Sample records for targets multiple metabolic

  1. Metabolic pathways as possible therapeutic targets for progressive multiple sclerosis.

    PubMed

    Heidker, Rebecca M; Emerson, Mitchell R; LeVine, Steven M

    2017-08-01

    Unlike relapsing remitting multiple sclerosis, there are very few therapeutic options for patients with progressive forms of multiple sclerosis. While immune mechanisms are key participants in the pathogenesis of relapsing remitting multiple sclerosis, the mechanisms underlying the development of progressive multiple sclerosis are less well understood. Putative mechanisms behind progressive multiple sclerosis have been put forth: insufficient energy production via mitochondrial dysfunction, activated microglia, iron accumulation, oxidative stress, activated astrocytes, Wallerian degeneration, apoptosis, etc . Furthermore, repair processes such as remyelination are incomplete. Experimental therapies that strive to improve metabolism within neurons and glia, e.g. , oligodendrocytes, could act to counter inadequate energy supplies and/or support remyelination. Most experimental approaches have been examined as standalone interventions; however, it is apparent that the biochemical steps being targeted are part of larger pathways, which are further intertwined with other metabolic pathways. Thus, the potential benefits of a tested intervention, or of an established therapy, e.g. , ocrelizumab, could be undermined by constraints on upstream and/or downstream steps. If correct, then this argues for a more comprehensive, multifaceted approach to therapy. Here we review experimental approaches to support neuronal and glial metabolism, and/or promote remyelination, which may have potential to lessen or delay progressive multiple sclerosis.

  2. Evaluating acetate metabolism for imaging and targeting in multiple myeloma

    PubMed Central

    Fontana, Francesca; Ge, Xia; Su, Xinming; Hathi, Deep; Xiang, Jingyu; Cenci, Simone; Civitelli, Roberto; Shoghi, Kooresh I.; Akers, Walter J.; D’avignon, Andre

    2016-01-01

    Purpose We hypothesized that in multiple myeloma cells (MMC), high membrane biosynthesis will induce acetate uptake in vitro and in vivo. Here, we studied acetate metabolism and targeting in MMC in vitro and tested the efficacy of 11C-acetate-PET (positron emission tomography) to detect and quantitatively image myeloma treatment response in vivo. Experimental design Acetate fate tracking using 13C-edited-1H NMR (nuclear magnetic resonance) was performed to study in vitro acetate uptake and metabolism in MMC. Effects of pharmacological modulation of acetate transport or acetate incorporation into lipids on MMC cell survival and viability were assessed. Preclinical mouse MM models of subcutaneous and bone tumors were evaluated using 11C-acetate-PET/CT imaging and tissue biodistribution. Results In vitro, NMR showed significant uptake of acetate by MMC, and acetate incorporation into intracellular metabolites and membrane lipids. Inhibition of lipid synthesis and acetate transport was toxic to MMC, while sparing resident bone cells or normal B cells. In vivo, 11C-acetate uptake by PET imaging was significantly enhanced in subcutaneous and bone MMC tumors compared to unaffected bone or muscle tissue. Likewise, 11C-acetate uptake was significantly reduced in MM tumors after treatment. Conclusions Uptake of acetate from the extracellular environment was enhanced in MMC and was critical to cellular viability. 11C-acetate-PET detected the presence of myeloma cells in vivo, including uptake in intramedullary bone disease. 11C-acetate-PET also detected response to therapy in vivo. Our data suggested that acetate metabolism and incorporation into lipids was crucial to MM cell biology and that 11C-acetate-PET is a promising imaging modality for MM. PMID:27486177

  3. Targeting polyamine metabolism for cancer therapy and prevention

    PubMed Central

    Murray-Stewart, Tracy R.; Woster, Patrick M.; Casero, Robert A.

    2017-01-01

    The chemically simple, biologically complex eukaryotic polyamines, spermidine and spermine, are positively charged alkylamines involved in many crucial cellular processes. Along with their diamine precursor putrescine, their normally high intracellular concentrations require fine attenuation by multiple regulatory mechanisms to keep these essential molecules within strict physiologic ranges. Since the metabolism of and requirement for polyamines are frequently dysregulated in neoplastic disease, the metabolic pathway and functions of polyamines provide rational drug targets; however, these targets have been difficult to exploit for chemotherapy. It is the goal of this article to review the latest findings in the field that demonstrate the potential utility of targeting the metabolism and function of polyamines as strategies for both chemotherapy and, possibly more importantly, chemoprevention. PMID:27679855

  4. Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax.

    PubMed

    Bajpai, R; Matulis, S M; Wei, C; Nooka, A K; Von Hollen, H E; Lonial, S; Boise, L H; Shanmugam, M

    2016-07-28

    Multiple myeloma (MM) is a plasma cell malignancy that is largely incurable due to development of resistance to therapy-elicited cell death. Nutrients are intricately connected to maintenance of cellular viability in part by inhibition of apoptosis. We were interested to determine if examination of metabolic regulation of BCL-2 proteins may provide insight on alternative routes to engage apoptosis. MM cells are reliant on glucose and glutamine and withdrawal of either nutrient is associated with varying levels of apoptosis. We and others have demonstrated that glucose maintains levels of key resistance-promoting BCL-2 family member, myeloid cell leukemic factor 1 (MCL-1). Cells continuing to survive in the absence of glucose or glutamine were found to maintain expression of MCL-1 but importantly induce pro-apoptotic BIM expression. One potential mechanism for continued survival despite induction of BIM could be due to binding and sequestration of BIM to alternate pro-survival BCL-2 members. Our investigation revealed that cells surviving glutamine withdrawal in particular, enhance expression and binding of BIM to BCL-2, consequently sensitizing these cells to the BH3 mimetic venetoclax. Glutamine deprivation-driven sensitization to venetoclax can be reversed by metabolic supplementation with TCA cycle intermediate α-ketoglutarate. Inhibition of glucose metabolism with the GLUT4 inhibitor ritonavir elicits variable cytotoxicity in MM that is marginally enhanced with venetoclax treatment, however, targeting glutamine metabolism with 6-diazo-5-oxo-l-norleucine uniformly sensitized MM cell lines and relapse/refractory patient samples to venetoclax. Our studies reveal a potent therapeutic strategy of metabolically driven synthetic lethality involving targeting glutamine metabolism for sensitization to venetoclax in MM.

  5. Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax

    PubMed Central

    Bajpai, R; Matulis, SM; Wei, C; Nooka, AK; Von Hollen, HE; Lonial, S; Boise, LH; Shanmugam, M

    2016-01-01

    Multiple myeloma (MM) is a plasma cell malignancy that is largely incurable due to development of resistance to therapy-elicited cell death. Nutrients are intricately connected to maintenance of cellular viability in part by inhibition of apoptosis. We were interested to determine if examination of metabolic regulation of BCL-2 proteins may provide insight on alternative routes to engage apoptosis. MM cells are reliant on glucose and glutamine and withdrawal of either nutrient is associated with varying levels of apoptosis. We and others have demonstrated that glucose maintains levels of key resistance-promoting BCL-2 family member, myeloid cell leukemic factor 1 (MCL-1). Cells continuing to survive in the absence of glucose or glutamine were found to maintain expression of MCL-1 but importantly induce pro-apoptotic BIM expression. One potential mechanism for continued survival despite induction of BIM could be due to binding and sequestration of BIM to alternate pro-survival BCL-2 members. Our investigation revealed that cells surviving glutamine withdrawal in particular, enhance expression and binding of BIM to BCL-2, consequently sensitizing these cells to the BH3 mimetic venetoclax. Glutamine deprivation-driven sensitization to venetoclax can be reversed by metabolic supplementation with TCA cycle intermediate α-ketoglutarate. Inhibition of glucose metabolism with the GLUT4 inhibitor ritonavir elicits variable cytotoxicity in MM that is marginally enhanced with venetoclax treatment, however, targeting glutamine metabolism with 6-diazo-5-oxo-l-norleucine uniformly sensitized MM cell lines and relapse/refractory patient samples to venetoclax. Our studies reveal a potent therapeutic strategy of metabolically driven synthetic lethality involving targeting glutamine metabolism for sensitization to venetoclax in MM. PMID:26640142

  6. Targeting bacterial central metabolism for drug development.

    PubMed

    Murima, Paul; McKinney, John D; Pethe, Kevin

    2014-11-20

    Current antibiotics, derived mainly from natural sources, inhibit a narrow spectrum of cellular processes, namely DNA replication, protein synthesis, and cell wall biosynthesis. With the worldwide explosion of drug resistance, there is renewed interest in the investigation of alternate essential cellular processes, including bacterial central metabolic pathways, as a drug target space for the next generation of antibiotics. However, the validation of targets in central metabolism is more complex, as essentiality of such targets can be conditional and/or contextual. Bearing in mind our enhanced understanding of prokaryotic central metabolism, a key question arises: can central metabolism be bacteria's Achilles' heel and a therapeutic target for the development of new classes of antibiotics? In this review, we draw lessons from oncology and attempt to address some of the open questions related to feasibility of targeting bacterial central metabolism as a strategy for developing new antibacterial drugs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Targeting Metabolic Plasticity in Breast Cancer Cells via Mitochondrial Complex I Modulation

    PubMed Central

    Xu, Qijin; Biener-Ramanujan, Eva; Yang, Wei; Ramanujan, V Krishnan

    2016-01-01

    Purpose Heterogeneity commonly observed in clinical tumors stems both from the genetic diversity as well as from the differential metabolic adaptation of multiple cancer types during their struggle to maintain uncontrolled proliferation and invasion in vivo. This study aims to identify a potential metabolic window of such adaptation in aggressive human breast cancer cell lines. Methods With a multidisciplinary approach using high resolution imaging, cell metabolism assays, proteomic profiling and animal models of human tumor xenografts and via clinically-relevant, pharmacological approach for modulating mitochondrial complex I function in human breast cancer cell lines, we report a novel route to target metabolic plasticity in human breast cancer cells. Results By a systematic modulation of mitochondrial function and by mitigating metabolic switch phenotype in aggressive human breast cancer cells, we demonstrate that the resulting metabolic adaptation signatures can predictably decrease tumorigenic potential in vivo. Proteomic profiling of the metabolic adaptation in these cells further revealed novel protein-pathway interactograms highlighting the importance of antioxidant machinery in the observed metabolic adaptation. Conclusions Improved metabolic adaptation potential in aggressive human breast cancer cells contribute to improving mitochondrial function and reducing metabolic switch phenotype –which may be vital for targeting primary tumor growth in vivo. PMID:25677747

  8. Re-programming tumour cell metabolism to treat cancer: no lone target for lonidamine.

    PubMed

    Bhutia, Yangzom D; Babu, Ellappan; Ganapathy, Vadivel

    2016-06-01

    Tumour cell metabolism is very different from normal cell metabolism; cancer cells re-programme the metabolic pathways that occur in normal cells in such a manner that it optimizes their proliferation, growth and survival. Although this metabolic re-programming obviously operates to the advantage of the tumour, it also offers unique opportunities for effective cancer therapy. Molecules that target the tumour cell-specific metabolic pathways have potential as novel anti-cancer drugs. Lonidamine belongs to this group of molecules and is already in use in some countries for cancer treatment. It has been known for a long time that lonidamine interferes with energy production in tumour cells by inhibiting hexokinase II (HKII), a glycolytic enzyme. However, subsequent studies have uncovered additional pharmacological targets for the drug, which include the electron transport chain and the mitochondrial permeability transition pore, thus expanding the pharmacological effects of the drug on tumour cell metabolism. A study by Nancolas et al. in a recent issue of the Biochemical Journal identifies two additional new targets for lonidamine: the pyruvate transporter in the mitochondria and the H(+)-coupled monocarboxylate transporters in the plasma membrane (PM). It is thus becoming increasingly apparent that the anti-cancer effects of lonidamine do not occur through a single target; the drug works at multiple sites. Irrespective of the molecular targets, what lonidamine does in the end is to undo what the tumour cells have done in terms of re-programming cellular metabolism and mitochondrial function. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Multiple shell fusion targets

    DOEpatents

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  10. Identifying metabolic enzymes with multiple types of association evidence

    PubMed Central

    Kharchenko, Peter; Chen, Lifeng; Freund, Yoav; Vitkup, Dennis; Church, George M

    2006-01-01

    Background Existing large-scale metabolic models of sequenced organisms commonly include enzymatic functions which can not be attributed to any gene in that organism. Existing computational strategies for identifying such missing genes rely primarily on sequence homology to known enzyme-encoding genes. Results We present a novel method for identifying genes encoding for a specific metabolic function based on a local structure of metabolic network and multiple types of functional association evidence, including clustering of genes on the chromosome, similarity of phylogenetic profiles, gene expression, protein fusion events and others. Using E. coli and S. cerevisiae metabolic networks, we illustrate predictive ability of each individual type of association evidence and show that significantly better predictions can be obtained based on the combination of all data. In this way our method is able to predict 60% of enzyme-encoding genes of E. coli metabolism within the top 10 (out of 3551) candidates for their enzymatic function, and as a top candidate within 43% of the cases. Conclusion We illustrate that a combination of genome context and other functional association evidence is effective in predicting genes encoding metabolic enzymes. Our approach does not rely on direct sequence homology to known enzyme-encoding genes, and can be used in conjunction with traditional homology-based metabolic reconstruction methods. The method can also be used to target orphan metabolic activities. PMID:16571130

  11. Cancer metabolism: strategic diversion from targeting cancer drivers to targeting cancer suppliers.

    PubMed

    Kim, Soo-Youl

    2015-03-01

    Drug development groups are close to discovering another pot of gold-a therapeutic target-similar to the success of imatinib (Gleevec) in the field of cancer biology. Modern molecular biology has improved cancer therapy through the identification of more pharmaceutically viable targets, and yet major problems and risks associated with late-phase cancer therapy remain. Presently, a growing number of reports have initiated a discussion about the benefits of metabolic regulation in cancers. The Warburg effect, a great discovery approximately 70 years ago, addresses the "universality" of cancer characteristics. For instance, most cancer cells prefer aerobic glycolysis instead of mitochondrial respiration. Recently, cancer metabolism has been explained not only by metabolites but also through modern molecular and chemical biological techniques. Scientists are seeking context-dependent universality among cancer types according to metabolic and enzymatic pathway signatures. This review presents current cancer metabolism studies and discusses future directions in cancer therapy targeting bio-energetics, bio-anabolism, and autophagy, emphasizing the important contribution of cancer metabolism in cancer therapy.

  12. A targeted metabolomics approach for clinical diagnosis of inborn errors of metabolism.

    PubMed

    Jacob, Minnie; Malkawi, Abeer; Albast, Nour; Al Bougha, Salam; Lopata, Andreas; Dasouki, Majed; Abdel Rahman, Anas M

    2018-09-26

    Metabolome, the ultimate functional product of the genome, can be studied through identification and quantification of small molecules. The global metabolome influences the individual phenotype through clinical and environmental interventions. Metabolomics has become an integral part of clinical research and allowed for another dimension of better understanding of disease pathophysiology and mechanism. More than 95% of the clinical biochemistry laboratory routine workload is based on small molecular identification, which can potentially be analyzed through metabolomics. However, multiple challenges in clinical metabolomics impact the entire workflow and data quality, thus the biological interpretation needs to be standardized for a reproducible outcome. Herein, we introduce the establishment of a comprehensive targeted metabolomics method for a panel of 220 clinically relevant metabolites using Liquid chromatography-tandem mass spectrometry (LC-MS/MS) standardized for clinical research. The sensitivity, reproducibility and molecular stability of each targeted metabolite (amino acids, organic acids, acylcarnitines, sugars, bile acids, neurotransmitters, polyamines, and hormones) were assessed under multiple experimental conditions. The metabolic tissue distribution was determined in various rat organs. Furthermore, the method was validated in dry blood spot (DBS) samples collected from patients known to have various inborn errors of metabolism (IEMs). Using this approach, our panel appears to be sensitive and robust as it demonstrated differential and unique metabolic profiles in various rat tissues. Also, as a prospective screening method, this panel of diverse metabolites has the ability to identify patients with a wide range of IEMs who otherwise may need multiple, time-consuming and expensive biochemical assays causing a delay in clinical management. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Metabolic Features of Multiple Myeloma.

    PubMed

    El Arfani, Chaima; De Veirman, Kim; Maes, Ken; De Bruyne, Elke; Menu, Eline

    2018-04-14

    Cancer is known for its cellular changes contributing to tumour growth and cell proliferation. As part of these changes, metabolic rearrangements are identified in several cancers, including multiple myeloma (MM), which is a condition whereby malignant plasma cells accumulate in the bone marrow (BM). These metabolic changes consist of generation, inhibition and accumulation of metabolites and metabolic shifts in MM cells. Changes in the BM micro-environment could be the reason for such adjustments. Enhancement of glycolysis and glutaminolysis is found in MM cells compared to healthy cells. Metabolites and enzymes can be upregulated or downregulated and play a crucial role in drug resistance. Therefore, this review will focus on changes in glucose and glutamine metabolism linked with the emergence of drug resistance. Moreover, metabolites do not only affect other metabolic components to benefit cancer development; they also interfere with transcription factors involved in proliferation and apoptotic regulation.

  14. Targeting cancer metabolism: dietary and pharmacological interventions

    PubMed Central

    Vernieri, Claudio; Casola, Stefano; Foiani, Marco; Pietrantonio, Filippo; de Braud, Filippo; Longo, Valter

    2016-01-01

    Most tumors display oncogene-driven reprogramming of several metabolic pathways, which are crucial to sustain their growth and proliferation. In recent years, both dietary and pharmacological approaches that target deregulated tumor metabolism are beginning to be considered for clinical applications. Dietary interventions exploit the ability of nutrient-restricted conditions to exert broad biological effects, protecting normal cells, organs and systems, while sensitizing a wide variety of cancer cells to cytotoxic therapies. On the other hand, drugs targeting enzymes or metabolites of crucial metabolic pathways can be highly specific and effective, but must be matched with a responsive tumor, which might rapidly adapt. In this Review, we illustrate how dietary and pharmacological therapies differ in their effect on tumor growth, proliferation and metabolism, and discuss the available preclinical and clinical evidence in favor or against each of them. We also indicate, when appropriate, how to optimize future investigations on metabolic therapies on the basis of tumor- and patient-related characteristics. PMID:27872127

  15. Efficient Mitochondrial Glutamine Targeting Prevails Over Glioblastoma Metabolic Plasticity.

    PubMed

    Oizel, Kristell; Chauvin, Cynthia; Oliver, Lisa; Gratas, Catherine; Geraldo, Fanny; Jarry, Ulrich; Scotet, Emmanuel; Rabe, Marion; Alves-Guerra, Marie-Clotilde; Teusan, Raluca; Gautier, Fabien; Loussouarn, Delphine; Compan, Vincent; Martinou, Jean-Claude; Vallette, François M; Pecqueur, Claire

    2017-10-15

    Purpose: Glioblastoma (GBM) is the most common and malignant form of primary human brain tumor in adults, with an average survival at diagnosis of 18 months. Metabolism is a new attractive therapeutic target in cancer; however, little is known about metabolic heterogeneity and plasticity within GBM tumors. We therefore aimed to investigate metabolic phenotyping of primary cultures in the context of molecular tumor heterogeneity to provide a proof of concept for personalized metabolic targeting of GBM. Experimental Design: We have analyzed extensively several primary GBM cultures using transcriptomics, metabolic phenotyping assays, and mitochondrial respirometry. Results: We found that metabolic phenotyping clearly identifies 2 clusters, GLN High and GLN Low , mainly based on metabolic plasticity and glutamine (GLN) utilization. Inhibition of glutamine metabolism slows the in vitro and in vivo growth of GLN High GBM cultures despite metabolic adaptation to nutrient availability, in particular by increasing pyruvate shuttling into mitochondria. Furthermore, phenotypic and molecular analyses show that highly proliferative GLN High cultures are CD133 neg and display a mesenchymal signature in contrast to CD133 pos GLN Low GBM cells. Conclusions: Our results show that metabolic phenotyping identified an essential metabolic pathway in a GBM cell subtype, and provide a proof of concept for theranostic metabolic targeting. Clin Cancer Res; 23(20); 6292-304. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. Targeting the latest hallmark of cancer: another attempt at 'magic bullet' drugs targeting cancers' metabolic phenotype.

    PubMed

    Cuperlovic-Culf, M; Culf, A S; Touaibia, M; Lefort, N

    2012-10-01

    The metabolism of tumors is remarkably different from the metabolism of corresponding normal cells and tissues. Metabolic alterations are initiated by oncogenes and are required for malignant transformation, allowing cancer cells to resist some cell death signals while producing energy and fulfilling their biosynthetic needs with limiting resources. The distinct metabolic phenotype of cancers provides an interesting avenue for treatment, potentially with minimal side effects. As many cancers show similar metabolic characteristics, drugs targeting the cancer metabolic phenotype are, perhaps optimistically, expected to be 'magic bullet' treatments. Over the last few years there have been a number of potential drugs developed to specifically target cancer metabolism. Several of these drugs are currently in clinical and preclinical trials. This review outlines examples of drugs developed for different targets of significance to cancer metabolism, with a focus on small molecule leads, chemical biology and clinical results for these drugs.

  17. Targeting iron metabolism in drug discovery and delivery

    PubMed Central

    Crielaard, Bart J.; Lammers, Twan; Rivella, Stefano

    2017-01-01

    Iron fulfils a central role in many essential biochemical processes in human physiology, which makes proper processing of iron crucial. Although iron metabolism is subject to relatively strict physiological control, in recent years numerous disorders, such as cancer and neurodegenerative diseases, have been linked to deregulated iron homeostasis. Because of its involvement in the pathogenesis of these diseases, iron metabolism constitutes a promising and largely unexploited therapeutic target for the development of new pharmacological treatments. Several iron metabolism-targeted therapies are already under clinical evaluation for haematological disorders, and these and newly developed therapeutic agents will likely have substantial benefit in the clinical management of iron metabolism-associated diseases, for which few efficacious treatments are often available. PMID:28154410

  18. Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer.

    PubMed

    Singh, Davinder; Arora, Rohit; Kaur, Pardeep; Singh, Balbir; Mannan, Rahul; Arora, Saroj

    2017-01-01

    Cancer, the main cause of human deaths in the modern world is a group of diseases. Anticancer drug discovery is a challenge for scientists because of involvement of multiple survival pathways of cancer cells. An extensive study on the regulation of each step of these pathways may help find a potential cancer target. Up-regulated HIF-1 expression and altered metabolic pathways are two classical characteristics of cancer. Oxygen-dependent (through pVHL, PHDs, calcium-mediated) and independent (through growth factor signaling pathway, mdm2 pathway, HSP90) regulation of HIF-1α leads to angiogenesis, metastasis, and cell survival. The two subunits of HIF-1 regulates in the same fashion through different mechanisms. HIF-1α translation upregulates via mammalian target of rapamycin and mitogen-activated protein kinase signaling pathways, whereas HIF-1β through calmodulin kinase. Further, the stabilized interactions of these two subunits are important for proper functioning. Also, metabolic pathways crucial for the formation of building blocks (pentose phosphate pathway) and energy generation (glycolysis, TCA cycle and catabolism of glutamine) are altered in cancer cells to protect them from oxidative stress and to meet the reduced oxygen and nutrient supply. Up-regulated anaerobic metabolism occurs through enhanced expression of hexokinase, phosphofructokinase, triosephosphate isomerase, glucose 6-phosphate dehydrogenase and down-regulation of aerobic metabolism via pyruvate dehydrogenase kinase and lactate dehydrogenase which compensate energy requirements along with high glucose intake. Controlled expression of these two pathways through their common intermediate may serve as potent cancer target in future.

  19. Targeted High Performance Liquid Chromatography Tandem Mass Spectrometry-based Metabolomics differentiates metabolic syndrome from obesity.

    PubMed

    Zhong, Fanyi; Xu, Mengyang; Bruno, Richard S; Ballard, Kevin D; Zhu, Jiangjiang

    2017-04-01

    Both obesity and the metabolic syndrome are risk factors for type 2 diabetes and cardiovascular disease. Identification of novel biomarkers are needed to distinguish metabolic syndrome from equally obese individuals in order to direct them to early interventions that reduce their risk of developing further health problems. We utilized mass spectrometry-based targeted metabolic profiling of 221 metabolites to evaluate the associations between metabolite profiles and established metabolic syndrome criteria (i.e. elevated waist circumference, hypertension, elevated fasting glucose, elevated triglycerides, and low high-density lipoprotein cholesterol) in plasma samples from obese men ( n = 29; BMI = 35.5 ± 5.2 kg/m 2 ) and women ( n = 40; 34.9 ± 6.7 kg/m 2 ), of which 26 met the criteria for metabolic syndrome (17 men and 9 women). Compared to obese individuals without metabolic syndrome, univariate statistical analysis and partial least squares discriminant analysis showed that a specific group of metabolites from multiple metabolic pathways (i.e. purine metabolism, valine, leucine and isoleucine degradation, and tryptophan metabolism) were associated with the presence of metabolic syndrome. Receiver operating characteristic curves generated based on the PLS-DA models showed excellent areas under the curve (0.85 and 0.96, for metabolites only model and enhanced metabolites model, respectively), high specificities (0.86 and 0.93), and good sensitivities (0.71 and 0.91). Moreover, principal component analysis revealed that metabolic profiles can be used to further differentiate metabolic syndrome with 3 versus 4-5 metabolic syndrome criteria. Collectively, these findings support targeted metabolomics approaches to distinguish metabolic syndrome from obesity alone, and to stratify metabolic syndrome status based on the number of criteria met. Impact statement We utilized mass spectrometry-based targeted metabolic profiling of 221 metabolites to

  20. Metabolic Imaging in Multiple Time Scales

    PubMed Central

    Ramanujan, V Krishnan

    2013-01-01

    We report here a novel combination of time-resolved imaging methods for probing mitochondrial metabolism multiple time scales at the level of single cells. By exploiting a mitochondrial membrane potential reporter fluorescence we demonstrate the single cell metabolic dynamics in time scales ranging from milliseconds to seconds to minutes in response to glucose metabolism and mitochondrial perturbations in real time. Our results show that in comparison with normal human mammary epithelial cells, the breast cancer cells display significant alterations in metabolic responses at all measured time scales by single cell kinetics, fluorescence recovery after photobleaching and by scaling analysis of time-series data obtained from mitochondrial fluorescence fluctuations. Furthermore scaling analysis of time-series data in living cells with distinct mitochondrial dysfunction also revealed significant metabolic differences thereby suggesting the broader applicability (e.g. in mitochondrial myopathies and other metabolic disorders) of the proposed strategies beyond the scope of cancer metabolism. We discuss the scope of these findings in the context of developing portable, real-time metabolic measurement systems that can find applications in preclinical and clinical diagnostics. PMID:24013043

  1. Multi-target drugs to address multiple checkpoints in complex inflammatory pathologies: evolutionary cues for novel "first-in-class" anti-inflammatory drug candidates: a reviewer's perspective.

    PubMed

    Mathew, Geetha; Unnikrishnan, M K

    2015-10-01

    Inflammation is a complex, metabolically expensive process involving multiple signaling pathways and regulatory mechanisms which have evolved over evolutionary timescale. Addressing multiple targets of inflammation holistically, in moderation, is probably a more evolutionarily viable strategy, as compared to current therapy which addresses drug targets in isolation. Polypharmacology, addressing multiple targets, is commonly used in complex ailments, suggesting the superior safety and efficacy profile of multi-target (MT) drugs. Phenotypic drug discovery, which generated successful MT and first-in-class drugs in the past, is now re-emerging. A multi-pronged approach, which modulates the evolutionarily conserved, robust and pervasive cellular mechanisms of tissue repair, with AMPK at the helm, regulating the complex metabolic/immune/redox pathways underlying inflammation, is perhaps a more viable strategy than addressing single targets in isolation. Molecules that modulate multiple molecular mechanisms of inflammation in moderation (modulating TH cells toward the anti-inflammatory phenotype, activating AMPK, stimulating Nrf2 and inhibiting NFκB) might serve as a model for a novel Darwinian "first-in-class" therapeutic category that holistically addresses immune, redox and metabolic processes associated with inflammatory repair. Such a multimodal biological activity is supported by the fact that several non-calorific pleiotropic natural products with anti-inflammatory action have been incorporated into diet (chiefly guided by the adaptive development of olfacto-gustatory preferences over evolutionary timescales) rendering such molecules, endowed with evolutionarily privileged molecular scaffolds, naturally oriented toward multiple targets.

  2. The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/-/ApoE-/- mice.

    PubMed

    Mercer, John R; Yu, Emma; Figg, Nichola; Cheng, Kian-Kai; Prime, Tracy A; Griffin, Julian L; Masoodi, Mojgan; Vidal-Puig, Antonio; Murphy, Michael P; Bennett, Martin R

    2012-03-01

    A number of recent studies suggest that mitochondrial oxidative damage may be associated with atherosclerosis and the metabolic syndrome. However, much of the evidence linking mitochondrial oxidative damage and excess reactive oxygen species (ROS) with these pathologies is circumstantial. Consequently the importance of mitochondrial ROS in the etiology of these disorders is unclear. Furthermore, the potential of decreasing mitochondrial ROS as a therapy for these indications is not known. We assessed the impact of decreasing mitochondrial oxidative damage and ROS with the mitochondria-targeted antioxidant MitoQ in models of atherosclerosis and the metabolic syndrome (fat-fed ApoE(-/-) mice and ATM(+/-)/ApoE(-/-) mice, which are also haploinsufficient for the protein kinase, ataxia telangiectasia mutated (ATM). MitoQ administered orally for 14weeks prevented the increased adiposity, hypercholesterolemia, and hypertriglyceridemia associated with the metabolic syndrome. MitoQ also corrected hyperglycemia and hepatic steatosis, induced changes in multiple metabolically relevant lipid species, and decreased DNA oxidative damage (8-oxo-G) in multiple organs. Although MitoQ did not affect overall atherosclerotic plaque area in fat-fed ATM(+/+)/ApoE(-/-) and ATM(+/-)/ApoE(-/-) mice, MitoQ reduced the macrophage content and cell proliferation within plaques and 8-oxo-G. MitoQ also significantly reduced mtDNA oxidative damage in the liver. Our data suggest that MitoQ inhibits the development of multiple features of the metabolic syndrome in these mice by affecting redox signaling pathways that depend on mitochondrial ROS such as hydrogen peroxide. These findings strengthen the growing view that elevated mitochondrial ROS contributes to the etiology of the metabolic syndrome and suggest a potential therapeutic role for mitochondria-targeted antioxidants. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Targeted estrogen delivery reverses the metabolic syndrome

    PubMed Central

    Finan, Brian; Yang, Bin; Ottaway, Nickki; Stemmer, Kerstin; Müller, Timo D; Yi, Chun-Xia; Habegger, Kirk; Schriever, Sonja C; García-Cáceres, Cristina; Kabra, Dhiraj G; Hembree, Jazzminn; Holland, Jenna; Raver, Christine; Seeley, Randy J; Hans, Wolfgang; Irmler, Martin; Beckers, Johannes; de Angelis, Martin Hrabě; Tiano, Joseph P; Mauvais-Jarvis, Franck; Perez-Tilve, Diego; Pfluger, Paul; Zhang, Lianshan; Gelfanov, Vasily; DiMarchi, Richard D; Tschöp, Matthias H

    2013-01-01

    We report the development of a new combinatorial approach that allows for peptide-mediated selective tissue targeting of nuclear hormone pharmacology while eliminating adverse effects in other tissues. Specifically, we report the development of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate that has superior sex-independent efficacy over either of the individual hormones alone to correct obesity, hyperglycemia and dyslipidemia in mice. The therapeutic benefits are driven by pleiotropic dual hormone action to improve energy, glucose and lipid metabolism, as shown by loss-of-function models and genetic action profiling. Notably, the peptide-based targeting strategy also prevents hallmark side effects of estrogen in male and female mice, such as reproductive endocrine toxicity and oncogenicity. Collectively, selective activation of estrogen receptors in GLP-1–targeted tissues produces unprecedented efficacy to enhance the metabolic benefits of GLP-1 agonism. This example of targeting the metabolic syndrome represents the discovery of a new class of therapeutics that enables synergistic co-agonism through peptide-based selective delivery of small molecules. Although our observations with the GLP-1–estrogen conjugate justify translational studies for diabetes and obesity, the multitude of other possible combinations of peptides and small molecules may offer equal promise for other diseases. PMID:23142820

  4. Optimization of brain metabolism using metabolic-targeted therapeutic hypothermia can reduce mortality from traumatic brain injury.

    PubMed

    Feng, Jin-Zhou; Wang, Wen-Yuan; Zeng, Jun; Zhou, Zhi-Yuan; Peng, Jin; Yang, Hao; Deng, Peng-Chi; Li, Shi-Jun; Lu, Charles D; Jiang, Hua

    2017-08-01

    Therapeutic hypothermia is widely used to treat traumatic brain injuries (TBIs). However, determining the best hypothermia therapy strategy remains a challenge. We hypothesized that reducing the metabolic rate, rather than reaching a fixed body temperature, would be an appropriate target because optimizing metabolic conditions especially the brain metabolic environment may enhance neurologic protection. A pilot single-blind randomized controlled trial was designed to test this hypothesis, and a nested metabolomics study was conducted to explore the mechanics thereof. Severe TBI patients (Glasgow Coma Scale score, 3-8) were randomly divided into the metabolic-targeted hypothermia treatment (MTHT) group, 50% to 60% rest metabolic ratio as the hypothermia therapy target, and the body temperature-targeted hypothermia treatment (BTHT) control group, hypothermia therapy target of 32°C to 35°C body temperature. Brain and circulatory metabolic pool blood samples were collected at baseline and on days 1, 3, and 7 during the hypothermia treatment, which were selected randomly from a subgroup of MTHT and BTHT groups. The primary outcome was mortality. Using H nuclear magnetic resonance technology, we tracked and located the disturbances of metabolic networks. Eighty-eight severe TBI patients were recruited and analyzed from December 2013 to December 2014, 44 each were assigned in the MTHT and BTHT groups (median age, 42 years; 69.32% men; mean Glasgow Coma Scale score, 6.17 ± 1.02). The mortality was significantly lower in the MTHT than the BTHT group (15.91% vs. 34.09%; p = 0.049). From these, eight cases of MTHT and six cases from BTHT group were enrolled for metabolomics analysis, which showed a significant difference between the brain and circulatory metabolic patterns in MTHT group on day 7 based on the model parameters and scores plots. Finally, metabolites representing potential neuroprotective monitoring parameters for hypothermia treatment were identified through

  5. Metabolic analyses elucidate non-trivial gene targets for amplifying dihydroartemisinic acid production in yeast

    PubMed Central

    Misra, Ashish; Conway, Matthew F.; Johnnie, Joseph; Qureshi, Tabish M.; Lige, Bao; Derrick, Anne M.; Agbo, Eddy C.; Sriram, Ganesh

    2013-01-01

    Synthetic biology enables metabolic engineering of industrial microbes to synthesize value-added molecules. In this, a major challenge is the efficient redirection of carbon to the desired metabolic pathways. Pinpointing strategies toward this goal requires an in-depth investigation of the metabolic landscape of the organism, particularly primary metabolism, to identify precursor and cofactor availability for the target compound. The potent antimalarial therapeutic artemisinin and its precursors are promising candidate molecules for production in microbial hosts. Recent advances have demonstrated the production of artemisinin precursors in engineered yeast strains as an alternative to extraction from plants. We report the application of in silico and in vivo metabolic pathway analyses to identify metabolic engineering targets to improve the yield of the direct artemisinin precursor dihydroartemisinic acid (DHA) in yeast. First, in silico extreme pathway (ExPa) analysis identified NADPH-malic enzyme and the oxidative pentose phosphate pathway (PPP) as mechanisms to meet NADPH demand for DHA synthesis. Next, we compared key DHA-synthesizing ExPas to the metabolic flux distributions obtained from in vivo 13C metabolic flux analysis of a DHA-synthesizing strain. This comparison revealed that knocking out ethanol synthesis and overexpressing glucose-6-phosphate dehydrogenase in the oxidative PPP (gene YNL241C) or the NADPH-malic enzyme ME2 (YKL029C) are vital steps toward overproducing DHA. Finally, we employed in silico flux balance analysis and minimization of metabolic adjustment on a yeast genome-scale model to identify gene knockouts for improving DHA yields. The best strategy involved knockout of an oxaloacetate transporter (YKL120W) and an aspartate aminotransferase (YKL106W), and was predicted to improve DHA yields by 70-fold. Collectively, our work elucidates multiple non-trivial metabolic engineering strategies for improving DHA yield in yeast. PMID:23898325

  6. Blueprint for antimicrobial hit discovery targeting metabolic networks.

    PubMed

    Shen, Y; Liu, J; Estiu, G; Isin, B; Ahn, Y-Y; Lee, D-S; Barabási, A-L; Kapatral, V; Wiest, O; Oltvai, Z N

    2010-01-19

    Advances in genome analysis, network biology, and computational chemistry have the potential to revolutionize drug discovery by combining system-level identification of drug targets with the atomistic modeling of small molecules capable of modulating their activity. To demonstrate the effectiveness of such a discovery pipeline, we deduced common antibiotic targets in Escherichia coli and Staphylococcus aureus by identifying shared tissue-specific or uniformly essential metabolic reactions in their metabolic networks. We then predicted through virtual screening dozens of potential inhibitors for several enzymes of these reactions and showed experimentally that a subset of these inhibited both enzyme activities in vitro and bacterial cell viability. This blueprint is applicable for any sequenced organism with high-quality metabolic reconstruction and suggests a general strategy for strain-specific antiinfective therapy.

  7. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    PubMed Central

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  8. Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics

    PubMed Central

    Costenoble, Roeland; Picotti, Paola; Reiter, Lukas; Stallmach, Robert; Heinemann, Matthias; Sauer, Uwe; Aebersold, Ruedi

    2011-01-01

    Decades of biochemical research have identified most of the enzymes that catalyze metabolic reactions in the yeast Saccharomyces cerevisiae. The adaptation of metabolism to changing nutritional conditions, in contrast, is much less well understood. As an important stepping stone toward such understanding, we exploit the power of proteomics assays based on selected reaction monitoring (SRM) mass spectrometry to quantify abundance changes of the 228 proteins that constitute the central carbon and amino-acid metabolic network in the yeast Saccharomyces cerevisiae, at five different metabolic steady states. Overall, 90% of the targeted proteins, including families of isoenzymes, were consistently detected and quantified in each sample, generating a proteomic data set that represents a nutritionally perturbed biological system at high reproducibility. The data set is near comprehensive because we detect 95–99% of all proteins that are required under a given condition. Interpreted through flux balance modeling, the data indicate that S. cerevisiae retains proteins not necessarily used in a particular environment. Further, the data suggest differential functionality for several metabolic isoenzymes. PMID:21283140

  9. Blueprint for antimicrobial hit discovery targeting metabolic networks

    PubMed Central

    Shen, Y.; Liu, J.; Estiu, G.; Isin, B.; Ahn, Y-Y.; Lee, D-S.; Barabási, A-L.; Kapatral, V.; Wiest, O.; Oltvai, Z. N.

    2010-01-01

    Advances in genome analysis, network biology, and computational chemistry have the potential to revolutionize drug discovery by combining system-level identification of drug targets with the atomistic modeling of small molecules capable of modulating their activity. To demonstrate the effectiveness of such a discovery pipeline, we deduced common antibiotic targets in Escherichia coli and Staphylococcus aureus by identifying shared tissue-specific or uniformly essential metabolic reactions in their metabolic networks. We then predicted through virtual screening dozens of potential inhibitors for several enzymes of these reactions and showed experimentally that a subset of these inhibited both enzyme activities in vitro and bacterial cell viability. This blueprint is applicable for any sequenced organism with high-quality metabolic reconstruction and suggests a general strategy for strain-specific antiinfective therapy. PMID:20080587

  10. New Targets and Inhibitors of Mycobacterial Sulfur Metabolism§

    PubMed Central

    Paritala, Hanumantharao; Carroll, Kate S.

    2015-01-01

    The identification of new antibacterial targets is urgently needed to address multidrug resistant and latent tuberculosis infection. Sulfur metabolic pathways are essential for survival and the expression of virulence in many pathogenic bacteria, including Mycobacterium tuberculosis. In addition, microbial sulfur metabolic pathways are largely absent in humans and therefore, represent unique targets for therapeutic intervention. In this review, we summarize our current understanding of the enzymes associated with the production of sulfated and reduced sulfur-containing metabolites in Mycobacteria. Small molecule inhibitors of these catalysts represent valuable chemical tools that can be used to investigate the role of sulfur metabolism throughout the Mycobacterial lifecycle and may also represent new leads for drug development. In this light, we also summarize recent progress made in the development of inhibitors of sulfur metabolism enzymes. PMID:23808874

  11. Metabolism as a Target for Modulation in Autoimmune Diseases.

    PubMed

    Huang, Nick; Perl, Andras

    2018-05-05

    Metabolic pathways are now well recognized as important regulators of immune differentiation and activation, and thus influence the development of autoimmune diseases such as systemic lupus erythematosus (SLE). The mechanistic target of rapamycin (mTOR) has emerged as a key sensor of metabolic stress and an important mediator of proinflammatory lineage specification. Metabolic pathways control the production of mitochondrial reactive oxygen species (ROS), which promote mTOR activation and also modulate the antigenicity of proteins, lipids, and DNA, thus placing ROS at the heart of metabolic disturbances during pathogenesis of SLE. Therefore, we review here the pathways that control ROS production and mTOR activation and identify targets for safe therapeutic modulation of the signaling network that underlies autoimmune diseases, focusing on SLE. Copyright © 2018. Published by Elsevier Ltd.

  12. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer.

    PubMed

    Li, Chunxia; Zhang, Guifeng; Zhao, Lei; Ma, Zhijun; Chen, Hongbing

    2016-01-20

    Nearly a century ago, Otto Warburg made the ground-breaking observation that cancer cells, unlike normal cells, prefer a seemingly inefficient mechanism of glucose metabolism: aerobic glycolysis, a phenomenon now referred to as the Warburg effect. The finding that rapidly proliferating cancer cells favors incomplete metabolism of glucose, producing large amounts of lactate as opposed to synthesizing ATP to sustain cell growth, has confounded scientists for years. Further investigation into the metabolic phenotype of cancer has expanded our understanding of this puzzling conundrum, and has opened new avenues for the development of anti-cancer therapies. Enhanced glycolytic flux is now known to allow for increased synthesis of intermediates for sustaining anabolic pathways critical for cancer cell growth. Alongside the increase in glycolysis, cancer cells transform their mitochondria into synthesis machines supported by augmented glutaminolysis, supplying lipid production, amino acid synthesis, and the pentose phosphate pathways. Inhibition of several of the key enzymes involved in these pathways has been demonstrated to effectively obstruct cancer cell growth and multiplication, sensitizing them to apoptosis. The modulation of various regulatory proteins involved in metabolic processes is central to cancerous reprogramming of metabolism. The finding that members of one of the major protein families involved in cell death regulation also aberrantly regulated in cancers, the Bcl-2 family of proteins, are also critical mediators of metabolic pathways, provides strong evidence for the importance of the metabolic shift to cancer cell survival. Targeting the anti-apoptotic members of the Bcl-2 family of proteins is proving to be a successful way to selectively target cancer cells and induce apoptosis. Further understanding of how cancer cells modify metabolic regulation to increase channeling of substrates into biosynthesis will allow for the discovery of novel drug

  13. Targeted and Untargeted Metabolic Profiling of Wild Grassland Plants identifies Antibiotic and Anthelmintic Compounds Targeting Pathogen Physiology, Metabolism and Reproduction.

    PubMed

    French, Katherine E; Harvey, Joe; McCullagh, James S O

    2018-01-26

    Plants traditionally used by farmers to manage livestock ailments could reduce reliance on synthetic antibiotics and anthelmintics but in many cases their chemical composition is unknown. As a case study, we analyzed the metabolite profiles of 17 plant species and 45 biomass samples from agricultural grasslands in England using targeted and untargeted metabolite profiling by liquid-chromatography mass spectrometry. We identified a range of plant secondary metabolites, including 32 compounds with known antimicrobial/anthelmintic properties which varied considerably across the different plant samples. These compounds have been shown previously to target multiple aspects of pathogen physiology and metabolism in vitro and in vivo, including inhibition of quorum sensing in bacteria and egg viability in nematodes. The most abundant bioactive compounds were benzoic acid, myricetin, p-coumaric acid, rhamnetin, and rosmarinic acid. Four wild plants (Filipendula ulmaria (L.) Maxim., Prunella vulgaris L., Centuarea nigra L., and Rhinanthus minor L.) and two forage legumes (Medicago sativa L., Trifolium hybridium L.) contained high levels of these compounds. Forage samples from native high-diversity grasslands had a greater abundance of medicinal compounds than samples from agriculturally improved grasslands. Incorporating plants with antibiotic/anthelmintic compounds into livestock feeds may reduce global drug-resistance and preserve the efficacy of last-resort drugs.

  14. Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0524 TITLE:Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis PRINCIPAL INVESTIGATOR: Jeffrey D...29 Sep 2015 4. TITLE AND SUBTITLE Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis 5a. CONTRACT NUMBER W81XWH-14-1-0524...MCT1 in injured oligodendroglia of multiple sclerosis patients contributes to axon neurodegeneration and that increasing MCT1 will be protective in the

  15. Therapeutic targeting of cancer cell metabolism

    PubMed Central

    Hamaker, Max; Sun, Peng; Le, Anne; Gao, Ping

    2012-01-01

    In 1927, Otto Warburg and coworkers reported the increased uptake of glucose and production of lactate by tumors in vivo as compared with normal tissues. This phenomenon, now known as the Warburg effect, was recapitulated in vitro with cancer tissue slices exhibiting excessive lactate production even with adequate oxygen. Warburg's in vivo studies of tumors further suggest that the dependency of tumors in vivo on glucose could be exploited for therapy, because reduction of arterial glucose by half resulted in a four-fold reduction in tumor fermentation. Recent work in cancer metabolism indicates that the Warburg effect or aerobic glycolysis contributes to redox balance and lipid synthesis, but glycolysis is insufficient to sustain a growing and dividing cancer cell. In this regard, glutamine, which contributes its carbons to the tricarboxylic acid (TCA) cycle, has been re-discovered as an essential bioenergetic and anabolic substrate for many cancer cell types. Could alterations in cancer metabolism be exploited for therapy? Here, we address this question by reviewing current concepts of normal metabolism and altered metabolism in cancer cells with specific emphasis on molecular targets involved directly in glycolysis or glutamine metabolism. PMID:21301795

  16. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.

    PubMed

    Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois

    2013-01-01

    The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic.

  17. Predicting selective drug targets in cancer through metabolic networks

    PubMed Central

    Folger, Ori; Jerby, Livnat; Frezza, Christian; Gottlieb, Eyal; Ruppin, Eytan; Shlomi, Tomer

    2011-01-01

    The interest in studying metabolic alterations in cancer and their potential role as novel targets for therapy has been rejuvenated in recent years. Here, we report the development of the first genome-scale network model of cancer metabolism, validated by correctly identifying genes essential for cellular proliferation in cancer cell lines. The model predicts 52 cytostatic drug targets, of which 40% are targeted by known, approved or experimental anticancer drugs, and the rest are new. It further predicts combinations of synthetic lethal drug targets, whose synergy is validated using available drug efficacy and gene expression measurements across the NCI-60 cancer cell line collection. Finally, potential selective treatments for specific cancers that depend on cancer type-specific downregulation of gene expression and somatic mutations are compiled. PMID:21694718

  18. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  19. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  20. Hybrid foraging search: Searching for multiple instances of multiple types of target.

    PubMed

    Wolfe, Jeremy M; Aizenman, Avigael M; Boettcher, Sage E P; Cain, Matthew S

    2016-02-01

    This paper introduces the "hybrid foraging" paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8-64 target objects in memory. They viewed displays of 60-105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25-33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Hybrid foraging search: Searching for multiple instances of multiple types of target

    PubMed Central

    Wolfe, Jeremy M.; Aizenman, Avigael M.; Boettcher, Sage E.P.; Cain, Matthew S.

    2016-01-01

    This paper introduces the “hybrid foraging” paradigm. In typical visual search tasks, observers search for one instance of one target among distractors. In hybrid search, observers search through visual displays for one instance of any of several types of target held in memory. In foraging search, observers collect multiple instances of a single target type from visual displays. Combining these paradigms, in hybrid foraging tasks observers search visual displays for multiple instances of any of several types of target (as might be the case in searching the kitchen for dinner ingredients or an X-ray for different pathologies). In the present experiment, observers held 8–64 targets objects in memory. They viewed displays of 60–105 randomly moving photographs of objects and used the computer mouse to collect multiple targets before choosing to move to the next display. Rather than selecting at random among available targets, observers tended to collect items in runs of one target type. Reaction time (RT) data indicate searching again for the same item is more efficient than searching for any other targets, held in memory. Observers were trying to maximize collection rate. As a result, and consistent with optimal foraging theory, they tended to leave 25–33% of targets uncollected when moving to the next screen/patch. The pattern of RTs shows that while observers were collecting a target item, they had already begun searching memory and the visual display for additional targets, making the hybrid foraging task a useful way to investigate the interaction of visual and memory search. PMID:26731644

  2. [Non-linear canonical correlation analysis between anthropometric indicators and multiple metabolic abnormalities].

    PubMed

    Fu, Xiaoli; Liu, Li; Ping, Zhiguang; Li, Linlin

    2013-09-01

    To define the general correlation between anthropometric indicators and multiple metabolic abnormalities, and to put forward some particular suggestions for the prevention of multiple metabolic abnormalities. A random cluster sampling was carried out in one county of Henan Province. Questionnaire, physical examination and biochemical tests were admitted to the adult inhabitants. Non-linear canonical correlation analysis (NLCCA) was applied with OVERALS of SPSS 13.0. The coefficients of canonical correlation and multiple correlation were calculated. The plot of centroids labeled by variables showed the correlation among various indicators. In total, 2,914 objects were investigated. It included 1,134 (38.9%) males and 1,780 (61.1%) females (60.0%). The average age was (50.58 +/- 13.70) years old. The fitting result of NLCCA were as follows: the loss of 0.577 accounting for 28.8% of the total variation was relatively small, and indicated that the two sets of variables of this study, namely sets of biochemical indicators (including serum total cholesterol, total triglyceride, high-density lipoprotein cholesterol, low density lipoprotein cholesterol and fasting plasma glucose) and sets of others (including gender, BMI and waist circumference) were closely related and often changed synchronously. Multivariate correlation coefficient showed that internal indicators of the above two sets were closely related respectively and often showed the multiple anomalies of the same set. The diagram of the center of gravity of the association of various indicators showed that the symptoms of metabolic abnormalities increased with age. Women were more liable to have metabolic abnormalities. Overweight and obese people often suffer multiple metabolic disorders. Waist circumference was positively correlated with metabolic abnormalities. (1) Biochemical indicators and anthropometric often change in combination. (2) Much attention should be paid to older people especially middle-aged or

  3. Sensor Compromise Detection in Multiple-Target Tracking Systems

    PubMed Central

    Doucette, Emily A.; Curtis, Jess W.

    2018-01-01

    Tracking multiple targets using a single estimator is a problem that is commonly approached within a trusted framework. There are many weaknesses that an adversary can exploit if it gains control over the sensors. Because the number of targets that the estimator has to track is not known with anticipation, an adversary could cause a loss of information or a degradation in the tracking precision. Other concerns include the introduction of false targets, which would result in a waste of computational and material resources, depending on the application. In this work, we study the problem of detecting compromised or faulty sensors in a multiple-target tracker, starting with the single-sensor case and then considering the multiple-sensor scenario. We propose an algorithm to detect a variety of attacks in the multiple-sensor case, via the application of finite set statistics (FISST), one-class classifiers and hypothesis testing using nonparametric techniques. PMID:29466314

  4. MESSI: metabolic engineering target selection and best strain identification tool.

    PubMed

    Kang, Kang; Li, Jun; Lim, Boon Leong; Panagiotou, Gianni

    2015-01-01

    Metabolic engineering and synthetic biology are synergistically related fields for manipulating target pathways and designing microorganisms that can act as chemical factories. Saccharomyces cerevisiae's ideal bioprocessing traits make yeast a very attractive chemical factory for production of fuels, pharmaceuticals, nutraceuticals as well as a wide range of chemicals. However, future attempts of engineering S. cerevisiae's metabolism using synthetic biology need to move towards more integrative models that incorporate the high connectivity of metabolic pathways and regulatory processes and the interactions in genetic elements across those pathways and processes. To contribute in this direction, we have developed Metabolic Engineering target Selection and best Strain Identification tool (MESSI), a web server for predicting efficient chassis and regulatory components for yeast bio-based production. The server provides an integrative platform for users to analyse ready-to-use public high-throughput metabolomic data, which are transformed to metabolic pathway activities for identifying the most efficient S. cerevisiae strain for the production of a compound of interest. As input MESSI accepts metabolite KEGG IDs or pathway names. MESSI outputs a ranked list of S. cerevisiae strains based on aggregation algorithms. Furthermore, through a genome-wide association study of the metabolic pathway activities with the strains' natural variation, MESSI prioritizes genes and small variants as potential regulatory points and promising metabolic engineering targets. Users can choose various parameters in the whole process such as (i) weight and expectation of each metabolic pathway activity in the final ranking of the strains, (ii) Weighted AddScore Fuse or Weighted Borda Fuse aggregation algorithm, (iii) type of variants to be included, (iv) variant sets in different biological levels.Database URL: http://sbb.hku.hk/MESSI/. © The Author(s) 2015. Published by Oxford University

  5. A mathematical analysis of multiple-target SELEX.

    PubMed

    Seo, Yeon-Jung; Chen, Shiliang; Nilsen-Hamilton, Marit; Levine, Howard A

    2010-10-01

    SELEX (Systematic Evolution of Ligands by Exponential Enrichment) is a procedure by which a mixture of nucleic acids can be fractionated with the goal of identifying those with specific biochemical activities. One combines the mixture with a specific target molecule and then separates the target-NA complex from the resulting reactions. The target-NA complex is separated from the unbound NA by mechanical means (such as by filtration), the NA is eluted from the complex, amplified by PCR (polymerase chain reaction), and the process repeated. After several rounds, one should be left with the nucleic acids that best bind to the target. The problem was first formulated mathematically in Irvine et al. (J. Mol. Biol. 222:739-761, 1991). In Levine and Nilsen-Hamilton (Comput. Biol. Chem. 31:11-25, 2007), a mathematical analysis of the process was given. In Vant-Hull et al. (J. Mol. Biol. 278:579-597, 1998), multiple target SELEX was considered. It was assumed that each target has a single nucleic acid binding site that permits occupation by no more than one nucleic acid. Here, we revisit Vant-Hull et al. (J. Mol. Biol. 278:579-597, 1998) using the same assumptions. The iteration scheme is shown to be convergent and a simplified algorithm is given. Our interest here is in the behavior of the multiple target SELEX process as a discrete "time" dynamical system. Our goal is to characterize the limiting states and their dependence on the initial distribution of nucleic acid and target fraction components. (In multiple target SELEX, we vary the target component fractions, but not their concentrations, as fixed and the initial pool of nucleic acids as a variable starting condition). Given N nucleic acids and a target consisting of M subtarget component species, there is an M × N matrix of affinities, the (i,j) entry corresponding to the affinity of the jth nucleic acid for the ith subtarget. We give a structure condition on this matrix that is equivalent to the following

  6. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma

    PubMed Central

    Wachsmann, Jason; Peng, Fangyu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872

  7. Widespread occurrence of both metabolic and target-site herbicide resistance mechanisms in Lolium rigidum populations.

    PubMed

    Han, Heping; Yu, Qin; Owen, Mechelle J; Cawthray, Gregory R; Powles, Stephen B

    2016-02-01

    Lolium rigidum populations in Australia and globally have demonstrated rapid and widespread evolution of resistance to acetyl coenzyme A carboxylase (ACCase)-inhibiting and acetolactate synthase (ALS)-inhibiting herbicides. Thirty-three resistant L. rigidum populations, randomly collected from crop fields in a most recent resistance survey, were analysed for non-target-site diclofop metabolism and all known target-site ACCase gene resistance-endowing mutations. The HPLC profile of [(14) C]-diclofop-methyl in vivo metabolism revealed that 79% of these resistant L. rigidum populations showed enhanced capacity for diclofop acid metabolism (metabolic resistance). ACCase gene sequencing identified that 91% of the populations contain plants with ACCase resistance mutation(s). Importantly, 70% of the populations exhibit both non-target-site metabolic resistance and target-site ACCase mutations. This work demonstrates that metabolic herbicide resistance is commonly occurring in L. rigidum, and coevolution of both metabolic resistance and target-site resistance is an evolutionary reality. Metabolic herbicide resistance can potentially endow resistance to many herbicides and poses a threat to herbicide sustainability and thus crop production, calling for major research and management efforts. © 2015 Society of Chemical Industry.

  8. Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer

    PubMed Central

    Elgogary, Amira; Xu, Qingguo; Poore, Brad; Alt, Jesse; Zimmermann, Sarah C.; Zhao, Liang; Fu, Jie; Chen, Baiwei; Xia, Shiyu; Liu, Yanfei; Neisser, Marc; Nguyen, Christopher; Lee, Ramon; Park, Joshua K.; Reyes, Juvenal; Hartung, Thomas; Rojas, Camilo; Rais, Rana; Tsukamoto, Takashi; Semenza, Gregg L.; Hanes, Justin; Slusher, Barbara S.; Le, Anne

    2016-01-01

    Targeting glutamine metabolism via pharmacological inhibition of glutaminase has been translated into clinical trials as a novel cancer therapy, but available drugs lack optimal safety and efficacy. In this study, we used a proprietary emulsification process to encapsulate bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES), a selective but relatively insoluble glutaminase inhibitor, in nanoparticles. BPTES nanoparticles demonstrated improved pharmacokinetics and efficacy compared with unencapsulated BPTES. In addition, BPTES nanoparticles had no effect on the plasma levels of liver enzymes in contrast to CB-839, a glutaminase inhibitor that is currently in clinical trials. In a mouse model using orthotopic transplantation of patient-derived pancreatic tumor tissue, BPTES nanoparticle monotherapy led to modest antitumor effects. Using the HypoxCR reporter in vivo, we found that glutaminase inhibition reduced tumor growth by specifically targeting proliferating cancer cells but did not affect hypoxic, noncycling cells. Metabolomics analyses revealed that surviving tumor cells following glutaminase inhibition were reliant on glycolysis and glycogen synthesis. Based on these findings, metformin was selected for combination therapy with BPTES nanoparticles, which resulted in significantly greater pancreatic tumor reduction than either treatment alone. Thus, targeting of multiple metabolic pathways, including effective inhibition of glutaminase by nanoparticle drug delivery, holds promise as a novel therapy for pancreatic cancer. PMID:27559084

  9. Targeting Unique Metabolic Properties of Breast Tumor Initiating Cells

    PubMed Central

    Feng, Weiguo; Gentles, Andrew; Nair, Ramesh V.; Huang, Min; Lin, Yuan; Lee, Cleo Y.; Cai, Shang; Scheeren, Ferenc A.; Kuo, Angera H.; Diehn, Maximilian

    2014-01-01

    Normal stem cells from a variety of tissues display unique metabolic properties compared to their more differentiated progeny. However, relatively little is known about heterogeneity of metabolic properties cancer stem cells, also called tumor initiating cells (TICs). In this study we show that, analogous to some normal stem cells, breast TICs have distinct metabolic properties compared to non-tumorigenic cancer cells (NTCs). Transcriptome profiling using RNA-Seq revealed TICs under-express genes involved in mitochondrial biology and mitochondrial oxidative phosphorylation and metabolic analyses revealed TICs preferentially perform glycolysis over oxidative phosphorylation compared to NTCs. Mechanistic analyses demonstrated that decreased expression and activity of pyruvate dehydrogenase (Pdh), a key regulator of oxidative phosphorylation, play a critical role in promoting the pro-glycolytic phenotype of TICs. Metabolic reprogramming via forced activation of Pdh preferentially eliminates TICs both in vitro and in vivo. Our findings reveal unique metabolic properties of TICs and demonstrate that metabolic reprogramming represents a promising strategy for targeting these cells. PMID:24497069

  10. Integrating Transcriptomics with Metabolic Modeling Predicts Biomarkers and Drug Targets for Alzheimer's Disease

    PubMed Central

    Stempler, Shiri; Yizhak, Keren; Ruppin, Eytan

    2014-01-01

    Accumulating evidence links numerous abnormalities in cerebral metabolism with the progression of Alzheimer's disease (AD), beginning in its early stages. Here, we integrate transcriptomic data from AD patients with a genome-scale computational human metabolic model to characterize the altered metabolism in AD, and employ state-of-the-art metabolic modelling methods to predict metabolic biomarkers and drug targets in AD. The metabolic descriptions derived are first tested and validated on a large scale versus existing AD proteomics and metabolomics data. Our analysis shows a significant decrease in the activity of several key metabolic pathways, including the carnitine shuttle, folate metabolism and mitochondrial transport. We predict several metabolic biomarkers of AD progression in the blood and the CSF, including succinate and prostaglandin D2. Vitamin D and steroid metabolism pathways are enriched with predicted drug targets that could mitigate the metabolic alterations observed. Taken together, this study provides the first network wide view of the metabolic alterations associated with AD progression. Most importantly, it offers a cohort of new metabolic leads for the diagnosis of AD and its treatment. PMID:25127241

  11. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy

    PubMed Central

    Shuvalov, Oleg; Petukhov, Alexey; Daks, Alexandra; Fedorova, Olga; Vasileva, Elena; Barlev, Nickolai A.

    2017-01-01

    Cancer-related metabolism has recently emerged as one of the “hallmarks of cancer”. It has several important features, including altered metabolism of glucose and glutamine. Importantly, altered cancer metabolism connects different biochemical pathways into the one fine-tuned metabolic network, which stimulates high proliferation rates and plasticity to malignant cells. Among the keystones of cancer metabolism are one-carbon metabolism and nucleotide biosynthesis, which provide building blocks to anabolic reactions. Accordingly, the importance of these metabolic pathways for anticancer therapy has well been documented by more than fifty years of clinical use of specific metabolic inhibitors – methotrexate and nucleotides analogs. In this review we discuss one-carbon metabolism and nucleotide biosynthesis as common and specific features of many, if not all, tumors. The key enzymes involved in these pathways also represent promising anti-cancer therapeutic targets. We review different aspects of these metabolic pathways including their biochemistry, compartmentalization and expression of the key enzymes and their regulation at different levels. We also discuss the effects of known inhibitors of these pathways as well as the recent data on other enzymes of the same pathways as perspective pharmacological targets. PMID:28177894

  12. Characterisation of tissue-type metabolic content in secondary progressive multiple sclerosis: a magnetic resonance spectroscopic imaging study.

    PubMed

    Marshall, Ian; Thrippleton, Michael J; Bastin, Mark E; Mollison, Daisy; Dickie, David A; Chappell, Francesca M; Semple, Scott I K; Cooper, Annette; Pavitt, Sue; Giovannoni, Gavin; Wheeler-Kingshott, Claudia A M Gandini; Solanky, Bhavana S; Weir, Christopher J; Stallard, Nigel; Hawkins, Clive; Sharrack, Basil; Chataway, Jeremy; Connick, Peter; Chandran, Siddharthan

    2018-05-30

    Proton magnetic resonance spectroscopy yields metabolic information and has proved to be a useful addition to structural imaging in neurological diseases. We applied short-echo time Spectroscopic Imaging in a cohort of 42 patients with secondary progressive multiple sclerosis (SPMS). Linear modelling with respect to brain tissue type yielded metabolite levels that were significantly different in white matter lesions compared with normal-appearing white matter, suggestive of higher myelin turnover (higher choline), higher metabolic rate (higher creatine) and increased glial activity (higher myo-inositol) within the lesions. These findings suggest that the lesions have ongoing cellular activity that is not consistent with the usual assumption of 'chronic' lesions in SPMS, and may represent a target for repair therapies.

  13. Memory for found targets interferes with subsequent performance in multiple-target visual search.

    PubMed

    Cain, Matthew S; Mitroff, Stephen R

    2013-10-01

    Multiple-target visual searches--when more than 1 target can appear in a given search display--are commonplace in radiology, airport security screening, and the military. Whereas 1 target is often found accurately, additional targets are more likely to be missed in multiple-target searches. To better understand this decrement in 2nd-target detection, here we examined 2 potential forms of interference that can arise from finding a 1st target: interference from the perceptual salience of the 1st target (a now highly relevant distractor in a known location) and interference from a newly created memory representation for the 1st target. Here, we found that removing found targets from the display or making them salient and easily segregated color singletons improved subsequent search accuracy. However, replacing found targets with random distractor items did not improve subsequent search accuracy. Removing and highlighting found targets likely reduced both a target's visual salience and its memory load, whereas replacing a target removed its visual salience but not its representation in memory. Collectively, the current experiments suggest that the working memory load of a found target has a larger effect on subsequent search accuracy than does its perceptual salience. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  14. Targeting SREBP-1-driven lipid metabolism to treat cancer

    PubMed Central

    Guo, Deliang; Bell, Erica Hlavin; Mischel, Paul; Chakravarti, Arnab

    2014-01-01

    Metabolic reprogramming is a hallmark of cancer. Oncogenic growth signaling regulates glucose, glutamine and lipid metabolism to meet the bioenergetics and biosynthetic demands of rapidly proliferating tumor cells. Emerging evidence indicates that sterol regulatory element-binding protein 1 (SREBP-1), a master transcription factor that controls lipid metabolism, is a critical link between oncogenic signaling and tumor metabolism. We recently demonstrated that SREBP-1 is required for the survival of mutant EGFR-containing glioblastoma, and that this pro-survival metabolic pathway is mediated, in part, by SREBP-1-dependent upregulation of the fatty acid synthesis and low density lipoprotein (LDL) receptor (LDLR). These results have identified EGFR/PI3K/Akt/SREBP-1 signaling pathway that promotes growth and survival in glioblastoma, and potentially other cancer types. Here, we summarize recent insights in the understanding of cancer lipid metabolism, and discuss the evidence linking SREBP-1 with PI3K/Akt signaling-controlled glycolysis and with Myc-regulated glutaminolysis to lipid metabolism. We also discuss the development of potential drugs targeting the SREBP-1-driven lipid metabolism as anti-cancer agents. PMID:23859617

  15. SuperTarget goes quantitative: update on drug–target interactions

    PubMed Central

    Hecker, Nikolai; Ahmed, Jessica; von Eichborn, Joachim; Dunkel, Mathias; Macha, Karel; Eckert, Andreas; Gilson, Michael K.; Bourne, Philip E.; Preissner, Robert

    2012-01-01

    There are at least two good reasons for the on-going interest in drug–target interactions: first, drug-effects can only be fully understood by considering a complex network of interactions to multiple targets (so-called off-target effects) including metabolic and signaling pathways; second, it is crucial to consider drug-target-pathway relations for the identification of novel targets for drug development. To address this on-going need, we have developed a web-based data warehouse named SuperTarget, which integrates drug-related information associated with medical indications, adverse drug effects, drug metabolism, pathways and Gene Ontology (GO) terms for target proteins. At present, the updated database contains >6000 target proteins, which are annotated with >330 000 relations to 196 000 compounds (including approved drugs); the vast majority of interactions include binding affinities and pointers to the respective literature sources. The user interface provides tools for drug screening and target similarity inclusion. A query interface enables the user to pose complex queries, for example, to find drugs that target a certain pathway, interacting drugs that are metabolized by the same cytochrome P450 or drugs that target proteins within a certain affinity range. SuperTarget is available at http://bioinformatics.charite.de/supertarget. PMID:22067455

  16. Metabolic Dysfunction and Peroxisome Proliferator-Activated Receptors (PPAR) in Multiple Sclerosis.

    PubMed

    Ferret-Sena, Véronique; Capela, Carlos; Sena, Armando

    2018-06-01

    Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS) probably caused, in most cases, by the interaction of genetic and environmental factors. This review first summarizes some clinical, epidemiological and pathological characteristics of MS. Then, the involvement of biochemical pathways is discussed in the development and repair of the CNS lesions and the immune dysfunction in the disease. Finally, the potential roles of peroxisome proliferator-activated receptors (PPAR) in MS are discussed. It is suggested that metabolic mechanisms modulated by PPAR provide a window to integrate the systemic and neurological events underlying the pathogenesis of the disease. In conclusion, the reviewed data highlight molecular avenues of understanding MS that may open new targets for improved therapies and preventive strategies for the disease.

  17. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    PubMed

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  18. Metabolic control of female puberty: potential therapeutic targets.

    PubMed

    Castellano, Juan M; Tena-Sempere, Manuel

    2016-10-01

    The onset of puberty in females is highly sensitive to the nutritional status and the amount of energy reserves of the organism. This metabolic information is sensed and transmitted to hypothalamic GnRH neurons, considered to be ultimately responsible for triggering puberty through the coordinated action of different peripheral hormones, central neurotransmitters, and molecular mediators. This article will review and discuss (i) the relevant actions of the adipose hormone leptin, as a stimulatory/permissive signal, and the gut hormone ghrelin, as an inhibitory factor, in the metabolic control of female puberty; (ii) the crucial role of the hypothalamic kisspeptin neurons, recently emerged as essential gatekeepers of puberty, in transmitting this metabolic information to GnRH neurons; and (iii) the potential involvement of key cellular energy sensors, such as mTOR, as molecular mediators in this setting. The thorough characterization of the physiological roles of the above elements in the metabolic control of female puberty, along with the discovery of novel factors, pathways, and mechanisms involved, will promote our understanding of the complex networks connecting metabolism and puberty and, ultimately, will aid in the design of target-specific treatments for female pubertal disorders linked to conditions of metabolic stress.

  19. Targeting metabolic pathways for head and neck cancers therapeutics.

    PubMed

    Yamamoto, Masashi; Inohara, Hidenori; Nakagawa, Takashi

    2017-09-01

    Cancer cells have distinctive energy metabolism pathways that support their rapid cell division. The preference for anaerobic glycolysis under the normal oxygen condition is known as the Warburg effect and has been observed in head and neck cancers. These metabolic changes are controlled by cancer-related transcription factors, such as tumor suppressor gene and hypoxia inducible factor 1α. In addition, various metabolic enzymes also actively regulate cancer-specific metabolism including the switch between aerobic and anaerobic glycolysis. For a long time, these metabolic changes in cancer cells have been considered a consequence of transformation required to maintain the high rate of tumor cell replication. However, recent studies indicate that alteration of metabolism is sufficient to initiate tumor transformation. Indeed, oncogenic mutations in the metabolic enzymes, isocitrate dehydrogenase and succinate dehydrogenase, have been increasingly found in various cancers, including head and neck cancers. In the present review, we introduce recent findings regarding the cancer metabolism, including the molecular mechanisms of how they affect cancer pathogenesis and maintenance. We also discuss the current and future perspectives on therapeutics that target metabolic pathways, with an emphasis on head and neck cancer.

  20. Identification of the Consistently Altered Metabolic Targets in Human Hepatocellular Carcinoma.

    PubMed

    Nwosu, Zeribe Chike; Megger, Dominik Andre; Hammad, Seddik; Sitek, Barbara; Roessler, Stephanie; Ebert, Matthias Philip; Meyer, Christoph; Dooley, Steven

    2017-09-01

    Cancer cells rely on metabolic alterations to enhance proliferation and survival. Metabolic gene alterations that repeatedly occur in liver cancer are largely unknown. We aimed to identify metabolic genes that are consistently deregulated, and are of potential clinical significance in human hepatocellular carcinoma (HCC). We studied the expression of 2,761 metabolic genes in 8 microarray datasets comprising 521 human HCC tissues. Genes exclusively up-regulated or down-regulated in 6 or more datasets were defined as consistently deregulated. The consistent genes that correlated with tumor progression markers ( ECM2 and MMP9) (Pearson correlation P < .05) were used for Kaplan-Meier overall survival analysis in a patient cohort. We further compared proteomic expression of metabolic genes in 19 tumors vs adjacent normal liver tissues. We identified 634 consistent metabolic genes, ∼60% of which are not yet described in HCC. The down-regulated genes (n = 350) are mostly involved in physiologic hepatocyte metabolic functions (eg, xenobiotic, fatty acid, and amino acid metabolism). In contrast, among consistently up-regulated metabolic genes (n = 284) are those involved in glycolysis, pentose phosphate pathway, nucleotide biosynthesis, tricarboxylic acid cycle, oxidative phosphorylation, proton transport, membrane lipid, and glycan metabolism. Several metabolic genes (n = 434) correlated with progression markers, and of these, 201 predicted overall survival outcome in the patient cohort analyzed. Over 90% of the metabolic targets significantly altered at the protein level were similarly up- or down-regulated as in genomic profile. We provide the first exposition of the consistently altered metabolic genes in HCC and show that these genes are potentially relevant targets for onward studies in preclinical and clinical contexts.

  1. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.

