Tregs, was detected in complexes that included specific molecular intermediates controlling the progression of autophagy. Mitochondria were a prominent cellular target, with organelle remodeling and function dependent on NOTCH1 signaling to autophagy. It is tempting to speculate that the link between autophagy and the developmental regulator NOTCH1 identified in this work may be conserved in other biological contexts.

  5. Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy

    PubMed Central

    Armour, Sean M.; Baur, Joseph A.; Hsieh, Sherry N.; Land-Bracha, Abigail; Thomas, Sheila M.; Sinclair, David A.

    2009-01-01

    Resveratrol is a plant-derived polyphenol that promotes health and disease resistance in rodent models, and extends lifespan in lower organisms. A major challenge is to understand the biological processes and molecular pathways by which resveratrol induces these beneficial effects. Autophagy is a critical process by which cells turn over damaged components and maintain bioenergetic requirements. Disruption of the normal balance between pro- and anti-autophagic signals is linked to cancer, liver disease, and neurodegenerative disorders. Here we show that resveratrol attenuates autophagy in response to nutrient limitation or rapamycin in multiple cell lines through a pathway independent of a known target, SIRT1. In a large-scalein vitro kinase screen we identified p70 S6 kinase (S6K1) as a target of resveratrol. Blocking S6K1 activity by expression of a dominant-negative mutant or RNA interference is sufficient to disrupt autophagy to a similar extent as resveratrol. Furthermore, co-administration of resveratrol with S6K1 knockdown does not produce an additive effect. These data indicate that S6K1 is important for the full induction of autophagy in mammals and raise the possibility that some of the beneficial effects of resveratrol are due to modulation of S6K1 activity. PMID:20157535

  6. Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy.

    PubMed

    Armour, Sean M; Baur, Joseph A; Hsieh, Sherry N; Land-Bracha, Abigail; Thomas, Sheila M; Sinclair, David A

    2009-06-03

    Resveratrol is a plant-derived polyphenol that promotes health and disease resistance in rodent models, and extends lifespan in lower organisms. A major challenge is to understand the biological processes and molecular pathways by which resveratrol induces these beneficial effects. Autophagy is a critical process by which cells turn over damaged components and maintain bioenergetic requirements. Disruption of the normal balance between pro- and anti-autophagic signals is linked to cancer, liver disease, and neurodegenerative disorders. Here we show that resveratrol attenuates autophagy in response to nutrient limitation or rapamycin in multiple cell lines through a pathway independent of a known target, SIRT1. In a large-scalein vitro kinase screen we identified p70 S6 kinase (S6K1) as a target of resveratrol. Blocking S6K1 activity by expression of a dominant-negative mutant or RNA interference is sufficient to disrupt autophagy to a similar extent as resveratrol. Furthermore, co-administration of resveratrol with S6K1 knockdown does not produce an additive effect. These data indicate that S6K1 is important for the full induction of autophagy in mammals and raise the possibility that some of the beneficial effects of resveratrol are due to modulation of S6K1 activity.

  7. Chloroquine and hydroxychloroquine inhibit bladder cancer cell growth by targeting basal autophagy and enhancing apoptosis.

    PubMed

    Lin, Yi-Chia; Lin, Ji-Fan; Wen, Sheng-I; Yang, Shan-Che; Tsai, Te-Fu; Chen, Hung-En; Chou, Kuang-Yu; Hwang, Thomas I-Sheng

    2017-05-01

    Chloroquine (CQ) and hydroxychloroquine (HCQ), two antimalarial drugs, are suggested to have potential anticancer properties. in the present study, we investigated the effects of CQ and HCQ on cell growth of bladder cancer with emphasis on autophagy inhibition and apoptosis induction in vitro. The results showed that CQ and HCQ inhibited the proliferation of multiple human bladder cell lines (including RT4, 5637, and T24) in a time- and dose-dependent fashion, especially in advanced bladder cancer cell lines (5637 and T24) compared to immortalized uroepithelial cells (SV-Huc-1) or other reference cancer cell lines (PC3 and MCF-7). We found that 24-hour treatment of CQ or HCQ significantly decreased the clonogenic formation in 5637 and T24 cells compared to SV-Huc-1. As human bladder cancer tumor exhibits high basal level of autophagic activities, we detected the autophagic flux in cells treated with CQ and HCQ, showing an alternation in LC3 flux in CQ- or HCQ-treated cells. Moreover, bladder cancer cells treated with CQ and HCQ underwent apoptosis, resulting in increased caspase 3/7 activities, increased level of cleaved poly(ADP-ribose) polymerase (PARP), caspase 3, and DNA fragmentation. Given these results, targeting autophagy with CQ and HCQ represents an effective cancer therapeutic strategy against human bladder cancer. Copyright © 2017. Published by Elsevier Taiwan.

  8. Development of novel entry inhibitors targeting emerging viruses

    PubMed Central

    Zhou, Yanchen; Simmons, Graham

    2013-01-01

    Emerging viral diseases pose a unique risk to public health, and thus there is a need to develop therapies. A current focus of funding agencies, and hence research, is the development of broad-spectrum antivirals, and in particular, those targeting common cellular pathways. The scope of this article is to review screening strategies and recent advances in this area, with a particular emphasis on antivirals targeting the step of viral entry for emerging lipid-enveloped viruses such as Ebola virus and SARS-coronavirus. PMID:23199399

  9. Regulation of autophagy by amino acids and MTOR-dependent signal transduction.

    PubMed

    Meijer, Alfred J; Lorin, Séverine; Blommaart, Edward F; Codogno, Patrice

    2015-10-01

    Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins and of the elimination of damaged or functionally redundant organelles. Proper functioning of this process is essential for cell survival. Dysregulation of autophagy has been implicated in the etiology of several pathologies. The history of the studies on the interrelationship between amino acids, MTOR signaling and autophagy is the subject of this review. The mechanisms responsible for the stimulation of MTOR-mediated signaling, and the inhibition of autophagy, by amino acids have been studied intensively in the past but are still not completely clarified. Recent developments in this field are discussed.

  10. Recycling to discover something new: the role of autophagy in kidney disease.

    PubMed

    Leventhal, Jeremy S; Wyatt, Christina M; Ross, Michael J

    2017-01-01

    This year, the Nobel Prize in Physiology or Medicine was awarded to Yoshinori Ohsumi for his groundbreaking work in dissecting the mechanisms of autophagy, a cellular process resulting in the organized degradation of cytoplasmic components. Ohsumi's work paved the way for subsequent studies that demonstrated critical roles for autophagy in modulating both acute and chronic kidney injury. This work may lead to future therapeutic approaches that target the autophagy system to prevent or treat kidney diseases. Published by Elsevier Inc.

  11. Autophagy

    PubMed Central

    Lin, Tsung-Chin; Chen, Yun-Ru; Kensicki, Elizabeth; Li, Angela Ying-Jian; Kong, Mei; Li, Yang; Mohney, Robert P.; Shen, Han-Ming; Stiles, Bangyan; Mizushima, Noboru; Lin, Liang-In; Ann, David K.

    2012-01-01

    Autophagy is a catabolic process that functions in recycling and degrading cellular proteins, and is also induced as an adaptive response to the increased metabolic demand upon nutrient starvation. However, the prosurvival role of autophagy in response to metabolic stress due to deprivation of glutamine, the most abundant nutrient for mammalian cells, is not well understood. Here, we demonstrated that when extracellular glutamine was withdrawn, autophagy provided cells with sub-mM concentrations of glutamine, which played a critical role in fostering cell metabolism. Moreover, we uncovered a previously unknown connection between metabolic responses to ATG5 deficiency and glutamine deprivation, and revealed that WT and atg5−/− MEFs utilized both common and distinct metabolic pathways over time during glutamine deprivation. Although the early response of WT MEFs to glutamine deficiency was similar in many respects to the baseline metabolism of atg5−/− MEFs, there was a concomitant decrease in the levels of essential amino acids and branched chain amino acid catabolites in WT MEFs after 6 h of glutamine withdrawal that distinguished them from the atg5−/− MEFs. Metabolomic profiling, oxygen consumption and pathway focused quantitative RT-PCR analyses revealed that autophagy and glutamine utilization were reciprocally regulated to couple metabolic and transcriptional reprogramming. These findings provide key insights into the critical prosurvival role of autophagy in maintaining mitochondrial oxidative phosphorylation and cell growth during metabolic stress caused by glutamine deprivation. PMID:22906967

  12. Autophagy and Alzheimer’s Disease: From Molecular Mechanisms to Therapeutic Implications

    PubMed Central

    Uddin, Md. Sahab; Stachowiak, Anna; Mamun, Abdullah Al; Tzvetkov, Nikolay T.; Takeda, Shinya; Atanasov, Atanas G.; Bergantin, Leandro B.; Abdel-Daim, Mohamed M.; Stankiewicz, Adrian M.

    2018-01-01

    Alzheimer’s disease (AD) is the most common cause of progressive dementia in the elderly. It is characterized by a progressive and irreversible loss of cognitive abilities and formation of senile plaques, composed mainly of amyloid β (Aβ), and neurofibrillary tangles (NFTs), composed of tau protein, in the hippocampus and cortex of afflicted humans. In brains of AD patients the metabolism of Aβ is dysregulated, which leads to the accumulation and aggregation of Aβ. Metabolism of Aβ and tau proteins is crucially influenced by autophagy. Autophagy is a lysosome-dependent, homeostatic process, in which organelles and proteins are degraded and recycled into energy. Thus, dysfunction of autophagy is suggested to lead to the accretion of noxious proteins in the AD brain. In the present review, we describe the process of autophagy and its importance in AD. Additionally, we discuss mechanisms and genes linking autophagy and AD, i.e., the mTOR pathway, neuroinflammation, endocannabinoid system, ATG7, BCL2, BECN1, CDK5, CLU, CTSD, FOXO1, GFAP, ITPR1, MAPT, PSEN1, SNCA, UBQLN1, and UCHL1. We also present pharmacological agents acting via modulation of autophagy that may show promise in AD therapy. This review updates our knowledge on autophagy mechanisms proposing novel therapeutic targets for the treatment of AD. PMID:29441009

  13. Regulation of DMT1 on autophagy and apoptosis in osteoblast

    PubMed Central

    Liu, Fei; Zhang, Wei-Lin; Meng, Hong-Zheng; Cai, Zheng-Yu; Yang, Mao-Wei

    2017-01-01

    Iron overload has recently been associated with the changes in the bone microstructure that occur in osteoporosis. However, the effect of iron overload on osteoblasts is unclear. The purpose of this study was to explore the function of divalent metal transporter 1 (DMT1) in the pathological processes of osteoporosis. Osteoblast hFOB1.19 cells were cultured in medium supplemented with different concentrations (0, 50, 100, 200, 300, 400, 500 μmol/L) of ferric ammonium citrate (FAC) as a donor of ferric ions. We used western blotting and immunofluorescence to determine the levels of DMT1 after treatment with FAC. Apoptosis was evaluated by detecting the levels of cleaved caspase 3, BCL2, and BAX with western blotting. Autophagy was evaluated by detecting the levels of LC3 with western blotting and immunofluorescence. Beclin-1 expression was also assessed with western blotting. The autophagy inhibitor 3-methyladenine was used to determine whether autophagy affects the apoptosis induced by FAC. Our results show that FAC increased the levels of DMT1, upregulated the expression of BCL2, and downregulated the apoptosis-related proteins cleaved caspase 3 and BAX. Both LC3I/LC3II levels and beclin-1 were also increased, indicating that FAC increases the accumulation of autophagosomes in hFOB1.19 cells. FAC-induced autophagy was increased by the apoptosis inhibitor 3-MA but was reduced in DMT1 shRNA hFOB1.19 cells. These results suggest that the increased expression of DMT1 induces iron overload and iron overload induces osteoblast autophagy and apoptosis, thus affecting the pathological processes of osteoporosis. Clarifying the mechanisms underlying the effects of DMT1 will allow the identification of novel targets for the prevention and treatment of osteoporosis. PMID:28367088

  14. Autophagy regulates DNA repair through SQSTM1/p62.

    PubMed

    Feng, Yuchen; Klionsky, Daniel J

    2017-06-03

    Macroautophagy/autophagy is primarily a degradative pathway that clears malfunctioning cellular components in response to various types of stress. Recent studies have indicated that autophagy also plays an important role in maintaining genome stability. Loss of autophagy is associated with increased damage to DNA, inappropriate amplification of genomic regions and abnormal chromosome number. In a recent paper by Wang et al. the authors uncover a mechanism through which autophagy regulates the ubiquitination of chromatin. In particular, the autophagy receptor and substrate SQSTM1/p62 inhibits the E3 ligase RNF168-dependent ubiquitination of histone in response to DNA double-strand breaks. Dysregulation of this process leads to a reduced ability to repair DNA and a corresponding increase in the sensitivity of cells to radiation-induced damage.

  15. Influenza A Virus Hemagglutinin and Neuraminidase Mutually Accelerate Their Apical Targeting through Clustering of Lipid Rafts

    PubMed Central

    Ohkura, Takashi; Momose, Fumitaka; Ichikawa, Reiko; Takeuchi, Kaoru

    2014-01-01

    ABSTRACT In polarized epithelial cells, influenza A virus hemagglutinin (HA) and neuraminidase (NA) are intrinsically associated with lipid rafts and target the apical plasma membrane for viral assembly and budding. Previous studies have indicated that the transmembrane domain (TMD) and cytoplasmic tail (CT) of HA and NA are required for association with lipid rafts, but the raft dependencies of their apical targeting are controversial. Here, we show that coexpression of HA with NA accelerated their apical targeting through accumulation in lipid rafts. HA was targeted to the apical plasma membrane even when expressed alone, but the kinetics was much slower than that of HA in infected cells. Coexpression experiments revealed that apical targeting of HA and NA was accelerated by their coexpression. The apical targeting of HA was also accelerated by coexpression with M1 but not M2. The mutations in the outer leaflet of the TMD and the deletion of the CT in HA and NA that reduced their association with lipid rafts abolished the acceleration of their apical transport, indicating that the lipid raft association is essential for efficient apical trafficking of HA and NA. An in situ proximity ligation assay (PLA) revealed that HA and NA were accumulated and clustered in the cytoplasmic compartments only when both were associated with lipid rafts. Analysis with mutant viruses containing nonraft HA/NA confirmed these findings. We further analyzed lipid raft markers by in situ PLA and suggest a possible mechanism of the accelerated apical transport of HA and NA via clustering of lipid rafts. IMPORTANCE Lipid rafts serve as sites for viral entry, particle assembly, and budding, leading to efficient viral replication. The influenza A virus utilizes lipid rafts for apical plasma membrane targeting and particle budding. The hemagglutinin (HA) and neuraminidase (NA) of influenza virus, key players for particle assembly, contain determinants for apical sorting and lipid raft

  16. Mechanisms and function of autophagy in intestinal disease.

    PubMed

    Lassen, Kara G; Xavier, Ramnik J

    2018-01-01

    The discovery of numerous genetic variants in the human genome that are associated with inflammatory bowel disease (IBD) has revealed critical pathways that play important roles in intestinal homeostasis. These genetic studies have identified a critical role for macroautophagy/autophagy and more recently, lysosomal function, in maintaining the intestinal barrier and mucosal homeostasis. This review highlights recent work on the functional characterization of IBD-associated human genetic variants in cell type-specific functions for autophagy.