    PubMed

    Gold, Nicholas D; Gowen, Christopher M; Lussier, Francois-Xavier; Cautha, Sarat C; Mahadevan, Radhakrishnan; Martin, Vincent J J

    2015-05-28

    L-tyrosine is a common precursor for a wide range of valuable secondary metabolites, including benzylisoquinoline alkaloids (BIAs) and many polyketides. An industrially tractable yeast strain optimized for production of L-tyrosine could serve as a platform for the development of BIA and polyketide cell factories. This study applied a targeted metabolomics approach to evaluate metabolic engineering strategies to increase the availability of intracellular L-tyrosine in the yeast Saccharomyces cerevisiae CEN.PK. Our engineering strategies combined localized pathway engineering with global engineering of central metabolism, facilitated by genome-scale steady-state modelling. Addition of a tyrosine feedback resistant version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase Aro4 from S. cerevisiae was combined with overexpression of either a tyrosine feedback resistant yeast chorismate mutase Aro7, the native pentafunctional arom protein Aro1, native prephenate dehydrogenase Tyr1 or cyclohexadienyl dehydrogenase TyrC from Zymomonas mobilis. Loss of aromatic carbon was limited by eliminating phenylpyruvate decarboxylase Aro10. The TAL gene from Rhodobacter sphaeroides was used to produce coumarate as a simple test case of a heterologous by-product of tyrosine. Additionally, multiple strategies for engineering global metabolism to promote tyrosine production were evaluated using metabolic modelling. The T21E mutant of pyruvate kinase Cdc19 was hypothesized to slow the conversion of phosphoenolpyruvate to pyruvate and accumulate the former as precursor to the shikimate pathway. The ZWF1 gene coding for glucose-6-phosphate dehydrogenase was deleted to create an NADPH deficiency designed to force the cell to couple its growth to tyrosine production via overexpressed NADP(+)-dependent prephenate dehydrogenase Tyr1. Our engineered Zwf1(-) strain expressing TYRC ARO4(FBR) and grown in the presence of methionine achieved an intracellular L-tyrosine accumulation up to 520

  2. Comprehensive metabolic modeling of multiple 13C-isotopomer data sets to study metabolism in perfused working hearts

    PubMed Central

    Kelleher, Joanne K.; Rouf, Rosanne; Muoio, Deborah M.; Antoniewicz, Maciek R.

    2016-01-01

    In many forms of cardiomyopathy, alterations in energy substrate metabolism play a key role in disease pathogenesis. Stable isotope tracing in rodent heart perfusion systems can be used to determine cardiac metabolic fluxes, namely those relative fluxes that contribute to pyruvate, the acetyl-CoA pool, and pyruvate anaplerosis, which are critical to cardiac homeostasis. Methods have previously been developed to interrogate these relative fluxes using isotopomer enrichments of measured metabolites and algebraic equations to determine a predefined metabolic flux model. However, this approach is exquisitely sensitive to measurement error, thus precluding accurate relative flux parameter determination. In this study, we applied a novel mathematical approach to determine relative cardiac metabolic fluxes using 13C-metabolic flux analysis (13C-MFA) aided by multiple tracer experiments and integrated data analysis. Using 13C-MFA, we validated a metabolic network model to explain myocardial energy substrate metabolism. Four different 13C-labeled substrates were queried (i.e., glucose, lactate, pyruvate, and oleate) based on a previously published study. We integrated the analysis of the complete set of isotopomer data gathered from these mouse heart perfusion experiments into a single comprehensive network model that delineates substrate contributions to both pyruvate and acetyl-CoA pools at a greater resolution than that offered by traditional methods using algebraic equations. To our knowledge, this is the first rigorous application of 13C-MFA to interrogate data from multiple tracer experiments in the perfused heart. We anticipate that this approach can be used widely to study energy substrate metabolism in this and other similar biological systems. PMID:27496880

  3. Comprehensive metabolic modeling of multiple 13C-isotopomer data sets to study metabolism in perfused working hearts.

    PubMed

    Crown, Scott B; Kelleher, Joanne K; Rouf, Rosanne; Muoio, Deborah M; Antoniewicz, Maciek R

    2016-10-01

    In many forms of cardiomyopathy, alterations in energy substrate metabolism play a key role in disease pathogenesis. Stable isotope tracing in rodent heart perfusion systems can be used to determine cardiac metabolic fluxes, namely those relative fluxes that contribute to pyruvate, the acetyl-CoA pool, and pyruvate anaplerosis, which are critical to cardiac homeostasis. Methods have previously been developed to interrogate these relative fluxes using isotopomer enrichments of measured metabolites and algebraic equations to determine a predefined metabolic flux model. However, this approach is exquisitely sensitive to measurement error, thus precluding accurate relative flux parameter determination. In this study, we applied a novel mathematical approach to determine relative cardiac metabolic fluxes using 13 C-metabolic flux analysis ( 13 C-MFA) aided by multiple tracer experiments and integrated data analysis. Using 13 C-MFA, we validated a metabolic network model to explain myocardial energy substrate metabolism. Four different 13 C-labeled substrates were queried (i.e., glucose, lactate, pyruvate, and oleate) based on a previously published study. We integrated the analysis of the complete set of isotopomer data gathered from these mouse heart perfusion experiments into a single comprehensive network model that delineates substrate contributions to both pyruvate and acetyl-CoA pools at a greater resolution than that offered by traditional methods using algebraic equations. To our knowledge, this is the first rigorous application of 13 C-MFA to interrogate data from multiple tracer experiments in the perfused heart. We anticipate that this approach can be used widely to study energy substrate metabolism in this and other similar biological systems. Copyright © 2016 the American Physiological Society.

  4. Gut Microbiota as a Therapeutic Target for Metabolic Disorders.

    PubMed

    Okubo, Hirofumi; Nakatsu, Yusuke; Kushiyama, Akifumi; Yamamotoya, Takeshi; Matsunaga, Yasuka; Inoue, Masa-Ki; Fujishiro, Midori; Sakoda, Hideaki; Ohno, Haruya; Yoneda, Masayasu; Ono, Hiraku; Asano, Tomoichiro

    2018-01-01

    Gut microbiota play a vital role not only in the digestion and absorption of nutrients, but also in homeostatic maintenance of host immunity, metabolism and the gut barrier. Recent evidence suggests that gut microbiota alterations contribute to the pathogenesis of metabolic disorders. In this review, we discuss the association between the gut microbiota and metabolic disorders, such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease, and the contribution of relevant modulating interventions, focusing on recent human studies. Several studies have identified potential causal associations between gut microbiota and metabolic disorders, as well as the underlying mechanisms. The effects of modulating interventions, such as prebiotics, probiotics, fecal microbiota transplantation, and other new treatment possibilities on these metabolic disorders have also been reported. A growing body of evidence highlights the role of gut microbiota in the development of dysbiosis, which in turn influences host metabolism and disease phenotypes. Further studies are required to elucidate the precise mechanisms by which gut microbiota-derived mediators induce metabolic disorders and modulating interventions exert their beneficial effects in humans. The gut microbiota represents a novel potential therapeutic target for a range of metabolic disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Avalanche multiplication and impact ionization in amorphous selenium photoconductive target

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-03-01

    The avalanche multiplication factor and the hole ionization coefficient in the amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) target depend on the electric field. The phenomenon of avalanche multiplication and impact ionization in the 0.4-µm-thick a-Se HARP target is investigated. The hot carrier energy in the 0.4-µm-thick a-Se HARP target increases linearly as the target voltage increases. The energy relaxation length of hot carriers in the a-Se photoconductor of the 0.4-µm-thick HARP target saturates as the electric field increases. The average energy Eav of a hot carrier and the energy relaxation length λE in the a-Se photoconductor of the 0.4-µm-thick HARP target at 1 × 108 V/m were 0.25 eV and 2.5 nm, respectively. In addition, the hole ionization coefficient β and the avalanche multiplication factor M are derived as a function of the electric field, the average energy of a hot carrier, and the impact ionization energy. The experimental hole ionization coefficient β and the avalanche multiplication factor M in the 0.4-µm-thick a-Se HARP target agree with the theoretical results.

  6. Metabolic profiling of triple-negative breast cancer cells reveals metabolic vulnerabilities.

    PubMed

    Lanning, Nathan J; Castle, Joshua P; Singh, Simar J; Leon, Andre N; Tovar, Elizabeth A; Sanghera, Amandeep; MacKeigan, Jeffrey P; Filipp, Fabian V; Graveel, Carrie R

    2017-01-01

    Among breast cancers, the triple-negative breast cancer (TNBC) subtype has the worst prognosis with no approved targeted therapies and only standard chemotherapy as the backbone of systemic therapy. Unique metabolic changes in cancer progression provide innovative therapeutic opportunities. The receptor tyrosine kinases (RTKs) epidermal growth factor receptor (EGFR), and MET receptor are highly expressed in TNBC, making both promising therapeutic targets. RTK signaling profoundly alters cellular metabolism by increasing glucose consumption and subsequently diverting glucose carbon sources into metabolic pathways necessary to support the tumorigenesis. Therefore, detailed metabolic profiles of TNBC subtypes and their response to tyrosine kinase inhibitors may identify therapeutic sensitivities. We quantified the metabolic profiles of TNBC cell lines representing multiple TNBC subtypes using gas chromatography mass spectrometry. In addition, we subjected MDA-MB-231, MDA-MB-468, Hs578T, and HCC70 cell lines to metabolic flux analysis of basal and maximal glycolytic and mitochondrial oxidative rates. Metabolic pool size and flux measurements were performed in the presence and absence of the MET inhibitor, INC280/capmatinib, and the EGFR inhibitor, erlotinib. Further, the sensitivities of these cells to modulators of core metabolic pathways were determined. In addition, we annotated a rate-limiting metabolic enzymes library and performed a siRNA screen in combination with MET or EGFR inhibitors to validate synergistic effects. TNBC cell line models displayed significant metabolic heterogeneity with respect to basal and maximal metabolic rates and responses to RTK and metabolic pathway inhibitors. Comprehensive systems biology analysis of metabolic perturbations, combined siRNA and tyrosine kinase inhibitor screens identified a core set of TCA cycle and fatty acid pathways whose perturbation sensitizes TNBC cells to small molecule targeting of receptor tyrosine kinases

  7. Examining perceptual and conceptual set biases in multiple-target visual search.

    PubMed

    Biggs, Adam T; Adamo, Stephen H; Dowd, Emma Wu; Mitroff, Stephen R

    2015-04-01

    Visual search is a common practice conducted countless times every day, and one important aspect of visual search is that multiple targets can appear in a single search array. For example, an X-ray image of airport luggage could contain both a water bottle and a gun. Searchers are more likely to miss additional targets after locating a first target in multiple-target searches, which presents a potential problem: If airport security officers were to find a water bottle, would they then be more likely to miss a gun? One hypothetical cause of multiple-target search errors is that searchers become biased to detect additional targets that are similar to a found target, and therefore become less likely to find additional targets that are dissimilar to the first target. This particular hypothesis has received theoretical, but little empirical, support. In the present study, we tested the bounds of this idea by utilizing "big data" obtained from the mobile application Airport Scanner. Multiple-target search errors were substantially reduced when the two targets were identical, suggesting that the first-found target did indeed create biases during subsequent search. Further analyses delineated the nature of the biases, revealing both a perceptual set bias (i.e., a bias to find additional targets with features similar to those of the first-found target) and a conceptual set bias (i.e., a bias to find additional targets with a conceptual relationship to the first-found target). These biases are discussed in terms of the implications for visual-search theories and applications for professional visual searchers.

  8. Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention

    DOE PAGES

    Smallwood, Heather S.; Duan, Susu; Morfouace, Marie; ...

    2017-05-23

    Influenza is a worldwide health and financial burden posing a significant risk to the immune-compromised, obese, diabetic, elderly, and pediatric populations. We identified increases in glucose metabolism in the lungs of pediatric patients infected with respiratory pathogens. Using quantitative mass spectrometry, we found metabolic changes occurring after influenza infection in primary human respiratory cells and validated infection-associated increases in c-Myc, glycolysis, and glutaminolysis. We confirmed these findings with a metabolic drug screen that identified the PI3K/mTOR inhibitor BEZ235 as a regulator of infectious virus production. BEZ235 treatment ablated the transient induction of c-Myc, restored PI3K/mTOR pathway homeostasis measured by 4E-BP1more » and p85 phosphorylation, and reversed infection-induced changes in metabolism. Importantly, BEZ235 reduced infectious progeny but had no effect on the early stages of viral replication. BEZ235 significantly increased survival in mice, while reducing viral titer. We show metabolic reprogramming of host cells by influenza virus exposes targets for therapeutic intervention.« less

  9. Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smallwood, Heather S.; Duan, Susu; Morfouace, Marie

    Influenza is a worldwide health and financial burden posing a significant risk to the immune-compromised, obese, diabetic, elderly, and pediatric populations. We identified increases in glucose metabolism in the lungs of pediatric patients infected with respiratory pathogens. Using quantitative mass spectrometry, we found metabolic changes occurring after influenza infection in primary human respiratory cells and validated infection-associated increases in c-Myc, glycolysis, and glutaminolysis. We confirmed these findings with a metabolic drug screen that identified the PI3K/mTOR inhibitor BEZ235 as a regulator of infectious virus production. BEZ235 treatment ablated the transient induction of c-Myc, restored PI3K/mTOR pathway homeostasis measured by 4E-BP1more » and p85 phosphorylation, and reversed infection-induced changes in metabolism. Importantly, BEZ235 reduced infectious progeny but had no effect on the early stages of viral replication. BEZ235 significantly increased survival in mice, while reducing viral titer. We show metabolic reprogramming of host cells by influenza virus exposes targets for therapeutic intervention.« less

  10. The Application of the Weighted k-Partite Graph Problem to the Multiple Alignment for Metabolic Pathways.

    PubMed

    Chen, Wenbin; Hendrix, William; Samatova, Nagiza F

    2017-12-01

    The problem of aligning multiple metabolic pathways is one of very challenging problems in computational biology. A metabolic pathway consists of three types of entities: reactions, compounds, and enzymes. Based on similarities between enzymes, Tohsato et al. gave an algorithm for aligning multiple metabolic pathways. However, the algorithm given by Tohsato et al. neglects the similarities among reactions, compounds, enzymes, and pathway topology. How to design algorithms for the alignment problem of multiple metabolic pathways based on the similarity of reactions, compounds, and enzymes? It is a difficult computational problem. In this article, we propose an algorithm for the problem of aligning multiple metabolic pathways based on the similarities among reactions, compounds, enzymes, and pathway topology. First, we compute a weight between each pair of like entities in different input pathways based on the entities' similarity score and topological structure using Ay et al.'s methods. We then construct a weighted k-partite graph for the reactions, compounds, and enzymes. We extract a mapping between these entities by solving the maximum-weighted k-partite matching problem by applying a novel heuristic algorithm. By analyzing the alignment results of multiple pathways in different organisms, we show that the alignments found by our algorithm correctly identify common subnetworks among multiple pathways.

  11. Computing Smallest Intervention Strategies for Multiple Metabolic Networks in a Boolean Model

    PubMed Central

    Lu, Wei; Song, Jiangning; Akutsu, Tatsuya

    2015-01-01

    Abstract This article considers the problem whereby, given two metabolic networks N1 and N2, a set of source compounds, and a set of target compounds, we must find the minimum set of reactions whose removal (knockout) ensures that the target compounds are not producible in N1 but are producible in N2. Similar studies exist for the problem of finding the minimum knockout with the smallest side effect for a single network. However, if technologies of external perturbations are advanced in the near future, it may be important to develop methods of computing the minimum knockout for multiple networks (MKMN). Flux balance analysis (FBA) is efficient if a well-polished model is available. However, that is not always the case. Therefore, in this article, we study MKMN in Boolean models and an elementary mode (EM)-based model. Integer linear programming (ILP)-based methods are developed for these models, since MKMN is NP-complete for both the Boolean model and the EM-based model. Computer experiments are conducted with metabolic networks of clostridium perfringens SM101 and bifidobacterium longum DJO10A, respectively known as bad bacteria and good bacteria for the human intestine. The results show that larger networks are more likely to have MKMN solutions. However, solving for these larger networks takes a very long time, and often the computation cannot be completed. This is reasonable, because small networks do not have many alternative pathways, making it difficult to satisfy the MKMN condition, whereas in large networks the number of candidate solutions explodes. Our developed software minFvskO is available online. PMID:25684199

  12. Computing smallest intervention strategies for multiple metabolic networks in a boolean model.

    PubMed

    Lu, Wei; Tamura, Takeyuki; Song, Jiangning; Akutsu, Tatsuya

    2015-02-01

    This article considers the problem whereby, given two metabolic networks N1 and N2, a set of source compounds, and a set of target compounds, we must find the minimum set of reactions whose removal (knockout) ensures that the target compounds are not producible in N1 but are producible in N2. Similar studies exist for the problem of finding the minimum knockout with the smallest side effect for a single network. However, if technologies of external perturbations are advanced in the near future, it may be important to develop methods of computing the minimum knockout for multiple networks (MKMN). Flux balance analysis (FBA) is efficient if a well-polished model is available. However, that is not always the case. Therefore, in this article, we study MKMN in Boolean models and an elementary mode (EM)-based model. Integer linear programming (ILP)-based methods are developed for these models, since MKMN is NP-complete for both the Boolean model and the EM-based model. Computer experiments are conducted with metabolic networks of clostridium perfringens SM101 and bifidobacterium longum DJO10A, respectively known as bad bacteria and good bacteria for the human intestine. The results show that larger networks are more likely to have MKMN solutions. However, solving for these larger networks takes a very long time, and often the computation cannot be completed. This is reasonable, because small networks do not have many alternative pathways, making it difficult to satisfy the MKMN condition, whereas in large networks the number of candidate solutions explodes. Our developed software minFvskO is available online.

  13. Retrodiction for Bayesian multiple-hypothesis/multiple-target tracking in densely cluttered environment

    NASA Astrophysics Data System (ADS)

    Koch, Wolfgang

    1996-05-01

    Sensor data processing in a dense target/dense clutter environment is inevitably confronted with data association conflicts which correspond with the multiple hypothesis character of many modern approaches (MHT: multiple hypothesis tracking). In this paper we analyze the efficiency of retrodictive techniques that generalize standard fixed interval smoothing to MHT applications. 'Delayed estimation' based on retrodiction provides uniquely interpretable and accurate trajectories from ambiguous MHT output if a certain time delay is tolerated. In a Bayesian framework the theoretical background of retrodiction and its intimate relation to Bayesian MHT is sketched. By a simulated example with two closely-spaced targets, relatively low detection probabilities, and rather high false return densities, we demonstrate the benefits of retrodiction and quantitatively discuss the achievable track accuracies and the time delays involved for typical radar parameters.

  14. Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animals

    PubMed Central

    Klessig, Daniel F.; Tian, Miaoying; Choi, Hyong Woo

    2016-01-01

    Salicylic acid (SA) is a critical plant hormone that is involved in many processes, including seed germination, root initiation, stomatal closure, floral induction, thermogenesis, and response to abiotic and biotic stresses. Its central role in plant immunity, although extensively studied, is still only partially understood. Classical biochemical approaches and, more recently, genome-wide high-throughput screens have identified more than two dozen plant SA-binding proteins (SABPs), as well as multiple candidates that have yet to be characterized. Some of these proteins bind SA with high affinity, while the affinity of others exhibit is low. Given that SA levels vary greatly even within a particular plant species depending on subcellular location, tissue type, developmental stage, and with respect to both time and location after an environmental stimulus such as infection, the presence of SABPs exhibiting a wide range of affinities for SA may provide great flexibility and multiple mechanisms through which SA can act. SA and its derivatives, both natural and synthetic, also have multiple targets in animals/humans. Interestingly, many of these proteins, like their plant counterparts, are associated with immunity or disease development. Two recently identified SABPs, high mobility group box protein and glyceraldehyde 3-phosphate dehydrogenase, are critical proteins that not only serve key structural or metabolic functions but also play prominent roles in disease responses in both kingdoms. PMID:27303403

  15. Mammalian Polyamine Metabolism and Function

    PubMed Central

    Pegg, Anthony E.

    2009-01-01

    Summary Polyamines are ubiquitous small basic molecules that play multiple essential roles in mammalian physiology. Their cellular content is highly regulated and there is convincing evidence that altered metabolism is involvement in many disease states. Drugs altering polyamine levels may therefore have a variety of important targets. This review will summarize the current state of understanding of polyamine metabolism and function, the regulation of polyamine content, and heritable pathological conditions that may be derived from altered polyamine metabolism. PMID:19603518

  16. Staphylococcus aureus methicillin resistance detected by HPLC-MS/MS targeted metabolic profiling.

    PubMed

    Schelli, Katie; Rutowski, Joshua; Roubidoux, Julia; Zhu, Jiangjiang

    2017-03-15

    Recently, novel bioanalytical methods, such as NMR and mass spectrometry based metabolomics approaches, have started to show promise in providing rapid, sensitive and reproducible detection of Staphylococcus aureus antibiotic resistance. Here we performed a proof-of-concept study focused on the application of HPLC-MS/MS based targeted metabolic profiling for detecting and monitoring the bacterial metabolic profile changes in response to sub-lethal levels of methicillin exposure. One hundred seventy-seven targeted metabolites from over 20 metabolic pathways were specifically screened and one hundred and thirty metabolites from in vitro bacterial tests were confidently detected from both methicillin susceptible and methicillin resistant Staphylococcus aureus (MSSA and MRSA, respectively). The metabolic profiles can be used to distinguish the isogenic pairs of MSSA strains from MRSA strains, without or with sub-lethal levels of methicillin exposure. In addition, better separation between MSSA and MRSA strains can be achieved in the latter case using principal component analysis (PCA). Metabolite data from isogenic pairs of MSSA and MRSA strains were further compared without and with sub-lethal levels of methicillin exposure, with metabolic pathway analyses additionally performed. Both analyses suggested that the metabolic activities of MSSA strains were more susceptible to the perturbation of the sub-lethal levels of methicillin exposure compared to the MRSA strains. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Targeted therapy of multiple myeloma.

    PubMed

    Dolloff, Nathan G; Talamo, Giampaolo

    2013-01-01

    Multiple myeloma (MM) is a plasma cell malignancy and the second most common hematologic cancer. MM is characterized by the accumulation of malignant plasma cells within the bone marrow, and presents clinically with a broad range of symptoms, including hypercalcemia, renal insufficiency, anemia, and lytic bone lesions. MM is a heterogeneous disease associated with genomic instability, where patients may express multiple genetic abnormalities that affect several oncogenic pathways. Commonly detected genetic aberrations are translocations involving immunoglobulin heavy chain (IgH) switch regions (chromosome 14q32) and oncogenes such as c-maf [t(14:16)], cyclin D1 [t(11:14)], and FGFR3/MMSET [t(4:14)]. Advances in the basic understanding of MM and the development of novel agents, such as the immunomodulatory drugs (IMiDs) thalidomide and lenalidomide and the proteasome inhibitor bortezomib, have increased therapeutic response rates and prolonged patient survival. Despite these advances MM remains incurable in the majority of patients, and it is therefore critical to identify additional therapeutic strategies and targets for its treatment. In this chapter, we review the underlying genetic components of MM and discuss the results of recent clinical trials that demonstrate the effectiveness of targeted agents in the management of MM. In addition, we discuss experimental therapies that are currently in clinical development along with their molecular rationale in the treatment of MM.

  18. Targeting Sulfotransferase (SULT) 2B1b as a Regulator of Cholesterol Metabolism in Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0588 TITLE: Targeting Sulfotransferase (SULT) 2B1b as a regulator of Cholesterol Metabolism in Prostate Cancer...October 2015 30Sep2014 - 29Sep2015 W81XWH-14-1-0588Targeting Sulfotransferase (SULT) 2B1b as a regulator of Cholesterol Metabolism in Prostate...epidemiological and experimental evidence establishes alterations in cholesterol metabolism as a key driver of prostate cancer (PCa) aggressiveness

  19. Identification and Analyses of AUX-IAA target genes controlling multiple pathways in developing fiber cells of Gossypium hirsutum L

    PubMed Central

    Nigam, Deepti; Sawant, Samir V

    2013-01-01

    Technological development led to an increased interest in systems biological approaches in plants to characterize developmental mechanism and candidate genes relevant to specific tissue or cell morphology. AUX-IAA proteins are important plant-specific putative transcription factors. There are several reports on physiological response of this family in Arabidopsis but in cotton fiber the transcriptional network through which AUX-IAA regulated its target genes is still unknown. in-silico modelling of cotton fiber development specific gene expression data (108 microarrays and 22,737 genes) using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals 3690 putative AUX-IAA target genes of which 139 genes were known to be AUX-IAA co-regulated within Arabidopsis. Further AUX-IAA targeted gene regulatory network (GRN) had substantial impact on the transcriptional dynamics of cotton fiber, as showed by, altered TF networks, and Gene Ontology (GO) biological processes and metabolic pathway associated with its target genes. Analysis of the AUX-IAA-correlated gene network reveals multiple functions for AUX-IAA target genes such as unidimensional cell growth, cellular nitrogen compound metabolic process, nucleosome organization, DNA-protein complex and process related to cell wall. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell proliferation, and cell differentiation. While these functions are fairly broad, their underlying TF networks may provide a global view of AUX-IAA regulated gene expression and a GRN that guides future studies in understanding role of AUX-IAA box protein and its targets regulating fiber development. PMID:24497725

  20. Multiple-Targeted Graphene-based Nanocarrier for Intracellular Imaging of mRNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ying; Li, Zhaohui; Liu, Misha

    Simultaneous detection and imaging of multiple intracellular messenger RNA (mRNAs) hold great significant for early cancer diagnostics and preventive medicine development. Herein, we propose a multiple-targeted graphene oxide (GO) nanocarrier that can simultaneously detect and image different type mRNAs in living cells. First of all, in vitro detection of multiple targets have been realized successfully based on the multiple-targeted GO nanocarrier with linear relationship ranging from 3 nM to 200 nM, as well as sensitive detection limit of 1.84 nM for manganese superoxide dismutase (Mn-SOD) mRNA and 2.45 nM for β-actin mRNA. Additionally, this nanosensing platform composed of fluorescent labeledmore » single strand DNA probes and GO nanocarrier can identify Mn-SOD mRNA and endogenous mRNA of β-actin in living cancer cells, showing rapid response, high specificity, nuclease stability, and good biocompatibility during the cell imaging. Thirdly, changes of the expression levels of mRNA in living cells before or after the drug treatment can be monitored successfully. By using multiple ssDNA as probes and GO nanocarrier as the cellular delivery cargo, the proposed simultaneous multiple-targeted sensing platform will be of great potential as a powerful tool for intracellular trafficking process from basic research to clinical diagnosis.« less

  1. Modified Mediterranean Diet for Enrichment of Short Chain Fatty Acids: Potential Adjunctive Therapeutic to Target Immune and Metabolic Dysfunction in Schizophrenia?

    PubMed Central

    Joseph, Jamie; Depp, Colin; Shih, Pei-an B.; Cadenhead, Kristen S.; Schmid-Schönbein, Geert

    2017-01-01

    Growing interest in gut and digestive processes and their potential link to brain and peripheral based inflammation or biobehavioral phenotypes has led to an increasing number of basic and translational scientific reports focused on the role of gut microbiota within the context of neuropsychiatric disorders. However, the effect of dietary modification on specific gut metabolites, in association with immune, metabolic, and psychopathological functioning in schizophrenia spectrum disorders has not been well characterized. The short chain fatty acids (SCFA) acetate, butyrate, and propionate, major metabolites derived from fermentation of dietary fibers by gut microbes, interact with multiple immune and metabolic pathways. The specific pathways that SCFA are thought to target, are dysregulated in cardiovascular disease, type II diabetes, and systemic inflammation. Most notably, these disorders are consistently linked to an attenuated lifespan in schizophrenia. Although, unhealthy dietary intake patterns and increased prevalence of immune and metabolic dysfunction has been observed in people with schizophrenia; dietary interventions have not been well utilized to target immune or metabolic illness. Prior schizophrenia patient trials primarily focused on the effects of gluten free diets. Findings from these studies indicate that a diet avoiding gluten benefits a limited subset of patients, individuals with celiac disease or non-celiac gluten sensitivity. Therefore, alternative dietary and nutritional modifications such as high-fiber, Mediterranean style, diets that enrich the production of SCFA, while being associated with a minimal likelihood of adverse events, may improve immune and cardiovascular outcomes linked to premature mortality in schizophrenia. With a growing literature demonstrating that SCFA can cross the blood brain barrier and target key inflammatory and metabolic pathways, this article highlights enriching dietary intake for SCFA as a potential adjunctive

  2. Targeting cancer stem-like cells in glioblastoma and colorectal cancer through metabolic pathways.

    PubMed

    Kahlert, U D; Mooney, S M; Natsumeda, M; Steiger, H-J; Maciaczyk, J

    2017-01-01

    Cancer stem-like cells (CSCs) are thought to be the main cause of tumor occurrence, progression and therapeutic resistance. Strong research efforts in the last decade have led to the development of several tailored approaches to target CSCs with some very promising clinical trials underway; however, until now no anti-CSC therapy has been approved for clinical use. Given the recent improvement in our understanding of how onco-proteins can manipulate cellular metabolic networks to promote tumorigenesis, cancer metabolism research may well lead to innovative strategies to identify novel regulators and downstream mediators of CSC maintenance. Interfering with distinct stages of CSC-associated metabolics may elucidate novel, more efficient strategies to target this highly malignant cell population. Here recent discoveries regarding the metabolic properties attributed to CSCs in glioblastoma (GBM) and malignant colorectal cancer (CRC) were summarized. The association between stem cell markers, the response to hypoxia and other environmental stresses including therapeutic insults as well as developmentally conserved signaling pathways with alterations in cellular bioenergetic networks were also discussed. The recent developments in metabolic imaging to identify CSCs were also summarized. This summary should comprehensively update basic and clinical scientists on the metabolic traits of CSCs in GBM and malignant CRC. © 2016 UICC.

  3. DAG tales: the multiple faces of diacylglycerol--stereochemistry, metabolism, and signaling.

    PubMed

    Eichmann, Thomas Oliver; Lass, Achim

    2015-10-01

    The neutral lipids diacylglycerols (DAGs) are involved in a plethora of metabolic pathways. They function as components of cellular membranes, as building blocks for glycero(phospho)lipids, and as lipid second messengers. Considering their central role in multiple metabolic processes and signaling pathways, cellular DAG levels require a tight regulation to ensure a constant and controlled availability. Interestingly, DAG species are versatile in their chemical structure. Besides the different fatty acid species esterified to the glycerol backbone, DAGs can occur in three different stereo/regioisoforms, each with unique biological properties. Recent scientific advances have revealed that DAG metabolizing enzymes generate and distinguish different DAG isoforms, and that only one DAG isoform holds signaling properties. Herein, we review the current knowledge of DAG stereochemistry and their impact on cellular metabolism and signaling. Further, we describe intracellular DAG turnover and its stereochemistry in a 3-pool model to illustrate the spatial and stereochemical separation and hereby the diversity of cellular DAG metabolism.

  4. Metabolic analysis of radioresistant medulloblastoma stem-like clones and potential therapeutic targets.

    PubMed

    Sun, Lue; Moritake, Takashi; Ito, Kazuya; Matsumoto, Yoshitaka; Yasui, Hironobu; Nakagawa, Hidehiko; Hirayama, Aki; Inanami, Osamu; Tsuboi, Koji

    2017-01-01

    Medulloblastoma is a fatal brain tumor in children, primarily due to the presence of treatment-resistant medulloblastoma stem cells. The energy metabolic pathway is a potential target of cancer therapy because it is often different between cancer cells and normal cells. However, the metabolic properties of medulloblastoma stem cells, and whether specific metabolic pathways are essential for sustaining their stem cell-like phenotype and radioresistance, remain unclear. We have established radioresistant medulloblastoma stem-like clones (rMSLCs) by irradiation of the human medulloblastoma cell line ONS-76. Here, we assessed reactive oxygen species (ROS) production, mitochondria function, oxygen consumption rate (OCR), energy state, and metabolites of glycolysis and tricarboxylic acid cycle in rMSLCs and parental cells. rMSLCs showed higher lactate production and lower oxygen consumption rate than parental cells. Additionally, rMSLCs had low mitochondria mass, low endogenous ROS production, and existed in a low-energy state. Treatment with the metabolic modifier dichloroacetate (DCA) resulted in mitochondria dysfunction, glycolysis inhibition, elongated mitochondria morphology, and increased ROS production. DCA also increased radiosensitivity by suppression of the DNA repair capacity through nuclear oxidization and accelerated the generation of acetyl CoA to compensate for the lack of ATP. Moreover, treatment with DCA decreased cancer stem cell-like characters (e.g., CD133 positivity and sphere-forming ability) in rMSLCs. Together, our findings provide insights into the specific metabolism of rMSLCs and illuminate potential metabolic targets that might be exploited for therapeutic benefit in medulloblastoma.

  5. Targeted mitochondrial uncoupling beyond UCP1 - The fine line between death and metabolic health.

    PubMed

    Ost, Mario; Keipert, Susanne; Klaus, Susanne

    2017-03-01

    In the early 1930s, the chemical uncoupling agent 2,4-dinitrophenol (DNP) was promoted for the very first time as a powerful and effective weight loss pill but quickly withdrawn from the market due to its lack of tissue-selectivity with resulting dangerous side effects, including hyperthermia and death. Today, novel mitochondria- or tissue-targeted chemical uncouplers with higher safety and therapeutic values are under investigation in order to tackle obesity, diabetes and fatty liver disease. Moreover, in the past 20 years, transgenic mouse models were generated to understand the molecular and metabolic consequences of targeted uncoupling, expressing functional uncoupling protein 1 (UCP1) ectopically in white adipose tissue or skeletal muscle. Similar to the action of chemical mitochondrial uncouplers, UCP1 protein dissipates the proton gradient across the inner mitochondrial membrane, thus allowing maximum activity of the respiratory chain and compensatory increase in oxygen consumption, uncoupled from ATP synthesis. Consequently, targeted mitochondrial uncoupling in adipose tissue and skeletal muscle of UCP1-transgenic mice increased substrate metabolism and ameliorates obesity, hypertriglyceridemia and insulin resistance. Further, muscle-specific decrease in mitochondrial efficiency promotes a cell-autonomous and cell-non-autonomous adaptive metabolic remodeling with increased oxidative stress tolerance. This review provides an overview of novel chemical uncouplers as well as the metabolic consequences and adaptive processes of targeted mitochondrial uncoupling on metabolic health and survival. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. A metabolic network approach for the identification and prioritization of antimicrobial drug targets

    PubMed Central

    Chavali, Arvind K.; D’Auria, Kevin M.; Hewlett, Erik L.; Pearson, Richard D.; Papin, Jason A.

    2012-01-01

    For many infectious diseases, novel treatment options are needed to address problems with cost, toxicity and resistance to current drugs. Systems biology tools can be used to gain valuable insight into pathogenic processes and aid in expediting drug discovery. In the past decade, constraint-based modeling of genome-scale metabolic networks has become widely used. Focusing on pathogen metabolic networks, we review in silico strategies to identify effective drug targets, and we highlight recent successes as well as limitations associated with such computational analyses. We further discuss how accounting for the host environment and even targeting the host may offer new therapeutic options. These systems-level approaches are beginning to provide novel avenues for drug targeting against infectious agents. PMID:22300758

  7. Sorafenib: targeting multiple tyrosine kinases in cancer.

    PubMed

    Hasskarl, Jens

    2014-01-01

    Sorafenib (BAY 43-9006, Nexavar®) is an oral multiple tyrosine kinase inhibitor. Main targets are receptor tyrosine kinase pathways frequently deregulated in cancer such as the Raf-Ras pathway, vascular endothelial growth factor (VEGF) pathway, and FMS-like tyrosine kinase 3 (FLT3). Sorafenib was approved by the FDA in fast track for advanced renal cell cancer and hepatocellular cancer and shows good clinical activity in thyroid cancer. Multiple clinical trials are undertaken to further investigate the role of sorafenib alone or in combination for the treatment of various tumor entities.

  8. SUMOFLUX: A Generalized Method for Targeted 13C Metabolic Flux Ratio Analysis

    PubMed Central

    Kogadeeva, Maria

    2016-01-01

    Metabolic fluxes are a cornerstone of cellular physiology that emerge from a complex interplay of enzymes, carriers, and nutrients. The experimental assessment of in vivo intracellular fluxes using stable isotopic tracers is essential if we are to understand metabolic function and regulation. Flux estimation based on 13C or 2H labeling relies on complex simulation and iterative fitting; processes that necessitate a level of expertise that ordinarily preclude the non-expert user. To overcome this, we have developed SUMOFLUX, a methodology that is broadly applicable to the targeted analysis of 13C-metabolic fluxes. By combining surrogate modeling and machine learning, we trained a predictor to specialize in estimating flux ratios from measurable 13C-data. SUMOFLUX targets specific flux features individually, which makes it fast, user-friendly, applicable to experimental design and robust in terms of experimental noise and exchange flux magnitude. Collectively, we predict that SUMOFLUX's properties realistically pave the way to high-throughput flux analyses. PMID:27626798

  9. A compound chimeric antigen receptor strategy for targeting multiple myeloma.

    PubMed

    Chen, K H; Wada, M; Pinz, K G; Liu, H; Shuai, X; Chen, X; Yan, L E; Petrov, J C; Salman, H; Senzel, L; Leung, E L H; Jiang, X; Ma, Y

    2018-02-01

    Current clinical outcomes using chimeric-antigen receptors (CARs) against multiple myeloma show promise in the eradication of bulk disease. However, these anti-BCMA (CD269) CARs observe relapse as a common phenomenon after treatment due to the reemergence of either antigen-positive or -negative cells. Hence, the development of improvements in CAR design to target antigen loss and increase effector cell persistency represents a critical need. Here, we report on the anti-tumor activity of a CAR T-cell possessing two complete and independent CAR receptors against the multiple myeloma antigens BCMA and CS1. We determined that the resulting compound CAR (cCAR) T-cell possesses consistent, potent and directed cytotoxicity against each target antigen population. Using multiple mouse models of myeloma and mixed cell populations, we are further able to show superior in vivo survival by directed cytotoxicity against multiple populations compared to a single-expressing CAR T-cell. These findings indicate that compound targeting of BCMA and CS1 on myeloma cells can potentially be an effective strategy for augmenting the response against myeloma bulk disease and for initiation of broader coverage CAR therapy.

  10. Metabolic analysis of radioresistant medulloblastoma stem-like clones and potential therapeutic targets

    PubMed Central

    Sun, Lue; Moritake, Takashi; Ito, Kazuya; Matsumoto, Yoshitaka; Yasui, Hironobu; Nakagawa, Hidehiko; Hirayama, Aki; Inanami, Osamu; Tsuboi, Koji

    2017-01-01

    Medulloblastoma is a fatal brain tumor in children, primarily due to the presence of treatment-resistant medulloblastoma stem cells. The energy metabolic pathway is a potential target of cancer therapy because it is often different between cancer cells and normal cells. However, the metabolic properties of medulloblastoma stem cells, and whether specific metabolic pathways are essential for sustaining their stem cell-like phenotype and radioresistance, remain unclear. We have established radioresistant medulloblastoma stem-like clones (rMSLCs) by irradiation of the human medulloblastoma cell line ONS-76. Here, we assessed reactive oxygen species (ROS) production, mitochondria function, oxygen consumption rate (OCR), energy state, and metabolites of glycolysis and tricarboxylic acid cycle in rMSLCs and parental cells. rMSLCs showed higher lactate production and lower oxygen consumption rate than parental cells. Additionally, rMSLCs had low mitochondria mass, low endogenous ROS production, and existed in a low-energy state. Treatment with the metabolic modifier dichloroacetate (DCA) resulted in mitochondria dysfunction, glycolysis inhibition, elongated mitochondria morphology, and increased ROS production. DCA also increased radiosensitivity by suppression of the DNA repair capacity through nuclear oxidization and accelerated the generation of acetyl CoA to compensate for the lack of ATP. Moreover, treatment with DCA decreased cancer stem cell-like characters (e.g., CD133 positivity and sphere-forming ability) in rMSLCs. Together, our findings provide insights into the specific metabolism of rMSLCs and illuminate potential metabolic targets that might be exploited for therapeutic benefit in medulloblastoma. PMID:28426747

  11. Histone deacetylases as targets for treatment of multiple diseases

    PubMed Central

    TANG, Jinhua; YAN, Haidong; ZHUANG, Shougang

    2015-01-01

    HDACs (histone deacetylases) are a group of enzymes that deacetylate histones as well as non-histone proteins. They are known as modulators of gene transcription and are associated with proliferation and differentiation of a variety of cell types and the pathogenesis of some diseases. Recently, HDACs have come to be considered crucial targets in various diseases, including cancer, interstitial fibrosis, autoimmune and inflammatory diseases, and metabolic disorders. Pharmacological inhibitors of HDACs have been used or tested to treat those diseases. In the present review, we will examine the application of HDAC inhibitors in a variety of diseases with the focus on their effects of anti-cancer, fibrosis, anti-inflammatory, immunomodulatory activity and regulating metabolic disorders. PMID:23414309

  12. DEVELOPING A VACCINE AGAINST MULTIPLE PSYCHOACTIVE TARGETS: A CASE STUDY OF HEROIN

    PubMed Central

    Stowe, G. Neil; Schlosburg, Joel E.; Vendruscolo, Leandro F.; Edwards, Scott; Misra, Kaushik K.; Schulteis, Gery; Zakhari, Joseph S.; Koob, George F.; Janda, Kim D.

    2012-01-01

    Heroin addiction is a wide-reaching problem with a spectrum of damaging social consequences. Currently approved heroin addiction medications include drugs that bind at the same receptors (e.g. opioid receptors) occupied by heroin and/or its metabolites in the brain, but undesired side effects of these treatments, maintenance dependence and relapse to drug taking remains problematic. A vaccine capable of blocking heroin’s effects could provide an economical, long-lasting and sustainable adjunct to heroin addiction therapy without the side effects associated with available treatment options. Heroin, however, presents a particularly challenging vaccine target as it is metabolized to multiple psychoactive molecules of differing lipophilicity, with differing abilities to cross the blood brain barrier. In this review, we discuss the opiate scaffolding and hapten design considerations to confer immunogenicity as well as the specificity of the immune response towards structurally similar opiates. In addition, we detail different strategies employed in the design of immunoconjugates for a vaccine-based therapy for heroin addiction treatment. PMID:22229311

  13. Deciphering the biological effects of acupuncture treatment modulating multiple metabolism pathways.

    PubMed

    Zhang, Aihua; Yan, Guangli; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Xie, Ning; Wang, Xijun

    2016-02-16

    Acupuncture is an alternative therapy that is widely used to treat various diseases. However, detailed biological interpretation of the acupuncture stimulations is limited. We here used metabolomics and proteomics technology, thereby identifying the serum small molecular metabolites into the effect and mechanism pathways of standardized acupuncture treatments at 'Zusanli' acupoint which was the most often used acupoint in previous reports. Comprehensive overview of serum metabolic profiles during acupuncture stimulation was investigated. Thirty-four differential metabolites were identified in serum metabolome and associated with ten metabolism pathways. Importantly, we have found that high impact glycerophospholipid metabolism, fatty acid metabolism, ether lipid metabolism were acutely perturbed by acupuncture stimulation. As such, these alterations may be useful to clarify the biological mechanism of acupuncture stimulation. A series of differentially expressed proteins were identified and such effects of acupuncture stimulation were found to play a role in transport, enzymatic activity, signaling pathway or receptor interaction. Pathway analysis further revealed that most of these proteins were found to play a pivotal role in the regulation of multiple metabolism pathways. It demonstrated that the metabolomics coupled with proteomics as a powerful approach for potential applications in understanding the biological effects of acupuncture stimulation.

  14. Metformin targets multiple signaling pathways in cancer.

    PubMed

    Lei, Yong; Yi, Yanhua; Liu, Yang; Liu, Xia; Keller, Evan T; Qian, Chao-Nan; Zhang, Jian; Lu, Yi

    2017-01-26

    Metformin, an inexpensive and well-tolerated oral agent commonly used in the first-line treatment of type 2 diabetes, has become the focus of intense research as a candidate anticancer agent. Here, we discuss the potential of metformin in cancer therapeutics, particularly its functions in multiple signaling pathways, including AMP-activated protein kinase, mammalian target of rapamycin, insulin-like growth factor, c-Jun N-terminal kinase/mitogen-activated protein kinase (p38 MAPK), human epidermal growth factor receptor-2, and nuclear factor kappaB pathways. In addition, cutting-edge targeting of cancer stem cells by metformin is summarized.

  15. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer.

    PubMed

    Liu, Qiuping; Luo, Qing; Halim, Alexander; Song, Guanbin

    2017-08-10

    One of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism. In addition, enhancing de novo fatty acid (FA) synthesis, increasing lipid uptake and lipolysis have also been considered as means of FA acquisition in cancer cells. FAs are involved in various aspects of tumourigenesis and tumour progression. Therefore, targeting lipid metabolism is a promising therapeutic strategy for human cancer. Recent studies have shown that reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid signals during cancer progression. Moreover, accumulation of lipid droplets in cancer cells acts as a pivotal adaptive response to harmful conditions. Here, we provide a brief review of the crucial roles of FA metabolism in cancer development, and place emphasis on FA origin, utilization and storage in cancer cells. Understanding the regulation of lipid metabolism in cancer cells has important implications for exploring a new therapeutic strategy for management and treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Tracking Multiple Video Targets with an Improved GM-PHD Tracker

    PubMed Central

    Zhou, Xiaolong; Yu, Hui; Liu, Honghai; Li, Youfu

    2015-01-01

    Tracking multiple moving targets from a video plays an important role in many vision-based robotic applications. In this paper, we propose an improved Gaussian mixture probability hypothesis density (GM-PHD) tracker with weight penalization to effectively and accurately track multiple moving targets from a video. First, an entropy-based birth intensity estimation method is incorporated to eliminate the false positives caused by noisy video data. Then, a weight-penalized method with multi-feature fusion is proposed to accurately track the targets in close movement. For targets without occlusion, a weight matrix that contains all updated weights between the predicted target states and the measurements is constructed, and a simple, but effective method based on total weight and predicted target state is proposed to search the ambiguous weights in the weight matrix. The ambiguous weights are then penalized according to the fused target features that include spatial-colour appearance, histogram of oriented gradient and target area and further re-normalized to form a new weight matrix. With this new weight matrix, the tracker can correctly track the targets in close movement without occlusion. For targets with occlusion, a robust game-theoretical method is used. Finally, the experiments conducted on various video scenarios validate the effectiveness of the proposed penalization method and show the superior performance of our tracker over the state of the art. PMID:26633422

  17. Mitochondrial Metabolism as a Treatment Target in Anaplastic Thyroid Cancer

    PubMed Central

    Johnson, Jennifer M; Lai, Stephen Y.; Cotzia, Paolo; Cognetti, David; Luginbuhl, Adam; Pribitkin, Edmund A.; Zhan, Tingting; Mollaee, Mehri; Domingo-Vidal, Marina; Chen, Yunyun; Campling, Barbara; Bar-Ad, Voichita; Birbe, Ruth; Tuluc, Madalina; Outschoorn, Ubaldo Martinez; Curry, Joseph

    2015-01-01

    Aims Anaplastic thyroid cancer (ATC) is one of the most aggressive human cancers. Key signal transduction pathways that regulate mitochondrial metabolism are frequently altered in ATC. Our goal was to determine the mitochondrial metabolic phenotype of ATC by studying markers of mitochondrial metabolism, specifically Monocarboxylate Transporter 1 (MCT1) and Translocase of the Outer Mitochondrial Membrane Member 20 (TOMM20). Methods Staining patterns of MCT1 and TOMM20 in 35 human thyroid samples (15 ATC, 12 papillary thyroid cancer (PTC), and 8 non-cancerous thyroid) and 9 ATC mouse orthotopic xenografts were assessed by visual and Aperio digital scoring. Staining patterns of areas involved with cancer versus areas with no evidence of cancer were evaluated independently where available. Results MCT1 is highly expressed in human anaplastic thyroid cancer when compared to both non-cancerous thyroid tissues and papillary thyroid cancers (p<0.001 for both). TOMM20 is also highly expressed in both ATC and PTC compared to non-cancerous thyroid tissue (p<0.01 for both). High MCT1 and TOMM20 expression is also found in ATC mouse xenograft tumors compared to non-cancerous thyroid tissue (p<0.001). These xenograft tumors have high 13C- pyruvate uptake. Conclusions Anaplastic thyroid cancer has metabolic features that distinguish it from PTC and non-cancerous thyroid tissue, including high expression of MCT1 and TOMM20. PTC has low expression of MCT1 and non-cancerous thyroid tissue has low expression of both MCT1 and TOMM20. This work suggests that MCT1 blockade may specifically target ATC cells presenting an opportunity for a new drug target. PMID:26615136

  18. Mitochondrial Metabolism as a Treatment Target in Anaplastic Thyroid Cancer.

    PubMed

    Johnson, Jennifer M; Lai, Stephen Y; Cotzia, Paolo; Cognetti, David; Luginbuhl, Adam; Pribitkin, Edmund A; Zhan, Tingting; Mollaee, Mehri; Domingo-Vidal, Marina; Chen, Yunyun; Campling, Barbara; Bar-Ad, Voichita; Birbe, Ruth; Tuluc, Madalina; Martinez Outschoorn, Ubaldo; Curry, Joseph

    2015-12-01

    Anaplastic thyroid cancer (ATC) is one of the most aggressive human cancers. Key signal transduction pathways that regulate mitochondrial metabolism are frequently altered in ATC. Our goal was to determine the mitochondrial metabolic phenotype of ATC by studying markers of mitochondrial metabolism, specifically monocarboxylate transporter 1 (MCT1) and translocase of the outer mitochondrial membrane member 20 (TOMM20). Staining patterns of MCT1 and TOMM20 in 35 human thyroid samples (15 ATC, 12 papillary thyroid cancer [PTC], and eight non-cancerous thyroid) and nine ATC mouse orthotopic xenografts were assessed by visual and Aperio digital scoring. Staining patterns of areas involved with cancer versus areas with no evidence of cancer were evaluated independently where available. MCT1 is highly expressed in human anaplastic thyroid cancer when compared to both non-cancerous thyroid tissues and papillary thyroid cancers (P<.001 for both). TOMM20 is also highly expressed in both ATC and PTC compared to non-cancerous thyroid tissue (P<.01 for both). High MCT1 and TOMM20 expression is also found in ATC mouse xenograft tumors compared to non-cancerous thyroid tissue (P<.001). These xenograft tumors have high (13)C- pyruvate uptake. ATC has metabolic features that distinguish it from PTC and non-cancerous thyroid tissue, including high expression of MCT1 and TOMM20. PTC has low expression of MCT1 and non-cancerous thyroid tissue has low expression of both MCT1 and TOMM20. This work suggests that MCT1 blockade may specifically target ATC cells presenting an opportunity for a new drug target. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics

    PubMed Central

    Vorrink, Sabine U.; Ullah, Shahid; Schmidt, Staffan; Nandania, Jatin; Velagapudi, Vidya; Beck, Olof; Ingelman-Sundberg, Magnus; Lauschke, Volker M.

    2017-01-01

    Adverse reactions or lack of response to medications are important concerns for drug development programs. However, faithful predictions of drug metabolism and toxicity are difficult because animal models show only limited translatability to humans. Furthermore, current in vitro systems, such as hepatic cell lines or primary human hepatocyte (PHH) 2-dimensional (2D) monolayer cultures, can be used only for acute toxicity tests because of their immature phenotypes and inherent instability. Therefore, the migration to novel phenotypically stable models is of prime importance for the pharmaceutical industry. Novel 3-dimensional (3D) culture systems have been shown to accurately mimic in vivo hepatic phenotypes on transcriptomic and proteomic level, but information about their metabolic stability is lacking. Using a combination of targeted and untargeted high-resolution mass spectrometry, we found that PHHs in 3D spheroid cultures remained metabolically stable for multiple weeks, whereas metabolic patterns of PHHs from the same donors cultured as conventional 2D monolayers rapidly deteriorated. Furthermore, pharmacokinetic differences between donors were maintained in 3D spheroid cultures, enabling studies of interindividual variability in drug metabolism and toxicity. We conclude that the 3D spheroid system is metabolically stable and constitutes a suitable model for in vitro studies of long-term drug metabolism and pharmacokinetics.—Vorrink, S. U., Ullah, S., Schmid, S., Nandania, J., Velagapudi, V., Beck, O., Ingelman-Sundberg, M., Lauschke, V. M. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. PMID:28264975

  20. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics.

    PubMed

    Vorrink, Sabine U; Ullah, Shahid; Schmidt, Staffan; Nandania, Jatin; Velagapudi, Vidya; Beck, Olof; Ingelman-Sundberg, Magnus; Lauschke, Volker M

    2017-06-01

    Adverse reactions or lack of response to medications are important concerns for drug development programs. However, faithful predictions of drug metabolism and toxicity are difficult because animal models show only limited translatability to humans. Furthermore, current in vitro systems, such as hepatic cell lines or primary human hepatocyte (PHH) 2-dimensional (2D) monolayer cultures, can be used only for acute toxicity tests because of their immature phenotypes and inherent instability. Therefore, the migration to novel phenotypically stable models is of prime importance for the pharmaceutical industry. Novel 3-dimensional (3D) culture systems have been shown to accurately mimic in vivo hepatic phenotypes on transcriptomic and proteomic level, but information about their metabolic stability is lacking. Using a combination of targeted and untargeted high-resolution mass spectrometry, we found that PHHs in 3D spheroid cultures remained metabolically stable for multiple weeks, whereas metabolic patterns of PHHs from the same donors cultured as conventional 2D monolayers rapidly deteriorated. Furthermore, pharmacokinetic differences between donors were maintained in 3D spheroid cultures, enabling studies of interindividual variability in drug metabolism and toxicity. We conclude that the 3D spheroid system is metabolically stable and constitutes a suitable model for in vitro studies of long-term drug metabolism and pharmacokinetics.-Vorrink, S. U., Ullah, S., Schmid, S., Nandania, J., Velagapudi, V., Beck, O., Ingelman-Sundberg, M., Lauschke, V. M. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. © The Author(s).

  1. Incorporating multiple secondary targets into learning trials for individuals with autism spectrum disorder.

    PubMed

    Nottingham, Casey L; Vladescu, Jason C; Kodak, Tiffany; Kisamore, April N

    2017-07-01

    The current study examined the outcome of presenting multiple secondary targets in learning trials for individuals with autism spectrum disorder. We compared conditions in which (a) a secondary target was presented in the antecedent and consequence of trials, (b) two secondary targets were presented in the consequence of trials, (c) one secondary target was presented in the consequence of each trial, and (d) no additional targets were presented trials. The participants acquired the majority of secondary targets. Presenting one or multiple secondary targets per trial, regardless of the location of these secondary targets, increased the efficiency of instruction in comparison to a condition with no secondary target. © 2017 Society for the Experimental Analysis of Behavior.

  2. Optoelectronic System Measures Distances to Multiple Targets

    NASA Technical Reports Server (NTRS)

    Liebe, Carl Christian; Abramovici, Alexander; Bartman, Randall; Chapsky, Jacob; Schmalz, John; Coste, Keith; Litty, Edward; Lam, Raymond; Jerebets, Sergei

    2007-01-01

    An optoelectronic metrology apparatus now at the laboratory-prototype stage of development is intended to repeatedly determine distances of as much as several hundred meters, at submillimeter accuracy, to multiple targets in rapid succession. The underlying concept of optoelectronic apparatuses that can measure distances to targets is not new; such apparatuses are commonly used in general surveying and machining. However, until now such apparatuses have been, variously, constrained to (1) a single target or (2) multiple targets with a low update rate and a requirement for some a priori knowledge of target geometry. When fully developed, the present apparatus would enable measurement of distances to more than 50 targets at an update rate greater than 10 Hz, without a requirement for a priori knowledge of target geometry. The apparatus (see figure) includes a laser ranging unit (LRU) that includes an electronic camera (photo receiver), the field of view of which contains all relevant targets. Each target, mounted at a fiducial position on an object of interest, consists of a small lens at the output end of an optical fiber that extends from the object of interest back to the LRU. For each target and its optical fiber, there is a dedicated laser that is used to illuminate the target via the optical fiber. The targets are illuminated, one at a time, with laser light that is modulated at a frequency of 10.01 MHz. The modulated laser light is emitted by the target, from where it returns to the camera (photodetector), where it is detected. Both the outgoing and incoming 10.01-MHz laser signals are mixed with a 10-MHz local-oscillator to obtain beat notes at 10 kHz, and the difference between the phases of the beat notes is measured by a phase meter. This phase difference serves as a measure of the total length of the path traveled by light going out through the optical fiber and returning to the camera (photodetector) through free space. Because the portion of the path

  3. Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes

    PubMed Central

    Lobel, Lior; Herskovits, Anat A.

    2016-01-01

    Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chained amino acids (BCAAs) serve as a ligand for CodY and modulate its activity. Classically, CodY was considered to function primarily as a repressor under rich growth conditions. However, our previous studies of the bacterial pathogen Listeria monocytogenes revealed that CodY is active also when the bacteria are starved for BCAAs. Under these conditions, CodY loses the ability to repress genes (e.g., metabolic genes) and functions as a direct activator of the master virulence regulator gene, prfA. This observation raised the possibility that CodY possesses multiple functions that allow it to coordinate gene expression across a wide spectrum of metabolic growth conditions, and thus better adapt bacteria to the mammalian niche. To gain a deeper understanding of CodY’s regulatory repertoire and identify direct target genes, we performed a genome wide analysis of the CodY regulon and DNA binding under both rich and minimal growth conditions, using RNA-Seq and ChIP-Seq techniques. We demonstrate here that CodY is indeed active (i.e., binds DNA) under both conditions, serving as a repressor and activator of different genes. Further, we identified new genes and pathways that are directly regulated by CodY (e.g., sigB, arg, his, actA, glpF, gadG, gdhA, poxB, glnR and fla genes), integrating metabolism, stress responses, motility and virulence in L. monocytogenes. This study establishes CodY as a multifaceted factor regulating L. monocytogenes physiology in a highly versatile manner. PMID:26895237

  4. Genome-Wide Association Study with Targeted and Non-targeted NMR Metabolomics Identifies 15 Novel Loci of Urinary Human Metabolic Individuality

    PubMed Central

    Raffler, Johannes; Friedrich, Nele; Arnold, Matthias; Kacprowski, Tim; Rueedi, Rico; Altmaier, Elisabeth; Bergmann, Sven; Budde, Kathrin; Gieger, Christian; Homuth, Georg; Pietzner, Maik; Römisch-Margl, Werner; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wallaschofski, Henri; Nauck, Matthias; Völker, Uwe; Kastenmüller, Gabi; Suhre, Karsten

    2015-01-01

    Genome-wide association studies with metabolic traits (mGWAS) uncovered many genetic variants that influence human metabolism. These genetically influenced metabotypes (GIMs) contribute to our metabolic individuality, our capacity to respond to environmental challenges, and our susceptibility to specific diseases. While metabolic homeostasis in blood is a well investigated topic in large mGWAS with over 150 known loci, metabolic detoxification through urinary excretion has only been addressed by few small mGWAS with only 11 associated loci so far. Here we report the largest mGWAS to date, combining targeted and non-targeted 1H NMR analysis of urine samples from 3,861 participants of the SHIP-0 cohort and 1,691 subjects of the KORA F4 cohort. We identified and replicated 22 loci with significant associations with urinary traits, 15 of which are new (HIBCH, CPS1, AGXT, XYLB, TKT, ETNPPL, SLC6A19, DMGDH, SLC36A2, GLDC, SLC6A13, ACSM3, SLC5A11, PNMT, SLC13A3). Two-thirds of the urinary loci also have a metabolite association in blood. For all but one of the 6 loci where significant associations target the same metabolite in blood and urine, the genetic effects have the same direction in both fluids. In contrast, for the SLC5A11 locus, we found increased levels of myo-inositol in urine whereas mGWAS in blood reported decreased levels for the same genetic variant. This might indicate less effective re-absorption of myo-inositol in the kidneys of carriers. In summary, our study more than doubles the number of known loci that influence urinary phenotypes. It thus allows novel insights into the relationship between blood homeostasis and its regulation through excretion. The newly discovered loci also include variants previously linked to chronic kidney disease (CPS1, SLC6A13), pulmonary hypertension (CPS1), and ischemic stroke (XYLB). By establishing connections from gene to disease via metabolic traits our results provide novel hypotheses about molecular mechanisms

  5. Metabolic abnormalities in pituitary adenoma patients: a novel therapeutic target and prognostic factor

    PubMed Central

    Zheng, Xin; Li, Song; Zhang, Wei-hua; Yang, Hui

    2015-01-01

    Metabolic abnormalities are common in cancers, and targeting metabolism is emerging as a novel therapeutic approach to cancer management. Pituitary adenoma (PA) is a type of benign tumor. Impairment of tumor cells’ metabolism in PA seems not to be as apparent as that of other malignant tumor cells; however, aberrant hormone secretion is conspicuous in most PAs. Hormones have direct impacts on systemic metabolism, which in turn, may affect the progression of PA. Nowadays, conventional therapeutic strategies for PA do not include modalities of adjusting whole-body metabolism, which is most likely due to the current consideration of the aberrant whole-body metabolism of PA patients as a passive associated symptom and not involved in PA progression. Because systemic metabolic abnormalities are presented by 22.3%–52.5% PA patients and are closely correlated with disease progression and prognosis, we propose that assessment of metabolic status should be emphasized during the treatment of PA and that control of metabolic abnormalities should be added into the current therapies for PA. PMID:26347444

  6. A covariant multiple scattering series for elastic projectile-target scattering

    NASA Technical Reports Server (NTRS)

    Gross, Franz; Maung-Maung, Khin

    1989-01-01

    A covariant formulation of the multiple scattering series for the optical potential is presented. The case of a scalar nucleon interacting with a spin zero isospin zero A-body target through meson exchange, is considered. It is shown that a covariant equation for the projectile-target t-matrix can be obtained which sums the ladder and crossed ladder diagrams efficiently. From this equation, a multiple scattering series for the optical potential is derived, and it is shown that in the impulse approximation, the two-body t-matrix associated with the first order optical potential is the one in which one particle is kept on mass-shell. The meaning of various terms in the multiple scattering series is given. The construction of the first-order optical potential for elastic scattering calculations is described.

  7. Quantum partial search for uneven distribution of multiple target items

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Korepin, Vladimir

    2018-06-01

    Quantum partial search algorithm is an approximate search. It aims to find a target block (which has the target items). It runs a little faster than full Grover search. In this paper, we consider quantum partial search algorithm for multiple target items unevenly distributed in a database (target blocks have different number of target items). The algorithm we describe can locate one of the target blocks. Efficiency of the algorithm is measured by number of queries to the oracle. We optimize the algorithm in order to improve efficiency. By perturbation method, we find that the algorithm runs the fastest when target items are evenly distributed in database.

  8. Interplay between cancer cell cycle and metabolism: Challenges, targets and therapeutic opportunities.

    PubMed

    Roy, Debmalya; Sheng, Gao Ying; Herve, Semukunzi; Carvalho, Evandro; Mahanty, Arpan; Yuan, Shengtao; Sun, Li

    2017-05-01

    A growing interest has emerged in the field of studying the cross-talk between cancer cell cycle and metabolism. In this review, we aimed to present how metabolism and cell cycle are correlated and how cancer cells get energy to drive cell cycle. Cell proliferation and cell death largely depend on the metabolic activity of the cell. Cell cycle proteins, e.g. cyclin D, cyclin dependent kinase (CDK), some pro-apoptotic and anti-apoptotic proteins, and P53 have been shown to be regulated by metabolic crosstalk. Dysregulation of this cross-talk between metabolism and cell cycle leads to degenerative disorder(s) and cancer. It is not fully understood the actual reason of aberration between metabolism and cell cycle, but it is a hallmark of cancer research. Herein, we discussed the role of some regulatory molecules relative of cell cycle and metabolism and highlight how they control the function of each other. We also pointed out, current therapeutic opportunities and some additional crucial therapeutic targets on these fields that could be a breakthrough in cancer research. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Hyperspectral target detection using manifold learning and multiple target spectra

    DOE PAGES

    Ziemann, Amanda K.; Theiler, James; Messinger, David W.

    2016-03-31

    Imagery collected from satellites and airborne platforms provides an important tool for remotely analyzing the content of a scene. In particular, the ability to remotely detect a specific material within a scene is of critical importance in nonproliferation and other applications. The sensor systems that process hyperspectral images collect the high-dimensional spectral information necessary to perform these detection analyses. For a d-dimensional hyperspectral image, however, where d is the number of spectral bands, it is common for the data to inherently occupy an m-dimensional space with m << d. In the remote sensing community, this has led to recent interestmore » in the use of manifold learning, which seeks to characterize the embedded lower-dimensional, nonlinear manifold that the data discretely approximate. The research presented in this paper focuses on a graph theory and manifold learning approach to target detection, using an adaptive version of locally linear embedding that is biased to separate target pixels from background pixels. Finally, this approach incorporates multiple target signatures for a particular material, accounting for the spectral variability that is often present within a solid material of interest.« less

  10. In search of druggable targets for GBM amino acid metabolism.

    PubMed

    Panosyan, Eduard H; Lin, Henry J; Koster, Jan; Lasky, Joseph L

    2017-02-28

    Amino acid (AA) pathways may contain druggable targets for glioblastoma (GBM). Literature reviews and GBM database ( http://r2.amc.nl ) analyses were carried out to screen for such targets among 95 AA related enzymes. First, we identified the genes that were differentially expressed in GBMs (3 datasets) compared to non-GBM brain tissues (5 datasets), or were associated with survival differences. Further, protein expression for these enzymes was also analyzed in high grade gliomas (HGGs) (proteinatlas.org). Finally, AA enzyme and gene expression were compared among the 4 TCGA (The Cancer Genome Atlas) subtypes of GBMs. We detected differences in enzymes involved in glutamate and urea cycle metabolism in GBM. For example, expression levels of BCAT1 (branched chain amino acid transferase 1) and ASL (argininosuccinate lyase) were high, but ASS1 (argininosuccinate synthase 1) was low in GBM. Proneural and neural TCGA subtypes had low expression of all three. High expression of all three correlated with worse outcome. ASL and ASS1 protein levels were mostly undetected in high grade gliomas, whereas BCAT1 was high. GSS (glutathione synthetase) was not differentially expressed, but higher levels were linked to poor progression free survival. ASPA (aspartoacylase) and GOT1 (glutamic-oxaloacetic transaminase 1) had lower expression in GBM (associated with poor outcomes). All three GABA related genes -- glutamate decarboxylase 1 (GAD1) and 2 (GAD2) and 4-aminobutyrate aminotransferase (ABAT) -- were lower in mesenchymal tumors, which in contrast showed higher IDO1 (indoleamine 2, 3-dioxygenase 1) and TDO2 (tryptophan 2, 3-diaxygenase). Expression of PRODH (proline dehydrogenase), a putative tumor suppressor, was lower in GBM. Higher levels predicted poor survival. Several AA-metabolizing enzymes that are higher in GBM, are also linked to poor outcome (such as BCAT1), which makes them potential targets for therapeutic inhibition. Moreover, existing drugs that deplete

  11. Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets.

    PubMed

    Rienksma, Rienk A; Suarez-Diez, Maria; Spina, Lucie; Schaap, Peter J; Martins dos Santos, Vitor A P

    2014-12-01

    Systems-level metabolic network reconstructions and the derived constraint-based (CB) mathematical models are efficient tools to explore bacterial metabolism. Approximately one-fourth of the Mycobacterium tuberculosis (Mtb) genome contains genes that encode proteins directly involved in its metabolism. These represent potential drug targets that can be systematically probed with CB models through the prediction of genes essential (or the combination thereof) for the pathogen to grow. However, gene essentiality depends on the growth conditions and, so far, no in vitro model precisely mimics the host at the different stages of mycobacterial infection, limiting model predictions. These limitations can be circumvented by combining expression data from in vivo samples with a validated CB model, creating an accurate description of pathogen metabolism in the host. To this end, we present here a thoroughly curated and extended genome-scale CB metabolic model of Mtb quantitatively validated using 13C measurements. We describe some of the efforts made in integrating CB models and high-throughput data to generate condition specific models, and we will discuss challenges ahead. This knowledge and the framework herein presented will enable to identify potential new drug targets, and will foster the development of optimal therapeutic strategies. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Dietary Leucine - An Environmental Modifier of Insulin Resistance Acting on Multiple Levels of Metabolism

    PubMed Central

    Macotela, Yazmin; Emanuelli, Brice; Bång, Anneli M.; Espinoza, Daniel O.; Boucher, Jeremie; Beebe, Kirk; Gall, Walter; Kahn, C. Ronald

    2011-01-01

    Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor—leucine—can modify insulin resistance by acting on multiple tissues and at multiple levels of metabolism. Mice were placed on a normal or high fat diet (HFD). Dietary leucine was doubled by addition to the drinking water. mRNA, protein and complete metabolomic profiles were assessed in the major insulin sensitive tissues and serum, and correlated with changes in glucose homeostasis and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid metabolites, TCA cycle intermediates, glucose and cholesterol metabolites, and fatty acids in liver, muscle, fat and serum. Doubling dietary leucine reversed many of the metabolite abnormalities and caused a marked improvement in glucose tolerance and insulin signaling without altering food intake or weight gain. Increased dietary leucine was also associated with a decrease in hepatic steatosis and a decrease in inflammation in adipose tissue. These changes occurred despite an increase in insulin-stimulated phosphorylation of p70S6 kinase indicating enhanced activation of mTOR, a phenomenon normally associated with insulin resistance. These data indicate that modest changes in a single environmental/nutrient factor can modify multiple metabolic and signaling pathways and modify HFD induced metabolic syndrome by acting at a systemic level on multiple tissues. These data also suggest that increasing dietary leucine may provide an adjunct in the management of obesity-related insulin resistance. PMID:21731668

  13. Metabolic assessment of the action of targeted cancer therapeutics using magnetic resonance spectroscopy

    PubMed Central

    Beloueche-Babari, M; Chung, Y-L; Al-Saffar, N M S; Falck-Miniotis, M; Leach, M O

    2009-01-01

    Developing rational targeted cancer drugs requires the implementation of pharmacodynamic (PD), preferably non-invasive, biomarkers to aid response assessment and patient follow-up. Magnetic resonance spectroscopy (MRS) allows the non-invasive study of tumour metabolism. We describe the MRS-detectable PD biomarkers resulting from the action of targeted therapeutics, and discuss their biological significance and future translation into clinical use. PMID:19935796

  14. Fibroblast activation protein (FAP) as a novel metabolic target.

    PubMed

    Sánchez-Garrido, Miguel Angel; Habegger, Kirk M; Clemmensen, Christoffer; Holleman, Cassie; Müller, Timo D; Perez-Tilve, Diego; Li, Pengyun; Agrawal, Archita S; Finan, Brian; Drucker, Daniel J; Tschöp, Matthias H; DiMarchi, Richard D; Kharitonenkov, Alexei

    2016-10-01

    Fibroblast activation protein (FAP) is a serine protease belonging to a S9B prolyl oligopeptidase subfamily. This enzyme has been implicated in cancer development and recently reported to regulate degradation of FGF21, a potent metabolic hormone. Using a known FAP inhibitor, talabostat (TB), we explored the impact of FAP inhibition on metabolic regulation in mice. To address this question we evaluated the pharmacology of TB in various mouse models including those deficient in FGF21, GLP1 and GIP signaling. We also studied the ability of FAP to process FGF21 in vitro and TB to block FAP enzymatic activity. TB administration to diet-induced obese (DIO) animals led to profound decreases in body weight, reduced food consumption and adiposity, increased energy expenditure, improved glucose tolerance and insulin sensitivity, and lowered cholesterol levels. Total and intact plasma FGF21 were observed to be elevated in TB-treated DIO mice but not lean animals where the metabolic impact of TB was significantly attenuated. Furthermore, and in stark contrast to naïve DIO mice, the administration of TB to obese FGF21 knockout animals demonstrated no appreciable effect on body weight or any other measures of metabolism. In support of these results we observed no enzymatic degradation of human FGF21 at either end of the protein when FAP was inhibited in vitro by TB. We conclude that pharmacological inhibition of FAP enhances levels of FGF21 in obese mice to provide robust metabolic benefits not observed in lean animals, thus validating this enzyme as a novel drug target for the treatment of obesity and diabetes.

  15. Targeting SIRT1 to improve metabolism: all you need is NAD+?

    PubMed Central

    Cantó, Carles; Auwerx, Johan

    2013-01-01

    SIRT1 is an evolutionary conserved NAD+-dependent deacetylase that is at the pinnacle of metabolic control, all the way from yeast to humans. SIRT1 senses changes in intracellular NAD+ levels, which reflect energy level, and uses this information to adapt the cellular energy output, such that the it matches cellular energy requirements. Generally, but not exclusively, the changes induced by SIRT1 activation are transcriptional in nature and are related to an increase in mitochondrial metabolism and antioxidant protection. These attractive features have validated SIRT1 as a therapeutic target in the management of metabolic disease and prompted an intensive search to identify pharmacological SIRT1 activators. In this review we will first give an overview of the SIRT1 biology with a particular focus on its role in metabolic control. We will then analyze the pros and cons of the current strategies used to activate SIRT1 and explore the emerging evidence indicating that modulation of NAD+ levels could provide an effective way to achieve such goals. PMID:22106091

  16. Cerebral white matter blood flow and energy metabolism in multiple sclerosis.

    PubMed

    Steen, Christel; D'haeseleer, Miguel; Hoogduin, Johannes M; Fierens, Yves; Cambron, Melissa; Mostert, Jop P; Heersema, Dorothea J; Koch, Marcus W; De Keyser, Jacques

    2013-09-01

    Cerebral blood flow (CBF) is reduced in normal-appearing white matter (NAWM) of subjects with multiple sclerosis (MS), but the underlying mechanism is unknown. The objective of this article is to assess the relationship between reduced NAWM CBF and both axonal mitochondrial metabolism and astrocytic phosphocreatine (PCr) metabolism. Ten healthy controls and 25 MS subjects were studied with 3 Tesla magnetic resonance imaging. CBF was measured using pseudo-continuous arterial spin labeling. N-acetylaspartate/creatine (NAA/Cr) ratios (axonal mitochondrial metabolism) were obtained using (1)H-MR spectroscopy and PCr/β-ATP ratios using (31)P-MR spectroscopy. In centrum semiovale NAWM, we assessed correlations between CBF and both NAA/Cr and PCr/β-ATP ratios. Subjects with MS had a widespread reduction in CBF of NAWM (centrum semiovale, periventricular, frontal and occipital), and gray matter (frontoparietal cortex and thalamus). Compared to controls, NAA/Cr in NAWM of the centrum semiovale of MS subjects was decreased, whereas PCr/β-ATP was increased. We found no correlations between CBF and PCr/β-ATP. CBF and NAA/Cr correlated in controls (p = 0.02), but not in MS subjects (p = 0.68). Our results suggest that in MS patients there is no relationship between reduced CBF in NAWM and impaired axonal mitochondrial metabolism or astrocytic PCr metabolism.

  17. The Co-Metabolism within the Gut-Brain Metabolic Interaction: Potential Targets for Drug Treatment and Design.

    PubMed

    Obrenovich, Mark; Flückiger, Rudolf; Sykes, Lorraine; Donskey, Curtis

    2016-01-01

    We know that within the complex mammalian gut is any number of metabolic biomes. The gut has been sometimes called the "second brain" within the "gut-brain axis". A more informative term would be the gut-brain metabolic interactome, which is coined here to underscore the relationship between the digestive system and cognitive function or dysfunction as the case may be. Co-metabolism between the host and the intestinal microbiota is essential for life's processes. How diet, lifestyle, antibiotics and other factors shape the gut microbiome constitutes a rapidly growing area of research. Conversely, the gut microbiome also affects mammalian systems. Metabolites of the gut-brain axis are potential targets for treatment and drug design since the interaction or biochemical interplay results in net metabolite production or end-products with either positive or negative effects on human health. This review explores the gut-brain metabolic interactome, with particular emphasis on drug design and treatment strategies and how commensal bacteria or their disruption lead to dysbiosis and the effect this has on neurochemistry. Increasing data indicate that the intestinal microbiome can affect neurobiology, from mental and even behavioral health to memory, depression, mood, anxiety, obesity, cravings and even the creation and maintenance of the blood brain barrier.

  18. Visceral adiposity as a target for the management of the metabolic syndrome.

    PubMed

    Kishida, Ken; Funahashi, Tohru; Matsuzawa, Yuji; Shimomura, Iichiro

    2012-05-01

    Atherosclerosis, the underlying cause of atherosclerotic cardiovascular disease (ACVD), develops due not only to a single cardiovascular risk factor but to a variety of complex factors. The concept of the multiple cardiometabolic risk factor clustering syndrome has been proposed as a highly atherogenic state, independent of hypercholesterolemia and smoking. Body fat distribution, especially visceral fat accumulation, is a major correlate of a cluster of diabetogenic, atherogenic, prothrombotic, and proinflammatory metabolic abnormalities referred to as the metabolic syndrome, with dysfunctional adipocytes and dysregulated production of adipocytokines (hypoadiponectinemia). Medical research has focused on visceral adiposity as an important component of the syndrome in Japanese subjects with a mild degree of adiposity compared with Western subjects. For the prevention of ACVD at least in Japan, it might be practical to stratify subjects with multiple risk factors for atherosclerotic cardiovascular disease based on visceral fat accumulation. Visceral fat reduction through health promotion programs using risk factor-oriented approaches may be effective in reducing ACVD events, as well as producing improvement in risks and hypoadiponectinemia. This review article discusses visceral adiposity as a key player in the syndrome. Visceral fat reduction with life-style modification is a potentially useful strategy in the prevention of ACVD in patients with the metabolic syndrome.

  19. Dual role of K ATP channel C-terminal motif in membrane targeting and metabolic regulation.

    PubMed

    Kline, Crystal F; Kurata, Harley T; Hund, Thomas J; Cunha, Shane R; Koval, Olha M; Wright, Patrick J; Christensen, Matthew; Anderson, Mark E; Nichols, Colin G; Mohler, Peter J

    2009-09-29

    The coordinated sorting of ion channels to specific plasma membrane domains is necessary for excitable cell physiology. K(ATP) channels, assembled from pore-forming (Kir6.x) and regulatory sulfonylurea receptor subunits, are critical electrical transducers of the metabolic state of excitable tissues, including skeletal and smooth muscle, heart, brain, kidney, and pancreas. Here we show that the C-terminal domain of Kir6.2 contains a motif conferring membrane targeting in primary excitable cells. Kir6.2 lacking this motif displays aberrant channel targeting due to loss of association with the membrane adapter ankyrin-B (AnkB). Moreover, we demonstrate that this Kir6.2 C-terminal AnkB-binding motif (ABM) serves a dual role in K(ATP) channel trafficking and membrane metabolic regulation and dysfunction in these pathways results in human excitable cell disease. Thus, the K(ATP) channel ABM serves as a previously unrecognized bifunctional touch-point for grading K(ATP) channel gating and membrane targeting and may play a fundamental role in controlling excitable cell metabolic regulation.

  20. A unique role of endogenous visual-spatial attention in rapid processing of multiple targets

    PubMed Central

    Guzman, Emmanuel; Grabowecky, Marcia; Palafox, German; Suzuki, Satoru

    2012-01-01

    Visual spatial attention can be exogenously captured by a salient stimulus or can be endogenously allocated by voluntary effort. Whether these two attention modes serve distinctive functions is debated, but for processing of single targets the literature suggests superiority of exogenous attention (it is faster acting and serves more functions). We report that endogenous attention uniquely contributes to processing of multiple targets. For speeded visual discrimination, response times are faster for multiple redundant targets than for single targets due to probability summation and/or signal integration. This redundancy gain was unaffected when attention was exogenously diverted from the targets, but was completely eliminated when attention was endogenously diverted. This was not due to weaker manipulation of exogenous attention because our exogenous and endogenous cues similarly affected overall response times. Thus, whereas exogenous attention is superior for processing single targets, endogenous attention plays a unique role in allocating resources crucial for rapid concurrent processing of multiple targets. PMID:21517209

  1. Multiple operating system rotation environment moving target defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Nathaniel; Thompson, Michael

    Systems and methods for providing a multiple operating system rotation environment ("MORE") moving target defense ("MTD") computing system are described. The MORE-MTD system provides enhanced computer system security through a rotation of multiple operating systems. The MORE-MTD system increases attacker uncertainty, increases the cost of attacking the system, reduces the likelihood of an attacker locating a vulnerability, and reduces the exposure time of any located vulnerability. The MORE-MTD environment is effectuated by rotation of the operating systems at a given interval. The rotating operating systems create a consistently changing attack surface for remote attackers.

  2. The role of bile acids in metabolic regulation.

    PubMed

    Vítek, Libor; Haluzík, Martin

    2016-03-01

    Bile acids (BA), long believed to only have lipid-digestive functions, have emerged as novel metabolic modulators. They have important endocrine effects through multiple cytoplasmic as well as nuclear receptors in various organs and tissues. BA affect multiple functions to control energy homeostasis, as well as glucose and lipid metabolism, predominantly by activating the nuclear farnesoid X receptor and the cytoplasmic G protein-coupled BA receptor TGR5 in a variety of tissues. However, BA also are aimed at many other cellular targets in a wide array of organs and cell compartments. Their role in the pathogenesis of diabetes, obesity and other 'diseases of civilization' becomes even more clear. They also interact with the gut microbiome, with important clinical implications, further extending the complexity of their biological functions. Therefore, it is not surprising that BA metabolism is substantially modulated by bariatric surgery, a phenomenon contributing favorably to the therapeutic effects of these surgical procedures. Based on these data, several therapeutic approaches to ameliorate obesity and diabetes have been proposed to affect the cellular targets of BA. © 2016 Society for Endocrinology.

  3. Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions.

    PubMed

    Nijland, Philip G; Molenaar, Remco J; van der Pol, Susanne M A; van der Valk, Paul; van Noorden, Cornelis J F; de Vries, Helga E; van Horssen, Jack

    2015-12-04

    Demyelinated axons in multiple sclerosis (MS) lesions have an increased energy demand in order to maintain conduction. However, oxidative stress-induced mitochondrial dysfunction likely alters glucose metabolism and consequently impairs neuronal function in MS. Imaging and pathological studies indicate that glucose metabolism is altered in MS, although the underlying mechanisms and its role in neurodegeneration remain elusive. We investigated expression patterns of key enzymes involved in glycolysis, tricarboxylic acid (TCA) cycle and lactate metabolism in well-characterized MS tissue to establish which regulators of glucose metabolism are involved in MS and to identify underlying mechanisms. Expression levels of glycolytic enzymes were increased in active and inactive MS lesions, whereas expression levels of enzymes involved in the TCA cycle were upregulated in active MS lesions, but not in inactive MS lesions. We observed reduced expression and production capacity of mitochondrial α-ketoglutarate dehydrogenase (αKGDH) in demyelinated axons, which correlated with signs of axonal dysfunction. In inactive lesions, increased expression of lactate-producing enzymes was observed in astrocytes, whereas lactate-catabolising enzymes were mainly detected in axons. Our results demonstrate that the expression of various enzymes involved in glucose metabolism is increased in both astrocytes and axons in active MS lesions. In inactive MS lesions, we provide evidence that astrocytes undergo a glycolytic shift resulting in enhanced astrocyte-axon lactate shuttling, which may be pivotal for the survival of demyelinated axons. In conclusion, we show that key enzymes involved in energy metabolism are differentially expressed in active and inactive MS lesions. Our findings imply that, in addition to reduced oxidative phosphorylation activity, other bioenergetic pathways are affected as well, which may contribute to ongoing axonal degeneration in MS.

  4. Multi-target detection and positioning in crowds using multiple camera surveillance

    NASA Astrophysics Data System (ADS)

    Huang, Jiahu; Zhu, Qiuyu; Xing, Yufeng

    2018-04-01

    In this study, we propose a pixel correspondence algorithm for positioning in crowds based on constraints on the distance between lines of sight, grayscale differences, and height in a world coordinates system. First, a Gaussian mixture model is used to obtain the background and foreground from multi-camera videos. Second, the hair and skin regions are extracted as regions of interest. Finally, the correspondences between each pixel in the region of interest are found under multiple constraints and the targets are positioned by pixel clustering. The algorithm can provide appropriate redundancy information for each target, which decreases the risk of losing targets due to a large viewing angle and wide baseline. To address the correspondence problem for multiple pixels, we construct a pixel-based correspondence model based on a similar permutation matrix, which converts the correspondence problem into a linear programming problem where a similar permutation matrix is found by minimizing an objective function. The correct pixel correspondences can be obtained by determining the optimal solution of this linear programming problem and the three-dimensional position of the targets can also be obtained by pixel clustering. Finally, we verified the algorithm with multiple cameras in experiments, which showed that the algorithm has high accuracy and robustness.

  5. Multiple targets detection method in detection of UWB through-wall radar

    NASA Astrophysics Data System (ADS)

    Yang, Xiuwei; Yang, Chuanfa; Zhao, Xingwen; Tian, Xianzhong

    2017-11-01

    In this paper, the problems and difficulties encountered in the detection of multiple moving targets by UWB radar are analyzed. The experimental environment and the penetrating radar system are established. An adaptive threshold method based on local area is proposed to effectively filter out clutter interference The objective of the moving target is analyzed, and the false target is further filtered out by extracting the target feature. Based on the correlation between the targets, the target matching algorithm is proposed to improve the detection accuracy. Finally, the effectiveness of the above method is verified by practical experiment.

  6. Waveform Optimization for Target Estimation by Cognitive Radar with Multiple Antennas.

    PubMed

    Yao, Yu; Zhao, Junhui; Wu, Lenan

    2018-05-29

    A new scheme based on Kalman filtering to optimize the waveforms of an adaptive multi-antenna radar system for target impulse response (TIR) estimation is presented. This work aims to improve the performance of TIR estimation by making use of the temporal correlation between successive received signals, and minimize the mean square error (MSE) of TIR estimation. The waveform design approach is based upon constant learning from the target feature at the receiver. Under the multiple antennas scenario, a dynamic feedback loop control system is established to real-time monitor the change in the target features extracted form received signals. The transmitter adapts its transmitted waveform to suit the time-invariant environment. Finally, the simulation results show that, as compared with the waveform design method based on the MAP criterion, the proposed waveform design algorithm is able to improve the performance of TIR estimation for extended targets with multiple iterations, and has a relatively lower level of complexity.

  7. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.

    PubMed

    Zhong, Hong; Ma, Minjuan; Liang, Tingming; Guo, Li

    2018-01-01

    In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  8. Calcium-phosphate metabolism in patients with multiple sclerosis.

    PubMed

    Kubicka-Baczyk, K; Labuz-Roszak, B; Pierzchala, K; Adamczyk-Sowa, M; Machowska-Majchrzak, A

    2015-06-01

    The purpose of this study was to evaluate the concentration of 25-hydroxycholecalciferol and parameters of calcium-phosphate metabolism at different periods of relapsing-remitting multiple sclerosis (RRMS). Forty-five patients, residents of Poland (49°-50°, N), were enrolled in the study, i.e. 15 immediately after the diagnosis of RRMS, 15 at the early stage and 15 at the advanced stage of RRMS. The results were compared to values obtained in 20 age- and sex-matched controls. Lower serum concentrations of 25-hydroxycholecalciferol and ionised calcium were found in patients compared to the control group. In patients with the disease duration of 5-6 years, concentrations of 25-hydroxycholecalciferol and ionised calcium were lower than in patients in the earlier period of RRMS. The inverse and clearer direction of changes was found in parathormone serum concentration in patients compared to the controls. In patients with a longer disease duration, a significantly lower 25-hydroxycholecalciferol concentration was found in female patients compared to male patients. In patients, more frequent 25-hydroxycholecalciferol and unsaturated fatty acids' supplementation was observed compared to the controls. In RRMS patients, calcium-phosphate metabolism is disturbed which increases during disease progression.

  9. Avidin-Based Targeting and Purification of a Protein IX-Modified, Metabolically Biotinylated Adenoviral Vector

    PubMed Central

    Campos, Samuel K.; Parrott, M. Brandon; Barry, Michael A.

    2014-01-01

    While genetic modification of adenoviral vectors can produce vectors with modified tropism, incorporation of targeting peptides/proteins into the structural context of the virion can also result in destruction of ligand targeting or virion integrity. To combat this problem, we have developed a versatile targeting system using metabolically biotinylated adenoviral vectors bearing biotinylated fiber proteins. These vectors have been demonstrated to be useful as a platform for avidin-based ligand screening and vector targeting by conjugating biotinylated ligands to the virus using high-affinity tetrameric avidin (Kd = 10−15 M). The biotinylated vector could also be purified by biotin-reversible binding on monomeric avidin (Kd = 10−7 M). In this report, a second metabolically biotinylated adenovirus vector, Ad-IX-BAP, has been engineered by fusing a biotin acceptor peptide (BAP) to the C-terminus of the adenovirus pIX protein. This biotinylated vector displays twice as many biotins and was markedly superior for single-step affinity purification on monomeric avidin resin. However, unlike the fiber-biotinylated vector, Ad-IX-BAP failed to retarget to cells with biotinylated antibodies including anti-CD71 against the transferrin receptor. In contrast, Ad-IX-BAP was retargeted if transferrin, the cognate ligand for CD71, was used as a ligand rather than the anti-CD71. This work demonstrates the utility of metabolic biotinylation as a molecular screening tool to assess the utility of different viral capsid proteins for ligand display and the biology and compatibility of different ligands and receptors for vector targeting applications. These results also demonstrate the utility of the pIX-biotinylated vector as a platform for gentle single-step affinity purification of adenoviral vectors. PMID:15194061

  10. Molecular Approach to Targeted Therapy for Multiple Sclerosis.

    PubMed

    Sherbet, Gajanan V

    2016-01-01

    The development and evolution of targeted therapy to any disease require the identification of targets amenable to treatment of patients. Here the pathogenetic signalling systems involved in multiple sclerosis are scrutinised to locate nodes of deregulation and dysfunction in order to devise strategies of drug development for targeted intervention. Oliogoclonal bands (OCB) are isoelectric focusing profiles of immunoglobulins synthesised in the central nervous system. OCBs enable the diagnosis of multiple sclerosis with high sensitivity and specificity and are related to the course of the disease and progression. The OCB patterns can be linked with the expression of angiogenic molecular species. Angiogenic signalling which has also been implicated in demyelination provides the option of using angiogenesis inhibitors in disease control. The PI3K (phosphoinositide 3-kinase)/Akt axis has emerged with a key role in myelination with its demonstrable links with mTOR mediated transcription of downstream target genes. Inflammatory signals and innate and acquired immunity from the activation of NF-κB (nuclear factor κB) responsive genes are considered. NF-κB signalling could be implicated in myelination. The transcription factor STAT (signal transducers and activators of transcription) and the EBV (Epstein- Barr virus) transcription factor BZLF1 contributing significantly to the disease process are a major environmental factor linked to MS. EBV can activate TGF (transforming growth factor) and VEGF (vascular endothelial growth factor) signalling. EBV microRNAs are reviewed as signalling mediators of pathogenesis. Stem cell transplantation therapy has lately gained much credence, so the current status of mesenchymal and hematopoietic stem cell therapy is reviewed with emphasis on the differential expression immune-related genes and operation of signalling systems.

  11. Comparing the impact of ultrafine particles from petrodiesel and biodiesel combustion to bacterial metabolism by targeted HPLC-MS/MS metabolic profiling.

    PubMed

    Zhong, Fanyi; Xu, Mengyang; Schelli, Katie; Rutowski, Joshua; Holmén, Britt A; Zhu, Jiangjiang

    2017-08-01

    Alterations of gut bacterial metabolism play an important role in their host metabolism, and can result in diseases such as obesity and diabetes. While many factors were discovered influencing the gut bacterial metabolism, exposure to ultrafine particles (UFPs) from engine combustions were recently proposed to be a potential risk factor for the perturbation of gut bacterial metabolism, and consequentially to obesity and diabetes development. This study focused on evaluation of how UFPs from diesel engine combustions impact gut bacterial metabolism. We hypothesize that UFPs from different type of diesel (petrodiesel vs. biodiesel) will both impact bacterial metabolism, and the degree of impact is also diesel type-dependent. Targeted metabolic profiling of 221 metabolites were applied to three model gut bacteria in vitro, Streptococcus salivarius, Lactobacillus acidophilus and Lactobacillus fermentum. UFPs from two types of fuels, petrodiesel (B0) and a biodiesel blend (B20: 20% soy biodiesel/80% B0 by volume), were exposed to the bacteria and their metabolic changes were compared. For each bacterial strain, metabolites with significantly changed abundance were observed in both perturbations, and all three strains have increased number of altered metabolites detected from B20 UFPs perturbation in comparison to B0 UFPs. Multivariate statistical analysis further confirmed that the metabolic profiles were clearly different between testing groups. Metabolic pathway analyses also demonstrated several important metabolic pathways, including pathways involves amino acids biosynthesis and sugar metabolism, were significantly impacted by UFPs exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm

    PubMed Central

    Sun, Baoliang; Jiang, Chunlan; Li, Ming

    2016-01-01

    An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271

  13. Allowable carbon emissions lowered by multiple climate targets.

    PubMed

    Steinacher, Marco; Joos, Fortunat; Stocker, Thomas F

    2013-07-11

    Climate targets are designed to inform policies that would limit the magnitude and impacts of climate change caused by anthropogenic emissions of greenhouse gases and other substances. The target that is currently recognized by most world governments places a limit of two degrees Celsius on the global mean warming since preindustrial times. This would require large sustained reductions in carbon dioxide emissions during the twenty-first century and beyond. Such a global temperature target, however, is not sufficient to control many other quantities, such as transient sea level rise, ocean acidification and net primary production on land. Here, using an Earth system model of intermediate complexity (EMIC) in an observation-informed Bayesian approach, we show that allowable carbon emissions are substantially reduced when multiple climate targets are set. We take into account uncertainties in physical and carbon cycle model parameters, radiative efficiencies, climate sensitivity and carbon cycle feedbacks along with a large set of observational constraints. Within this framework, we explore a broad range of economically feasible greenhouse gas scenarios from the integrated assessment community to determine the likelihood of meeting a combination of specific global and regional targets under various assumptions. For any given likelihood of meeting a set of such targets, the allowable cumulative emissions are greatly reduced from those inferred from the temperature target alone. Therefore, temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions.

  14. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency.

    PubMed

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-08

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer's disease and Parkinson's disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  15. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    NASA Astrophysics Data System (ADS)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  16. Potassium Channel KIR4.1 as an Immune Target in Multiple Sclerosis

    PubMed Central

    Srivastava, Rajneesh; Aslam, Muhammad; Kalluri, Sudhakar Reddy; Schirmer, Lucas; Buck, Dorothea; Tackenberg, Björn; Rothhammer, Veit; Chan, Andrew; Gold, Ralf; Berthele, Achim; Bennett, Jeffrey L.; Korn, Thomas; Hemmer, Bernhard

    2016-01-01

    BACKGROUND Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system. Many findings suggest that the disease has an autoimmune pathogenesis; the target of the immune response is not yet known. METHODS We screened serum IgG from persons with multiple sclerosis to identify antibodies that are capable of binding to brain tissue and observed specific binding of IgG to glial cells in a subgroup of patients. Using a proteomic approach focusing on membrane proteins, we identified the ATP-sensitive inward rectifying potassium channel KIR4.1 as the target of the IgG antibodies. We used a multifaceted validation strategy to confirm KIR4.1 as a target of the autoantibody response in multiple sclerosis and to show its potential pathogenicity in vivo. RESULTS Serum levels of antibodies to KIR4.1 were higher in persons with multiple sclerosis than in persons with other neurologic diseases and healthy donors (P<0.001 for both comparisons). We replicated this finding in two independent groups of persons with multiple sclerosis or other neurologic diseases (P<0.001 for both comparisons). Analysis of the combined data sets indicated the presence of serum antibodies to KIR4.1 in 186 of 397 persons with multiple sclerosis (46.9%), in 3 of 329 persons with other neurologic diseases (0.9%), and in none of the 59 healthy donors. These antibodies bound to the first extracellular loop of KIR4.1. Injection of KIR4.1 serum IgG into the cisternae magnae of mice led to a profound loss of KIR4.1 expression, altered expression of glial fibrillary acidic protein in astrocytes, and activation of the complement cascade at sites of KIR4.1 expression in the cerebellum. CONCLUSIONS KIR4.1 is a target of the autoantibody response in a subgroup of persons with multiple sclerosis. (Funded by the German Ministry for Education and Research and Deutsche Forschungsgemeinschaft.) PMID:22784115

  17. Multiple-target tracking implementation in the ebCMOS camera system: the LUSIPHER prototype

    NASA Astrophysics Data System (ADS)

    Doan, Quang Tuyen; Barbier, Remi; Dominjon, Agnes; Cajgfinger, Thomas; Guerin, Cyrille

    2012-06-01

    The domain of the low light imaging systems progresses very fast, thanks to detection and electronic multiplication technology evolution, such as the emCCD (electron multiplying CCD) or the ebCMOS (electron bombarded CMOS). We present an ebCMOS camera system that is able to track every 2 ms more than 2000 targets with a mean number of photons per target lower than two. The point light sources (targets) are spots generated by a microlens array (Shack-Hartmann) used in adaptive optics. The Multiple-Target-Tracking designed and implemented on a rugged workstation is described. The results and the performances of the system on the identification and tracking are presented and discussed.

  18. Structured plant metabolomics for the simultaneous exploration of multiple factors.

    PubMed

    Vasilev, Nikolay; Boccard, Julien; Lang, Gerhard; Grömping, Ulrike; Fischer, Rainer; Goepfert, Simon; Rudaz, Serge; Schillberg, Stefan

    2016-11-17

    Multiple factors act simultaneously on plants to establish complex interaction networks involving nutrients, elicitors and metabolites. Metabolomics offers a better understanding of complex biological systems, but evaluating the simultaneous impact of different parameters on metabolic pathways that have many components is a challenging task. We therefore developed a novel approach that combines experimental design, untargeted metabolic profiling based on multiple chromatography systems and ionization modes, and multiblock data analysis, facilitating the systematic analysis of metabolic changes in plants caused by different factors acting at the same time. Using this method, target geraniol compounds produced in transgenic tobacco cell cultures were grouped into clusters based on their response to different factors. We hypothesized that our novel approach may provide more robust data for process optimization in plant cell cultures producing any target secondary metabolite, based on the simultaneous exploration of multiple factors rather than varying one factor each time. The suitability of our approach was verified by confirming several previously reported examples of elicitor-metabolite crosstalk. However, unravelling all factor-metabolite networks remains challenging because it requires the identification of all biochemically significant metabolites in the metabolomics dataset.

  19. Therapeutic strategies impacting cancer cell glutamine metabolism

    PubMed Central

    Lukey, Michael J; Wilson, Kristin F; Cerione, Richard A

    2014-01-01

    The metabolic adaptations that support oncogenic growth can also render cancer cells dependent on certain nutrients. Along with the Warburg effect, increased utilization of glutamine is one of the metabolic hallmarks of the transformed state. Glutamine catabolism is positively regulated by multiple oncogenic signals, including those transmitted by the Rho family of GTPases and by c-Myc. The recent identification of mechanistically distinct inhibitors of glutaminase, which can selectively block cellular transformation, has revived interest in the possibility of targeting glutamine metabolism in cancer therapy. Here, we outline the regulation and roles of glutamine metabolism within cancer cells and discuss possible strategies for, and the consequences of, impacting these processes therapeutically. PMID:24047273

  20. Multiple Metabolic Roles for the Nonphotosynthetic Plastid of the Green Alga Prototheca wickerhamii†

    PubMed Central

    Borza, Tudor; Popescu, Cristina E.; Lee, Robert W.

    2005-01-01

    The presence of plastids in diverse eukaryotic lineages that have lost the capacity for photosynthesis is well documented. The metabolic functions of such organelles, however, are poorly understood except in the case of the apicoplast in the Apicomplexa, a group of intracellular parasites including Plasmodium falciparum, and the plastid of the green alga Helicosporidium sp., a parasite for which the only host-free stage identified in nature so far is represented by cysts. As a first step in the reconstruction of plastid functions in a nonphotosynthetic, predominantly free-living organism, we searched for expressed sequence tags (ESTs) that correspond to nucleus-encoded plastid-targeted polypeptides in the green alga Prototheca wickerhamii. From 3,856 ESTs, we found that 71 unique sequences (235 ESTs) correspond to different nucleus-encoded putatively plastid-targeted polypeptides. The identified proteins predict that carbohydrate, amino acid, lipid, tetrapyrrole, and isoprenoid metabolism as well as de novo purine biosynthesis and oxidoreductive processes take place in the plastid of P. wickerhamii. Mg-protoporphyrin accumulation and, therefore, plastid-to-nucleus signaling might also occur in this nonphotosynthetic organism, as we identified a transcript which encodes subunit I of Mg-chelatase, the enzyme which catalyzes the first committed step in chlorophyll synthesis. Our data indicate a far more complex metabolism in P. wickerhamii's plastid compared with the metabolic pathways predicted to be located in the apicoplast of P. falciparum and the plastid of Helicosporidium sp. PMID:15701787

  1. Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism

    PubMed Central

    Molehin, Deborah

    2016-01-01

    Background. Thyroid hormones (THs) are essential for normal human fetal development and play a major role in the regulation of glucose and lipid metabolism. Delivery of TH to target tissues is dependent on processes including TH synthesis, transport, and metabolism. Thyroid hormone endocrine disruptors (TH-EDCs) are chemical substances that interfere with these processes, potentially leading to adverse pregnancy outcomes. Objectives. This review focuses on the effects of prenatal exposures to combinations of TH-EDCs on fetal and neonatal glucose and lipid metabolism and also discusses the various mechanisms by which TH-EDCs interfere with other hormonal pathways. Methods. We conducted a comprehensive narrative review on the effects of TH-EDCs with particular emphasis on exposure during pregnancy. Discussion. TH imbalance has been linked to many metabolic processes and the effects of TH imbalance are particularly pronounced in early fetal development due to fetal dependence on maternal TH for proper growth and development. The pervasive presence of EDCs in the environment results in ubiquitous exposure to either single or mixtures of EDCs with deleterious effects on metabolism. Conclusions. Further evaluation of combined effects of TH-EDCs on fetal metabolic endpoints could improve advice provided to expectant mothers. PMID:26989557

  2. Hypothalamic Leptin and Ghrelin Signaling as Targets for Improvement in Metabolic Control.

    PubMed

    Frago, Laura M; Chowen, Julie A

    2015-01-01

    Metabolic homeostasis requires a tight balance between energy intake and energy expenditure; hence, the physiological circuits implicated in the regulation of energy metabolism must be able to quickly adjust to changes in either side of the equation. Circulating orexigenic and anorexigenic factors, including ghrelin and leptin, are produced in the gastrointestinal tract and adipose tissue, respectively, in relation to an individual's nutritional status. These signals interact with central metabolic circuits to regulate the production and secretion of neuropeptides implicated in the control of appetite and energy expenditure. However, this physiological equilibrium can be perturbed by diverse processes, with weight gain occurring due to a positive energy balance and weight loss taking place if there is a negative energy balance. If a situation of positive energy balance continues for an extended period of time, excess weight is accumulated and this can eventually result in obesity. Obesity has become one of the most important health problems facing the industrialized world, indicating that metabolic equilibrium is frequently disrupted. Understanding how and why this occurs will allow new therapeutical targets to be identified.

  3. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response

    PubMed Central

    Zhong, Hong; Ma, Minjuan

    2018-01-01

    In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction. PMID:29484304

  4. Targeting of a Nuclease to Murine Leukemia Virus Capsids Inhibits Viral Multiplication

    NASA Astrophysics Data System (ADS)

    Natsoulis, Georges; Seshaiah, Partha; Federspiel, Mark J.; Rein, Alan; Hughes, Stephen H.; Boeke, Jef D.

    1995-01-01

    Capsid-targeted viral inactivation is an antiviral strategy in which toxic fusion proteins are targeted to virions, where they inhibit viral multiplication by destroying viral components. These fusion proteins consist of a virion structural protein moiety and an enzymatic moiety such as a nuclease. Such fusion proteins can severely inhibit transposition of yeast retrotransposon Ty1, an element whose transposition mechanistically resembles retroviral multiplication. We demonstrate that expression of a murine retrovirus capsid-staphylococcal nuclease fusion protein inhibits multiplication of the corresponding murine leukemia virus by 30- to 100-fold. Staphylococcal nuclease is apparently inactive intracellularly and hence nontoxic to the host cell, but it is active extracellularly because of its requirement for high concentrations of Ca2+ ions. Virions assembled in and shed from cells expressing the fusion protein contain very small amounts of intact viral RNA, as would be predicted for nuclease-mediated inhibition of viral multiplication.

  5. AMP-activated protein kinase and metabolic control

    PubMed Central

    Viollet, Benoit; Andreelli, Fabrizio

    2011-01-01

    AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, is a major regulator of cellular and whole-body energy homeostasis that coordinates metabolic pathways in order to balance nutrient supply with energy demand. It is now recognized that pharmacological activation of AMPK improves blood glucose homeostasis, lipid profile and blood pressure in insulin-resistant rodents. Indeed, AMPK activation mimics the beneficial effects of physical activity or those of calorie restriction by acting on multiple cellular targets. In addition it is now demonstrated that AMPK is one of the probable (albeit indirect) targets of major antidiabetic drugs including, the biguanides (metformin) and thiazolidinediones, as well as of insulin sensitizing adipokines (e.g., adiponectin). Taken together, such findings highlight the logic underlying the concept of targeting the AMPK pathway for the treatment of metabolic syndrome and type 2 diabetes. PMID:21484577

  6. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo.

    PubMed

    Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung

    2017-12-01

    Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Feature-aided multiple target tracking in the image plane

    NASA Astrophysics Data System (ADS)

    Brown, Andrew P.; Sullivan, Kevin J.; Miller, David J.

    2006-05-01

    Vast quantities of EO and IR data are collected on airborne platforms (manned and unmanned) and terrestrial platforms (including fixed installations, e.g., at street intersections), and can be exploited to aid in the global war on terrorism. However, intelligent preprocessing is required to enable operator efficiency and to provide commanders with actionable target information. To this end, we have developed an image plane tracker which automatically detects and tracks multiple targets in image sequences using both motion and feature information. The effects of platform and camera motion are compensated via image registration, and a novel change detection algorithm is applied for accurate moving target detection. The contiguous pixel blob on each moving target is segmented for use in target feature extraction and model learning. Feature-based target location measurements are used for tracking through move-stop-move maneuvers, close target spacing, and occlusion. Effective clutter suppression is achieved using joint probabilistic data association (JPDA), and confirmed target tracks are indicated for further processing or operator review. In this paper we describe the algorithms implemented in the image plane tracker and present performance results obtained with video clips from the DARPA VIVID program data collection and from a miniature unmanned aerial vehicle (UAV) flight.

  8. Systems level mapping of metabolic complexity in Mycobacterium tuberculosis to identify high-value drug targets.

    PubMed

    Vashisht, Rohit; Bhat, Ashwini G; Kushwaha, Shreeram; Bhardwaj, Anshu; Brahmachari, Samir K

    2014-10-11

    The effectiveness of current therapeutic regimens for Mycobacterium tuberculosis (Mtb) is diminished by the need for prolonged therapy and the rise of drug resistant/tolerant strains. This global health threat, despite decades of basic research and a wealth of legacy knowledge, is due to a lack of systems level understanding that can innovate the process of fast acting and high efficacy drug discovery. The enhanced functional annotations of the Mtb genome, which were previously obtained through a crowd sourcing approach was used to reconstruct the metabolic network of Mtb in a bottom up manner. We represent this information by developing a novel Systems Biology Spindle Map of Metabolism (SBSM) and comprehend its static and dynamic structure using various computational approaches based on simulation and design. The reconstructed metabolism of Mtb encompasses 961 metabolites, involved in 1152 reactions catalyzed by 890 protein coding genes, organized into 50 pathways. By accounting for static and dynamic analysis of SBSM in Mtb we identified various critical proteins required for the growth and survival of bacteria. Further, we assessed the potential of these proteins as putative drug targets that are fast acting and less toxic. Further, we formulate a novel concept of metabolic persister genes (MPGs) and compared our predictions with published in vitro and in vivo experimental evidence. Through such analyses, we report for the first time that de novo biosynthesis of NAD may give rise to bacterial persistence in Mtb under conditions of metabolic stress induced by conventional anti-tuberculosis therapy. We propose such MPG's as potential combination of drug targets for existing antibiotics that can improve their efficacy and efficiency for drug tolerant bacteria. The systems level framework formulated by us to identify potential non-toxic drug targets and strategies to circumvent the issue of bacterial persistence can substantially aid in the process of TB drug

  9. Metabolic connectomics targeting brain pathology in dementia with Lewy bodies

    PubMed Central

    Caminiti, Silvia P; Tettamanti, Marco; Sala, Arianna; Presotto, Luca; Iannaccone, Sandro; Cappa, Stefano F; Magnani, Giuseppe

    2016-01-01

    Dementia with Lewy bodies is characterized by α-synuclein accumulation and degeneration of dopaminergic and cholinergic pathways. To gain an overview of brain systems affected by neurodegeneration, we characterized the [18F]FDG-PET metabolic connectivity in 42 dementia with Lewy bodies patients, as compared to 42 healthy controls, using sparse inverse covariance estimation method and graph theory. We performed whole-brain and anatomically driven analyses, targeting cholinergic and dopaminergic pathways, and the α-synuclein spreading. The first revealed substantial alterations in connectivity indexes, brain modularity, and hubs configuration. Namely, decreases in local metabolic connectivity within occipital cortex, thalamus, and cerebellum, and increases within frontal, temporal, parietal, and basal ganglia regions. There were also long-range disconnections among these brain regions, all supporting a disruption of the functional hierarchy characterizing the normal brain. The anatomically driven analysis revealed alterations within brain structures early affected by α-synuclein pathology, supporting Braak’s early pathological staging in dementia with Lewy bodies. The dopaminergic striato-cortical pathway was severely affected, as well as the cholinergic networks, with an extensive decrease in connectivity in Ch1-Ch2, Ch5-Ch6 networks, and the lateral Ch4 capsular network significantly towards the occipital cortex. These altered patterns of metabolic connectivity unveil a new in vivo scenario for dementia with Lewy bodies underlying pathology in terms of changes in whole-brain metabolic connectivity, spreading of α-synuclein, and neurotransmission impairment. PMID:27306756

  10. Protein kinase FgSch9 serves as a mediator of the target of rapamycin and high osmolarity glycerol pathways and regulates multiple stress responses and secondary metabolism in Fusarium graminearum.

    PubMed

    Gu, Qin; Zhang, Chengqi; Yu, Fangwei; Yin, Yanni; Shim, Won-Bo; Ma, Zhonghua

    2015-08-01

    Saccharomyces cerevisiae protein kinase Sch9 is one of the downstream effectors of the target of rapamycin (TOR) complex 1 and plays multiple roles in stress resistance, longevity and nutrient sensing. However, the functions of Sch9 orthologs in filamentous fungi, particularly in pathogenic species, have not been characterized to date. Here, we investigated biological and genetic functions of FgSch9 in Fusarium graminearum. The FgSCH9 deletion mutant (ΔFgSch9) was defective in aerial hyphal growth, hyphal branching and conidial germination. The mutant exhibited increased sensitivity to osmotic and oxidative stresses, cell wall-damaging agents, and to rapamycin, while showing increased thermal tolerance. We identified FgMaf1 as one of the FgSch9-interacting proteins that plays an important role in regulating mycotoxin biosynthesis and virulence of F. graminearum. Co-immunoprecipitation and affinity capture-mass spectrometry assays showed that FgSch9 also interacts with FgTor and FgHog1. More importantly, both ΔFgSch9 and FgHog1 null mutant (ΔFgHog1) exhibited increased sensitivity to osmotic and oxidative stresses. This defect was more severe in the FgSch9/FgHog1 double mutant. Taken together, we propose that FgSch9 serves as a mediator of the TOR and high osmolarity glycerol pathways, and regulates vegetative differentiation, multiple stress responses and secondary metabolism in F. graminearum. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality

    PubMed Central

    McIntyre, Alan; Harris, Adrian L

    2015-01-01

    Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6–8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. PMID:25700172

  12. Efficient search of multiple types of targets

    NASA Astrophysics Data System (ADS)

    Wosniack, M. E.; Raposo, E. P.; Viswanathan, G. M.; da Luz, M. G. E.

    2015-12-01

    Random searches often take place in fragmented landscapes. Also, in many instances like animal foraging, significant benefits to the searcher arise from visits to a large diversity of patches with a well-balanced distribution of targets found. Up to date, such aspects have been widely ignored in the usual single-objective analysis of search efficiency, in which one seeks to maximize just the number of targets found per distance traversed. Here we address the problem of determining the best strategies for the random search when these multiple-objective factors play a key role in the process. We consider a figure of merit (efficiency function), which properly "scores" the mentioned tasks. By considering random walk searchers with a power-law asymptotic Lévy distribution of step lengths, p (ℓ ) ˜ℓ-μ , with 1 <μ ≤3 , we show that the standard optimal strategy with μopt≈2 no longer holds universally. Instead, optimal searches with enhanced superdiffusivity emerge, including values as low as μopt≈1.3 (i.e., tending to the ballistic limit). For the general theory of random search optimization, our findings emphasize the necessity to correctly characterize the multitude of aims in any concrete metric to compare among possible candidates to efficient strategies. In the context of animal foraging, our results might explain some empirical data pointing to stronger superdiffusion (μ <2 ) in the search behavior of different animal species, conceivably associated to multiple goals to be achieved in fragmented landscapes.

  13. Pyrimidine metabolism in schistosomes: A comparison with other parasites and the search for potential chemotherapeutic targets.

    PubMed

    El Kouni, Mahmoud H

    2017-11-01

    Schistosomes are responsible for the parasitic disease schistosomiasis, an acute and chronic parasitic ailment that affects >240 million people in 70 countries worldwide. It is the second most devastating parasitic disease after malaria. At least 200,000 deaths per year are associated with the disease. In the absence of the availability of vaccines, chemotherapy is the main stay for combating schistosomiasis. The antischistosomal arsenal is currently limited to a single drug, Praziquantel, which is quite effective with a single-day treatment and virtually no host-toxicity. Recently, however, the question of reduced activity of Praziquantel has been raised. Therefore, the search for alternative antischistosomal drugs merits the study of new approaches of chemotherapy. The rational design of a drug is usually based on biochemical and physiological differences between pathogens and host. Pyrimidine metabolism is an excellent target for such studies. Schistosomes, unlike most of the host tissues, require a very active pyrimidine metabolism for the synthesis of DNA and RNA. This is essential for the production of the enormous numbers of eggs deposited daily by the parasite to which the granulomas response precipitates the pathogenesis of schistosomiasis. Furthermore, there are sufficient differences between corresponding enzymes of pyrimidine metabolism from the host and the parasite that can be exploited to design specific inhibitors or "subversive substrates" for the parasitic enzymes. Specificities of pyrimidine transport also diverge significantly between parasites and their mammalian host. This review deals with studies on pyrimidine metabolism in schistosomes and highlights the unique characteristic of this metabolism that could constitute excellent potential targets for the design of safe and effective antischistosomal drugs. In addition, pyrimidine metabolism in schistosomes is compared with that in other parasites where studies on pyrimidine metabolism have

  14. Targeting multiple types of tumors using NKG2D-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Ru; Cook, W. James; Zhang, Tong; Sentman, Charles L.

    2014-11-01

    Iron oxide nanoparticles (IONPs) hold great potential for cancer therapy. Actively targeting IONPs to tumor cells can further increase therapeutic efficacy and decrease off-target side effects. To target tumor cells, a natural killer (NK) cell activating receptor, NKG2D, was utilized to develop pan-tumor targeting IONPs. NKG2D ligands are expressed on many tumor types and its ligands are not found on most normal tissues under steady state conditions. The data showed that mouse and human fragment crystallizable (Fc)-fusion NKG2D (Fc-NKG2D) coated IONPs (NKG2D/NPs) can target multiple NKG2D ligand positive tumor types in vitro in a dose dependent manner by magnetic cell sorting. Tumor targeting effect was robust even under a very low tumor cell to normal cell ratio and targeting efficiency correlated with NKG2D ligand expression level on tumor cells. Furthermore, the magnetic separation platform utilized to test NKG2D/NP specificity has the potential to be developed into high throughput screening strategies to identify ideal fusion proteins or antibodies for targeting IONPs. In conclusion, NKG2D/NPs can be used to target multiple tumor types and magnetic separation platform can facilitate the proof-of-concept phase of tumor targeting IONP development.

  15. Incorporating Multiple Secondary Targets into Learning Trials for Individuals with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Nottingham, Casey L.; Vladescu, Jason C.; Kodak, Tiffany; Kisamore, April N.

    2017-01-01

    The current study examined the outcome of presenting multiple secondary targets in learning trials for individuals with autism spectrum disorder. We compared conditions in which (a) a secondary target was presented in the antecedent and consequence of trials, (b) two secondary targets were presented in the consequence of trials, (c) one secondary…

  16. Metabolic and structural integrity of magnetic nanoparticle-loaded primary endothelial cells for targeted cell therapy.

    PubMed

    Orynbayeva, Zulfiya; Sensenig, Richard; Polyak, Boris

    2015-05-01

    To successfully translate magnetically mediated cell targeting from bench to bedside, there is a need to systematically assess the potential adverse effects of magnetic nanoparticles (MNPs) interacting with 'therapeutic' cells. Here, we examined in detail the effects of internalized polymeric MNPs on primary rat endothelial cells' structural intactness, metabolic integrity and proliferation potential. The intactness of cytoskeleton and organelles was studied by fluorescent confocal microscopy, flow cytometry and high-resolution respirometry. MNP-loaded primary endothelial cells preserve intact cytoskeleton and organelles, maintain normal rate of proliferation, calcium signaling and mitochondria energy metabolism. This study provides supportive evidence that MNPs at doses necessary for targeting did not induce significant adverse effects on structural integrity and functionality of primary endothelial cells - potential cell therapy vectors.

  17. Live-cell MRI with xenon hyper-CEST biosensors targeted to metabolically labeled cell-surface glycans.

    PubMed

    Witte, Christopher; Martos, Vera; Rose, Honor May; Reinke, Stefan; Klippel, Stefan; Schröder, Leif; Hackenberger, Christian P R

    2015-02-23

    The targeting of metabolically labeled glycans with conventional MRI contrast agents has proved elusive. In this work, which further expands the utility of xenon Hyper-CEST biosensors in cell experiments, we present the first successful molecular imaging of such glycans using MRI. Xenon Hyper-CEST biosensors are a novel class of MRI contrast agents with very high sensitivity. We designed a multimodal biosensor for both fluorescent and xenon MRI detection that is targeted to metabolically labeled sialic acid through bioorthogonal chemistry. Through the use of a state of the art live-cell bioreactor, it was demonstrated that xenon MRI biosensors can be used to image cell-surface glycans at nanomolar concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    PubMed Central

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-01-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states. PMID:26154191

  19. Designed multiple ligands in metabolic disease research: from concept to platform.

    PubMed

    Gattrell, W; Johnstone, C; Patel, S; Smith, C Sambrook; Scheel, A; Schindler, M

    2013-08-01

    Type 2 diabetes mellitus (T2DM) is a multifactorial disease, and drug monotherapy typically results in unsatisfactory treatment outcomes for patients. Even when used in combination, existing therapies lack efficacy in the long term. Designed multiple ligands (DMLs) are compounds developed to modulate multiple targets relevant to a disease. DMLs offer the potential to yield greater efficacy over monotherapies, either by modulating different biological pathways, or by boosting a single one. However, examples of DMLs progressing into clinical trials, or onto the market are rare; DML drug discovery is challenging, and perceived by some to be almost impossible. Nevertheless, with the judicious selection of biological targets, both from a biological and chemical perspective, it is possible to develop drug-like DMLs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A Convenient Cas9-based Conditional Knockout Strategy for Simultaneously Targeting Multiple Genes in Mouse.

    PubMed

    Chen, Jiang; Du, Yinan; He, Xueyan; Huang, Xingxu; Shi, Yun S

    2017-03-31

    The most powerful way to probe protein function is to characterize the consequence of its deletion. Compared to conventional gene knockout (KO), conditional knockout (cKO) provides an advanced gene targeting strategy with which gene deletion can be performed in a spatially and temporally restricted manner. However, for most species that are amphiploid, the widely used Cre-flox conditional KO (cKO) system would need targeting loci in both alleles to be loxP flanked, which in practice, requires time and labor consuming breeding. This is considerably significant when one is dealing with multiple genes. CRISPR/Cas9 genome modulation system is advantaged in its capability in targeting multiple sites simultaneously. Here we propose a strategy that could achieve conditional KO of multiple genes in mouse with Cre recombinase dependent Cas9 expression. By transgenic construction of loxP-stop-loxP (LSL) controlled Cas9 (LSL-Cas9) together with sgRNAs targeting EGFP, we showed that the fluorescence molecule could be eliminated in a Cre-dependent manner. We further verified the efficacy of this novel strategy to target multiple sites by deleting c-Maf and MafB simultaneously in macrophages specifically. Compared to the traditional Cre-flox cKO strategy, this sgRNAs-LSL-Cas9 cKO system is simpler and faster, and would make conditional manipulation of multiple genes feasible.

  1. Choline metabolism-based molecular diagnosis of cancer: an update

    PubMed Central

    Glunde, Kristine; Penet, Marie-France; Jiang, Lu; Jacobs, Michael A; Bhujwalla, Zaver M

    2016-01-01

    Abnormal choline metabolism continues to be identified in multiple cancers. Molecular causes of abnormal choline metabolism are changes in choline kinase-α, ethanolamine kinase-α, phosphatidylcholine-specific phospholipase C and -D and glycerophosphocholine phosphodiesterases, as well as several choline transporters. The net outcome of these enzymatic changes is an increase in phosphocholine and total choline (tCho) and, in some cancers, a relative decrease of glycerophosphocholine. The increased tCho signal detected by 1H magnetic resonance spectroscopy is being evaluated as a diagnostic marker in multiple cancers. Increased expression and activity of choline transporters and choline kinase-α have spurred the development of radiolabeled choline analogs as PET imaging tracers. Both tCho 1H magnetic resonance spectroscopy and choline PET are being investigated to detect response to treatment. Enzymes mediating the abnormal choline metabolism are being explored as targets for cancer therapy. This review highlights recent molecular, therapeutic and clinical advances in choline metabolism in cancer. PMID:25921026

  2. Dietary Strategies and Novel Pharmaceutical Approaches Targeting Serum ApoA-I Metabolism: A Systematic Overview

    PubMed Central

    Smolders, Lotte; Plat, Jogchum

    2017-01-01

    The incidence of CHD is still increasing, which underscores the need for new preventive and therapeutic approaches to decrease CHD risk. In this respect, increasing apoA-I concentrations may be a promising approach, especially through increasing apoA-I synthesis. This review first provides insight into current knowledge on apoA-I production, clearance, and degradation, followed by a systematic review of dietary and novel pharmacological approaches to target apoA-I metabolism. For this, a systematic search was performed to identify randomized controlled intervention studies that examined effects of whole foods and (non)nutrients on apoA-I metabolism. In addition, novel pharmacological approaches were searched for, which were specifically developed to target apoA-I metabolism. We conclude that both dietary components and pharmacological approaches can be used to increase apoA-I concentrations or functionality. For the dietary components in particular, more knowledge about the underlying mechanisms is necessary, as increasing apoA-I per se does not necessarily translate into a reduced CHD risk. PMID:28695008

  3. Multiple source/multiple target fluid transfer apparatus

    DOEpatents

    Turner, Terry D.

    1997-01-01

    A fluid transfer apparatus includes: a) a plurality of orifices for connection with fluid sources; b) a plurality of orifices for connection with fluid targets; c) a set of fluid source conduits and fluid target conduits associated with the orifices; d) a pump fluidically interposed between the source and target conduits to transfer fluid therebetween; e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; g) pump control means for controlling operation of the pump; h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits.

  4. Multiple source/multiple target fluid transfer apparatus

    DOEpatents

    Turner, T.D.

    1997-08-26

    A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.

  5. All set! Evidence of simultaneous attentional control settings for multiple target colors.

    PubMed

    Irons, Jessica L; Folk, Charles L; Remington, Roger W

    2012-06-01

    Although models of visual search have often assumed that attention can only be set for a single feature or property at a time, recent studies have suggested that it may be possible to maintain more than one attentional control setting. The aim of the present study was to investigate whether spatial attention could be guided by multiple attentional control settings for color. In a standard spatial cueing task, participants searched for either of two colored targets accompanied by an irrelevantly colored distractor. Across five experiments, results consistently showed that nonpredictive cues matching either target color produced a significant spatial cueing effect, while irrelevantly colored cues did not. This was the case even when the target colors could not be linearly separated from irrelevantly cue colors in color space, suggesting that participants were not simply adopting one general color set that included both target colors. The results could not be explained by intertrial priming by previous targets, nor could they be explained by a single inhibitory set for the distractor color. Overall, the results are most consistent with the maintenance of multiple attentional control settings.

  6. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma.

    PubMed

    Petrachi, Tiziana; Romagnani, Alessandra; Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia

    2017-01-24

    Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma.

  7. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma

    PubMed Central

    Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia

    2017-01-01

    Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma. PMID:28036292

  8. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy.

    PubMed

    Zois, Christos E; Harris, Adrian L

    2016-02-01

    Metabolic reprogramming is a hallmark of cancer cells and contributes to their adaption within the tumour microenvironment and resistance to anticancer therapies. Recently, glycogen metabolism has become a recognised feature of cancer cells since it is upregulated in many tumour types, suggesting that it is an important aspect of cancer cell pathophysiology. Here, we provide an overview of glycogen metabolism and its regulation, with a focus on its role in metabolic reprogramming of cancer cells under stress conditions such as hypoxia, glucose deprivation and anticancer treatment. The various methods to detect glycogen in tumours in vivo as well as pharmacological modulators of glycogen metabolism are also reviewed. Finally, we discuss the therapeutic value of targeting glycogen metabolism as a strategy for combinational approaches in cancer treatment.

  9. Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors

    PubMed Central

    Morandi, Andrea; Taddei, Maria Letizia; Chiarugi, Paola; Giannoni, Elisa

    2017-01-01

    The epithelial-to-mesenchymal transition (EMT) process allows the trans-differentiation of a cell with epithelial features into a cell with mesenchymal characteristics. This process has been reported to be a key priming event for tumor development and therefore EMT activation is now considered an established trait of malignancy. The transcriptional and epigenetic reprogramming that governs EMT has been extensively characterized and reviewed in the last decade. However, increasing evidence demonstrates a correlation between metabolic reprogramming and EMT execution. The aim of the current review is to gather the recent findings that illustrate this correlation to help deciphering whether metabolic changes are causative or just a bystander effect of EMT activation. The review is divided accordingly to the catabolic and anabolic pathways that characterize carbohydrate, aminoacid, and lipid metabolism. Moreover, at the end of each part, we have discussed a series of potential metabolic targets involved in EMT promotion and execution for which drugs are either available or that could be further investigated for therapeutic intervention. PMID:28352611

  10. Interacting multiple model forward filtering and backward smoothing for maneuvering target tracking

    NASA Astrophysics Data System (ADS)

    Nandakumaran, N.; Sutharsan, S.; Tharmarasa, R.; Lang, Tom; McDonald, Mike; Kirubarajan, T.

    2009-08-01

    The Interacting Multiple Model (IMM) estimator has been proven to be effective in tracking agile targets. Smoothing or retrodiction, which uses measurements beyond the current estimation time, provides better estimates of target states. Various methods have been proposed for multiple model smoothing in the literature. In this paper, a new smoothing method, which involves forward filtering followed by backward smoothing while maintaining the fundamental spirit of the IMM, is proposed. The forward filtering is performed using the standard IMM recursion, while the backward smoothing is performed using a novel interacting smoothing recursion. This backward recursion mimics the IMM estimator in the backward direction, where each mode conditioned smoother uses standard Kalman smoothing recursion. Resulting algorithm provides improved but delayed estimates of target states. Simulation studies are performed to demonstrate the improved performance with a maneuvering target scenario. The comparison with existing methods confirms the improved smoothing accuracy. This improvement results from avoiding the augmented state vector used by other algorithms. In addition, the new technique to account for model switching in smoothing is a key in improving the performance.

  11. HIV dynamics with multiple infections of target cells.

    PubMed

    Dixit, Narendra M; Perelson, Alan S

    2005-06-07

    The high incidence of multiple infections of cells by HIV sets the stage for rapid HIV evolution by means of recombination. Yet how HIV dynamics proceeds with multiple infections remains poorly understood. Here, we present a mathematical model that describes the dynamics of viral, target cell, and multiply infected cell subpopulations during HIV infection. Model calculations reproduce several experimental observations and provide key insights into the influence of multiple infections on HIV dynamics. We find that the experimentally observed scaling law, that the number of cells coinfected with two distinctly labeled viruses is proportional to the square of the total number of infected cells, can be generalized so that the number of triply infected cells is proportional to the cube of the number of infected cells, etc. Despite the expectation from Poisson statistics, we find that this scaling relationship only holds under certain conditions, which we predict. We also find that multiple infections do not influence viral dynamics when the rate of viral production from infected cells is independent of the number of times the cells are infected, a regime expected when viral production is limited by cellular rather than viral factors. This result may explain why extant models, which ignore multiple infections, successfully describe viral dynamics in HIV patients. Inhibiting CD4 down-modulation increases the average number of infections per cell. Consequently, altering CD4 down-modulation may allow for an experimental determination of whether viral or cellular factors limit viral production.

  12. HIV dynamics with multiple infections of target cells

    PubMed Central

    Dixit, Narendra M.; Perelson, Alan S.

    2005-01-01

    The high incidence of multiple infections of cells by HIV sets the stage for rapid HIV evolution by means of recombination. Yet how HIV dynamics proceeds with multiple infections remains poorly understood. Here, we present a mathematical model that describes the dynamics of viral, target cell, and multiply infected cell subpopulations during HIV infection. Model calculations reproduce several experimental observations and provide key insights into the influence of multiple infections on HIV dynamics. We find that the experimentally observed scaling law, that the number of cells coinfected with two distinctly labeled viruses is proportional to the square of the total number of infected cells, can be generalized so that the number of triply infected cells is proportional to the cube of the number of infected cells, etc. Despite the expectation from Poisson statistics, we find that this scaling relationship only holds under certain conditions, which we predict. We also find that multiple infections do not influence viral dynamics when the rate of viral production from infected cells is independent of the number of times the cells are infected, a regime expected when viral production is limited by cellular rather than viral factors. This result may explain why extant models, which ignore multiple infections, successfully describe viral dynamics in HIV patients. Inhibiting CD4 down-modulation increases the average number of infections per cell. Consequently, altering CD4 down-modulation may allow for an experimental determination of whether viral or cellular factors limit viral production. PMID:15928092

  13. The metabolic disturbances of isoproterenol induced myocardial infarction in rats based on a tissue targeted metabonomics.

    PubMed

    Liu, Yue-tao; Jia, Hong-mei; Chang, Xing; Ding, Gang; Zhang, Hong-wu; Zou, Zhong-Mei

    2013-11-01

    Myocardial infarction (MI) is a leading cause of morbidity and mortality but the precise mechanism of its pathogenesis remains obscure. To achieve the most comprehensive screening of the entire metabolome related to isoproterenol (ISO) induced-MI, we present a tissue targeted metabonomic study using an integrated approach of ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS) and proton nuclear magnetic resonance (1H NMR). Twenty-two metabolites were detected as potential biomarkers related to the formation of MI, and the levels of pantothenic acid (), lysoPC(18:0) (), PC(18:4(6Z,9Z,12Z,15Z)/18:0) (), taurine (), lysoPC(20:3(8Z,11Z,14Z)) (), threonine (), alanine (), creatine (), phosphocreatine (), glucose 1-phosphate (), glycine (), xanthosine (), creatinine () and glucose () were decreased significantly, while the concentrations of histamine (), L-palmitoylcarnitine (), GSSG (), inosine (), arachidonic acid (), linoelaidic acid (), 3-methylhistamine () and glycylproline () were increased significantly in the MI rats compared with the control group. The identified potential biomarkers were involved in twelve metabolic pathways and achieved the most entire metabolome contributing to the injury of the myocardial tissue. Five pathways, including taurine and hypotaurine metabolism, glycolysis, arachidonic acid metabolism, glycine, serine and threonine metabolism and histidine metabolism, were significantly influenced by ISO-treatment according to MetPA analysis and suggested that the most prominent changes included inflammation, interference of calcium dynamics, as well as alterations of energy metabolism in the pathophysiologic process of MI. These findings provided a unique perspective on localized metabolic information of ISO induced-MI, which gave us new insights into the pathogenesis of MI, discovery of targets for clinical diagnosis and treatment.

  14. Cinnamon polyphenols regulate multiple metabolic pathways involved in insulin signaling and intestinal lipoprotein metabolism of small intestinal enterocytes.

    PubMed

    Qin, Bolin; Dawson, Harry D; Schoene, Norberta W; Polansky, Marilyn M; Anderson, Richard A

    2012-01-01

    Increasing evidence suggests that dietary factors may affect the expression of multiple genes and signaling pathways, which regulate intestinal lipoprotein metabolism. The small intestine is actively involved in the regulation of dietary lipid absorption, intracellular transport, and metabolism and is closely linked to systemic lipid metabolism. Cinnamon polyphenols have been shown to improve glucose, insulin, and lipid metabolism and improve inflammation in cell culture, animal, and human studies. However, little is known of the effects of an aqueous cinnamon extract (CE) on the regulation of genes and signaling pathways related to intestinal metabolism. The aim of the study was to investigate the effects of a CE on the primary enterocytes of chow-fed rats. Freshly isolated intestinal enterocytes were used to investigate apolipoprotein-B48 secretion by immunoprecipitation; gene expressions by quantitative reverse transcriptase-polymerase chain reaction and the protein and phosphorylation levels were evaluated by western blot and flow cytometric analyses. Ex vivo, the CE significantly decreased the amount of apolipoprotein-B48 secretion into the media, inhibited the mRNA expression of genes of the inflammatory cytokines, interleukin-1β, interleukin-6, and tumor necrosis factor-α, and induced the expression of the anti-inflammatory gene, Zfp36. CE also increased the mRNA expression of genes leading to increased insulin sensitivity, including Ir, Irs1, Irs2, Pi3k, and Akt1, and decreased Pten expression. CE also inhibited genes associated with increased cholesterol, triacylglycerols, and apolipoprotein-B48 levels, including Abcg5, Npc1l1, Cd36, Mttp, and Srebp1c, and facilitated Abca1 expression. CE also stimulated the phospho-p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and extracellular-signal-regulated kinase expressions determined by flow cytometry, with no changes in protein levels. These results demonstrate that the CE regulates genes

  15. Engineering metabolic pathways in plants by multigene transformation.

    PubMed

    Zorrilla-López, Uxue; Masip, Gemma; Arjó, Gemma; Bai, Chao; Banakar, Raviraj; Bassie, Ludovic; Berman, Judit; Farré, Gemma; Miralpeix, Bruna; Pérez-Massot, Eduard; Sabalza, Maite; Sanahuja, Georgina; Vamvaka, Evangelia; Twyman, Richard M; Christou, Paul; Zhu, Changfu; Capell, Teresa

    2013-01-01

    Metabolic engineering in plants can be used to increase the abundance of specific valuable metabolites, but single-point interventions generally do not improve the yields of target metabolites unless that product is immediately downstream of the intervention point and there is a plentiful supply of precursors. In many cases, an intervention is necessary at an early bottleneck, sometimes the first committed step in the pathway, but is often only successful in shifting the bottleneck downstream, sometimes also causing the accumulation of an undesirable metabolic intermediate. Occasionally it has been possible to induce multiple genes in a pathway by controlling the expression of a key regulator, such as a transcription factor, but this strategy is only possible if such master regulators exist and can be identified. A more robust approach is the simultaneous expression of multiple genes in the pathway, preferably representing every critical enzymatic step, therefore removing all bottlenecks and ensuring completely unrestricted metabolic flux. This approach requires the transfer of multiple enzyme-encoding genes to the recipient plant, which is achieved most efficiently if all genes are transferred at the same time. Here we review the state of the art in multigene transformation as applied to metabolic engineering in plants, highlighting some of the most significant recent advances in the field.

  16. Forward-backward multiplicity correlations of target fragments in nucleus-emulsion collisions at a few hundred MeV/u

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Hai; Chen, Yan-Ling; Wang, Guo-Rong; Li, Wang-Dong; Wang, Qing; Yao, Ji-Jie; Zhou, Jian-Guo; Li, Rong; Li, Jun-Sheng; Li, Hui-Ling

    2015-01-01

    The forward-backward multiplicity and correlations of a target evaporated fragment (black track particle) and target recoiled proton (grey track particle) emitted from 150 A MeV 4He, 290 A MeV 12C, 400 A MeV 12C, 400 A MeV 20Ne and 500 A MeV 56Fe induced different types of nuclear emulsion target interactions are investigated. It is found that the forward and backward averaged multiplicity of a grey, black and heavily ionized track particle increases with the increase of the target size. The averaged multiplicity of a forward black track particle, backward black track particle, and backward grey track particle do not depend on the projectile size and energy, but the averaged multiplicity of a forward grey track particle increases with an increase of projectile size and energy. The backward grey track particle multiplicity distribution follows an exponential decay law and the decay constant decreases with an increase of target size. The backward-forward multiplicity correlations follow linear law which is independent of the projectile size and energy, and the saturation effect is observed in some heavy target data sets.

  17. MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes

    PubMed Central

    Polioudakis, Damon; Abell, Nathan S.; Iyer, Vishwanath R.

    2015-01-01

    miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS) pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191’s regulation of primary human fibroblast proliferation. PMID:25992613

  18. Dataset of the human homologues and orthologues of lipid-metabolic genes identified as DAF-16 targets their roles in lipid and energy metabolism.

    PubMed

    Fan, Lavender Yuen-Nam; Saavedra-García, Paula; Lam, Eric Wing-Fai

    2017-04-01

    The data presented in this article are related to the review article entitled 'Unravelling the role of fatty acid metabolism in cancer through the FOXO3-FOXM1 axis' (Saavedra-Garcia et al., 2017) [24]. Here, we have matched the DAF-16/FOXO3 downstream genes with their respective human orthologues and reviewed the roles of these targeted genes in FA metabolism. The list of genes listed in this article are precisely selected from literature reviews based on their functions in mammalian FA metabolism. The nematode Caenorhabditis elegans gene orthologues of the genes are obtained from WormBase, the online biological database of C. elegans. This dataset has not been uploaded to a public repository yet.

  19. Targeted quantitative analysis of Streptococcus pyogenes virulence factors by multiple reaction monitoring.

    PubMed

    Lange, Vinzenz; Malmström, Johan A; Didion, John; King, Nichole L; Johansson, Björn P; Schäfer, Juliane; Rameseder, Jonathan; Wong, Chee-Hong; Deutsch, Eric W; Brusniak, Mi-Youn; Bühlmann, Peter; Björck, Lars; Domon, Bruno; Aebersold, Ruedi

    2008-08-01

    In many studies, particularly in the field of systems biology, it is essential that identical protein sets are precisely quantified in multiple samples such as those representing differentially perturbed cell states. The high degree of reproducibility required for such experiments has not been achieved by classical mass spectrometry-based proteomics methods. In this study we describe the implementation of a targeted quantitative approach by which predetermined protein sets are first identified and subsequently quantified at high sensitivity reliably in multiple samples. This approach consists of three steps. First, the proteome is extensively mapped out by multidimensional fractionation and tandem mass spectrometry, and the data generated are assembled in the PeptideAtlas database. Second, based on this proteome map, peptides uniquely identifying the proteins of interest, proteotypic peptides, are selected, and multiple reaction monitoring (MRM) transitions are established and validated by MS2 spectrum acquisition. This process of peptide selection, transition selection, and validation is supported by a suite of software tools, TIQAM (Targeted Identification for Quantitative Analysis by MRM), described in this study. Third, the selected target protein set is quantified in multiple samples by MRM. Applying this approach we were able to reliably quantify low abundance virulence factors from cultures of the human pathogen Streptococcus pyogenes exposed to increasing amounts of plasma. The resulting quantitative protein patterns enabled us to clearly define the subset of virulence proteins that is regulated upon plasma exposure.

  20. Selective in vivo metabolic cell-labeling-mediated cancer targeting

    PubMed Central

    Wang, Hua; Wang, Ruibo; Cai, Kaimin; He, Hua; Liu, Yang; Yen, Jonathan; Wang, Zhiyu; Xu, Ming; Sun, Yiwen; Zhou, Xin; Yin, Qian; Tang, Li; Dobrucki, Iwona T; Dobrucki, Lawrence W; Chaney, Eric J; Boppart, Stephen A; Fan, Timothy M; Lezmi, Stéphane; Chen, Xuesi; Yin, Lichen; Cheng, Jianjun

    2017-01-01

    Distinguishing cancer cells from normal cells through surface receptors is vital for cancer diagnosis and targeted therapy. Metabolic glycoengineering of unnatural sugars provides a powerful tool to manually introduce chemical receptors onto the cell surface; however, cancer-selective labeling still remains a great challenge. Herein we report the design of sugars that can selectively label cancer cells both in vitro and in vivo. Specifically, we inhibit the cell-labeling activity of tetraacetyl-N-azidoacetylmannosamine (Ac4ManAz) by converting its anomeric acetyl group to a caged ether bond that can be selectively cleaved by cancer-overexpressed enzymes and thus enables the overexpression of azido groups on the surface of cancer cells. Histone deacetylase and cathepsin L-responsive acetylated azidomannosamine, one such enzymatically activatable Ac4ManAz analog developed, mediated cancer-selective labeling in vivo, which enhanced tumor accumulation of a dibenzocyclooctyne–doxorubicin conjugate via click chemistry and enabled targeted therapy against LS174T colon cancer, MDA-MB-231 triple-negative breast cancer and 4T1 metastatic breast cancer in mice. PMID:28192414

  1. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets.

    PubMed

    Uddin, Reaz; Sufian, Muhammad

    2016-01-01

    Infections caused by Salmonella enterica, a Gram-negative facultative anaerobic bacteria belonging to the family of Enterobacteriaceae, are major threats to the health of humans and animals. The recent availability of complete genome data of pathogenic strains of the S. enterica gives new avenues for the identification of drug targets and drug candidates. We have used the genomic and metabolic pathway data to identify pathways and proteins essential to the pathogen and absent from the host. We took the whole proteome sequence data of 42 strains of S. enterica and Homo sapiens along with KEGG-annotated metabolic pathway data, clustered proteins sequences using CD-HIT, identified essential genes using DEG database and discarded S. enterica homologs of human proteins in unique metabolic pathways (UMPs) and characterized hypothetical proteins with SVM-prot and InterProScan. Through this core proteomic analysis we have identified enzymes essential to the pathogen. The identification of 73 enzymes common in 42 strains of S. enterica is the real strength of the current study. We proposed all 73 unexplored enzymes as potential drug targets against the infections caused by the S. enterica. The study is comprehensive around S. enterica and simultaneously considered every possible pathogenic strain of S. enterica. This comprehensiveness turned the current study significant since, to the best of our knowledge it is the first subtractive core proteomic analysis of the unique metabolic pathways applied to any pathogen for the identification of drug targets. We applied extensive computational methods to shortlist few potential drug targets considering the druggability criteria e.g. Non-homologous to the human host, essential to the pathogen and playing significant role in essential metabolic pathways of the pathogen (i.e. S. enterica). In the current study, the subtractive proteomics through a novel approach was applied i.e. by considering only proteins of the unique metabolic

  2. Ethyl carbamate induces cell death through its effects on multiple metabolic pathways.

    PubMed

    Liu, Huichang; Cui, Bo; Xu, Yi; Hu, Chaoyang; Liu, Ying; Qu, Guorun; Li, Dawei; Wu, Yongning; Zhang, Dabing; Quan, Sheng; Shi, Jianxin

    2017-11-01

    Ethyl carbamate (EC), a multisite carcinogenic chemical causing tumors in various animal species, is probably carcinogenic to humans. However, information about the possible carcinogenic and toxicological effects of EC in humans is quite limited. Because EC is found in many dietary foods (such as fermented foods) and tobacco and its products, and exposure of humans to EC often occurs inevitably, its toxicological effects in humans need to be studied. This study was conducted to understand the metabolomic and transcriptomic changes in human hepatocellular carcinoma cells (HepG2) exposed to 100 mM EC for short term (4 h) and long term (12 h) period, respectively. The results revealed multiple influences of EC on the metabolome and transcriptome of HepG2 cells, which was exposure time-dependent and well correlated with the kinetic changes of cell viability and mortality. EC treatment affected multiple metabolic pathways, inducing oxidative stress, reducing detoxification capacity, depleting energy, decreasing reducing power, disrupting membrane integrity, and damaging DNA and protein. These metabolomic and transcriptomic biomarkers of EC on human cell metabolism identified in this study would facilitate further studies on the risk assessment and the mitigation of dietary EC. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Anticancer Targets in the Glycolytic Metabolism of Tumors: A Comprehensive Review

    PubMed Central

    Porporato, Paolo E.; Dhup, Suveera; Dadhich, Rajesh K.; Copetti, Tamara; Sonveaux, Pierre

    2011-01-01

    Cancer is a metabolic disease and the solution of two metabolic equations: to produce energy with limited resources and to fulfill the biosynthetic needs of proliferating cells. Both equations are solved when glycolysis is uncoupled from oxidative phosphorylation in the tricarboxylic acid cycle, a process known as the glycolytic switch. This review addresses in a comprehensive manner the main molecular events accounting for high-rate glycolysis in cancer. It starts from modulation of the Pasteur Effect allowing short-term adaptation to hypoxia, highlights the key role exerted by the hypoxia-inducible transcription factor HIF-1 in long-term adaptation to hypoxia, and summarizes the current knowledge concerning the necessary involvement of aerobic glycolysis (the Warburg effect) in cancer cell proliferation. Based on the many observations positioning glycolysis as a central player in malignancy, the most advanced anticancer treatments targeting tumor glycolysis are briefly reviewed. PMID:21904528

  4. Many si/shRNAs can kill cancer cells by targeting multiple survival genes through an off-target mechanism

    PubMed Central

    van Dongen, Stijn; Haluck-Kangas, Ashley; Sarshad, Aishe A; Bartom, Elizabeth T; Kim, Kwang-Youn A; Scholtens, Denise M; Hafner, Markus; Zhao, Jonathan C; Murmann, Andrea E

    2017-01-01

    Over 80% of multiple-tested siRNAs and shRNAs targeting CD95 or CD95 ligand (CD95L) induce a form of cell death characterized by simultaneous activation of multiple cell death pathways preferentially killing transformed and cancer stem cells. We now show these si/shRNAs kill cancer cells through canonical RNAi by targeting the 3’UTR of critical survival genes in a unique form of off-target effect we call DISE (death induced by survival gene elimination). Drosha and Dicer-deficient cells, devoid of most miRNAs, are hypersensitive to DISE, suggesting cellular miRNAs protect cells from this form of cell death. By testing 4666 shRNAs derived from the CD95 and CD95L mRNA sequences and an unrelated control gene, Venus, we have identified many toxic sequences - most of them located in the open reading frame of CD95L. We propose that specific toxic RNAi-active sequences present in the genome can kill cancer cells. PMID:29063830

  5. Automated multiple target detection and tracking in UAV videos

    NASA Astrophysics Data System (ADS)

    Mao, Hongwei; Yang, Chenhui; Abousleman, Glen P.; Si, Jennie

    2010-04-01

    In this paper, a novel system is presented to detect and track multiple targets in Unmanned Air Vehicles (UAV) video sequences. Since the output of the system is based on target motion, we first segment foreground moving areas from the background in each video frame using background subtraction. To stabilize the video, a multi-point-descriptor-based image registration method is performed where a projective model is employed to describe the global transformation between frames. For each detected foreground blob, an object model is used to describe its appearance and motion information. Rather than immediately classifying the detected objects as targets, we track them for a certain period of time and only those with qualified motion patterns are labeled as targets. In the subsequent tracking process, a Kalman filter is assigned to each tracked target to dynamically estimate its position in each frame. Blobs detected at a later time are used as observations to update the state of the tracked targets to which they are associated. The proposed overlap-rate-based data association method considers the splitting and merging of the observations, and therefore is able to maintain tracks more consistently. Experimental results demonstrate that the system performs well on real-world UAV video sequences. Moreover, careful consideration given to each component in the system has made the proposed system feasible for real-time applications.