  17. Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging

    PubMed Central

    Plaza-Zabala, Ainhoa; Sierra-Torre, Virginia; Sierra, Amanda

    2017-01-01

    Autophagy is emerging as a core regulator of Central Nervous System (CNS) aging and neurodegeneration. In the brain, it has mostly been studied in neurons, where the delivery of toxic molecules and organelles to the lysosome by autophagy is crucial for neuronal health and survival. However, we propose that the (dys)regulation of autophagy in microglia also affects innate immune functions such as phagocytosis and inflammation, which in turn contribute to the pathophysiology of aging and neurodegenerative diseases. Herein, we first describe the basic concepts of autophagy and its regulation, discuss key aspects for its accurate monitoring at the experimental level, and summarize the evidence linking autophagy impairment to CNS senescence and disease. We focus on acute, chronic, and autoimmunity-mediated neurodegeneration, including ischemia/stroke, Alzheimer’s, Parkinson’s, and Huntington’s diseases, and multiple sclerosis. Next, we describe the actual and potential impact of autophagy on microglial phagocytic and inflammatory function. Thus, we provide evidence of how autophagy may affect microglial phagocytosis of apoptotic cells, amyloid-β, synaptic material, and myelin debris, and regulate the progression of age-associated neurodegenerative diseases. We also discuss data linking autophagy to the regulation of the microglial inflammatory phenotype, which is known to contribute to age-related brain dysfunction. Overall, we update the current knowledge of autophagy and microglia, and highlight as yet unexplored mechanisms whereby autophagy in microglia may contribute to CNS disease and senescence. PMID:28282924

  18. Selective reversible inhibition of autophagy in hypoxic breast cancer cells promotes pulmonary metastasis

    PubMed Central

    Dower, Christopher M.; Bhat, Neema; Wang, Edward W.; Wang, Hong-Gang

    2016-01-01

    Autophagy influences how cancer cells respond to nutrient deprivation and hypoxic stress, two hallmarks of the tumor microenvironment (TME). In this study, we explored the impact of autophagy on the pathophysiology of breast cancer cells, using a novel hypoxia-dependent, reversible dominant negative strategy to regulate autophagy at the cellular level within the TME. Suppression of autophagy via hypoxia-induced expression of the kinase-dead unc-51 like autophagy activating kinase (ULK1) mutant K46N increased lung metastases in MDA-MB-231 xenograft mouse models. Consistent with this effect, expressing a dominant-negative mutant of ULK1 or ATG4b or a ULK1-targeting shRNA facilitated cell migration in vitro. Functional proteomic and transcriptome analysis revealed that loss of hypoxia-regulated autophagy promotes metastasis via induction of the fibronectin integrin signaling axis. Indeed, loss of ULK1 function increased fibronectin deposition in the hypoxic TME. Together, our results indicated that hypoxia-regulated autophagy suppresses metastasis in breast cancer by preventing tumor fibrosis. These results also suggest cautions in the development of autophagy-based strategies for cancer treatment. PMID:28115361

  19. Epigallocatechin-gallate (EGCG) regulates autophagy in human retinal pigment epithelial cells: A potential role for reducing UVB light-induced retinal damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chao-Peng; Yao, Jin; Tao, Zhi-Fu

    Highlights: •UVB irradiation induces RPE autophagy. •EGCG treatment represses UVB-mediated autophagy. •EGCG regulates UVB-mediated autophagy through mTOR signaling pathway. •EGCG sensitizes RPE cells to UVB-induced damage in an autophagy-dependent manner. -- Abstract: Autophagy is an intracellular catabolic process involved in protein and organelle degradation via the lysosomal pathway that has been linked in the pathogenesis of age-related macular degeneration (AMD). UVB irradiation-mediated degeneration of the macular retinal pigment epithelial (RPE) cells is an important hallmark of AMD, which is along with the change in RPE autophagy. Thus, pharmacological manipulation of RPE autophagy may offer an alternative therapeutic target in AMD.more » Here, we found that epigallocatechin-3-gallate (EGCG), a polyphenolic compound from green tea, plays a regulatory role in UVB irradiation-induced autophagy in RPE cells. UVB irradiation results in a marked increase in the amount of LC3-II protein in a dose-dependent manner. EGCG administration leads to a significant reduction in the formation of LC3-II and autophagosomes. mTOR signaling activation is required for EGCG-induced LC3-II formation, as evidenced by the fact that EGCG-induced LC3-II formation is significantly impaired by rapamycin administration. Moreover, EGCG significantly alleviates the toxic effects of UVB irradiation on RPE cells in an autophagy-dependent manner. Collectively, our study reveals a novel role of EGCG in RPE autophagy. EGCG may be exploited as a potential therapeutic reagent for the treatment of pathological conditions associated with abnormal autophagy.« less

  20. Autophagy at sea.

    PubMed

    Martens, Sascha; Rusten, Tor Erik; Kraft, Claudine

    2013-09-01

    The 3rd EMBO Conference on, "Autophagy: Molecular mechanism, physiology and pathology" organized by Anne Simonsen and Sharon Tooze, was held in May 2013 on a sea cruise along the Norwegian coastline from Bergen to Tromsø. Researchers from all corners of the world presented work covering autophagosome biogenesis, physiological regulation of autophagy, selective autophagy and disease.

  1. The Combination of Rapamycin and Resveratrol Blocks Autophagy and Induces Apoptosis in Breast Cancer Cells

    PubMed Central

    Alayev, Anya; Berger, Sara Malka; Kramer, Melissa Y.; Schwartz, Naomi S.; Holz, Marina K.

    2015-01-01

    Hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) is a frequent event in breast cancer and current efforts are aimed at targeting the mTORC1 signaling pathway in combination with other targeted therapies. However, patients often develop drug resistance in part due to activation of the oncogenic Akt signaling and upregulation of autophagy, which protects cancer cells from apoptosis. In the present study we investigated the effects of combination therapy of rapamycin (an allosteric mTORC1 inhibitor) together with resveratrol (a phytoestrogen that inhibits autophagy). Our results show that combination of these drugs maintains inhibition of mTORC1 signaling, while preventing upregulation of Akt activation and autophagy, causing apoptosis. Additionally, this combination was effective in estrogen receptor positive and negative breast cancer cells, underscoring its versatility. PMID:25336146

  2. Mood-stabilizing effects of rapamycin and its analog temsirolimus: relevance to autophagy.

    PubMed

    Kara, Nirit Z; Flaisher-Grinberg, Shlomit; Anderson, Grant W; Agam, Galila; Einat, Haim

    2018-06-01

    Accumulated data support a relationship between mood disorders and cellular plasticity and resilience, some suggesting relevance to autophagy. Our previous data show that pharmacological enhancement of autophagy results in antidepressant-like effects in mice. The current study was designed to further examine the effects of autophagy enhancement on mood by testing the effects of subchronic treatment with the mammalian target of rapamycin (mTOR) inhibitors and autophagy enhancers rapamycin and temsirolimus in a model for mania and in a model for antidepressant action, respectively. The results show that rapamycin reduced mania-like aggression and reward-seeking behaviors, with no effects on locomotion. Temsirolimus reduced depression-related immobility in the forced-swim test without effects on locomotion in the open field or on anxiety-related measures in the elevated plus maze. Taken together with our previous findings, these data support the notion that enhancing autophagy may have mood-stabilizing effects.

  3. The engulfment receptor Draper is required for autophagy during cell death.

    PubMed

    McPhee, Christina K; Baehrecke, Eric H

    2010-11-01

    Autophagy is a process to degrade and recycle cytoplasmic contents. Autophagy is required for survival in response to starvation, but has also been associated with cell death. How autophagy functions during cell survival in some contexts and cell death in others is unknown. Drosophila larval salivary glands undergo programmed cell death requiring autophagy genes, and are cleared in the absence of known phagocytosis. Recently, we demonstrated that Draper (Drpr), the Drosophila homolog of C. elegans engulfment receptor CED-1, is required for autophagy induction: during cell death, but not during cell survival. drpr mutants fail to clear salivary glands. drpr knockdown in salivary glands prevents the induction of autophagy, and Atg1 misexpression in drpr null mutants suppresses salivary gland persistence. Surprisingly, drpr knockdown cell-autonomously prevents autophagy induction in dying salivary gland cells, but not in larval fat body cells following starvation. This is the first engulfment factor shown to function in cellular self-clearance, and the first report of a cell-death-specific autophagy regulator.

  4. Alpha Particles Induce Autophagy in Multiple Myeloma Cells.

    PubMed

    Gorin, Jean-Baptiste; Gouard, Sébastien; Ménager, Jérémie; Morgenstern, Alfred; Bruchertseifer, Frank; Faivre-Chauvet, Alain; Guilloux, Yannick; Chérel, Michel; Davodeau, François; Gaschet, Joëlle

    2015-01-01

    Radiation emitted by the radionuclides in radioimmunotherapy (RIT) approaches induce direct killing of the targeted cells as well as indirect killing through the bystander effect. Our research group is dedicated to the development of α-RIT, i.e., RIT using α-particles especially for the treatment of multiple myeloma (MM). γ-irradiation and β-irradiation have been shown to trigger apoptosis in tumor cells. Cell death mode induced by (213)Bi α-irradiation appears more controversial. We therefore decided to investigate the effects of (213)Bi on MM cell radiobiology, notably cell death mechanisms as well as tumor cell immunogenicity after irradiation. Murine 5T33 and human LP-1 MM cell lines were used to study the effects of such α-particles. We first examined the effects of (213)Bi on proliferation rate, double-strand DNA breaks, cell cycle, and cell death. Then, we investigated autophagy after (213)Bi irradiation. Finally, a coculture of dendritic cells (DCs) with irradiated tumor cells or their culture media was performed to test whether it would induce DC activation. We showed that (213)Bi induces DNA double-strand breaks, cell cycle arrest, and autophagy in both cell lines, but we detected only slight levels of early apoptosis within the 120 h following irradiation in 5T33 and LP-1. Inhibition of autophagy prevented (213)Bi-induced inhibition of proliferation in LP-1 suggesting that this mechanism is involved in cell death after irradiation. We then assessed the immunogenicity of irradiated cells and found that irradiated LP-1 can activate DC through the secretion of soluble factor(s); however, no increase in membrane or extracellular expression of danger-associated molecular patterns was observed after irradiation. This study demonstrates that (213)Bi induces mainly necrosis in MM cells, low levels of apoptosis, and autophagy that might be involved in tumor cell death.

  5. Canagliflozin exerts anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in immune cells.

    PubMed

    Xu, Chenke; Wang, Wei; Zhong, Jin; Lei, Fan; Xu, Naihan; Zhang, Yaou; Xie, Weidong

    2018-06-01

    Canagliflozin (CAN) regulates intracellular glucose metabolism by targeting sodium-glucose co-transporter 2 (SGLT2) and intracellular glucose metabolism affects inflammation. In this study, we hypothesized that CAN might exert anti-inflammatory effects. The anti-inflammatory effects and action mechanisms of CAN were assayed in lipopolysaccharide (LPS)-induced RAW264.7 and THP-1 cells and NIH mice. Results showed that CAN significantly inhibited the production and release of interleukin (IL)-1, IL-6, or tumor necrosis factor-α (TNF-α) in the LPS-induced RAW264.7 and THP-1 cells, and mice. CAN also significantly inhibited intracellular glucose metabolism and 6-phosphofructo-2-kinase (PFK2) expression. CAN increased the levels of sequestosome-1 (SQSTM1/p62), upregulated the ratios of microtubule-associated protein 1A/1B-light chain 3 (LC3) II to I, promoted the formation of LC3 puncta, and enhanced the activities of lysosome. The inhibition of autophagy by 3-methyladenine (3-MA) reversed the effects of CAN on IL-1α levels. Increased autophagy might be associated with increased AMP-activated protein kinase (AMPK) phosphorylation. Interestingly, p62 demonstrated good co-localization with IL-1α and possibly mediated IL-1α degradation. CAN-induced increase in p62 was dependent on the nuclear factor kappa B (NFκB) signaling pathway. These results indicated that CAN might exert anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy. Attenuated glucose metabolism by PFK2, increased autophagy flow by AMPK, and increased p62 levels by NFκB might be responsible for the molecular mechanisms of CAN. This drug might serve as a new promising anti-inflammatory drug for acute or chronic inflammatory diseases via independent hypoglycemic mechanisms. This drug might also be used as an important reference for similar drug research and development by targeting intracellular glucose metabolism and autophagy in immune cells. Copyright

  6. Inhibition of Aurora A Kinase by Alisertib Induces Autophagy and Cell Cycle Arrest and Increases Chemosensitivity in Human Hepatocellular Carcinoma HepG2 Cells.

    PubMed

    Zhu, Qiaohua; Yu, Xinfa; Zhou, Zhi-Wei; Zhou, Chengyu; Chen, Xiao-Wu; Zhou, Shu-Feng

    2017-01-01

    Aurora A kinase represent a feasible target in cancer therapy. To evaluate the proteomic response of human liver carcinoma cells to alisertib (ALS) and identify the molecular targets of ALS, we examined the effects of ALS on the proliferation, cell cycle, autophagy, apoptosis, and chemosensitivity in HepG2 cells. The stable-isotope labeling by amino acids in cell culture (SILAC) based quantitative proteomic study was performed to evaluate the proteomic response to ALS. Cell cycle distribution and apoptosis were assessed using flow cytometry and autophagy was determined using flow cytometry and confocal microscopy. Our SILAC proteomic study showed that ALS regulated the expression of 914 proteins, with 407 molecules being up-regulated and 507 molecules being down-regulated in HepG2 cells. Ingenuity pathway analysis (IPA) and KEGG pathway analysis identified 146 and 32 signaling pathways were regulated by ALS, respectively, which were associated with cell survival, programmed cell death, and nutrition-energy metabolism. Subsequently, the verification experiments showed that ALS remarkably arrested HepG2 cells in G2/M phase and led to an accumulation of aneuploidy via regulating the expression of key cell cycle regulators. ALS induced a marked autophagy in a concentration- and time-dependent manner via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. Autophagy inhibition promoted the pro-apoptotic effect of ALS, indicating a cyto-protective role of ALS-induced autophagy. ALS increased the chemosensitivity of HepG2 cells to cisplatin and doxorubicin. Taken together, ALS induces autophagy and cell cycle arrest in HepG2 cells via PI3K/Akt/mTOR-mediated pathway. Autophagy inhibition may promote the anticancer effect of ALS and sensitize the chemotherapy in HepG2 cells. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Deconvoluting the complexity of autophagy and Parkinson's disease for potential therapeutic purpose

    PubMed Central

    Ouyang, Liang; Liu, Bo

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the preferential death of dopaminergic neurons. In the past two decades, great progress has been made toward understanding the pathogenesis of PD; however, its precise pathogenesis still remains unclear. Recently, accumulating evidence has suggested that macroautophagy (herein referred to as autophagy) is tightly linked to PD. Dysregulation of autophagic pathways has been observed in the brains of PD patients and in animal models of PD. More importantly, a number of PD-associated proteins, such as α-synuclein, LRRK2, Parkin and PINK1 have been further revealed to be involved in autophagy. Thus, it is now acknowledged that constitutive autophagy is essential for neuronal survival and that dysregulation of autophagy leads to PD. In this review, we focus on summarizing the relationships amongst PD-associated proteins, autophagy and PD. Moreover, we also demonstrate some autophagy-modulating compounds and autophagic microRNAs in PD models, which may provide better promising strategies for potential PD therapy. PMID:26415234

  8. FAM134B, the Selective Autophagy Receptor for Endoplasmic Reticulum Turnover, Inhibits Replication of Ebola Virus Strains Makona and Mayinga.

    PubMed

    Chiramel, Abhilash I; Dougherty, Jonathan D; Nair, Vinod; Robertson, Shelly J; Best, Sonja M

    2016-10-15

    Selective autophagy of the endoplasmic reticulum (termed ER-phagy) is controlled by members of the FAM134 reticulon protein family. Here we used mouse embryonic fibroblasts from mice deficient in FAM134B to examine the role of the ER in replication of historic (Mayinga) or contemporary (Makona GCO7) strains of Ebola virus (EBOV). Loss of FAM134B resulted in 1-2 log 10 higher production of infectious EBOV, which was associated with increased production of viral proteins GP and VP40 and greater accumulation of nucleocaspid lattices. In addition, only 10% of wild-type cells contained detectable nucleoprotein, whereas knockout of FAM134B resulted in 80% of cells positive for nucleoprotein. Together, these data suggest that FAM134B-dependent ER-phagy is an important limiting event in EBOV replication in mouse cells and may have implications for further development of antiviral therapeutics and murine models of infection. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. A Dual Role for UVRAG in Maintaining Chromosomal Stability Independent of Autophagy

    PubMed Central

    Zhao, Zhen; Oh, Soohwan; Li, Dapeng; Ni, Duojiao; Pirooz, Sara Dolatshahi; Lee, Joo-Hyung; Yang, Shunhua; Lee, June-Yong; Ghozalli, Irene; Costanzo, Vincenzo; Stark, Jeremy M.; Liang, Chengyu

    2012-01-01

    SUMMARY Autophagy defects have been recently associated with chromosomal instability (CIN), a hallmark of human cancer. However, the functional specificity and mechanism of action of autophagy-related factors in genome stability remain elusive. Here we report that UVRAG, an autophagic tumor suppressor, plays a dual role in chromosomal stability, surprisingly independent of autophagy. We establish that UVRAG promotes DNA double-strand-breaks repair by directly binding and activating DNA-PK in non-homologous end-joining. Disruption of UVRAG increases genetic instability and sensitivity of cells to irradiation. Furthermore, UVRAG was found also localized at centrosomes and physically associated with CEP63, an integral component of centrosomes. Disruption of the association of UVRAG with centrosomes causes centrosome instability and aneuploidy. UVRAG thus represents an autophagy-related molecular factor that also has a convergent role in patrolling both the structural integrity and proper segregation of chromosomes, which may confer autophagy-independent tumor suppressor activity. PMID:22542840

  10. Identification of Autophagy-Related Genes and Their Regulatory miRNAs Associated with Celiac Disease in Children.

    PubMed

    Comincini, Sergio; Manai, Federico; Meazza, Cristina; Pagani, Sara; Martinelli, Carolina; Pasqua, Noemi; Pelizzo, Gloria; Biggiogera, Marco; Bozzola, Mauro

    2017-02-12

    Celiac disease (CD) is a severe genetic autoimmune disorder, affecting about one in 100 people, where the ingestion of gluten leads to damage in the small intestine. Diagnosing CD is quite complex and requires blood tests and intestinal biopsy examinations. Controversy exists regarding making the diagnosis without biopsy, due to the large spectrum of manifesting symptoms; furthermore, small-intestinal gastroscopy examinations have a relatively complex management in the pediatric population. To identify novel molecular markers useful to increase the sensitivity and specificity in the diagnosis of pediatric CD patients, the expression levels of two key autophagy executor genes ( ATG7 and BECN1 ) and their regulatory validated miRNAs (miR-17 and miR-30a, respectively) were analyzed by relative quantitative real-time-PCR on a cohort of confirmed CD patients compared to age-related controls. Among the investigated targets, the non-parametric Mann-Whitney U test and ROC analysis indicated the highest significant association of BECN1 with CD status in the blood, while in intestinal biopsies, all of the investigated sequences were positively associated with CD diagnosis. Nomogram-based analysis showed nearly opposite expression trends in blood compared to intestine tissue, while hierarchical clustering dendrograms enabled identifying CD and control subgroups based on specific genes and miRNA expression signatures. Next, using an established in vitro approach, through digested gliadin administration in Caco-2 cells, we also highlighted that the modulation of miR-17 endogenous levels using enriched exosomes increased the intracellular autophagosome content, thereby altering the autophagic status. Altogether, these results highlighted novel molecular markers that might be useful to increase the accuracy in CD diagnosis and in molecular-based stratification of the patients, further reinforcing the functional involvement of the regulation of the autophagy process within a