  6. Targeting cancer by binding iron: Dissecting cellular signaling pathways

    PubMed Central

    Lui, Goldie Y.L.; Kovacevic, Zaklina; Richardson, Vera; Merlot, Angelica M.; Kalinowski, Danuta S.; Richardson, Des R.

    2015-01-01

    Newer and more potent therapies are urgently needed to effectively treat advanced cancers that have developed resistance and metastasized. One such strategy is to target cancer cell iron metabolism, which is altered compared to normal cells and may facilitate their rapid proliferation. This is supported by studies reporting the anti-neoplastic activities of the clinically available iron chelators, desferrioxamine and deferasirox. More recently, ligands of the di-2-pyridylketone thiosemicarbazone (DpT) class have demonstrated potent and selective anti-proliferative activity across multiple cancer-types in vivo, fueling studies aimed at dissecting their molecular mechanisms of action. In the past five years alone, significant advances have been made in understanding how chelators not only modulate cellular iron metabolism, but also multiple signaling pathways implicated in tumor progression and metastasis. Herein, we discuss recent research on the targeting of iron in cancer cells, with a focus on the novel and potent DpT ligands. Several key studies have revealed that iron chelation can target the AKT, ERK, JNK, p38, STAT3, TGF-β, Wnt and autophagic pathways to subsequently inhibit cellular proliferation, the epithelial-mesenchymal transition (EMT) and metastasis. These developments emphasize that these novel therapies could be utilized clinically to effectively target cancer. PMID:26125440

  7. [The cancer paradigm in pulmonary arterial hypertension: towards anti-remodeling therapies targeting metabolic dysfunction?

    PubMed

    Dumas, Sébastien J; Humbert, Marc; Cohen-Kaminsky, Sylvia

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a rare, complex and multifactorial disease in which pulmonary vascular remodeling plays a major role ending in right heart failure and death. Current specific therapies of PAH that mainly target the vasoconstriction/vasodilatation imbalance are not curative. Bi-pulmonary transplantation remains the only option in patients resistant to current therapies. It is thus crucial to identify novel vascular anti-remodeling therapeutic targets. This remodeling displays several properties of cancer cells, especially overproliferation and apoptosis resistance of pulmonary vascular cells, hallmarks of cancer related to the metabolic shift known as the "Warburg effect". The latter is characterized by a shift of ATP production, from oxidative phosphorylation to low rate aerobic glycolysis. In compensation, the cancer cells exhibit exacerbated glutaminolysis thus resulting in glutamine addiction, necessary to their overproliferation. Glutamine intake results in glutamate production, a molecule at the crossroads of energy metabolism and cancer cell communication, thus contributing to cell proliferation. Accordingly, therapeutic strategies targeting glutamate production, its release into the extracellular space and its membrane receptors have been suggested to treat different types of cancers, not only in the central nervous system but also in the periphery. We propose that similar strategies targeting glutamatergic signaling may be considered in PAH, especially as they could affect not only the vascular remodeling but also the right heart hypertrophy known to involve the glutaminolysis pathway. Ongoing studies aim to characterize the involvement of the glutamate pathway and its receptors in vascular remodeling, and the therapeutic potential of specific molecules targeting this pathway. © Société de Biologie, 2017.

  8. First passage times for multiple particles with reversible target-binding kinetics

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.

    2017-10-01

    We investigate the first passage problem for multiple particles that diffuse towards a target, partially adsorb there, and then desorb after a finite exponentially distributed residence time. We search for the first time when m particles undergoing such reversible target-binding kinetics are found simultaneously on the target that may trigger an irreversible chemical reaction or a biophysical event. Even if the particles are independent, the finite residence time on the target yields an intricate temporal coupling between particles. We compute analytically the mean first passage time (MFPT) for two independent particles by mapping the original problem to higher-dimensional surface-mediated diffusion and solving the coupled partial differential equations. The respective effects of the adsorption and desorption rates on the MFPT are revealed and discussed.

  9. Labeled RFS-Based Track-Before-Detect for Multiple Maneuvering Targets in the Infrared Focal Plane Array.

    PubMed

    Li, Miao; Li, Jun; Zhou, Yiyu

    2015-12-08

    The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts-MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing.

  10. Labeled RFS-Based Track-Before-Detect for Multiple Maneuvering Targets in the Infrared Focal Plane Array

    PubMed Central

    Li, Miao; Li, Jun; Zhou, Yiyu

    2015-01-01

    The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts—MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing. PMID:26670234

  11. Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells.

    PubMed

    Sherbenou, Daniel W; Aftab, Blake T; Su, Yang; Behrens, Christopher R; Wiita, Arun; Logan, Aaron C; Acosta-Alvear, Diego; Hann, Byron C; Walter, Peter; Shuman, Marc A; Wu, Xiaobo; Atkinson, John P; Wolf, Jeffrey L; Martin, Thomas G; Liu, Bin

    2016-12-01

    Multiple myeloma is incurable by standard approaches because of inevitable relapse and development of treatment resistance in all patients. In our prior work, we identified a panel of macropinocytosing human monoclonal antibodies against CD46, a negative regulator of the innate immune system, and constructed antibody-drug conjugates (ADCs). In this report, we show that an anti-CD46 ADC (CD46-ADC) potently inhibited proliferation in myeloma cell lines with little effect on normal cells. CD46-ADC also potently eliminated myeloma growth in orthometastatic xenograft models. In primary myeloma cells derived from bone marrow aspirates, CD46-ADC induced apoptosis and cell death, but did not affect the viability of nontumor mononuclear cells. It is of clinical interest that the CD46 gene resides on chromosome 1q, which undergoes genomic amplification in the majority of relapsed myeloma patients. We found that the cell surface expression level of CD46 was markedly higher in patient myeloma cells with 1q gain than in those with normal 1q copy number. Thus, genomic amplification of CD46 may serve as a surrogate for target amplification that could allow patient stratification for tailored CD46-targeted therapy. Overall, these findings indicate that CD46 is a promising target for antibody-based treatment of multiple myeloma, especially in patients with gain of chromosome 1q.

  12. Target-responsive DNA hydrogel mediated "stop-flow" microfluidic paper-based analytic device for rapid, portable and visual detection of multiple targets.

    PubMed

    Wei, Xiaofeng; Tian, Tian; Jia, Shasha; Zhu, Zhi; Ma, Yanli; Sun, Jianjun; Lin, Zhenyu; Yang, Chaoyong James

    2015-04-21

    A versatile point-of-care assay platform was developed for simultaneous detection of multiple targets based on a microfluidic paper-based analytic device (μPAD) using a target-responsive hydrogel to mediate fluidic flow and signal readout. An aptamer-cross-linked hydrogel was used as a target-responsive flow regulator in the μPAD. In the absence of a target, the hydrogel is formed in the flow channel, stopping the flow in the μPAD and preventing the colored indicator from traveling to the final observation spot, thus yielding a "signal off" readout. In contrast, in the presence of a target, no hydrogel is formed because of the preferential interaction of target and aptamer. This allows free fluidic flow in the μPAD, carrying the indicator to the observation spot and producing a "signal on" readout. The device is inexpensive to fabricate, easy to use, and disposable after detection. Testing results can be obtained within 6 min by the naked eye via a simple loading operation without the need for any auxiliary equipment. Multiple targets, including cocaine, adenosine, and Pb(2+), can be detected simultaneously, even in complex biological matrices such as urine. The reported method offers simple, low cost, rapid, user-friendly, point-of-care testing, which will be useful in many applications.

  13. A critique of the molecular target-based drug discovery paradigm based on principles of metabolic control: advantages of pathway-based discovery.

    PubMed

    Hellerstein, Marc K

    2008-01-01

    Contemporary drug discovery and development (DDD) is dominated by a molecular target-based paradigm. Molecular targets that are potentially important in disease are physically characterized; chemical entities that interact with these targets are identified by ex vivo high-throughput screening assays, and optimized lead compounds enter testing as drugs. Contrary to highly publicized claims, the ascendance of this approach has in fact resulted in the lowest rate of new drug approvals in a generation. The primary explanation for low rates of new drugs is attrition, or the failure of candidates identified by molecular target-based methods to advance successfully through the DDD process. In this essay, I advance the thesis that this failure was predictable, based on modern principles of metabolic control that have emerged and been applied most forcefully in the field of metabolic engineering. These principles, such as the robustness of flux distributions, address connectivity relationships in complex metabolic networks and make it unlikely a priori that modulating most molecular targets will have predictable, beneficial functional outcomes. These same principles also suggest, however, that unexpected therapeutic actions will be common for agents that have any effect (i.e., that complexity can be exploited therapeutically). A potential operational solution (pathway-based DDD), based on observability rather than predictability, is described, focusing on emergent properties of key metabolic pathways in vivo. Recent examples of pathway-based DDD are described. In summary, the molecular target-based DDD paradigm is built on a naïve and misleading model of biologic control and is not heuristically adequate for advancing the mission of modern therapeutics. New approaches that take account of and are built on principles described by metabolic engineers are needed for the next generation of DDD.

  14. Active Debris Removal of Multiple Priority Targets

    NASA Astrophysics Data System (ADS)

    Braun, Vitali; Flegel, Sven Kevin; Vörsmann, Peter; Wiedemann, Carsten; Gelhaus, Johannes; Moeckel, Marek; Kebschull, Christopher

    2012-07-01

    Today's space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 kilometers with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome. Current studies show that catastrophic collisions are not a major problem today, but will become the main process for debris generation within the SSO region in the near future, even without any future launches. In order to avoid this effect, objects with a major impact on collisional cascading have to be actively removed from the critical region after their end of life. Not having the capability to perform an end-of-life maneuver in order to transfer to a graveyard orbit or to de-orbit, many satellites and rocket bodies would have to be de-orbited within a dedicated mission. In such a mission, a service satellite would perform a de-orbit maneuver, after having docked to a specific target. In this paper several systems, e.g. chemical and electrical engines are analysed with the main focus on removing multiple targets within one single mission. The service satellite has to undock from the previously de-orbited target in order to start the rendezvous and docking phase for a subsequent target. The targets are chosen from a previously defined priority list in order to enhance the mission

  15. Chloroplast- or Mitochondria-Targeted DEAD-Box RNA Helicases Play Essential Roles in Organellar RNA Metabolism and Abiotic Stress Responses

    PubMed Central

    Nawaz, Ghazala; Kang, Hunseung

    2017-01-01

    The yields and productivity of crops are greatly diminished by various abiotic stresses, including drought, cold, heat, and high salinity. Chloroplasts and mitochondria are cellular organelles that can sense diverse environmental stimuli and alter gene expression to cope with adverse environmental stresses. Organellar gene expression is mainly regulated at posttranscriptional levels, including RNA processing, intron splicing, RNA editing, RNA turnover, and translational control, during which a variety of nucleus-encoded RNA-binding proteins (RBPs) are targeted to chloroplasts or mitochondria where they play essential roles in organellar RNA metabolism. DEAD-box RNA helicases (RHs) are enzymes that can alter RNA structures and affect RNA metabolism in all living organisms. Although a number of DEAD-box RHs have been found to play important roles in RNA metabolism in the nucleus and cytoplasm, our understanding on the roles of DEAD-box RHs in the regulation of RNA metabolism in chloroplasts and mitochondria is only at the beginning. Considering that organellar RNA metabolism and gene expression are tightly regulated by anterograde signaling from the nucleus, it is imperative to determine the functions of nucleus-encoded organellar RBPs. In this review, we summarize the emerging roles of nucleus-encoded chloroplast- or mitochondria-targeted DEAD-box RHs in organellar RNA metabolism and plant response to diverse abiotic stresses. PMID:28596782

  16. The multiple universes of estrogen-related receptor α and γ in metabolic control and related diseases

    PubMed Central

    Audet-walsh, Étienne; Giguére, Vincent

    2015-01-01

    The identification of the estrogen-related receptors (ERRs) as the first orphan nuclear receptors ignited a new era in molecular endocrinology, which led to the discovery of new ligand-dependent response systems. Although ERR subfamily members have yet to be associated with a natural ligand, the characterization of these orphan receptors has demonstrated that they occupy a strategic node in the transcriptional control of cellular energy metabolism. In particular, ERRs are required for the response to various environmental challenges that require high energy levels by the organism. As central regulators of energy homeostasis, ERRs may also be implicated in the etiology of metabolic disorders, such as type 2 diabetes and metabolic syndrome. Here, we review the recent evidence that further highlights the role of ERRs in metabolic control, particularly in liver and skeletal muscle, and their likely involvement in metabolic diseases. Consequently, we also explore the promises and pitfalls of ERRs as potential therapeutic targets. PMID:25500872

  17. Lipid Metabolism, Apoptosis and Cancer Therapy

    PubMed Central

    Huang, Chunfa; Freter, Carl

    2015-01-01

    Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy. PMID:25561239

  18. Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, Satyakam; Khodayari, Ali; Zhou, Jilai

    Background. Clostridium thermocellum is a Gram-positive anaerobe with the ability to hydrolyze and metabolize cellulose into biofuels such as ethanol, making it an attractive candidate for consolidated bioprocessing (CBP). At present, metabolic engineering in C. thermocellum is hindered due to the incomplete description of its metabolic repertoire and regulation within a predictive metabolic model. Genome-scale metabolic (GSM) models augmented with kinetic models of metabolism have been shown to be effective at recapitulating perturbed metabolic phenotypes. Results. In this effort, we first update a second-generation genome-scale metabolic model (iCth446) for C. thermocellum by correcting cofactor dependencies, restoring elemental and charge balances,more » and updating GAM and NGAM values to improve phenotype predictions. The iCth446 model is next used as a scaffold to develop a core kinetic model (k-ctherm118) of the C. thermocellum central metabolism using the Ensemble Modeling (EM) paradigm. Model parameterization is carried out by simultaneously imposing fermentation yield data in lactate, malate, acetate, and hydrogen production pathways for 19 measured metabolites spanning a library of 19 distinct single and multiple gene knockout mutants along with 18 intracellular metabolite concentration data for a Δgldh mutant and ten experimentally measured Michaelis–Menten kinetic parameters. Conclusions. The k-ctherm118 model captures significant metabolic changes caused by (1) nitrogen limitation leading to increased yields for lactate, pyruvate, and amino acids, and (2) ethanol stress causing an increase in intracellular sugar phosphate concentrations (~1.5-fold) due to upregulation of cofactor pools. Robustness analysis of k-ctherm118 alludes to the presence of a secondary activity of ketol-acid reductoisomerase and possible regulation by valine and/or leucine pool levels. In addition, cross-validation and robustness analysis allude to missing elements in k

  19. Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations

    DOE PAGES

    Dash, Satyakam; Khodayari, Ali; Zhou, Jilai; ...

    2017-05-02

    Background. Clostridium thermocellum is a Gram-positive anaerobe with the ability to hydrolyze and metabolize cellulose into biofuels such as ethanol, making it an attractive candidate for consolidated bioprocessing (CBP). At present, metabolic engineering in C. thermocellum is hindered due to the incomplete description of its metabolic repertoire and regulation within a predictive metabolic model. Genome-scale metabolic (GSM) models augmented with kinetic models of metabolism have been shown to be effective at recapitulating perturbed metabolic phenotypes. Results. In this effort, we first update a second-generation genome-scale metabolic model (iCth446) for C. thermocellum by correcting cofactor dependencies, restoring elemental and charge balances,more » and updating GAM and NGAM values to improve phenotype predictions. The iCth446 model is next used as a scaffold to develop a core kinetic model (k-ctherm118) of the C. thermocellum central metabolism using the Ensemble Modeling (EM) paradigm. Model parameterization is carried out by simultaneously imposing fermentation yield data in lactate, malate, acetate, and hydrogen production pathways for 19 measured metabolites spanning a library of 19 distinct single and multiple gene knockout mutants along with 18 intracellular metabolite concentration data for a Δgldh mutant and ten experimentally measured Michaelis–Menten kinetic parameters. Conclusions. The k-ctherm118 model captures significant metabolic changes caused by (1) nitrogen limitation leading to increased yields for lactate, pyruvate, and amino acids, and (2) ethanol stress causing an increase in intracellular sugar phosphate concentrations (~1.5-fold) due to upregulation of cofactor pools. Robustness analysis of k-ctherm118 alludes to the presence of a secondary activity of ketol-acid reductoisomerase and possible regulation by valine and/or leucine pool levels. In addition, cross-validation and robustness analysis allude to missing elements in k

  20. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review.

    PubMed

    Gan, Ren-You; Li, Hua-Bin; Sui, Zhong-Quan; Corke, Harold

    2018-04-13

    Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.

  1. [Prevalence of target organ damage and metabolic abnormalities in resistant hypertension].

    PubMed

    Armario, Pedro; Oliveras, Anna; Hernández Del Rey, Raquel; Ruilope, Luis Miguel; De La Sierra, Alejandro

    2011-10-15

    Patients with resistant hypertension (RH) are relatively frequently visited in specialized units of hypertension. The aim of this study was to assess the prevalence of target organ damage, central obesity and metabolic syndrome in a cohort of patients with RH consecutively included in the Register of Resistant Hypertension of the Spanish Society of Hypertension (SHE-LELHA). Cross-sectional, multicenter epidemiologic study in usual clinical practice conditions. Patients with clinical diagnosis of resistant hypertension, that is, office systolic and diastolic blood pressure ≥ 140 mm Hg and/or ≥ 90 mm Hg, respectively, despite a prescribed therapeutic schedule with an appropriate combination of three or more full-dose antihypertensive drugs, including a diuretic, were consecutively recruited from specialized hypertension units spread through Spain. Demographic and anthropometric characteristics as well as cardiovascular risk factors and associated conditions were recorded, and all the subjects underwent 24-h ambulatory blood pressure monitoring. Left ventricular hypertrophy was considered as a left ventricular mass index ≥ 125 g/m(2) in males and ≥ 110 g/m(2) in females. Left atrial enlargement was defined as an indexed left atrium diameter ≥ 26 mm/m(2). Microalbuminuria was defined as a urinary albumin/creatinine ratio ≥ 22 mg/g in males and ≥ 31 mg/g in females. 513 patients were included, aged 64±11 years old, 47% women. Central obesity was present in 65.7% (CI 95% 61.6-69.9), 38.6% (CI 95% 34.4-42.8) had diabetes and 63.7% (CI 95% 59.4-67.9) had metabolic syndrome. The prevalence of left ventricular hypertrophy and left atrial enlargement, determined by echocardiography was 57.1% (CI 95% 50.8-63.5) and 10.0% (CI 95% 6.3-13.7) respectively. Microalbuminuria was found in 46.6% (CI 95% 41.4-51.8) of the subjects. Patients with metabolic syndrome were significantly older (65.4±11 and 62.5±12 years; P=.0052), presented a higher prevalence of diabetes

  2. Mitoketoscins: Novel mitochondrial inhibitors for targeting ketone metabolism in cancer stem cells (CSCs)

    PubMed Central

    Ozsvari, Bela; Sotgia, Federica; Simmons, Katie; Trowbridge, Rachel; Foster, Richard; Lisanti, Michael P.

    2017-01-01

    Previous studies have now well-established that epithelial cancer cells can utilize ketone bodies (3-hydroxybutyrate and aceto-acetate) as mitochondrial fuels, to actively promote tumor growth and metastatic dissemination. The two critical metabolic enzymes implicated in this process are OXCT1 and ACAT1, which are both mitochondrial proteins. Importantly, over-expression of OXCT1 or ACAT1 in human breast cancer cells is sufficient to genetically drive tumorigenesis and/or lung metastasis, validating that they indeed behave as metabolic “tumor promoters”. Here, we decided to target these two enzymes, which give cancer cells the ability to recycle ketone bodies into Acetyl-CoA and, therefore, to produce increased ATP. Briefly, we used computational chemistry (in silico drug design) to select a sub-set of potentially promising compounds that spatially fit within the active site of these enzymes, based on their known 3D crystal structures. These libraries of compounds were then phenotypically screened for their effects on total cellular ATP levels. Positive hits were further validated by metabolic flux analysis. Our results indicated that four of these compounds effectively inhibited mitochondrial oxygen consumption. Two of these compounds also induced a reactive glycolytic phenotype in cancer cells. Most importantly, using the mammosphere assay, we showed that these compounds can be used to functionally inhibit cancer stem cell (CSC) activity and propagation. Finally, our molecular modeling studies directly show how these novel compounds are predicted to bind to the active catalytic sites of OXCT1 and ACAT1, within their Coenzyme A binding site. As such, we speculate that these mitochondrial inhibitors are partially mimicking the structure of Coenzyme A. Thus, we conclude that OXCT1 and ACAT1 are important new therapeutic targets for further drug development and optimization. We propose that this new class of drugs should be termed “mitoketoscins”, to reflect

  3. Multiplicity distributions of shower particles and target fragments in 84 Kr 36-emulsion interactions at 1 GeV per nucleon

    NASA Astrophysics Data System (ADS)

    Singh, M. K.; Soma, A. K.; Pathak, Ramji; Singh, V.

    2014-03-01

    This article focuses on multiplicity distributions of shower particles and target fragments for interaction of 84 Kr 36 with NIKFI BR-2 nuclear emulsion target at kinetic energy of 1 GeV per nucleon. Experimental multiplicity distributions of shower particles, grey particles, black particles and heavily ionization particles are well described by multi-component Erlang distribution of multi-source thermal model. We have observed a linear correlation in multiplicities for the above mentioned particles or fragments. Further experimental studies have shown a saturation phenomenon in shower particle multiplicity with the increase of target fragment multiplicity.

  4. Context matters: the structure of task goals affects accuracy in multiple-target visual search.

    PubMed

    Clark, Kait; Cain, Matthew S; Adcock, R Alison; Mitroff, Stephen R

    2014-05-01

    Career visual searchers such as radiologists and airport security screeners strive to conduct accurate visual searches, but despite extensive training, errors still occur. A key difference between searches in radiology and airport security is the structure of the search task: Radiologists typically scan a certain number of medical images (fixed objective), and airport security screeners typically search X-rays for a specified time period (fixed duration). Might these structural differences affect accuracy? We compared performance on a search task administered either under constraints that approximated radiology or airport security. Some displays contained more than one target because the presence of multiple targets is an established source of errors for career searchers, and accuracy for additional targets tends to be especially sensitive to contextual conditions. Results indicate that participants searching within the fixed objective framework produced more multiple-target search errors; thus, adopting a fixed duration framework could improve accuracy for career searchers. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  5. O-GlcNAcylation in Cancer Biology: Linking Metabolism and Signaling.

    PubMed

    Ferrer, Christina M; Sodi, Valerie L; Reginato, Mauricio J

    2016-08-14

    The hexosamine biosynthetic pathway (HBP) is highly dependent on multiple metabolic nutrients including glucose, glutamine, and acetyl-CoA. Increased flux through HBP leads to elevated post-translational addition of β-D-N-acetylglucosamine sugars to nuclear and cytoplasmic proteins. Increased total O-GlcNAcylation is emerging as a general characteristic of cancer cells, and recent studies suggest that O-GlcNAcylation is a central communicator of nutritional status to control key signaling and metabolic pathways that regulate multiple cancer cell phenotypes. This review summarizes our current understanding of changes of O-GlcNAc cycling enzymes in cancer, the role of O-GlcNAcylation in tumorigenesis, and the current challenges in targeting this pathway therapeutically. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Ccdc3: A New P63 Target Involved in Regulation Of Liver Lipid Metabolism.

    PubMed

    Liao, Wenjuan; Liu, Hongbing; Zhang, Yiwei; Jung, Ji Hoon; Chen, Jiaxiang; Su, Xiaohua; Kim, Yeong C; Flores, Elsa R; Wang, San Ming; Czarny-Ratajczak, Malwina; Li, Wen; Zeng, Shelya X; Lu, Hua

    2017-08-21

    TAp63, a member of the p53 family, has been shown to regulate energy metabolism. Here, we report coiled coil domain-containing 3 (CCDC3) as a new TAp63 target. TAp63, but not ΔNp63, p53 or p73, upregulates CCDC3 expression by directly binding to its enhancer region. The CCDC3 expression is markedly reduced in TAp63-null mouse embryonic fibroblasts and brown adipose tissues and by tumor necrosis factor alpha that reduces p63 transcriptional activity, but induced by metformin, an anti-diabetic drug that activates p63. Also, the expression of CCDC3 is positively correlated with TAp63 levels, but conversely with ΔNp63 levels, during adipocyte differentiation. Interestingly, CCDC3, as a secreted protein, targets liver cancer cells and increases long chain polyunsaturated fatty acids, but decreases ceramide in the cells. CCDC3 alleviates glucose intolerance, insulin resistance and steatosis formation in transgenic CCDC3 mice on high-fat diet (HFD) by reducing the expression of hepatic PPARγ and its target gene CIDEA as well as other genes involved in de novo lipogenesis. Similar results are reproduced by hepatic expression of ectopic CCDC3 in mice on HFD. Altogether, these results demonstrate that CCDC3 modulates liver lipid metabolism by inhibiting liver de novo lipogenesis as a downstream player of the p63 network.

  7. Method for distinguishing multiple targets using time-reversal acoustics

    DOEpatents

    Berryman, James G.

    2004-06-29

    A method for distinguishing multiple targets using time-reversal acoustics. Time-reversal acoustics uses an iterative process to determine the optimum signal for locating a strongly reflecting target in a cluttered environment. An acoustic array sends a signal into a medium, and then receives the returned/reflected signal. This returned/reflected signal is then time-reversed and sent back into the medium again, and again, until the signal being sent and received is no longer changing. At that point, the array has isolated the largest eigenvalue/eigenvector combination and has effectively determined the location of a single target in the medium (the one that is most strongly reflecting). After the largest eigenvalue/eigenvector combination has been determined, to determine the location of other targets, instead of sending back the same signals, the method sends back these time reversed signals, but half of them will also be reversed in sign. There are various possibilities for choosing which half to do sign reversal. The most obvious choice is to reverse every other one in a linear array, or as in a checkerboard pattern in 2D. Then, a new send/receive, send-time reversed/receive iteration can proceed. Often, the first iteration in this sequence will be close to the desired signal from a second target. In some cases, orthogonalization procedures must be implemented to assure the returned signals are in fact orthogonal to the first eigenvector found.

  8. Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy-Implications for Therapies.

    PubMed

    Heydemann, Ahlke

    2018-06-20

    The interactions between nutrition and metabolism and skeletal muscle have long been known. Muscle is the major metabolic organ—it consumes more calories than other organs—and therefore, there is a clear need to discuss these interactions and provide some direction for future research areas regarding muscle pathologies. In addition, new experiments and manuscripts continually reveal additional highly intricate, reciprocal interactions between metabolism and muscle. These reciprocal interactions include exercise, age, sex, diet, and pathologies including atrophy, hypoxia, obesity, diabetes, and muscle myopathies. Central to this review are the metabolic changes that occur in the skeletal muscle cells of muscular dystrophy patients and mouse models. Many of these metabolic changes are pathogenic (inappropriate body mass changes, mitochondrial dysfunction, reduced adenosine triphosphate (ATP) levels, and increased Ca 2+ ) and others are compensatory (increased phosphorylated AMP activated protein kinase (pAMPK), increased slow fiber numbers, and increased utrophin). Therefore, reversing or enhancing these changes with therapies will aid the patients. The multiple therapeutic targets to reverse or enhance the metabolic pathways will be discussed. Among the therapeutic targets are increasing pAMPK, utrophin, mitochondrial number and slow fiber characteristics, and inhibiting reactive oxygen species. Because new data reveals many additional intricate levels of interactions, new questions are rapidly arising. How does muscular dystrophy alter metabolism, and are the changes compensatory or pathogenic? How does metabolism affect muscular dystrophy? Of course, the most profound question is whether clinicians can therapeutically target nutrition and metabolism for muscular dystrophy patient benefit? Obtaining the answers to these questions will greatly aid patients with muscular dystrophy.

  9. MicroRNA-277 targets insulin-like peptides 7 and 8 to control lipid metabolism and reproduction in Aedes aegypti mosquitoes.

    PubMed

    Ling, Lin; Kokoza, Vladimir A; Zhang, Changyu; Aksoy, Emre; Raikhel, Alexander S

    2017-09-19

    Hematophagous female mosquitoes transmit numerous devastating human diseases, including malaria, dengue fever, Zika virus, and others. Because of their obligatory requirement of a vertebrate blood meal for reproduction, these mosquitoes need a lot of energy; therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. Lipids are the major energy store providing the fuel required for host seeking and reproduction. They are essential components of the fat body, a metabolic tissue that is the insect analog of vertebrate liver and adipose tissue. In this study, we found that microRNA-277 (miR-277) plays an important role in regulating mosquito lipid metabolism. The genetic disruption of miR-277 using the CRISPR-Cas9 system led to failures in both lipid storage and ovary development. miR-277 mimic injection partially rescued these phenotypic manifestations. Examination of subcellular localization of FOXO protein via CRISPR-assisted, single-stranded oligodeoxynucleotide-mediated homology-directed repair revealed that insulin signaling is up-regulated in response to miR-277 depletion. In silico target prediction identified that insulin-like peptides 7 and 8 ( ilp7 and ilp8 ) are putative targets of miR-277; RNA immunoprecipitation and a luciferase reporter assay confirmed that ilp7 and ilp8 are direct targets of this miRNA. CRISPR-Cas9 depletion of ilp7 and ilp8 led to metabolic and reproductive defects. These depletions identified differential actions of ILP7 and ILP8 in lipid homeostasis and ovarian development. Thus, miR-277 plays a critical role in mosquito lipid metabolism and reproduction by targeting ilp7 and ilp8 , and serves as a monitor to control ILP7 and ILP8 mRNA levels.

  10. On moments of the multiplicity events of slow target fragments in relativistic Sulfur-ion collisions

    NASA Astrophysics Data System (ADS)

    Abdelsalam, A.; Kamel, S.; Rashed, N.; Sabry, N.

    2014-07-01

    A detailed study on the multiplicity characteristics of the slow target fragments emitted in relativistic heavy-ion collisions has been carried out at ELab = 3.7A and 200A GeV using 32S projectile. The beam energy dependence of the black particles produced in the full phase space of 32S-emulsion (32S-Em) interactions on the target size in terms of their moments (mean, variance, skewness and kurtosis) is investigated. The various order moments of target fragments emitted in the interactions of 32S beams with the heavy (AgBr) target nuclei are estimated in the forward (FHS) and backward (BHS) hemispheres. The investigated values of ratio of variance to mean at both energies show that the multiplicity distributions (MDs) are not Poissonian and the strongly correlated emission of target fragments are in the forward directions. The degree of anisotropic fragment emission and nature of correlation among the emitted fragments are investigated. The energy dependence of entropy is examined in both hemispheres. The entropy values normalized to average multiplicity are found to be energy independent. Scaling of MD of black particles produced in these interactions has been studied to verify the validity of scaling hypothesis via two scaling (Koba-Nielsen-Olesen (KNO)-scaling and Hegyi-scaling) functions. A simplified universal function has been used in each scaling to display the experimental data.

  11. Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes.

    PubMed

    Vad-Nielsen, Johan; Lin, Lin; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun

    2016-11-01

    The engineered CRISPR/Cas9 technology has developed as the most efficient and broadly used genome editing tool. However, simultaneously targeting multiple genes (or genomic loci) in the same individual cells using CRISPR/Cas9 remain one technical challenge. In this article, we have developed a Golden Gate Assembly method for the generation of CRISPR gRNA expression arrays, thus enabling simultaneous gene targeting. Using this method, the generation of CRISPR gRNA expression array can be accomplished in 2 weeks, and contains up to 30 gRNA expression cassettes. We demonstrated in the study that simultaneously targeting 10 genomic loci or simultaneously inhibition of multiple endogenous genes could be achieved using the multiplexed gRNA expression array vector in human cells. The complete set of plasmids is available through the non-profit plasmid repository Addgene.

  12. Multi-Target Angle Tracking Algorithm for Bistatic Multiple-Input Multiple-Output (MIMO) Radar Based on the Elements of the Covariance Matrix.

    PubMed

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-03-07

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.

  13. A distributed automatic target recognition system using multiple low resolution sensors

    NASA Astrophysics Data System (ADS)

    Yue, Zhanfeng; Lakshmi Narasimha, Pramod; Topiwala, Pankaj

    2008-04-01

    In this paper, we propose a multi-agent system which uses swarming techniques to perform high accuracy Automatic Target Recognition (ATR) in a distributed manner. The proposed system can co-operatively share the information from low-resolution images of different looks and use this information to perform high accuracy ATR. An advanced, multiple-agent Unmanned Aerial Vehicle (UAV) systems-based approach is proposed which integrates the processing capabilities, combines detection reporting with live video exchange, and swarm behavior modalities that dramatically surpass individual sensor system performance levels. We employ real-time block-based motion analysis and compensation scheme for efficient estimation and correction of camera jitter, global motion of the camera/scene and the effects of atmospheric turbulence. Our optimized Partition Weighted Sum (PWS) approach requires only bitshifts and additions, yet achieves a stunning 16X pixel resolution enhancement, which is moreover parallizable. We develop advanced, adaptive particle-filtering based algorithms to robustly track multiple mobile targets by adaptively changing the appearance model of the selected targets. The collaborative ATR system utilizes the homographies between the sensors induced by the ground plane to overlap the local observation with the received images from other UAVs. The motion of the UAVs distorts estimated homography frame to frame. A robust dynamic homography estimation algorithm is proposed to address this, by using the homography decomposition and the ground plane surface estimation.

  14. Coupling nutrient sensing to metabolic homoeostasis: the role of the mammalian target of rapamycin complex 1 pathway.

    PubMed

    André, Caroline; Cota, Daniela

    2012-11-01

    The mammalian target of rapamycin complex 1 (mTORC1) pathway is known to couple different environmental cues to the regulation of several energy-demanding functions within the cell, spanning from protein translation to mitochondrial activity. As a result, at the organism level, mTORC1 activity affects energy balance and general metabolic homoeostasis by modulating both the activity of neuronal populations that play key roles in the control of food intake and body weight, as well as by determining storage and use of fuel substrates in peripheral tissues. This review focuses on recent advances made in understanding the role of the mTORC1 pathway in the regulation of energy balance. More particularly, it aims at providing an overview of the status of knowledge regarding the mechanisms underlying the ability of certain amino acids, glucose and fatty acids, to affect mTORC1 activity and in turn illustrates how the mTORC1 pathway couples nutrient sensing to the hypothalamic regulation of the organisms' energy homoeostasis and to the control of intracellular metabolic processes, such as glucose uptake, protein and lipid biosynthesis. The evidence reviewed pinpoints the mTORC1 pathway as an integrator of the actions of nutrients on metabolic health and provides insight into the relevance of this intracellular pathway as a potential target for the therapy of metabolic diseases such as obesity and type-2 diabetes.

  15. Peroxisome Proliferator Activated Receptor A Ligands as Anticancer Drugs Targeting Mitochondrial Metabolism

    PubMed Central

    Grabacka, Maja; Pierzchalska, Malgorzata; Reiss, Krzysztof

    2011-01-01

    Tumor cells show metabolic features distinctive from normal tissues, with characteristically enhanced aerobic glycolysis, glutaminolysis and lipid synthesis. Peroxisome proliferator activated receptor α (PPAR α) is activated by nutrients (fatty acids and their derivatives) and influences these metabolic pathways acting antagonistically to oncogenic Akt and c-Myc. Therefore PPAR α can be regarded as a candidate target molecule in supplementary anticancer pharmacotherapy as well as dietary therapeutic approach. This idea is based on hitting the cancer cell metabolic weak points through PPAR α mediated stimulation of mitochondrial fatty acid oxidation and ketogenesis with simultaneous reduction of glucose and glutamine consumption. PPAR α activity is induced by fasting and its molecular consequences overlap with the effects of calorie restriction and ketogenic diet (CRKD). CRKD induces increase of NAD+/NADH ratio and drop in ATP/AMP ratio. The first one is the main stimulus for enhanced protein deacetylase SIRT1 activity; the second one activates AMP-dependent protein kinase (AMPK). Both SIRT1 and AMPK exert their major metabolic activities such as fatty acid oxidation and block of glycolysis and protein, nucleotide and fatty acid synthesis through the effector protein peroxisome proliferator activated receptor gamma 1 α coactivator (PGC-1α). PGC-1α cooperates with PPAR α and their activities might contribute to potential anticancer effects of CRKD, which were reported for various brain tumors. Therefore, PPAR α activation can engage molecular interplay among SIRT1, AMPK, and PGC-1α that provides a new, low toxicity dietary approach supplementing traditional anticancer regimen. PMID:21133850

  16. The crosstalk between gut microbiota and obesity and related metabolic disorders.

    PubMed

    Xu, Wen-Ting; Nie, Yong-Zhan; Yang, Zhen; Lu, Nong-Hua

    2016-06-01

    Obesity and related metabolic diseases are currently a threat to global public health. The occurrence and development of these conditions result from the combined effects of multiple factors. The human gut is a diverse and vibrant microecosystem, and its composition and function are a focus of research in the fields of life science and medicine. An increasing amount of evidence indicates that interactions between the gut microbiota and their genetic predispositions or dietary changes may be key factors that contribute to obesity and other metabolic diseases. Defining the mechanisms by which the gut microbiota influence obesity and related chronic metabolic diseases will bring about revolutionary changes that will enable practitioners to prevent and control metabolic diseases by targeting the gut microbiota.

  17. A systems biology road map for the discovery of drugs targeting cancer cell metabolism.

    PubMed

    Alberghina, Lilia; Gaglio, Daniela; Moresco, Rosa Maria; Gilardi, Maria Carla; Messa, Cristina; Vanoni, Marco

    2014-01-01

    Despite their different histological and molecular properties, different types of cancers share few essential functional alterations. Some of these cancer hallmarks may easily be studied in in vitro cultures, while others are related to the way in which tumors grow in vivo. According to the systems biology paradigm, complex cellular functions arise as system-level properties from the dynamic interaction of a large number of biomolecules. We previously newly defined four basic cancer cell properties derived from known cancer hallmarks amenable to system-level investigation in cell cultures: enhanced growth, altered response to apoptotic cues, genomic instability and inability to enter senescence following oncogenic signaling. Here we summarize the major properties of enhanced growth that is dependent on metabolism rewiring - in which glucose is mostly used by fermentation while glutamine provides nitrogen and carbon atoms for biosyntheses - and controlled by oncogene signaling. We then briefly review the major drugs used to target signaling pathways in preclinical and clinical studies, whose clinical efficacy is unfortunately severely limited by tumor resistance, substantially due to signaling cross-talk. We present a systems biology roadmap that integrates different types of mathematical models with conventional and post-genomic biomolecular analyses that will provide a deeper mechanistic understanding of the links between metabolism and uncontrolled cancer cell growth. This approach is taken to be instrumental both in unraveling cancer's first principles and in designing novel drugs able to target one or more control or execution steps of the cancer rewired metabolism, in order to achieve permanent arrest of tumor development.

  18. Perturbation Experiments: Approaches for Metabolic Pathway Analysis in Bioreactors.

    PubMed

    Weiner, Michael; Tröndle, Julia; Albermann, Christoph; Sprenger, Georg A; Weuster-Botz, Dirk

    2016-01-01

    In the last decades, targeted metabolic engineering of microbial cells has become one of the major tools in bioprocess design and optimization. For successful application, a detailed knowledge is necessary about the relevant metabolic pathways and their regulation inside the cells. Since in vitro experiments cannot display process conditions and behavior properly, process data about the cells' metabolic state have to be collected in vivo. For this purpose, special techniques and methods are necessary. Therefore, most techniques enabling in vivo characterization of metabolic pathways rely on perturbation experiments, which can be divided into dynamic and steady-state approaches. To avoid any process disturbance, approaches which enable perturbation of cell metabolism in parallel to the continuing production process are reasonable. Furthermore, the fast dynamics of microbial production processes amplifies the need of parallelized data generation. These points motivate the development of a parallelized approach for multiple metabolic perturbation experiments outside the operating production reactor. An appropriate approach for in vivo characterization of metabolic pathways is presented and applied exemplarily to a microbial L-phenylalanine production process on a 15 L-scale.

  19. Multiple-collision analysis of characteristic X-rays from low-energy Ar 2+ travelling in solid targets

    NASA Astrophysics Data System (ADS)

    Cipolla, Sam J.; Mildebrath, Mark E.

    1983-12-01

    The density of atoms in a solid target fosters a multiple-collision mechanism that leads to the production of an equilibrium fraction of L-shell vacancies in an incident heavy ion. It is then possiblein a subsequent ion-atom collision in the solid for an L-vacancy to be transferred to the K-shell of a target atom via rotational coupling of the 2p π-2p σ molecular orbitals formed in the ion-atom quasimolecule. The vacancy-transfer cross section and the equilibrium fraction and lifetime of the vacancies can be found by using an appropriate multiple-collision analysis of the characteristic target and projectile X-rays. Results will be presented for 160-380 keV Ar 2+ incident of targets of Mg, Al, and Si.

  20. Sirtuins: Novel targets for metabolic disease in drug development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Weijian

    2008-08-29

    Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases such as type 2 diabetes. SIRT1, an NAD{sup +}-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produces beneficial effects on glucose homeostasis and insulin sensitivity. Activation of SIRT1 leads to enhanced activity of multiple proteins, including peroxisome proliferator-activated receptor coactivator-1{alpha} (PGC-1{alpha}) and FOXO which helps to mediate some of the in vitro and in vivo effects of sirtuins. Resveratrol, a polyphenolic SIRT1 activator, mimics the effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance.more » In this review, we summarize recent research advances in unveiling the molecular mechanisms that underpin sirtuin as therapeutic candidates and discuss the possibility of using resveratrol as potential drug for treatment of diabetes.« less

  1. Active debris removal of multiple priority targets

    NASA Astrophysics Data System (ADS)

    Braun, Vitali; Lüpken, A.; Flegel, S.; Gelhaus, J.; Möckel, M.; Kebschull, C.; Wiedemann, C.; Vörsmann, P.

    2013-05-01

    Today's space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.Current studies show that catastrophic collisions are not a major problem today, but will become the main process for debris generation within the SSO region in the near future, even without any further launches. In order to avoid this effect, objects with a major impact on collisional cascading have to be actively removed from the critical region after their end of life. Not having the capability to perform an end-of-life maneuver in order to transfer to a graveyard orbit or to de-orbit, many satellites and rocket bodies would have to be de-orbited within a dedicated mission. In such a mission, a service satellite would perform a de-orbit maneuver, after having docked to a specific target.In this paper, chemical and electric propulsion systems were analysed with the main focus on removing multiple targets within one single mission. The targets were chosen from a previously defined priority list in order to enhance the mission efficiency. Total mission time, ΔV and system mass were identified as key parameters to allow for an evaluation of the different concepts. It was shown that it

  2. Tumor suppressor miR-1 inhibits tumor growth and metastasis by simultaneously targeting multiple genes

    PubMed Central

    Liu, Cuilian; Zhang, Song; Wang, Qizhi; Zhang, Xiaobo

    2017-01-01

    Cancer progression depends on tumor growth and metastasis, which are activated or suppressed by multiple genes. An individual microRNA may target multiple genes, suggesting that a miRNA may suppress tumor growth and metastasis via simultaneously targeting different genes. However, thus far, this issue has not been explored. In the present study, the findings showed that miR-1 could simultaneously inhibit tumor growth and metastasis of gastric and breast cancers by targeting multiple genes. The results indicated that miR-1 was significantly downregulated in cancer tissues compared with normal tissues. The miR-1 overexpression led to cell cycle arrest in the G1 phase in gastric and breast cancer cells but not in normal cells. Furthermore, the miR-1 overexpression significantly inhibited the metastasis of gastric and breast cancer cells. An analysis of the underlying mechanism revealed that the simultaneous inhibition of tumor growth and metastasis mediated by miR-1 was due to the synchronous targeting of 6 miR-1 target genes encoding cyclin dependent kinase 4, twinfilin actin binding protein 1, calponin 3, coronin 1C, WAS protein family member 2 and thymosin beta 4, X-linked. In vivo assays demonstrated that miR-1 efficiently inhibited tumor growth and metastasis of gastric and breast cancers in nude mice. Therefore, our study contributed novel insights into the miR-1′s roles in tumorigenesis of gastric and breast cancers. PMID:28159933

  3. Tumor suppressor miR-1 inhibits tumor growth and metastasis by simultaneously targeting multiple genes.

    PubMed

    Liu, Cuilian; Zhang, Song; Wang, Qizhi; Zhang, Xiaobo

    2017-06-27

    Cancer progression depends on tumor growth and metastasis, which are activated or suppressed by multiple genes. An individual microRNA may target multiple genes, suggesting that a miRNA may suppress tumor growth and metastasis via simultaneously targeting different genes. However, thus far, this issue has not been explored. In the present study, the findings showed that miR-1 could simultaneously inhibit tumor growth and metastasis of gastric and breast cancers by targeting multiple genes. The results indicated that miR-1 was significantly downregulated in cancer tissues compared with normal tissues. The miR-1 overexpression led to cell cycle arrest in the G1 phase in gastric and breast cancer cells but not in normal cells. Furthermore, the miR-1 overexpression significantly inhibited the metastasis of gastric and breast cancer cells. An analysis of the underlying mechanism revealed that the simultaneous inhibition of tumor growth and metastasis mediated by miR-1 was due to the synchronous targeting of 6 miR-1 target genes encoding cyclin dependent kinase 4, twinfilin actin binding protein 1, calponin 3, coronin 1C, WAS protein family member 2 and thymosin beta 4, X-linked. In vivo assays demonstrated that miR-1 efficiently inhibited tumor growth and metastasis of gastric and breast cancers in nude mice. Therefore, our study contributed novel insights into the miR-1's roles in tumorigenesis of gastric and breast cancers.

  4. AssayR: A Simple Mass Spectrometry Software Tool for Targeted Metabolic and Stable Isotope Tracer Analyses.

    PubMed

    Wills, Jimi; Edwards-Hicks, Joy; Finch, Andrew J

    2017-09-19

    Metabolic analyses generally fall into two classes: unbiased metabolomic analyses and analyses that are targeted toward specific metabolites. Both techniques have been revolutionized by the advent of mass spectrometers with detectors that afford high mass accuracy and resolution, such as time-of-flights (TOFs) and Orbitraps. One particular area where this technology is key is in the field of metabolic flux analysis because the resolution of these spectrometers allows for discrimination between 13 C-containing isotopologues and those containing 15 N or other isotopes. While XCMS-based software is freely available for untargeted analysis of mass spectrometric data sets, it does not always identify metabolites of interest in a targeted assay. Furthermore, there is a paucity of vendor-independent software that deals with targeted analyses of metabolites and of isotopologues in particular. Here, we present AssayR, an R package that takes high resolution wide-scan liquid chromatography-mass spectrometry (LC-MS) data sets and tailors peak detection for each metabolite through a simple, iterative user interface. It automatically integrates peak areas for all isotopologues and outputs extracted ion chromatograms (EICs), absolute and relative stacked bar charts for all isotopologues, and a .csv data file. We demonstrate several examples where AssayR provides more accurate and robust quantitation than XCMS, and we propose that tailored peak detection should be the preferred approach for targeted assays. In summary, AssayR provides easy and robust targeted metabolite and stable isotope analyses on wide-scan data sets from high resolution mass spectrometers.

  5. AssayR: A Simple Mass Spectrometry Software Tool for Targeted Metabolic and Stable Isotope Tracer Analyses

    PubMed Central

    2017-01-01

    Metabolic analyses generally fall into two classes: unbiased metabolomic analyses and analyses that are targeted toward specific metabolites. Both techniques have been revolutionized by the advent of mass spectrometers with detectors that afford high mass accuracy and resolution, such as time-of-flights (TOFs) and Orbitraps. One particular area where this technology is key is in the field of metabolic flux analysis because the resolution of these spectrometers allows for discrimination between 13C-containing isotopologues and those containing 15N or other isotopes. While XCMS-based software is freely available for untargeted analysis of mass spectrometric data sets, it does not always identify metabolites of interest in a targeted assay. Furthermore, there is a paucity of vendor-independent software that deals with targeted analyses of metabolites and of isotopologues in particular. Here, we present AssayR, an R package that takes high resolution wide-scan liquid chromatography–mass spectrometry (LC-MS) data sets and tailors peak detection for each metabolite through a simple, iterative user interface. It automatically integrates peak areas for all isotopologues and outputs extracted ion chromatograms (EICs), absolute and relative stacked bar charts for all isotopologues, and a .csv data file. We demonstrate several examples where AssayR provides more accurate and robust quantitation than XCMS, and we propose that tailored peak detection should be the preferred approach for targeted assays. In summary, AssayR provides easy and robust targeted metabolite and stable isotope analyses on wide-scan data sets from high resolution mass spectrometers. PMID:28850215

  6. SME filter approach to multiple target tracking with false and missing measurements

    NASA Astrophysics Data System (ADS)

    Lee, Yong J.; Kamen, Edward W.

    1993-10-01

    The symmetric measurement equation (SME) filter for track maintenance in multiple target tracking is extended to the general case when there are an arbitrary unknown number of false and missing position measurements in the measurement set at any time point. It is assumed that the number N of targets is known a priori and that the target motions consist of random perturbations of constant-velocity trajectories. The key idea in the paper is to generate a new measurement vector from sums-of-products of the elements of 'feasible' N-element data vectors that pass a thresholding operation in the sums-of-products framework. Via this construction, the data association problem is completely avoided, and in addition, there is no need to identify which target measurements may correspond to false returns or which target measurements may be missing. A computer simulation of SME filter performance is given, including a comparison with the associated filter (a benchmark) and the joint probabilistic data association (JPDA) filter.

  7. Targeting glutamine metabolism in myeloproliferative neoplasms

    PubMed Central

    Zhan, Huichun; Ciano, Kristen; Dong, Katherine; Zucker, Stanley

    2016-01-01

    JAK2V617F mutation can be detected in the majority of myeloproliferative neoplasm (MPN) patients. The JAK2 inhibitor Ruxolitinib is the first FDA-approved treatment for MPNs. However, its use is limited by various dose related toxicities. Here, we studied the metabolic state and glutamine metabolism of BaF3-hEPOR-JAK2V617F and BaF3-hEPOR-JAK2WT cells. We found that the JAK2V617F-mutant cells were associated with increased oxygen consumption rate and extracellular acidification rate than the JAK2WT cells and there was an increased glutamine metabolism in JAK2V617F-mutant cells compared to wild-type cells. Glutaminase (GLS), the key enzyme in gluta-mine metabolism, was upregulated in the JAK2V617F-mutant BaF3 cells compared to the JAK2WT BaF3 cells. In MPN patient peripheral blood CD34+ cells, GLS expression was increased in JAK2V617F-mutant progenitor cells compared to JAK2 wild-type progenitor cells from the same patients and GLS levels were increased at the time of disease progression compared to at earlier time points. Moreover, GLS inhibitor increased the growth inhibitory effect of Ruxolitinib in both JAK2V617F-mutant cell lines and peripheral blood CD34+ cells from MPN patients. Therefore, GLS inhibitor should be further explored to enhance the therapeutic effectiveness of JAK2 inhibitor and allow the administration of lower doses of the drug to avoid its toxicity. PMID:26227854

  8. Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening

    NASA Astrophysics Data System (ADS)

    Machutta, Carl A.; Kollmann, Christopher S.; Lind, Kenneth E.; Bai, Xiaopeng; Chan, Pan F.; Huang, Jianzhong; Ballell, Lluis; Belyanskaya, Svetlana; Besra, Gurdyal S.; Barros-Aguirre, David; Bates, Robert H.; Centrella, Paolo A.; Chang, Sandy S.; Chai, Jing; Choudhry, Anthony E.; Coffin, Aaron; Davie, Christopher P.; Deng, Hongfeng; Deng, Jianghe; Ding, Yun; Dodson, Jason W.; Fosbenner, David T.; Gao, Enoch N.; Graham, Taylor L.; Graybill, Todd L.; Ingraham, Karen; Johnson, Walter P.; King, Bryan W.; Kwiatkowski, Christopher R.; Lelièvre, Joël; Li, Yue; Liu, Xiaorong; Lu, Quinn; Lehr, Ruth; Mendoza-Losana, Alfonso; Martin, John; McCloskey, Lynn; McCormick, Patti; O'Keefe, Heather P.; O'Keeffe, Thomas; Pao, Christina; Phelps, Christopher B.; Qi, Hongwei; Rafferty, Keith; Scavello, Genaro S.; Steiginga, Matt S.; Sundersingh, Flora S.; Sweitzer, Sharon M.; Szewczuk, Lawrence M.; Taylor, Amy; Toh, May Fern; Wang, Juan; Wang, Minghui; Wilkins, Devan J.; Xia, Bing; Yao, Gang; Zhang, Jean; Zhou, Jingye; Donahue, Christine P.; Messer, Jeffrey A.; Holmes, David; Arico-Muendel, Christopher C.; Pope, Andrew J.; Gross, Jeffrey W.; Evindar, Ghotas

    2017-07-01

    The identification and prioritization of chemically tractable therapeutic targets is a significant challenge in the discovery of new medicines. We have developed a novel method that rapidly screens multiple proteins in parallel using DNA-encoded library technology (ELT). Initial efforts were focused on the efficient discovery of antibacterial leads against 119 targets from Acinetobacter baumannii and Staphylococcus aureus. The success of this effort led to the hypothesis that the relative number of ELT binders alone could be used to assess the ligandability of large sets of proteins. This concept was further explored by screening 42 targets from Mycobacterium tuberculosis. Active chemical series for six targets from our initial effort as well as three chemotypes for DHFR from M. tuberculosis are reported. The findings demonstrate that parallel ELT selections can be used to assess ligandability and highlight opportunities for successful lead and tool discovery.

  9. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy

    PubMed Central

    Lohr, Jens G.; Stojanov, Petar; Carter, Scott L.; Cruz-Gordillo, Peter; Lawrence, Michael S.; Auclair, Daniel; Sougnez, Carrie; Knoechel, Birgit; Gould, Joshua; Saksena, Gordon; Cibulskis, Kristian; McKenna, Aaron; Chapman, Michael A.; Straussman, Ravid; Levy, Joan; Perkins, Louise M.; Keats, Jonathan J.; Schumacher, Steven E.; Rosenberg, Mara; Getz, Gad

    2014-01-01

    SUMMARY We performed massively parallel sequencing of paired tumor/normal samples from 203 multiple myeloma (MM) patients and identified significantly mutated genes and copy number alterations, and discovered putative tumor suppressor genes by determining homozygous deletions and loss-of-heterozygosity. We observed frequent mutations in KRAS (particularly in previously treated patients), NRAS, BRAF, FAM46C, TP53 and DIS3 (particularly in non-hyperdiploid MM). Mutations were often present in subclonal populations, and multiple mutations within the same pathway (e.g. KRAS, NRAS and BRAF) were observed in the same patient. In vitro modeling predicts only partial treatment efficacy of targeting subclonal mutations, and even growth promotion of non-mutated subclones in some cases. These results emphasize the importance of heterogeneity analysis for treatment decisions. PMID:24434212

  10. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy.

    PubMed

    Lohr, Jens G; Stojanov, Petar; Carter, Scott L; Cruz-Gordillo, Peter; Lawrence, Michael S; Auclair, Daniel; Sougnez, Carrie; Knoechel, Birgit; Gould, Joshua; Saksena, Gordon; Cibulskis, Kristian; McKenna, Aaron; Chapman, Michael A; Straussman, Ravid; Levy, Joan; Perkins, Louise M; Keats, Jonathan J; Schumacher, Steven E; Rosenberg, Mara; Getz, Gad; Golub, Todd R

    2014-01-13

    We performed massively parallel sequencing of paired tumor/normal samples from 203 multiple myeloma (MM) patients and identified significantly mutated genes and copy number alterations and discovered putative tumor suppressor genes by determining homozygous deletions and loss of heterozygosity. We observed frequent mutations in KRAS (particularly in previously treated patients), NRAS, BRAF, FAM46C, TP53, and DIS3 (particularly in nonhyperdiploid MM). Mutations were often present in subclonal populations, and multiple mutations within the same pathway (e.g., KRAS, NRAS, and BRAF) were observed in the same patient. In vitro modeling predicts only partial treatment efficacy of targeting subclonal mutations, and even growth promotion of nonmutated subclones in some cases. These results emphasize the importance of heterogeneity analysis for treatment decisions. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Application of targeted proteomics to metabolically engineered Escherichia coli.

    PubMed

    Singh, Pragya; Batth, Tanveer S; Juminaga, Darmawi; Dahl, Robert H; Keasling, Jay D; Adams, Paul D; Petzold, Christopher J

    2012-04-01

    As synthetic biology matures to compete with chemical transformation of commodity and high-value compounds, a wide variety of well-characterized biological parts are needed to facilitate system design. Protein quantification based on selected-reaction monitoring (SRM) mass spectrometry compliments metabolite and transcript analysis for system characterization and optimizing flux through engineered pathways. By using SRM quantification, we assayed red fluorescent protein (RFP) expressed from plasmids containing several inducible and constitutive promoters and subsequently assessed protein production from the same promoters driving expression of eight mevalonate pathway proteins in Escherichia coli. For each of the promoter systems, the protein level for the first gene in the operon followed that of RFP, however, the levels of proteins produced from genes farther from the promoter were much less consistent. Second, we used targeted proteomics to characterize tyrosine biosynthesis pathway proteins after removal of native regulation. The changes were not expected to cause significant impact on protein levels, yet significant variation in protein abundance was observed and tyrosine production for these strains spanned a range from less than 1 mg/L to greater than 250 mg/L. Overall, our results underscore the importance of targeted proteomics for determining accurate protein levels in engineered systems and fine-tuning metabolic pathways. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Identification of agents effective against multiple toxins and viruses by host-oriented cell targeting.

    PubMed

    Zilbermintz, Leeor; Leonardi, William; Jeong, Sun-Young; Sjodt, Megan; McComb, Ryan; Ho, Chi-Lee C; Retterer, Cary; Gharaibeh, Dima; Zamani, Rouzbeh; Soloveva, Veronica; Bavari, Sina; Levitin, Anastasia; West, Joel; Bradley, Kenneth A; Clubb, Robert T; Cohen, Stanley N; Gupta, Vivek; Martchenko, Mikhail

    2015-08-27

    A longstanding and still-increasing threat to the effective treatment of infectious diseases is resistance to antimicrobial countermeasures. Potentially, the targeting of host proteins and pathways essential for the detrimental effects of pathogens offers an approach that may discover broad-spectrum anti-pathogen countermeasures and circumvent the effects of pathogen mutations leading to resistance. Here we report implementation of a strategy for discovering broad-spectrum host-oriented therapies against multiple pathogenic agents by multiplex screening of drugs for protection against the detrimental effects of multiple pathogens, identification of host cell pathways inhibited by the drug, and screening for effects of the agent on other pathogens exploiting the same pathway. We show that a clinically used antimalarial drug, Amodiaquine, discovered by this strategy, protects host cells against infection by multiple toxins and viruses by inhibiting host cathepsin B. Our results reveal the practicality of discovering broadly acting anti-pathogen countermeasures that target host proteins exploited by pathogens.

  13. Metabolic risk and television time in adolescent females.

    PubMed

    Machado-Rodrigues, Aristides M; Leite, Neiva; Coelho-e-Silva, Manuel J; Enes, Fernando; Fernandes, Rômulo; Mascarenhas, Luís P G; Boguszewski, Margaret C S; Malina, Robert M

    2015-02-01

    A sedentary lifestyle is increasingly implicated in a negative metabolic health profile among youth. The present study examined relationships between clustered metabolic risk factors and TV viewing in female adolescents. The sample comprised 262 girls 14-17 years. Height, weight, fasting glucose, insulin, HDL cholesterol, triglycerides, and blood pressure were measured. Body mass index (BMI) was calculated. TV viewing time and moderate-to-vigorous physical activity (MVPA) were estimated from a 3-day diary. Outcome variables were normalized and expressed as Z scores which were summed into a metabolic risk score. Multiple linear regression analysis was used. TV viewing was independently associated with increased prevalence of clustered metabolic risk in girls after adjustment for several confounders (i.e., chronological age, BMI, MVPA, and parental education). The final model also indicated that lower levels of MVPA, higher BMI, and lower mother education were associated with higher metabolic risk. Increased TV viewing had an adverse effect on metabolic health of adolescent girls. The findings highlight the potential importance of preventive actions to ameliorate metabolic risk in youth which target both sedentary and physically active behaviors.

  14. Multiple metabolic pathways for metabolism of l-tryptophan in Fusarium graminearum.

    PubMed

    Luo, Kun; DesRoches, Caro-Lyne; Johnston, Anne; Harris, Linda J; Zhao, Hui-Yan; Ouellet, Thérèse

    2017-11-01

    Fusarium graminearum is a plant pathogen that can cause the devastating cereal grain disease fusarium head blight in temperate regions of the world. Previous studies have shown that F. graminearum can synthetize indole-3-acetic acid (auxin) using l-tryptophan (L-TRP)-dependent pathways. In the present study, we have taken a broader approach to examine the metabolism of L-TRP in F. graminearum liquid culture. Our results showed that F. graminearum was able to transiently produce the indole tryptophol when supplied with L-TRP. Comparative gene expression profiling between L-TRP-treated and control cultures showed that L-TRP treatment induced the upregulation of a series of genes with predicted function in the metabolism of L-TRP via anthranilic acid and catechol towards the tricarboxylic acid cycle. It is proposed that this metabolic activity provides extra energy for 15-acetyldeoxynivalenol production, as observed in our experiments. This is the first report of the use of L-TRP to increase energy resources in a Fusarium species.

  15. Non-targeted analyses of animal plasma: betaine and choline represent the nutritional and metabolic status.

    PubMed

    Katayama, K; Sato, T; Arai, T; Amao, H; Ohta, Y; Ozawa, T; Kenyon, P R; Hickson, R E; Tazaki, H

    2013-02-01

    Simple liquid chromatography-mass spectrometry (LC-MS) was applied to non-targeted metabolic analyses to discover new metabolic markers in animal plasma. Principle component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) were used to analyse LC-MS multivariate data. PCA clearly generated two separate clusters for artificially induced diabetic mice and healthy control mice. PLS-DA of time-course changes in plasma metabolites of chicks after feeding generated three clusters (pre- and immediately after feeding, 0.5-3 h after feeding and 4 h after feeding). Two separate clusters were also generated for plasma metabolites of pregnant Angus heifers with differing live-weight change profiles (gaining or losing). The accompanying PLS-DA loading plot detailed the metabolites that contribute the most to the cluster separation. In each case, the same highly hydrophilic metabolite was strongly correlated to the group separation. The metabolite was identified as betaine by LC-MS/MS. This result indicates that betaine and its metabolic precursor, choline, may be useful biomarkers to evaluate the nutritional and metabolic status of animals. © 2011 Blackwell Verlag GmbH.

  16. Dysregulated choline metabolism in T-cell lymphoma: role of choline kinase-α and therapeutic targeting

    PubMed Central

    Xiong, J; Bian, J; Wang, L; Zhou, J-Y; Wang, Y; Zhao, Y; Wu, L-L; Hu, J-J; Li, B; Chen, S-J; Yan, C; Zhao, W-L

    2015-01-01

    Cancer cells have distinct metabolomic profile. Metabolic enzymes regulate key oncogenic signaling pathways and have an essential role on tumor progression. Here, serum metabolomic analysis was performed in 45 patients with T-cell lymphoma (TCL) and 50 healthy volunteers. The results showed that dysregulation of choline metabolism occurred in TCL and was related to tumor cell overexpression of choline kinase-α (Chokα). In T-lymphoma cells, pharmacological and molecular silencing of Chokα significantly decreased Ras-GTP activity, AKT and ERK phosphorylation and MYC oncoprotein expression, leading to restoration of choline metabolites and induction of tumor cell apoptosis/necropotosis. In a T-lymphoma xenograft murine model, Chokα inhibitor CK37 remarkably retarded tumor growth, suppressed Ras-AKT/ERK signaling, increased lysophosphatidylcholine levels and induced in situ cell apoptosis/necropotosis. Collectively, as a regulatory gene of aberrant choline metabolism, Chokα possessed oncogenic activity and could be a potential therapeutic target in TCL, as well as other hematological malignancies with interrupted Ras signaling pathways. PMID:25768400

  17. PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing.

    PubMed

    Malina, Abba; Cameron, Christopher J F; Robert, Francis; Blanchette, Mathieu; Dostie, Josée; Pelletier, Jerry

    2015-12-08

    In CRISPR-Cas9 genome editing, the underlying principles for selecting guide RNA (gRNA) sequences that would ensure for efficient target site modification remain poorly understood. Here we show that target sites harbouring multiple protospacer adjacent motifs (PAMs) are refractory to Cas9-mediated repair in situ. Thus we refine which substrates should be avoided in gRNA design, implicating PAM density as a novel sequence-specific feature that inhibits in vivo Cas9-driven DNA modification.

  18. Sequential Superresolution Imaging of Multiple Targets Using a Single Fluorophore

    PubMed Central

    Lidke, Diane S.; Lidke, Keith A.

    2015-01-01

    Fluorescence superresolution (SR) microscopy, or fluorescence nanoscopy, provides nanometer scale detail of cellular structures and allows for imaging of biological processes at the molecular level. Specific SR imaging methods, such as localization-based imaging, rely on stochastic transitions between on (fluorescent) and off (dark) states of fluorophores. Imaging multiple cellular structures using multi-color imaging is complicated and limited by the differing properties of various organic dyes including their fluorescent state duty cycle, photons per switching event, number of fluorescent cycles before irreversible photobleaching, and overall sensitivity to buffer conditions. In addition, multiple color imaging requires consideration of multiple optical paths or chromatic aberration that can lead to differential aberrations that are important at the nanometer scale. Here, we report a method for sequential labeling and imaging that allows for SR imaging of multiple targets using a single fluorophore with negligible cross-talk between images. Using brightfield image correlation to register and overlay multiple image acquisitions with ~10 nm overlay precision in the x-y imaging plane, we have exploited the optimal properties of AlexaFluor647 for dSTORM to image four distinct cellular proteins. We also visualize the changes in co-localization of the epidermal growth factor (EGF) receptor and clathrin upon EGF addition that are consistent with clathrin-mediated endocytosis. These results are the first to demonstrate sequential SR (s-SR) imaging using direct stochastic reconstruction microscopy (dSTORM), and this method for sequential imaging can be applied to any superresolution technique. PMID:25860558

  19. Analyzing the multiple-target-multiple-agent scenario using optimal assignment algorithms

    NASA Astrophysics Data System (ADS)

    Kwok, Kwan S.; Driessen, Brian J.; Phillips, Cynthia A.; Tovey, Craig A.

    1997-09-01

    This work considers the problem of maximum utilization of a set of mobile robots with limited sensor-range capabilities and limited travel distances. The robots are initially in random positions. A set of robots properly guards or covers a region if every point within the region is within the effective sensor range of at least one vehicle. We wish to move the vehicles into surveillance positions so as to guard or cover a region, while minimizing the maximum distance traveled by any vehicle. This problem can be formulated as an assignment problem, in which we must optimally decide which robot to assign to which slot of a desired matrix of grid points. The cost function is the maximum distance traveled by any robot. Assignment problems can be solved very efficiently. Solution times for one hundred robots took only seconds on a silicon graphics crimson workstation. The initial positions of all the robots can be sampled by a central base station and their newly assigned positions communicated back to the robots. Alternatively, the robots can establish their own coordinate system with the origin fixed at one of the robots and orientation determined by the compass bearing of another robot relative to this robot. This paper presents example solutions to the multiple-target-multiple-agent scenario using a matching algorithm. Two separate cases with one hundred agents in each were analyzed using this method. We have found these mobile robot problems to be a very interesting application of network optimization methods, and we expect this to be a fruitful area for future research.

  20. Correlation of Diffusion and Metabolic Alterations in Different Clinical Forms of Multiple Sclerosis

    PubMed Central

    Hannoun, Salem; Bagory, Matthieu; Durand-Dubief, Francoise; Ibarrola, Danielle; Comte, Jean-Christophe; Confavreux, Christian; Cotton, Francois; Sappey-Marinier, Dominique

    2012-01-01

    Diffusion tensor imaging (DTI) and MR spectroscopic imaging (MRSI) provide greater sensitivity than conventional MRI to detect diffuse alterations in normal appearing white matter (NAWM) of Multiple Sclerosis (MS) patients with different clinical forms. Therefore, the goal of this study is to combine DTI and MRSI measurements to analyze the relation between diffusion and metabolic markers, T2-weighted lesion load (T2-LL) and the patients clinical status. The sensitivity and specificity of both methods were then compared in terms of MS clinical forms differentiation. MR examination was performed on 71 MS patients (27 relapsing remitting (RR), 26 secondary progressive (SP) and 18 primary progressive (PP)) and 24 control subjects. DTI and MRSI measurements were obtained from two identical regions of interest selected in left and right centrum semioval (CSO) WM. DTI metrics and metabolic contents were significantly altered in MS patients with the exception of N-acetyl-aspartate (NAA) and NAA/Choline (Cho) ratio in RR patients. Significant correlations were observed between diffusion and metabolic measures to various degrees in every MS patients group. Most DTI metrics were significantly correlated with the T2-LL while only NAA/Cr ratio was correlated in RR patients. A comparison analysis of MR methods efficiency demonstrated a better sensitivity/specificity of DTI over MRSI. Nevertheless, NAA/Cr ratio could distinguish all MS and SP patients groups from controls, while NAA/Cho ratio differentiated PP patients from controls. This study demonstrated that diffusivity changes related to microstructural alterations were correlated with metabolic changes and provided a better sensitivity to detect early changes, particularly in RR patients who are more subject to inflammatory processes. In contrast, the better specificity of metabolic ratios to detect axonal damage and demyelination may provide a better index for identification of PP patients. PMID:22479330

  1. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFκB target stromal MCT4.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Curry, Joseph M; Ko, Ying-Hui; Lin, Zhao; Tuluc, Madalina; Cognetti, David; Birbe, Ruth C; Pribitkin, Edmund; Bombonati, Alessandro; Pestell, Richard G; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P

    2013-08-15

    Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of "normal" and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the "bystander" effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for "metabolic symbiosis" between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial "lactate-shuttle", to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as "partners" for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an "MCT4 inhibitor". Taken

  2. Regulatory cascade of neuronal loss and glucose metabolism.

    PubMed

    Hassan, Mubashir; Sehgal, Sheikh A; Rashid, Sajid

    2014-01-01

    During recent years, numerous lines of research including proteomics and molecular biology have highlighted multiple targets and signaling pathways involved in metabolic abnormalities and neurodegeneration. However, correlation studies of individual neurodegenerative disorders (ND) including Alzheimer, Parkinson, Huntington and Amyotrophic lateral sclerosis in association with Diabetes type 2 Mellitus (D2M) are demanding tasks. Here, we report a comprehensive mechanistic overview of major contributors involved in process-based co-regulation of D2M and NDs. D2M is linked with Alzheimer's disease through deregulation of calcium ions thereby leading to metabolic fluctuations of glucose and insulin. Parkinson-associated proteins disturb insulin level through ATP-sensitive potassium ion channels and extracellular signal-regulated kinases to enhance glucose level. Similarly, proteins which perturb carbohydrate metabolism for disturbing glucose homeostasis link Huntington, Amyotrophic lateral sclerosis and D2M. Other misleading processes which interconnect D2M and NDs include oxidative stress, mitochondrial dysfunctions and microRNAs (miRNA29a/b and miRNA-9). Overall, the collective listing of pathway-specific targets would help in establishing novel connections between NDs and D2M to explore better therapeutic interventions.

  3. Multiple correlation analyses of metabolic and endocrine profiles with fertility in primiparous and multiparous cows.

    PubMed

    Wathes, D C; Bourne, N; Cheng, Z; Mann, G E; Taylor, V J; Coffey, M P

    2007-03-01

    Results from 4 studies were combined (representing a total of 500 lactations) to investigate the relationships between metabolic parameters and fertility in dairy cows. Information was collected on blood metabolic traits and body condition score at 1 to 2 wk prepartum and at 2, 4, and 7 wk postpartum. Fertility traits were days to commencement of luteal activity, days to first service, days to conception, and failure to conceive. Primiparous and multiparous cows were considered separately. Initial linear regression analyses were used to determine relationships among fertility, metabolic, and endocrine traits at each time point. All metabolic and endocrine traits significantly related to fertility were included in stepwise multiple regression analyses alone (model 1), including peak milk yield and interval to commencement of luteal activity (model 2), and with the further addition of dietary group (model 3). In multiparous cows, extended calving to conception intervals were associated prepartum with greater concentrations of leptin and lesser concentrations of nonesterified fatty acids and urea, and postpartum with reduced insulin-like growth factor-I at 2 wk, greater urea at 7 wk, and greater peak milk yield. In primiparous cows, extended calving to conception intervals were associated with more body condition and more urea prepartum, elevated urea postpartum, and more body condition loss by 7 wk. In conclusion, some metabolic measurements were associated with poorer fertility outcomes. Relationships between fertility and metabolic and endocrine traits varied both according to the lactation number of the cow and with the time relative to calving.

  4. Stable Isotope-Assisted Metabolic Profiling Reveals Growth Mode Dependent Differential Metabolism and Multiple Catabolic Pathways of l-Phenylalanine in Rubrivivax benzoatilyticus JA2.

    PubMed

    Mekala, Lakshmi Prasuna; Mohammed, Mujahid; Chintalapati, Sasikala; Chintalapati, Venkata Ramana

    2018-01-05

    Anoxygenic phototrophic bacteria are metabolically versatile and survive under different growth modes using diverse organic compounds, yet their metabolic diversity is largely unexplored. In the present study, we employed stable-isotope-assisted metabolic profiling to unravel the l-phenylalanine catabolism in Rubrivivax benzoatilyticus JA2 under varying growth modes. Strain JA2 grows under anaerobic and aerobic conditions by utilizing l-phenylalanine as a nitrogen source. Furthermore, ring-labeled 13 C 6 -phenylalanine feeding followed by liquid chromatography-mass spectrometry exometabolite profiling revealed 60 labeled metabolic features (M + 6, M + 12, and M + 18) derived solely from l-phenylalanine, of which 11 were identified, 7 putatively identified, and 42 unidentified under anaerobic and aerobic conditions. However, labeled metabolites were significantly higher in aerobic compared to anaerobic conditions. Furthermore, detected metabolites and enzyme activities indicated multiple l-phenylalanine catabolic routes mainly Ehrlich, homogentisate-dependent melanin, benzenoid, and unidentified pathways operating under anaerobic and aerobic conditions in strain JA2. Interestingly, the study indicated l-phenylalanine-dependent and independent benzenoid biosynthesis in strain JA2 and a differential flux of l-phenylalanine to Ehrlich and benzenoid pathways under anaerobic and aerobic conditions. Additionally, unidentified labeled metabolites strongly suggest the presence of unknown phenylalanine catabolic routes in strain JA2. Overall, the study uncovered the l-phenylalanine catabolic diversity in strain JA2 and demonstrated the potential of stable isotope-assisted metabolomics in unraveling the hidden metabolic repertoire.

  5. Category-based attentional guidance can operate in parallel for multiple target objects.

    PubMed

    Jenkins, Michael; Grubert, Anna; Eimer, Martin

    2018-05-01

    The question whether the control of attention during visual search is always feature-based or can also be based on the category of objects remains unresolved. Here, we employed the N2pc component as an on-line marker for target selection processes to compare the efficiency of feature-based and category-based attentional guidance. Two successive displays containing pairs of real-world objects (line drawings of kitchen or clothing items) were separated by a 10 ms SOA. In Experiment 1, target objects were defined by their category. In Experiment 2, one specific visual object served as target (exemplar-based search). On different trials, targets appeared either in one or in both displays, and participants had to report the number of targets (one or two). Target N2pc components were larger and emerged earlier during exemplar-based search than during category-based search, demonstrating the superior efficiency of feature-based attentional guidance. On trials where target objects appeared in both displays, both targets elicited N2pc components that overlapped in time, suggesting that attention was allocated in parallel to these target objects. Critically, this was the case not only in the exemplar-based task, but also when targets were defined by their category. These results demonstrate that attention can be guided by object categories, and that this type of category-based attentional control can operate concurrently for multiple target objects. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Integrative FourD omics approach profiles the target network of the carbon storage regulatory system

    PubMed Central

    Sowa, Steven W.; Gelderman, Grant; Leistra, Abigail N.; Buvanendiran, Aishwarya; Lipp, Sarah; Pitaktong, Areen; Vakulskas, Christopher A.; Romeo, Tony; Baldea, Michael

    2017-01-01

    Abstract Multi-target regulators represent a largely untapped area for metabolic engineering and anti-bacterial development. These regulators are complex to characterize because they often act at multiple levels, affecting proteins, transcripts and metabolites. Therefore, single omics experiments cannot profile their underlying targets and mechanisms. In this work, we used an Integrative FourD omics approach (INFO) that consists of collecting and analyzing systems data throughout multiple time points, using multiple genetic backgrounds, and multiple omics approaches (transcriptomics, proteomics and high throughput sequencing crosslinking immunoprecipitation) to evaluate simultaneous changes in gene expression after imposing an environmental stress that accentuates the regulatory features of a network. Using this approach, we profiled the targets and potential regulatory mechanisms of a global regulatory system, the well-studied carbon storage regulatory (Csr) system of Escherichia coli, which is widespread among bacteria. Using 126 sets of proteomics and transcriptomics data, we identified 136 potential direct CsrA targets, including 50 novel ones, categorized their behaviors into distinct regulatory patterns, and performed in vivo fluorescence-based follow up experiments. The results of this work validate 17 novel mRNAs as authentic direct CsrA targets and demonstrate a generalizable strategy to integrate multiple lines of omics data to identify a core pool of regulator targets. PMID:28126921

  7. A novel Alzheimer's disease drug candidate targeting inflammation and fatty acid metabolism.

    PubMed

    Daugherty, Daniel; Goldberg, Joshua; Fischer, Wolfgang; Dargusch, Richard; Maher, Pamela; Schubert, David

    2017-07-14

    CAD-31 is an Alzheimer's disease (AD) drug candidate that was selected on the basis of its ability to stimulate the replication of human embryonic stem cell-derived neural precursor cells as well as in APPswe/PS1ΔE9 AD mice. To move CAD-31 toward the clinic, experiments were undertaken to determine its neuroprotective and pharmacological properties, as well as to assay its therapeutic efficacy in a rigorous mouse model of AD. CAD-31 has potent neuroprotective properties in six distinct nerve cell assays that mimic toxicities observed in the old brain. Pharmacological and preliminary toxicological studies show that CAD-31 is brain-penetrant and likely safe. When fed to old, symptomatic APPswe/PS1ΔE9 AD mice starting at 10 months of age for 3 additional months in a therapeutic model of the disease, there was a reduction in the memory deficit and brain inflammation, as well as an increase in the expression of synaptic proteins. Small-molecule metabolic data from the brain and plasma showed that the major effect of CAD-31 is centered on fatty acid metabolism and inflammation. Pathway analysis of gene expression data showed that CAD-31 had major effects on synapse formation and AD energy metabolic pathways. All of the multiple physiological effects of CAD-31 were favorable in the context of preventing some of the toxic events in old age-associated neurodegenerative diseases.

  8. PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing

    PubMed Central

    Malina, Abba; Cameron, Christopher J. F.; Robert, Francis; Blanchette, Mathieu; Dostie, Josée; Pelletier, Jerry

    2015-01-01

    In CRISPR-Cas9 genome editing, the underlying principles for selecting guide RNA (gRNA) sequences that would ensure for efficient target site modification remain poorly understood. Here we show that target sites harbouring multiple protospacer adjacent motifs (PAMs) are refractory to Cas9-mediated repair in situ. Thus we refine which substrates should be avoided in gRNA design, implicating PAM density as a novel sequence-specific feature that inhibits in vivo Cas9-driven DNA modification. PMID:26644285

  9. Disturbed Glucose Metabolism in Rat Neurons Exposed to Cerebrospinal Fluid Obtained from Multiple Sclerosis Subjects

    PubMed Central

    Mathur, Deepali; María-Lafuente, Eva; Ureña-Peralta, Juan R.; Sorribes, Lucas; Hernández, Alberto; Casanova, Bonaventura; López-Rodas, Gerardo; Coret-Ferrer, Francisco; Burgal-Marti, Maria

    2017-01-01

    Axonal damage is widely accepted as a major cause of permanent functional disability in Multiple Sclerosis (MS). In relapsing-remitting MS, there is a possibility of remyelination by myelin producing cells and restoration of neurological function. The purpose of this study was to delineate the pathophysiological mechanisms underpinning axonal injury through hitherto unknown factors present in cerebrospinal fluid (CSF) that may regulate axonal damage, remyelinate the axon and make functional recovery possible. We employed primary cultures of rat unmyelinated cerebellar granule neurons and treated them with CSF obtained from MS and Neuromyelitis optica (NMO) patients. We performed microarray gene expression profiling to study changes in gene expression in treated neurons as compared to controls. Additionally, we determined the influence of gene-gene interaction upon the whole metabolic network in our experimental conditions using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) program. Our findings revealed the downregulated expression of genes involved in glucose metabolism in MS-derived CSF-treated neurons and upregulated expression of genes in NMO-derived CSF-treated neurons. We conclude that factors in the CSF of these patients caused a perturbation in metabolic gene(s) expression and suggest that MS appears to be linked with metabolic deformity. PMID:29267205

  10. Selecting multiple features delays perception, but only when targets are horizontally arranged.

    PubMed

    Lo, Shih-Yu

    2017-01-01

    Based on the finding that perception is lagged by attention split on multiple features (Lo et al., 2012), this study investigated how the feature-based lag effect interacts with the target spatial arrangement. Participants were presented with gratings the spatial frequencies of which constantly changed. The task was to monitor two gratings of the same or different colors and report their spatial frequencies right before the stimulus offset. The results showed a perceptual lag wherein the reported value was closer to the physical value some time prior to the stimulus offset. This lag effect was larger when the two gratings were of different colors than when they were the same color. Furthermore, the feature-based lag effect was statistically significant when the two gratings were horizontally arranged but not when they were vertically or diagonally arranged. A model is proposed to explain the effect of target arrangement: When targets are horizontally arranged, selecting an additional feature delays perception. When targets are vertically or diagonally arranged, target selection for the lower field is prioritized. This prioritization on the lower target might prompt observers to only select the lower target and ignore the upper one, and this causes more perceptual errors without delaying perception. © 2017 Elsevier B.V. All rights reserved.

  11. Roles of microRNA on cancer cell metabolism

    PubMed Central

    2012-01-01

    Advanced studies of microRNAs (miRNAs) have revealed their manifold biological functions, including control of cell proliferation, cell cycle and cell death. However, it seems that their roles as key regulators of metabolism have drawn more and more attention in the recent years. Cancer cells display increased metabolic autonomy in comparison to non-transformed cells, taking up nutrients and metabolizing them in pathways that support growth and proliferation. MiRNAs regulate cell metabolic processes through complicated mechanisms, including directly targeting key enzymes or transporters of metabolic processes and regulating transcription factors, oncogenes / tumor suppressors as well as multiple oncogenic signaling pathways. MiRNAs like miR-375, miR-143, miR-14 and miR-29b participate in controlling cancer cell metabolism by regulating the expression of genes whose protein products either directly regulate metabolic machinery or indirectly modulate the expression of metabolic enzymes, serving as master regulators, which will hopefully lead to a new therapeutic strategy for malignant cancer. This review focuses on miRNA regulations of cancer cell metabolism,including glucose uptake, glycolysis, tricarboxylic acid cycle and insulin production, lipid metabolism and amino acid biogenesis, as well as several oncogenic signaling pathways. Furthermore, the challenges of miRNA-based strategies for cancer diagnosis, prognosis and therapeutics have been discussed. PMID:23164426

  12. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.

    PubMed

    Amoedo, N D; Obre, E; Rossignol, R

    2017-08-01

    The search for new drugs capable of blocking the metabolic vulnerabilities of human tumors has now entered the clinical evaluation stage, but several projects already failed in phase I or phase II. In particular, very promising in vitro studies could not be translated in vivo at preclinical stage and beyond. This was the case for most glycolysis inhibitors that demonstrated systemic toxicity. A more recent example is the inhibition of glutamine catabolism in lung adenocarcinoma that failed in vivo despite a strong addiction of several cancer cell lines to glutamine in vitro. Such contradictory findings raised several questions concerning the optimization of drug discovery strategies in the field of cancer metabolism. For instance, the cell culture models in 2D or 3D might already show strong limitations to mimic the tumor micro- and macro-environment. The microenvironment of tumors is composed of cancer cells of variegated metabolic profiles, supporting local metabolic exchanges and symbiosis, but also of immune cells and stroma that further interact with and reshape cancer cell metabolism. The macroenvironment includes the different tissues of the organism, capable of exchanging signals and fueling the tumor 'a distance'. Moreover, most metabolic targets were identified from their increased expression in tumor transcriptomic studies, or from targeted analyses looking at the metabolic impact of particular oncogenes or tumor suppressors on selected metabolic pathways. Still, very few targets were identified from in vivo analyses of tumor metabolism in patients because such studies are difficult and adequate imaging methods are only currently being developed for that purpose. For instance, perfusion of patients with [ 13 C]-glucose allows deciphering the metabolomics of tumors and opens a new area in the search for effective targets. Metabolic imaging with positron emission tomography and other techniques that do not involve [ 13 C] can also be used to evaluate tumor

  13. Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi

    PubMed Central

    Parente-Rocha, Juliana Alves; Bailão, Alexandre Melo; Amaral, André Correa; Paccez, Juliano Domiraci; Borges, Clayton Luiz

    2017-01-01

    Diseases caused by fungi can occur in healthy people, but immunocompromised patients are the major risk group for invasive fungal infections. Cases of fungal resistance and the difficulty of treatment make fungal infections a public health problem. This review explores mechanisms used by fungi to promote fungal resistance, such as the mutation or overexpression of drug targets, efflux and degradation systems, and pleiotropic drug responses. Alternative novel drug targets have been investigated; these include metabolic routes used by fungi during infection, such as trehalose and amino acid metabolism and mitochondrial proteins. An overview of new antifungal agents, including nanostructured antifungals, as well as of repositioning approaches is discussed. Studies focusing on the development of vaccines against antifungal diseases have increased in recent years, as these strategies can be applied in combination with antifungal therapy to prevent posttreatment sequelae. Studies focused on the development of a pan-fungal vaccine and antifungal drugs can improve the treatment of immunocompromised patients and reduce treatment costs. PMID:28694566

  14. A multicolor panel of TALE-KRAB based transcriptional repressor vectors enabling knockdown of multiple gene targets

    PubMed Central

    Zhang, Zhonghui; Wu, Elise; Qian, Zhijian; Wu, Wen-Shu

    2014-01-01

    Stable and efficient knockdown of multiple gene targets is highly desirable for dissection of molecular pathways. Because it allows sequence-specific DNA binding, transcription activator-like effector (TALE) offers a new genetic perturbation technique that allows for gene-specific repression. Here, we constructed a multicolor lentiviral TALE-Kruppel-associated box (KRAB) expression vector platform that enables knockdown of multiple gene targets. This platform is fully compatible with the Golden Gate TALEN and TAL Effector Kit 2.0, a widely used and efficient method for TALE assembly. We showed that this multicolor TALE-KRAB vector system when combined together with bone marrow transplantation could quickly knock down c-kit and PU.1 genes in hematopoietic stem and progenitor cells of recipient mice. Furthermore, our data demonstrated that this platform simultaneously knocked down both c-Kit and PU.1 genes in the same primary cell populations. Together, our results suggest that this multicolor TALE-KRAB vector platform is a promising and versatile tool for knockdown of multiple gene targets and could greatly facilitate dissection of molecular pathways. PMID:25475013

  15. A multicolor panel of TALE-KRAB based transcriptional repressor vectors enabling knockdown of multiple gene targets.

    PubMed

    Zhang, Zhonghui; Wu, Elise; Qian, Zhijian; Wu, Wen-Shu

    2014-12-05

    Stable and efficient knockdown of multiple gene targets is highly desirable for dissection of molecular pathways. Because it allows sequence-specific DNA binding, transcription activator-like effector (TALE) offers a new genetic perturbation technique that allows for gene-specific repression. Here, we constructed a multicolor lentiviral TALE-Kruppel-associated box (KRAB) expression vector platform that enables knockdown of multiple gene targets. This platform is fully compatible with the Golden Gate TALEN and TAL Effector Kit 2.0, a widely used and efficient method for TALE assembly. We showed that this multicolor TALE-KRAB vector system when combined together with bone marrow transplantation could quickly knock down c-kit and PU.1 genes in hematopoietic stem and progenitor cells of recipient mice. Furthermore, our data demonstrated that this platform simultaneously knocked down both c-Kit and PU.1 genes in the same primary cell populations. Together, our results suggest that this multicolor TALE-KRAB vector platform is a promising and versatile tool for knockdown of multiple gene targets and could greatly facilitate dissection of molecular pathways.

  16. Targeting accuracy of single-isocenter intensity-modulated radiosurgery for multiple lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo-Ortega, J.F., E-mail: jfcdrr@yahoo.es; Pozo, M.; Moragues, S.

    To investigate the targeting accuracy of intensity-modulated SRS (IMRS) plans designed to simultaneously treat multiple brain metastases with a single isocenter. A home-made acrylic phantom able to support a film (EBT3) in its coronal plane was used. The phantom was CT scanned and three coplanar small targets (a central and two peripheral) were outlined in the Eclipse system. Peripheral targets were 6 cm apart from the central one. A reference IMRS plan was designed to simultaneously treat the three targets, but only a single isocenter located at the center of the central target was used. After positioning the phantom onmore » the linac using the room lasers, a CBCT scan was acquired and the reference plan were mapped on it, by placing the planned isocenter at the intersection of the landmarks used in the film showing the linac isocenter. The mapped plan was then recalculated and delivered. The film dose distribution was derived using a cloud computing application ( (www.radiochromic.com)) that uses a triple-channel dosimetry algorithm. Comparison of dose distributions using the gamma index (5%/1 mm) were performed over a 5 × 5 cm{sup 2} region centered over each target. 2D shifts required to get the best gamma passing rates on the peripheral target regions were compared with the reported ones for the central target. The experiment was repeated ten times in different sessions. Average 2D shifts required to achieve optimal gamma passing rates (99%, 97%, 99%) were 0.7 mm (SD: 0.3 mm), 0.8 mm (SD: 0.4 mm) and 0.8 mm (SD: 0.3 mm), for the central and the two peripheral targets, respectively. No statistical differences (p > 0.05) were found for targeting accuracy between the central and the two peripheral targets. The study revealed a targeting accuracy within 1 mm for off-isocenter targets within 6 cm of the linac isocenter, when a single-isocenter IMRS plan is designed.« less

  17. Targeting accuracy of single-isocenter intensity-modulated radiosurgery for multiple lesions.

    PubMed

    Calvo-Ortega, J F; Pozo, M; Moragues, S; Casals, J

    2017-01-01

    To investigate the targeting accuracy of intensity-modulated SRS (IMRS) plans designed to simultaneously treat multiple brain metastases with a single isocenter. A home-made acrylic phantom able to support a film (EBT3) in its coronal plane was used. The phantom was CT scanned and three coplanar small targets (a central and two peripheral) were outlined in the Eclipse system. Peripheral targets were 6 cm apart from the central one. A reference IMRS plan was designed to simultaneously treat the three targets, but only a single isocenter located at the center of the central target was used. After positioning the phantom on the linac using the room lasers, a CBCT scan was acquired and the reference plan were mapped on it, by placing the planned isocenter at the intersection of the landmarks used in the film showing the linac isocenter. The mapped plan was then recalculated and delivered. The film dose distribution was derived using a cloud computing application (www.radiochromic.com) that uses a triple-channel dosimetry algorithm. Comparison of dose distributions using the gamma index (5%/1 mm) were performed over a 5 × 5 cm 2 region centered over each target. 2D shifts required to get the best gamma passing rates on the peripheral target regions were compared with the reported ones for the central target. The experiment was repeated ten times in different sessions. Average 2D shifts required to achieve optimal gamma passing rates (99%, 97%, 99%) were 0.7 mm (SD: 0.3 mm), 0.8 mm (SD: 0.4 mm) and 0.8 mm (SD: 0.3 mm), for the central and the two peripheral targets, respectively. No statistical differences (p > 0.05) were found for targeting accuracy between the central and the two peripheral targets. The study revealed a targeting accuracy within 1 mm for off-isocenter targets within 6 cm of the linac isocenter, when a single-isocenter IMRS plan is designed. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  18. Unraveling novel broad-spectrum antibacterial targets in food and waterborne pathogens using comparative genomics and protein interaction network analysis.

    PubMed

    Jadhav, Ankush; Shanmugham, Buvaneswari; Rajendiran, Anjana; Pan, Archana

    2014-10-01

    Food and waterborne diseases are a growing concern in terms of human morbidity and mortality worldwide, even in the 21st century, emphasizing the need for new therapeutic interventions for these diseases. The current study aims at prioritizing broad-spectrum antibacterial targets, present in multiple food and waterborne bacterial pathogens, through a comparative genomics strategy coupled with a protein interaction network analysis. The pathways unique and common to all the pathogens under study (viz., methane metabolism, d-alanine metabolism, peptidoglycan biosynthesis, bacterial secretion system, two-component system, C5-branched dibasic acid metabolism), identified by comparative metabolic pathway analysis, were considered for the analysis. The proteins/enzymes involved in these pathways were prioritized following host non-homology analysis, essentiality analysis, gut flora non-homology analysis and protein interaction network analysis. The analyses revealed a set of promising broad-spectrum antibacterial targets, present in multiple food and waterborne pathogens, which are essential for bacterial survival, non-homologous to host and gut flora, and functionally important in the metabolic network. The identified broad-spectrum candidates, namely, integral membrane protein/virulence factor (MviN), preprotein translocase subunits SecB and SecG, carbon storage regulator (CsrA), and nitrogen regulatory protein P-II 1 (GlnB), contributed by the peptidoglycan pathway, bacterial secretion systems and two-component systems, were also found to be present in a wide range of other disease-causing bacteria. Cytoplasmic proteins SecG, CsrA and GlnB were considered as drug targets, while membrane proteins MviN and SecB were classified as vaccine targets. The identified broad-spectrum targets can aid in the design and development of antibacterial agents not only against food and waterborne pathogens but also against other pathogens. Copyright © 2014 Elsevier B.V. All rights

  19. Targets to treat metabolic syndrome in polycystic ovary syndrome

    PubMed Central

    Mahalingaiah, Shruthi; Diamanti-Kandarakis, Evanthia

    2016-01-01

    Introduction Metabolic syndrome is comprised of a combination of the following states: increased insulin resistance, dyslipidemia, cardiovascular disease, and increased abdominal obesity. Women with polycystic ovary syndrome (PCOS) have an increased risk of developing metabolic syndrome over the course of their lives. Metabolic syndrome increases risk of major cardiovascular events, morbidity, quality of life, and overall health care costs. Though metabolic syndrome in women with PCOS is an area of great concern, there is no effective individual medical therapeutic to adequately treat this issue. Areas Covered This article will review key aspects of metabolic syndrome in PCOS. We will discuss classic and novel therapeutics to address metabolic syndrome in women with PCOS. We will conclude with the importance of developing strategic interventions to increase the compliance to lifestyle and dietary modification, in addition to appreciation of the emerging pharmaceutical therapeutics available. Expert Opinion Innovation in lifestyle modification, including diet, exercise, with and without dedicated stress reduction techniques is the future in treatment of metabolic syndrome in PCOS. Application of novel interventions, such as group medical care, may improve future adherence to lifestyle modification recommendations, in addition to or in combination with pharmaceutical therapeutics. PMID:26488852

  20. The therapeutic potential of cell cycle targeting in multiple myeloma.

    PubMed

    Maes, Anke; Menu, Eline; Veirman, Kim De; Maes, Ken; Vand Erkerken, Karin; De Bruyne, Elke

    2017-10-27

    Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.

  1. An Improved Interacting Multiple Model Filtering Algorithm Based on the Cubature Kalman Filter for Maneuvering Target Tracking.

    PubMed

    Zhu, Wei; Wang, Wei; Yuan, Gannan

    2016-06-01

    In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM).

  2. Inhibition of Fatty Acid Metabolism Reduces Human Myeloma Cells Proliferation

    PubMed Central

    Tirado-Vélez, José Manuel; Joumady, Insaf; Sáez-Benito, Ana; Cózar-Castellano, Irene; Perdomo, Germán

    2012-01-01

    Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40–70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma. PMID:23029529

  3. Target Organ Metabolism, Toxicity, and Mechanisms of Trichloroethylene and Perchloroethylene: Key Similarities, Differences, and Data Gaps

    PubMed Central

    Cichocki, Joseph A.; Guyton, Kathryn Z.; Guha, Neela; Chiu, Weihsueh A.

    2016-01-01

    Trichloroethylene (TCE) and perchloroethylene or tetrachloroethylene (PCE) are high–production volume chemicals with numerous industrial applications. As a consequence of their widespread use, these chemicals are ubiquitous environmental contaminants to which the general population is commonly exposed. It is widely assumed that TCE and PCE are toxicologically similar; both are simple olefins with three (TCE) or four (PCE) chlorines. Nonetheless, despite decades of research on the adverse health effects of TCE or PCE, few studies have directly compared these two toxicants. Although the metabolic pathways are qualitatively similar, quantitative differences in the flux and yield of metabolites exist. Recent human health assessments have uncovered some overlap in target organs that are affected by exposure to TCE or PCE, and divergent species- and sex-specificity with regard to cancer and noncancer hazards. The objective of this minireview is to highlight key similarities, differences, and data gaps in target organ metabolism and mechanism of toxicity. The main anticipated outcome of this review is to encourage research to 1) directly compare the responses to TCE and PCE using more sensitive biochemical techniques and robust statistical comparisons; 2) more closely examine interindividual variability in the relationship between toxicokinetics and toxicodynamics for TCE and PCE; 3) elucidate the effect of coexposure to these two toxicants; and 4) explore new mechanisms for target organ toxicity associated with TCE and/or PCE exposure. PMID:27511820

  4. Short-Chain 3-Hydroxyacyl-Coenzyme A Dehydrogenase Associates with a Protein Super-Complex Integrating Multiple Metabolic Pathways

    PubMed Central

    Narayan, Srinivas B.; Master, Stephen R.; Sireci, Anthony N.; Bierl, Charlene; Stanley, Paige E.; Li, Changhong; Stanley, Charles A.; Bennett, Michael J.

    2012-01-01

    Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein. PMID:22496890

  5. Chemoprevention of obesity by dietary natural compounds targeting mitochondrial regulation.

    PubMed

    Lai, Ching-Shu; Wu, Jia-Ching; Ho, Chi-Tang; Pan, Min-Hsiung

    2017-06-01

    Mitochondria are at the center stage in the control of energy homeostasis in many organs and tissues including adipose tissue. Recently, abundant evidence from experimental studies has clearly supported the strong correlation between mitochondrial dysfunction in adipocytes and obesity. Various physiological conditions such as excessive nutrition, genetic factors, hypoxia, and toxins disrupt mitochondrial function by impairing mitochondrial biogenesis, dynamics, and oxidative capacity. Mitochondrial dysfunction in adipocytes could have an impact on differentiation, adipogenesis, insulin sensitivity, and the significant alteration in their metabolic function, which ultimately results in obesity and type 2 diabetes. Numerous dietary natural compounds are the subject of research for the prevention and treatment of obesity through reprogramming multiple metabolic pathways. Some of them have the potential against obesity by modulating insulin signaling, decreasing oxidative damage, downregulating adipokines secretion, and increasing mitochondrial DNA that improves mitochondrial function and thus maintain metabolic homeostasis. Here, we focus on and summarize and briefly discuss the currently known targets and the mitochondria-targeting effects of dietary natural compounds in the intervention of obesity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches

    PubMed Central

    Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2018-01-01

    Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4+ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4+ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4+ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions. PMID:29659554

  7. Pharmacophore based design of some multi-targeted compounds targeted against pathways of diabetic complications.

    PubMed

    Chadha, Navriti; Silakari, Om

    2017-09-01

    Diabetic complications is a complex metabolic disorder developed primarily due to prolonged hyperglycemia in the body. The complexity of the disease state as well as the unifying pathophysiology discussed in the literature reports exhibited that the use of multi-targeted agents with multiple complementary biological activities may offer promising therapy for the intervention of the disease over the single-target drugs. In the present study, novel thiazolidine-2,4-dione analogues were designed as multi-targeted agents implicated against the molecular pathways involved in diabetic complications using knowledge based as well as in-silico approaches such as pharmacophore mapping, molecular docking etc. The hit molecules were duly synthesized and biochemical estimation of these molecules against aldose reductase (ALR2), protein kinase Cβ (PKCβ) and poly (ADP-ribose) polymerase 1 (PARP-1) led to identification of compound 2 that showed good potency against PARP-1 and ALR2 enzymes. These positive results support the progress of a low cost multi-targeted agent with putative roles in diabetic complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Repeated cis-regulatory tuning of a metabolic bottleneck gene during evolution.

    PubMed

    Kuang, Meihua Christina; Kominek, Jacek; Alexander, William G; Cheng, Jan-Fang; Wrobel, Russell L; Hittinger, Chris Todd

    2018-05-21

    Repeated evolutionary events imply underlying genetic constraints that can make evolutionary mechanisms predictable. Morphological traits are thought to evolve frequently through cis-regulatory changes because these mechanisms bypass constraints in pleiotropic genes that are reused during development. In contrast, the constraints acting on metabolic traits during evolution are less well studied. Here we show how a metabolic bottleneck gene has repeatedly adopted similar cis-regulatory solutions during evolution, likely due to its pleiotropic role integrating flux from multiple metabolic pathways. Specifically, the genes encoding phosphoglucomutase activity (PGM1/PGM2), which connect GALactose catabolism to glycolysis, have gained and lost direct regulation by the transcription factor Gal4 several times during yeast evolution. Through targeted mutations of predicted Gal4-binding sites in yeast genomes, we show this galactose-mediated regulation of PGM1/2 supports vigorous growth on galactose in multiple yeast species, including Saccharomyces uvarum and Lachancea kluyveri. Furthermore, the addition of galactose-inducible PGM1 alone is sufficient to improve the growth on galactose of multiple species that lack this regulation, including Saccharomyces cerevisiae. The strong association between regulation of PGM1/2 by Gal4 even enables remarkably accurate predictions of galactose growth phenotypes between closely related species. This repeated mode of evolution suggests that this specific cis-regulatory connection is a common way that diverse yeasts can govern flux through the pathway, likely due to the constraints imposed by this pleiotropic bottleneck gene. Since metabolic pathways are highly interconnected, we argue that cis-regulatory evolution might be widespread at pleiotropic genes that control metabolic bottlenecks and intersections.

  9. Exploring the potential of a structural alphabet-based tool for mining multiple target conformations and target flexibility insight.

    PubMed

    Regad, Leslie; Chéron, Jean-Baptiste; Triki, Dhoha; Senac, Caroline; Flatters, Delphine; Camproux, Anne-Claude

    2017-01-01

    Protein flexibility is often implied in binding with different partners and is essential for protein function. The growing number of macromolecular structures in the Protein Data Bank entries and their redundancy has become a major source of structural knowledge of the protein universe. The analysis of structural variability through available redundant structures of a target, called multiple target conformations (MTC), obtained using experimental or modeling methods and under different biological conditions or different sources is one way to explore protein flexibility. This analysis is essential to improve the understanding of various mechanisms associated with protein target function and flexibility. In this study, we explored structural variability of three biological targets by analyzing different MTC sets associated with these targets. To facilitate the study of these MTC sets, we have developed an efficient tool, SA-conf, dedicated to capturing and linking the amino acid and local structure variability and analyzing the target structural variability space. The advantage of SA-conf is that it could be applied to divers sets composed of MTCs available in the PDB obtained using NMR and crystallography or homology models. This tool could also be applied to analyze MTC sets obtained by dynamics approaches. Our results showed that SA-conf tool is effective to quantify the structural variability of a MTC set and to localize the structural variable positions and regions of the target. By selecting adapted MTC subsets and comparing their variability detected by SA-conf, we highlighted different sources of target flexibility such as induced by binding partner, by mutation and intrinsic flexibility. Our results support the interest to mine available structures associated with a target using to offer valuable insight into target flexibility and interaction mechanisms. The SA-conf executable script, with a set of pre-compiled binaries are available at http://www.mti.univ-paris-diderot.fr/recherche/plateformes/logiciels.

  10. Exploring the potential of a structural alphabet-based tool for mining multiple target conformations and target flexibility insight

    PubMed Central

    Chéron, Jean-Baptiste; Triki, Dhoha; Senac, Caroline; Flatters, Delphine; Camproux, Anne-Claude

    2017-01-01

    Protein flexibility is often implied in binding with different partners and is essential for protein function. The growing number of macromolecular structures in the Protein Data Bank entries and their redundancy has become a major source of structural knowledge of the protein universe. The analysis of structural variability through available redundant structures of a target, called multiple target conformations (MTC), obtained using experimental or modeling methods and under different biological conditions or different sources is one way to explore protein flexibility. This analysis is essential to improve the understanding of various mechanisms associated with protein target function and flexibility. In this study, we explored structural variability of three biological targets by analyzing different MTC sets associated with these targets. To facilitate the study of these MTC sets, we have developed an efficient tool, SA-conf, dedicated to capturing and linking the amino acid and local structure variability and analyzing the target structural variability space. The advantage of SA-conf is that it could be applied to divers sets composed of MTCs available in the PDB obtained using NMR and crystallography or homology models. This tool could also be applied to analyze MTC sets obtained by dynamics approaches. Our results showed that SA-conf tool is effective to quantify the structural variability of a MTC set and to localize the structural variable positions and regions of the target. By selecting adapted MTC subsets and comparing their variability detected by SA-conf, we highlighted different sources of target flexibility such as induced by binding partner, by mutation and intrinsic flexibility. Our results support the interest to mine available structures associated with a target using to offer valuable insight into target flexibility and interaction mechanisms. The SA-conf executable script, with a set of pre-compiled binaries are available at http

  11. Self-immolative nanoparticles for simultaneous delivery of microRNA and targeting of polyamine metabolism in combination cancer therapy.

    PubMed

    Xie, Ying; Murray-Stewart, Tracy; Wang, Yazhe; Yu, Fei; Li, Jing; Marton, Laurence J; Casero, Robert A; Oupický, David

    2017-01-28

    Combination of anticancer drugs with therapeutic microRNA (miRNA) has emerged as a promising anticancer strategy. However, the promise is hampered by a lack of desirable delivery systems. We report on the development of self-immolative nanoparticles capable of simultaneously delivering miR-34a mimic and targeting dysregulated polyamine metabolism in cancer. The nanoparticles were prepared from a biodegradable polycationic prodrug, named DSS-BEN, which was synthesized from a polyamine analog N 1 ,N 11 -bisethylnorspermine (BENSpm). The nanoparticles were selectively disassembled in the cytoplasm where they released miRNA. Glutathione (GSH)-induced degradation of self-immolative linkers released BENSpm from the DSS-BEN polymers. MiR-34a mimic was effectively delivered to cancer cells as evidenced by upregulation of intracellular miR-34a and downregulation of Bcl-2 as one of the downstream targets of miR-34a. Intracellular BENSpm generated from the degraded nanoparticles induced the expression of rate-limiting enzymes in polyamine catabolism (SMOX, SSAT) and depleted cellular natural polyamines. Simultaneous regulation of polyamine metabolism and miR-34a expression by DSS-BEN/miR-34a not only enhanced cancer cell killing in cultured human colon cancer cells, but also improved antitumor activity in vivo. The reported findings validate the self-immolative nanoparticles as delivery vectors of therapeutic miRNA capable of simultaneously targeting dysregulated polyamine metabolism in cancer, thereby providing an elegant and efficient approach to combination nanomedicines. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Forming maps of targets having multiple reflectors with a biomimetic audible sonar.

    PubMed

    Kuc, Roman

    2018-05-01

    A biomimetic audible sonar mimics human echolocation by emitting clicks and sensing echoes binaurally to investigate the limitations in acoustic mapping of 2.5 dimensional targets. A monaural sonar that provides only echo time-of-flight values produces biased maps that lie outside the target surfaces. Reflector bearing estimates derived from the first echoes detected by a binaural sonar are employed to form unbiased maps. Multiple echoes from a target introduce phantom-reflector artifacts into its map because later echoes are produced by reflectors at bearings different from those determined from the first echoes. In addition, overlapping echoes interfere to produce bearing errors. Addressing the causes of these bearing errors motivates a processing approach that employs template matching to extract valid echoes. Interfering echoes can mimic a valid echo and also form PR artifacts. These artifacts are eliminated by recognizing the bearing fluctuations that characterize echo interference. Removing PR artifacts produces a map that resembles the physical target shape to within the resolution capabilities of the sonar. The remaining differences between the target shape and the final map are void artifacts caused by invalid or missing echoes.

  13. The Role of Target of Rapamycin Signaling Networks in Plant Growth and Metabolism1

    PubMed Central

    Sheen, Jen

    2014-01-01

    The target of rapamycin (TOR) kinase, a master regulator that is evolutionarily conserved among yeasts (Saccharomyces cerevisiae), plants, animals, and humans, integrates nutrient and energy signaling to promote cell proliferation and growth. Recent breakthroughs made possible by integrating chemical, genetic, and genomic analyses have greatly increased our understanding of the molecular functions and dynamic regulation of the TOR kinase in photosynthetic plants. TOR signaling plays fundamental roles in embryogenesis, meristem activation, root and leaf growth, flowering, senescence, and life span determination. The molecular mechanisms underlying TOR-mediated ribosomal biogenesis, translation promotion, readjustment of metabolism, and autophagy inhibition are now being uncovered. Moreover, monitoring photosynthesis-derived Glc and bioenergetics relays has revealed that TOR orchestrates unprecedented transcriptional networks that wire central metabolism and biosynthesis for energy and biomass production. In addition, these networks integrate localized stem/progenitor cell proliferation through interorgan nutrient coordination to control developmental transitions and growth. PMID:24385567

  14. Acyl Coenzyme A Thioesterase 7 Regulates Neuronal Fatty Acid Metabolism To Prevent Neurotoxicity

    PubMed Central

    Ellis, Jessica M.; Wong, G. William

    2013-01-01

    Numerous neurological diseases are associated with dysregulated lipid metabolism; however, the basic metabolic control of fatty acid metabolism in neurons remains enigmatic. Here we have shown that neurons have abundant expression and activity of the long-chain cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase 7 (ACOT7) to regulate lipid retention and metabolism. Unbiased and targeted metabolomic analysis of fasted mice with a conditional knockout of ACOT7 in the nervous system, Acot7N−/−, revealed increased fatty acid flux into multiple long-chain acyl-CoA-dependent pathways. The alterations in brain fatty acid metabolism were concomitant with a loss of lean mass, hypermetabolism, hepatic steatosis, dyslipidemia, and behavioral hyperexcitability in Acot7N−/− mice. These failures in adaptive energy metabolism are common in neurodegenerative diseases. In agreement, Acot7N−/− mice exhibit neurological dysfunction and neurodegeneration. These data show that ACOT7 counterregulates fatty acid metabolism in neurons and protects against neurotoxicity. PMID:23459938

  15. Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity.

    PubMed

    Ellis, Jessica M; Wong, G William; Wolfgang, Michael J

    2013-05-01

    Numerous neurological diseases are associated with dysregulated lipid metabolism; however, the basic metabolic control of fatty acid metabolism in neurons remains enigmatic. Here we have shown that neurons have abundant expression and activity of the long-chain cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase 7 (ACOT7) to regulate lipid retention and metabolism. Unbiased and targeted metabolomic analysis of fasted mice with a conditional knockout of ACOT7 in the nervous system, Acot7(N-/-), revealed increased fatty acid flux into multiple long-chain acyl-CoA-dependent pathways. The alterations in brain fatty acid metabolism were concomitant with a loss of lean mass, hypermetabolism, hepatic steatosis, dyslipidemia, and behavioral hyperexcitability in Acot7(N-/-) mice. These failures in adaptive energy metabolism are common in neurodegenerative diseases. In agreement, Acot7(N-/-) mice exhibit neurological dysfunction and neurodegeneration. These data show that ACOT7 counterregulates fatty acid metabolism in neurons and protects against neurotoxicity.

  16. Interacting Multiple Model (IMM) Fifth-Degree Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking

    PubMed Central

    Liu, Hua; Wu, Wen

    2017-01-01

    For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF). PMID:28608843

  17. Interacting Multiple Model (IMM) Fifth-Degree Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.

    PubMed

    Liu, Hua; Wu, Wen

    2017-06-13

    For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF).

  18. Locations of serial reach targets are coded in multiple reference frames.

    PubMed

    Thompson, Aidan A; Henriques, Denise Y P

    2010-12-01

    an egocentric frame anchored to the eye. However, the amount of change in this distance was smaller than predicted by a pure eye-fixed representation, suggesting that relative positions of the targets or allocentric coding was also used in sequential reach planning. The spatial coding and updating of sequential reach target locations seems to rely on a combined weighting of multiple reference frames, with one of them centered on the eye. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Fetal metabolic influences of neonatal anthropometry and adiposity.

    PubMed

    Donnelly, Jean M; Lindsay, Karen L; Walsh, Jennifer M; Horan, Mary; Molloy, Eleanor J; McAuliffe, Fionnuala M

    2015-11-10

    Large for gestational age infants have an increased risk of obesity, cardiovascular and metabolic complications during life. Knowledge of the key predictive factors of neonatal adiposity is required to devise targeted antenatal interventions. Our objective was to determine the fetal metabolic factors that influence regional neonatal adiposity in a cohort of women with previous large for gestational age offspring. Data from the ROLO [Randomised COntrol Trial of LOw Glycaemic Index in Pregnancy] study were analysed in the ROLO Kids study. Neonatal anthropometric and skinfold measurements were compared with fetal leptin and C-peptide results from cord blood in 185 cases. Analyses were performed to examine the association between these metabolic factors and birthweight, anthropometry and markers of central and generalised adiposity. Fetal leptin was found to correlate with birthweight, general adiposity and multiple anthropometric measurements. On multiple regression analysis, fetal leptin remained significantly associated with adiposity, independent of gender, maternal BMI, gestational age or study group assignment, while fetal C-peptide was no longer significant. Fetal leptin may be an important predictor of regional neonatal adiposity. Interventional studies are required to assess the impact of neonatal adiposity on the subsequent risk of childhood obesity and to determine whether interventions which reduce circulating leptin levels have a role to play in improving neonatal adiposity measures.

  20. Characteristics of Interventions Targeting Multiple Lifestyle Risk Behaviours in Adult Populations: A Systematic Scoping Review

    PubMed Central

    King, Kristel; Meader, Nick; Wright, Kath; Graham, Hilary; Power, Christine; Petticrew, Mark; White, Martin; Sowden, Amanda J.

    2015-01-01

    Background Modifiable lifestyle risk behaviours such as smoking, unhealthy diet, physical inactivity and alcohol misuse are the leading causes of major, non-communicable diseases worldwide. It is increasingly being recognised that interventions which target more than one risk behaviour may be an effective and efficient way of improving people’s lifestyles. To date, there has been no attempt to summarise the global evidence base for interventions targeting multiple risk behaviours. Objective To identify and map the characteristics of studies evaluating multiple risk behaviour change interventions targeted at adult populations in any country. Methods Seven bibliographic databases were searched between January, 1990, and January/ May, 2013. Authors of protocols, conference abstracts, and other relevant articles were contacted. Study characteristics were extracted and inputted into Eppi-Reviewer 4. Results In total, 220 studies were included in the scoping review. Most were randomised controlled trials (62%) conducted in the United States (49%), and targeted diet and physical activity (56%) in people from general populations (14%) or subgroups of general populations (45%). Very few studies had been conducted in the Middle East (2%), Africa (0.5%), or South America (0.5%). There was also a scarcity of studies conducted among young adults (1%), or racial and minority ethnic populations (4%) worldwide. Conclusions Research is required to investigate the interrelationships of lifestyle risk behaviours in varying cultural contexts around the world. Cross-cultural development and evaluation of multiple risk behaviour change interventions is also needed, particularly in populations of young adults and racial and minority ethnic populations. PMID:25617783

  1. Integrative FourD omics approach profiles the target network of the carbon storage regulatory system.

    PubMed

    Sowa, Steven W; Gelderman, Grant; Leistra, Abigail N; Buvanendiran, Aishwarya; Lipp, Sarah; Pitaktong, Areen; Vakulskas, Christopher A; Romeo, Tony; Baldea, Michael; Contreras, Lydia M

    2017-02-28

    Multi-target regulators represent a largely untapped area for metabolic engineering and anti-bacterial development. These regulators are complex to characterize because they often act at multiple levels, affecting proteins, transcripts and metabolites. Therefore, single omics experiments cannot profile their underlying targets and mechanisms. In this work, we used an Integrative FourD omics approach (INFO) that consists of collecting and analyzing systems data throughout multiple time points, using multiple genetic backgrounds, and multiple omics approaches (transcriptomics, proteomics and high throughput sequencing crosslinking immunoprecipitation) to evaluate simultaneous changes in gene expression after imposing an environmental stress that accentuates the regulatory features of a network. Using this approach, we profiled the targets and potential regulatory mechanisms of a global regulatory system, the well-studied carbon storage regulatory (Csr) system of Escherichia coli, which is widespread among bacteria. Using 126 sets of proteomics and transcriptomics data, we identified 136 potential direct CsrA targets, including 50 novel ones, categorized their behaviors into distinct regulatory patterns, and performed in vivo fluorescence-based follow up experiments. The results of this work validate 17 novel mRNAs as authentic direct CsrA targets and demonstrate a generalizable strategy to integrate multiple lines of omics data to identify a core pool of regulator targets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Metabolism Disrupting Chemicals and Metabolic Disorders

    PubMed Central

    Heindel, Jerrold J.; Blumberg, Bruce; Cave, Mathew; Machtinger, Ronit; Mantovani, Alberto; Mendez, Michelle A.; Nadal, Angel; Palanza, Paola; Panzica, Giancarlo; Sargis, Robert; Vandenberg, Laura N.; Saal, Frederick vom

    2016-01-01

    The recent epidemics of metabolic diseases, obesity, type 2 diabetes(T2D), liver lipid disorders and metabolic syndrome have largely been attributed to genetic background and changes in diet, exercise and aging. However, there is now considerable evidence that other environmental factors may contribute to the rapid increase in the incidence of these metabolic diseases. This review will examine changes to the incidence of obesity, T2D and non-alcoholic fatty liver disease (NAFLD), the contribution of genetics to these disorders and describe the role of the endocrine system in these metabolic disorders. It will then specifically focus on the role of endocrine disrupting chemicals (EDCs) in the etiology of obesity, T2D and NAFLD while finally integrating the information on EDCs on multiple metabolic disorders that could lead to metabolic syndrome. We will specifically examine evidence linking EDC exposures during critical periods of development with metabolic diseases that manifest later in life and across generations. PMID:27760374

  3. Target recognitions in multiple-camera closed-circuit television using color constancy

    NASA Astrophysics Data System (ADS)

    Soori, Umair; Yuen, Peter; Han, Ji Wen; Ibrahim, Izzati; Chen, Wentao; Hong, Kan; Merfort, Christian; James, David; Richardson, Mark

    2013-04-01

    People tracking in crowded scenes from closed-circuit television (CCTV) footage has been a popular and challenging task in computer vision. Due to the limited spatial resolution in the CCTV footage, the color of people's dress may offer an alternative feature for their recognition and tracking. However, there are many factors, such as variable illumination conditions, viewing angles, and camera calibration, that may induce illusive modification of intrinsic color signatures of the target. Our objective is to recognize and track targets in multiple camera views using color as the detection feature, and to understand if a color constancy (CC) approach may help to reduce these color illusions due to illumination and camera artifacts and thereby improve target recognition performance. We have tested a number of CC algorithms using various color descriptors to assess the efficiency of target recognition from a real multicamera Imagery Library for Intelligent Detection Systems (i-LIDS) data set. Various classifiers have been used for target detection, and the figure of merit to assess the efficiency of target recognition is achieved through the area under the receiver operating characteristics (AUROC). We have proposed two modifications of luminance-based CC algorithms: one with a color transfer mechanism and the other using a pixel-wise sigmoid function for an adaptive dynamic range compression, a method termed enhanced luminance reflectance CC (ELRCC). We found that both algorithms improve the efficiency of target recognitions substantially better than that of the raw data without CC treatment, and in some cases the ELRCC improves target tracking by over 100% within the AUROC assessment metric. The performance of the ELRCC has been assessed over 10 selected targets from three different camera views of the i-LIDS footage, and the averaged target recognition efficiency over all these targets is found to be improved by about 54% in AUROC after the data are processed by

  4. Efficient Generation of Somatic Cell Nuclear Transfer-Competent Porcine Cells with Mutated Alleles at Multiple Target Loci by Using CRISPR/Cas9 Combined with Targeted Toxin-Based Selection System.

    PubMed

    Sato, Masahiro; Miyoshi, Kazuchika; Nakamura, Shingo; Ohtsuka, Masato; Sakurai, Takayuki; Watanabe, Satoshi; Kawaguchi, Hiroaki; Tanimoto, Akihide

    2017-12-04

    The recent advancement in genome editing such a CRISPR/Cas9 system has enabled isolation of cells with knocked multiple alleles through a one-step transfection. Somatic cell nuclear transfer (SCNT) has been frequently employed as one of the efficient tools for the production of genetically modified (GM) animals. To use GM cells as SCNT donor, efficient isolation of transfectants with mutations at multiple target loci is often required. The methods for the isolation of such GM cells largely rely on the use of drug selection-based approach using selectable genes; however, it is often difficult to isolate cells with mutations at multiple target loci. In this study, we used a novel approach for the efficient isolation of porcine cells with at least two target loci mutations by one-step introduction of CRISPR/Cas9-related components. A single guide (sg) RNA targeted to GGTA1 gene, involved in the synthesis of cell-surface α-Gal epitope (known as xenogenic antigen), is always a prerequisite. When the transfected cells were reacted with toxin-labeled BS-I-B₄ isolectin for 2 h at 37 C to eliminate α-Gal epitope-expressing cells, the surviving clones lacked α-Gal epitope expression and were highly expected to exhibit induced mutations at another target loci. Analysis of these α-Gal epitope-negative surviving cells demonstrated a 100% occurrence of genome editing at target loci. SCNT using these cells as donors resulted in the production of cloned blastocysts with the genotype similar to that of the donor cells used. Thus, this novel system will be useful for SCNT-mediated acquisition of GM cloned piglets, in which multiple target loci may be mutated.

  5. Multiple Target Laser Designator (MTLD)

    DTIC Science & Technology

    2007-03-01

    Optimized Liquid Crystal Scanning Element Optimize the Nonimaging Predictive Algorithm for Target Ranging, Tracking, and Position Estimation...commercial potential. 3.0 PROGRESS THIS QUARTER 3.1 Optimization of Nonimaging Holographic Antenna for Target Tracking and Position Estimation (Task 6) In

  6. The Potential of Metabolic Imaging

    PubMed Central

    Di Gialleonardo, Valentina; Wilson, David M.; Keshari, Kayvan R.

    2015-01-01

    Metabolic imaging is a field of molecular imaging that focuses and targets changes in metabolic pathways for the evaluation of different clinical conditions. Targeting and quantifying metabolic changes non-invasively is a powerful approach to facilitate diagnosis and evaluate therapeutic response. This review addresses only techniques targeting metabolic pathways. Other molecular imaging strategies, such as affinity/receptor imaging or microenvironment-dependent methods are beyond the scope of this review. Here we describe the current state of the art in clinically translatable metabolic imaging modalities. Specifically, we will focus on positron emission tomography (PET) and magnetic resonance spectroscopy (MRS), including conventional 1H and 13C MRS at thermal equilibrium and hyperpolarized magnetic resonance imaging (HP MRI). In this paper, we first provide an overview of metabolic pathways that are altered in many pathological conditions and the corresponding probes and techniques used to study those alterations. We will then describe the application of metabolic imaging to several common diseases including cancer, neurodegeneration, cardiac ischemia, and infection/inflammation. PMID:26687855

  7. Variation and quantification among a target set of phosphopeptides in human plasma by multiple reaction monitoring (MRM) and SWATH MS2 data-independent acquisition

    PubMed Central

    Zawadzka, Anna M.; Schilling, Birgit; Held, Jason M.; Sahu, Alexandria K.; Cusack, Michael P.; Drake, Penelope M.; Fisher, Susan J.; Gibson, Bradford W.

    2015-01-01

    Human plasma contains proteins that reflect overall health and represents a rich source of proteins for identifying and understanding disease pathophysiology. However, few studies have investigated changes in plasma phosphoproteins. In addition, little is known about the normal variations in these phosphoproteins, especially with respect to specific sites of modification. To address these questions, we evaluated variability in plasma protein phosphorylation in healthy individuals using multiple reaction monitoring (MRM) and SWATH MS2 data-independent acquisition. First, we developed a discovery workflow for phosphopeptide enrichment from plasma and identified targets for MRM assays. Next, we analyzed plasma from healthy donors using an analytical workflow consisting of MRM and SWATH MS2 that targeted phosphopeptides from 58 and 68 phosphoproteins, respectively. These two methods produced similar results showing low variability in 13 phosphosites from 10 phosphoproteins (CVinter <30%) and high interpersonal variation of 16 phosphosites from 14 phosphoproteins (CVinter >30%). Moreover, these phosphopeptides originate from phosphoproteins involved in cellular processes governing homeostasis, immune response, cell-extracellular matrix interactions, lipid and sugar metabolism, and cell signaling. This limited assessment of technical and biological variability in phosphopeptides generated from plasma phosphoproteins among healthy volunteers constitutes a reference for future studies that target protein phosphorylation as biomarkers. PMID:24853916

  8. Treatment planning with intensity modulated particle therapy for multiple targets in stage IV non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Anderle, Kristjan; Stroom, Joep; Vieira, Sandra; Pimentel, Nuno; Greco, Carlo; Durante, Marco; Graeff, Christian

    2018-01-01

    Intensity modulated particle therapy (IMPT) can produce highly conformal plans, but is limited in advanced lung cancer patients with multiple lesions due to motion and planning complexity. A 4D IMPT optimization including all motion states was expanded to include multiple targets, where each target (isocenter) is designated to specific field(s). Furthermore, to achieve stereotactic treatment planning objectives, target and OAR weights plus objective doses were automatically iteratively adapted. Finally, 4D doses were calculated for different motion scenarios. The results from our algorithm were compared to clinical stereotactic body radiation treatment (SBRT) plans. The study included eight patients with 24 lesions in total. Intended dose regimen for SBRT was 24 Gy in one fraction, but lower fractionated doses had to be delivered in three cases due to OAR constraints or failed plan quality assurance. The resulting IMPT treatment plans had no significant difference in target coverage compared to SBRT treatment plans. Average maximum point dose and dose to specific volume in OARs were on average 65% and 22% smaller with IMPT. IMPT could also deliver 24 Gy in one fraction in a patient where SBRT was limited due to the OAR vicinity. The developed algorithm shows the potential of IMPT in treatment of multiple moving targets in a complex geometry.

  9. Phosphoenolpyruvate Transporter Enables Targeted Perturbation During Metabolic Analysis of L-Phenylalanine Production With Escherichia coli.

    PubMed

    Tröndle, Julia; Albermann, Christoph; Weiner, Michael; Sprenger, Georg A; Weuster-Botz, Dirk

    2018-05-01

    Usually perturbation of the metabolism of cells by addition of substrates is applied for metabolic analysis of production organisms, but perturbation studies are restricted to the endogenous substrates of the cells under study. The goal of this study is to overcome this limitation by making phosphoenolpyruvate (PEP) available for perturbation studies with Escherichia coli producing L-phenylalanine. A production strain overexpressing a PEP-transporter variant (UhpT-D388C) is applied in a standardized fed-batch production-process on a 42 L-scale. Four parallel short-term perturbation experiments of 20 min are performed with glucose and glycerol as fed-batch carbon sources after rapid media transition of cells from the production-process. PEP is added after 9 min and is immediately consumed by the cells with up to 1.5 mmol g CDW -1  h -1 . L-phenylalanine production rates increased by up to 200% after addition of PEP. This clearly indicates an intracellular PEP-limitation in the L-phenylalanine production strain under study. Thus, it is shown that overexpressing specific transporters for analytical reasons makes exogenous substrates available as perturbation substrates for metabolic analyses of cells sampled from production-processes and thereby allows a very targeted perturbation of whole-cell metabolism. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Adenosine metabolism in Toxoplasma gondii: potential targets for chemotherapy.

    PubMed

    el Kouni, Mahmoud H

    2007-01-01

    Toxoplasma gondii is an intracellular parasitic protozoan that infects approximately a billion people worldwide. Infection with T. gondii represents a major health problem for immunocompromised individuals, such as AIDS patients, organ transplant recipients, and the unborn children of infected mothers. Currently available drugs usually do not eradicate infection and as many as 50% of the patients do not respond to this therapy. Furthermore, they are ineffective against T. gondii tissue cysts. In addition, prolonged exposure to these drugs induces serious host toxicity forcing the discontinuation of the therapy. Finally, there is no effective vaccine currently available for the treatment of toxoplasmosis. Therefore, it is necessary to develop new and effective drugs for the treatment and management of toxoplasmosis. The rational design of a drug depends on the exploitation of fundamental biochemical or physiological differences between pathogens and their host. Some of the most striking differences between T. gondii and their mammalian host are found in purine metabolism. T. gondii, like most parasites studied, lack the ability to synthesize purines do novo and depend on the salvage of purines from their host to satisfy their requirements of purines. In this respect, the salvage of adenosine is the major source of purines in T. gondii. Therefore, interference with adenosine uptake and metabolism in T. gondii can be selectively detrimental to the parasite. The host cells, on the other hand, can still obtain their purine requirements by their de novo pathways. This review will focus on the broad aspects of the adenosine transport and the enzyme adenosine kinase (EC 2.7.1.20) which are the two primary routes for adenosine utilization in T. gondii, in an attempt to illustrate their potentials as targets for chemotherapy against this parasite.

  11. Target Organ Metabolism, Toxicity, and Mechanisms of Trichloroethylene and Perchloroethylene: Key Similarities, Differences, and Data Gaps.

    PubMed

    Cichocki, Joseph A; Guyton, Kathryn Z; Guha, Neela; Chiu, Weihsueh A; Rusyn, Ivan; Lash, Lawrence H

    2016-10-01

    Trichloroethylene (TCE) and perchloroethylene or tetrachloroethylene (PCE) are high-production volume chemicals with numerous industrial applications. As a consequence of their widespread use, these chemicals are ubiquitous environmental contaminants to which the general population is commonly exposed. It is widely assumed that TCE and PCE are toxicologically similar; both are simple olefins with three (TCE) or four (PCE) chlorines. Nonetheless, despite decades of research on the adverse health effects of TCE or PCE, few studies have directly compared these two toxicants. Although the metabolic pathways are qualitatively similar, quantitative differences in the flux and yield of metabolites exist. Recent human health assessments have uncovered some overlap in target organs that are affected by exposure to TCE or PCE, and divergent species- and sex-specificity with regard to cancer and noncancer hazards. The objective of this minireview is to highlight key similarities, differences, and data gaps in target organ metabolism and mechanism of toxicity. The main anticipated outcome of this review is to encourage research to 1) directly compare the responses to TCE and PCE using more sensitive biochemical techniques and robust statistical comparisons; 2) more closely examine interindividual variability in the relationship between toxicokinetics and toxicodynamics for TCE and PCE; 3) elucidate the effect of coexposure to these two toxicants; and 4) explore new mechanisms for target organ toxicity associated with TCE and/or PCE exposure. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  12. SuperTarget and Matador: resources for exploring drug-target relationships.

    PubMed

    Günther, Stefan; Kuhn, Michael; Dunkel, Mathias; Campillos, Monica; Senger, Christian; Petsalaki, Evangelia; Ahmed, Jessica; Urdiales, Eduardo Garcia; Gewiess, Andreas; Jensen, Lars Juhl; Schneider, Reinhard; Skoblo, Roman; Russell, Robert B; Bourne, Philip E; Bork, Peer; Preissner, Robert

    2008-01-01

    The molecular basis of drug action is often not well understood. This is partly because the very abundant and diverse information generated in the past decades on drugs is hidden in millions of medical articles or textbooks. Therefore, we developed a one-stop data warehouse, SuperTarget that integrates drug-related information about medical indication areas, adverse drug effects, drug metabolization, pathways and Gene Ontology terms of the target proteins. An easy-to-use query interface enables the user to pose complex queries, for example to find drugs that target a certain pathway, interacting drugs that are metabolized by the same cytochrome P450 or drugs that target the same protein but are metabolized by different enzymes. Furthermore, we provide tools for 2D drug screening and sequence comparison of the targets. The database contains more than 2500 target proteins, which are annotated with about 7300 relations to 1500 drugs; the vast majority of entries have pointers to the respective literature source. A subset of these drugs has been annotated with additional binding information and indirect interactions and is available as a separate resource called Matador. SuperTarget and Matador are available at http://insilico.charite.de/supertarget and http://matador.embl.de.

  13. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches.

    PubMed

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2018-04-16

    Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4⁺ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4⁺ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4⁺ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.

  14. Association Study between Cervical Lesions and Single or Multiple Vaccine-Target and Non-Vaccine Target Human Papillomavirus (HPV) Types in Women from Northeastern Brazil

    PubMed Central

    Chagas, Bárbara Simas; Comar, Manola; Gurgel, Ana Pavla Almeida Diniz; Paiva, Sérgio; Seraceni, Silva; de Freitas, Antonio Carlos; Crovella, Sergio

    2015-01-01

    We performed an association between high-grade squamous intraepithelial lesions (HSIL), low-grade squamous intraepithelial lesions (LSIL) and single or multiple vaccine-target as well as non-vaccine target Human papillomavirus (HPV) types. Using bead-based HPV genotyping, 594 gynecological samples were genotyped. An association between squamous intraepithelial lesion (SIL) and presence of HPV16, 18, 31, 58 and 56 types were calculated. The risk was estimated by using odds ratio (OR) and 95% of confidence intervals (CI). A total of 370 (62.3%) women were HPV positive. Among these, 157 (42.7%) presented a single HPV infection, and 212 (57.3%) were infected by more than one HPV type. HPV31 was the most prevalent genotype, regardless single and multiple HPV infections. Single infection with HPV31 was associated with LSIL (OR=2.32; 95%CI: 1.01 to 5.32; p=0.04); HPV31 was also associated with LSIL (OR=3.28; 95%CI: 1.74 to 6.19; p= 0.0002) and HSIL (OR=3.82; 95%CI: 2.10 to 6.97; p<0.001) in multiple HPV infections. Risk to harbor cervical lesions was observed in multiple HPV infections with regard to the HPV56 (OR=5.39; 95%CI: 2.44 to 11.90; p<0.001for LSIL; OR=5.37; 95%CI: 2.71 to 10.69; p<0.001) and HPV58 (OR=3.29; 95%CI: 1.34 to 8.09; p=0.0091 for LSIL; OR=3.55; 95%CI: 1.56 to 8.11; p=0.0026) genotypes. In addition, women coinfected with HPV16/31/56 types had 6 and 5-fold increased risk of HSIL (OR=6.46; 95%CI: 1.89 to 22.09; p=0.002) and LSIL (OR=5.22; 95%CI: 1.10 to 24.70; p=0.03), respectively. Multiple HPV infections without HPV16/18 has 2-fold increased risk of HSIL (OR=2.57; 95%CI: 1.41 to 4.70; p=0.002) and LSIL OR=2.03; 95%CI: 1.08 to 3.79; p=0.02). The results of this study suggest that single and multiple vaccine target as well as non-vaccine target HPV types are associated with LSIL and HSIL. These finding should be taken into consideration in the design of HPV vaccination strategies. PMID:26176537

  15. Relationships among personality traits, metabolic syndrome, and metabolic syndrome scores: The Kakegawa cohort study.

    PubMed

    Ohseto, Hisashi; Ishikuro, Mami; Kikuya, Masahiro; Obara, Taku; Igarashi, Yuko; Takahashi, Satomi; Kikuchi, Daisuke; Shigihara, Michiko; Yamanaka, Chizuru; Miyashita, Masako; Mizuno, Satoshi; Nagai, Masato; Matsubara, Hiroko; Sato, Yuki; Metoki, Hirohito; Tachibana, Hirofumi; Maeda-Yamamoto, Mari; Kuriyama, Shinichi

    2018-04-01

    Metabolic syndrome and the presence of metabolic syndrome components are risk factors for cardiovascular disease (CVD). However, the association between personality traits and metabolic syndrome remains controversial, and few studies have been conducted in East Asian populations. We measured personality traits using the Japanese version of the Eysenck Personality Questionnaire (Revised Short Form) and five metabolic syndrome components-elevated waist circumference, elevated triglycerides, reduced high-density lipoprotein cholesterol, elevated blood pressure, and elevated fasting glucose-in 1322 participants aged 51.1±12.7years old from Kakegawa city, Japan. Metabolic syndrome score (MS score) was defined as the number of metabolic syndrome components present, and metabolic syndrome as having the MS score of 3 or higher. We performed multiple logistic regression analyses to examine the relationship between personality traits and metabolic syndrome components and multiple regression analyses to examine the relationship between personality traits and MS scores adjusted for age, sex, education, income, smoking status, alcohol use, and family history of CVD and diabetes mellitus. We also examine the relationship between personality traits and metabolic syndrome presence by multiple logistic regression analyses. "Extraversion" scores were higher in those with metabolic syndrome components (elevated waist circumference: P=0.001; elevated triglycerides: P=0.01; elevated blood pressure: P=0.004; elevated fasting glucose: P=0.002). "Extraversion" was associated with the MS score (coefficient=0.12, P=0.0003). No personality trait was significantly associated with the presence of metabolic syndrome. Higher "extraversion" scores were related to higher MS scores, but no personality trait was significantly associated with the presence of metabolic syndrome. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Leishmania carbon metabolism in the macrophage phagolysosome- feast or famine?

    PubMed

    McConville, Malcolm J; Saunders, Eleanor C; Kloehn, Joachim; Dagley, Michael J

    2015-01-01

    A number of medically important microbial pathogens target and proliferate within macrophages and other phagocytic cells in their mammalian hosts. While the majority of these pathogens replicate within the host cell cytosol or non-hydrolytic vacuolar compartments, a few, including protists belonging to the genus Leishmania, proliferate long-term within mature lysosome compartments.  How these parasites achieve this feat remains poorly defined. In this review, we highlight recent studies that suggest that Leishmania virulence is intimately linked to programmed changes in the growth rate and carbon metabolism of the obligate intra-macrophage stages. We propose that activation of a slow growth and a stringent metabolic response confers resistance to multiple stresses (oxidative, temperature, pH), as well as both nutrient limitation and nutrient excess within this niche. These studies highlight the importance of metabolic processes as key virulence determinants in Leishmania.

  17. Nutrition-based interventions to address metabolic syndrome in the Navajo: a systematic review.

    PubMed

    Nava, Lorenzo T; Zambrano, Jenelle M; Arviso, Karen P; Brochetti, Denise; Becker, Kathleen L

    2015-11-01

    The objective of this systematic review is to identify nutrition-based interventions that may be effective for the prevention and treatment of metabolic syndrome in the Navajo. Metabolic syndrome, a major risk factor for cardiovascular disease, affects almost half of the Navajo population. The diet of the Navajo, heavy in fat and refined carbohydrates, has been identified as an important contributing factor to the high rates of metabolic syndrome in this population. A search was conducted on PubMed, EMBASE and CINAHL to identify studies published before October, 2013, involving nutrition-based interventions in adult populations similar to the Navajo targeting at least one measure of metabolic syndrome. Data on efficacy and participation were gathered and synthesised qualitatively. Out of 19 studies included in this systematic review, 11 interventions were identified to be effective at improving at least one measure of metabolic syndrome. Level of exposure to the intervention, frequency of intervention activities, family and social support, cultural adaptation and case management were identified as factors that may improve the efficacy of an intervention. Multiple nutrition-based interventions have been found to be effective in populations similar to the Navajo. Development of a strategy to address metabolic syndrome in the Navajo may involve aspects from multiple interventions to increase efficacy and maximise participation. © 2015 John Wiley & Sons Ltd.

  18. High-Fat Diet During Mouse Pregnancy and Lactation Targets GIP-Regulated Metabolic Pathways in Adult Male Offspring.

    PubMed

    Kruse, Michael; Keyhani-Nejad, Farnaz; Isken, Frank; Nitz, Barbara; Kretschmer, Anja; Reischl, Eva; de las Heras Gala, Tonia; Osterhoff, Martin A; Grallert, Harald; Pfeiffer, Andreas F H

    2016-03-01

    Maternal obesity is a worldwide problem associated with increased risk of metabolic diseases in the offspring. Genetic deletion of the gastric inhibitory polypeptide (GIP) receptor (GIPR) prevents high-fat diet (HFD)-induced obesity in mice due to specific changes in energy and fat cell metabolism. We investigated whether GIP-associated pathways may be targeted by fetal programming and mimicked the situation by exposing pregnant mice to control or HFD during pregnancy (intrauterine [IU]) and lactation (L). Male wild-type (WT) and Gipr(-/-) offspring received control chow until 25 weeks of age followed by 20 weeks of HFD. Gipr(-/-) offspring of mice exposed to HFD during IU/L became insulin resistant and obese and exhibited increased adipose tissue inflammation and decreased peripheral tissue substrate utilization after being reintroduced to HFD, similar to WT mice on regular chow during IU/L. They showed decreased hypothalamic insulin sensitivity compared with Gipr(-/-) mice on control diet during IU/L. DNA methylation analysis revealed increased methylation of CpG dinucleotides and differential transcription factor binding of promoter regions of genes involved in lipid oxidation in the muscle of Gipr(-/-) offspring on HFD during IU/L, which were inversely correlated with gene expression levels. Our data identify GIP-regulated metabolic pathways that are targeted by fetal programming. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  19. Tracking and recognition of multiple human targets moving in a wireless pyroelectric infrared sensor network.

    PubMed

    Xiong, Ji; Li, Fangmin; Zhao, Ning; Jiang, Na

    2014-04-22

    With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%.

  20. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism.

    PubMed

    Kasai, Shinji; Komagata, Osamu; Itokawa, Kentaro; Shono, Toshio; Ng, Lee Ching; Kobayashi, Mutsuo; Tomita, Takashi

    2014-06-01

    Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4'-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains.