  11. Induction of autophagy by ARHI (DIRAS3) alters fundamental metabolic pathways in ovarian cancer models.

    PubMed

    Ornelas, Argentina; McCullough, Christopher R; Lu, Zhen; Zacharias, Niki M; Kelderhouse, Lindsay E; Gray, Joshua; Yang, Hailing; Engel, Brian J; Wang, Yan; Mao, Weiqun; Sutton, Margie N; Bhattacharya, Pratip K; Bast, Robert C; Millward, Steven W

    2016-10-26

    Autophagy is a bulk catabolic process that modulates tumorigenesis, therapeutic resistance, and dormancy. The tumor suppressor ARHI (DIRAS3) is a potent inducer of autophagy and its expression results in necroptotic cell death in vitro and tumor dormancy in vivo. ARHI is down-regulated or lost in over 60 % of primary ovarian tumors yet is dramatically up-regulated in metastatic disease. The metabolic changes that occur during ARHI induction and their role in modulating death and dormancy are unknown. We employed Nuclear Magnetic Resonance (NMR)-based metabolomic strategies to characterize changes in key metabolic pathways in both cell culture and xenograft models of ARHI expression and autophagy. These pathways were further interrogated by cell-based immunofluorescence imaging, tracer uptake studies, targeted metabolic inhibition, and in vivo PET/CT imaging. Induction of ARHI in cell culture models resulted in an autophagy-dependent increase in lactate production along with increased glucose uptake and enhanced sensitivity to glycolytic inhibitors. Increased uptake of glutamine was also dependent on autophagy and dramatically sensitized cultured ARHI-expressing ovarian cancer cell lines to glutaminase inhibition. Induction of ARHI resulted in a reduction in mitochondrial respiration, decreased mitochondrial membrane potential, and decreased Tom20 staining suggesting an ARHI-dependent loss of mitochondrial function. ARHI induction in mouse xenograft models resulted in an increase in free amino acids, a transient increase in [ 18 F]-FDG uptake, and significantly altered choline metabolism. ARHI expression has previously been shown to trigger autophagy-associated necroptosis in cell culture. In this study, we have demonstrated that ARHI expression results in decreased cellular ATP/ADP, increased oxidative stress, and decreased mitochondrial function. While this bioenergetic shock is consistent with programmed necrosis, our data indicates that the accompanying up

  12. Specific elimination of CD133+ tumor cells with targeted oncolytic measles virus.

    PubMed

    Bach, Patricia; Abel, Tobias; Hoffmann, Christopher; Gal, Zoltan; Braun, Gundula; Voelker, Iris; Ball, Claudia R; Johnston, Ian C D; Lauer, Ulrich M; Herold-Mende, Christel; Mühlebach, Michael D; Glimm, Hanno; Buchholz, Christian J

    2013-01-15

    Tumor-initiating cells (TIC) are critical yet evasive targets for the development of more effective antitumoral strategies. The cell surface marker CD133 is frequently used to identify TICs of various tumor entities, including hepatocellular cancer and glioblastoma. Here, we describe oncolytic measles viruses (MV) retargeted to CD133. The viruses, termed MV-141.7 and MV-AC133, infected and selectively lysed CD133(+) tumor cells. Both viruses exerted strong antitumoral effects on human hepatocellular carcinoma growing subcutaneously or multifocally in the peritoneal cavity of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Notably, the CD133-targeted viruses were more effective in prolonging survival than the parental MV-NSe, which is currently assessed as oncolytic agent in clinical trials. Interestingly, target receptor overexpression or increased spreading kinetics through tumor cells were excluded as being causative for the enhanced oncolytic activity of CD133-targeted viruses. MV-141.7 was also effective in mouse models of orthotopic glioma tumor spheres and primary colon cancer. Our results indicate that CD133-targeted measles viruses selectively eliminate CD133(+) cells from tumor tissue, offering a key tool for research in tumor biology and cancer therapy.

  13. Autophagy Genes Enhance Murine Gammaherpesvirus 68 Reactivation From Latency by Preventing Virus-induced Systemic Inflammation

    PubMed Central

    Park, Sunmin; Buck, Michael D.; Desai, Chandni; Zhang, Xin; Loginicheva, Ekaterina; Martinez, Jennifer; Freeman, Michael L.; Saitoh, Tatsuya; Akira, Shizuo; Guan, Jun-Lin; He, You-Wen; Blackman, Marcia A.; Handley, Scott A.; Levine, Beth; Green, Douglas R.; Reese, Tiffany A.; Artyomov, Maxim N.; Virgin, Herbert W.

    2016-01-01

    SUMMARY Host genes that regulate systemic inflammation upon chronic viral infection are incompletely understood. Murine γ-herpesvirus 68 (MHV68) infection is characterized by latency in macrophages, and reactivation is inhibited by Interferon-γ (IFN-γ). Using a Lysozyme-M-cre (LysMcre) expression system, we show that deletion of autophagy-related (Atg) genes Fip200, beclin 1, Atg14, Atg16L1, Atg7, Atg3, and Atg5, in the myeloid compartment, inhibited MHV68 reactivation in macrophages. Atg5-deficiency did not alter reactivation from B cells, and effects on reactivation from macrophages were not explained by alterations in productive viral replication or the establishment of latency. Rather, chronic MHV68 infection triggered increased systemic inflammation, increased T cell production of IFN-γ and an IFN-γ-induced transcriptional signature in macrophages from Atg gene-deficient mice. The Atg5-related reactivation defect was partially reversed by neutralization of IFN-γ. Thus Atg genes in myeloid cells dampen virus-induced systemic inflammation, creating an environment that fosters efficient MHV68 reactivation from latency. PMID:26764599

  14. A new mechanism of interferon's antiviral action: Induction of autophagy, essential for paramyxovirus replication, is inhibited by the interferon stimulated gene, TDRD7.

    PubMed

    Subramanian, Gayatri; Kuzmanovic, Teodora; Zhang, Ying; Peter, Cara Beate; Veleeparambil, Manoj; Chakravarti, Ritu; Sen, Ganes C; Chattopadhyay, Saurabh

    2018-01-01

    The interferon (IFN) system represents the first line of defense against a wide range of viruses. Virus infection rapidly triggers the transcriptional induction of IFN-β and IFN Stimulated Genes (ISGs), whose protein products act as viral restriction factors by interfering with specific stages of virus life cycle, such as entry, transcription, translation, genome replication, assembly and egress. Here, we report a new mode of action of an ISG, IFN-induced TDRD7 (tudor domain containing 7) inhibited paramyxovirus replication by inhibiting autophagy. TDRD7 was identified as an antiviral gene by a high throughput screen of an ISG shRNA library for blocking IFN's protective effect against Sendai virus (SeV) replication. The antiviral activity of TDRD7 against SeV, human parainfluenza virus 3 and respiratory syncytial virus was confirmed by its genetic ablation or ectopic expression in several types of mouse and human cells. TDRD7's antiviral action was mediated by its ability to inhibit autophagy, a cellular catabolic process which was robustly induced by SeV infection and required for its replication. Mechanistic investigation revealed that TDRD7 interfered with the activation of AMP-dependent kinase (AMPK), an enzyme required for initiating autophagy. AMPK activity was required for efficient replication of several paramyxoviruses, as demonstrated by its genetic ablation or inhibition of its activity by TDRD7 or chemical inhibitors. Therefore, our study has identified a new antiviral ISG with a new mode of action.

  15. Chaperone-mediated autophagy components are upregulated in sporadic inclusion-body myositis muscle fibres.

    PubMed

    Cacciottolo, M; Nogalska, A; D'Agostino, C; Engel, W K; Askanas, V

    2013-12-01

    Sporadic inclusion-body myositis (s-IBM) is an age-associated degenerative muscle disease. Characteristic features are muscle-fibre vacuolization and intramuscle-fibre accumulations of multiprotein aggregates, which may result from the demonstrated impairments of the 26S proteasome and autophagy. Chaperone-mediated autophagy (CMA) is a selective form of lysosomal degradation targeting proteins carrying the KFERQ motif. Lysosome-associated membrane protein type 2A (LAMP2A) and the heat-shock cognate protein 70 (Hsc70) constitute specific CMA components. Neither CMA components nor CMA activity has been studied in normal or disease human muscle, to our knowledge. We studied CMA components by immunocytochemistry, immunoblots, real-time PCR and immunoprecipitation in: (a) 16 s-IBM, nine aged-matched normal and nine disease control muscle biopsies; and (b) cultured human muscle fibres (CHMFs) with experimentally inhibited activities of either the 26S proteasome or autophagy. Compared with age-matched controls, in s-IBM muscle, LAMP2A and Hsc70 were on a given transverse section accumulated as aggregates in approximately 5% of muscle fibres, where they (a) colocalized with each other and α-synuclein (α-syn), a CMA-targeted protein; and (b) were bound to each other and to α-syn by immunoprecipitation. By immunoblots, LAMP2A was increased sevenfold P < 0.001 and Hsc70 2.6-fold P < 0.05. LAMP2A mRNA was increased 4.4-fold P < 0.001 and Hsc70 mRNA 1.9-fold P < 0.05. In CHMFs inhibition of either the 26S proteasome or autophagy induced CMA, evidenced by a significant increase of both LAMP2A and Hsc70. Our study demonstrates, for the first time, up-regulation of CMA components in s-IBM muscle, and it provides further evidence that altered protein degradation is likely an important pathogenic aspect in s-IBM. © 2013 British Neuropathological Society.

  16. Chloroquine inhibits autophagy and deteriorates the mitochondrial dysfunction and apoptosis in hypoxic rat neurons.

    PubMed

    Li, Peng; Hao, Lei; Guo, Yan-Yan; Yang, Guang-Lu; Mei, Hua; Li, Xiao-Hua; Zhai, Qiong-Xiang

    2018-06-01

    Mitochondrial dysfunction (MD) and apoptosis in the neurons are associated with neonatal hypoxic-ischemic (HI) encephalopathy (HIE). The present study was to explore the influence of autophagy on the induction of MD and apoptosis in the neurons in a neonatal HIE rats and in hypoxia-treated neurons in vitro. Ten-day-old HI rat pups were sacrificed for brain pathological examination and immunohistochemical analysis. The induction of autophagy, apoptosis and MD were also determined in the neurons under hypoxia, with or without autophagy inhibitor, chloroquine (CQ) treatment. HI treatment caused atrophy and apoptosis of neurons, with a significantly increased levels of apoptosis- and autophagy-associated proteins, such as cleaved caspase 3 and the B subunit of autophagy-related microtubule-associated protein 1 light chain 3 (LC3-B). in vitro experiments demonstrated that the hypoxia induced autophagy in neurons, as was inhibited by CQ. The hypoxia-induced cytochrome c release, cleaved caspase 3 and cleaved caspase 9 were aggravated by CQ. Moreover, there were higher levels of reactive oxygen species, more mitochondrial superoxide and less mitochondrial membrane potential in the CQ-treated neurons under hypoxia than in the neurons singularly under hypoxia. Apoptosis and autophagy were induced in HI neonatal rat neurons, autophagy inhibition deteriorates the hypoxia-induced neuron MD and apoptosis. It implies a neuroprotection of autophagy in the hypoxic-ischemic encephalopathy. Administration of autophagy inducer agents might be promising in HIE treatment. Copyright © 2018. Published by Elsevier Inc.

  17. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury

    PubMed Central

    Sarkar, Chinmoy; Zhao, Zaorui; Aungst, Stephanie; Sabirzhanov, Boris; Faden, Alan I; Lipinski, Marta M

    2015-01-01

    Dysregulation of autophagy contributes to neuronal cell death in several neurodegenerative and lysosomal storage diseases. Markers of autophagy are also increased after traumatic brain injury (TBI), but its mechanisms and function are not known. Following controlled cortical impact (CCI) brain injury in GFP-Lc3 (green fluorescent protein-LC3) transgenic mice, we observed accumulation of autophagosomes in ipsilateral cortex and hippocampus between 1 and 7 d. This accumulation was not due to increased initiation of autophagy but rather to a decrease in clearance of autophagosomes, as reflected by accumulation of the autophagic substrate SQSTM1/p62 (sequestosome 1). This was confirmed by ex vivo studies, which demonstrated impaired autophagic flux in brain slices from injured as compared to control animals. Increased SQSTM1 peaked at d 1–3 but resolved by d 7, suggesting that the defect in autophagy flux is temporary. The early impairment of autophagy is at least in part caused by lysosomal dysfunction, as evidenced by lower protein levels and enzymatic activity of CTSD (cathepsin D). Furthermore, immediately after injury both autophagosomes and SQSTM1 accumulated predominantly in neurons. This was accompanied by appearance of SQSTM1 and ubiquitin-positive puncta in the affected cells, suggesting that, similar to the situation observed in neurodegenerative diseases, impaired autophagy may contribute to neuronal injury. Consistently, GFP-LC3 and SQSTM1 colocalized with markers of both caspase-dependent and caspase-independent cell death in neuronal cells proximal to the injury site. Taken together, our data indicated for the first time that autophagic clearance is impaired early after TBI due to lysosomal dysfunction, and correlates with neuronal cell death. PMID:25484084

  18. p53-regulated autophagy is controlled by glycolysis and determines cell fate

    PubMed Central

    Duan, Lei; Perez, Ricardo E.; Davaadelger, Batzaya; Dedkova, Elena N.; Blatter, Lothar A.; Maki, Carl G.

    2015-01-01

    The tumor suppressor p53 regulates downstream targets that determine cell fate. Canonical p53 functions include inducing apoptosis, growth arrest, and senescence. Non-canonical p53 functions include its ability to promote or inhibit autophagy and its ability to regulate metabolism. The extent to which autophagy and/or metabolic regulation determines cell fate by p53 is unclear. To address this, we compared cells resistant or sensitive to apoptosis by the p53 activator Nutlin-3a. In resistant cells, glycolysis was maintained upon Nutlin-3a treatment, and activated p53 promoted prosurvival autophagy. In contrast, in apoptosis sensitive cells activated p53 increased superoxide levels and inhibited glycolysis through repression of glycolytic pathway genes. Glycolysis inhibition and increased superoxide inhibited autophagy by repressing ATG genes essential for autophagic vesicle maturation. Inhibiting glycolysis increased superoxide and blocked autophagy in apoptosis-resistant cells, causing p62-dependent caspase-8 activation. Finally, treatment with 2-DG or the autophagy inhibitors chloroquine or bafilomycin A1 sensitized resistant cells to Nutlin-3a-induced apoptosis. Together, these findings reveal novel links between glycolysis and autophagy that determine apoptosis-sensitivity in response to p53. Specifically, the findings indicate 1) that glycolysis plays an essential role in autophagy by limiting superoxide levels and maintaining expression of ATG genes required for autophagic vesicle maturation, 2) that p53 can promote or inhibit autophagy depending on the status of glycolysis, and 3) that inhibiting protective autophagy can expand the breadth of cells susceptible to Nutlin-3a induced apoptosis. PMID:26337205

  19. Autophagy: Suicide Prevention Hotline for the Gut Epithelium.

    PubMed

    Grizotte-Lake, Mayara; Vaishnava, Shipra

    2018-02-14

    Autophagy is genetically associated with inflammatory bowel disease (IBD); however, its role remains unclear in disease pathogenesis. Three recent studies reveal a novel cytoprotective role of autophagy during viral, bacterial, and protozoan-triggered IBD (Burger et al., 2018; Matsuzawa-Ishimoto et al., 2017; Pott et al., 2018). Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Methods to Monitor and Manipulate TFEB Activity During Autophagy.

    PubMed

    Medina, D L; Settembre, C; Ballabio, A

    2017-01-01

    Macroautophagy is a catabolic process deputed to the turnover of intracellular components. Recent studies have revealed that transcriptional regulation is a major mechanism controlling autophagy. Currently, more than 20 transcription factors have been shown to modulate cellular autophagy levels. Among them, the transcription factor EB (TFEB) appears to have the broadest proautophagy role, given its capacity to control the biogenesis of lysosomes and autophagosomes, the two main organelles required for the autophagy pathway. TFEB has attracted major attention owing to its ability to enhance cellular clearance of pathogenic substrates in a variety of animal models of disease, such as lysosomal storage disorders, Parkinson's, Alzheimer's, α1-antitrypsin, obesity as well as others, suggesting that the TFEB pathway represents an extraordinary possibility for future development of innovative therapies. Importantly, the subcellular localization and activity of TFEB are regulated by its phosphorylation status, suggesting that TFEB activity can be pharmacologically targeted. Given the growing list of common and rare diseases in which manipulation of autophagy may be beneficial, in this chapter we describe a set of validated protocols developed to modulate and analyze TFEB-mediated enhancement of autophagy both in vitro and in vivo conditions. © 2017 Elsevier Inc. All rights reserved.

  1. Listeriolysin O Regulates the Expression of Optineurin, an Autophagy Adaptor That Inhibits the Growth of Listeria monocytogenes.

    PubMed

    Puri, Madhu; La Pietra, Luigi; Mraheil, Mobarak Abu; Lucas, Rudolf; Chakraborty, Trinad; Pillich, Helena

    2017-09-05

    Autophagy, a well-established defense mechanism, enables the elimination of intracellular pathogens including Listeria monocytogenes . Host cell recognition results in ubiquitination of L . monocytogenes and interaction with autophagy adaptors p62/SQSTM1 and NDP52, which target bacteria to autophagosomes by binding to microtubule-associated protein 1 light chain 3 (LC3). Although studies have indicated that L . monocytogenes induces autophagy, the significance of this process in the infectious cycle and the mechanisms involved remain poorly understood. Here, we examined the role of the autophagy adaptor optineurin (OPTN), the phosphorylation of which by the TANK binding kinase 1 (TBK1) enhances its affinity for LC3 and promotes autophagosomal degradation, during L . monocytogenes infection. In LC3- and OPTN-depleted host cells, intracellular replicating L . monocytogenes increased, an effect not seen with a mutant lacking the pore-forming toxin listeriolysin O (LLO). LLO induced the production of OPTN. In host cells expressing an inactive TBK1, bacterial replication was also inhibited. Our studies have uncovered an OPTN-dependent pathway in which L . monocytogenes uses LLO to restrict bacterial growth. Hence, manipulation of autophagy by L . monocytogenes , either through induction or evasion, represents a key event in its intracellular life style and could lead to either cytosolic growth or persistence in intracellular vacuolar structures.