  1. Mechanisms of Pyrethroid Resistance in the Dengue Mosquito Vector, Aedes aegypti: Target Site Insensitivity, Penetration, and Metabolism

    PubMed Central

    Kasai, Shinji; Komagata, Osamu; Itokawa, Kentaro; Shono, Toshio; Ng, Lee Ching; Kobayashi, Mutsuo; Tomita, Takashi

    2014-01-01

    Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4′-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains. PMID:24945250

  2. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets

    PubMed Central

    Jamshidi, Neema; Palsson, Bernhard Ø

    2007-01-01

    Background: Mycobacterium tuberculosis continues to be a major pathogen in the third world, killing almost 2 million people a year by the most recent estimates. Even in industrialized countries, the emergence of multi-drug resistant (MDR) strains of tuberculosis hails the need to develop additional medications for treatment. Many of the drugs used for treatment of tuberculosis target metabolic enzymes. Genome-scale models can be used for analysis, discovery, and as hypothesis generating tools, which will hopefully assist the rational drug development process. These models need to be able to assimilate data from large datasets and analyze them. Results: We completed a bottom up reconstruction of the metabolic network of Mycobacterium tuberculosis H37Rv. This functional in silico bacterium, iNJ661, contains 661 genes and 939 reactions and can produce many of the complex compounds characteristic to tuberculosis, such as mycolic acids and mycocerosates. We grew this bacterium in silico on various media, analyzed the model in the context of multiple high-throughput data sets, and finally we analyzed the network in an 'unbiased' manner by calculating the Hard Coupled Reaction (HCR) sets, groups of reactions that are forced to operate in unison due to mass conservation and connectivity constraints. Conclusion: Although we observed growth rates comparable to experimental observations (doubling times ranging from about 12 to 24 hours) in different media, comparisons of gene essentiality with experimental data were less encouraging (generally about 55%). The reasons for the often conflicting results were multi-fold, including gene expression variability under different conditions and lack of complete biological knowledge. Some of the inconsistencies between in vitro and in silico or in vivo and in silico results highlight specific loci that are worth further experimental investigations. Finally, by considering the HCR sets in the context of known drug targets for

  3. Sensitive SERS detection of DNA methyltransferase by target triggering primer generation-based multiple signal amplification strategy.

    PubMed

    Li, Ying; Yu, Chuanfeng; Han, Huixia; Zhao, Caisheng; Zhang, Xiaoru

    2016-07-15

    A novel and sensitive surface-enhanced Raman scattering (SERS) method is proposed for the assay of DNA methyltransferase (MTase) activity and evaluation of inhibitors by developing a target triggering primer generation-based multiple signal amplification strategy. By using of a duplex substrate for Dam MTase, two hairpin templates and a Raman probe, multiple signal amplification mode is achieved. Once recognized by Dam MTase, the duplex substrate can be cleaved by Dpn I endonuclease and two primers are released for triggering the multiple signal amplification reaction. Consequently, a wide dynamic range and remarkably high sensitivity are obtained under isothermal conditions. The detection limit is 2.57×10(-4)UmL(-1). This assay exhibits an excellent selectivity and is successfully applied in the screening of inhibitors for Dam MTase. In addition, this novel sensing system is potentially universal as the recognition element can be conveniently designed for other target analytes by changing the substrate of DNA MTase. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Activity-Based Protein Profiling of Organophosphorus and Thiocarbamate Pesticides Reveals Multiple Serine Hydrolase Targets in Mouse Brain

    PubMed Central

    NOMURA, DANIEL K.; CASIDA, JOHN E.

    2010-01-01

    Organophosphorus (OP) and thiocarbamate (TC) agrochemicals are used worldwide as insecticides, herbicides, and fungicides, but their safety assessment in terms of potential off-targets remains incomplete. In this study, we used a chemoproteomic platform, termed activity-based protein profiling, to broadly define serine hydrolase targets in mouse brain of a panel of 29 OP and TC pesticides. Among the secondary targets identified, enzymes involved in degradation of endocannabinoid signaling lipids, monoacylglycerol lipase and fatty acid amide hydrolase, were inhibited by several OP and TC pesticides. Blockade of these two enzymes led to elevations in brain endocannabinoid levels and dysregulated brain arachidonate metabolism. Other secondary targets include enzymes thought to also play important roles in the nervous system and unannotated proteins. This study reveals a multitude of secondary targets for OP and TC pesticides and underscores the utility of chemoproteomic platforms in gaining insights into biochemical pathways that are perturbed by these toxicants. PMID:21341672

  5. The role of parental warmth and hostility on adolescents' prosocial behavior toward multiple targets.

    PubMed

    Padilla-Walker, Laura M; Nielson, Matthew G; Day, Randal D

    2016-04-01

    The current study examined the influence that parental warmth/support and verbal hostility had on adolescents' prosocial behavior toward multiple targets (stranger, friend, family) using multiple reporters (self, parent, observations). Data were taken from Times 2 and 3 of a longitudinal project and included 500 adolescents and their parents (M age of child at Time 2 = 12.34). Structural equation models suggested that mother warmth was associated with prosocial behavior toward family, while father warmth was associated with prosocial behavior toward friends. Findings also suggested that adolescents' prosocial behavior was more consistently influenced by father hostility than it was by father warmth. Finally, observational reports of father hostility were associated with adolescent prosocial behavior more consistently than self- or child-reported parenting. The discussion focuses on the importance of considering target of prosocial behavior, the differences between mothers and fathers, and the role of self-reports compared to observations. (c) 2016 APA, all rights reserved).

  6. Mangiferin Modulation of Metabolism and Metabolic Syndrome

    PubMed Central

    Fomenko, Ekaterina Vladimirovna; Chi, Yuling

    2016-01-01

    The recent emergence of a worldwide epidemic of metabolic disorders, such as obesity and diabetes, demands effective strategy to develop nutraceuticals or pharmaceuticals to halt this trend. Natural products have long been and continue to be an attractive source of nutritional and pharmacological therapeutics. One such natural product is mangiferin (MGF), the predominant constituent of extracts of the mango plant Mangifera indica L. Reports on biological and pharmacological effects of MGF increased exponentially in recent years. MGF has documented antioxidant and anti-inflammatory effects. Recent studies indicate that it modulates multiple biological processes involved in metabolism of carbohydrates and lipids. MGF has been shown to improve metabolic abnormalities and disorders in animal models and humans. This review focuses on the recently reported biological and pharmacological effects of MGF on metabolism and metabolic disorders. PMID:27534809

  7. Dissection of Biological Property of Chinese Acupuncture Point Zusanli Based on Long-Term Treatment via Modulating Multiple Metabolic Pathways.

    PubMed

    Yan, Guangli; Zhang, Aihua; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Zhang, Yingzhi; Xie, Ning; Wang, Xijun

    2013-01-01

    Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at "Zusanli" acupoint (ST-36) as a case study. The top 5 canonical pathways including alpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture.

  8. Analysis of miRNAs and their target genes associated with lipid metabolism in duck liver

    PubMed Central

    He, Jun; Wang, Weiqun; Lu, Lizhi; Tian, Yong; Niu, Dong; Ren, Jindong; Dong, Liyan; Sun, Siwei; Zhao, Yan; Chen, Li; Shen, Jianliang; Li, Xiuhong

    2016-01-01

    Fat character is an important index in duck culture that linked to local flavor, feed cost and fat intake for costumers. Since the regulation networks in duck lipid metabolism had not been reported very clearly, we aimed to explore the potential miRNA-mRNA pairs and their regulatory roles in duck lipid metabolism. Here, Cherry-Valley ducks were selected and treated with/without 5% oil added in feed for 2 weeks, and then fat content determination was performed on. The data showed that the fat contents and the fatty acid ratios of C17:1 and C18:2 were up-regulated in livers of oil-added ducks, while the C12:0 ratio was down-regulated. Then 21 differential miRNAs, including 10 novel miRNAs, were obtain from the livers by sequencing, and 73 target genes involved in lipid metabolic processes of these miRNAs were found, which constituted 316 miRNA-mRNA pairs. Two miRNA-mRNA pairs including one novel miRNA and one known miRNA, N-miR-16020-FASN and gga-miR-144-ELOVL6, were selected to validate the miRNA-mRNA negative relation. And the results showed that N-mir-16020 and gga-miR-144 could respectively bind the 3′-UTRs of FASN and ELOVL6 to control their expressions. This study provides new sights and useful information for future research on regulation network in duck lipid metabolism. PMID:27272010

  9. Tailoring tobacco hairy root metabolism for the production of stilbenes.

    PubMed

    Hidalgo, Diego; Georgiev, Milen; Marchev, Andrey; Bru-Martínez, Roque; Cusido, Rosa M; Corchete, Purificación; Palazon, Javier

    2017-12-21

    Tobacco hairy root (HR) cultures, which have been widely used for the heterologous production of target compounds, have an innate capacity to bioconvert exogenous t-resveratrol (t-R) into t-piceatannol (t-Pn) and t-pterostilbene (t-Pt). We established genetically engineered HR carrying the gene encoding stilbene synthase (STS) from Vitis vinifera and/or the transcription factor (TF) AtMYB12 from Arabidopsis thaliana, in order to generate a holistic response in the phenylpropanoid pathway and coordinate the up-regulation of multiple metabolic steps. Additionally, an artificial microRNA for chalcone synthase (amiRNA CHS) was utilized to arrest the normal flux through the endogenous chalcone synthase (CHS) enzyme, which would otherwise compete for precursors with the STS enzyme imported for the flux deviation. The transgenic HR were able to biosynthesize the target stilbenes, achieving a production of 40 μg L -1 of t-R, which was partially metabolized into t-Pn and t-Pt (up to 2.2 μg L -1 and 86.4 μg L -1 , respectively), as well as its glucoside piceid (up to 339.7 μg L -1 ). Major metabolic perturbations were caused by the TF AtMYB12, affecting both primary and secondary metabolism, which confirms the complexity of biotechnological systems based on seed plant in vitro cultures for the heterologous production of high-value molecules.

  10. Targeted proteome analysis of single-gene deletion strains of Saccharomyces cerevisiae lacking enzymes in the central carbon metabolism.

    PubMed

    Matsuda, Fumio; Kinoshita, Syohei; Nishino, Shunsuke; Tomita, Atsumi; Shimizu, Hiroshi

    2017-01-01

    Central carbon metabolism is controlled by modulating the protein abundance profiles of enzymes that maintain the essential systems in living organisms. In this study, metabolic adaptation mechanisms in the model organism Saccharomyces cerevisiae were investigated by direct determination of enzyme abundance levels in 30 wild type and mutant strains. We performed a targeted proteome analysis using S. cerevisiae strains that lack genes encoding the enzymes responsible for central carbon metabolism. Our analysis revealed that at least 30% of the observed variations in enzyme abundance levels could be explained by global regulatory mechanisms. A enzyme-enzyme co-abundance analysis revealed that the abundances of enzyme proteins involved in the trehalose metabolism and glycolysis changed in a coordinated manner under the control of the transcription factors for global regulation. The remaining variations were derived from local mechanisms such as a mutant-specific increase in the abundances of remote enzymes. The proteome data also suggested that, although the functional compensation of the deficient enzyme was attained by using more resources for protein biosynthesis, available resources for the biosynthesis of the enzymes responsible for central metabolism were not abundant in S. cerevisiae cells. These results showed that global and local regulation of enzyme abundance levels shape central carbon metabolism in S. cerevisiae by using a limited resource for protein biosynthesis.

  11. Simultaneous detection of multiple DNA targets by integrating dual-color graphene quantum dot nanoprobes and carbon nanotubes.

    PubMed

    Qian, Zhaosheng; Shan, Xiaoyue; Chai, Lujing; Chen, Jianrong; Feng, Hui

    2014-12-01

    Simultaneous detection of multiple DNA targets was achieved based on a biocompatible graphene quantum dots (GQDs) and carbon nanotubes (CNTs) platform through spontaneous assembly between dual-color GQD-based probes and CNTs and subsequently self-recognition between DNA probes and targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. EBF factors drive expression of multiple classes of target genes governing neuronal development.

    PubMed

    Green, Yangsook S; Vetter, Monica L

    2011-04-30

    Early B cell factor (EBF) family members are transcription factors known to have important roles in several aspects of vertebrate neurogenesis, including commitment, migration and differentiation. Knowledge of how EBF family members contribute to neurogenesis is limited by a lack of detailed understanding of genes that are transcriptionally regulated by these factors. We performed a microarray screen in Xenopus animal caps to search for targets of EBF transcriptional activity, and identified candidate targets with multiple roles, including transcription factors of several classes. We determined that, among the most upregulated candidate genes with expected neuronal functions, most require EBF activity for some or all of their expression, and most have overlapping expression with ebf genes. We also found that the candidate target genes that had the most strongly overlapping expression patterns with ebf genes were predicted to be direct transcriptional targets of EBF transcriptional activity. The identification of candidate targets that are transcription factor genes, including nscl-1, emx1 and aml1, improves our understanding of how EBF proteins participate in the hierarchy of transcription control during neuronal development, and suggests novel mechanisms by which EBF activity promotes migration and differentiation. Other candidate targets, including pcdh8 and kcnk5, expand our knowledge of the types of terminal differentiated neuronal functions that EBF proteins regulate.

  13. The evolution of organellar metabolism in unicellular eukaryotes.

    PubMed

    Ginger, Michael L; McFadden, Geoffrey I; Michels, Paul A M

    2010-03-12

    Metabolic innovation has facilitated the radiation of microbes into almost every niche environment on the Earth, and over geological time scales transformed the planet on which we live. A notable example of innovation is the evolution of oxygenic photosynthesis which was a prelude to the gradual transformation of an anoxic Earth into a world with oxygenated oceans and an oxygen-rich atmosphere capable of supporting complex multicellular organisms. The influence of microbial innovation on the Earth's history and the timing of pivotal events have been addressed in other recent themed editions of Philosophical Transactions of Royal Society B (Cavalier-Smith et al. 2006; Bendall et al. 2008). In this issue, our contributors provide a timely history of metabolic innovation and adaptation within unicellular eukaryotes. In eukaryotes, diverse metabolic portfolios are compartmentalized across multiple membrane-bounded compartments (or organelles). However, as a consequence of pathway retargeting, organelle degeneration or novel endosymbiotic associations, the metabolic repertoires of protists often differ extensively from classic textbook descriptions of intermediary metabolism. These differences are often important in the context of niche adaptation or the structure of microbial communities. Fundamentally interesting in its own right, the biochemical, cell biological and phylogenomic investigation of organellar metabolism also has wider relevance. For instance, in some pathogens, notably those causing some of the most significant tropical diseases, including malaria, unusual organellar metabolism provides important new drug targets. Moreover, the study of organellar metabolism in protists continues to provide critical insight into our understanding of eukaryotic evolution.

  14. Tracking and Recognition of Multiple Human Targets Moving in a Wireless Pyroelectric Infrared Sensor Network

    PubMed Central

    Xiong, Ji; Li, Fangmin; Zhao, Ning; Jiang, Na

    2014-01-01

    With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%. PMID:24759117

  15. Impact experiments into multiple-mesh targets: Concept development of a lightweight collisional bumper

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; Cintala, Mark J.; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William; Haynes, Gerald; See, Thomas H.; Winkler, Jerry; Gray, Barry

    1993-01-01

    The utility of multiple-mesh targets as potential lightweight shields to protect spacecraft in low-Earth orbit against collisional damage is explored. Earlier studies revealed that single meshes comminute hypervelocity impactors with efficiencies comparable to contiguous targets. Multiple interaction of projectile fragments with any number of meshes should lead to increased comminution, deceleration, and dispersion of the projectile, such that all debris exiting the mesh stack possesses low specific energies (ergs/sq cm) that would readily be tolerated by many flight systems. The study is conceptually exploring the sensitivity of major variables such as impact velocity, the specific areal mass (g/sq cm) of the total mesh stack (SM), and the separation distance (S) between individual meshes. Most experiments employed five or ten meshes with total SM typically less than 0.5 the specific mass of the impactor, and silicate glass impactors rather than metal projectiles. While projectile comminution increases with increasing impact velocity due to progressively higher shock stresses, encounters with multiple-meshes at low velocity (1-2 km/s) already lead to significant disruption of the glass impactors, with the resulting fragments being additionally decelerated and dispersed by subsequent meshes, and, unlike most contiguous single-plate bumpers, leading to respectable performance at low velocity. Total specific bumper mass must be the subject of careful trade-off studies; relatively massive bumpers will generate too much debris being dislodged from the bumper itself, while exceptionally lightweight designs will not cause sufficient comminution, deceleration, or dispersion of the impactor. Separation distance was found to be a crucial design parameter, as it controls the dispersion of the fragment cloud. Substantial mass savings could result if maximum separation distances were employed. The total mass of debris dislodged by multiple-mesh stacks is modestly smaller than

  16. Pharmacokinetics and metabolism of benzene in Zymbal gland and other key target tissues after oral administration in rats.

    PubMed Central

    Low, L K; Meeks, J R; Norris, K J; Mehlman, M A; Mackerer, C R

    1989-01-01

    Solid tumors have been reported in the Zymbal gland, oral and nasal cavities, and mammary gland of Sprague-Dawley rats following chronic oral administration of benzene. The cause for the specificity of such lesions remains unclear, but it is possible that tissue-specific metabolism or pharmacokinetics of benzene is responsible. Metabolism and pharmacokinetic studies were carried out in our laboratory with 14C-benzene at oral doses of 0.15 to 500 mg/kg to ascertain tissue retention, metabolite profile, and elimination kinetics in target and nontarget organs and in blood. Findings from those studies indicate the following: a) the Zymbal gland is not a sink or a site of accumulation for benzene or its metabolites even after a single high dose (500 mg/kg) or after repeated oral administration; b) the metabolite profile is quantitatively different in target tissues (e.g., Zymbal gland, nasal cavity), nontarget tissues and blood; and (c) pharmacokinetic studies show that the elimination of radioactivity from the Zymbal gland is biphasic. PMID:2792043

  17. Understanding alternative fluxes/effluxes through comparative metabolic pathway analysis of phylum actinobacteria using a simplified approach.

    PubMed

    Verma, Mansi; Lal, Devi; Saxena, Anjali; Anand, Shailly; Kaur, Jasvinder; Kaur, Jaspreet; Lal, Rup

    2013-12-01

    Actinobacteria are known for their diverse metabolism and physiology. Some are dreadful human pathogens whereas some constitute the natural flora for human gut. Therefore, the understanding of metabolic pathways is a key feature for targeting the pathogenic bacteria without disturbing the symbiotic ones. A big challenge faced today is multiple drug resistance by Mycobacterium and other pathogens that utilize alternative fluxes/effluxes. With the availability of genome sequence, it is now feasible to conduct the comparative in silico analysis. Here we present a simplified approach to compare metabolic pathways so that the species specific enzyme may be traced and engineered for future therapeutics. The analyses of four key carbohydrate metabolic pathways, i.e., glycolysis, pyruvate metabolism, tri carboxylic acid cycle and pentose phosphate pathway suggest the presence of alternative fluxes. It was found that the upper pathway of glycolysis was highly variable in the actinobacterial genomes whereas lower glycolytic pathway was highly conserved. Likewise, pentose phosphate pathway was well conserved in contradiction to TCA cycle, which was found to be incomplete in majority of actinobacteria. The clustering based on presence and absence of genes of these metabolic pathways clearly revealed that members of different genera shared identical pathways and, therefore, provided an easy method to identify the metabolic similarities/differences between pathogenic and symbiotic organisms. The analyses could identify isoenzymes and some key enzymes that were found to be missing in some pathogenic actinobacteria. The present work defines a simple approach to explore the effluxes in four metabolic pathways within the phylum actinobacteria. The analysis clearly reflects that actinobacteria exhibit diverse routes for metabolizing substrates. The pathway comparison can help in finding the enzymes that can be used as drug targets for pathogens without effecting symbiotic organisms

  18. Genomic Target Database (GTD): A database of potential targets in human pathogenic bacteria

    PubMed Central

    Barh, Debmalya; Kumar, Anil; Misra, Amarendra Narayana

    2009-01-01

    A Genomic Target Database (GTD) has been developed having putative genomic drug targets for human bacterial pathogens. The selected pathogens are either drug resistant or vaccines are yet to be developed against them. The drug targets have been identified using subtractive genomics approaches and these are subsequently classified into Drug targets in pathogen specific unique metabolic pathways,Drug targets in host-pathogen common metabolic pathways, andMembrane localized drug targets. HTML code is used to link each target to its various properties and other available public resources. Essential resources and tools for subtractive genomic analysis, sub-cellular localization, vaccine and drug designing are also mentioned. To the best of authors knowledge, no such database (DB) is presently available that has listed metabolic pathways and membrane specific genomic drug targets based on subtractive genomics. Listed targets in GTD are readily available resource in developing drug and vaccine against the respective pathogen, its subtypes, and other family members. Currently GTD contains 58 drug targets for four pathogens. Shortly, drug targets for six more pathogens will be listed. Availability GTD is available at IIOAB website http://www.iioab.webs.com/GTD.htm. It can also be accessed at http://www.iioabdgd.webs.com.GTD is free for academic research and non-commercial use only. Commercial use is strictly prohibited without prior permission from IIOAB. PMID:20011153

  19. A novel approach to transforming a non-targeted metabolic profiling method to a pseudo-targeted method using the retention time locking gas chromatography/mass spectrometry-selected ions monitoring.

    PubMed

    Li, Yong; Ruan, Qiang; Li, Yanli; Ye, Guozhu; Lu, Xin; Lin, Xiaohui; Xu, Guowang

    2012-09-14

    Non-targeted metabolic profiling is the most widely used method for metabolomics. In this paper, a novel approach was established to transform a non-targeted metabolic profiling method to a pseudo-targeted method using the retention time locking gas chromatography/mass spectrometry-selected ion monitoring (RTL-GC/MS-SIM). To achieve this transformation, an algorithm based on the automated mass spectral deconvolution and identification system (AMDIS), GC/MS raw data and a bi-Gaussian chromatographic peak model was developed. The established GC/MS-SIM method was compared with GC/MS-full scan (the total ion current and extracted ion current, TIC and EIC) methods, it was found that for a typical tobacco leaf extract, 93% components had their relative standard deviations (RSDs) of relative peak areas less than 20% by the SIM method, while 88% by the EIC method and 81% by the TIC method. 47.3% components had their linear correlation coefficient higher than 0.99, compared with 5.0% by the EIC and 6.2% by TIC methods. Multivariate analysis showed the pooled quality control samples clustered more tightly using the developed method than using GC/MS-full scan methods, indicating a better data quality. With the analysis of the variance of the tobacco samples from three different planting regions, 167 differential components (p<0.05) were screened out using the RTL-GC/MS-SIM method, but 151 and 131 by the EIC and TIC methods, respectively. The results show that the developed method not only has a higher sensitivity, better linearity and data quality, but also does not need complicated peak alignment among different samples. It is especially suitable for the screening of differential components in the metabolic profiling investigation. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodayari, Ali; Maranas, Costas D.

    Kinetic models of metabolism at a genome scale that faithfully recapitulate the effect of multiple genetic interventions would be transformative in our ability to reliably design novel overproducing microbial strains. Here, we introduce k-ecoli457, a genome-scale kinetic model of Escherichia coli metabolism that satisfies fluxomic data for wild-type and 25 mutant strains under different substrates and growth conditions. The k-ecoli457 model contains 457 model reactions, 337 metabolites and 295 substrate-level regulatory interactions. Parameterization is carried out using a genetic algorithm by simultaneously imposing all available fluxomic data (about 30 measured fluxes per mutant). Furthermore, the Pearson correlation coefficient between experimentalmore » data and predicted product yields for 320 engineered strains spanning 24 product metabolites is 0.84. This is substantially higher than that using flux balance analysis, minimization of metabolic adjustment or maximization of product yield exhibiting systematic errors with correlation coefficients of, respectively, 0.18, 0.37 and 0.47.« less

  1. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains

    DOE PAGES

    Khodayari, Ali; Maranas, Costas D.

    2016-12-20

    Kinetic models of metabolism at a genome scale that faithfully recapitulate the effect of multiple genetic interventions would be transformative in our ability to reliably design novel overproducing microbial strains. Here, we introduce k-ecoli457, a genome-scale kinetic model of Escherichia coli metabolism that satisfies fluxomic data for wild-type and 25 mutant strains under different substrates and growth conditions. The k-ecoli457 model contains 457 model reactions, 337 metabolites and 295 substrate-level regulatory interactions. Parameterization is carried out using a genetic algorithm by simultaneously imposing all available fluxomic data (about 30 measured fluxes per mutant). Furthermore, the Pearson correlation coefficient between experimentalmore » data and predicted product yields for 320 engineered strains spanning 24 product metabolites is 0.84. This is substantially higher than that using flux balance analysis, minimization of metabolic adjustment or maximization of product yield exhibiting systematic errors with correlation coefficients of, respectively, 0.18, 0.37 and 0.47.« less

  2. Optogenetic control of mitochondrial metabolism and Ca2+ signaling by mitochondria-targeted opsins.

    PubMed

    Tkatch, Tatiana; Greotti, Elisa; Baranauskas, Gytis; Pendin, Diana; Roy, Soumitra; Nita, Luliaoana I; Wettmarshausen, Jennifer; Prigge, Matthias; Yizhar, Ofer; Shirihai, Orian S; Fishman, Daniel; Hershfinkel, Michal; Fleidervish, Ilya A; Perocchi, Fabiana; Pozzan, Tullio; Sekler, Israel

    2017-06-27

    Key mitochondrial functions such as ATP production, Ca 2+ uptake and release, and substrate accumulation depend on the proton electrochemical gradient (ΔμH + ) across the inner membrane. Although several drugs can modulate ΔμH + , their effects are hardly reversible, and lack cellular specificity and spatial resolution. Although channelrhodopsins are widely used to modulate the plasma membrane potential of excitable cells, mitochondria have thus far eluded optogenetic control. Here we describe a toolkit of optometabolic constructs based on selective targeting of channelrhodopsins with distinct functional properties to the inner mitochondrial membrane of intact cells. We show that our strategy enables a light-dependent control of the mitochondrial membrane potential (Δψ m ) and coupled mitochondrial functions such as ATP synthesis by oxidative phosphorylation, Ca 2+ dynamics, and respiratory metabolism. By directly modulating Δψ m , the mitochondria-targeted opsins were used to control complex physiological processes such as spontaneous beats in cardiac myocytes and glucose-dependent ATP increase in pancreatic β-cells. Furthermore, our optometabolic tools allow modulation of mitochondrial functions in single cells and defined cell regions.

  3. Metabolic Reprogramming in Thyroid Carcinoma

    PubMed Central

    Coelho, Raquel Guimaraes; Fortunato, Rodrigo S.; Carvalho, Denise P.

    2018-01-01

    Among all the adaptations of cancer cells, their ability to change metabolism from the oxidative to the glycolytic phenotype is a hallmark called the Warburg effect. Studies on tumor metabolism show that improved glycolysis and glutaminolysis are necessary to maintain rapid cell proliferation, tumor progression, and resistance to cell death. Thyroid neoplasms are common endocrine tumors that are more prevalent in women and elderly individuals. The incidence of thyroid cancer has increased in the Past decades, and recent findings describing the metabolic profiles of thyroid tumors have emerged. Currently, several drugs are in development or clinical trials that target the altered metabolic pathways of tumors are undergoing. We present a review of the metabolic reprogramming in cancerous thyroid tissues with a focus on the factors that promote enhanced glycolysis and the possible identification of promising metabolic targets in thyroid cancer. PMID:29629339

  4. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    PubMed

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively. © 2014 Wiley Periodicals, Inc.

  5. Multiple-hypothesis multiple-model line tracking

    NASA Astrophysics Data System (ADS)

    Pace, Donald W.; Owen, Mark W.; Cox, Henry

    2000-07-01

    Passive sonar signal processing generally includes tracking of narrowband and/or broadband signature components observed on a Lofargram or on a Bearing-Time-Record (BTR) display. Fielded line tracking approaches to date have been recursive and single-hypthesis-oriented Kalman- or alpha-beta filters, with no mechanism for considering tracking alternatives beyond the most recent scan of measurements. While adaptivity is often built into the filter to handle changing track dynamics, these approaches are still extensions of single target tracking solutions to multiple target tracking environment. This paper describes an application of multiple-hypothesis, multiple target tracking technology to the sonar line tracking problem. A Multiple Hypothesis Line Tracker (MHLT) is developed which retains the recursive minimum-mean-square-error tracking behavior of a Kalman Filter in a maximum-a-posteriori delayed-decision multiple hypothesis context. Multiple line track filter states are developed and maintained using the interacting multiple model (IMM) state representation. Further, the data association and assignment problem is enhanced by considering line attribute information (line bandwidth and SNR) in addition to beam/bearing and frequency fit. MHLT results on real sonar data are presented to demonstrate the benefits of the multiple hypothesis approach. The utility of the system in cluttered environments and particularly in crossing line situations is shown.

  6. Targeted Next Generation Sequencing in Patients with Inborn Errors of Metabolism

    PubMed Central

    Yubero, Dèlia; Brandi, Núria; Ormazabal, Aida; Garcia-Cazorla, Àngels; Pérez-Dueñas, Belén; Campistol, Jaime; Ribes, Antonia; Palau, Francesc

    2016-01-01

    Background Next-generation sequencing (NGS) technology has allowed the promotion of genetic diagnosis and are becoming increasingly inexpensive and faster. To evaluate the utility of NGS in the clinical field, a targeted genetic panel approach was designed for the diagnosis of a set of inborn errors of metabolism (IEM). The final aim of the study was to compare the findings for the diagnostic yield of NGS in patients who presented with consistent clinical and biochemical suspicion of IEM with those obtained for patients who did not have specific biomarkers. Methods The subjects studied (n = 146) were classified into two categories: Group 1 (n = 81), which consisted of patients with clinical and biochemical suspicion of IEM, and Group 2 (n = 65), which consisted of IEM cases with clinical suspicion and unspecific biomarkers. A total of 171 genes were analyzed using a custom targeted panel of genes followed by Sanger validation. Results Genetic diagnosis was achieved in 50% of patients (73/146). In addition, the diagnostic yield obtained for Group 1 was 78% (63/81), and this rate decreased to 15.4% (10/65) in Group 2 (X2 = 76.171; p < 0.0001). Conclusions A rapid and effective genetic diagnosis was achieved in our cohort, particularly the group that had both clinical and biochemical indications for the diagnosis. PMID:27243974

  7. Development of Bariatric and Metabolic Endoscopy

    PubMed Central

    Li, Shi-Han; Wang, Yong-Jun; Zhang, Shu-Tian

    2018-01-01

    Objective: With the evolution of society and changes in human lifestyle, obesity is becoming increasingly prevalent worldwide, and obesity-related comorbidities such as diabetes, hyperlipidemia, hypertension, and coronary heart disease are more common. As a result, new devices and methods for bariatric and metabolic endoscopy are being developed for clinical use, offering new options for patients. This review discussed the progress in bariatric and metabolic endoscopy. Data Sources: This review was based on data in articles published in the PubMed database up to September 2017, with the following keywords: “obesity”, “endoscopy”, “weight loss”, and “metabolism”. Study Selection: Original articles about various endoscopic methods of weight loss and other reviews of bariatric and metabolic endoscopy were included and analyzed. Results: The technology of bariatric and metabolic endoscopy has advanced rapidly in recent years. The intragastric balloon (IGB), with its comparatively long period of development, is the most mature and widely used instrument. Multiple new endoscopic devices have been created in recent years, with different targets to achieve weight loss. Despite the proliferation of new devices, the lack of clinical data results in a shortage of clinical experience and instruction in the use of this new equipment. Conclusions: Bariatric and metabolic endoscopy would help obese people lose weight or prepare for bariatric surgery and hopefully alleviate some of the complications of bariatric procedures. Adequate studies and data are still needed for the new endoscopic devices. PMID:29271386

  8. Regulation of Ketone Body Metabolism and the Role of PPARα

    PubMed Central

    Grabacka, Maja; Pierzchalska, Malgorzata; Dean, Matthew; Reiss, Krzysztof

    2016-01-01

    Ketogenesis and ketolysis are central metabolic processes activated during the response to fasting. Ketogenesis is regulated in multiple stages, and a nuclear receptor peroxisome proliferator activated receptor α (PPARα) is one of the key transcription factors taking part in this regulation. PPARα is an important element in the metabolic network, where it participates in signaling driven by the main nutrient sensors, such as AMP-activated protein kinase (AMPK), PPARγ coactivator 1α (PGC-1α), and mammalian (mechanistic) target of rapamycin (mTOR) and induces hormonal mediators, such as fibroblast growth factor 21 (FGF21). This work describes the regulation of ketogenesis and ketolysis in normal and malignant cells and briefly summarizes the positive effects of ketone bodies in various neuropathologic conditions. PMID:27983603

  9. Targeted proteomics reveals strain-specific changes in the mouse insulin and central metabolic pathways after a sustained high-fat diet.

    PubMed

    Sabidó, Eduard; Wu, Yibo; Bautista, Lucia; Porstmann, Thomas; Chang, Ching-Yun; Vitek, Olga; Stoffel, Markus; Aebersold, Ruedi

    2013-07-16

    The metabolic syndrome is a collection of risk factors including obesity, insulin resistance and hepatic steatosis, which occur together and increase the risk of diseases such as diabetes, cardiovascular disease and cancer. In spite of intense research, the complex etiology of insulin resistance and its association with the accumulation of triacylglycerides in the liver and with hepatic steatosis remains not completely understood. Here, we performed quantitative measurements of 144 proteins involved in the insulin-signaling pathway and central metabolism in liver homogenates of two genetically well-defined mouse strains C57BL/6J and 129Sv that were subjected to a sustained high-fat diet. We used targeted mass spectrometry by selected reaction monitoring (SRM) to generate accurate and reproducible quantitation of the targeted proteins across 36 different samples (12 conditions and 3 biological replicates), generating one of the largest quantitative targeted proteomics data sets in mammalian tissues. Our results revealed rapid response to high-fat diet that diverged early in the feeding regimen, and evidenced a response to high-fat diet dominated by the activation of peroxisomal β-oxidation in C57BL/6J and by lipogenesis in 129Sv mice.

  10. Multiple metal exposures and their correlation with monoamine neurotransmitter metabolism in Chinese electroplating workers.

    PubMed

    Wu, Lin-Lin; Gong, Wei; Shen, Si-Peng; Wang, Zhong-He; Yao, Jia-Xi; Wang, Jun; Yu, Jing; Gao, Rong; Wu, Gang

    2017-09-01

    Excessive metal exposure has been recognized as one of the detrimental factors for brain damage. However, the potential adverse effects induced by heavy metals on monoamine neurotransmitter pathways remains poorly understood. Our study aimed to investigate the possible association between metal exposure and neurotransmitter metabolism. By a cross-sectional investigation, 224 electroplating workers and 213 non-electroplating exposure workers were recruited in the exposure and control groups. Metal exposure levels were analyzed using inductively-coupled plasma mass spectrometry and monoamine neurotransmitter pathway metabolites were measured by ultra-performance liquid chromatography tandem mass spectrometry in human urine samples. Multivariate linear regression model was used to assess the dose-response relationships of urinary metals and neurotransmitter pathway metabolites. Significant dose-dependent trends of urinary vanadium quartiles with all metabolites were observed, and the trends demonstrated significance after multiple testing correction. It also showed that urinary chromium levels were significantly associated with decreased serotonin level and cadmium was positively associated with norepinephrine and epinephrine. In addition, arsenic was positively associated with tryptophan, serotonin, dopamine and norepinephrine. Iron was positively associated with increased homovanillic acid (HVA) and epinephrine while nickel was negatively associated with increased epinephrine levels. Zinc was positively related to tryptophan, kynurenin (KYN), 5-hydroxyindole acetic acid (5-HIAA), dopamine, HVA and norepinephrine. There was no significant association between urinary copper with any other metabolites after adjusting of multiple metal models. Metal exposure may be associated with neurotransmitter metabolism disturbances. The present work is expected to provide some support in the prevention and management of metal-associated neurological diseases. Copyright © 2017

  11. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method

    PubMed Central

    Zhang, Yang; Chen, Fuming; Xue, Huijun; Li, Zhao; An, Qiang; Wang, Jianqi; Zhang, Yang

    2016-01-01

    Ultra-wideband (UWB) radar has been widely used for detecting human physiological signals (respiration, movement, etc.) in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc.), the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets. PMID:27801795

  12. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method.

    PubMed

    Zhang, Yang; Chen, Fuming; Xue, Huijun; Li, Zhao; An, Qiang; Wang, Jianqi; Zhang, Yang

    2016-10-27

    Ultra-wideband (UWB) radar has been widely used for detecting human physiological signals (respiration, movement, etc.) in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc.), the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets.

  13. Multi-Targeted Molecular Effects of Hibiscus sabdariffa Polyphenols: An Opportunity for a Global Approach to Obesity

    PubMed Central

    Herranz-López, María; Olivares-Vicente, Mariló; Barrajón-Catalán, Enrique; Segura-Carretero, Antonio; Joven, Jorge; Micol, Vicente

    2017-01-01

    Improper diet can alter gene expression by breaking the energy balance equation and changing metabolic and oxidative stress biomarkers, which can result in the development of obesity-related metabolic disorders. The pleiotropic effects of dietary plant polyphenols are capable of counteracting by modulating different key molecular targets at the cell, as well as through epigenetic modifications. Hibiscus sabdariffa (HS)-derived polyphenols are known to ameliorate various obesity-related conditions. Recent evidence leads to propose the complex nature of the underlying mechanism of action. This multi-targeted mechanism includes the regulation of energy metabolism, oxidative stress and inflammatory pathways, transcription factors, hormones and peptides, digestive enzymes, as well as epigenetic modifications. This article reviews the accumulated evidence on the multiple anti-obesity effects of HS polyphenols in cell and animal models, as well as in humans, and its putative molecular targets. In silico studies reveal the capacity of several HS polyphenols to act as putative ligands for different digestive and metabolic enzymes, which may also deserve further attention. Therefore, a global approach including integrated and networked omics techniques, virtual screening and epigenetic analysis is necessary to fully understand the molecular mechanisms of HS polyphenols and metabolites involved, as well as their possible implications in the design of safe and effective polyphenolic formulations for obesity. PMID:28825642

  14. Multi-Targeted Molecular Effects of Hibiscus sabdariffa Polyphenols: An Opportunity for a Global Approach to Obesity.

    PubMed

    Herranz-López, María; Olivares-Vicente, Mariló; Encinar, José Antonio; Barrajón-Catalán, Enrique; Segura-Carretero, Antonio; Joven, Jorge; Micol, Vicente

    2017-08-20

    Improper diet can alter gene expression by breaking the energy balance equation and changing metabolic and oxidative stress biomarkers, which can result in the development of obesity-related metabolic disorders. The pleiotropic effects of dietary plant polyphenols are capable of counteracting by modulating different key molecular targets at the cell, as well as through epigenetic modifications. Hibiscus sabdariffa (HS)-derived polyphenols are known to ameliorate various obesity-related conditions. Recent evidence leads to propose the complex nature of the underlying mechanism of action. This multi-targeted mechanism includes the regulation of energy metabolism, oxidative stress and inflammatory pathways, transcription factors, hormones and peptides, digestive enzymes, as well as epigenetic modifications. This article reviews the accumulated evidence on the multiple anti-obesity effects of HS polyphenols in cell and animal models, as well as in humans, and its putative molecular targets. In silico studies reveal the capacity of several HS polyphenols to act as putative ligands for different digestive and metabolic enzymes, which may also deserve further attention. Therefore, a global approach including integrated and networked omics techniques, virtual screening and epigenetic analysis is necessary to fully understand the molecular mechanisms of HS polyphenols and metabolites involved, as well as their possible implications in the design of safe and effective polyphenolic formulations for obesity.

  15. miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes.

    PubMed

    Luo, Chonglin; Tetteh, Paul W; Merz, Patrick R; Dickes, Elke; Abukiwan, Alia; Hotz-Wagenblatt, Agnes; Holland-Cunz, Stefan; Sinnberg, Tobias; Schittek, Birgit; Schadendorf, Dirk; Diederichs, Sven; Eichmüller, Stefan B

    2013-03-01

    MicroRNAs are small noncoding RNAs that regulate gene expression and have important roles in various types of cancer. Previously, miR-137 was reported to act as a tumor suppressor in different cancers, including malignant melanoma. In this study, we show that low miR-137 expression is correlated with poor survival in stage IV melanoma patients. We identified and validated two genes (c-Met and YB1) as direct targets of miR-137 and confirmed two previously known targets, namely enhancer of zeste homolog 2 (EZH2) and microphthalmia-associated transcription factor (MITF). Functional studies showed that miR-137 suppressed melanoma cell invasion through the downregulation of multiple target genes. The decreased invasion caused by miR-137 overexpression could be phenocopied by small interfering RNA knockdown of EZH2, c-Met, or Y box-binding protein 1 (YB1). Furthermore, miR-137 inhibited melanoma cell migration and proliferation. Finally, miR-137 induced apoptosis in melanoma cell lines and decreased BCL2 levels. In summary, our study confirms that miR-137 acts as a tumor suppressor in malignant melanoma and reveals that miR-137 regulates multiple targets including c-Met, YB1, EZH2, and MITF.

  16. Molecular Regulatory Pathways Link Sepsis With Metabolic Syndrome: Non-coding RNA Elements Underlying the Sepsis/Metabolic Cross-Talk.

    PubMed

    Meydan, Chanan; Bekenstein, Uriya; Soreq, Hermona

    2018-01-01

    Sepsis and metabolic syndrome (MetS) are both inflammation-related entities with high impact for human health and the consequences of concussions. Both represent imbalanced parasympathetic/cholinergic response to insulting triggers and variably uncontrolled inflammation that indicates shared upstream regulators, including short microRNAs (miRs) and long non-coding RNAs (lncRNAs). These may cross talk across multiple systems, leading to complex molecular and clinical outcomes. Notably, biomedical and RNA-sequencing based analyses both highlight new links between the acquired and inherited pathogenic, cardiac and inflammatory traits of sepsis/MetS. Those include the HOTAIR and MIAT lncRNAs and their targets, such as miR-122, -150, -155, -182, -197, -375, -608 and HLA-DRA. Implicating non-coding RNA regulators in sepsis and MetS may delineate novel high-value biomarkers and targets for intervention.

  17. Modulating PD-L1 expression in multiple myeloma: an alternative strategy to target the PD-1/PD-L1 pathway.

    PubMed

    Tremblay-LeMay, Rosemarie; Rastgoo, Nasrin; Chang, Hong

    2018-03-27

    Even with recent advances in therapy regimen, multiple myeloma patients commonly develop drug resistance and relapse. The relevance of targeting the PD-1/PD-L1 axis has been demonstrated in pre-clinical models. Monotherapy with PD-1 inhibitors produced disappointing results, but combinations with other drugs used in the treatment of multiple myeloma seemed promising, and clinical trials are ongoing. However, there have recently been concerns about the safety of PD-1 and PD-L1 inhibitors combined with immunomodulators in the treatment of multiple myeloma, and several trials have been suspended. There is therefore a need for alternative combinations of drugs or different approaches to target this pathway. Protein expression of PD-L1 on cancer cells, including in multiple myeloma, has been associated with intrinsic aggressive features independent of immune evasion mechanisms, thereby providing a rationale for the adoption of new strategies directly targeting PD-L1 protein expression. Drugs modulating the transcriptional and post-transcriptional regulation of PD-L1 could represent new therapeutic strategies for the treatment of multiple myeloma, help potentiate the action of other drugs or be combined to PD-1/PD-L1 inhibitors in order to avoid the potentially problematic combination with immunomodulators. This review will focus on the pathophysiology of PD-L1 expression in multiple myeloma and drugs that have been shown to modulate this expression.

  18. Quantitative comparison of tumor delivery for multiple targeted nanoparticles simultaneously by multiplex ICP-MS.

    PubMed

    Elias, Andrew; Crayton, Samuel H; Warden-Rothman, Robert; Tsourkas, Andrew

    2014-07-28

    Given the rapidly expanding library of disease biomarkers and targeting agents, the number of unique targeted nanoparticles is growing exponentially. The high variability and expense of animal testing often makes it unfeasible to examine this large number of nanoparticles in vivo. This often leads to the investigation of a single formulation that performed best in vitro. However, nanoparticle performance in vivo depends on many variables, many of which cannot be adequately assessed with cell-based assays. To address this issue, we developed a lanthanide-doped nanoparticle method that allows quantitative comparison of multiple targeted nanoparticles simultaneously. Specifically, superparamagnetic iron oxide (SPIO) nanoparticles with different targeting ligands were created, each with a unique lanthanide dopant. Following the simultaneous injection of the various SPIO compositions into tumor-bearing mice, inductively coupled plasma mass spectroscopy was used to quantitatively and orthogonally assess the concentration of each SPIO composition in serial blood and resected tumor samples.

  19. Quantitative Comparison of Tumor Delivery for Multiple Targeted Nanoparticles Simultaneously by Multiplex ICP-MS

    PubMed Central

    Elias, Andrew; Crayton, Samuel H.; Warden-Rothman, Robert; Tsourkas, Andrew

    2014-01-01

    Given the rapidly expanding library of disease biomarkers and targeting agents, the number of unique targeted nanoparticles is growing exponentially. The high variability and expense of animal testing often makes it unfeasible to examine this large number of nanoparticles in vivo. This often leads to the investigation of a single formulation that performed best in vitro. However, nanoparticle performance in vivo depends on many variables, many of which cannot be adequately assessed with cell-based assays. To address this issue, we developed a lanthanide-doped nanoparticle method that allows quantitative comparison of multiple targeted nanoparticles simultaneously. Specifically, superparamagnetic iron oxide (SPIO) nanoparticles with different targeting ligands were created, each with a unique lanthanide dopant. Following the simultaneous injection of the various SPIO compositions into tumor-bearing mice, inductively coupled plasma mass spectroscopy was used to quantitatively and orthogonally assess the concentration of each SPIO composition in serial blood and resected tumor samples. PMID:25068300

  20. Uninformative Prior Multiple Target Tracking Using Evidential Particle Filters

    NASA Astrophysics Data System (ADS)

    Worthy, J. L., III; Holzinger, M. J.

    Space situational awareness requires the ability to initialize state estimation from short measurements and the reliable association of observations to support the characterization of the space environment. The electro-optical systems used to observe space objects cannot fully characterize the state of an object given a short, unobservable sequence of measurements. Further, it is difficult to associate these short-arc measurements if many such measurements are generated through the observation of a cluster of satellites, debris from a satellite break-up, or from spurious detections of an object. An optimization based, probabilistic short-arc observation association approach coupled with a Dempster-Shafer based evidential particle filter in a multiple target tracking framework is developed and proposed to address these problems. The optimization based approach is shown in literature to be computationally efficient and can produce probabilities of association, state estimates, and covariances while accounting for systemic errors. Rigorous application of Dempster-Shafer theory is shown to be effective at enabling ignorance to be properly accounted for in estimation by augmenting probability with belief and plausibility. The proposed multiple hypothesis framework will use a non-exclusive hypothesis formulation of Dempster-Shafer theory to assign belief mass to candidate association pairs and generate tracks based on the belief to plausibility ratio. The proposed algorithm is demonstrated using simulated observations of a GEO satellite breakup scenario.

  1. Frnakenstein: multiple target inverse RNA folding.

    PubMed

    Lyngsø, Rune B; Anderson, James W J; Sizikova, Elena; Badugu, Amarendra; Hyland, Tomas; Hein, Jotun

    2012-10-09

    RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more difficult on larger structures when the target structures are

  2. Frnakenstein: multiple target inverse RNA folding

    PubMed Central

    2012-01-01

    Background RNA secondary structure prediction, or folding, is a classic problem in bioinformatics: given a sequence of nucleotides, the aim is to predict the base pairs formed in its three dimensional conformation. The inverse problem of designing a sequence folding into a particular target structure has only more recently received notable interest. With a growing appreciation and understanding of the functional and structural properties of RNA motifs, and a growing interest in utilising biomolecules in nano-scale designs, the interest in the inverse RNA folding problem is bound to increase. However, whereas the RNA folding problem from an algorithmic viewpoint has an elegant and efficient solution, the inverse RNA folding problem appears to be hard. Results In this paper we present a genetic algorithm approach to solve the inverse folding problem. The main aims of the development was to address the hitherto mostly ignored extension of solving the inverse folding problem, the multi-target inverse folding problem, while simultaneously designing a method with superior performance when measured on the quality of designed sequences. The genetic algorithm has been implemented as a Python program called Frnakenstein. It was benchmarked against four existing methods and several data sets totalling 769 real and predicted single structure targets, and on 292 two structure targets. It performed as well as or better at finding sequences which folded in silico into the target structure than all existing methods, without the heavy bias towards CG base pairs that was observed for all other top performing methods. On the two structure targets it also performed well, generating a perfect design for about 80% of the targets. Conclusions Our method illustrates that successful designs for the inverse RNA folding problem does not necessarily have to rely on heavy biases in base pair and unpaired base distributions. The design problem seems to become more difficult on larger structures

  3. Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models.

    PubMed

    Andreozzi, Stefano; Chakrabarti, Anirikh; Soh, Keng Cher; Burgard, Anthony; Yang, Tae Hoon; Van Dien, Stephen; Miskovic, Ljubisa; Hatzimanikatis, Vassily

    2016-05-01

    Rational metabolic engineering methods are increasingly employed in designing the commercially viable processes for the production of chemicals relevant to pharmaceutical, biotechnology, and food and beverage industries. With the growing availability of omics data and of methodologies capable to integrate the available data into models, mathematical modeling and computational analysis are becoming important in designing recombinant cellular organisms and optimizing cell performance with respect to desired criteria. In this contribution, we used the computational framework ORACLE (Optimization and Risk Analysis of Complex Living Entities) to analyze the physiology of recombinant Escherichia coli producing 1,4-butanediol (BDO) and to identify potential strategies for improved production of BDO. The framework allowed us to integrate data across multiple levels and to construct a population of large-scale kinetic models despite the lack of available information about kinetic properties of every enzyme in the metabolic pathways. We analyzed these models and we found that the enzymes that primarily control the fluxes leading to BDO production are part of central glycolysis, the lower branch of tricarboxylic acid (TCA) cycle and the novel BDO production route. Interestingly, among the enzymes between the glucose uptake and the BDO pathway, the enzymes belonging to the lower branch of TCA cycle have been identified as the most important for improving BDO production and yield. We also quantified the effects of changes of the target enzymes on other intracellular states like energy charge, cofactor levels, redox state, cellular growth, and byproduct formation. Independent earlier experiments on this strain confirmed that the computationally obtained conclusions are consistent with the experimentally tested designs, and the findings of the present studies can provide guidance for future work on strain improvement. Overall, these studies demonstrate the potential and

  4. Identification of specific metabolic pathways as druggable targets regulating the sensitivity to cyanide poisoning.

    PubMed

    Sips, Patrick Y; Shi, Xu; Musso, Gabriel; Nath, Anjali K; Zhao, Yanbin; Nielson, Jason; Morningstar, Jordan; Kelly, Amy E; Mikell, Brittney; Buys, Eva; Bebarta, Vikhyat; Rutter, Jared; Davisson, V Jo; Mahon, Sari; Brenner, Matthew; Boss, Gerry R; Peterson, Randall T; Gerszten, Robert E; MacRae, Calum A

    2018-01-01

    Cyanide is a potent toxic agent, and the few available antidotes are not amenable to rapid deployment in mass exposures. As a result, there are ongoing efforts to exploit different animal models to identify novel countermeasures. We have created a pipeline that combines high-throughput screening in zebrafish with subsequent validation in two mammalian small animal models as well as a porcine large animal model. We found that zebrafish embryos in the first 3 days post fertilization (dpf) are highly resistant to cyanide, becoming progressively more sensitive thereafter. Unbiased analysis of gene expression in response to several hours of ultimately lethal doses of cyanide in both 1 and 7 dpf zebrafish revealed modest changes in iron-related proteins associated with the age-dependent cyanide resistance. Metabolomics measurements demonstrated significant age-dependent differences in energy metabolism during cyanide exposure which prompted us to test modulators of the tricarboxylic acid cycle and related metabolic processes as potential antidotes. In cyanide-sensitive 7 dpf larvae, we identified several such compounds that offer significant protection against cyanide toxicity. Modulators of the pyruvate dehydrogenase complex, as well as the small molecule sodium glyoxylate, consistently protected against cyanide toxicity in 7 dpf zebrafish larvae. Together, our results indicate that the resistance of zebrafish embryos to cyanide toxicity during early development is related to an altered regulation of cellular metabolism, which we propose may be exploited as a potential target for the development of novel antidotes against cyanide poisoning.

  5. Metabolic pathways recruited in the production of a recombinant enveloped virus: mining targets for process and cell engineering.

    PubMed

    Rodrigues, A F; Formas-Oliveira, A S; Bandeira, V S; Alves, P M; Hu, W S; Coroadinha, A S

    2013-11-01

    Biopharmaceuticals derived from enveloped virus comprise an expanding market of vaccines, oncolytic vectors and gene therapy products. Thus, increased attention is given to the development of robust high-titer cell hosts for their manufacture. However, the knowledge on the physiological constraints modulating virus production is still scarce and the use of integrated strategies to improve hosts productivity and upstream bioprocess an under-explored territory. In this work, we conducted a functional genomics study, including the transcriptional profiling and central carbon metabolism analysis, following the metabolic changes in the transition 'parental-to-producer' of two human cell lines producing recombinant retrovirus. Results were gathered into three comprehensive metabolic maps, providing a broad and integrated overview of gene expression changes for both cell lines. Eight pathways were identified to be recruited in the virus production state: amino acid catabolism, carbohydrate catabolism and integration of the energy metabolism, nucleotide metabolism, glutathione metabolism, pentose phosphate pathway, polyamines biosynthesis and lipid metabolism. Their ability to modulate viral titers was experimentally challenged, leading to improved specific productivities of recombinant retrovirus up to 6-fold. Within recruited pathways in the virus production state, we sought for metabolic engineering gene targets in the low producing phenotypes. A mining strategy was used alternative to the traditional approach 'high vs. low producer' clonal comparison. Instead, 'high vs. low producer' from different genetic backgrounds (i.e. cell origins) were compared. Several genes were identified as limiting in the low-production phenotype, including two enzymes from cholesterol biosynthesis, two enzymes from glutathione biosynthesis and the regulatory machinery of polyamines biosynthesis. This is thus a frontier work, bridging fundamentals to technological research and contributing

  6. Relationship between physical activity, physical fitness and multiple metabolic risk in youths from Muzambinho's study.

    PubMed

    Barbosa, João Paulo Dos Anjos Souza; Basso, Luciano; Seabra, André; Prista, Antonio; Tani, Go; Maia, José António Ribeiro; Forjaz, Cláudia Lúcia De Moraes

    2016-08-01

    Negative associations between physical activity (PA), physical fitness and multiple metabolic risk factors (MMRF) in youths from populations with low PA are reported. The persistence of this association in moderately-to highly active populations is not, however, well established. The aim of the present study was to investigate this association in a Brazilian city with high frequency of active youths. We assessed 122 subjects (9.9 ± 1.3 years) from Muzambinho city. Body mass index, waist circumference, glycaemia, cholesterolaemia, systolic and diastolic blood pressures were measured. Maximal handgrip strength and one-mile walk/run test were used. Leisure time PA was assessed by interview. Poisson regression was used in the analysis. The model explained 11% of the total variance. Only relative muscular strength and one-mile walk/run were statistically significant (p < .05). Those who needed more time to cover the one-mile walk/run test had an increased in metabolic risk of 11%, and those with greater strength reduced the risk by about 82%. In conclusion, children and youths from an active population who need less time to cover the one-mile walk/run test or who had greater muscular strength showed a reduced metabolic risk. These results suggest that even in children and youths with high leisure time PA, a greater aerobic fitness and strength might help to further reduce their MMRF.

  7. Targeting the Binding Interface on a Shared Receptor Subunit of a Cytokine Family Enables the Inhibition of Multiple Member Cytokines with Selectable Target Spectrum*

    PubMed Central

    Nata, Toshie; Basheer, Asjad; Cocchi, Fiorenza; van Besien, Richard; Massoud, Raya; Jacobson, Steven; Azimi, Nazli; Tagaya, Yutaka

    2015-01-01

    The common γ molecule (γc) is a shared signaling receptor subunit used by six γc-cytokines. These cytokines play crucial roles in the differentiation of the mature immune system and are involved in many human diseases. Moreover, recent studies suggest that multiple γc-cytokines are pathogenically involved in a single disease, thus making the shared γc-molecule a logical target for therapeutic intervention. However, the current therapeutic strategies seem to lack options to treat such cases, partly because of the lack of appropriate neutralizing antibodies recognizing the γc and, more importantly, because of the inherent and practical limitations in the use of monoclonal antibodies. By targeting the binding interface of the γc and cytokines, we successfully designed peptides that not only inhibit multiple γc-cytokines but with a selectable target spectrum. Notably, the lead peptide inhibited three γc-cytokines without affecting the other three or non-γc-cytokines. Biological and mutational analyses of our peptide provide new insights to our current understanding on the structural aspect of the binding of γc-cytokines the γc-molecule. Furthermore, we provide evidence that our peptide, when conjugated to polyethylene glycol to gain stability in vivo, efficiently blocks the action of one of the target cytokines in animal models. Collectively, our technology can be expanded to target various combinations of γc-cytokines and thereby will provide a novel strategy to the current anti-cytokine therapies against immune, inflammatory, and malignant diseases. PMID:26183780

  8. The increased level of COX-dependent arachidonic acid metabolism in blood platelets from secondary progressive multiple sclerosis patients.

    PubMed

    Morel, Agnieszka; Miller, Elzbieta; Bijak, Michal; Saluk, Joanna

    2016-09-01

    Platelet activation is increasingly postulated as a possible component of the pathogenesis of multiple sclerosis (MS), especially due to the increased risk of cardiovascular events in MS. Arachidonic acid cascade metabolized by cyclooxygenase (COX) is a key pathway of platelet activation. The aim of our study was to investigate the COX-dependent arachidonic acid metabolic pathway in blood platelets from secondary progressive multiple sclerosis (SP MS) patients. The blood samples were obtained from 50 patients (man n = 22; female n = 28), suffering from SP MS, diagnosed according to the revised McDonald criteria. Platelet aggregation was measured in platelet-rich plasma after arachidonic acid stimulation. The level of COX activity and thromboxane B2 concentration were determined by ELISA method. Lipid peroxidation was assessed by measuring the level of malondialdehyde. The results were compared with a control group of healthy volunteers. We found that blood platelets obtained from SP MS patients were more sensitive to arachidonic acid and their response measured as platelet aggregation was stronger (about 14 %) relative to control. We also observed a significantly increased activity of COX (about 40 %) and synthesis of thromboxane B2 (about 113 %). The generation of malondialdehyde as a marker of lipid peroxidation was about 10 % higher in SP MS than in control. Cyclooxygenase-dependent arachidonic acid metabolism is significantly increased in blood platelets of patients with SP MS. Future clinical studies are required to recommend the use of low-dose aspirin, and possibly other COX inhibitors in the prevention of cardiovascular risk in MS.

  9. Quercetin interferes with iron metabolism in Leishmania donovani and targets ribonucleotide reductase to exert leishmanicidal activity.

    PubMed

    Sen, Gargi; Mukhopadhyay, Sibabrata; Ray, Manju; Biswas, Tuli

    2008-05-01

    The possibility of developing antileishmanial drugs was evaluated by intervention in the parasite's iron metabolism, utilizing quercetin (Qr) under in vivo conditions, and identifying the target of this lipophilic metal chelator against Leishmania donovani. Interaction between Qr and serum albumin (SA) was studied by using the intrinsic fluorescence of Qr as a probe. The effect of treatment with Qr and SA on the proliferation of amastigotes was determined by evaluating splenic parasite load. Disintegration of parasites in response to combination treatment was assessed from ultrastructural analysis using a transmission electron microscope. Quenching of the tyrosyl radical of ribonucleotide reductase (RR) in treated amastigotes was detected by an electron paramagnetic resonance study. Treatment with a combination of Qr and SA increased bioavailability of the flavonoid and proved to be of major advantage in promoting the effectiveness of Qr towards the repression of splenic parasite load from 75%, P < 0.01 to 95%, P < 0.002. Qr-mediated down-regulation of RR (P < 0.05), catalysing the rate-limiting step of DNA synthesis in the pathogens, could be related to the deprivation of the enzyme of iron which in turn destabilized the critical tyrosyl radical required for its catalysing activity. Results have implications for improved leishmanicidal action of Qr in combination with SA targeting RR and suggest future drug design based on interference with the parasite's iron metabolism under in vivo conditions.

  10. Targeted brain proteomics uncover multiple pathways to Alzheimer's dementia.

    PubMed

    Yu, Lei; Petyuk, Vladislav A; Gaiteri, Chris; Mostafavi, Sara; Young-Pearse, Tracy; Shah, Raj C; Buchman, Aron S; Schneider, Julie A; Piehowski, Paul D; Sontag, Ryan L; Fillmore, Thomas L; Shi, Tujin; Smith, Richard D; De Jager, Philip L; Bennett, David A

    2018-06-16

    Previous gene expression analysis identified a network of co-expressed genes that is associated with β-amyloid neuropathology and cognitive decline in older adults. The current work targeted influential genes in this network with quantitative proteomics to identify potential novel therapeutic targets. Data came from 834 community-based older persons who were followed annually, died and underwent brain autopsy. Uniform structured postmortem evaluations assessed the burden of β-amyloid and other common age-related neuropathologies. Selected reaction monitoring quantified cortical protein abundance of 12 genes prioritized from a molecular network of aging human brain that is implicated in Alzheimer's dementia. Regression and linear mixed models examined the protein associations with β-amyloid load and other neuropathologic indices as well as cognitive decline over multiple years prior to death. The average age at death was 88.6 years. 349 participants (41.9%) had Alzheimer's dementia at death. A higher level of PLXNB1 abundance was associated with more β-amyloid load (p=1.0 × 10 -7 ) and higher PHFtau tangle density (p=2.3 × 10 -7 ), and the association of PLXNB1 with cognitive decline is mediated by these known Alzheimer's disease pathologies. On the other hand, higher IGFBP5, HSPB2, AK4 and lower ITPK1 levels were associated with faster cognitive decline and, unlike PLXNB1, these associations were not fully explained by common neuropathologic indices, suggesting novel mechanisms leading to cognitive decline. Using targeted proteomics, this work identified cortical proteins involved in Alzheimer's dementia and begins to dissect two different molecular pathways: one affecting β-amyloid deposition and another affecting resilience without a known pathologic footprint. This article is protected by copyright. All rights reserved. © 2018 American Neurological Association.

  11. The evolution of organellar metabolism in unicellular eukaryotes

    PubMed Central

    Ginger, Michael L.; McFadden, Geoffrey I.; Michels, Paul A. M.

    2010-01-01

    Metabolic innovation has facilitated the radiation of microbes into almost every niche environment on the Earth, and over geological time scales transformed the planet on which we live. A notable example of innovation is the evolution of oxygenic photosynthesis which was a prelude to the gradual transformation of an anoxic Earth into a world with oxygenated oceans and an oxygen-rich atmosphere capable of supporting complex multicellular organisms. The influence of microbial innovation on the Earth's history and the timing of pivotal events have been addressed in other recent themed editions of Philosophical Transactions of Royal Society B (Cavalier-Smith et al. 2006; Bendall et al. 2008). In this issue, our contributors provide a timely history of metabolic innovation and adaptation within unicellular eukaryotes. In eukaryotes, diverse metabolic portfolios are compartmentalized across multiple membrane-bounded compartments (or organelles). However, as a consequence of pathway retargeting, organelle degeneration or novel endosymbiotic associations, the metabolic repertoires of protists often differ extensively from classic textbook descriptions of intermediary metabolism. These differences are often important in the context of niche adaptation or the structure of microbial communities. Fundamentally interesting in its own right, the biochemical, cell biological and phylogenomic investigation of organellar metabolism also has wider relevance. For instance, in some pathogens, notably those causing some of the most significant tropical diseases, including malaria, unusual organellar metabolism provides important new drug targets. Moreover, the study of organellar metabolism in protists continues to provide critical insight into our understanding of eukaryotic evolution. PMID:20124338

  12. Targeting of astrocytic glucose metabolism by beta-hydroxybutyrate.

    PubMed

    Valdebenito, Rocío; Ruminot, Iván; Garrido-Gerter, Pamela; Fernández-Moncada, Ignacio; Forero-Quintero, Linda; Alegría, Karin; Becker, Holger M; Deitmer, Joachim W; Barros, L Felipe

    2016-10-01

    The effectiveness of ketogenic diets and intermittent fasting against neurological disorders has brought interest to the effects of ketone bodies on brain cells. These compounds are known to modify the metabolism of neurons, but little is known about their effect on astrocytes, cells that control the supply of glucose to neurons and also modulate neuronal excitability through the glycolytic production of lactate. Here we have used genetically-encoded Förster Resonance Energy Transfer nanosensors for glucose, pyruvate and ATP to characterize astrocytic energy metabolism at cellular resolution. Our results show that the ketone body beta-hydroxybutyrate strongly inhibited astrocytic glucose consumption in mouse astrocytes in mixed cultures, in organotypic hippocampal slices and in acute hippocampal slices prepared from ketotic mice, while blunting the stimulation of glycolysis by physiological and pathophysiological stimuli. The inhibition of glycolysis was paralleled by an increased ability of astrocytic mitochondria to metabolize pyruvate. These results support the emerging notion that astrocytes contribute to the neuroprotective effect of ketone bodies. © The Author(s) 2015.

  13. Electronic nose for detecting multiple targets

    NASA Astrophysics Data System (ADS)

    Chakraborty, Anirban; Parthasarathi, Ganga; Poddar, Rakesh; Zhao, Weiqiang; Luo, Cheng

    2006-05-01

    The discovery of high conductivity in doped polyacetylene in 1977 (garnering the 2000 Nobel Prize in Chemistry for the three discovering scientists) has attracted considerable interest in the application of polymers as the semiconducting and conducting materials due to their promising potential to replace silicon and metals in building devices. Previous and current efforts in developing conducting polymer microsystems mainly focus on generating a device of a single function. When multiple micropatterns made of different conducting polymers are produced on the same substrate, many microsystems of multiple functions can be envisioned. For example, analogous to the mammalian olfactory system which includes over 1,000 receptor genes in detecting various odors (e.g., beer, soda etc.), a sensor consisting of multiple distinct conducting polymer sensing elements will be capable of detecting a number of analytes simultaneously. However, existing techniques present significant technical challenges of degradation, low throughput, low resolution, depth of field, and/or residual layer in producing conducting polymer microstructures. To circumvent these challenges, an intermediate-layer lithography method developed in our group is used to generate multiple micropatterns made of different, commonly used conducting polymers, Polypyrrole (PPy), Poly(3,4-ethylenedioxy)thiophene (PEDOT) and Polyaniline (PANI). The generated multiple micropatterns are further used in an "electronic nose" to detect water vapor, glucose, toluene and acetone.

  14. Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways

    PubMed Central

    Allman, Erik L.; Painter, Heather J.; Samra, Jasmeet; Carrasquilla, Manuela

    2016-01-01

    The threat of widespread drug resistance to frontline antimalarials has renewed the urgency for identifying inexpensive chemotherapeutic compounds that are effective against Plasmodium falciparum, the parasite species responsible for the greatest number of malaria-related deaths worldwide. To aid in the fight against malaria, a recent extensive screening campaign has generated thousands of lead compounds with low micromolar activity against blood stage parasites. A subset of these leads has been compiled by the Medicines for Malaria Venture (MMV) into a collection of structurally diverse compounds known as the MMV Malaria Box. Currently, little is known regarding the activity of these Malaria Box compounds on parasite metabolism during intraerythrocytic development, and a majority of the targets for these drugs have yet to be defined. Here we interrogated the in vitro metabolic effects of 189 drugs (including 169 of the drug-like compounds from the Malaria Box) using ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS). The resulting metabolic fingerprints provide information on the parasite biochemical pathways affected by pharmacologic intervention and offer a critical blueprint for selecting and advancing lead compounds as next-generation antimalarial drugs. Our results reveal several major classes of metabolic disruption, which allow us to predict the mode of action (MoA) for many of the Malaria Box compounds. We anticipate that future combination therapies will be greatly informed by these results, allowing for the selection of appropriate drug combinations that simultaneously target multiple metabolic pathways, with the aim of eliminating malaria and forestalling the expansion of drug-resistant parasites in the field. PMID:27572391

  15. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets.

    PubMed

    Levering, Jennifer; Fiedler, Tomas; Sieg, Antje; van Grinsven, Koen W A; Hering, Silvio; Veith, Nadine; Olivier, Brett G; Klett, Lara; Hugenholtz, Jeroen; Teusink, Bas; Kreikemeyer, Bernd; Kummer, Ursula

    2016-08-20

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes M49. Initially, we based the reconstruction on genome annotations and already existing and curated metabolic networks of Bacillus subtilis, Escherichia coli, Lactobacillus plantarum and Lactococcus lactis. This initial draft was manually curated with the final reconstruction accounting for 480 genes associated with 576 reactions and 558 metabolites. In order to constrain the model further, we performed growth experiments of wild type and arcA deletion strains of S. pyogenes M49 in a chemically defined medium and calculated nutrient uptake and production fluxes. We additionally performed amino acid auxotrophy experiments to test the consistency of the model. The established genome-scale model can be used to understand the growth requirements of the human pathogen S. pyogenes and define optimal and suboptimal conditions, but also to describe differences and similarities between S. pyogenes and related lactic acid bacteria such as L. lactis in order to find strategies to reduce the growth of the pathogen and propose drug targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Metabolic Imaging of Pancreatic Ductal Adenocarcinoma Detects Altered Choline Metabolism

    PubMed Central

    Penet, Marie-France; Shah, Tariq; Bharti, Santosh; Krishnamachary, Balaji; Artemov, Dmitri; Mironchik, Yelena; Wildes, Flonné; Maitra, Anirban; Bhujwalla, Zaver M.

    2014-01-01

    Purpose Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal disease that develops relatively symptom-free and is therefore advanced at the time of diagnosis. The absence of early symptoms and effective treatments has created a critical need for identifying and developing new noninvasive biomarkers and therapeutic targets. Experimental Design We investigated the metabolism of a panel of PDAC cell lines in culture and noninvasively in vivo with 1H magnetic resonance spectroscopic imaging (MRSI) to identify noninvasive biomarkers and uncover potential metabolic targets. Results We observed elevated choline-containing compounds in the PDAC cell lines and tumors. These elevated choline-containing compounds were easily detected by increased total choline (tCho) in vivo, in spectroscopic images obtained from tumors. Principal component analysis of the spectral data identified additional differences in metabolites between HPNE and neoplastic PDAC cells. Molecular characterization revealed overexpression of choline kinase (Chk)-α, choline transporter 1 (CHT1), and choline transporter-like protein 1 (CTL1) in the PDAC cell lines and tumors. Conclusions Collectively, these data identify new metabolic characteristics of PDAC and reveal potential metabolic targets. Total choline detected with 1H MRSI may provide an intrinsic, imaging-probe independent biomarker to complement existing techniques in detecting PDAC. The expression of Chk-α, CHT1, and CTL1 may provide additional molecular markers in aspirated cytological samples. PMID:25370468

  17. Aliskiren targets multiple systems to alleviate cancer cachexia.

    PubMed

    Wang, Chaoyi; Guo, Dunwei; Wang, Qiang; You, Song; Qiao, Zhongpeng; Liu, Yong; Dai, Hang; Tang, Hua

    2016-11-01

    To examine the effects of aliskiren, a small-molecule renin inhibitor, on cancer cachexia and to explore the underlying mechanisms. A cancer cachexia model was established by subcutaneously injecting C26 mouse colon carcinoma cells into isogenic BALB/c mice. Aliskiren was administered intragastrically [10 mg/kg body weight (BW)] on day 5 (as a preventive strategy, AP group) or on day 12 (as a therapeutic strategy, AT group) after C26 injection. Mice that received no C26 injection (healthy controls, HC group) or only C26 injection but not aliskiren (cancer, CA group) were used as controls. BW, tumor growth, whole body functions, and survival were monitored daily in half of the mice in each group, whereas serum, tumors, and gastrocnemius muscles were harvested from the other mice after sacrifice on day 20 for further analysis. Aliskiren significantly alleviated multiple cachexia‑associated symptoms, including BW loss, tumor burden, muscle wasting, muscular dysfunction, and shortened survival. On the molecular level, aliskiren antagonized cachexia‑induced activation of the renin‑angiotensin system (RAS), systematic and muscular inflammation, oxidative stress, and autophagy‑lysosome as well as ubiquitin‑proteasome stimulation. In addition, early administration of aliskiren before cachexia development (AP group) resulted in more robust effects in alleviating cachexia or targeting underlying mechanisms than administration after cachexia development (AT group). Aliskiren exhibited potent anti‑cachexia activities. These activities were achieved through the targeting of at least four mechanisms underlying cachexia development: RAS activation, increase in systematic inflammation, upregulation of oxidative stress, and stimulation of autophagy-lysosome pathway (ALP) and ubiquitin-proteasome pathway (UPP).