  2. The E3 ubiquitin ligase NEDD4 enhances killing of membrane-perturbing intracellular bacteria by promoting autophagy

    PubMed Central

    Pei, Gang; Buijze, Hellen; Liu, Haipeng; Moura-Alves, Pedro; Goosmann, Christian; Brinkmann, Volker; Kawabe, Hiroshi; Dorhoi, Anca; Kaufmann, Stefan H. E.

    2017-01-01

    ABSTRACT The E3 ubiquitin ligase NEDD4 has been intensively studied in processes involved in viral infections, such as virus budding. However, little is known about its functions in bacterial infections. Our investigations into the role of NEDD4 in intracellular bacterial infections demonstrate that Mycobacterium tuberculosis and Listeria monocytogenes, but not Mycobacterium bovis BCG, replicate more efficiently in NEDD4 knockdown macrophages. In parallel, NEDD4 knockdown or knockout impaired basal macroautophagy/autophagy, as well as infection-induced autophagy. Conversely, NEDD4 expression promoted autophagy in an E3 catalytic activity-dependent manner, thereby restricting intracellular Listeria replication. Mechanistic studies uncovered that endogenous NEDD4 interacted with BECN1/Beclin 1 and this interaction increased during Listeria infection. Deficiency of NEDD4 resulted in elevated K48-linkage ubiquitination of endogenous BECN1. Further, NEDD4 mediated K6- and K27- linkage ubiquitination of BECN1, leading to elevated stability of BECN1 and increased autophagy. Thus, NEDD4 participates in killing of intracellular bacterial pathogens via autophagy by sustaining the stability of BECN1. PMID:29251248

  3. Arginine vasopressin neuronal loss results from autophagy-associated cell death in a mouse model for familial neurohypophysial diabetes insipidus.

    PubMed

    Hagiwara, D; Arima, H; Morishita, Y; Wenjun, L; Azuma, Y; Ito, Y; Suga, H; Goto, M; Banno, R; Sugimura, Y; Shiota, A; Asai, N; Takahashi, M; Oiso, Y

    2014-03-27

    Familial neurohypophysial diabetes insipidus (FNDI) characterized by progressive polyuria is mostly caused by mutations in the gene encoding neurophysin II (NPII), which is the carrier protein of the antidiuretic hormone, arginine vasopressin (AVP). Although accumulation of mutant NPII in the endoplasmic reticulum (ER) could be toxic for AVP neurons, the precise mechanisms of cell death of AVP neurons, reported in autopsy studies, remain unclear. Here, we subjected FNDI model mice to intermittent water deprivation (WD) in order to promote the phenotypes. Electron microscopic analyses demonstrated that, while aggregates are confined to a certain compartment of the ER in the AVP neurons of FNDI mice with water access ad libitum, they were scattered throughout the dilated ER lumen in the FNDI mice subjected to WD for 4 weeks. It is also demonstrated that phagophores, the autophagosome precursors, emerged in the vicinity of aggregates and engulfed the ER containing scattered aggregates. Immunohistochemical analyses revealed that expression of p62, an adapter protein between ubiquitin and autophagosome, was elicited on autophagosomal membranes in the AVP neurons, suggesting selective autophagy induction at this time point. Treatment of hypothalamic explants of green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3 (LC3) transgenic mice with an ER stressor thapsigargin increased the number of GFP-LC3 puncta, suggesting that ER stress could induce autophagosome formation in the hypothalamus of wild-type mice as well. The cytoplasm of AVP neurons in FNDI mice was occupied with vacuoles in the mice subjected to WD for 12 weeks, when 30-40% of AVP neurons are lost. Our data thus demonstrated that autophagy was induced in the AVP neurons subjected to ER stress in FNDI mice. Although autophagy should primarily be protective for neurons, it is suggested that the organelles including ER were lost over time through autophagy, leading to autophagy-associated

  4. Autophagy in C. elegans development.

    PubMed

    Palmisano, Nicholas J; Meléndez, Alicia

    2018-04-27

    Autophagy involves the sequestration of cytoplasmic contents in a double-membrane structure referred to as the autophagosome and the degradation of its contents upon delivery to lysosomes. Autophagy activity has a role in multiple biological processes during the development of the nematode Caenorhabditis elegans. Basal levels of autophagy are required to remove aggregate prone proteins, paternal mitochondria, and spermatid-specific membranous organelles. During larval development, autophagy is required for the remodeling that occurs during dauer development, and autophagy can selectively degrade components of the miRNA-induced silencing complex, and modulate miRNA-mediated silencing. Basal levels of autophagy are important in synapse formation and in the germ line, to promote the proliferation of proliferating stem cells. Autophagy activity is also required for the efficient removal of apoptotic cell corpses by promoting phagosome maturation. Finally, autophagy is also involved in lipid homeostasis and in the aging process. In this review, we first describe the molecular complexes involved in the process of autophagy, its regulation, and mechanisms for cargo recognition. In the second section, we discuss the developmental contexts where autophagy has been shown to be important. Studies in C. elegans provide valuable insights into the physiological relevance of this process during metazoan development. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Autophagy Therapeutic Potential of Garlic in Human Cancer Therapy

    PubMed Central

    Chu, Yung-Lin; Raghu, Rajasekaran; Lu, Kuan-Hung; Liu, Chun-Ting; Lin, Shu-Hsi; Lai, Yi-Syuan; Cheng, Wei-Cheng; Lin, Shih-Hang; Sheen, Lee-Yan

    2013-01-01

    Cancer is one of the deadliest diseases against humans. To tackle this menace, humans have developed several high-technology therapies, such as chemotherapy, tomotherapy, targeted therapy, and antibody therapy. However, all these therapies have their own adverse side effects. Therefore, recent years have seen increased attention being given to the natural food for complementary therapy, which have less side effects. Garlic (Dà Suàn; Allium sativum), is one of most powerful food used in many of the civilizations for both culinary and medicinal purpose. In general, these foods induce cancer cell death by apoptosis, autophagy, or necrosis. Studies have discussed how natural food factors regulate cell survival or death by autophagy in cancer cells. From many literature reviews, garlic could not only induce apoptosis but also autophagy in cancer cells. Autophagy, which is called type-II programmed cell death, provides new strategy in cancer therapy. In conclusion, we wish that garlic could be the pioneer food of complementary therapy in clinical cancer treatment and increase the life quality of cancer patients. PMID:24716172

  6. Autophagy therapeutic potential of garlic in human cancer therapy.

    PubMed

    Chu, Yung-Lin; Raghu, Rajasekaran; Lu, Kuan-Hung; Liu, Chun-Ting; Lin, Shu-Hsi; Lai, Yi-Syuan; Cheng, Wei-Cheng; Lin, Shih-Hang; Sheen, Lee-Yan

    2013-07-01

    Cancer is one of the deadliest diseases against humans. To tackle this menace, humans have developed several high-technology therapies, such as chemotherapy, tomotherapy, targeted therapy, and antibody therapy. However, all these therapies have their own adverse side effects. Therefore, recent years have seen increased attention being given to the natural food for complementary therapy, which have less side effects. Garlic (Dà Suàn; Allium sativum), is one of most powerful food used in many of the civilizations for both culinary and medicinal purpose. In general, these foods induce cancer cell death by apoptosis, autophagy, or necrosis. Studies have discussed how natural food factors regulate cell survival or death by autophagy in cancer cells. From many literature reviews, garlic could not only induce apoptosis but also autophagy in cancer cells. Autophagy, which is called type-II programmed cell death, provides new strategy in cancer therapy. In conclusion, we wish that garlic could be the pioneer food of complementary therapy in clinical cancer treatment and increase the life quality of cancer patients.

  7. Two White Spot Syndrome Virus MicroRNAs Target the Dorsal Gene To Promote Virus Infection in Marsupenaeus japonicus Shrimp

    PubMed Central

    Ren, Qian; Huang, Xin; Cui, Yalei; Sun, Jiejie; Wang, Wen

    2017-01-01

    ABSTRACT In eukaryotes, microRNAs (miRNAs) serve as regulators of many biological processes, including virus infection. An miRNA can generally target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs has not yet been extensively explored during virus infection. This study found that the Spaztle (Spz)-Toll-Dorsal-antilipopolysaccharide factor (ALF) signaling pathway plays a very important role in antiviral immunity against invasion of white spot syndrome virus (WSSV) in shrimp (Marsupenaeus japonicus). Dorsal, the central gene in the Toll pathway, was targeted by two viral miRNAs (WSSV-miR-N13 and WSSV-miR-N23) during WSSV infection. The regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo, leading to virus infection. Our study contributes novel insights into the viral miRNA-mediated Toll signaling pathway during the virus-host interaction. IMPORTANCE An miRNA can target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs during virus infection has not yet been extensively explored. The results of this study indicated that the shrimp Dorsal gene, the central gene in the Toll pathway, was targeted by two viral miRNAs during infection with white spot syndrome virus. Regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo, leading to virus infection. Our study provides new insight into the viral miRNA-mediated Toll signaling pathway in virus-host interactions. PMID:28179524

  8. Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR

    PubMed Central

    Li, Zhiyuan; Ji, Xinmiao; Wang, Wenchao; Liu, Juanjuan; Liang, Xiaofei; Wu, Hong; Liu, Jing; Eggert, Ulrike S.; Liu, Qingsong

    2016-01-01

    Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors. PMID:27077655

  9. Isodeoxyelephantopin induces protective autophagy in lung cancer cells via Nrf2-p62-keap1 feedback loop

    PubMed Central

    Wang, Yang; Zhang, Jing; Huang, Zhi-Hao; Huang, Xiao-Hui; Zheng, Wei-Bin; Yin, Xing-Feng; Li, Yao-Lan; Li, Bin; He, Qing-Yu

    2017-01-01

    Isodeoxyelephantopin (ESI), isolated from Elephantopus scaber L. has been reported to exert anticancer effects. In this study, we aimed to investigate whether and how cancer cells exert protective responses against ESI treatment. Confocal fluorescence microscopy showed that ESI significantly induced autophagy flux in the lung cancer cells expressing mCherry-EGFP-LC3 reporter. Treatment of the cells with ESI increased the expression levels of the autophagy markers including LC3-II, ATG3 and Beclin1 in a dose-dependent manner. Pretreatment with autophagy inhibitor 3-methyladenine (3-MA) not only attenuated the effects of ESI on autophagy, but also enhanced the effects of ESI on cell viability and apoptosis. Mechanistically, the SILAC quantitative proteomics coupled with bioinformatics analysis revealed that the ESI-regulated proteins were mainly involved in Nrf2-mediated oxidative stress response. We found that ESI induced the nuclear translocation of Nrf2 for activating the downstream target genes including HO-1 and p62 (SQSTM1). More importantly, ESI-induced p62 could competitively bind with Keap1, and releases Nrf2 to activate downstream target gene p62 as a positive feedback loop, therefore promoting autophagy. Furthermore, knockdown of Nrf2 or p62 could abrogate the ESI-induced autophagy and significantly enhanced the anticancer effect of ESI. Taken together, we demonstrated that ESI can sustain cell survival by activating protective autophagy through Nrf2-p62-keap1 feedback loop, whereas targeting this regulatory axis combined with ESI treatment may be a promising strategy for anticancer therapy. PMID:28617433

  10. Isodeoxyelephantopin induces protective autophagy in lung cancer cells via Nrf2-p62-keap1 feedback loop.

    PubMed

    Wang, Yang; Zhang, Jing; Huang, Zhi-Hao; Huang, Xiao-Hui; Zheng, Wei-Bin; Yin, Xing-Feng; Li, Yao-Lan; Li, Bin; He, Qing-Yu

    2017-06-15

    Isodeoxyelephantopin (ESI), isolated from Elephantopus scaber L. has been reported to exert anticancer effects. In this study, we aimed to investigate whether and how cancer cells exert protective responses against ESI treatment. Confocal fluorescence microscopy showed that ESI significantly induced autophagy flux in the lung cancer cells expressing mCherry-EGFP-LC3 reporter. Treatment of the cells with ESI increased the expression levels of the autophagy markers including LC3-II, ATG3 and Beclin1 in a dose-dependent manner. Pretreatment with autophagy inhibitor 3-methyladenine (3-MA) not only attenuated the effects of ESI on autophagy, but also enhanced the effects of ESI on cell viability and apoptosis. Mechanistically, the SILAC quantitative proteomics coupled with bioinformatics analysis revealed that the ESI-regulated proteins were mainly involved in Nrf2-mediated oxidative stress response. We found that ESI induced the nuclear translocation of Nrf2 for activating the downstream target genes including HO-1 and p62 (SQSTM1). More importantly, ESI-induced p62 could competitively bind with Keap1, and releases Nrf2 to activate downstream target gene p62 as a positive feedback loop, therefore promoting autophagy. Furthermore, knockdown of Nrf2 or p62 could abrogate the ESI-induced autophagy and significantly enhanced the anticancer effect of ESI. Taken together, we demonstrated that ESI can sustain cell survival by activating protective autophagy through Nrf2-p62-keap1 feedback loop, whereas targeting this regulatory axis combined with ESI treatment may be a promising strategy for anticancer therapy.

  11. Heat shock protein 70 inhibits cardiomyocyte necroptosis through repressing autophagy in myocardial ischemia/reperfusion injury.

    PubMed

    Liu, Xiaojuan; Zhang, Chao; Zhang, Chi; Li, Jingjing; Guo, Wanwan; Yan, Daliang; Yang, Chen; Zhao, Jianhua; Xia, Tian; Wang, Yuqing; Xu, Rong; Wu, Xiang; Shi, Jiahai

    2016-06-01

    Irreversible damage of cardiac function arisen from myocardial ischemia/reperfusion injury (MIRI) leads to an emerging challenge in the treatments of cardiac ischemic diseases. Molecular chaperone heat shock protein 70 (HSP70) attenuates heat-stimulated cell autophagy, apoptosis, and damage in the heart. Under specific conditions, autophagy may, directly or indirectly, induce cell death including necroptosis. Whether HSP70 inhibits cardiomyocyte necroptosis via suppressing autophagy during MIRI is unknown. In our study, HSP70 expression was opposite to necroptosis marker RIP1 and autophagy marker LC3A/B expression after myocardial ischemia/reperfusion (MIR) in vivo. Furthermore, in vitro primary rat cardiomyocytes mimicked MIRI by hypoxia/reoxygenation (H/R) treatment. Knockdown of HSP70 expression promoted cardiomyocyte autophagy and necroptosis following H/R treatment, while the increase tendency was downregulated by autophagy inhibitor 3-MA, showing that autophagy-induced necroptosis could be suppressed by HSP70. In summary, HSP70 downregulates cardiomyocyte necroptosis through suppressing autophagy during myocardial IR, revealing the novel protective mechanism of HSP70 and supplying a novel molecular target for the treatment of heart ischemic diseases.

  12. Autophagy promotes metastasis and glycolysis by upregulating MCT1 expression and Wnt/β-catenin signaling pathway activation in hepatocellular carcinoma cells.

    PubMed

    Fan, Qing; Yang, Liang; Zhang, Xiaodong; Ma, Yingbo; Li, Yan; Dong, Lei; Zong, Zhihong; Hua, Xiangdong; Su, Dongming; Li, Hangyu; Liu, Jingang

    2018-01-19

    Autophagy is a dynamic physiological process that can generate energy and nutrients for cell survival during stress. Autophagy can regulate the migration and invasive ability in cancer cells. However, the connection between autophagy and metabolism is unclear. Monocarboxylate transporter 1 (MCT1) plays an important role in lactic acid transport and H + clearance in cancer cells, and Wnt/β-catenin signaling can increase cancer cell glycolysis. We investigated whether autophagy promotes glycolysis in hepatocellular carcinoma (HCC) cells by activating the Wnt/β-catenin signaling pathway, accompanied by MCT1 upregulation. Autophagic activity was evaluated using western blotting, immunoblotting, and transmission electron microscopy. The underlying mechanisms of autophagy activation on HCC cell glycolysis were studied via western blotting, and Transwell, lactate, and glucose assays. MCT1 expression was detected using quantitative reverse transcription-PCR (real-time PCR), western blotting, and immunostaining of HCC tissues and the paired adjacent tissues. Autophagy promoted HCC cell glycolysis accompanied by MCT1 upregulation. Wnt/β-catenin signaling pathway activation mediated the effect of autophagy on HCC cell glycolysis. β-Catenin downregulation inhibited the autophagy-induced glycolysis in HCC cells, and reduced MCT1 expression in the HCC cells. MCT1 was highly expressed in HCC tissues, and high MCT1 expression correlated positively with the expression of microtubule-associated protein light chain 3 (LC3). Activation of autophagy can promote metastasis and glycolysis in HCC cells, and autophagy induces MCT1 expression by activating Wnt/β-catenin signaling. Our study describes the connection between autophagy and glucose metabolism in HCC cells and may provide a potential therapeutic target for HCC treatment.

  13. Suppressed translation as a mechanism of initiation of CASP8 (caspase 8)-dependent apoptosis in autophagy-deficient NSCLC cells under nutrient limitation.

    PubMed

    Allavena, Giulia; Cuomo, Francesca; Baumgartner, Georg; Bele, Tadeja; Sellgren, Alexander Yarar; Oo, Kyaw Soe; Johnson, Kaylee; Gogvadze, Vladimir; Zhivotovsky, Boris; Kaminskyy, Vitaliy O

    2018-01-01

    Macroautophagy/autophagy inhibition under stress conditions is often associated with increased cell death. We found that under nutrient limitation, activation of CASP8/caspase-8 was significantly increased in autophagy-deficient lung cancer cells, which precedes mitochondria outer membrane permeabilization (MOMP), CYCS/cytochrome c release, and activation of CASP9/caspase-9, indicating that under such conditions the activation of CASP8 is a primary event in the initiation of apoptosis as well as essential to reduce clonogenic survival of autophagy-deficient cells. Starvation leads to suppression of CFLAR proteosynthesis and accumulation of CASP8 in SQSTM1 puncta. Overexpression of CFLARs reduces CASP8 activation and apoptosis during starvation, while its silencing promotes efficient activation of CASP8 and apoptosis in autophagy-deficient U1810 lung cancer cells even under nutrient-rich conditions. Similar to starvation, inhibition of protein translation leads to efficient activation of CASP8 and cell death in autophagy-deficient lung cancer cells. Thus, here for the first time we report that suppressed translation leads to activation of CASP8-dependent apoptosis in autophagy-deficient NSCLC cells under conditions of nutrient limitation. Our data suggest that targeting translational machinery can be beneficial for elimination of autophagy-deficient cells via the CASP8-dependent apoptotic pathway.

  14. Inhibiting autophagy reduces retinal degeneration caused by protein misfolding.

    PubMed

    Yao, Jingyu; Qiu, Yaoyan; Frontera, Eric; Jia, Lin; Khan, Naheed W; Klionsky, Daniel J; Ferguson, Thomas A; Thompson, Debra A; Zacks, David N

    2018-06-25

    Mutations in the genes necessary for the structure and function of vertebrate photoreceptor cells are associated with multiple forms of inherited retinal degeneration. Mutations in the gene encoding RHO (rhodopsin) are a common cause of autosomal dominant retinitis pigmentosa (adRP), with the Pro23His variant of RHO resulting in a misfolded protein that activates endoplasmic reticulum stress and the unfolded protein response. Stimulating macroautophagy/autophagy has been proposed as a strategy for clearing misfolded RHO and reducing photoreceptor death. We found that retinas from mice heterozygous for the gene encoding the RHO P23H variant (hereafter called P23H) exhibited elevated levels of autophagy flux, and that pharmacological stimulation of autophagy accelerated retinal degeneration. In contrast, reducing autophagy flux pharmacologically or by rod-specific deletion of the autophagy-activating gene Atg5, improved photoreceptor structure and function. Furthermore, proteasome levels and activity were reduced in the P23H retina, and increased when Atg5 was deleted. Our findings suggest that autophagy contributes to photoreceptor cell death in P23H mice, and that decreasing autophagy shifts the degradation of misfolded RHO protein to the proteasome and is protective. These observations suggest that modulating the flux of misfolded proteins from autophagy to the proteasome may represent an important therapeutic strategy for reducing proteotoxicity in adRP and other diseases caused by protein folding defects.

  15. An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAFV600E inhibitor-resistant metastatic melanoma cells.

    PubMed

    Martin, Shaun; Dudek-Peric, Aleksandra M; Garg, Abhishek D; Roose, Heleen; Demirsoy, Seyma; Van Eygen, Sofie; Mertens, Freya; Vangheluwe, Peter; Vankelecom, Hugo; Agostinis, Patrizia

    2017-09-02

    The ingrained capacity of melanoma cells to rapidly evolve toward an aggressive phenotype is manifested by their increased ability to develop drug-resistance, evident in the case of vemurafenib, a therapeutic-agent targeting BRAF V600E . Previous studies indicated a tight correlation between heightened melanoma-associated macroautophagy/autophagy and acquired Vemurafenib resistance. However, how this vesicular trafficking pathway supports Vemurafenib resistance remains unclear. Here, using isogenic human and murine melanoma cell lines of Vemurafenib-resistant and patient-derived melanoma cells with primary resistance to the BRAF V600E inhibitor, we found that the enhanced migration and invasion of the resistant melanoma cells correlated with an enhanced autophagic capacity and autophagosome-mediated secretion of ATP. Extracellular ATP (eATP) was instrumental for the invasive phenotype and the expansion of a subset of Vemurafenib-resistant melanoma cells. Compromising the heightened autophagy in these BRAF V600E inhibitor-resistant melanoma cells through the knockdown of different autophagy genes (ATG5, ATG7, ULK1), reduced their invasive and eATP-secreting capacity. Furthermore, eATP promoted the aggressive nature of the BRAF V600E inhibitor-resistant melanoma cells by signaling through the purinergic receptor P2RX7. This autophagy-propelled eATP-dependent autocrine-paracrine pathway supported the maintenance and expansion of a drug-resistant melanoma phenotype. In conclusion, we have identified an autophagy-driven response that relies on the secretion of ATP to drive P2RX7-based migration and expansion of the Vemurafenib-resistant phenotype. This emphasizes the potential of targeting autophagy in the treatment and management of metastatic melanoma.

  16. Interleukin-6 Reduces β-Cell Oxidative Stress by Linking Autophagy With the Antioxidant Response.

    PubMed

    Marasco, Michelle R; Conteh, Abass M; Reissaus, Christopher A; Cupit V, John E; Appleman, Evan M; Mirmira, Raghavendra G; Linnemann, Amelia K

    2018-05-21

    Production of reactive oxygen species (ROS) is a key instigator of β-cell dysfunction in diabetes. The pleiotropic cytokine IL-6 has previously been linked to β-cell autophagy but has not been studied in the context of β-cell antioxidant response. We used a combination of animal models of diabetes and analysis of cultured human islets and rodent β-cells to study how IL-6 influences antioxidant response. We show that IL-6 couples autophagy to antioxidant response to reduce β-cell and human islet ROS. β cell-specific loss of IL-6 signaling in vivo renders mice more susceptible to oxidative damage and cell death by the selective β-cell toxins streptozotocin and alloxan. IL-6-driven ROS reduction is associated with an increase in the master antioxidant factor NRF2, which rapidly translocates to the mitochondria to decrease mitochondrial activity and stimulate mitophagy. IL-6 also initiates a robust transient drop in cellular cAMP, likely contributing to the stimulation of mitophagy for ROS mitigation. Our findings suggest that coupling autophagy to antioxidant response in the β cell leads to stress adaptation that can reduce cellular apoptosis. These findings have implications for β-cell survival under diabetogenic conditions and present novel targets for therapeutic intervention. © 2018 by the American Diabetes Association.

  17. The Deubiquitinating Enzyme UBPY Is Required for Lysosomal Biogenesis and Productive Autophagy in Drosophila.

    PubMed

    Jacomin, Anne-Claire; Bescond, Amandine; Soleilhac, Emmanuelle; Gallet, Benoît; Schoehn, Guy; Fauvarque, Marie-Odile; Taillebourg, Emmanuel

    2015-01-01

    Autophagy is a catabolic process that delivers cytoplasmic components to the lysosomes. Protein modification by ubiquitination is involved in this pathway: it regulates the stability of autophagy regulators such as BECLIN-1 and it also functions as a tag targeting specific substrates to autophagosomes. In order to identify deubiquitinating enzymes (DUBs) involved in autophagy, we have performed a genetic screen in the Drosophila larval fat body. This screen identified Uch-L3, Usp45, Usp12 and Ubpy. In this paper, we show that Ubpy loss of function results in the accumulation of autophagosomes due to a blockade of the autophagy flux. Furthermore, analysis by electron and confocal microscopy of Ubpy-depleted fat body cells revealed altered lysosomal morphology, indicating that Ubpy inactivation affects lysosomal maintenance and/or biogenesis. Lastly, we have shown that shRNA mediated inactivation of UBPY in HeLa cells affects autophagy in a different way: in UBPY-depleted HeLa cells autophagy is deregulated.

  18. A Kinase Independent Role for EGF Receptor in Autophagy Initiation

    PubMed Central

    Tan, Xiaojun; Thapa, Narendra; Sun, Yue; Anderson, Richard A

    2014-01-01

    The Epidermal Growth Factor Receptor (EGFR) is upregulated in numerous human cancers. Inhibition of EGFR signaling induces autophagy in tumor cells. Here we report an unanticipated role for the inactive EGFR in autophagy initiation. Inactive EGFR interacts with the oncoprotein LAPTM4B that is required for the endosomal accumulation of EGFR upon serum starvation. Inactive EGFR and LAPTM4B stabilize each other at endosomes and recruit the exocyst subcomplex containing Sec5. We show that inactive EGFR, LAPTM4B, and the Sec5 subcomplex are required for basal and starvation induced autophagy. LAPTM4B and Sec5 promote EGFR association with the autophagy inhibitor Rubicon, which in turn disassociates Beclin 1 from Rubicon to initiate autophagy. Thus, the oncoprotein LAPTM4B facilitates the role of inactive EGFR in autophagy initiation. This pathway is positioned to control tumor metabolism and promote tumor cell survival upon serum deprivation or metabolic stress. PMID:25594178

  19. Mammalian autophagy degrades nuclear constituents in response to tumorigenic stress.

    PubMed

    Dou, Zhixun; Ivanov, Andrejs; Adams, Peter D; Berger, Shelley L

    2016-08-02

    During autophagy, double-membrane autophagosomes are observed in the cytoplasm. Thus, extensive studies have focused on autophagic turnover of cytoplasmic material. Whether autophagy has a role in degrading nuclear constituents is poorly understood. We reveal that the autophagy protein LC3/Atg8 directly interacts with the nuclear lamina protein LMNB1 (lamin B1), and binds to LMN/lamin-associated chromatin domains (LADs). Through these interactions, autophagy specifically mediates destruction of nuclear lamina during tumorigenic stress, such as by activated oncogenes and DNA damage. This nuclear lamina degradation upon aberrant cellular stress impairs cell proliferation by inducing cellular senescence, a stable form of cell-cycle arrest and a tumor-suppressive mechanism. Our findings thus suggest that, in response to cancer-promoting stress, autophagy degrades nuclear material to drive cellular senescence, as a means to restrain tumorigenesis. Our work provokes a new direction in studying the role of autophagy in the nucleus and in tumor suppression.

  20. Choline Inhibits Ischemia-Reperfusion-Induced Cardiomyocyte Autophagy in Rat Myocardium by Activating Akt/mTOR Signaling.

    PubMed

    Hang, Pengzhou; Zhao, Jing; Su, Zhenli; Sun, Hanqi; Chen, Tingting; Zhao, Lihui; Du, Zhimin

    2018-01-01

    Backgroud/Aims: Growing evidence suggests that both cardiomyocyte apoptosis and excessive autophagy exacerbates cardiac dysfunction during myocardial ischemia-reperfusion (IR). As a precursor of acetylcholine, choline has been found to protect the heart by repressing ischemic cardiomyocyte apoptosis. However, the relationship between choline and cardiomyocyte autophagy is unclear. The present study aimed to investigate whether autophagy was involved in the cardioprotection of choline during IR. Rats were subjected to 30 min reversible ischemia by ligation of left anterior descending coronary artery followed by reperfusion for 2 h. Choline (5 mg/kg, i.v.) alone or along with rapamycin (5 mg/ kg, i.p.) were injected 30 min before ischemia. Transmission electron microscopy, hematoxylin and eosin (HE) and TUNEL staining were conducted to evaluate the effect of choline on cardiac apoptosis and autophagy. Protein levels of autophagic markers including LC3, beclin-1 and p62 as well as Akt and mammalian target of rapamycin (mTOR) were examined by Western blotting. Myocardial IR-induced cardiac apoptosis and accumulation of autophagosomes was attenuated by choline. Choline treatment significantly ameliorated myocardial IR-induced autophagic activity characterized by repression of beclin-1 over-activation, the reduction of autophagosomes, the LC3-II/LC3-I ratio, and p62 protein abundance. In addition, IR-induced downregulation of p-Akt/mTOR cascade was increased by choline. However, the above functions of choline were abolished by rapamycin. These findings suggest that choline plays a protective role against myocardial IR injury by inhibiting excessive autophagy, which might be associated with the activation of Akt/mTOR pathway. This study provides new mechanistic understanding of cardioprotective effect of choline and suggests novel potential therapeutic targets for cardiac IR injury. © 2018 The Author(s). Published by S. Karger AG, Basel.

  1. Autophagy and genomic integrity

    PubMed Central

    Vessoni, A T; Filippi-Chiela, E C; Menck, C FM; Lenz, G

    2013-01-01

    DNA lesions, constantly produced by endogenous and exogenous sources, activate the DNA damage response (DDR), which involves detection, signaling and repair of the damage. Autophagy, a lysosome-dependent degradation pathway that is activated by stressful situations such as starvation and oxidative stress, regulates cell fate after DNA damage and also has a pivotal role in the maintenance of nuclear and mitochondrial genomic integrity. Here, we review important evidence regarding the role played by autophagy in preventing genomic instability and tumorigenesis, as well as in micronuclei degradation. Several pathways governing autophagy activation after DNA injury and the influence of autophagy upon the processing of genomic lesions are also discussed herein. In this line, the mechanisms by which several proteins participate in both DDR and autophagy, and the importance of this crosstalk in cancer and neurodegeneration will be presented in an integrated fashion. At last, we present a hypothetical model of the role played by autophagy in dictating cell fate after genotoxic stress. PMID:23933813

  2. Two White Spot Syndrome Virus MicroRNAs Target the Dorsal Gene To Promote Virus Infection in Marsupenaeus japonicus Shrimp.

    PubMed

    Ren, Qian; Huang, Xin; Cui, Yalei; Sun, Jiejie; Wang, Wen; Zhang, Xiaobo

    2017-04-15

    In eukaryotes, microRNAs (miRNAs) serve as regulators of many biological processes, including virus infection. An miRNA can generally target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs has not yet been extensively explored during virus infection. This study found that the Spaztle (Spz)-Toll-Dorsal-antilipopolysaccharide factor (ALF) signaling pathway plays a very important role in antiviral immunity against invasion of white spot syndrome virus (WSSV) in shrimp ( Marsupenaeus japonicus ). Dorsal , the central gene in the Toll pathway, was targeted by two viral miRNAs (WSSV-miR-N13 and WSSV-miR-N23) during WSSV infection. The regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo , leading to virus infection. Our study contributes novel insights into the viral miRNA-mediated Toll signaling pathway during the virus-host interaction. IMPORTANCE An miRNA can target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs during virus infection has not yet been extensively explored. The results of this study indicated that the shrimp Dorsal gene, the central gene in the Toll pathway, was targeted by two viral miRNAs during infection with white spot syndrome virus. Regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo , leading to virus infection. Our study provides new insight into the viral miRNA-mediated Toll signaling pathway in virus-host interactions. Copyright © 2017 American Society for Microbiology.

  3. Herpes Simplex Virus Glycoprotein B Associates with Target Membranes via Its Fusion Loops▿

    PubMed Central

    Hannah, Brian P.; Cairns, Tina M.; Bender, Florent C.; Whitbeck, J. Charles; Lou, Huan; Eisenberg, Roselyn J.; Cohen, Gary H.

    2009-01-01

    Herpes simplex virus (HSV) glycoproteins gB, gD, and gH/gL are necessary and sufficient for virus entry into cells. Structural features of gB are similar to those of vesicular stomatitis virus G and baculovirus gp64, and together they define the new class III group of fusion proteins. Previously, we used mutagenesis to show that three hydrophobic residues (W174, Y179, and A261) within the putative gB fusion loops are integral to gB function. Here we expanded our analysis, using site-directed mutagenesis of each residue in both gB fusion loops. Mutation of most of the nonpolar or hydrophobic amino acids (W174, F175, G176, Y179, and A261) had severe effects on gB function in cell-cell fusion and null virus complementation assays. Of the six charged amino acids, mutation of H263 or R264 also negatively affected gB function. To further analyze the mutants, we cloned the ectodomains of the W174R, Y179S, H263A, and R264A mutants into a baculovirus expression system and compared them with the wild-type (WT) form, gB730t. As shown previously, gB730t blocks virus entry into cells, suggesting that gB730t competes with virion gB for a cell receptor. All four mutant proteins retained this function, implying that fusion loop activity is separate from gB-receptor binding. However, unlike WT gB730t, the mutant proteins displayed reduced binding to cells and were either impaired or unable to bind naked, cholesterol-enriched liposomes, suggesting that it may be gB-lipid binding that is disrupted by the mutations. Furthermore, monoclonal antibodies with epitopes proximal to the fusion loops abrogated gB-liposome binding. Taken together, our data suggest that gB associates with lipid membranes via a fusion domain of key hydrophobic and hydrophilic residues and that this domain associates with lipid membranes during fusion. PMID:19369321

  4. The role of Runx2 in facilitating autophagy in metastatic breast cancer cells.

    PubMed

    Tandon, Manish; Othman, Ahmad H; Ashok, Vivek; Stein, Gary S; Pratap, Jitesh

    2018-01-01

    Breast cancer metastases cause significant patient mortality. During metastases, cancer cells use autophagy, a catabolic process to recycle nutrients via lysosomal degradation, to overcome nutritional stress for their survival. The Runt-related transcription factor, Runx2, promotes cell survival under metabolic stress, and regulates breast cancer progression and bone metastases. Here, we identify that Runx2 enhances autophagy in metastatic breast cancer cells. We defined Runx2 function in cellular autophagy by monitoring microtubule-associated protein light chain (LC3B-II) levels, an autophagy-specific marker. The electron and confocal microscopic analyses were utilized to identify alterations in autophagic vesicles. The Runx2 knockdown cells accumulate LC3B-II protein and autophagic vesicles due to reduced turnover. Interestingly, Runx2 promotes autophagy by enhancing trafficking of LC3B vesicles. Our mechanistic studies revealed that Runx2 promotes autophagy by increasing acetylation of α-tubulin sub-units of microtubules. Inhibiting autophagy decreased cell adhesion and survival of Runx2 knockdown cells. Furthermore, analysis of LC3B protein in clinical breast cancer specimens and tumor xenografts revealed significant association between high Runx2 and low LC3B protein levels. Our studies reveal a novel regulatory mechanism of autophagy via Runx2 and provide molecular insights into the role of autophagy in metastatic cancer cells. © 2017 Wiley Periodicals, Inc.