  18. Phenothiazinium based photosensitisers--photodynamic agents with a multiplicity of cellular targets and clinical applications.

    PubMed

    Harris, F; Chatfield, L K; Phoenix, D A

    2005-08-01

    PhBPs show selectivity for tumour and microbial cells, which appears to be based on electrostatic interactions between the positive charge generally carried by these molecules and the negative charge found on the outer surface of these target cells. In some cases, a site of action for photoactivated PhBPs is the outer membrane/envelope of the target cell. Such action can involve the modification of membrane lipid and/or lipopolysaccharide, and the inactivation of essential proteins and enzymes, with these effects usually leading to cell lysis and death. However, more often, PhBPs are internalised by target cells, promoted by a variety of factors, including low pH and enzymatic reduction, and upon photoactivation, internalised, PhBPs are able to inflict damage on a number of intracellular targets. In tumour cells, PhBPs can photodamage DNA and the membranes of organelles, thereby inducing necrosis and/or apoptosis. In bacterial cells, whilst DNA is generally a primary target of PhBPs, these compounds can exhibit multiple sites of action within a given cell and show different sites of action between different bacterial species. This variable targeting makes PhBPs attractive propositions as alternatives to conventional antibiotics in that the emergence of bacterial strains with acquired resistance to these compounds appears to be highly unlikely.

  19. Epigenetic silencing of microRNA-137 enhances ASCT2 expression and tumor glutamine metabolism

    PubMed Central

    Dong, J; Xiao, D; Zhao, Z; Ren, P; Li, C; Hu, Y; Shi, J; Su, H; Wang, L; Liu, H; Li, B; Gao, P; Qing, G

    2017-01-01

    Tumor cells must activate specific transporters to meet their increased glutamine metabolic demands. Relative to other glutamine transporters, the ASC family transporter 2 (ASCT2, also called SLC1A5) is profoundly elevated in a wide spectrum of human cancers to coordinate metabolic reprogramming and malignant transformation. Understanding the molecular mechanisms whereby tumor cells frequently upregulate this transporter is therefore vital to develop potential strategies for transporter-targeted therapies. Combining in-silico algorithms with systemic experimental screening, we herein identify the tumor suppressor microRNA, miR-137, as an essential regulator that targets ASCT2 and cancer cell glutamine metabolism. Metabolic analysis shows that miR-137 derepression, similar to ASCT2 inactivation, significantly inhibits glutamine consumption and TCA cycle anaplerosis. Mechanistically, methyl-CpG-binding protein 2 (MeCP2) and DNA methyltransferases (DNMTs) cooperate to promote active methylation of the miR-137 promoter and inhibit its transcription, conversely reactivating ASCT2 expression and glutamine metabolism. Moreover, expression between miR-137 and ASCT2 is inversely correlated in tumor specimens from multiple cancer types, and ectopic ASCT2 expression markedly rescued miR-137 suppression of tumorigenesis. These findings thus elucidate a previously unreported mechanism responsible for ASCT2 deregulation in human cancers and identify ASCT2 as a critical downstream effector of miR-137, revealing a molecular link between DNA methylation, microRNA and tumor metabolism. PMID:28692032

  20. Multiple Genetic Modifiers of Bilirubin Metabolism Involvement in Significant Neonatal Hyperbilirubinemia in Patients of Chinese Descent.

    PubMed

    Yang, Hui; Wang, Qian; Zheng, Lei; Lin, Min; Zheng, Xiang-bin; Lin, Fen; Yang, Li-Ye

    2015-01-01

    The potential for genetic variation to modulate neonatal hyperbilirubinemia risk is increasingly being recognized. A case-control study was designed to assess comprehensive contributions of the multiple genetic modifiers of bilirubin metabolism on significant neonatal hyperbilirubinemia in Chinese descendents. Eleven common mutations and polymorphisms across five bilirubin metabolism genes, namely those encoding UGT1A1, HMOX1, BLVRA, SLCO1B1 and SLCO1B3, were determined using the high resolution melt (HRM) assay or PCR-capillary electrophoresis analysis. A total of 129 hyperbilirubinemic infants and 108 control subjects were evaluated. Breastfeeding and the presence of the minor A allele of rs4148323 (UGTA*6) were correlated with an increased risk of hyperbilirubinemia (OR=2.17, P=0.02 for breastfeeding; OR=9.776, P=0.000 for UGTA*6 homozygote; OR=3.151, P=0.000 for UGTA*6 heterozygote); whereas, increasing gestational age and the presence of -TA7 repeat variant of UGT1A1 decreased the risk (OR=0.721, P=0.003 for gestational age; OR=0.313, P=0.002 for heterozygote TA6/TA7). In addition, the SLCO1B1 and SLCO1B3 polymorphisms also contributed to an increased risk of hyperbilirubinemia. This detailed analysis revealed the impact of multiple genetic modifiers on neonatal hyperbilirubinemia. This may support the use of genetic tests for clinical risk assessment. Furthermore, the established HRM assay can serve as an effective method for large-scale investigation.

  1. Characteristics of compound multiplicity in 84Kr36 with various light and heavy targets at 1 GeV per nucleon

    NASA Astrophysics Data System (ADS)

    Chouhan, N. S.; Singh, M. K.; Singh, V.; Pathak, R.

    2013-12-01

    Interactions of 84Kr36 having kinetic energy around 1 GeV per nucleon with NIKFI BR-2 nuclear emulsion detector's target reveal some of the important features of compound multiplicity. Present article shows that width of compound multiplicity distributions and value of mean compound multiplicity have linear relationship with mass number of the projectile colliding system.

  2. Acetyl-CoA carboxylase-a as a novel target for cancer therapy.

    PubMed

    Wang, Chun; Rajput, Sandeep; Watabe, Kounosuke; Liao, Duan-Fang; Cao, Deliang

    2010-01-01

    Acetyl-CoA carboxylases (ACC) are rate-limiting enzymes in de novo fatty acid synthesis, catalyzing ATP-dependent carboxylation of acetyl-CoA to form malonyl-CoA. Malonyl-CoA is a critical bi-functional molecule, i.e., a substrate of fatty acid synthase (FAS) for acyl chain elongation (fatty acid synthesis) and an inhibitor of carnitine palmitoyltransferase I (CPT-I) for fatty acid beta-oxidation. Two ACC isoforms have been identified in mammals, i.e. ACC-alpha (ACCA, also termed ACC1) and ACC-beta (ACCB, also designated ACC2). ACC has long been used as a target for the management of metabolic diseases, such as obesity and metabolic syndrome, and various inhibitors have been developed in clinical trials. Recently, ACCA up-regulation has been recognized in multiple human cancers, promoting lipogenesis to meet the need of cancer cells for rapid growth and proliferation. Therefore, ACCA might be effective as a potent target for cancer intervention, and the inhibitors developed for the treatment of metabolic diseases would be potential therapeutic agents for cancer therapy. This review summarizes our recent findings and updates the current understanding of the ACCA with focus on cancer research.

  3. Multiplexed, quantitative, and targeted metabolite profiling by LC-MS/MRM.

    PubMed

    Wei, Ru; Li, Guodong; Seymour, Albert B

    2014-01-01

    Targeted metabolomics, which focuses on a subset of known metabolites representative of biologically relevant metabolic pathways, is a valuable tool to discover biomarkers and link disease phenotypes to underlying mechanisms or therapeutic modes of action. A key advantage of targeted metabolomics, compared to discovery metabolomics, is its immediate readiness for extracting biological information derived from known metabolites and quantitative measurements. However, simultaneously analyzing hundreds of endogenous metabolites presents a challenge due to their diverse chemical structures and properties. Here we report a method which combines different chromatographic separation conditions, optimal ionization polarities, and the most sensitive triple-quadrupole MS-based data acquisition mode, multiple reaction monitoring (MRM), to quantitatively profile 205 endogenous metabolites in 10 min.

  4. Blister-inducing antibodies target multiple epitopes on collagen VII in mice

    PubMed Central

    Csorba, Kinga; Chiriac, Mircea Teodor; Florea, Florina; Ghinia, Miruna Georgiana; Licarete, Emilia; Rados, Andreea; Sas, Alexandra; Vuta, Vlad; Sitaru, Cassian

    2014-01-01

    Epidermolysis bullosa acquisita (EBA) is an autoimmune subepidermal blistering disease of mucous membranes and the skin caused by autoantibodies against collagen VII. In silico and wet laboratory epitope mapping studies revealed numerous distinct epitopes recognized by EBA patients' autoantibodies within the non-collagenous (NC)1 and NC2 domains of collagen VII. However, the distribution of pathogenic epitopes on collagen VII has not yet been described. In this study, we therefore performed an in vivo functional epitope mapping of pathogenic autoantibodies in experimental EBA. Animals (n = 10/group) immunized against fragments of the NC1 and NC2 domains of collagen VII or injected with antibodies generated against the same fragments developed to different extent experimental EBA. Our results demonstrate that antibodies targeting multiple, distinct epitopes distributed over the entire NC1, but not NC2 domain of collagen VII induce blistering skin disease in vivo. Our present findings have crucial implications for the development of antigen-specific B- and T cell-targeted therapies in EBA. PMID:25091020

  5. Nature's inordinate fondness for metabolic enzymes: why metabolic enzyme loci are so frequently targets of selection.

    PubMed

    Marden, James H

    2013-12-01

    Metabolic enzyme loci were some of the first genes accessible for molecular evolution and ecology research. New technologies now make the whole genome, transcriptome or proteome readily accessible, allowing unbiased scans for loci exhibiting significant differences in allele frequency or expression level and associated with phenotypes and/or responses to natural selection. With surprising frequency and in many cases in proportions greater than chance relative to other genes, glycolysis and TCA cycle enzyme loci appear among the genes with significant associations in these studies. Hence, there is an ongoing need to understand the basis for fitness effects of metabolic enzyme polymorphisms. Allele-specific effects on the binding affinity and catalytic rate of individual enzymes are well known, but often of uncertain significance because metabolic control theory and in vivo studies indicate that many individual metabolic enzymes do not affect pathway flux rate. I review research, so far little used in evolutionary biology, showing that metabolic enzyme substrates affect signalling pathways that regulate cell and organismal biology, and that these enzymes have moonlighting functions. To date there is little knowledge of how alleles in natural populations affect these phenotypes. I discuss an example in which alleles of a TCA enzyme locus associate with differences in a signalling pathway and development, organismal performance, and ecological dynamics. Ultimately, understanding how metabolic enzyme polymorphisms map to phenotypes and fitness remains a compelling and ongoing need for gaining robust knowledge of ecological and evolutionary processes. © 2013 John Wiley & Sons Ltd.

  6. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    PubMed

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  7. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-07-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency.

  8. Non-linear molecular pattern classification using molecular beacons with multiple targets.

    PubMed

    Lee, In-Hee; Lee, Seung Hwan; Park, Tai Hyun; Zhang, Byoung-Tak

    2013-12-01

    In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal.

    PubMed

    Burkewitz, Kristopher; Morantte, Ianessa; Weir, Heather J M; Yeo, Robin; Zhang, Yue; Huynh, Frank K; Ilkayeva, Olga R; Hirschey, Matthew D; Grant, Ana R; Mair, William B

    2015-02-26

    Low energy states delay aging in multiple species, yet mechanisms coordinating energetics and longevity across tissues remain poorly defined. The conserved energy sensor AMP-activated protein kinase (AMPK) and its corresponding phosphatase calcineurin modulate longevity via the CREB regulated transcriptional coactivator (CRTC)-1 in C. elegans. We show that CRTC-1 specifically uncouples AMPK/calcineurin-mediated effects on lifespan from pleiotropic side effects by reprogramming mitochondrial and metabolic function. This pro-longevity metabolic state is regulated cell nonautonomously by CRTC-1 in the nervous system. Neuronal CRTC-1/CREB regulates peripheral metabolism antagonistically with the functional PPARα ortholog, NHR-49, drives mitochondrial fragmentation in distal tissues, and suppresses the effects of AMPK on systemic mitochondrial metabolism and longevity via a cell-nonautonomous catecholamine signal. These results demonstrate that while both local and distal mechanisms combine to modulate aging, distal regulation overrides local contribution. Targeting central perception of energetic state is therefore a potential strategy to promote healthy aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal

    PubMed Central

    Burkewitz, Kristopher; Morantte, Ianessa; Weir, Heather J.M.; Yeo, Robin; Zhang, Yue; Huynh, Frank K.; Ilkayeva, Olga R.; Hirschey, Matthew D.; Grant, Ana R.; Mair, William B.

    2015-01-01

    SUMMARY Low energy states delay aging in multiple species, yet mechanisms coordinating energetics and longevity across tissues remain poorly defined. The conserved energy sensor AMP-activated protein kinase (AMPK) and its corresponding phosphatase calcineurin modulate longevity via the CREB regulated transcriptional coactivator (CRTC)-1 in C. elegans. We show that CRTC-1 specifically uncouples AMPK/calcineurin-mediated effects on lifespan from pleiotropic side effects by reprogramming mitochondrial and metabolic function. This pro-longevity metabolic state is regulated cell-nonautonomously by CRTC-1 in the nervous system. Neuronal CRTC-1/CREB regulates peripheral metabolism antagonistically with the functional PPARα ortholog, NHR-49, drives mitochondrial fragmentation in distal tissues, and suppresses the effects of AMPK on systemic mitochondrial metabolism and longevity via a cell-nonautonomous catecholamine signal. These results demonstrate that while both local and distal mechanisms combine to modulate aging, distal regulation overrides local contribution. Targeting central perception of energetic state is therefore a potential strategy to promote healthy aging. PMID:25723162

  11. Therapeutic efficacy of atypical antipsychotic drugs by targeting multiple stress-related metabolic pathways

    PubMed Central

    Cai, H L; Jiang, P; Tan, Q Y; Dang, R L; Tang, M M; Xue, Y; Deng, Y; Zhang, B K; Fang, P F; Xu, P; Xiang, D X; Li, H D; Yao, J K

    2017-01-01

    Schizophrenia (SZ) is considered to be a multifactorial brain disorder with defects involving many biochemical pathways. Patients with SZ show variable responses to current pharmacological treatments of SZ because of the heterogeneity of this disorder. Stress has a significant role in the pathophysiological pathways and therapeutic responses of SZ. Atypical antipsychotic drugs (AAPDs) can modulate the stress response of the hypothalamic–pituitary–adrenal (HPA) axis and exert therapeutic effects on stress by targeting the prefrontal cortex (PFC) and hippocampus. To evaluate the effects of AAPDs (such as clozapine, risperidone and aripiprazole) on stress, we compared neurochemical profile variations in the PFC and hippocampus between rat models of chronic unpredictable mild stress (CUMS) for HPA axis activation and of long-term dexamethasone exposure (LTDE) for HPA axis inhibition, using an ultraperformance liquid chromatography–mass spectrometry (UPLC–MS/MS)-based metabolomic approach and a multicriteria assessment. We identified a number of stress-induced biomarkers comprising creatine, choline, inosine, hypoxanthine, uric acid, allantoic acid, lysophosphatidylcholines (LysoPCs), phosphatidylethanolamines (PEs), corticosterone and progesterone. Specifically, pathway enrichment and correlation analyses suggested that stress induces oxidative damage by disturbing the creatine–phosphocreatine circuit and purine pathway, leading to excessive membrane breakdown. Moreover, our data suggested that the AAPDs tested partially restore stress-induced deficits by increasing the levels of creatine, progesterone and PEs. Thus, the present findings provide a theoretical basis for the hypothesis that a combined therapy using adenosine triphosphate fuel, antioxidants and omega-3 fatty acids as supplements may have synergistic effects on the therapeutic outcome following AAPD treatment. PMID:28509906

  12. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.

    PubMed

    Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2016-12-01

    Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism

    PubMed Central

    Ai, Zhihong; Lu, Yang; Qiu, Songbo; Fan, Zhen

    2016-01-01

    Cisplatin is currently one of the most effective chemotherapeutic drugs used for treating ovarian cancer; however, resistance to cisplatin is common. In this study, we explored an experimental strategy for overcoming cisplatin resistance of human ovarian cancer from the new perspective of cancer cell metabolism. By using two pairs of genetically matched cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines, we tested the hypothesis that downregulating hypoxia-inducible factor-1 (HIF-1), which regulates metabolic enzymes involved in glycolysis, is a promising strategy for overcoming cisplatin resistance of human ovarian cancer cells. We found that cisplatin downregulated the level of the regulatable α subunit of HIF-1, HIF-1α, in cisplatin-sensitive ovarian cancer cells through enhancing HIF-1α degradation but did not downregulate HIF-1α in their cisplatin-resistant counterparts. Overexpression of a degradation-resistant HIF-1α (HIF-1α ΔODD) reduced cisplatin-induced apoptosis in cisplatin-sensitive cells, whereas genetic knockdown of HIF-1α or pharmacological promotion of HIF-1α degradation enhanced response to cisplatin in both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. We further demonstrated that knockdown of HIF-1α improved the response of cisplatin-resistant ovarian cancer cells to cisplatin by redirecting the aerobic glycolysis in the resistant cancer cells towards mitochondrial oxidative phosphorylation, leading to cell death through overproduction of reactive oxygen species. Our findings suggest that the HIF-1α-regulated cancer metabolism pathway could be a novel target for overcoming cisplatin resistance in ovarian cancer. PMID:26801746

  14. The effects of anterior arcuate and dorsomedial frontal cortex lesions on visually guided eye movements: 2. Paired and multiple targets.

    PubMed

    Schiller, P H; Chou, I

    2000-01-01

    This study examined the effects of anterior arcuate and dorsomedial frontal cortex lesions on the execution of saccadic eye movements made to paired and multiple targets in rhesus monkeys. Identical paired targets were presented with various temporal asynchronies to determine the temporal offset required to yield equal probability choices to either target. In the intact animal equal probability choices were typically obtained when the targets appeared simultaneously. After unilateral anterior arcuate lesions a major shift arose in the temporal offset required to obtain equal probability choices for paired targets that necessitated presenting the target in the hemifield contralateral to the lesion more than 100 ms prior to the target in the ipsilateral hemifield. This deficit was still pronounced 1 year after the lesion. Dorsomedial frontal cortex lesions produced much smaller but significant shifts in target selection that recovered more rapidly. Paired lesions produced deficits similar to those observed with anterior arcuate lesions alone. Major deficits were also observed on a multiple target temporal discrimination task after anterior arcuate but not after dorsomedial frontal cortex lesions. These results suggest that the frontal eye fields that reside in anterior bank of the arcuate sulcus play an important role in temporal processing and in target selection. Dorsomedial frontal cortex, that contains the medial eye fields, plays a much less important role in the execution of these tasks.

  15. Metabolic and nutritional aspects of cancer.

    PubMed

    Krawczyk, Joanna; Kraj, Leszek; Ziarkiewicz, Mateusz; Wiktor-Jędrzejczak, Wiesław

    2014-08-22

    Cancer, being in fact a generalized disease involving the whole organism, is most frequently associated with metabolic deregulation, a latent inflammatory state and anorexia of various degrees. The pathogenesis of this disorder is complex, with multiple dilemmas remaining unsolved. The clinical consequences of the above-mentioned disturbances include cancer-related cachexia and anorexia-cachexia syndrome. These complex clinical entities worsen the prognosis, and lead to deterioration of the quality of life and performance status, and thus require multimodal treatment. Optimal therapy should include nutritional support coupled with pharmacotherapy targeted at underlying pathomechanisms of cachexia. Nevertheless, many issues still need explanation, and efficacious and comprehensive therapy of cancer-related cachexia remains a future objective.

  16. Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation

    PubMed Central

    Chen, Shuowen; Khan, Muhammad J.; Loor, Juan J.

    2013-01-01

    Characterization and biological roles of the peroxisome proliferator-activated receptor (PPAR) isotypes are well known in monogastrics, but not in ruminants. However, a wealth of information has accumulated in little more than a decade on ruminant PPARs including isotype tissue distribution, response to synthetic and natural agonists, gene targets, and factors affecting their expression. Functional characterization demonstrated that, as in monogastrics, the PPAR isotypes control expression of genes involved in lipid metabolism, anti-inflammatory response, development, and growth. Contrary to mouse, however, the PPARγ gene network appears to controls milk fat synthesis in lactating ruminants. As in monogastrics, PPAR isotypes in ruminants are activated by long-chain fatty acids, therefore, making them ideal candidates for fine-tuning metabolism in this species via nutrients. In this regard, using information accumulated in ruminants and monogastrics, we propose a model of PPAR isotype-driven biological functions encompassing key tissues during the peripartal period in dairy cattle. PMID:23737762

  17. Dynamic regulation of genetic pathways and targets during aging in Caenorhabditis elegans.

    PubMed

    He, Kan; Zhou, Tao; Shao, Jiaofang; Ren, Xiaoliang; Zhao, Zhongying; Liu, Dahai

    2014-03-01

    Numerous genetic targets and some individual pathways associated with aging have been identified using the worm model. However, less is known about the genetic mechanisms of aging in genome wide, particularly at the level of multiple pathways as well as the regulatory networks during aging. Here, we employed the gene expression datasets of three time points during aging in Caenorhabditis elegans (C. elegans) and performed the approach of gene set enrichment analysis (GSEA) on each dataset between adjacent stages. As a result, multiple genetic pathways and targets were identified as significantly down- or up-regulated. Among them, 5 truly aging-dependent signaling pathways including MAPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and ErbB signaling pathway as well as 12 significantly associated genes were identified with dynamic expression pattern during aging. On the other hand, the continued declines in the regulation of several metabolic pathways have been demonstrated to display age-related changes. Furthermore, the reconstructed regulatory networks based on three of aging related Chromatin immunoprecipitation experiments followed by sequencing (ChIP-seq) datasets and the expression matrices of 154 involved genes in above signaling pathways provide new insights into aging at the multiple pathways level. The combination of multiple genetic pathways and targets needs to be taken into consideration in future studies of aging, in which the dynamic regulation would be uncovered.

  18. Targeting MUC1 mediated tumor stromal metabolic interaction in Triple negative Breast Cancer

    DTIC Science & Technology

    2016-11-01

    biosynthesis, D- Glutamine and D-glutamate metabolism, Nicotinate and nicotinamide metabolism, and Nitrogen metabolism were amongst the redundant...pathways identified in MDA- MB-468 (Fig 3). Nitrogen metabolism and D- Glutamine and D-glutamate metabolism pathways were filtered out as potential...Figure 4. MUC1 alters TNBC metabolism. Representation of (A) D- Glutamine and D- glutamate metabolism and (B

  19. Targeting MUC1-Mediated Tumor-Stromal Metabolic Interaction in Triple-Negative Breast Cancer

    DTIC Science & Technology

    2016-11-01

    biosynthesis, D- Glutamine and D-glutamate metabolism, Nicotinate and nicotinamide metabolism, and Nitrogen metabolism were amongst the redundant...pathways identified in MDA- MB-468 (Fig 3). Nitrogen metabolism and D- Glutamine and D-glutamate metabolism pathways were filtered out as potential...Figure 4. MUC1 alters TNBC metabolism. Representation of (A) D- Glutamine and D- glutamate metabolism and (B

  20. Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies

    PubMed Central

    Yadav, Saveg; Pandey, Shrish Kumar; Singh, Vinay Kumar; Goel, Yugal; Kumar, Ajay

    2017-01-01

    Altered metabolism is an emerging hallmark of cancer, as malignant cells display a mammoth up-regulation of enzymes responsible for steering their bioenergetic and biosynthetic machinery. Thus, the recent anticancer therapeutic strategies focus on the targeting of metabolic enzymes, which has led to the identification of specific metabolic inhibitors. One of such inhibitors is 3-bromopyruvate (3-BP), with broad spectrum of anticancer activity due to its ability to inhibit multiple metabolic enzymes. However, the molecular characterization of its binding to the wide spectrum of target enzymes remains largely elusive. Therefore, in the present study we undertook in silico investigations to decipher the molecular nature of the docking of 3-BP with key target enzymes of glycolysis and TCA cycle by PatchDock and YASARA docking tools. Additionally, derivatives of 3-BP, dibromopyruvate (DBPA) and propionic acid (PA), with reported biological activity, were also investigated for docking to important target metabolic enzymes of 3-BP, in order to predict their therapeutic efficacy versus that of 3-BP. A comparison of the docking scores with respect to 3-BP indicated that both of these derivatives display a better binding strength to metabolic enzymes. Further, analysis of the drug likeness of 3-BP, DBPA and PA by Lipinski filter, admetSAR and FAF Drug3 indicated that all of these agents showed desirable drug-like criteria. The outcome of this investigation sheds light on the molecular characteristics of the binding of 3-BP and its derivatives with metabolic enzymes and thus may significantly contribute in designing and optimizing therapeutic strategies against cancer by using these agents. PMID:28463978

  1. Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies.

    PubMed

    Yadav, Saveg; Pandey, Shrish Kumar; Singh, Vinay Kumar; Goel, Yugal; Kumar, Ajay; Singh, Sukh Mahendra

    2017-01-01

    Altered metabolism is an emerging hallmark of cancer, as malignant cells display a mammoth up-regulation of enzymes responsible for steering their bioenergetic and biosynthetic machinery. Thus, the recent anticancer therapeutic strategies focus on the targeting of metabolic enzymes, which has led to the identification of specific metabolic inhibitors. One of such inhibitors is 3-bromopyruvate (3-BP), with broad spectrum of anticancer activity due to its ability to inhibit multiple metabolic enzymes. However, the molecular characterization of its binding to the wide spectrum of target enzymes remains largely elusive. Therefore, in the present study we undertook in silico investigations to decipher the molecular nature of the docking of 3-BP with key target enzymes of glycolysis and TCA cycle by PatchDock and YASARA docking tools. Additionally, derivatives of 3-BP, dibromopyruvate (DBPA) and propionic acid (PA), with reported biological activity, were also investigated for docking to important target metabolic enzymes of 3-BP, in order to predict their therapeutic efficacy versus that of 3-BP. A comparison of the docking scores with respect to 3-BP indicated that both of these derivatives display a better binding strength to metabolic enzymes. Further, analysis of the drug likeness of 3-BP, DBPA and PA by Lipinski filter, admetSAR and FAF Drug3 indicated that all of these agents showed desirable drug-like criteria. The outcome of this investigation sheds light on the molecular characteristics of the binding of 3-BP and its derivatives with metabolic enzymes and thus may significantly contribute in designing and optimizing therapeutic strategies against cancer by using these agents.

  2. Genome-wide profiles of CtBP link metabolism with genome stability and epithelial reprogramming in breast cancer.

    PubMed

    Di, Li-Jun; Byun, Jung S; Wong, Madeline M; Wakano, Clay; Taylor, Tara; Bilke, Sven; Baek, Songjoon; Hunter, Kent; Yang, Howard; Lee, Maxwell; Zvosec, Cecilia; Khramtsova, Galina; Cheng, Fan; Perou, Charles M; Miller, C Ryan; Raab, Rachel; Olopade, Olufunmilayo I; Gardner, Kevin

    2013-01-01

    The C-terminal binding protein (CtBP) is a NADH-dependent transcriptional repressor that links carbohydrate metabolism to epigenetic regulation by recruiting diverse histone-modifying complexes to chromatin. Here global profiling of CtBP in breast cancer cells reveals that it drives epithelial-to-mesenchymal transition, stem cell pathways and genome instability. CtBP expression induces mesenchymal and stem cell-like features, whereas CtBP depletion or caloric restriction reverses gene repression and increases DNA repair. Multiple members of the CtBP-targeted gene network are selectively downregulated in aggressive breast cancer subtypes. Differential expression of CtBP-targeted genes predicts poor clinical outcome in breast cancer patients, and elevated levels of CtBP in patient tumours predict shorter median survival. Finally, both CtBP promoter targeting and gene repression can be reversed by small molecule inhibition. These findings define broad roles for CtBP in breast cancer biology and suggest novel chromatin-based strategies for pharmacologic and metabolic intervention in cancer.

  3. Antinociceptive effects, metabolism and disposition of ketamine in ponies under target-controlled drug infusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knobloch, M.; Portier, C.J.; Levionnois, O.L.

    2006-11-01

    Ketamine is widely used as an anesthetic in a variety of drug combinations in human and veterinary medicine. Recently, it gained new interest for use in long-term pain therapy administered in sub-anesthetic doses in humans and animals. The purpose of this study was to develop a physiologically based pharmacokinetic (PBPk) model for ketamine in ponies and to investigate the effect of low-dose ketamine infusion on the amplitude and the duration of the nociceptive withdrawal reflex (NWR). A target-controlled infusion (TCI) of ketamine with a target plasma level of 1 {mu}g/ml S-ketamine over 120 min under isoflurane anesthesia was performed inmore » Shetland ponies. A quantitative electromyographic assessment of the NWR was done before, during and after the TCI. Plasma levels of R-/S-ketamine and R-/S-norketamine were determined by enantioselective capillary electrophoresis. These data and two additional data sets from bolus studies were used to build a PBPk model for ketamine in ponies. The peak-to-peak amplitude and the duration of the NWR decreased significantly during TCI and returned slowly toward baseline values after the end of TCI. The PBPk model provides reliable prediction of plasma and tissue levels of R- and S-ketamine and R- and S-norketamine. Furthermore, biotransformation of ketamine takes place in the liver and in the lung via first-pass metabolism. Plasma concentrations of S-norketamine were higher compared to R-norketamine during TCI at all time points. Analysis of the data suggested identical biotransformation rates from the parent compounds to the principle metabolites (R- and S-norketamine) but different downstream metabolism to further metabolites. The PBPk model can provide predictions of R- and S-ketamine and norketamine concentrations in other clinical settings (e.g. horses)« less

  4. Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity

    NASA Astrophysics Data System (ADS)

    Waseem, Muhammad; Irfan, Muhammad; Qamar, Shahid

    2015-06-01

    We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch-Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.

  5. Interaction of pathogens with host cholesterol metabolism.

    PubMed

    Sviridov, Dmitri; Bukrinsky, Michael

    2014-10-01

    Pathogens of different taxa, from prions to protozoa, target cellular cholesterol metabolism to advance their own development and to impair host immune responses, but also causing metabolic complications, for example, atherosclerosis. This review describes recent findings of how pathogens do it. A common theme in interaction between pathogens and host cholesterol metabolism is pathogens targeting lipid rafts of the host plasma membrane. Many intracellular pathogens use rafts as an entry gate, taking advantage of the endocytic machinery and high abundance of outward-looking molecules that can be used as receptors. At the same time, disruption of the rafts' functional capacity, achieved by the pathogens through a number of various means, impairs the ability of the host to generate immune response, thus helping pathogen to thrive. Pathogens cannot synthesize cholesterol, and salvaging host cholesterol helps pathogens build advanced cholesterol-containing membranes and assembly platforms. Impact on cholesterol metabolism is not limited to the infected cells; proteins and microRNAs secreted by infected cells affect lipid metabolism systemically. Given an essential role that host cholesterol metabolism plays in pathogen development, targeting this interaction may be a viable strategy to fight infections, as well as metabolic complications of the infections.

  6. Targeting multiple heterogeneous hardware platforms with OpenCL

    NASA Astrophysics Data System (ADS)

    Fox, Paul A.; Kozacik, Stephen T.; Humphrey, John R.; Paolini, Aaron; Kuller, Aryeh; Kelmelis, Eric J.

    2014-06-01

    The OpenCL API allows for the abstract expression of parallel, heterogeneous computing, but hardware implementations have substantial implementation differences. The abstractions provided by the OpenCL API are often insufficiently high-level to conceal differences in hardware architecture. Additionally, implementations often do not take advantage of potential performance gains from certain features due to hardware limitations and other factors. These factors make it challenging to produce code that is portable in practice, resulting in much OpenCL code being duplicated for each hardware platform being targeted. This duplication of effort offsets the principal advantage of OpenCL: portability. The use of certain coding practices can mitigate this problem, allowing a common code base to be adapted to perform well across a wide range of hardware platforms. To this end, we explore some general practices for producing performant code that are effective across platforms. Additionally, we explore some ways of modularizing code to enable optional optimizations that take advantage of hardware-specific characteristics. The minimum requirement for portability implies avoiding the use of OpenCL features that are optional, not widely implemented, poorly implemented, or missing in major implementations. Exposing multiple levels of parallelism allows hardware to take advantage of the types of parallelism it supports, from the task level down to explicit vector operations. Static optimizations and branch elimination in device code help the platform compiler to effectively optimize programs. Modularization of some code is important to allow operations to be chosen for performance on target hardware. Optional subroutines exploiting explicit memory locality allow for different memory hierarchies to be exploited for maximum performance. The C preprocessor and JIT compilation using the OpenCL runtime can be used to enable some of these techniques, as well as to factor in hardware

  7. Genomic insights into the metabolic potential and interactions between marine methanotrophic ANME archaea and associated bacteria

    NASA Astrophysics Data System (ADS)

    Orphan, V. J.; Skennerton, C.; Chadwick, G.; Haroon, F.; Tyson, G. W.; Leu, A.; Hatzenpichler, R.; Woyke, T.; Malmstrom, R.; Yu, H.; Scheller, S.

    2015-12-01

    Cooperative metabolic interactions between multiple groups of methanotrophic 'ANME' archaea and sulfate-reducing bacteria represent the primary sink for methane within continental margin sediments. These syntrophic associations are frequently observed as structured multi-celled consortia in methane seeps, often comprising a substantial proportion of the microbial biomass within near seafloor seep sediments. Since their discovery nearly 15 years ago, a number of distinct ANME groups and multiple sulfate-reducing bacterial partners have been described from seep environments worldwide. Attempts to reconstruct the genomes of some ANME organisms have been reported, however the ecological physiology and metabolic interactions of distinct ANME lineages and their bacterial partners remains poorly understood. Here, we used a fluorescence azide-alkyne click chemistry technique known as BONCAT combined with FAC sorting to examine patterns in microbial membership and the genomes of single, metabolically active ANME-bacterial consortia recovered from methane seep sediments. This targeted consortia-level sequencing approach revealed significant diversity in the ANME-bacterial associations in situ as well as insights into the potential syntrophic mechanisms underpinning these enigmatic methane-fueled partnerships.

  8. Signal-on electrochemical detection of antibiotics at zeptomole level based on target-aptamer binding triggered multiple recycling amplification.

    PubMed

    Wang, Hongzhi; Wang, Yu; Liu, Su; Yu, Jinghua; Guo, Yuna; Xu, Ying; Huang, Jiadong

    2016-06-15

    In the work, a signal-on electrochemical DNA sensor based on multiple amplification for ultrasensitive detection of antibiotics has been reported. In the presence of target, the ingeniously designed hairpin probe (HP1) is opened and the polymerase-assisted target recycling amplification is triggered, resulting in autonomous generation of secondary target. It is worth noting that the produced secondary target could not only hybridize with other HP1, but also displace the Helper from the electrode. Consequently, methylene blue labeled HP2 forms a "close" probe structure, and the increase of signal is monitored. The increasing current provides an ultrasensitive electrochemical detection for antibiotics down to 1.3 fM. To our best knowledge, such work is the first report about multiple recycling amplification combing with signal-on sensing strategy, which has been utilized for quantitative determination of antibiotics. It would be further used as a general strategy associated with more analytical techniques toward the detection of a wide spectrum of analytes. Thus, it holds great potential for the development of ultrasensitive biosensing platform for the applications in bioanalysis, disease diagnostics, and clinical biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - A chance for metabolic engineering.

    PubMed

    Kracke, Frauke; Lai, Bin; Yu, Shiqin; Krömer, Jens O

    2018-01-01

    More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression.

    PubMed

    Ji, Xiangming; Qian, Jun; Rahman, S M Jamshedur; Siska, Peter J; Zou, Yong; Harris, Bradford K; Hoeksema, Megan D; Trenary, Irina A; Heidi, Chen; Eisenberg, Rosana; Rathmell, Jeffrey C; Young, Jamey D; Massion, Pierre P

    2018-05-23

    Many tumors increase uptake and dependence on glucose, cystine or glutamine. These basic observations on cancer cell metabolism have opened multiple new diagnostic and therapeutic avenues in cancer research. Recent studies demonstrated that smoking could induce the expression of xCT (SLC7A11) in oral cancer cells, suggesting that overexpression of xCT may support lung tumor progression. We hypothesized that overexpression of xCT occurs in lung cancer cells to satisfy the metabolic requirements for growth and survival. Our results demonstrated that 1) xCT was highly expressed at the cytoplasmic membrane in non-small cell lung cancer (NSCLC), 2) the expression of xCT was correlated with advanced stage and predicted a worse 5-year survival, 3) targeting xCT transport activity in xCT overexpressing NSCLC cells with sulfasalazine decreased cell proliferation and invasion in vitro and in vivo and 4) increased dependence on glutamine was observed in xCT overexpressed normal airway epithelial cells. These results suggested that xCT regulate metabolic requirements during lung cancer progression and be a potential therapeutic target in NSCLC.

  11. OPAQUE11 Is a Central Hub of the Regulatory Network for Maize Endosperm Development and Nutrient Metabolism[OPEN

    PubMed Central

    Feng, Fan; Qi, Weiwei; Lv, Yuanda; Yan, Shumei; Xu, Liming; Yang, Wenyao; Yuan, Yue; Chen, Yihan

    2018-01-01

    Maize (Zea mays) endosperm is a primary tissue for nutrient storage and is highly differentiated during development. However, the regulatory networks of endosperm development and nutrient metabolism remain largely unknown. Maize opaque11 (o11) is a classic seed mutant with a small and opaque endosperm showing decreased starch and protein accumulation. We cloned O11 and found that it encodes an endosperm-specific bHLH transcription factor (TF). Loss of function of O11 significantly affected transcription of carbohydrate/amino acid metabolism and stress response genes. Genome-wide binding site analysis revealed 9885 O11 binding sites distributed over 6033 genes. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 259 O11-modulated target genes. O11 was found to directly regulate key TFs in endosperm development (NKD2 and ZmDOF3) and nutrient metabolism (O2 and PBF). Moreover, O11 directly regulates cyPPDKs and multiple carbohydrate metabolic enzymes. O11 is an activator of ZmYoda, suggesting its regulatory function through the MAPK pathway in endosperm development. Many stress-response genes are also direct targets of O11. In addition, 11 O11-interacting proteins were identified, including ZmIce1, which coregulates stress response targets and ZmYoda with O11. Therefore, this study reveals an endosperm regulatory network centered around O11, which coordinates endosperm development, metabolism and stress responses. PMID:29436476

  12. The vascular endothelium in diabetes--a therapeutic target?

    PubMed

    Mather, Kieren J

    2013-03-01

    Insulin resistance affects the vascular endothelium, and contributes to systemic insulin resistance by directly impairing the actions of insulin to redistribute blood flow as part of its normal actions driving muscle glucose uptake. Impaired vascular function is a component of the insulin resistance syndrome, and is a feature of type 2 diabetes. On this basis, the vascular endothelium has emerged as a therapeutic target where the intent is to improve systemic metabolic state by improving vascular function. We review the available literature presenting studies in humans, evaluating the effects of metabolically targeted and vascular targeted therapies on insulin action and systemic metabolism. Therapies that improve systemic insulin resistance exert strong concurrent effects to improve vascular function and vascular insulin action. RAS-acting agents and statins have widely recognized beneficial effects on vascular function but have not uniformly produced the hoped-for metabolic benefits. These observations support the notion that systemic metabolic benefits can arise from therapies targeted at the endothelium, but improving vascular insulin action does not result from all treatments that improve endothelium-dependent vasodilation. A better understanding of the mechanisms of insulin's actions in the vascular wall will advance our understanding of the specificity of these responses, and allow us to better target the vasculature for metabolic benefits.

  13. Monoclonal IgG in MGUS and multiple myeloma targets infectious pathogens

    PubMed Central

    Bosseboeuf, Adrien; Feron, Delphine; Tallet, Anne; Rossi, Cédric; Charlier, Cathy; Garderet, Laurent; Caillot, Denis; Moreau, Philippe; Cardó-Vila, Marina; Pasqualini, Renata; Nelson, Alfreda Destea; Wilson, Bridget S.; Perreault, Hélène; Piver, Eric; Weigel, Pierre; Harb, Jean; Bigot-Corbel, Edith; Hermouet, Sylvie

    2017-01-01

    Subsets of mature B cell neoplasms are linked to infection with intracellular pathogens such as Epstein-Barr virus (EBV), hepatitis C virus (HCV), or Helicobacter pylori. However, the association between infection and the immunoglobulin-secreting (Ig-secreting) B proliferative disorders remains largely unresolved. We investigated whether the monoclonal IgG (mc IgG) produced by patients diagnosed with monoclonal gammopathy of undetermined significance (MGUS) or multiple myeloma (MM) targets infectious pathogens. Antigen specificity of purified mc IgG from a large patient cohort (n = 244) was determined using a multiplex infectious-antigen array (MIAA), which screens for reactivity to purified antigens or lysates from 9 pathogens. Purified mc IgG from 23.4% of patients (57 of 244) specifically recognized 1 pathogen in the MIAA. EBV was the most frequent target (15.6%), with 36 of 38 mc IgGs recognizing EBV nuclear antigen-1 (EBNA-1). MM patients with EBNA-1–specific mc IgG (14.0%) showed substantially greater bone marrow plasma cell infiltration and higher β2-microglobulin and inflammation/infection–linked cytokine levels compared with other smoldering myeloma/MM patients. Five other pathogens were the targets of mc IgG: herpes virus simplex-1 (2.9%), varicella zoster virus (1.6%), cytomegalovirus (0.8%), hepatitis C virus (1.2%), and H. pylori (1.2%). We conclude that a dysregulated immune response to infection may underlie disease onset and/or progression of MGUS and MM for subsets of patients. PMID:28978808

  14. Tracking of multiple targets using online learning for reference model adaptation.

    PubMed

    Pernkopf, Franz

    2008-12-01

    Recently, much work has been done in multiple object tracking on the one hand and on reference model adaptation for a single-object tracker on the other side. In this paper, we do both tracking of multiple objects (faces of people) in a meeting scenario and online learning to incrementally update the models of the tracked objects to account for appearance changes during tracking. Additionally, we automatically initialize and terminate tracking of individual objects based on low-level features, i.e., face color, face size, and object movement. Many methods unlike our approach assume that the target region has been initialized by hand in the first frame. For tracking, a particle filter is incorporated to propagate sample distributions over time. We discuss the close relationship between our implemented tracker based on particle filters and genetic algorithms. Numerous experiments on meeting data demonstrate the capabilities of our tracking approach. Additionally, we provide an empirical verification of the reference model learning during tracking of indoor and outdoor scenes which supports a more robust tracking. Therefore, we report the average of the standard deviation of the trajectories over numerous tracking runs depending on the learning rate.

  15. Enhancement of the anti-tumor activity of FGFR1 inhibition in squamous cell lung cancer by targeting downstream signaling involved in glucose metabolism

    PubMed Central

    Fumarola, Claudia; Cretella, Daniele; La Monica, Silvia; Bonelli, Mara A.; Alfieri, Roberta; Caffarra, Cristina; Quaini, Federico; Madeddu, Denise; Falco, Angela; Cavazzoni, Andrea; Digiacomo, Graziana; Mazzaschi, Giulia; Vivo, Valentina; Barocelli, Elisabetta; Tiseo, Marcello; Petronini, Pier Giorgio; Ardizzoni, Andrea

    2017-01-01

    Fibroblast Growth Factor Receptor (FGFR) signaling is a complex pathway which controls several processes, including cell proliferation, survival, migration, and metabolism. FGFR1 signaling is frequently deregulated via amplification/over-expression in NSCLC of squamous histotype (SQCLC), however its inhibition has not been successfully translated in clinical setting. We determined whether targeting downstream signaling implicated in FGFR1 effects on glucose metabolism potentiates the anti-tumor activity of FGFR1 inhibition in SQCLC. In FGFR1 amplified/over-expressing SQCLC cell lines, FGF2-mediated stimulation of FGFR1 under serum-deprivation activated both MAPK and AKT/mTOR pathways and increased glucose uptake, glycolysis, and lactate production, through AKT/mTOR-dependent HIF-1α accumulation and up-regulation of GLUT-1 glucose transporter. These effects were hindered by PD173074 and NVP-BGJ398, selective FGFR inhibitors, as well as by dovitinib, a multi-kinase inhibitor. Glucose metabolism was hampered by the FGFR inhibitors also under hypoxic conditions, with consequent inhibition of cell proliferation and viability. In presence of serum, glucose metabolism was impaired only in cell models in which FGFR1 inhibition was associated with AKT/mTOR down-regulation. When the activation of the AKT/mTOR pathway persisted despite FGFR1 down-regulation, the efficacy of NVP-BGJ398 could be significantly improved by the combination with NVP-BEZ235 or other inhibitors of this signaling cascade, both in vitro and in xenotransplanted nude mice. Collectively our results indicate that inhibition of FGFR1 signaling impacts on cancer cell growth also by affecting glucose energy metabolism. In addition, this study strongly suggests that the therapeutic efficacy of FGFR1 targeting molecules in SQCLC may be implemented by combined treatments tackling on glucose metabolism. PMID:29190880

  16. Targeting Insulin Signaling for the Treatment of Alzheimer's Disease.

    PubMed

    Chen, Yanxing; Zhang, Jianfang; Zhang, Baorong; Gong, Cheng-Xin

    2016-01-01

    Sporadic Alzheimer's disease (AD) is caused by multiple etiological factors, among which impaired brain insulin signaling and decreased brain glucose metabolism are important metabolic factors. Contrary to previous belief that insulin would not act in the brain, studies in the last three decades have proven important roles of insulin and insulin signaling in various biological functions in the brain. Impaired brain insulin signaling or brain insulin resistance and its role in the molecular pathogenesis of sporadic AD have been demonstrated. Thus, targeting brain insulin signaling for the treatment of cognitive impairment and AD has now attracted much attention in the field of AD drug discovery. This article reviews recent studies that target brain insulin signaling, especially those investigations on intranasal insulin administration and drugs that improve insulin sensitivity, including incretins, dipeptidyl peptidase IV inhibitors, thiazolidinediones, and metformin. These drugs have been previously approved for the treatment of diabetes mellitus, which could expedite their development for the treatment of AD. Although larger clinical trials are needed for validating their efficacy for the treatment of cognitive impairment and AD, results of animal studies and clinical trials available to date are encouraging.

  17. Metabolic Engineering for Substrate Co-utilization

    NASA Astrophysics Data System (ADS)

    Gawand, Pratish

    Production of biofuels and bio-based chemicals is being increasingly pursued by chemical industry to reduce its dependence on petroleum. Lignocellulosic biomass (LCB) is an abundant source of sugars that can be used for producing biofuels and bio-based chemicals using fermentation. Hydrolysis of LCB results in a mixture of sugars mainly composed of glucose and xylose. Fermentation of such a sugar mixture presents multiple technical challenges at industrial scale. Most industrial microorganisms utilize sugars in a sequential manner due to the regulatory phenomenon of carbon catabolite repression (CCR). Due to sequential utilization of sugars, the LCB-based fermentation processes suffer low productivities and complicated operation. Performance of fermentation processes can be improved by metabolic engineering of microorganisms to obtain superior characteristics such as high product yield. With increased computational power and availability of complete genomes of microorganisms, use of model-based metabolic engineering is now a common practice. The problem of sequential sugar utilization, however, is a regulatory problem, and metabolic models have never been used to solve such regulatory problems. The focus of this thesis is to use model-guided metabolic engineering to construct industrial strains capable of co-utilizing sugars. First, we develop a novel bilevel optimization algorithm SimUp, that uses metabolic models to identify reaction deletion strategies to force co-utilization of two sugars. We then use SimUp to identify reaction deletion strategies to force glucose-xylose co-utilization in Escherichia coli. To validate SimUp predictions, we construct three mutants with multiple gene knockouts and test them for glucose-xylose utilization characteristics. Two mutants, designated as LMSE2 and LMSE5, are shown to co-utilize glucose and xylose in agreement with SimUp predictions. To understand the molecular mechanism involved in glucose-xylose co-utilization of the

  18. The renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome

    PubMed Central

    Putnam, Kelly; Shoemaker, Robin; Yiannikouris, Frederique

    2012-01-01

    The renin-angiotensin system (RAS) is an important therapeutic target in the treatment of hypertension. Obesity has emerged as a primary contributor to essential hypertension in the United States and clusters with other metabolic disorders (hyperglycemia, hypertension, high triglycerides, low HDL cholesterol) defined within the metabolic syndrome. In addition to hypertension, RAS blockade may also serve as an effective treatment strategy to control impaired glucose and insulin tolerance and dyslipidemias in patients with the metabolic syndrome. Hyperglycemia, insulin resistance, and/or specific cholesterol metabolites have been demonstrated to activate components required for the synthesis [angiotensinogen, renin, angiotensin-converting enzyme (ACE)], degradation (ACE2), or responsiveness (angiotensin II type 1 receptors, Mas receptors) to angiotensin peptides in cell types (e.g., pancreatic islet cells, adipocytes, macrophages) that mediate specific disorders of the metabolic syndrome. An activated local RAS in these cell types may contribute to dysregulated function by promoting oxidative stress, apoptosis, and inflammation. This review will discuss data demonstrating the regulation of components of the RAS by cholesterol and its metabolites, glucose, and/or insulin in cell types implicated in disorders of the metabolic syndrome. In addition, we discuss data supporting a role for an activated local RAS in dyslipidemias and glucose intolerance/insulin resistance and the development of hypertension in the metabolic syndrome. Identification of an activated RAS as a common thread contributing to several disorders of the metabolic syndrome makes the use of angiotensin receptor blockers and ACE inhibitors an intriguing and novel option for multisymptom treatment. PMID:22227126

  19. Nucleotide excision repair is a potential therapeutic target in multiple myeloma

    PubMed Central

    Szalat, R; Samur, M K; Fulciniti, M; Lopez, M; Nanjappa, P; Cleynen, A; Wen, K; Kumar, S; Perini, T; Calkins, A S; Reznichenko, E; Chauhan, D; Tai, Y-T; Shammas, M A; Anderson, K C; Fermand, J-P; Arnulf, B; Avet-Loiseau, H; Lazaro, J-B; Munshi, N C

    2018-01-01

    Despite the development of novel drugs, alkylating agents remain an important component of therapy in multiple myeloma (MM). DNA repair processes contribute towards sensitivity to alkylating agents and therefore we here evaluate the role of nucleotide excision repair (NER), which is involved in the removal of bulky adducts and DNA crosslinks in MM. We first evaluated NER activity using a novel functional assay and observed a heterogeneous NER efficiency in MM cell lines and patient samples. Using next-generation sequencing data, we identified that expression of the canonical NER gene, excision repair cross-complementation group 3 (ERCC3), significantly impacted the outcome in newly diagnosed MM patients treated with alkylating agents. Next, using small RNA interference, stable knockdown and overexpression, and small-molecule inhibitors targeting xeroderma pigmentosum complementation group B (XPB), the DNA helicase encoded by ERCC3, we demonstrate that NER inhibition significantly increases sensitivity and overcomes resistance to alkylating agents in MM. Moreover, inhibiting XPB leads to the dual inhibition of NER and transcription and is particularly efficient in myeloma cells. Altogether, we show that NER impacts alkylating agents sensitivity in myeloma cells and identify ERCC3 as a potential therapeutic target in MM. PMID:28588253

  20. Self-Immolative Polycations as Gene Delivery Vectors and Prodrugs Targeting Polyamine Metabolism in Cancer

    PubMed Central

    2015-01-01

    Polycations are explored as carriers to deliver therapeutic nucleic acids. Polycations are conventionally pharmacological inert with the sole function of delivering therapeutic cargo. This study reports synthesis of a self-immolative polycation (DSS-BEN) based on a polyamine analogue drug N1,N11-bisethylnorspermine (BENSpm). The polycation was designed to function dually as a gene delivery carrier and a prodrug targeting dysregulated polyamine metabolism in cancer. Using a combination of NMR and HPLC, we confirm that the self-immolative polycation undergoes intracellular degradation into the parent drug BENSpm. The released BENSpm depletes cellular levels of spermidine and spermine and upregulates polyamine catabolic enzymes spermine/spermidine N1-acetyltransferase (SSAT) and spermine oxidase (SMO). The synthesized polycations form polyplexes with DNA and facilitate efficient transfection. Taking advantage of the ability of BENSpm to sensitize cancer cells to TNFα-induced apoptosis, we show that DSS-BEN enhances the cell killing activity of TNFα gene therapy. The reported findings validate DSS-BEN as a dual-function delivery system that can deliver a therapeutic gene and improve the outcome of gene therapy as a result of the intracellular degradation of DSS-BEN to BENSpm and the subsequent beneficial effect of BENSpm on dysregulated polyamine metabolism in cancer. PMID:25153488

  1. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease

    PubMed Central

    Maiese, Kenneth

    2015-01-01

    Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in significant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Diabetes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel targeting of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and autophagy. Pathways that involve insulin-like growth factor-1, fibroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4) to foster control over stem cell proliferation, wound repair, cognitive decline, β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signaling is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus. PMID:26170801

  2. Effect of multiple intravenous injections of butaphosphan and cyanocobalamin on the metabolism of periparturient dairy cows.

    PubMed

    Fürll, M; Deniz, A; Westphal, B; Illing, C; Constable, P D

    2010-09-01

    Numerous adjunct therapeutic agents have been investigated for the treatment or control of fat mobilization syndrome in periparturient dairy cows. The aim of this study was to determine the effects of multiple i.v. injections of 10% butaphosphan and 0.005% cyanocobalamin combination (Catosal, Bayer Animal Health, Leverkusen, Germany) between 1 and 2 wk antepartum (a.p.) on the metabolism and health of dairy cows. Forty-five late-gestation Holstein-Friesian cows (second pregnancy) were allocated randomly to 1 of 3 groups with 15 cows/group: group C6 (6 daily i.v. injections of butaphosphan at 10 mg/kg of body weight (BW) and cyanocobalamin at 5 microg/kg of BW in the last 2 wk of gestation); group C3 (3 daily i.v. injections of butaphosphan at 10 mg/kg of BW and cyanocobalamin at 5 microg/kg of BW in the last week of gestation); and group C0 (equivolume daily i.v. injections of 0.9% NaCl solution). Serum biochemical analysis was performed on jugular venous blood samples that were periodically obtained a.p. and postpartum (p.p.). Health status and milk production were monitored p.p. Serum cyanocobalamin concentration increased in groups C6 and C3 p.p. Multiple daily i.v. injections of Catosal before parturition increased p.p. glucose availability, as evaluated by p.p. serum glucose concentration, and decreased peripheral fat mobilization and ketone body formation, as evaluated by p.p. serum nonesterified fatty acid and beta-OH butyrate concentrations. The number of puerperal infections in the first 5 d after calving was decreased in group C6, relative to group C0. We conclude that multiple injections of Catosal during the close-up period have a beneficial effect on the metabolism of periparturient dairy cows. Our results are consistent with the hypothesis that high-producing dairy cows in early lactation may have a relative or actual deficiency of cyanocobalamin. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Multiple-trait estimates of genetic parameters for metabolic disease traits, fertility disorders, and their predictors in Canadian Holsteins.

    PubMed

    Jamrozik, J; Koeck, A; Kistemaker, G J; Miglior, F

    2016-03-01

    Producer-recorded health data for metabolic disease traits and fertility disorders on 35,575 Canadian Holstein cows were jointly analyzed with selected indicator traits. Metabolic diseases included clinical ketosis (KET) and displaced abomasum (DA); fertility disorders were metritis (MET) and retained placenta (RP); and disease indicators were fat-to-protein ratio, milk β-hydroxybutyrate, and body condition score (BCS) in the first lactation. Traits in first and later (up to fifth) lactations were treated as correlated in the multiple-trait (13 traits in total) animal linear model. Bayesian methods with Gibbs sampling were implemented for the analysis. Estimates of heritability for disease incidence were low, up to 0.06 for DA in first lactation. Among disease traits, the environmental herd-year variance constituted 4% of the total variance for KET and less for other traits. First- and later-lactation disease traits were genetically correlated (from 0.66 to 0.72) across all traits, indicating different genetic backgrounds for first and later lactations. Genetic correlations between KET and DA were relatively strong and positive (up to 0.79) in both first- and later-lactation cows. Genetic correlations between fertility disorders were slightly lower. Metritis was strongly genetically correlated with both metabolic disease traits in the first lactation only. All other genetic correlations between metabolic and fertility diseases were statistically nonsignificant. First-lactation KET and MET were strongly positively correlated with later-lactation performance for these traits due to the environmental herd-year effect. Indicator traits were moderately genetically correlated (from 0.30 to 0.63 in absolute values) with both metabolic disease traits in the first lactation. Smaller and mostly nonsignificant genetic correlations were among indicators and metabolic diseases in later lactations. The only significant genetic correlations between indicators and fertility

  4. Metabolic support for the heart: complementary therapy for heart failure?

    PubMed

    Heggermont, Ward A; Papageorgiou, Anna-Pia; Heymans, Stephane; van Bilsen, Marc

    2016-12-01

    The failing heart has an increased metabolic demand and at the same time suffers from impaired energy efficiency, which is a detrimental combination. Therefore, therapies targeting the energy-deprived failing heart and rewiring cardiac metabolism are of great potential, but are lacking in daily clinical practice. Metabolic impairment in heart failure patients has been well characterized for patients with reduced ejection fraction, and is coming of age in patients with 'preserved' ejection fraction. Targeting cardiomyocyte metabolism in heart failure could complement current heart failure treatments that do improve cardiovascular haemodynamics, but not the energetic status of the heart. In this review, we discuss the hallmarks of normal cardiac metabolism, typical metabolic disturbances in heart failure, and past and present therapeutic targets that impact on cardiac metabolism. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.

  5. Multiple priming of lexically ambiguous and unambiguous targets in the cerebral hemispheres: the coarse coding hypothesis revisited

    PubMed Central

    Kandhadai, Padmapriya; Federmeier, Kara D.

    2009-01-01

    The coarse coding hypothesis (Jung-Beeman 2005) postulates that the cerebral hemispheres differ in their breadth of semantic activation, with the left hemisphere (LH) activating a narrow, focused semantic field and the right (RH) weakly activating a broader semantic field. In support of coarse coding, studies (e.g., Faust and Lavidor 2003) investigating priming for multiple senses of a lexically ambiguous word have reported a RH benefit. However, studies of mediated priming (Livesay and Burgess 2003; Richards and Chiarello 1995) have failed to find a RH advantage for processing distantly-linked, unambiguous words. To address this debate, the present study made use of a multiple priming paradigm (Balota and Paul, 1996) in which two primes either converged onto the single meaning of an unambiguous, lexically-associated target (LION-STRIPES-TIGER) or diverged onto different meanings of an ambiguous target (KIDNEY-PIANO-ORGAN). In two experiments, participants either made lexical decisions to targets (Experiment 1) or made a semantic relatedness judgment between primes and targets (Experiment 2). In both tasks, for both ambiguous and unambiguous triplets we found equivalent priming strengths and patterns across the two visual fields, counter to the predictions of the coarse coding hypothesis. Priming patterns further suggested that both hemispheres made use of lexical level representations in the lexical decision task and semantic representations in the semantic judgment task. PMID:17459344

  6. WISDOM-II: screening against multiple targets implicated in malaria using computational grid infrastructures.

    PubMed

    Kasam, Vinod; Salzemann, Jean; Botha, Marli; Dacosta, Ana; Degliesposti, Gianluca; Isea, Raul; Kim, Doman; Maass, Astrid; Kenyon, Colin; Rastelli, Giulio; Hofmann-Apitius, Martin; Breton, Vincent

    2009-05-01

    Despite continuous efforts of the international community to reduce the impact of malaria on developing countries, no significant progress has been made in the recent years and the discovery of new drugs is more than ever needed. Out of the many proteins involved in the metabolic activities of the Plasmodium parasite, some are promising targets to carry out rational drug discovery. Recent years have witnessed the emergence of grids, which are highly distributed computing infrastructures particularly well fitted for embarrassingly parallel computations like docking. In 2005, a first attempt at using grids for large-scale virtual screening focused on plasmepsins and ended up in the identification of previously unknown scaffolds, which were confirmed in vitro to be active plasmepsin inhibitors. Following this success, a second deployment took place in the fall of 2006 focussing on one well known target, dihydrofolate reductase (DHFR), and on a new promising one, glutathione-S-transferase. In silico drug design, especially vHTS is a widely and well-accepted technology in lead identification and lead optimization. This approach, therefore builds, upon the progress made in computational chemistry to achieve more accurate in silico docking and in information technology to design and operate large scale grid infrastructures. On the computational side, a sustained infrastructure has been developed: docking at large scale, using different strategies in result analysis, storing of the results on the fly into MySQL databases and application of molecular dynamics refinement are MM-PBSA and MM-GBSA rescoring. The modeling results obtained are very promising. Based on the modeling results, In vitro results are underway for all the targets against which screening is performed. The current paper describes the rational drug discovery activity at large scale, especially molecular docking using FlexX software on computational grids in finding hits against three different targets (Pf

  7. One Novel Multiple-Target Plasmid Reference Molecule Targeting Eight Genetically Modified Canola Events for Genetically Modified Canola Detection.

    PubMed

    Li, Zhuqing; Li, Xiang; Wang, Canhua; Song, Guiwen; Pi, Liqun; Zheng, Lan; Zhang, Dabing; Yang, Litao

    2017-09-27

    Multiple-target plasmid DNA reference materials have been generated and utilized as good substitutes of matrix-based reference materials in the analysis of genetically modified organisms (GMOs). Herein, we report the construction of one multiple-target plasmid reference molecule, pCAN, which harbors eight GM canola event-specific sequences (RF1, RF2, MS1, MS8, Topas 19/2, Oxy235, RT73, and T45) and a partial sequence of the canola endogenous reference gene PEP. The applicability of this plasmid reference material in qualitative and quantitative PCR assays of the eight GM canola events was evaluated, including the analysis of specificity, limit of detection (LOD), limit of quantification (LOQ), and performance of pCAN in the analysis of various canola samples, etc. The LODs are 15 copies for RF2, MS1, and RT73 assays using pCAN as the calibrator and 10 genome copies for the other events. The LOQ in each event-specific real-time PCR assay is 20 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and PEP assays are between 91% and 97%, and the squared regression coefficients (R 2 ) are all higher than 0.99. The quantification bias values varied from 0.47% to 20.68% with relative standard deviation (RSD) from 1.06% to 24.61% in the quantification of simulated samples. Furthermore, 10 practical canola samples sampled from imported shipments in the port of Shanghai, China, were analyzed employing pCAN as the calibrator, and the results were comparable with those assays using commercial certified materials as the calibrator. Concluding from these results, we believe that this newly developed pCAN plasmid is one good candidate for being a plasmid DNA reference material in the detection and quantification of the eight GM canola events in routine analysis.

  8. Late Multiple Organ Surge in Interferon-Regulated Target Genes Characterizes Staphylococcal Enterotoxin B Lethality

    PubMed Central

    Ferreyra, Gabriela A.; Elinoff, Jason M.; Demirkale, Cumhur Y.; Starost, Matthew F.; Buckley, Marilyn; Munson, Peter J.; Krakauer, Teresa; Danner, Robert L.

    2014-01-01

    Background Bacterial superantigens are virulence factors that cause toxic shock syndrome. Here, the genome-wide, temporal response of mice to lethal intranasal staphylococcal enterotoxin B (SEB) challenge was investigated in six tissues. Results The earliest responses and largest number of affected genes occurred in peripheral blood mononuclear cells (PBMC), spleen, and lung tissues with the highest content of both T-cells and monocyte/macrophages, the direct cellular targets of SEB. In contrast, the response of liver, kidney, and heart was delayed and involved fewer genes, but revealed a dominant genetic program that was seen in all 6 tissues. Many of the 85 uniquely annotated transcripts participating in this shared genomic response have not been previously linked to SEB. Nine of the 85 genes were subsequently confirmed by RT-PCR in every tissue/organ at 24 h. These 85 transcripts, up-regulated in all tissues, annotated to the interferon (IFN)/antiviral-response and included genes belonging to the DNA/RNA sensing system, DNA damage repair, the immunoproteasome, and the ER/metabolic stress-response and apoptosis pathways. Overall, this shared program was identified as a type I and II interferon (IFN)-response and the promoters of these genes were highly enriched for IFN regulatory matrices. Several genes whose secreted products induce the IFN pathway were up-regulated at early time points in PBMCs, spleen, and/or lung. Furthermore, IFN regulatory factors including Irf1, Irf7 and Irf8, and Zbp1, a DNA sensor/transcription factor that can directly elicit an IFN innate immune response, participated in this host-wide SEB signature. Conclusion Global gene-expression changes across multiple organs implicated a host-wide IFN-response in SEB-induced death. Therapies aimed at IFN-associated innate immunity may improve outcome in toxic shock syndromes. PMID:24551153

  9. Hereditary Multiple Exostoses: a review of clinical appearance and metabolic pattern

    PubMed Central

    Beltrami, Giovanni; Ristori, Gabriele; Scoccianti, Guido; Tamburini, Angela; Capanna, Rodolfo

    2016-01-01

    Summary Hereditary multiple exostoses (HME) is an inherited genetic condition characterized by the presence of multiple exostoses (osteochondromas). MHE is a relatively rare autosomal dominant disorder, mainly caused by loss of function mutations in two genes: exostosin-1 (EXT1) and exostosin-2 (EXT2). These genes are linked to heparan sulfate (HS) synthesis, but the specific molecular mechanism leading to the disruption of the cartilage structure and the consequent exostoses formation is still not resolved. The aim of this paper is to encounter the main aspects of HME reviewing the literature, in order to improve clinical features and evolution, and the metabolic-pathogenetic mechanisms underlying. Although MHE may be asymptomatic, a wide spectrum of clinical manifestations is found in paediatric patients with this disorder. Pain is experienced by the majority of patients, even restricted motion of the joint is often encountered. Sometimes exostoses can interfere with normal development of the growth plate, giving rise to limb deformities, low stature and scoliosis. Other many neurovascular and associated disorders can lead to surgery. The most feared complication is the malignant transformation of an existing osteochondroma into a secondary peripheral chondrosarcoma, during adulthood. The therapeutic approach to HME is substantially surgical, whereas the medical one is still at an experimental level. In conclusion, HME is a complex disease where the paediatrician, the geneticist and the orthopaedic surgeon play an interchangeable role in diagnosis, research and therapy. We are waiting for new studies able to explain better the role of HS in signal transduction, because it plays a role in other bone and cartilage diseases (in particular malignant degeneration) as well as in skeletal embryology. PMID:27920806

  10. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    PubMed

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.

  11. Nutritional Management of Metabolic Endotoxemia: A Clinical Review.

    PubMed

    Brown, Benjamin I

    2017-07-01

    Context • Diet-induced, metabolic endotoxemia is emerging as an important contributory factor to the development of a wide range of chronic diseases, including cardiometabolic, autoimmune, psychiatric, and neurodegenerative illnesses. Emerging human clinical studies have demonstrated that diet and dietary components are potent modifiers of circulating endotoxins and can be used to reduce plasma levels significantly and improve metabolic health. Objective • The aim of the current study was to explore briefly the concept of metabolic endotoxemia and its relationship to disease development, to examine the influence of diet and dietary components on circulating endotoxins, and, finally, discuss the clinical relevance of nutritional interventions for management of metabolic endotoxemia. Design • The researcher performed a literature review of dietary and nutritional interactions with metabolic endotoxemia with a focus on studies relevant to clinical practice. Setting • The study took place at the UK College of Nutrition and Health (London, England). Results • Improving dietary quality, optimizing the intake of phytonutrient-rich foods, improving micronutrient status, consuming fermented foods, manipulating the gut microflora with prebiotics and probiotics, and using specific nutritional supplements, such as glutamine, lactoferrin, resveratrol, and berberine, have been shown to be effective in targeting metabolic endotoxemia. Conclusions • Diet, dietary components, and nutritional supplements, including prebiotics and probiotics, have demonstrated the ability to provide clinically important reductions in circulating endotoxins and improve related sequels, such as inflammation and other negative health markers. The development of personalized nutritional interventions for the management of metabolic endotoxemia is a promising area for future research due to the potential of such interventions to improve multiple aspects of human health and mitigate a wide

  12. Urine metabolic profiling for the pathogenesis research of erosive oral lichen planus.

    PubMed

    Li, Xu-Zhao; Yang, Xu-Yan; Wang, Yu; Zhang, Shuai-Nan; Zou, Wei; Wang, Yan; Li, Xiao-Nan; Wang, Ling-Shu; Zhang, Zhi-Gang; Xie, Liang-Zhen

    2017-01-01

    Oral lichen planus (OLP) is a relatively common chronic immune-pathological and inflammatory disease and potentially oral precancerous lesion. Erosive OLP patients show the higher rate of malignant transformation than patients with non-erosive OLP. Identifying the potential biomarkers related to erosive OLP may help to understand the pathogenesis of the diseases. Metabolic profiles were compared in control and patient subjects with erosive OLP by using ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-QTOF-MS) coupled with pattern recognition methods An integrative analysis was used to identify the perturbed metabolic pathways and pathological processes that may be associated with the disease. In total, 12 modulated metabolites were identified and considered as the potential biomarkers of erosive OLP. Multiple metabolic pathways and pathological processes were involved in erosive OLP. The dysregulations of these metabolites could be used to explain the pathogenesis of the disease, which could also be the potential therapeutic targets for the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Recovering metabolic pathways via optimization.

    PubMed

    Beasley, John E; Planes, Francisco J

    2007-01-01

    A metabolic pathway is a coherent set of enzyme catalysed biochemical reactions by which a living organism transforms an initial (source) compound into a final (target) compound. Some of the different metabolic pathways adopted within organisms have been experimentally determined. In this paper, we show that a number of experimentally determined metabolic pathways can be recovered by a mathematical optimization model.

  14. A Mapping of Drug Space from the Viewpoint of Small Molecule Metabolism

    PubMed Central

    Basuino, Li; Chambers, Henry F.; Lee, Deok-Sun; Wiest, Olaf G.; Babbitt, Patricia C.

    2009-01-01

    Small molecule drugs target many core metabolic enzymes in humans and pathogens, often mimicking endogenous ligands. The effects may be therapeutic or toxic, but are frequently unexpected. A large-scale mapping of the intersection between drugs and metabolism is needed to better guide drug discovery. To map the intersection between drugs and metabolism, we have grouped drugs and metabolites by their associated targets and enzymes using ligand-based set signatures created to quantify their degree of similarity in chemical space. The results reveal the chemical space that has been explored for metabolic targets, where successful drugs have been found, and what novel territory remains. To aid other researchers in their drug discovery efforts, we have created an online resource of interactive maps linking drugs to metabolism. These maps predict the “effect space” comprising likely target enzymes for each of the 246 MDDR drug classes in humans. The online resource also provides species-specific interactive drug-metabolism maps for each of the 385 model organisms and pathogens in the BioCyc database collection. Chemical similarity links between drugs and metabolites predict potential toxicity, suggest routes of metabolism, and reveal drug polypharmacology. The metabolic maps enable interactive navigation of the vast biological data on potential metabolic drug targets and the drug chemistry currently available to prosecute those targets. Thus, this work provides a large-scale approach to ligand-based prediction of drug action in small molecule metabolism. PMID:19701464

  15. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments

    NASA Astrophysics Data System (ADS)

    Giannoni, Luca; Lange, Frédéric; Tachtsidis, Ilias

    2018-04-01

    Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.

  16. Fibrinogen signal transduction as a mediator and therapeutic target in inflammation: lessons from multiple sclerosis.

    PubMed

    Adams, R A; Schachtrup, C; Davalos, D; Tsigelny, I; Akassoglou, K

    2007-01-01

    The blood protein fibrinogen as a ligand for integrin and non-integrin receptors functions as the molecular nexus of coagulation, inflammation and immunity. Studies in animal models and in human disease have demonstrated that extravascular fibrinogen that is deposited in tissues upon vascular rupture is not merely a marker, but a mediator of diseases with an inflammatory component, such as rheumatoid arthritis, multiple sclerosis, sepsis, myocardial infarction and bacterial infection. The present article focuses on the recent discoveries of specific cellular targets and receptors for fibrinogen within tissues that have extended the role of fibrinogen from a coagulation factor to a regulator of inflammation and immunity. Fibrinogen has the potential for selective drug targeting that would target its proinflammatory properties without affecting its beneficial effects in hemostasis, since it interacts with different receptors to mediate blood coagulation and inflammation. Strategies to target receptors for fibrinogen and fibrin within the tissue microenvironment could reveal selective and disease-specific agents for therapeutic intervention in a variety of human diseases associated with fibrin deposition.

  17. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis

    PubMed Central

    Zeisel, Steven H.