  5. Differential Life History Trait Associations of Aphids with Nonpersistent Viruses in Cucurbits.

    PubMed

    Angelella, G M; Egel, D S; Holland, J D; Nemacheck, J A; Williams, C E; Kaplan, I

    2015-06-01

    The diversity of vectors and fleeting nature of virus acquisition and transmission renders nonpersistent viruses a challenge to manage. We assessed the importance of noncolonizing versus colonizing vectors with a 2-yr survey of aphids and nonpersistent viruses on commercial pumpkin farms. We quantified aphid alightment using pan traps, while testing leaf samples with multiplex RT-PCR targeting cucumber mosaic virus (CMV), zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and papaya ringspot virus (PRSV). Overall, we identified 53 aphid species (3,899 individuals), from which the melon aphid, Aphis gossypii Glover, a pumpkin-colonizing species, predominated (76 and 37% of samples in 2010 and 2011, respectively). CMV and ZYMV were not detected, but WMV and PRSV were prevalent, both regionally (WMV: 28/29 fields, PRSV: 21/29 fields) and within fields (infection rates = 69 and 55% for WMV in 2010 and 2011; 28 and 25% for PRSV in 2010 and 2011). However, early-season samples showed extremely low infection levels, suggesting cucurbit viruses are not seed-transmitted and implicating aphid activity as a causal factor driving virus spread. Interestingly, neither noncolonizer and colonizer alightment nor total aphid alightment were good predictors of virus presence, but community analyses revealed species-specific relationships. For example, cowpea aphid (Aphis craccivora Koch) and spotted alfalfa aphid (Therioaphis trifolii Monell f. maculata) were associated with PRSV infection, whereas the oleander aphid (Aphis nerii Bover de Fonscolombe) was associated with WMV spread within fields. These outcomes highlight the need for tailored management plans targeting key vectors of nonpersistent viruses in agricultural systems. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Transcriptomic analysis of the autophagy machinery in crustaceans.

    PubMed

    Suwansa-Ard, Saowaros; Kankuan, Wilairat; Thongbuakaew, Tipsuda; Saetan, Jirawat; Kornthong, Napamanee; Kruangkum, Thanapong; Khornchatri, Kanjana; Cummins, Scott F; Isidoro, Ciro; Sobhon, Prasert

    2016-08-09

    The giant freshwater prawn, Macrobrachium rosenbergii, is a decapod crustacean that is commercially important as a food source. Farming of commercial crustaceans requires an efficient management strategy because the animals are easily subjected to stress and diseases during the culture. Autophagy, a stress response process, is well-documented and conserved in most animals, yet it is poorly studied in crustaceans. In this study, we have performed an in silico search for transcripts encoding autophagy-related (Atg) proteins within various tissue transcriptomes of M. rosenbergii. Basic Local Alignment Search Tool (BLAST) search using previously known Atg proteins as queries revealed 41 transcripts encoding homologous M. rosenbergii Atg proteins. Among these Atg proteins, we selected commonly used autophagy markers, including Beclin 1, vacuolar protein sorting (Vps) 34, microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B), p62/sequestosome 1 (SQSTM1), and lysosomal-associated membrane protein 1 (Lamp-1) for further sequence analyses using comparative alignment and protein structural prediction. We found that crustacean autophagy marker proteins contain conserved motifs typical of other animal Atg proteins. Western blotting using commercial antibodies raised against human Atg marker proteins indicated their presence in various M. rosenbergii tissues, while immunohistochemistry localized Atg marker proteins within ovarian tissue, specifically late stage oocytes. This study demonstrates that the molecular components of autophagic process are conserved in crustaceans, which is comparable to autophagic process in mammals. Furthermore, it provides a foundation for further studies of autophagy in crustaceans that may lead to more understanding of the reproduction- and stress-related autophagy, which will enable the efficient aquaculture practices.

  7. HIV-1 and morphine regulation of autophagy in microglia: limited interactions in the context of HIV-1 infection and opioid abuse.

    PubMed

    El-Hage, Nazira; Rodriguez, Myosotys; Dever, Seth M; Masvekar, Ruturaj R; Gewirtz, David A; Shacka, John J

    2015-01-15

    Microglia are the predominant resident central nervous system (CNS) cell type productively infected by HIV-1, and play a key role in the progression of HIV-associated dementia (HAD). Moreover, neural dysfunction and progression to HAD are accelerated in opiate drug abusers. In the present study, we examined the role of the autophagy pathway in the neuropathogenesis of HIV-1 using primary human microglial cells and determined whether opiates converge at this point. Infection of microglia with the HIV-1SF162 macrophage-tropic strain resulted in increased Beclin1 expression, accompanied by an increase of LC3 protein levels and accumulation of LC3 reporter RFP+ GFP+ (yellow) puncta, suggesting that HIV-1 infection triggers autophagosome formation without promoting protein degradation by the lysosome. Conversely, coexposure with HIV-1 and morphine significantly decreased virus-induced Beclin1 expression and autophagosome formation. Exploration of the possible mechanism(s) used by morphine to disrupt the autophagic process unveiled a significant increase in intracellular pH, which coincided with a reduction in the formation of acidic vesicular organelles and in autophagolysosome formation. Small interfering RNA targeting BECN1, a gene critical for autophagosome formation, significantly reduced viral replication and the virus-induced inflammatory responses. Conversely, morphine-enhanced viral replication and inflammatory responses were not affected by gene silencing with siBeclin1, suggesting that the interactive effect of morphine in HIV-1 pathogenesis is mediated through a Beclin1-independent mechanism. These novel findings may have important implications on the connections between autophagy and HIV-1 pathogenesis mediated by microglial cells in opioid-abusing individuals. About 50% of individuals infected with HIV-1 will develop some sort of neurocognitive impairment that cannot be prevented nor eradicated by antiretroviral therapy. The neuropathogenesis is mostly due

  8. Imaging Virus-Associated Cancer

    PubMed Central

    Fu, De-Xue; Foss, Catherine A.; Nimmagadda, Sridhar; Ambinder, Richard F.; Pomper, Martin G.

    2012-01-01

    Cancer remains an important and growing health problem. Researchers have made great progress in defining genetic and molecular alterations that contribute to cancer formation and progression. Molecular imaging can identify appropriate patients for targeted cancer therapy and may detect early biochemical changes in tumors during therapy, some of which may have important prognostic implications. Progress in this field continues largely due to a union between molecular genetics and advanced imaging technology. This review details uses of molecular-genetic imaging in the context of tumor-associated viruses. Under certain conditions, and particularly during pharmacologic stimulation, gammaherpesviruses will express genes that enable imaging and therapy in vivo. The techniques discussed are readily translatable to the clinic. PMID:18991718

  9. Epigallocatechin-gallate (EGCG) regulates autophagy in human retinal pigment epithelial cells: a potential role for reducing UVB light-induced retinal damage.

    PubMed

    Li, Chao-Peng; Yao, Jin; Tao, Zhi-Fu; Li, Xiu-Miao; Jiang, Qin; Yan, Biao

    2013-09-06

    Autophagy is an intracellular catabolic process involved in protein and organelle degradation via the lysosomal pathway that has been linked in the pathogenesis of age-related macular degeneration (AMD). UVB irradiation-mediated degeneration of the macular retinal pigment epithelial (RPE) cells is an important hallmark of AMD, which is along with the change in RPE autophagy. Thus, pharmacological manipulation of RPE autophagy may offer an alternative therapeutic target in AMD. Here, we found that epigallocatechin-3-gallate (EGCG), a polyphenolic compound from green tea, plays a regulatory role in UVB irradiation-induced autophagy in RPE cells. UVB irradiation results in a marked increase in the amount of LC3-II protein in a dose-dependent manner. EGCG administration leads to a significant reduction in the formation of LC3-II and autophagosomes. mTOR signaling activation is required for EGCG-induced LC3-II formation, as evidenced by the fact that EGCG-induced LC3-II formation is significantly impaired by rapamycin administration. Moreover, EGCG significantly alleviates the toxic effects of UVB irradiation on RPE cells in an autophagy-dependent manner. Collectively, our study reveals a novel role of EGCG in RPE autophagy. EGCG may be exploited as a potential therapeutic reagent for the treatment of pathological conditions associated with abnormal autophagy. Published by Elsevier Inc.

  10. Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation.

    PubMed

    Lavieu, Grégory; Scarlatti, Francesca; Sala, Giusy; Carpentier, Stéphane; Levade, Thierry; Ghidoni, Riccardo; Botti, Joëlle; Codogno, Patrice

    2006-03-31

    The sphingolipid ceramide induces macroautophagy (here called autophagy) and cell death with autophagic features in cancer cells. Here we show that overexpression of sphingosine kinase 1 (SK1), an enzyme responsible for the production of sphingosine 1-phosphate (S1P), in MCF-7 cells stimulates autophagy by increasing the formation of LC3-positive autophagosomes and the rate of proteolysis sensitive to the autophagy inhibitor 3-methyladenine. Autophagy was blocked in the presence of dimethylsphingosine, an inhibitor of SK activity, and in cells expressing a catalytically inactive form of SK1. In SK1(wt)-overexpressing cells, however, autophagy was not sensitive to fumonisin B1, an inhibitor of ceramide synthase. In contrast to ceramide-induced autophagy, SK1(S1P)-induced autophagy is characterized by (i) the inhibition of mammalian target of rapamycin signaling independently of the Akt/protein kinase B signaling arm and (ii) the lack of robust accumulation of the autophagy protein Beclin 1. In addition, nutrient starvation induced both the stimulation of autophagy and SK activity. Knocking down the expression of the autophagy protein Atg7 or that of SK1 by siRNA abolished starvation-induced autophagy and increased cell death with apoptotic hallmarks. In conclusion, these results show that SK1(S1P)-induced autophagy protects cells from death with apoptotic features during nutrient starvation.

  11. Silencing of BAG3 promotes the sensitivity of ovarian cancer cells to cisplatin via inhibition of autophagy.

    PubMed

    Qiu, Shuang; Sun, Liang; Jin, Ye; An, Qi; Weng, Changjiang; Zheng, Jianhua

    2017-07-01

    Ovarian cancer is the most lethal disease among all gynecological malignancies. Interval cytoreductive surgery and cisplatin‑based chemotherapy are the recommended therapeutic strategies. However, acquired resistance to cisplatin remains a big challenge for the overall survival and prognosis in ovarian cancer. Complicated molecular mechanisms are involved in the process. At present, increasing evidence indicates that autophagy plays an important role in the prosurvival and resistance against chemotherapy. In the present study, as a novel autophagy regulator, BCL2‑associated athanogene 3 (BAG3) was investigated to study its role in cisplatin sensitivity in epithelial ovarian cancer. However, whether BAG3 participates in cisplatin sensitivity by inducing autophagy and the underlying mechanism in ovarian cancer cells remain to be clarified. Through the use of quantitative real-time PCR, western blot analysis, CCK-8 and immunofluorescence assays our data revealed that cisplatin-induced autophagy protected ovarian cancer cells from the toxicity of the drug and that this process was regulated by BAG3. Silencing of BAG3 increased cisplatin-induced apoptosis. The results also revealed BAG3 as a potential therapeutic target which enhanced the efficacy of cisplatin in ovarian cancer.

  12. Sedanolide induces autophagy through the PI3K, p53 and NF-κB signaling pathways in human liver cancer cells.

    PubMed

    Hsieh, Shu-Ling; Chen, Chi-Tsai; Wang, Jyh-Jye; Kuo, Yu-Hao; Li, Chien-Chun; Hsieh, Lan-Chi; Wu, Chih-Chung

    2015-12-01

    Sedanolide (SN), a phthalide-like compound from celery seed oil, possesses antioxidant effects. However, the effect of SN on cell death in human liver cancer cells has yet to be determined. In this study, cell viability determination, monodansylcadaverine (MDC) fluorescent staining and immunoblot analysis were performed to determine autophagy induction and autophagy-induced protein expression changes via molecular examination after human liver cancer (J5) cells were treated with SN. Our studies demonstrate that SN suppressed J5 cell viability by inducing autophagy. Phosphoinositide 3-kinase (PI3K)-I, mammalian target of rapamycin (mTOR) and Akt protein levels decreased, whereas PI3K-III, LC3-II and Beclin-1 protein levels increased following SN treatment in J5 cells. In addition, SN treatment upregulated nuclear p53 and damage-regulated autophagy modulator (DRAM) and downregulated cytosolic p53 and Tp53-induced glycolysis and apoptosis regulator (TIGAR) expression in J5 cells. Furthermore, the cytosolic phosphorylation of inhibitor of kappa B (IκB) and nuclear p65 and the DNA-binding activity of NF-κB increased after SN treatment. These results suggest that SN induces J5 cell autophagy by regulating PI3K, p53 and NF-κB autophagy-associated signaling pathways in J5 cells.

  13. Suberoylanilide hydroxamic acid sensitizes neuroblastoma to paclitaxel by inhibiting thioredoxin-related protein 14-mediated autophagy.

    PubMed

    Zhen, Zijun; Yang, Kaibin; Ye, Litong; You, Zhiyao; Chen, Rirong; Liu, Ying; He, Youjian

    2017-07-01

    Paclitaxel is not as effective for neuroblastoma as most of the front-line chemotherapeutics due to drug resistance. This study explored the regulatory mechanism of paclitaxel-associated autophagy and potential solutions to paclitaxel resistance in neuroblastoma. The formation of autophagic vesicles was detected by scanning transmission electron microscopy and flow cytometry. The autophagy-associated proteins were assessed by western blot. Autophagy was induced and the autophagy-associated proteins LC3-I, LC3-II, Beclin 1, and thioredoxin-related protein 14 (TRP14), were found to be upregulated in neuroblastoma cells that were exposed to paclitaxel. The inhibition of Beclin 1 or TRP14 by siRNA increased the sensitivity of the tumor cells to paclitaxel. In addition, Beclin 1-mediated autophagy was regulated by TRP14. Furthermore, the TRP14 inhibitor suberoylanilide hydroxamic acid (SAHA) downregulated paclitaxel-induced autophagy and enhanced the anticancer effects of paclitaxel in normal control cancer cells but not in cells with upregulated Beclin 1 and TRP14 expression. Our findings showed that paclitaxel-induced autophagy in neuroblastoma cells was regulated by TRP14 and that SAHA could sensitize neuroblastoma cells to paclitaxel by specifically inhibiting TRP14. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Autophagy Regulatory Network - a systems-level bioinformatics resource for studying the mechanism and regulation of autophagy.

    PubMed

    Türei, Dénes; Földvári-Nagy, László; Fazekas, Dávid; Módos, Dezső; Kubisch, János; Kadlecsik, Tamás; Demeter, Amanda; Lenti, Katalin; Csermely, Péter; Vellai, Tibor; Korcsmáros, Tamás

    2015-01-01

    Autophagy is a complex cellular process having multiple roles, depending on tissue, physiological, or pathological conditions. Major post-translational regulators of autophagy are well known, however, they have not yet been collected comprehensively. The precise and context-dependent regulation of autophagy necessitates additional regulators, including transcriptional and post-transcriptional components that are listed in various datasets. Prompted by the lack of systems-level autophagy-related information, we manually collected the literature and integrated external resources to gain a high coverage autophagy database. We developed an online resource, Autophagy Regulatory Network (ARN; http://autophagy-regulation.org), to provide an integrated and systems-level database for autophagy research. ARN contains manually curated, imported, and predicted interactions of autophagy components (1,485 proteins with 4,013 interactions) in humans. We listed 413 transcription factors and 386 miRNAs that could regulate autophagy components or their protein regulators. We also connected the above-mentioned autophagy components and regulators with signaling pathways from the SignaLink 2 resource. The user-friendly website of ARN allows researchers without computational background to search, browse, and download the database. The database can be downloaded in SQL, CSV, BioPAX, SBML, PSI-MI, and in a Cytoscape CYS file formats. ARN has the potential to facilitate the experimental validation of novel autophagy components and regulators. In addition, ARN helps the investigation of transcription factors, miRNAs and signaling pathways implicated in the control of the autophagic pathway. The list of such known and predicted regulators could be important in pharmacological attempts against cancer and neurodegenerative diseases.

  15. Autophagy and self-defense.

    PubMed

    Martínez-Borra, Jesús; López-Larrea, Carlos

    2012-01-01

    Autophagy is a highly conserved mechanism which is essential for the maintenance of cellular homeostasis in response to cellular stress. Autophagy has been conserved from yeast to humans as a quality control process that is involved in the recognition and turnover of damaged proteins and organelles. It is also a response mechanism to nutrient starvation. In mammals, autophagy is involved in antigen presentation, tolerance, inflammation and protection against neurodegenerative diseases. The decrease of autophagy during aging reduces the removal of damaged organelles and increases the accumulation of waste products in the cells. In this chapter, we review these aspects of autophagy along with their role in self-nonself distinction, their implication in innate and adaptive immune response, and its dysregulation in the pathology of certain inflammatory and autoimmune diseases.

  16. PINK1 deficiency enhances autophagy and mitophagy induction.

    PubMed

    Gómez-Sánchez, Rubén; Yakhine-Diop, Sokhna M S; Bravo-San Pedro, José M; Pizarro-Estrella, Elisa; Rodríguez-Arribas, Mario; Climent, Vicente; Martin-Cano, Francisco E; González-Soltero, María E; Tandon, Anurag; Fuentes, José M; González-Polo, Rosa A

    2016-03-01

    Parkinson's disease (PD) is a neurodegenerative disorder with poorly understood etiology. Increasing evidence suggests that age-dependent compromise of the maintenance of mitochondrial function is a key risk factor. Several proteins encoded by PD-related genes are associated with mitochondria including PTEN-induced putative kinase 1 (PINK1), which was first identified as a gene that is upregulated by PTEN. Loss-of-function PINK1 mutations induce mitochondrial dysfunction and, ultimately, neuronal cell death. To mitigate the negative effects of altered cellular functions cells possess a degradation mechanism called autophagy for recycling damaged components; selective elimination of dysfunctional mitochondria by autophagy is termed mitophagy. Our study indicates that autophagy and mitophagy are upregulated in PINK1-deficient cells, and is the first report to demonstrate efficient fluxes by one-step analysis. We propose that autophagy is induced to maintain cellular homeostasis under conditions of non-regulated mitochondrial quality control.

  17. PINK1 deficiency enhances autophagy and mitophagy induction

    PubMed Central

    Gómez-Sánchez, Rubén; Yakhine-Diop, Sokhna M S; Bravo-San Pedro, José M; Pizarro-Estrella, Elisa; Rodríguez-Arribas, Mario; Climent, Vicente; Martin-Cano, Francisco E; González-Soltero, María E; Tandon, Anurag; Fuentes, José M; González-Polo, Rosa A

    2016-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder with poorly understood etiology. Increasing evidence suggests that age-dependent compromise of the maintenance of mitochondrial function is a key risk factor. Several proteins encoded by PD-related genes are associated with mitochondria including PTEN-induced putative kinase 1 (PINK1), which was first identified as a gene that is upregulated by PTEN. Loss-of-function PINK1 mutations induce mitochondrial dysfunction and, ultimately, neuronal cell death. To mitigate the negative effects of altered cellular functions cells possess a degradation mechanism called autophagy for recycling damaged components; selective elimination of dysfunctional mitochondria by autophagy is termed mitophagy. Our study indicates that autophagy and mitophagy are upregulated in PINK1-deficient cells, and is the first report to demonstrate efficient fluxes by one-step analysis. We propose that autophagy is induced to maintain cellular homeostasis under conditions of non-regulated mitochondrial quality control. PMID:27308585

  18. Amiodarone affects Ebola virus binding and entry into target cells.

    PubMed

    Salata, Cristiano; Munegato, Denis; Martelli, Francesco; Parolin, Cristina; Calistri, Arianna; Baritussio, Aldo; Palù, Giorgio

    2018-03-02

    Ebola Virus Disease is one of the most lethal transmissible infections characterized by a high fatality rate. Several research studies have aimed to identify effective antiviral agents. Amiodarone, a drug used for the treatment of arrhythmias, has been shown to inhibit filovirus infection in vitro by acting at the early step of the viral replication cycle. Here we demonstrate that amiodarone reduces virus binding to target cells and slows down the progression of the viral particles along the endocytic pathway. Overall our data support the notion that amiodarone interferes with Ebola virus infection by affecting cellular pathways/targets involved in the viral entry process.

  19. Cardiomyocyte ryanodine receptor degradation by chaperone-mediated autophagy

    PubMed Central

    Pedrozo, Zully; Torrealba, Natalia; Fernández, Carolina; Gatica, Damian; Toro, Barbra; Quiroga, Clara; Rodriguez, Andrea E.; Sanchez, Gina; Gillette, Thomas G.; Hill, Joseph A.; Donoso, Paulina; Lavandero, Sergio

    2013-01-01

    Time for primary review: 15 days Aims Chaperone-mediated autophagy (CMA) is a selective mechanism for the degradation of soluble cytosolic proteins bearing the sequence KFERQ. These proteins are targeted by chaperones and delivered to lysosomes where they are translocated into the lysosomal lumen and degraded via the lysosome-associated membrane protein type 2A (LAMP-2A). Mutations in LAMP2 that inhibit autophagy result in Danon disease characterized by hypertrophic cardiomyopathy. The ryanodine receptor type 2 (RyR2) plays a key role in cardiomyocyte excitation–contraction and its dysfunction can lead to cardiac failure. Whether RyR2 is degraded by CMA is unknown. Methods and results To induce CMA, cultured neonatal rat cardiomyocytes were treated with geldanamycin (GA) to promote protein degradation through this pathway. GA increased LAMP-2A levels together with its redistribution and colocalization with Hsc70 in the perinuclear region, changes indicative of CMA activation. The inhibition of lysosomes but not proteasomes prevented the loss of RyR2. The recovery of RyR2 content after incubation with GA by siRNA targeting LAMP-2A suggests that RyR2 is degraded via CMA. In silico analysis also revealed that the RyR2 sequence harbours six KFERQ motifs which are required for the recognition Hsc70 and its degradation via CMA. Our data suggest that presenilins are involved in RyR2 degradation by CMA. Conclusion These findings are consistent with a model in which oxidative damage of the RyR2 targets it for turnover by presenilins and CMA, which could lead to removal of damaged or leaky RyR2 channels. PMID:23404999

  20. AUTEN-67, an autophagy-enhancing drug candidate with potent antiaging and neuroprotective effects.

    PubMed

    Papp, Diána; Kovács, Tibor; Billes, Viktor; Varga, Máté; Tarnóci, Anna; Hackler, László; Puskás, László G; Liliom, Hanna; Tárnok, Krisztián; Schlett, Katalin; Borsy, Adrienn; Pádár, Zsolt; Kovács, Attila L; Hegedűs, Krisztina; Juhász, Gábor; Komlós, Marcell; Erdős, Attila; Gulyás, Balázs; Vellai, Tibor

    2016-01-01

    Autophagy is a major molecular mechanism that eliminates cellular damage in eukaryotic organisms. Basal levels of autophagy are required for maintaining cellular homeostasis and functioning. Defects in the autophagic process are implicated in the development of various age-dependent pathologies including cancer and neurodegenerative diseases, as well as in accelerated aging. Genetic activation of autophagy has been shown to retard the accumulation of damaged cytoplasmic constituents, delay the incidence of age-dependent diseases, and extend life span in genetic models. This implies that autophagy serves as a therapeutic target in treating such pathologies. Although several autophagy-inducing chemical agents have been identified, the majority of them operate upstream of the core autophagic process, thereby exerting undesired side effects. Here, we screened a small-molecule library for specific inhibitors of MTMR14, a myotubularin-related phosphatase antagonizing the formation of autophagic membrane structures, and isolated AUTEN-67 (autophagy enhancer-67) that significantly increases autophagic flux in cell lines and in vivo models. AUTEN-67 promotes longevity and protects neurons from undergoing stress-induced cell death. It also restores nesting behavior in a murine model of Alzheimer disease, without apparent side effects. Thus, AUTEN-67 is a potent drug candidate for treating autophagy-related diseases.

  1. Systems-Level Feedbacks of NRF2 Controlling Autophagy upon Oxidative Stress Response

    PubMed Central

    Kapuy, Orsolya; Papp, Diána; Bánhegyi, Gábor

    2018-01-01

    Although the primary role of autophagy-dependent cellular self-eating is cytoprotective upon various stress events (such as starvation, oxidative stress, and high temperatures), sustained autophagy might lead to cell death. A transcription factor called NRF2 (nuclear factor erythroid-related factor 2) seems to be essential in maintaining cellular homeostasis in the presence of either reactive oxygen or nitrogen species generated by internal metabolism or external exposure. Accumulating experimental evidence reveals that oxidative stress also influences the balance of the 5′ AMP-activated protein kinase (AMPK)/rapamycin (mammalian kinase target of rapamycin or mTOR) signaling pathway, thereby inducing autophagy. Based on computational modeling here we propose that the regulatory triangle of AMPK, NRF2 and mTOR guaranties a precise oxidative stress response mechanism comprising of autophagy. We suggest that under conditions of oxidative stress, AMPK is crucial for autophagy induction via mTOR down-regulation, while NRF2 fine-tunes the process of autophagy according to the level of oxidative stress. We claim that the cellular oxidative stress response mechanism achieves an incoherently amplified negative feedback loop involving NRF2, mTOR and AMPK. The mTOR-NRF2 double negative feedback generates bistability, supporting the proper separation of two alternative steady states, called autophagy-dependent survival (at low stress) and cell death (at high stress). In addition, an AMPK-mTOR-NRF2 negative feedback loop suggests an oscillatory characteristic of autophagy upon prolonged intermediate levels of oxidative stress, resulting in new rounds of autophagy stimulation until the stress events cannot be dissolved. Our results indicate that AMPK-, NRF2- and mTOR-controlled autophagy induction provides a dynamic adaptation to altering environmental conditions, assuming their new frontier in biomedicine. PMID:29510589

  2. Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage

    PubMed Central

    Dewaele, Michael; Martinet, Wim; Rubio, Noemí; Verfaillie, Tom; de Witte, Peter A; Piette, Jacques; Agostinis, Patrizia

    2011-01-01

    Abstract Reactive oxygen species (ROS) concurrently instigate apoptosis and autophagy pathways, but the link between these processes remains unclear. Because cytotoxic ROS formation is exploited in anticancer therapy, such as in photodynamic therapy (PDT), a better understanding of the complex interplay between autophagy and apoptosis is urgently required. Previously, we reported that ROS generated by PDT with an endoplasmic reticulum (ER)-associated sensitizer leads to loss of ER-Ca2+ homeostasis, ER stress and apoptosis. Here we show that PDT prompted Akt-mTOR (mammalian target of rapamycin) pathway down-regulation and stimulated macroautophagy (MA) in cancer and normal cells. Overexpression of the antioxidant enzyme glutathione peroxidase-4 reversed mTOR down-regulation and blocked MA progression and apoptosis. Attenuating MA using Atg5 knockdown or 3-methyladenine, reduced clearance of oxidatively damaged proteins and increased apoptosis, thus revealing a cytoprotective role of MA in PDT. Paradoxically, genetic loss of MA improved clearance of oxidized proteins and reduced photokilling. We found that up-regulation of chaperone-mediated autophagy (CMA) in unstressed Atg5−/− cells compensated for MA loss and increased cellular resistance to PDT. CMA-deficient cells were significantly sensitized to photokilling but were protected against the ER stressor thapsigargin. These results disclose a stress-specific recruitment of autophagy pathways with cytoprotective function and unravel CMA as the dominant defence mechanism against PDT. PMID:20626525

  3. Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast cancer

    PubMed Central

    Cook, Katherine L.; Wärri, Anni; Soto-Pantoja, David R.; Clarke, Pamela A.G.; Cruz, M. Idalia; Zwart, Alan; Clarke, Robert

    2014-01-01

    Purpose Estrogen receptor-α (ERα) targeted therapies including tamoxifen (TAM) or Faslodex (ICI) are used to treat ER+ breast cancers. Up to 50% of tumors will acquire resistance to these interventions. Autophagy has been implicated as a major driver of antiestrogen resistance. We have explored the ability of hydroxychloroquine (HCQ), which inhibits autophagy, to affect antiestrogen responsiveness. Experimental Design TAM-resistant MCF7-RR and ICI-resistant/TAM cross-resistant LCC9 ER+ breast cancer cells were injected into mammary fat pads of female athymic mice and treated with TAM and/or ICI in combination with oral low-dose HCQ. Results We show HCQ can increase antiestrogen responsiveness in MCF7-RR and LCC9 cells and tumors, likely through the inhibition of autophagy. However, the combination of ICI+HCQ was less effective than HCQ alone in vivo, unlike the TAM+HCQ combination. Antiestrogen treatment stimulated angiogenesis in tumors but did not prevent HCQ effectiveness. The lower efficacy of ICI+HCQ was associated with ICI effects on cell-mediated immunity within the tumor microenvironment. The mouse chemokine KC (CXCL1) and IFNγ were differentially regulated by both TAM and ICI treatments, suggesting a possible effect on macrophage development/activity. Consistent with these observations, TAM+HCQ treatment increased tumor CD68+ cells infiltration, whereas ICI and ICI+HCQ reduced peripheral tumor macrophage content. Moreover, macrophage elimination of breast cancer target cells in vitro was reduced following exposure to ICI. Conclusion HCQ restores antiestrogen sensitivity to resistant tumors. Moreover, the beneficial combination of TAM+HCQ suggests a positive outcome for ongoing neoadjuvant clinical trials using this combination for the treatment of ER+ ductal carcinoma in situ lesions. PMID:24928945

  4. Ginsenoside compound K promotes β-amyloid peptide clearance in primary astrocytes via autophagy enhancement.

    PubMed

    Guo, Jinhui; Chang, Li; Zhang, Xin; Pei, Sujuan; Yu, Meishuang; Gao, Jianlian

    2014-10-01

    The aim of the present study was to investigate the effect of ginsenoside compound K on β-amyloid (Aβ) peptide clearance in primary astrocytes. Aβ degradation in primary astrocytes was determined using an intracellular Aβ clearance assay. Aggregated LC3 in astrocyte cells, which is a marker for the level of autophagy, was detected using laser scanning confocal microscope. The effect of compound K on the mammalian target of rapamycin (mTOR)/autophagy pathway was determined using western blot analysis, and an enzyme-linked immunosorbent assay was used for Aβ detection. The results demonstrated that compound K promoted the clearance of Aβ and enhanced autophagy in primary astrocytes. In addition, it was found that phosphorylation of mTOR was inhibited by compound K, which may have contributed to the enhanced autophagy. In conclusion, compound K promotes Aβ clearance by enhancing autophagy via the mTOR signaling pathway in primary astrocytes.

  5. Virus-encoded chemokine receptors--putative novel antiviral drug targets.

    PubMed

    Rosenkilde, Mette M

    2005-01-01

    Large DNA viruses, in particular herpes- and poxviruses, have evolved proteins that serve as mimics or decoys for endogenous proteins in the host. The chemokines and their receptors serve key functions in both innate and adaptive immunity through control of leukocyte trafficking, and have as such a paramount role in the antiviral immune responses. It is therefore not surprising that viruses have found ways to exploit and subvert the chemokine system by means of molecular mimicry. By ancient acts of molecular piracy and by induction and suppression of endogenous genes, viruses have utilized chemokines and their receptors to serve a variety of roles in viral life-cycle. This review focuses on the pharmacology of virus-encoded chemokine receptors, yet also the family of virus-encoded chemokines and chemokine-binding proteins will be touched upon. Key properties of the virus-encoded receptors, compared to their closest endogenous homologs, are interactions with a wider range of chemokines, which can act as agonists, antagonists and inverse agonists, and the exploitation of many signal transduction pathways. High constitutive activity is another key property of some--but not all--of these receptors. The chemokine receptors belong to the superfamily of G-protein coupled 7TM receptors that per se are excellent drug targets. At present, non-peptide antagonists have been developed against many chemokine receptors. The potentials of the virus-encoded chemokine receptors as drug targets--ie. as novel antiviral strategies--will be highlighted here together with the potentials of the virus-encoded chemokines and chemokine-binding proteins as novel anti-inflammatory biopharmaceutical strategies.

  6. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liang; Dong, Chuanming; Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and weremore » associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.« less

  7. Host and viral RNA-binding proteins involved in membrane targeting, replication and intercellular movement of plant RNA virus genomes

    PubMed Central

    Hyodo, Kiwamu; Kaido, Masanori; Okuno, Tetsuro

    2014-01-01

    Many plant viruses have positive-strand RNA [(+)RNA] as their genome. Therefore, it is not surprising that RNA-binding proteins (RBPs) play important roles during (+)RNA virus infection in host plants. Increasing evidence demonstrates that viral and host RBPs play critical roles in multiple steps of the viral life cycle, including translation and replication of viral genomic RNAs, and their intra- and intercellular movement. Although studies focusing on the RNA-binding activities of viral and host proteins, and their associations with membrane targeting, and intercellular movement of viral genomes have been limited to a few viruses, these studies have provided important insights into the molecular mechanisms underlying the replication and movement of viral genomic RNAs. In this review, we briefly overview the currently defined roles of viral and host RBPs whose RNA-binding activity have been confirmed experimentally in association with their membrane targeting, and intercellular movement of plant RNA virus genomes. PMID:25071804

  8. Blockade of Notch3 inhibits the stem-like property and is associated with ALDH1A1 and CD44 via autophagy in non-small lung cancer.

    PubMed

    Ma, Yuanyuan; Li, Mingzhen; Si, Jiahui; Xiong, Ying; Lu, Fangliang; Zhang, Jianzhi; Zhang, Liyi; Zhang, Panpan; Yang, Yue

    2016-06-01

    Acquired resistance to standard chemotherapy causes treatment failure in patients with local advanced and advanced non-small lung cancer (NSCLC). Cancer stem cells (CSCs) are a small subpopulation within cancer that is thought to be resistant to conventional chemotherapy. The Notch pathway is one of the most intensively studied for putative therapeutic targets of CSCs in solid tumors. In our study, suppression of Notch3 decreased colony and sphere formation of stem-like property in lung cancer cells. In addition, Notch3 expression was demonstrated to be upregulated in the patients with chemoresistance and related to poor prognosis of NSCLC patients. Our results also showed that CSC markers ALDH1A1 and CD44 were highly expressed in NSCLC patients with chemoresistance and these two markers were positively correlated with Notch3 expression in lung cancer specimens from TCGA database. Furthermore, the lung cancer cells with drug resistance were shown to be associated with activation of autophagy. All the data support a crucial role of Notch3 in the increase of stem-like property in NSCLC cells that might be associated with upregulation of ALDH1A1 and CD44 and activation of autophagy.

  9. A Primary Human Trophoblast Model to Study the Effect of Inflammation Associated with Maternal Obesity on Regulation of Autophagy in the Placenta.

    PubMed

    Simon, Bailey; Bucher, Matthew; Maloyan, Alina

    2017-09-27

    Maternal obesity is associated with an increased risk of adverse perinatal outcomes that are likely mediated by compromised placental function that can be attributed to, in part, the dysregulation of autophagy. Aberrant changes in the expression of autophagy regulators in the placentas from obese pregnancies may be regulated by inflammatory processes associated with both obesity and pregnancy. Described here is a protocol for sampling of villous tissue and isolation of villous cytotrophoblasts from the term human placenta for primary cell culture. This is followed by a method for simulating the inflammatory milieu in the obese intrauterine environment by treating primary trophoblasts from lean pregnancies with tumor necrosis factor alpha (TNFα), a proinflammatory cytokine that is elevated in obesity and in pregnancy. Through the implementation of the protocol described here, it is found that exposure to exogenous TNFα regulates the expression of Rubicon, a negative regulator of autophagy, in trophoblasts from lean pregnancies with female fetuses. While a variety of biological factors in the obese intrauterine environment maintain the potential to modulate critical pathways in trophoblasts, this ex vivo system is especially useful for determining if expression patterns observed in vivo in human placentas with maternal obesity are a direct result of TNFα signaling. Ultimately, this approach affords the opportunity to parse out the regulatory and molecular implications of inflammation associated with maternal obesity on autophagy and other critical cellular pathways in trophoblasts that have the potential to impact placental function.

  10. SCRG1, a potential marker of autophagy in transmissible spongiform encephalopathies.

    PubMed

    Dron, Michel; Bailly, Yannick; Beringue, Vincent; Haeberlé, Anne-Marie; Griffond, Bernadette; Risold, Pierre-Yves; Tovey, Michael G; Laude, Hubert; Dandoy-Dron, Françoise

    2006-01-01

    The Scrg1 gene was initially discovered as one of the genes upregulated in transmissible spongiform encephalopathies (TSE). Scrg1 encodes a highly conserved, cysteine-rich protein expressed principally in the central nervous system. The protein is targeted to the Golgi apparatus and large dense-core vesicles/secretory granules in neurons. We have recently shown that the Scrg1 protein is widely induced in neurons of scrapie-infected mice, suggesting that Scrg1 is involved in the host response to stress and/or the death of neurons. At the ultrastructural level, Scrg1 is associated with dictyosomes of the Golgi apparatus and autophagic vacuoles of degenerative neurons. It is well known that apoptosis plays a major role in the events leading to neuronal cell death in TSE. However, autophagy was identified in experimentally induced scrapie a long time ago and was recently reevaluated as a possible cell death program in prion diseases. The consistent association of Scrg1 with autophagic structures typical of scrapie is in agreement with the recruitment of Golgi-specific proteins in this degradation process and we suggest that Scrg1 might be used as a specific probe to identify neuronal autophagy in TSE.

  11. PFN1 Induces drug resistance through Beclin1 Complex mediated autophagy in multiple myeloma.

    PubMed

    Lu, Yichen; Wang, Ya; Xu, He; Shi, Chen; Jin, Fengyan; Li, Wei

    2018-06-26

    Autophagy plays an important role in Multiple Myeloma (MM) for homeostasis, survival and drug resistance, but which genes participant in this process is unclear. We identified serval cytoskeleton genes upregulated in MM patients by GEP datasets, especially patients with high PFN1 expression had poor prognosis in MM. In vitro, overexpressed PFN1 promotes proliferation and Bortezomib (BTZ) resistance in MM cells. Further study indicated overexpression of PFN1 significantly promoted the process of autophagy and induced BTZ resistance in MM. Otherwise, knockdown of PFN1 blocked autophagy and sensitized MM to BTZ. Co-IP in MM cells demonstrated PFN1 could bind Beclin1 complex and promote the initiation of autophagy. Inhibition of autophagy via blocking the formation of Beclin1 complex could reverse the phenotype of BTZ resistance in MM. Our findings suggested that PFN1 could promote autophagy through taking part in Beclin1 complex and contribute to BTZ resistance, which may become a novel molecular target in the therapy of MM. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. ATG5 mediates a positive feedback loop between Wnt signaling and autophagy in melanoma

    PubMed Central

    Ndoye, Abibatou; Budina-Kolomets, Anna; Kugel, Curtis H.; Webster, Marie; Kaur, Amanpreet; Behera, Reeti; Rebecca, Vito; Li, Ling; Brafford, Patricia; Liu, Qin; Gopal, Y.N. Vashisht; Davies, Michael A.; Mills, Gordon B.; Xu, Xiaowei; Wu, Hong; Herlyn, Meenhard; Nicastri, Michael; Winkler, Jeffrey; Soengas, Maria S.; Amaravadi, Ravi; Murphy, Maureen; Weeraratna, Ashani T.

    2017-01-01

    Autophagy mediates resistance to various anticancer agents. In melanoma, resistance to targeted therapy has been linked to expression of Wnt5A, an intrinsic inhibitor of β-catenin, which also promotes invasion. In this study, we assessed the interplay between Wnt5A and autophagy by combining expression studies in human clinical biopsies with functional analyses in cell lines and mouse models. Melanoma cells with high Wnt5A and low β-catenin displayed increased basal autophagy. Genetic blockade of autophagy revealed an unexpected feedback loop whereby knocking down the autophagy factor ATG5 in Wnt5Ahigh cells decreased Wnt5A and increased β-catenin. To define the physiological relevance of this loop, melanoma cells with different Wnt status were treated in vitro and in vivo with the potent lysosomotropic compound Lys05. Wnt5Ahigh cells were less sensitive to Lys05 and could be reverted by inducing β-catenin activity. Our results suggest the efficacy of autophagy inhibitors might be improved by taking the Wnt signature of melanoma cells into account. PMID:28887323

  13. Identification and Molecular Characterization of the Chloroplast Targeting Domain of Turnip yellow mosaic virus Replication Proteins

    PubMed Central

    Moriceau, Lucille; Jomat, Lucile; Bressanelli, Stéphane; Alcaide-Loridan, Catherine; Jupin, Isabelle

    2017-01-01

    Turnip yellow mosaic virus (TYMV) is a positive-strand RNA virus infecting plants. The TYMV 140K replication protein is a key organizer of viral replication complex (VRC) assembly, being responsible for recruitment of the viral polymerase and for targeting the VRCs to the chloroplast envelope where viral replication takes place. However, the structural requirements determining the subcellular localization and membrane association of this essential viral protein have not yet been defined. In this study, we investigated determinants for the in vivo chloroplast targeting of the TYMV 140K replication protein. Subcellular localization studies of deletion mutants identified a 41-residue internal sequence as the chloroplast targeting domain (CTD) of TYMV 140K; this sequence is sufficient to target GFP to the chloroplast envelope. The CTD appears to be located in the C-terminal extension of the methyltransferase domain—a region shared by 140K and its mature cleavage product 98K, which behaves as an integral membrane protein during infection. We predicted the CTD to fold into two amphipathic α-helices—a folding that was confirmed in vitro by circular dichroism spectroscopy analyses of a synthetic peptide. The importance for subcellular localization of the integrity of these amphipathic helices, and the function of 140K/98K, was demonstrated by performing amino acid substitutions that affected chloroplast targeting, membrane association and viral replication. These results establish a short internal α-helical peptide as an unusual signal for targeting proteins to the chloroplast envelope membrane, and provide new insights into membrane targeting of viral replication proteins—a universal feature of positive-strand RNA viruses. PMID:29312393

  14. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Ren-Jie

    The objective was to investigate the upstream mechanisms of apoptosis which were triggered by a novel anti-microtubule drug, ABT-751, in hepatocellular carcinoma-derived Huh-7 cells. Effects of ABT-751 were evaluated by immunocytochemistry, flow cytometric, alkaline comet, soft agar, immunoblotting, CytoID, green fluorescent protein-microtubule associated protein 1 light chain 3 beta detection, plasmid transfection, nuclear/cytosol fractionation, coimmunoprecipitation, quantitative reverse transcription-polymerase chain reaction, small-hairpin RNA interference and mitochondria/cytosol fractionation assays. Results showed that ABT-751 caused dysregulation of microtubule, collapse of mitochondrial membrane potential, generation of reactive oxygen species (ROS), DNA damage, G{sub 2}/M cell cycle arrest, inhibition of anchorage-independent cell growth and apoptosismore » in Huh-7 cells. ABT-751 also induced early autophagy via upregulation of nuclear TP53 and downregulation of the AKT serine/threonine kinase (AKT)/mechanistic target of rapamycin (MTOR) pathway. Through modulation of the expression levels of DNA damage checkpoint proteins and G{sub 2}/M cell cycle regulators, ABT-751 induced G{sub 2}/M cell cycle arrest. Subsequently, ABT-751 triggered apoptosis with marked downregulation of B-cell CLL/lymphoma 2, upregulation of mitochondrial BCL2 antagonist/killer 1 and BCL2 like 11 protein levels, and cleavages of caspase 8 (CASP8), CASP9, CASP3 and DNA fragmentation factor subunit alpha proteins. Suppression of ROS significantly decreased ABT-751-induced autophagic and apoptotic cells. Pharmacological inhibition of autophagy significantly increased the percentages of ABT-751-induced apoptotic cells. The autophagy induced by ABT-751 plays a protective role to postpone apoptosis by exerting adaptive responses following microtubule damage, ROS and/or impaired mitochondria. - Highlights: • An anti-microtubule agent, ABT-751, induces autophagy and apoptosis in Huh-7

  15. Arginine vasopressin neuronal loss results from autophagy-associated cell death in a mouse model for familial neurohypophysial diabetes insipidus

    PubMed Central

    Hagiwara, D; Arima, H; Morishita, Y; Wenjun, L; Azuma, Y; Ito, Y; Suga, H; Goto, M; Banno, R; Sugimura, Y; Shiota, A; Asai, N; Takahashi, M; Oiso, Y

    2014-01-01

    Familial neurohypophysial diabetes insipidus (FNDI) characterized by progressive polyuria is mostly caused by mutations in the gene encoding neurophysin II (NPII), which is the carrier protein of the antidiuretic hormone, arginine vasopressin (AVP). Although accumulation of mutant NPII in the endoplasmic reticulum (ER) could be toxic for AVP neurons, the precise mechanisms of cell death of AVP neurons, reported in autopsy studies, remain unclear. Here, we subjected FNDI model mice to intermittent water deprivation (WD) in order to promote the phenotypes. Electron microscopic analyses demonstrated that, while aggregates are confined to a certain compartment of the ER in the AVP neurons of FNDI mice with water access ad libitum, they were scattered throughout the dilated ER lumen in the FNDI mice subjected to WD for 4 weeks. It is also demonstrated that phagophores, the autophagosome precursors, emerged in the vicinity of aggregates and engulfed the ER containing scattered aggregates. Immunohistochemical analyses revealed that expression of p62, an adapter protein between ubiquitin and autophagosome, was elicited on autophagosomal membranes in the AVP neurons, suggesting selective autophagy induction at this time point. Treatment of hypothalamic explants of green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3 (LC3) transgenic mice with an ER stressor thapsigargin increased the number of GFP-LC3 puncta, suggesting that ER stress could induce autophagosome formation in the hypothalamus of wild-type mice as well. The cytoplasm of AVP neurons in FNDI mice was occupied with vacuoles in the mice subjected to WD for 12 weeks, when 30–40% of AVP neurons are lost. Our data thus demonstrated that autophagy was induced in the AVP neurons subjected to ER stress in FNDI mice. Although autophagy should primarily be protective for neurons, it is suggested that the organelles including ER were lost over time through autophagy, leading to autophagy-associated

  16. Autophagy is involved in regulating the immune response of dendritic cells to influenza A (H1N1) pdm09 infection.

    PubMed

    Zang, Farong; Chen, Yinghu; Lin, Zhendong; Cai, Zhijian; Yu, Lei; Xu, Feng; Wang, Jiaoli; Zhu, Weiguo; Lu, Huoquan

    2016-05-01

    Autophagy can mediate antiviral immunity. However, it remains unknown whether autophagy regulates the immune response of dendritic cells (DCs) to influenza A (H1N1) pdm09 infection. In this study, we found that infection with the H1N1 virus induced DC autophagy in an endocytosis-dependent manner. Compared with autophagy-deficient Beclin-1(+/-) mice, we found that bone-marrow-derived DCs from wild-type mice (WT BMDCs) presented a more mature phenotype on H1N1 infection. Wild-type BMDCs secreted higher levels of interleukin-6 (IL-6), tumour necrosis factor- α (TNF-α), interferon-β (IFN-β), IL-12p70 and IFN-γ than did Beclin-1(+/-) BMDCs. In contrast to Beclin-1(+/-) BMDCs, H1N1-infected WT BMDCs exhibited increased activation of extracellular signal-regulated kinase, Jun N-terminal kinase, p38, and nuclear factor-κB as well as IFN regulatory factor 7 nuclear translocation. Blockade of autophagosomal and lysosomal fusion by bafilomycin A1 decreased the co-localization of H1N1 viruses, autophagosomes and lysosomes as well as the secretion of IL-6, TNF-α and IFN-β in H1N1-infected BMDCs. In contrast to Beclin-1(+/-) BMDCs, H1N1-infected WT BMDCs were more efficient in inducing allogeneic CD4(+) T-cell proliferation and driving T helper type 1, 2 and 17 cell differentiation while inhibiting CD4(+) Foxp3(+) regulatory T-cell differentiation. Moreover, WT BMDCs were more efficient at cross-presenting the ovalbumin antigen to CD8(+) T cells. We consistently found that Beclin-1(+/-) BMDCs were inferior in their inhibition of H1N1 virus replication and their induction of H1N1-specific CD4(+) and CD8(+) T-cell responses, which produced lower levels of IL-6, TNF-α and IFN-β in vivo. Our data indicate that autophagy is important in the regulation of the DC immune response to H1N1 infection, thereby extending our understanding of host immune responses to the virus. © 2016 John Wiley & Sons Ltd.

  17. Autophagy promotes synapse development in Drosophila.

    PubMed

    Shen, Wei; Ganetzky, Barry

    2009-10-05

    Autophagy, a lysosome-dependent degradation mechanism, mediates many biological processes, including cellular stress responses and neuroprotection. In this study, we demonstrate that autophagy positively regulates development of the Drosophila melanogaster larval neuromuscular junction (NMJ). Autophagy induces an NMJ overgrowth phenotype closely resembling that of highwire (hiw), an E3 ubiquitin ligase mutant. Moreover, like hiw, autophagy-induced NMJ overgrowth is suppressed by wallenda (wnd) and by a dominant-negative c-Jun NH(2)-terminal kinase (bsk(DN)). We show that autophagy promotes NMJ growth by reducing Hiw levels. Thus, autophagy and the ubiquitin-proteasome system converge in regulating synaptic development. Because autophagy is triggered in response to many environmental cues, our findings suggest that it is perfectly positioned to link environmental conditions with synaptic growth and plasticity.

  18. Exosome-associated hepatitis C virus in cell cultures and patient plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ziqing; Zhang, Xiugen; Yu, Qigui

    Highlights: • HCV occurs in both exosome-free and exosome-associated forms. • Exosome-associated HCV is infectious and resistant to neutralizing antibodies. • More exosome-associated HCV than exosome-free HCV is present in patient plasma. - Abstract: Hepatitis C virus (HCV) infects its target cells in the form of cell-free viruses and through cell–cell contact. Here we report that HCV is associated with exosomes. Using highly purified exosomes and transmission electron microscopic imaging, we demonstrated that HCV occurred in both exosome-free and exosome-associated forms. Exosome-associated HCV was infectious and resistant to neutralization by an anti-HCV neutralizing antibody. There were more exosome-associated HCV thanmore » exosome-free HCV detected in the plasma of HCV-infected patients. These results suggest exosome-associated HCV as an alternative form for HCV infection and transmission.« less

  19. Autophagy in plant pathogenic fungi.

    PubMed

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Long-term resistance exercise-induced muscular hypertrophy is associated with autophagy modulation in rats.

    PubMed

    Kwon, Insu; Jang, Yongchul; Cho, Joon-Yong; Jang, Young C; Lee, Youngil

    2018-05-01

    Elevation of anabolism and concurrent suppression of catabolism are critical metabolic adaptations for muscular hypertrophy in response to resistance exercise (RE). Here, we investigated if RE-induced muscular hypertrophy is acquired by modulating a critical catabolic process autophagy. Male Wistar Hannover rats (14 weeks old) were randomly assigned to either sedentary control (SC, n = 10) or resistance exercise (RE, n = 10). RE elicited significant hypertrophy of flexor digitorum profundus (FDP) muscles in parallel with enhancement in anabolic signaling pathways (phosphorylation of AKT, mTOR, and p70S6K). Importantly, RE-treated FDP muscle exhibited a significant decline in autophagy evidenced by diminished phosphorylation levels of AMPK, a decrease in LC3-II/LC3-I ratio, an increase in p62 level, and a decline in active form of lysosomal protease CATHEPSIN L in the absence of alterations of key autophagy proteins: ULK1 phosphorylation, BECLIN1, and BNIP3. Our study suggests that RE-induced hypertrophy is achieved by potentiating anabolism and restricting autophagy-induced catabolism.