    2013-01-01

    There are multiple identified mechanisms involved in energy metabolism, insulin resistance and adiposity, but there are here-to-fore unsuspected metabolic factors that also influence these processes. Studies in animal models suggest important links between choline/1-carbon metabolism and energy homeostasis. Rodents fed choline deficient diets become hypermetabolic. Mice with deletions in one of several different genes of choline metabolism have phenotypes that include increased metabolic rate, decreased body fat/lean mass ratio, increased insulin sensitivity, decreased ATP production by mitochondria, or decreased weight gain on a high fat diet. In addition, farmers have recognized that the addition of a metabolite of choline (betaine) to cattle and swine feed reduces body fat/lean mass ratio. Choline dietary intake in humans varies over a >three-fold range, and genetic variation exists that modifies individual requirements for this nutrient. Although there are some epidemiologic studies in humans suggesting a link between choline/1-carbon metabolism and energy metabolism, there have been no controlled studies in humans that were specifically designed to examine this relationship. PMID:23072856

  18. Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis?

    PubMed Central

    Robey, R.Brooks; Weisz, Judith; Kuemmerle, Nancy; Salzberg, Anna C.; Berg, Arthur; Brown, Dustin G.; Kubik, Laura; Palorini, Roberta; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Colacci, Annamaria; Mondello, Chiara; Raju, Jayadev; Woodrick, Jordan; Scovassi, A.Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K.; Amedei, Amedeo; Hamid, Roslida A.; Williams, Graeme P.; Lowe, Leroy; Meyer, Joel; Martin, Francis L.; Bisson, William H.; Chiaradonna, Ferdinando; Ryan, Elizabeth P.

    2015-01-01

    Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high throughput approaches to environmental risk assessment also do not directly address the metabolic causes or consequences of changes in gene expression. As such, there is a compelling need to establish common or complementary frameworks for further exploration that experimentally and conceptually consider the gestalt of cancer metabolism and its causal relationships to both carcinogenesis and the development of other cancer hallmarks. A literature review to identify environmentally relevant exposures unambiguously linked to both cancer development and dysregulated metabolism suggests major gaps in our understanding of exposure-associated carcinogenesis and metabolic reprogramming. Although limited evidence exists to support primary causal roles for metabolism in carcinogenesis, the universality of altered cancer metabolism underscores its fundamental biological importance, and multiple pleiomorphic, even dichotomous, roles for metabolism in promoting, antagonizing or otherwise enabling the

  19. Combining a nontargeted and targeted metabolomics approach to identify metabolic pathways significantly altered in polycystic ovary syndrome.

    PubMed

    Chang, Alice Y; Lalia, Antigoni Z; Jenkins, Gregory D; Dutta, Tumpa; Carter, Rickey E; Singh, Ravinder J; Nair, K Sreekumaran

    2017-06-01

    Polycystic ovary syndrome (PCOS) is a condition of androgen excess and chronic anovulation frequently associated with insulin resistance. We combined a nontargeted and targeted metabolomics approach to identify pathways and metabolites that distinguished PCOS from metabolic syndrome (MetS). Twenty obese women with PCOS were compared with 18 obese women without PCOS. Both groups met criteria for MetS but could not have diabetes mellitus or take medications that treat PCOS or affect lipids or insulin sensitivity. Insulin sensitivity was derived from the frequently sampled intravenous glucose tolerance test. A nontargeted metabolomics approach was performed on fasting plasma samples to identify differentially expressed metabolites, which were further evaluated by principal component and pathway enrichment analysis. Quantitative targeted metabolomics was then applied on candidate metabolites. Measured metabolites were tested for associations with PCOS and clinical variables by logistic and linear regression analyses. This multiethnic, obese sample was matched by age (PCOS, 37±6; MetS, 40±6years) and body mass index (BMI) (PCOS, 34.6±5.1; MetS, 33.7±5.2kg/m 2 ). Principal component analysis of the nontargeted metabolomics data showed distinct group separation of PCOS from MetS controls. From the subset of 385 differentially expressed metabolites, 22% were identified by accurate mass, resulting in 19 canonical pathways significantly altered in PCOS, including amino acid, lipid, steroid, carbohydrate, and vitamin D metabolism. Targeted metabolomics identified many essential amino acids, including branched-chain amino acids (BCAA) that were elevated in PCOS compared with MetS. PCOS was most associated with BCAA (P=.02), essential amino acids (P=.03), the essential amino acid lysine (P=.02), and the lysine metabolite α-aminoadipic acid (P=.02) in models adjusted for surrogate variables representing technical variation in metabolites. No significant differences between

  20. Combining a Nontargeted and Targeted Metabolomics Approach to Identify Metabolic Pathways Significantly Altered in Polycystic Ovary Syndrome

    PubMed Central

    Chang, Alice Y.; Lalia, Antigoni Z.; Jenkins, Gregory D.; Dutta, Tumpa; Carter, Rickey E.; Singh, Ravinder J.; Sreekumaran Nair, K.

    2017-01-01

    Objective Polycystic ovary syndrome (PCOS) is a condition of androgen excess and chronic anovulation frequently associated with insulin resistance. We combined a nontargeted and targeted metabolomics approach to identify pathways and metabolites that distinguished PCOS from metabolic syndrome (MetS). Methods Twenty obese women with PCOS were compared with 18 obese women without PCOS. Both groups met criteria for MetS but could not have diabetes mellitus or take medications that treat PCOS or affect lipids or insulin sensitivity. Insulin sensitivity was derived from the frequently sampled intravenous glucose tolerance test. A nontargeted metabolomics approach was performed on fasting plasma samples to identify differentially expressed metabolites, which were further evaluated by principal component and pathway enrichment analysis. Quantitative targeted metabolomics was then applied on candidate metabolites. Measured metabolites were tested for associations with PCOS and clinical variables by logistic and linear regression analyses. Results This multiethnic, obese sample was matched by age (PCOS, 37 ± 6; MetS, 40 ± 6 years) and body mass index (BMI) (PCOS, 34.6 ± 5.1; MetS, 33.7 ± 5.2 kg/m2). Principal component analysis of the nontargeted metabolomics data showed distinct group separation of PCOS from MetS controls. From the subset of 385 differentially expressed metabolites, 22% were identified by accurate mass, resulting in 19 canonical pathways significantly altered in PCOS, including amino acid, lipid, steroid, carbohydrate, and vitamin D metabolism. Targeted metabolomics identified many essential amino acids, including branched-chain amino acids (BCAA) that were elevated in PCOS compared with MetS. PCOS was most associated with BCAA (P = .02), essential amino acids (P = .03), the essential amino acid lysine (P = .02), and the lysine metabolite α-aminoadipic acid (P = .02) in models adjusted for surrogate variables representing technical variation in

  1. Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays

    PubMed Central

    Rampersad, Sephra N.

    2012-01-01

    Accurate prediction of the adverse effects of test compounds on living systems, detection of toxic thresholds, and expansion of experimental data sets to include multiple toxicity end-point analysis are required for any robust screening regime. Alamar Blue is an important redox indicator that is used to evaluate metabolic function and cellular health. The Alamar Blue bioassay has been utilized over the past 50 years to assess cell viability and cytotoxicity in a range of biological and environmental systems and in a number of cell types including bacteria, yeast, fungi, protozoa and cultured mammalian and piscine cells. It offers several advantages over other metabolic indicators and other cytotoxicity assays. However, as with any bioassay, suitability must be determined for each application and cell model. This review seeks to highlight many of the important considerations involved in assay use and design in addition to the potential pitfalls. PMID:23112716

  2. Observability of Plant Metabolic Networks Is Reflected in the Correlation of Metabolic Profiles.

    PubMed

    Schwahn, Kevin; Küken, Anika; Kliebenstein, Daniel J; Fernie, Alisdair R; Nikoloski, Zoran

    2016-10-01

    Understanding whether the functionality of a biological system can be characterized by measuring few selected components is key to targeted phenotyping techniques in systems biology. Methods from observability theory have proven useful in identifying sensor components that have to be measured to obtain information about the entire system. Yet, the extent to which the data profiles reflect the role of components in the observability of the system remains unexplored. Here we first identify the sensor metabolites in the model plant Arabidopsis (Arabidopsis thaliana) by employing state-of-the-art genome-scale metabolic networks. By using metabolic data profiles from a set of seven environmental perturbations as well as from natural variability, we demonstrate that the data profiles of sensor metabolites are more correlated than those of nonsensor metabolites. This pattern was confirmed with in silico generated metabolic profiles from a medium-size kinetic model of plant central carbon metabolism. Altogether, due to the small number of identified sensors, our study implies that targeted metabolite analyses may provide the vast majority of relevant information about plant metabolic systems. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. miR-150 exerts antileukemia activity in vitro and in vivo through regulating genes in multiple pathways

    PubMed Central

    Fang, Zhi Hong; Wang, Si Li; Zhao, Jin Tao; Lin, Zhi Juan; Chen, Lin Yan; Su, Rui; Xie, Si Ting; Carter, Bing Z; Xu, Bing

    2016-01-01

    MicroRNAs, a class of small noncoding RNAs, have been implicated to regulate gene expression in virtually all important biological processes. Although accumulating evidence demonstrates that miR-150, an important regulator in hematopoiesis, is deregulated in various types of hematopoietic malignancies, the precise mechanisms of miR-150 action are largely unknown. In this study, we found that miR-150 is downregulated in samples from patients with acute lymphoblastic leukemia, acute myeloid leukemia, and chronic myeloid leukemia, and normalized after patients achieved complete remission. Restoration of miR-150 markedly inhibited growth and induced apoptosis of leukemia cells, and reduced tumorigenicity in a xenograft leukemia murine model. Microarray analysis identified multiple novel targets of miR-150, which were validated by quantitative real-time PCR and luciferase reporter assay. Gene ontology and pathway analysis illustrated potential roles of these targets in small-molecule metabolism, transcriptional regulation, RNA metabolism, proteoglycan synthesis in cancer, mTOR signaling pathway, or Wnt signaling pathway. Interestingly, knockdown one of four miR-150 targets (EIF4B, FOXO4B, PRKCA, and TET3) showed an antileukemia activity similar to that of miR-150 restoration. Collectively, our study demonstrates that miR-150 functions as a tumor suppressor through multiple mechanisms in human leukemia and provides a rationale for utilizing miR-150 as a novel therapeutic agent for leukemia treatment. PMID:27899822

  4. MicroRNA-182 drives metastasis of primary sarcomas by targeting multiple genes

    PubMed Central

    Sachdeva, Mohit; Mito, Jeffrey K.; Lee, Chang-Lung; Zhang, Minsi; Li, Zhizhong; Dodd, Rebecca D.; Cason, David; Luo, Lixia; Ma, Yan; Van Mater, David; Gladdy, Rebecca; Lev, Dina C.; Cardona, Diana M.; Kirsch, David G.

    2014-01-01

    Metastasis causes most cancer deaths, but is incompletely understood. MicroRNAs can regulate metastasis, but it is not known whether a single miRNA can regulate metastasis in primary cancer models in vivo. We compared the expression of miRNAs in metastatic and nonmetastatic primary mouse sarcomas and found that microRNA-182 (miR-182) was markedly overexpressed in some tumors that metastasized to the lungs. By utilizing genetically engineered mice with either deletion of or overexpression of miR-182 in primary sarcomas, we discovered that deletion of miR-182 substantially decreased, while overexpression of miR-182 considerably increased, the rate of lung metastasis after amputation of the tumor-bearing limb. Additionally, deletion of miR-182 decreased circulating tumor cells (CTCs), while overexpression of miR-182 increased CTCs, suggesting that miR-182 regulates intravasation of cancer cells into the circulation. We identified 4 miR-182 targets that inhibit either the migration of tumor cells or the degradation of the extracellular matrix. Notably, restoration of any of these targets in isolation did not alter the metastatic potential of sarcoma cells injected orthotopically, but the simultaneous restoration of all 4 targets together substantially decreased the number of metastases. These results demonstrate that a single miRNA can regulate metastasis of primary tumors in vivo by coordinated regulation of multiple genes. PMID:25180607

  5. Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: pivotal role of MCL1.

    PubMed

    Gong, Jia-Nan; Khong, Tiffany; Segal, David; Yao, Yuan; Riffkin, Chris D; Garnier, Jean-Marc; Khaw, Seong Lin; Lessene, Guillaume; Spencer, Andrew; Herold, Marco J; Roberts, Andrew W; Huang, David C S

    2016-10-06

    New therapeutic targets are needed to address the poor prognosis of patients with high-risk multiple myeloma. Myeloma cells usually express a range of the prosurvival BCL2 proteins. To define the hierarchy of their relative importance for maintaining the survival of myeloma cells, we targeted each of them in a large panel of cell lines, using pharmacological inhibitors or gene editing or by peptide-based approaches, alone or in combination. The majority of well-established immortalized cell lines (17/25) or low-passage myeloma cell lines (5/7) are readily killed when MCL1 is targeted, even including those cell lines sensitive to BCL2 inhibition. Targeting MCL1 also constrained the growth of myeloma in vivo. We also identified a previously unrecognized subset of myeloma that is highly BCLXL-dependent, and has the potential for cotargeting MCL1 and BCLXL. As MCL1 is pivotal for maintaining survival of most myelomas, it should be prioritized for targeting in the clinic once high-quality, validated inhibitors become available. © 2016 by The American Society of Hematology.

  6. Multi-scale modularity and motif distributional effect in metabolic networks.

    PubMed

    Gao, Shang; Chen, Alan; Rahmani, Ali; Zeng, Jia; Tan, Mehmet; Alhajj, Reda; Rokne, Jon; Demetrick, Douglas; Wei, Xiaohui

    2016-01-01

    Metabolism is a set of fundamental processes that play important roles in a plethora of biological and medical contexts. It is understood that the topological information of reconstructed metabolic networks, such as modular organization, has crucial implications on biological functions. Recent interpretations of modularity in network settings provide a view of multiple network partitions induced by different resolution parameters. Here we ask the question: How do multiple network partitions affect the organization of metabolic networks? Since network motifs are often interpreted as the super families of evolved units, we further investigate their impact under multiple network partitions and investigate how the distribution of network motifs influences the organization of metabolic networks. We studied Homo sapiens, Saccharomyces cerevisiae and Escherichia coli metabolic networks; we analyzed the relationship between different community structures and motif distribution patterns. Further, we quantified the degree to which motifs participate in the modular organization of metabolic networks.

  7. Structural homologies between phenformin, lipitor and gleevec aim the same metabolic oncotarget in leukemia and melanoma.

    PubMed

    Somlyai, Gábor; Collins, T Que; Meuillet, Emmanuelle J; Hitendra, Patel; D'Agostino, Dominic P; Boros, László G

    2017-07-25

    Phenformin's recently demonstrated efficacy in melanoma and Gleevec's demonstrated anti-proliferative action in chronic myeloid leukemia may lie within these drugs' significant pharmacokinetics, pharmacodynamics and structural homologies, which are reviewed herein. Gleevec's success in turning a fatal leukemia into a manageable chronic disease has been trumpeted in medical, economic, political and social circles because it is considered the first successful targeted therapy. Investments have been immense in omics analyses and while in some cases they greatly helped the management of patients, in others targeted therapies failed to achieve clinically stable recurrence-free disease course or to substantially extend survival. Nevertheless protein kinase controlling approaches have persisted despite early warnings that the targeted genomics narrative is overblown. Experimental and clinical observations with Phenformin suggest an alternative explanation for Gleevec's mode of action. Using 13C-guided precise flux measurements, a comparative multiple cell line study demonstrated the drug's downstream impact on submolecular fatty acid processing metabolic events that occurred independent of Gleevec's molecular target. Clinical observations that hyperlipidemia and diabetes are both reversed in mice and in patients taking Gleevec support the drugs' primary metabolic targets by biguanides and statins. This is evident by structural data demonstrating that Gleevec shows pyridine- and phenyl-guanidine homology with Phenformin and identical phenylcarbamoyl structural and ligand binding homology with Lipitor. The misunderstood mechanism of action of Gleevec is emblematic of the pervasive flawed reasoning that genomic analysis will lead to targeted, personalized diagnosis and therapy. The alternative perspective for Gleevec's mode of action may turn oncotargets towards metabolic channel reaction architectures in leukemia and melanoma, as well as in other cancers.

  8. FBW7 (F-box and WD Repeat Domain-Containing 7) Negatively Regulates Glucose Metabolism by Targeting the c-Myc/TXNIP (Thioredoxin-Binding Protein) Axis in Pancreatic Cancer.

    PubMed

    Ji, Shunrong; Qin, Yi; Liang, Chen; Huang, Run; Shi, Si; Liu, Jiang; Jin, Kaizhou; Liang, Dingkong; Xu, Wenyan; Zhang, Bo; Liu, Liang; Liu, Chen; Xu, Jin; Ni, Quanxing; Chiao, Paul J; Li, Min; Yu, Xianjun

    2016-08-01

    FBW7 functions as a tumor suppressor by targeting oncoproteins for destruction. We previously reported that the oncogenic mutation of KRAS inhibits the tumor suppressor FBW7 via the Ras-Raf-MEK-ERK pathway, which facilitates the proliferation and survival of pancreatic cancer cells. However, the underlying mechanism by which FBW7 suppresses pancreatic cancer remains unexplored. Here, we sought to elucidate the function of FBW7 in pancreatic cancer glucose metabolism and malignancy. Combining maximum standardized uptake value (SUVmax), which was obtained preoperatively via a PET/CT scan, with immunohistochemistry staining, we analyzed the correlation between SUVmax and FBW7 expression in pancreatic cancer tissues. The impact of FBW7 on glucose metabolism was further validated in vitro and in vivo Finally, gene expression profiling was performed to identify core signaling pathways. The expression level of FBW7 was negatively associated with SUVmax in pancreatic cancer patients. FBW7 significantly suppressed glucose metabolism in pancreatic cancer cells in vitro Using a xenograft model, MicroPET/CT imaging results indicated that FBW7 substantially decreased 18F-fluorodeoxyglucose ((18)F-FDG) uptake in xenograft tumors. Gene expression profiling data revealed that TXNIP, a negative regulator of metabolic transformation, was a downstream target of FBW7. Mechanistically, we demonstrated that TXNIP was a c-Myc target gene and that FBW7 regulated TXNIP expression in a c-Myc-dependent manner. Our results thus reveal that FBW7 serves as a negative regulator of glucose metabolism through regulation of the c-Myc/TXNIP axis in pancreatic cancer. Clin Cancer Res; 22(15); 3950-60. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Metabolic Diet App Suite for inborn errors of amino acid metabolism.

    PubMed

    Ho, Gloria; Ueda, Keiko; Houben, Roderick F A; Joa, Jeff; Giezen, Alette; Cheng, Barbara; van Karnebeek, Clara D M

    2016-03-01

    An increasing number of rare inborn errors of metabolism (IEMs) are amenable to targeted metabolic nutrition therapy. Daily adherence is important to attain metabolic control and prevent organ damage. This is challenging however, given the lack of information of disorder specific nutrient content of foods, the limited availability and cost of specialty products as well as difficulties in reliable calculation and tracking of dietary intake and targets. To develop apps for all inborn errors of amino acid metabolism for which the mainstay of treatment is a medical diet, and obtain patient and family feedback throughout the process to incorporate this into subsequent versions. The Metabolic Diet App Suite was created with input from health care professionals as a free, user-friendly, online tool for both mobile devices and desktop computers (http://www.metabolicdietapp.org) for 15 different IEMs. General information is provided for each IEM with links to useful online resources. Nutrient information is based on the MetabolicPro™, a North American food database compiled by the Genetic Metabolic Dietitians International (GMDI) Technology committee. After user registration, a personalized dashboard and management plan including specific nutrient goals are created. Each Diet App has a user-friendly interface and the functions include: nutrient intake counts, adding your own foods and homemade recipes and, managing a daily food diary. Patient and family feedback was overall positive and specific suggestions were used to further improve the App Suite. The Metabolic Diet App Suite aids individuals affected by IEMs to track and plan their meals. Future research should evaluate its impact on patient adherence, metabolic control, quality of life and health-related outcomes. The Suite will be updated and expanded to Apps for other categories of IEMs. Finally, this Suite is a support tool only, and does not replace medical/metabolic nutrition professional advice. Copyright

  10. Target-based calibration method for multifields of view measurement using multiple stereo digital image correlation systems

    NASA Astrophysics Data System (ADS)

    Dong, Shuai; Yu, Shanshan; Huang, Zheng; Song, Shoutan; Shao, Xinxing; Kang, Xin; He, Xiaoyuan

    2017-12-01

    Multiple digital image correlation (DIC) systems can enlarge the measurement field without losing effective resolution in the area of interest (AOI). However, the results calculated in substereo DIC systems are located in its local coordinate system in most cases. To stitch the data obtained by each individual system, a data merging algorithm is presented in this paper for global measurement of multiple stereo DIC systems. A set of encoded targets is employed to assist the extrinsic calibration, of which the three-dimensional (3-D) coordinates are reconstructed via digital close range photogrammetry. Combining the 3-D targets with precalibrated intrinsic parameters of all cameras, the extrinsic calibration is significantly simplified. After calculating in substereo DIC systems, all data can be merged into a universal coordinate system based on the extrinsic calibration. Four stereo DIC systems are applied to a four point bending experiment of a steel reinforced concrete beam structure. Results demonstrate high accuracy for the displacement data merging in the overlapping field of views (FOVs) and show feasibility for the distributed FOVs measurement.

  11. Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum.

    PubMed

    Yu, Qin; Abdallah, Ibrahim; Han, Heping; Owen, Mechelle; Powles, Stephen

    2009-09-01

    This study investigates mechanisms of multiple resistance to glyphosate, acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS)-inhibiting herbicides in two Lolium rigidum populations from Australia. When treated with glyphosate, susceptible (S) plants accumulated 4- to 6-fold more shikimic acid than resistant (R) plants. The resistant plants did not have the known glyphosate resistance endowing mutation of 5-enolpyruvylshikimate-3 phosphate synthase (EPSPS) at Pro-106, nor was there over-expression of EPSPS in either of the R populations. However, [(14)C]-glyphosate translocation experiments showed that the R plants in both populations have altered glyphosate translocation patterns compared to the S plants. The R plants showed much less glyphosate translocation to untreated young leaves, but more to the treated leaf tip, than did the S plants. Sequencing of the carboxyl transferase domain of the plastidic ACCase gene revealed no resistance endowing amino acid substitutions in the two R populations, and the ALS in vitro inhibition assay demonstrated herbicide-sensitive ALS in the ALS R population (WALR70). By using the cytochrome P450 inhibitor malathion and amitrole with ALS and ACCase herbicides, respectively, we showed that malathion reverses chlorsulfuron resistance and amitrole reverses diclofop resistance in the R population examined. Therefore, we conclude that multiple glyphosate, ACCase and ALS herbicide resistance in the two R populations is due to the presence of distinct non-target site based resistance mechanisms for each herbicide. Glyphosate resistance is due to reduced rates of glyphosate translocation, and resistance to ACCase and ALS herbicides is likely due to enhanced herbicide metabolism involving different cytochrome P450 enzymes.

  12. MYC and metabolism on the path to cancer

    PubMed Central

    Hsieh, Annie L.; Walton, Zandra E.; Altman, Brian J.; Stine, Zachary E.; Dang, Chi V.

    2015-01-01

    The MYC proto-oncogene is frequently deregulated in human cancers, activating genetic programs that orchestrate biological processes to promote growth and proliferation. Altered metabolism characterized by heightened nutrients uptake, enhanced glycolysis and glutaminolysis and elevated fatty acid and nucleotide synthesis is the hallmark of MYC-driven cancer. Recent evidence strongly suggests that Myc-dependent metabolic reprogramming is critical for tumorigenesis, which could be attenuated by targeting specific metabolic pathways using small drug-like molecules. Understanding the complexity of MYC-mediated metabolic re-wiring in cancers as well as how MYC cooperates with other metabolic drivers such as mammalian target of rapamycin (mTOR) will provide translational opportunities for cancer therapy. PMID:26277543

  13. Universal surface-enhanced Raman scattering amplification detector for ultrasensitive detection of multiple target analytes.

    PubMed

    Zheng, Jing; Hu, Yaping; Bai, Junhui; Ma, Cheng; Li, Jishan; Li, Yinhui; Shi, Muling; Tan, Weihong; Yang, Ronghua

    2014-02-18

    Up to now, the successful fabrication of efficient hot-spot substrates for surface-enhanced Raman scattering (SERS) remains an unsolved problem. To address this issue, we describe herein a universal aptamer-based SERS biodetection approach that uses a single-stranded DNA as a universal trigger (UT) to induce SERS-active hot-spot formation, allowing, in turn, detection of a broad range of targets. More specifically, interaction between the aptamer probe and its target perturbs a triple-helix aptamer/UT structure in a manner that activates a hybridization chain reaction (HCR) among three short DNA building blocks that self-assemble into a long DNA polymer. The SERS-active hot-spots are formed by conjugating 4-aminobenzenethiol (4-ABT)-encoded gold nanoparticles with the DNA polymer through a specific Au-S bond. As proof-of-principle, we used this approach to quantify multiple target analytes, including thrombin, adenosine, and CEM cancer cells, achieving lowest limit of detection values of 18 pM, 1.5 nM, and 10 cells/mL, respectively. As a universal SERS detector, this prototype can be applied to many other target analytes through the use of suitable DNA-functional partners, thus inspiring new designs and applications of SERS for bioanalysis.

  14. Interpolating between random walks and optimal transportation routes: Flow with multiple sources and targets

    NASA Astrophysics Data System (ADS)

    Guex, Guillaume

    2016-05-01

    In recent articles about graphs, different models proposed a formalism to find a type of path between two nodes, the source and the target, at crossroads between the shortest-path and the random-walk path. These models include a freely adjustable parameter, allowing to tune the behavior of the path toward randomized movements or direct routes. This article presents a natural generalization of these models, namely a model with multiple sources and targets. In this context, source nodes can be viewed as locations with a supply of a certain good (e.g. people, money, information) and target nodes as locations with a demand of the same good. An algorithm is constructed to display the flow of goods in the network between sources and targets. With again a freely adjustable parameter, this flow can be tuned to follow routes of minimum cost, thus displaying the flow in the context of the optimal transportation problem or, by contrast, a random flow, known to be similar to the electrical current flow if the random-walk is reversible. Moreover, a source-targetcoupling can be retrieved from this flow, offering an optimal assignment to the transportation problem. This algorithm is described in the first part of this article and then illustrated with case studies.

  15. On metabolic reprogramming and tumor biology: A comprehensive survey of metabolism in breast cancer

    PubMed Central

    Penkert, Judith; Ripperger, Tim; Schieck, Maximilian; Schlegelberger, Brigitte; Steinemann, Doris; Illig, Thomas

    2016-01-01

    Altered metabolism in tumor cells has been a focus of cancer research for as long as a century but has remained controversial and vague due to an inhomogeneous overall picture. Accumulating genomic, metabolomic, and lastly panomic data as well as bioenergetics studies of the past few years enable a more comprehensive, systems-biologic approach promoting deeper insight into tumor biology and challenging hitherto existing models of cancer bioenergetics. Presenting a compendium on breast cancer-specific metabolome analyses performed thus far, we review and compile currently known aspects of breast cancer biology into a comprehensive network, elucidating previously dissonant issues of cancer metabolism. As such, some of the aspects critically discussed in this review include the dynamic interplay or metabolic coupling between cancer (stem) cells and cancer-associated fibroblasts, the intratumoral and intertumoral heterogeneity and plasticity of cancer cell metabolism, the existence of distinct metabolic tumor compartments in need of separate yet simultaneous therapeutic targeting, the reliance of cancer cells on oxidative metabolism and mitochondrial power, and the role of pro-inflammatory, pro-tumorigenic stromal conditioning. Comprising complex breast cancer signaling networks as well as combined metabolomic and genomic data, we address metabolic consequences of mutations in tumor suppressor genes and evaluate their contribution to breast cancer predisposition in a germline setting, reasoning for distinct personalized preventive and therapeutic measures. The review closes with a discussion on central root mechanisms of tumor cell metabolism and rate-limiting steps thereof, introducing essential strategies for therapeutic targeting. PMID:27590516

  16. Fat and Sugar Metabolism During Exercise in Patients With Metabolic Myopathy

    ClinicalTrials.gov

    2017-08-31

    Metabolism, Inborn Errors; Lipid Metabolism, Inborn Errors; Carbohydrate Metabolism, Inborn Errors; Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency; Glycogenin-1 Deficiency (Glycogen Storage Disease Type XV); Carnitine Palmitoyl Transferase 2 Deficiency; VLCAD Deficiency; Medium-chain Acyl-CoA Dehydrogenase Deficiency; Multiple Acyl-CoA Dehydrogenase Deficiency; Carnitine Transporter Deficiency; Neutral Lipid Storage Disease; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Muscle Phosphofructokinase Deficiency; Phosphoglucomutase 1 Deficiency; Phosphoglycerate Mutase Deficiency; Phosphoglycerate Kinase Deficiency; Phosphorylase Kinase Deficiency; Beta Enolase Deficiency; Lactate Dehydrogenase Deficiency; Glycogen Synthase Deficiency

  17. Glutamate metabolism in HIV-1 infected macrophages: Role of HIV-1 Vpr.

    PubMed

    Datta, Prasun K; Deshmane, Satish; Khalili, Kamel; Merali, Salim; Gordon, John C; Fecchio, Chiara; Barrero, Carlos A

    2016-09-01

    HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages. We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation. The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages. Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS.

  18. Targeting Metabolic Survival Pathways in Lung Cancer via Combination Therapy

    DTIC Science & Technology

    2014-06-01

    B1, non-small cell lung cancer, glutamine metabolism, biguanides 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF...combination therapy (months 15-16) Task 5. In vivo testing of biguanide and glutamine metabolism inhibitors in xenograft models of LKB1-proficient and...combination therapies in xenograft mice (months 12-15) IACUC and ACURO approval have been granted for in vivo xenograft studies, which will commence in

  19. Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes.

    PubMed

    Zhang, Yixi; Yang, Yuanxue; Sun, Huahua; Liu, Zewen

    2016-12-01

    Target insensitivity contributing to imidacloprid resistance in Nilaparvata lugens has been reported to occur either through point mutations or quantitative change in nicotinic acetylcholine receptors (nAChRs). However, the metabolic resistance, especially the enhanced detoxification by P450 enzymes, is the major mechanism in fields. From one field-originated N. lugens population, an imidacloprid resistant strain G25 and a susceptible counterpart S25 were obtained to analyze putative roles of P450s in imidacloprid resistance. Compared to S25, over-expression of twelve P450 genes was observed in G25, with ratios above 5.0-fold for CYP6AY1, CYP6ER1, CYP6CS1, CYP6CW1, CYP4CE1 and CYP425B1. RNAi against these genes in vivo and recombinant tests on the corresponding proteins in vitro revealed that four P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, played important roles in imidacloprid resistance. The importance of the four P450s was not equal at different stages of resistance development based on their over-expression levels, among which CYP6ER1 was important at all stages, and that the others might only contribute at certain stages. The results indicated that, to completely reflect roles of P450s in insecticide resistances, their over-expression in resistant individuals, expression changes at the stages of resistance development, and catalytic activities against insecticides should be considered. In this study, multiple P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, have proven to be important in imidacloprid resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. When things don't add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing.

    PubMed

    Galic, Nika; Sullivan, Lauren L; Grimm, Volker; Forbes, Valery E

    2018-04-01

    Ecosystems are exposed to multiple stressors which can compromise functioning and service delivery. These stressors often co-occur and interact in different ways which are not yet fully understood. Here, we applied a population model representing a freshwater amphipod feeding on leaf litter in forested streams. We simulated impacts of hypothetical stressors, individually and in pairwise combinations that target the individuals' feeding, maintenance, growth and reproduction. Impacts were quantified by examining responses at three levels of biological organisation: individual-level body sizes and cumulative reproduction, population-level abundance and biomass and ecosystem-level leaf litter decomposition. Interactive effects of multiple stressors at the individual level were mostly antagonistic, that is, less negative than expected. Most population- and ecosystem-level responses to multiple stressors were stronger than expected from an additive model, that is, synergistic. Our results suggest that across levels of biological organisation responses to multiple stressors are rarely only additive. We suggest methods for efficiently quantifying impacts of multiple stressors at different levels of biological organisation. © 2018 John Wiley & Sons Ltd/CNRS.

  1. Paternal epigenetic programming: evolving metabolic disease risk.

    PubMed

    Hur, Suzy S J; Cropley, Jennifer E; Suter, Catherine M

    2017-04-01

    Parental health or exposures can affect the lifetime health outcomes of offspring, independently of inherited genotypes. Such 'epigenetic' effects occur over a broad range of environmental stressors, including defects in parental metabolism. Although maternal metabolic effects are well documented, it has only recently been established that that there is also an independent paternal contribution to long-term metabolic health. Both paternal undernutrition and overnutrition can induce metabolic phenotypes in immediate offspring, and in some cases, the induced phenotype can affect multiple generations, implying inheritance of an acquired trait. The male lineage transmission of metabolic disease risk in these cases implicates a heritable factor carried by sperm. Sperm-based transmission provides a tractable system to interrogate heritable epigenetic factors influencing metabolism, and as detailed here, animal models of paternal programming have already provided some significant insights. Here, we review the evidence for paternal programming of metabolism in humans and animal models, and the available evidence on potential underlying mechanisms. Programming by paternal metabolism can be observed in multiple species across animal phyla, suggesting that this phenomenon may have a unique evolutionary significance. © 2017 Society for Endocrinology.

  2. The Emerging Role of Skeletal Muscle Metabolism as a Biological Target and Cellular Regulator of Cancer-Induced Muscle Wasting

    PubMed Central

    Carson, James A.; Hardee, Justin P.; VanderVeen, Brandon N.

    2015-01-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle’s metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function regulation, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326

  3. Planning paths to multiple targets: memory involvement and planning heuristics in spatial problem solving.

    PubMed

    Wiener, J M; Ehbauer, N N; Mallot, H A

    2009-09-01

    For large numbers of targets, path planning is a complex and computationally expensive task. Humans, however, usually solve such tasks quickly and efficiently. We present experiments studying human path planning performance and the cognitive processes and heuristics involved. Twenty-five places were arranged on a regular grid in a large room. Participants were repeatedly asked to solve traveling salesman problems (TSP), i.e., to find the shortest closed loop connecting a start location with multiple target locations. In Experiment 1, we tested whether humans employed the nearest neighbor (NN) strategy when solving the TSP. Results showed that subjects outperform the NN-strategy, suggesting that it is not sufficient to explain human route planning behavior. As a second possible strategy we tested a hierarchical planning heuristic in Experiment 2, demonstrating that participants first plan a coarse route on the region level that is refined during navigation. To test for the relevance of spatial working memory (SWM) and spatial long-term memory (LTM) for planning performance and the planning heuristics applied, we varied the memory demands between conditions in Experiment 2. In one condition the target locations were directly marked, such that no memory was required; a second condition required participants to memorize the target locations during path planning (SWM); in a third condition, additionally, the locations of targets had to retrieved from LTM (SWM and LTM). Results showed that navigation performance decreased with increasing memory demands while the dependence on the hierarchical planning heuristic increased.

  4. Different predictors of multiple-target search accuracy between nonprofessional and professional visual searchers.

    PubMed

    Biggs, Adam T; Mitroff, Stephen R

    2014-01-01

    Visual search, locating target items among distractors, underlies daily activities ranging from critical tasks (e.g., looking for dangerous objects during security screening) to commonplace ones (e.g., finding your friends in a crowded bar). Both professional and nonprofessional individuals conduct visual searches, and the present investigation is aimed at understanding how they perform similarly and differently. We administered a multiple-target visual search task to both professional (airport security officers) and nonprofessional participants (members of the Duke University community) to determine how search abilities differ between these populations and what factors might predict accuracy. There were minimal overall accuracy differences, although the professionals were generally slower to respond. However, the factors that predicted accuracy varied drastically between groups; variability in search consistency-how similarly an individual searched from trial to trial in terms of speed-best explained accuracy for professional searchers (more consistent professionals were more accurate), whereas search speed-how long an individual took to complete a search when no targets were present-best explained accuracy for nonprofessional searchers (slower nonprofessionals were more accurate). These findings suggest that professional searchers may utilize different search strategies from those of nonprofessionals, and that search consistency, in particular, may provide a valuable tool for enhancing professional search accuracy.

  5. Targeting the sugar metabolism of tumors with a first-in-class 6-phosphofructo-2-kinase (PFKFB4) inhibitor.

    PubMed

    Chesney, Jason; Clark, Jennifer; Lanceta, Lilibeth; Trent, John O; Telang, Sucheta

    2015-07-20

    Human tumors exhibit increased glucose uptake and metabolism as a result of high demand for ATP and anabolic substrates and this metabolotype is a negative prognostic indicator for survival. Recent studies have demonstrated that cancer cells from several tissue origins and genetic backgrounds require the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4), a regulatory enzyme that synthesizes an allosteric activator of glycolysis, fructose-2,6-bisphosphate. We report the discovery of a first-in-class PFKFB4 inhibitor, 5-(n-(8-methoxy-4-quinolyl)amino)pentyl nitrate (5MPN), using structure-based virtual computational screening. We find that 5MPN is a selective inhibitor of PFKFB4 that suppresses the glycolysis and proliferation of multiple human cancer cell lines but not non-transformed epithelial cells in vitro. Importantly, 5MPN has high oral bioavailability and per os administration of a non-toxic dose of 5MPN suppresses the glucose metabolism and growth of tumors in mice.

  6. The metabolic enzyme fructose-1,6-bisphosphate aldolase acts as a transcriptional regulator in pathogenic Francisella.

    PubMed

    Ziveri, Jason; Tros, Fabiola; Guerrera, Ida Chiara; Chhuon, Cerina; Audry, Mathilde; Dupuis, Marion; Barel, Monique; Korniotis, Sarantis; Fillatreau, Simon; Gales, Lara; Cahoreau, Edern; Charbit, Alain

    2017-10-11

    The enzyme fructose-bisphosphate aldolase occupies a central position in glycolysis and gluconeogenesis pathways. Beyond its housekeeping role in metabolism, fructose-bisphosphate aldolase has been involved in additional functions and is considered as a potential target for drug development against pathogenic bacteria. Here, we address the role of fructose-bisphosphate aldolase in the bacterial pathogen Francisella novicida. We demonstrate that fructose-bisphosphate aldolase is important for bacterial multiplication in macrophages in the presence of gluconeogenic substrates. In addition, we unravel a direct role of this metabolic enzyme in transcription regulation of genes katG and rpoA, encoding catalase and an RNA polymerase subunit, respectively. We propose a model in which fructose-bisphosphate aldolase participates in the control of host redox homeostasis and the inflammatory immune response.The enzyme fructose-bisphosphate aldolase (FBA) plays central roles in glycolysis and gluconeogenesis. Here, Ziveri et al. show that FBA of the pathogen Francisella novicida acts, in addition, as a transcriptional regulator and is important for bacterial multiplication in macrophages.

  7. MRPrimerW: a tool for rapid design of valid high-quality primers for multiple target qPCR experiments

    PubMed Central

    Kim, Hyerin; Kang, NaNa; An, KyuHyeon; Koo, JaeHyung; Kim, Min-Soo

    2016-01-01

    Design of high-quality primers for multiple target sequences is essential for qPCR experiments, but is challenging due to the need to consider both homology tests on off-target sequences and the same stringent filtering constraints on the primers. Existing web servers for primer design have major drawbacks, including requiring the use of BLAST-like tools for homology tests, lack of support for ranking of primers, TaqMan probes and simultaneous design of primers against multiple targets. Due to the large-scale computational overhead, the few web servers supporting homology tests use heuristic approaches or perform homology tests within a limited scope. Here, we describe the MRPrimerW, which performs complete homology testing, supports batch design of primers for multi-target qPCR experiments, supports design of TaqMan probes and ranks the resulting primers to return the top-1 best primers to the user. To ensure high accuracy, we adopted the core algorithm of a previously reported MapReduce-based method, MRPrimer, but completely redesigned it to allow users to receive query results quickly in a web interface, without requiring a MapReduce cluster or a long computation. MRPrimerW provides primer design services and a complete set of 341 963 135 in silico validated primers covering 99% of human and mouse genes. Free access: http://MRPrimerW.com. PMID:27154272

  8. Imaging metabolic heterogeneity in cancer.

    PubMed

    Sengupta, Debanti; Pratx, Guillem

    2016-01-06

    As our knowledge of cancer metabolism has increased, it has become apparent that cancer metabolic processes are extremely heterogeneous. The reasons behind this heterogeneity include genetic diversity, the existence of multiple and redundant metabolic pathways, altered microenvironmental conditions, and so on. As a result, methods in the clinic and beyond have been developed in order to image and study tumor metabolism in the in vivo and in vitro regimes. Both regimes provide unique advantages and challenges, and may be used to provide a picture of tumor metabolic heterogeneity that is spatially and temporally comprehensive. Taken together, these methods may hold the key to appropriate cancer diagnoses and treatments in the future.

  9. ERRα: a metabolic function for the oldest orphan

    PubMed Central

    Villena, Josep A.; Kralli, Anastasia

    2009-01-01

    Estrogen receptor related receptor (ERR)α was one of the first identified (1988) orphan nuclear receptors. Many of the orphan receptors identified after ERRα were deorphanized in a timely manner and appreciated as key transcriptional regulators of metabolic pathways. ERRα, however, remains an orphan. Nevertheless, recent studies have defined regulatory mechanisms and transcriptional targets of ERRα, allowing this receptor to join ranks with other nuclear receptors that control metabolism. Notably, mice lacking ERRα show defects when challenged with stressors that require a ‘shift of gears’ in energy metabolism, such as exposure to cold, cardiac overload or infection. These findings establish the importance of ERRα for adaptive energy metabolism, and suggest that strategies targeting ERRα may be useful in fighting metabolic diseases. PMID:18778951

  10. Apolipoprotein C-III in triglyceride-rich lipoprotein metabolism.

    PubMed

    Ramms, Bastian; Gordts, Philip L S M

    2018-06-01

    Apolipoprotein (apo) C-III is a key player in triglyceride-rich lipoprotein metabolism and strongly associated with elevated plasma triglyceride levels. Several new studies added important insights on apoC-III and its physiological function confirming its promise as a valid therapeutic target. APOC3 is expressed in liver and intestine and regulates triglyceride-rich lipoprotein (TRL) catabolism and anabolism. The transcriptional regulation in both organs requires different regulatory elements. Clinical and preclinical studies established that apoC-III raises plasma triglyceride levels predominantly by inhibiting hepatic TRL clearance. Mechanistic insights into missense variants indicate accelerated renal clearance of apoC-III variants resulting in enhanced TRL catabolism. In contrast, an APOC3 gain-of-function variant enhances de novo lipogenesis and hepatic TRL production. Multiple studies confirmed the correlation between increased apoC-III levels and cardiovascular disease. This has opened up new therapeutic avenues allowing targeting of specific apoC-III properties in triglyceride metabolism. Novel in vivo models and APOC3 missense variants revealed unique mechanisms by which apoC-III inhibits TRL catabolism. Clinical trials with Volanesorsen, an APOC3 antisense oligonucleotide, report very promising lipid-lowering outcomes. However, future studies will need to address if acute apoC-III lowering will have the same clinical benefits as a life-long reduction.

  11. Targeting MUC1-C suppresses polycomb repressive complex 1 in multiple myeloma.

    PubMed

    Tagde, Ashujit; Markert, Tahireh; Rajabi, Hasan; Hiraki, Masayuki; Alam, Maroof; Bouillez, Audrey; Avigan, David; Anderson, Kenneth; Kufe, Donald

    2017-09-19

    The polycomb repressive complex 1 (PRC1) includes the BMI1, RING1 and RING2 proteins. BMI1 is required for survival of multiple myeloma (MM) cells. The MUC1-C oncoprotein is aberrantly expressed by MM cells, activates MYC and is also necessary for MM cell survival. The present studies show that targeting MUC1-C with (i) stable and inducible silencing and CRISPR/Cas9 editing and (ii) the pharmacologic inhibitor GO-203, which blocks MUC1-C function, downregulates BMI1, RING1 and RING2 expression. The results demonstrate that MUC1-C drives BMI1 transcription by a MYC-dependent mechanism. MUC1-C thus promotes MYC occupancy on the BMI1 promoter and thereby activates BMI1 expression. We also show that the MUC1-C→MYC pathway induces RING2 expression. Moreover, in contrast to BMI1 and RING2, we found that MUC1-C drives RING1 by an NF-κB p65-dependent mechanism. Targeting MUC1-C and thereby the suppression of these key PRC1 proteins was associated with downregulation of the PRC1 E3 ligase activity as evidenced by decreases in ubiquitylation of histone H2A. Targeting MUC1-C also resulted in activation of the PRC1-repressed tumor suppressor genes, PTEN, CDNK2A and BIM . These findings identify a heretofore unrecognized role for MUC1-C in the epigenetic regulation of MM cells.

  12. Mechanisms of metabolic memory and renal hypoxia as a therapeutic target in diabetic kidney disease.

    PubMed

    Hirakawa, Yosuke; Tanaka, Tetsuhiro; Nangaku, Masaomi

    2017-05-01

    Diabetic kidney disease (DKD) is a worldwide public health problem. The definition of DKD is under discussion. Although the term DKD was originally defined as 'kidney disease specific to diabetes,' DKD frequently means chronic kidney disease with diabetes mellitus and includes not only classical diabetic nephropathy, but also kidney dysfunction as a result of nephrosclerosis and other causes. Metabolic memory plays a crucial role in the progression of various complications of diabetes, including DKD. The mechanisms of metabolic memory in DKD are supposed to include advanced glycation end-products, deoxyribonucleic acid methylation, histone modifications and non-coding ribonucleic acid including micro ribonucleic acid. Regardless of the presence of diabetes mellitus, the final common pathway in chronic kidney disease is chronic kidney hypoxia, which influences epigenetic processes, including deoxyribonucleic acid methylation, histone modification, and conformational changes in micro ribonucleic acid and chromatin. Therefore, hypoxia and oxidative stress are appropriate targets of therapies against DKD. Prolyl hydroxylase domain inhibitor enhances the defensive mechanisms against hypoxia. Bardoxolone methyl protects against oxidative stress, and can even reverse impaired renal function; a phase 2 trial with considerable attention to heart complications is currently ongoing in Japan. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  13. Teaching the basics of cancer metabolism: Developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism.

    PubMed

    Kalyanaraman, Balaraman

    2017-08-01

    This review of the basics of cancer metabolism focuses on exploiting the metabolic differences between normal and cancer cells. The first part of the review covers the different metabolic pathways utilized in normal cells to generate cellular energy, or ATP, and the glycolytic intermediates required to build the cellular machinery. The second part of the review discusses aerobic glycolysis, or the Warburg effect, and the metabolic reprogramming involving glycolysis, tricarboxylic acid cycle, and glutaminolysis in the context of developing targeted inhibitors in cancer cells. Finally, the selective targeting of cancer mitochondrial metabolism using positively charged lipophilic compounds as potential therapeutics and their ability to mitigate the toxic side effects of conventional chemotherapeutics in normal cells are discussed. I hope this graphical review will be useful in helping undergraduate, graduate, and medical students understand how investigating the basics of cancer cell metabolism could provide new insight in developing potentially new anticancer treatment strategies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Systematic identification of genes involved in metabolic acid stress resistance in yeast and their potential as cancer targets.

    PubMed

    Shin, John J; Aftab, Qurratulain; Austin, Pamela; McQueen, Jennifer A; Poon, Tak; Li, Shu Chen; Young, Barry P; Roskelley, Calvin D; Loewen, Christopher J R

    2016-09-01

    A hallmark of all primary and metastatic tumours is their high rate of glucose uptake and glycolysis. A consequence of the glycolytic phenotype is the accumulation of metabolic acid; hence, tumour cells experience considerable intracellular acid stress. To compensate, tumour cells upregulate acid pumps, which expel the metabolic acid into the surrounding tumour environment, resulting in alkalization of intracellular pH and acidification of the tumour microenvironment. Nevertheless, we have only a limited understanding of the consequences of altered intracellular pH on cell physiology, or of the genes and pathways that respond to metabolic acid stress. We have used yeast as a genetic model for metabolic acid stress with the rationale that the metabolic changes that occur in cancer that lead to intracellular acid stress are likely fundamental. Using a quantitative systems biology approach we identified 129 genes required for optimal growth under conditions of metabolic acid stress. We identified six highly conserved protein complexes with functions related to oxidative phosphorylation (mitochondrial respiratory chain complex III and IV), mitochondrial tRNA biosynthesis [glutamyl-tRNA(Gln) amidotransferase complex], histone methylation (Set1C-COMPASS), lysosome biogenesis (AP-3 adapter complex), and mRNA processing and P-body formation (PAN complex). We tested roles for two of these, AP-3 adapter complex and PAN deadenylase complex, in resistance to acid stress using a myeloid leukaemia-derived human cell line that we determined to be acid stress resistant. Loss of either complex inhibited growth of Hap1 cells at neutral pH and caused sensitivity to acid stress, indicating that AP-3 and PAN complexes are promising new targets in the treatment of cancer. Additionally, our data suggests that tumours may be genetically sensitized to acid stress and hence susceptible to acid stress-directed therapies, as many tumours accumulate mutations in mitochondrial respiratory chain

  15. Technical Note: Using k-means clustering to determine the number and position of isocenters in MLC-based multiple target intracranial radiosurgery.

    PubMed

    Yock, Adam D; Kim, Gwe-Ya

    2017-09-01

    To present the k-means clustering algorithm as a tool to address treatment planning considerations characteristic of stereotactic radiosurgery using a single isocenter for multiple targets. For 30 patients treated with stereotactic radiosurgery for multiple brain metastases, the geometric centroids and radii of each met were determined from the treatment planning system. In-house software used this as well as weighted and unweighted versions of the k-means clustering algorithm to group the targets to be treated with a single isocenter, and to position each isocenter. The algorithm results were evaluated using within-cluster sum of squares as well as a minimum target coverage metric that considered the effect of target size. Both versions of the algorithm were applied to an example patient to demonstrate the prospective determination of the appropriate number and location of isocenters. Both weighted and unweighted versions of the k-means algorithm were applied successfully to determine the number and position of isocenters. Comparing the two, both the within-cluster sum of squares metric and the minimum target coverage metric resulting from the unweighted version were less than those from the weighted version. The average magnitudes of the differences were small (-0.2 cm 2 and 0.1% for the within cluster sum of squares and minimum target coverage, respectively) but statistically significant (Wilcoxon signed-rank test, P < 0.01). The differences between the versions of the k-means clustering algorithm represented an advantage of the unweighted version for the within-cluster sum of squares metric, and an advantage of the weighted version for the minimum target coverage metric. While additional treatment planning considerations have a large influence on the final treatment plan quality, both versions of the k-means algorithm provide automatic, consistent, quantitative, and objective solutions to the tasks associated with SRS treatment planning using a single isocenter

  16. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy.

    PubMed

    Yarla, Nagendra Sastry; Bishayee, Anupam; Sethi, Gautam; Reddanna, Pallu; Kalle, Arunasree M; Dhananjaya, Bhadrapura Lakkappa; Dowluru, Kaladhar S V G K; Chintala, Ramakrishna; Duddukuri, Govinda Rao

    2016-10-01

    Arachidonic acid (AA) pathway, a metabolic process, plays a key role in carcinogenesis. Hence, AA pathway metabolic enzymes phospholipase A 2 s (PLA 2 s), cyclooxygenases (COXs) and lipoxygenases (LOXs) and their metabolic products, such as prostaglandins and leukotrienes, have been considered novel preventive and therapeutic targets in cancer. Bioactive natural products are a good source for development of novel cancer preventive and therapeutic drugs, which have been widely used in clinical practice due to their safety profiles. AA pathway inhibitory natural products have been developed as chemopreventive and therapeutic agents against several cancers. Curcumin, resveratrol, apigenin, anthocyans, berberine, ellagic acid, eugenol, fisetin, ursolic acid, [6]-gingerol, guggulsteone, lycopene and genistein are well known cancer chemopreventive agents which act by targeting multiple pathways, including COX-2. Nordihydroguaiaretic acid and baicalein can be chemopreventive molecules against various cancers by inhibiting LOXs. Several PLA 2 s inhibitory natural products have been identified with chemopreventive and therapeutic potentials against various cancers. In this review, we critically discuss the possible utility of natural products as preventive and therapeutic agents against various oncologic diseases, including prostate, pancreatic, lung, skin, gastric, oral, blood, head and neck, colorectal, liver, cervical and breast cancers, by targeting AA pathway. Further, the current status of clinical studies evaluating AA pathway inhibitory natural products in cancer is reviewed. In addition, various emerging issues, including bioavailability, toxicity and explorability of combination therapy, for the development of AA pathway inhibitory natural products as chemopreventive and therapeutic agents against human malignancy are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Emerging Roles for the Lysosome in Lipid Metabolism.

    PubMed

    Thelen, Ashley M; Zoncu, Roberto

    2017-11-01

    Precise regulation of lipid biosynthesis, transport, and storage is key to the homeostasis of cells and organisms. Cells rely on a sophisticated but poorly understood network of vesicular and nonvesicular transport mechanisms to ensure efficient delivery of lipids to target organelles. The lysosome stands at the crossroads of this network due to its ability to process and sort exogenous and endogenous lipids. The lipid-sorting function of the lysosome is intimately connected to its recently discovered role as a metabolic command-and-control center, which relays multiple nutrient cues to the master growth regulator, mechanistic target of rapamycin complex (mTORC)1 kinase. In turn, mTORC1 potently drives anabolic processes, including de novo lipid synthesis, while inhibiting lipid catabolism. Here, we describe the dual role of the lysosome in lipid transport and biogenesis, and we discuss how integration of these two processes may play important roles both in normal physiology and in disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lorazepam induces multiple disturbances in selective attention: attentional overload, decrement in target processing efficiency, and shifts in perceptual discrimination and response bias.

    PubMed

    Michael, George Andrew; Bacon, Elisabeth; Offerlin-Meyer, Isabelle

    2007-09-01

    There is a general consensus that benzodiazepines affect attentional processes, yet only few studies have tried to investigate these impairments in detail. The purpose of the present study was to investigate the effects of a single dose of Lorazepam on performance in a target cancellation task with important time constraints. We measured correct target detections and correct distractor rejections, misses and false positives. The results show that Lorazepam produces multiple kinds of shifts in performance, which suggests that it impairs multipLe processes: (a) the evolution of performance over time was not the same between the placebo and the Lorazepam groups, with the Lorazepam affecting performance quite early after the beginning of the test. This is suggestive of a depletion of attentional resources during sequential attentional processing; (b) Lorazepam affected differently target and distractor processing, with target detection being the most impaired; (c) misses were more frequent under Lorazepam than under placebo, but no such difference was observed as far as false positives were concerned. Signal detection analyses showed that Lorazepam (d) decreased perceptual discrimination, and (e) reliably increased response bias. Our results bring new insights on the multiple effects of Lorazepam on selective attention which, when combined, may have deleterious effects on human performance.

  19. Multiple target drug cocktail design for attacking the core network markers of four cancers using ligand-based and structure-based virtual screening methods

    PubMed Central

    2015-01-01

    Background Computer-aided drug design has a long history of being applied to discover new molecules to treat various cancers, but it has always been focused on single targets. The development of systems biology has let scientists reveal more hidden mechanisms of cancers, but attempts to apply systems biology to cancer therapies remain at preliminary stages. Our lab has successfully developed various systems biology models for several cancers. Based on these achievements, we present the first attempt to combine multiple-target therapy with systems biology. Methods In our previous study, we identified 28 significant proteins--i.e., common core network markers--of four types of cancers as house-keeping proteins of these cancers. In this study, we ranked these proteins by summing their carcinogenesis relevance values (CRVs) across the four cancers, and then performed docking and pharmacophore modeling to do virtual screening on the NCI database for anti-cancer drugs. We also performed pathway analysis on these proteins using Panther and MetaCore to reveal more mechanisms of these cancer house-keeping proteins. Results We designed several approaches to discover targets for multiple-target cocktail therapies. In the first one, we identified the top 20 drugs for each of the 28 cancer house-keeping proteins, and analyzed the docking pose to further understand the interaction mechanisms of these drugs. After screening for duplicates, we found that 13 of these drugs could target 11 proteins simultaneously. In the second approach, we chose the top 5 proteins with the highest summed CRVs and used them as the drug targets. We built a pharmacophore and applied it to do virtual screening against the Life-Chemical library for anti-cancer drugs. Based on these results, wet-lab bio-scientists could freely investigate combinations of these drugs for multiple-target therapy for cancers, in contrast to the traditional single target therapy. Conclusions Combination of systems biology

  20. Detecting breakdown points in metabolic networks.

    PubMed

    Tagore, Somnath; De, Rajat K

    2011-12-14

    A complex network of biochemical reactions present in an organism generates various biological moieties necessary for its survival. It is seen that biological systems are robust to genetic and environmental changes at all levels of organization. Functions of various organisms are sustained against mutational changes by using alternative pathways. It is also seen that if any one of the paths for production of the same metabolite is hampered, an alternate path tries to overcome this defect and helps in combating the damage. Certain physical, chemical or genetic change in any of the precursor substrate of a biochemical reaction may damage the production of the ultimate product. We employ a quantitative approach for simulating this phenomena of causing a physical change in the biochemical reactions by performing external perturbations to 12 metabolic pathways under carbohydrate metabolism in Saccharomyces cerevisae as well as 14 metabolic pathways under carbohydrate metabolism in Homo sapiens. Here, we investigate the relationship between structure and degree of compatibility of metabolites against external perturbations, i.e., robustness. Robustness can also be further used to identify the extent to which a metabolic pathway can resist a mutation event. Biological networks with a certain connectivity distribution may be very resilient to a particular attack but not to another. The goal of this work is to determine the exact boundary of network breakdown due to both random and targeted attack, thereby analyzing its robustness. We also find that compared to various non-standard models, metabolic networks are exceptionally robust. Here, we report the use of a 'Resilience-based' score for enumerating the concept of 'network-breakdown'. We also use this approach for analyzing metabolite essentiality providing insight into cellular robustness that can be further used for future drug development. We have investigated the behavior of metabolic pathways under carbohydrate

  1. Assisting People with Multiple Disabilities by Improving Their Computer Pointing Efficiency with an Automatic Target Acquisition Program

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien; Peng, Chin-Ling

    2011-01-01

    This study evaluated whether two people with multiple disabilities would be able to improve their pointing performance through an Automatic Target Acquisition Program (ATAP) and a newly developed mouse driver (i.e. a new mouse driver replaces standard mouse driver, and is able to monitor mouse movement and intercept click action). Initially, both…

  2. Precision metabolic engineering: The design of responsive, selective, and controllable metabolic systems.

    PubMed

    McNerney, Monica P; Watstein, Daniel M; Styczynski, Mark P

    2015-09-01

    Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed "precision metabolic engineering," involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Cellular metabolic network analysis: discovering important reactions in Treponema pallidum.

    PubMed

    Chen, Xueying; Zhao, Min; Qu, Hong

    2015-01-01

    T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum's metabolism. Here, we apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pallidum, critical reactions are identified. As a comparison, we also apply the analytical approaches to the metabolic network of H. pylori to find coregulated drug targets and unique drug targets for different microorganisms. Based on the clustering results, all reactions are further classified into various roles. Therefore, the general picture of their metabolic network is obtained and two types of reactions, both of which are involved in nucleic acid metabolism, are found to be essential for T. pallidum. It is also discovered that both hubs of reactions and the isolated reactions in purine and pyrimidine metabolisms play important roles in T. pallidum. These reactions could be potential drug targets for treating syphilis.

  4. Towards a hierarchical optimization framework for spatially targeting incentive policies to promote green infrastructure amidst multiple objectives and uncertainty

    EPA Science Inventory

    We introduce a hierarchical optimization framework for spatially targeting green infrastructure (GI) incentive policies in order to meet objectives related to cost and environmental effectiveness. The framework explicitly simulates the interaction between multiple levels of polic...

  5. SU-E-T-300: Spatial Variations of Multiple Off-Axial Targets for a Single Isocenter SRS Treatment Plan in ExacTrac 6D Robotic Couch System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S; Tseng, T

    2014-06-01

    Purpose: To evaluate the spatial variations of multiple off-axial targets for a single isocenter stereotactic radiosurgery (SRS) treatment plan in ExacTrac 6D robotic couch system (BrainLab AG). Methods: Five metallic ball bearing (BB) markers were placed sparsely in 3D off-axial locations (non-coplanar) inside a skull phantom as the representatives of multiple targets mimicking multiple brain metastases. The locations of the BB markers were carefully chosen to minimize overlapping of each other in a port imaging detector plane. The skull phantom was immobilized by a frameless mask and CT scanned with a BrainLab Head and Neck Localizer using a GE Optimamore » MDCT scanner. The CT images were exported to iPlan software (BrainLab AG) and a multiple target PTV was drawn by combining all the contours of the BBs. The margin of the MLC opening was selected as 3 mm expansion outward. Two coplanar arc beams were placed to generate a single isocenter SRS plan to treat the PTV. The arc beams were delivered using Novalis Tx system with portal imaging acquisition mode per 10% temporal resolution. The locations of the BBs were visualized and analyzed with respect to the MLC aperture in the treatment plan similar to the Winston-Lutz test. Results: All the BBs were clearly identified inside the MLC openings. The positional errors for the BBs were overall less than 1 mm along the rotational path of the two arcs. Conclusion: This study verified that the spatial deviations of multiple off-axial targets for a single isocenter SRS treatment plan is within sub-millimeter range in ExacTrac 6D robotic couch system. Accompanied with the Winston-Lutz test, this test will quality-assure the spatial accuracies of the isocenter as well as the positions of multiple off-axial targets for the SRS treatment using a single isocenter multiple target treatment plan.« less

  6. Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production.

    PubMed

    Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang

    Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, 13 C Metabolic Flux Analysis ( 13 C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, 13 C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of 13 C-MFA and illustrate how 13 C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.

  7. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting.

    PubMed

    Jonckheere, Nicolas; Vasseur, Romain; Van Seuningen, Isabelle

    2017-03-01

    RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Transport and metabolism of MitoQ10, a mitochondria-targeted antioxidant, in Caco-2 cell monolayers.

    PubMed

    Li, Yan; Fawcett, J Paul; Zhang, Hu; Tucker, Ian G

    2007-04-01

    Mitoquinone (MitoQ(10) mesylate) is a mitochondria-targeted antioxidant formulated for oral administration in the treatment of neurodegenerative diseases. We have investigated the absorption and metabolism of MitoQ(10) in Caco-2 cell monolayers. The intracellular accumulation of MitoQ(10) was 18-41% of the total amount of MitoQ(10) added. Some of the intracellular MitoQ(10) was reduced to mitoquinol and subsequently metabolized to glucuronide and sulfate conjugates. Transport of MitoQ(10) was polarized with the apparent permeability (P(app)) from basolateral (BL) to apical (AP) (P(appBL-->AP)) being >2.5-fold the P(app) from apical to basolateral (P(appAP-->BL)). In the presence of 4% bovine serum albumin on the basolateral side, the P(appAP-->BL) value increased 7-fold compared with control. The P(appBL-->AP) value decreased by 26, 31 and 61% in the presence of verapamil 100 microM, ciclosporin 10 and 30 microM, respectively, whereas the P(appAP-->BL) value increased 71% in the presence of ciclosporin 30 microM. Apical efflux of mitoquinol sulfate and mitoquinol glucuronide conjugates was significantly decreased by ciclosporin 30 microM and the breast cancer receptor protein (BCRP) inhibitor, reserpine 25 microM, respectively. These results suggested that the bioavailability of MitoQ(10) may be limited by intracellular metabolism and the action of P-glycoprotein and BCRP. However, the dramatic increase in absorptive P(app) in the presence of bovine serum albumin on the receiver side suggests these barrier functions may be less significant in-vivo.

  9. Fructose metabolism in the cerebellum.

    PubMed

    Funari, Vincent A; Crandall, James E; Tolan, Dean R

    2007-01-01

    Under normal physiological conditions, the brain utilizes only a small number of carbon sources for energy. Recently, there is growing molecular and biochemical evidence that other carbon sources, including fructose, may play a role in neuro-energetics. Fructose is the number one commercial sweetener in Western civilization with large amounts of fructose being toxic, yet fructose metabolism remains relatively poorly characterized. Fructose is purportedly metabolized via either of two pathways, the fructose-1-phosphate pathway and/or the fructose-6-phosphate pathway. Many early metabolic studies could not clearly discriminate which of these two pathways predominates, nor could they distinguish which cell types in various tissues are capable of fructose metabolism. In addition, the lack of good physiological models, the diet-induced changes in gene expression in many tissues, the involvement of multiple genes in multiple pathways involved in fructose metabolism, and the lack of characterization of some genes involved in fructose metabolism have complicated our understanding of the physiological role of fructose in neuro-energetics. A recent neuro-metabolism study of the cerebellum demonstrated fructose metabolism and co-expression of the genes specific for the fructose 1-phosphate pathway, GLUT5 (glut5) and ketohexokinase (khk), in Purkinje cells suggesting this as an active pathway in specific neurons? Meanwhile, concern over the rapid increase in dietary fructose, particularly among children, has increased awareness about how fructose is metabolized in vivo and what effects a high fructose diet might have. In this regard, establishment of cellular and molecular studies and physiological characterization of the important and/or deleterious roles fructose plays in the brain is critical. This review will discuss the status of fructose metabolism in the brain with special reference to the cerebellum and the physiological roles of the different pathways.

  10. Gene expression profiling in multiple myeloma--reporting of entities, risk, and targets in clinical routine.

    PubMed

    Meissner, Tobias; Seckinger, Anja; Rème, Thierry; Hielscher, Thomas; Möhler, Thomas; Neben, Kai; Goldschmidt, Hartmut; Klein, Bernard; Hose, Dirk

    2011-12-01

    Multiple myeloma is an incurable malignant plasma cell disease characterized by survival ranging from several months to more than 15 years. Assessment of risk and underlying molecular heterogeneity can be excellently done by gene expression profiling (GEP), but its way into clinical routine is hampered by the lack of an appropriate reporting tool and the integration with other prognostic factors into a single "meta" risk stratification. The GEP-report (GEP-R) was built as an open-source software developed in R for gene expression reporting in clinical practice using Affymetrix microarrays. GEP-R processes new samples by applying a documentation-by-value strategy to the raw data to be able to assign thresholds and grouping algorithms defined on a reference cohort of 262 patients with multiple myeloma. Furthermore, we integrated expression-based and conventional prognostic factors within one risk stratification (HM-metascore). The GEP-R comprises (i) quality control, (ii) sample identity control, (iii) biologic classification, (iv) risk stratification, and (v) assessment of target genes. The resulting HM-metascore is defined as the sum over the weighted factors gene expression-based risk-assessment (UAMS-, IFM-score), proliferation, International Staging System (ISS) stage, t(4;14), and expression of prognostic target genes (AURKA, IGF1R) for which clinical grade inhibitors exist. The HM-score delineates three significantly different groups of 13.1%, 72.1%, and 14.7% of patients with a 6-year survival rate of 89.3%, 60.6%, and 18.6%, respectively. GEP reporting allows prospective assessment of risk and target gene expression and integration of current prognostic factors in clinical routine, being customizable about novel parameters or other cancer entities. ©2011 AACR.

  11. Mixed - Lineage Protein kinases (MLKs) in inflammation, metabolism, and other disease states.

    PubMed

    Craige, Siobhan M; Reif, Michaella M; Kant, Shashi

    2016-09-01

    Mixed lineage kinases, or MLKs, are members of the MAP kinase kinase kinase (MAP3K) family, which were originally identified among the activators of the major stress-dependent mitogen activated protein kinases (MAPKs), JNK and p38. During stress, the activation of JNK and p38 kinases targets several essential downstream substrates that react in a specific manner to the unique stressor and thus determine the fate of the cell in response to a particular challenge. Recently, the MLK family was identified as a specific modulator of JNK and p38 signaling in metabolic syndrome. Moreover, the MLK family of kinases appears to be involved in a very wide spectrum of disorders. This review discusses the newly identified functions of MLKs in multiple diseases including metabolic disorders, inflammation, cancer, and neurological diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. UniDrug-target: a computational tool to identify unique drug targets in pathogenic bacteria.

    PubMed

    Chanumolu, Sree Krishna; Rout, Chittaranjan; Chauhan, Rajinder S

    2012-01-01

    Targeting conserved proteins of bacteria through antibacterial medications has resulted in both the development of resistant strains and changes to human health by destroying beneficial microbes which eventually become breeding grounds for the evolution of resistances. Despite the availability of more than 800 genomes sequences, 430 pathways, 4743 enzymes, 9257 metabolic reactions and protein (three-dimensional) 3D structures in bacteria, no pathogen-specific computational drug target identification tool has been developed. A web server, UniDrug-Target, which combines bacterial biological information and computational methods to stringently identify pathogen-specific proteins as drug targets, has been designed. Besides predicting pathogen-specific proteins essentiality, chokepoint property, etc., three new algorithms were developed and implemented by using protein sequences, domains, structures, and metabolic reactions for construction of partial metabolic networks (PMNs), determination of conservation in critical residues, and variation analysis of residues forming similar cavities in proteins sequences. First, PMNs are constructed to determine the extent of disturbances in metabolite production by targeting a protein as drug target. Conservation of pathogen-specific protein's critical residues involved in cavity formation and biological function determined at domain-level with low-matching sequences. Last, variation analysis of residues forming similar cavities in proteins sequences from pathogenic versus non-pathogenic bacteria and humans is performed. The server is capable of predicting drug targets for any sequenced pathogenic bacteria having fasta sequences and annotated information. The utility of UniDrug-Target server was demonstrated for Mycobacterium tuberculosis (H37Rv). The UniDrug-Target identified 265 mycobacteria pathogen-specific proteins, including 17 essential proteins which can be potential drug targets. UniDrug-Target is expected to accelerate

  13. Glucocorticoids shift arachidonic acid metabolism toward endocannabinoid synthesis: a non-genomic anti-inflammatory switch

    PubMed Central

    Malcher-Lopes, Renato; Franco, Alier; Tasker, Jeffrey G.

    2008-01-01

    Glucocorticoids are capable of exerting both genomic and non-genomic actions in target cells of multiple tissues, including the brain, which trigger an array of electrophysiological, metabolic, secretory and inflammatory regulatory responses. Here, we have attempted to show how glucocorticoids may generate a rapid anti-inflammatory response by promoting arachidonic acid-derived endocannabinoid biosynthesis. According to our hypothesized model, non-genomic action of glucocorticoids results in the global shift of membrane lipid metabolism, subverting metabolic pathways toward the synthesis of the anti-inflammatory endocannabinoids, anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG), and away from arachidonic acid production. Post-transcriptional inhibition of cyclooxygenase-2 (COX2) synthesis by glucocorticoids assists this mechanism by suppressing the synthesis of pro-inflammatory prostaglandins as well as endocannabinoid-derived prostanoids. In the central nervous system (CNS) this may represent a major neuroprotective system, which may cross-talk with leptin signaling in the hypothalamus allowing for the coordination between energy homeostasis and the inflammatory response. PMID:18295199

  14. Testosterone differentially regulates targets of lipid and glucose metabolism in liver, muscle and adipose tissues of the testicular feminised mouse.

    PubMed

    Kelly, Daniel M; Akhtar, Samia; Sellers, Donna J; Muraleedharan, Vakkat; Channer, Kevin S; Jones, T Hugh

    2016-11-01

    Testosterone deficiency is commonly associated with obesity, metabolic syndrome, type 2 diabetes and their clinical consequences-hepatic steatosis and atherosclerosis. The testicular feminised mouse (non-functional androgen receptor and low testosterone) develops fatty liver and aortic lipid streaks on a high-fat diet, whereas androgen-replete XY littermate controls do not. Testosterone treatment ameliorates these effects, although the underlying mechanisms remain unknown. We compared the influence of testosterone on the expression of regulatory targets of glucose, cholesterol and lipid metabolism in muscle, liver, abdominal subcutaneous and visceral adipose tissue. Testicular feminised mice displayed significantly reduced GLUT4 in muscle and glycolytic enzymes in muscle, liver and abdominal subcutaneous but not visceral adipose tissue. Lipoprotein lipase required for fatty acid uptake was only reduced in subcutaneous adipose tissue; enzymes of fatty acid synthesis were increased in liver and subcutaneous tissue. Stearoyl-CoA desaturase-1 that catalyses oleic acid synthesis and is associated with insulin resistance was increased in visceral adipose tissue and cholesterol efflux components (ABCA1, apoE) were decreased in subcutaneous and liver tissue. Master regulator nuclear receptors involved in metabolism-Liver X receptor expression was suppressed in all tissues except visceral adipose tissue, whereas PPARγ was lower in abdominal subcutaneous and visceral adipose tissue and PPARα only in abdominal subcutaneous. Testosterone treatment improved the expression (androgen receptor independent) of some targets but not all. These exploratory data suggest that androgen deficiency may reduce the buffering capability for glucose uptake and utilisation in abdominal subcutaneous and muscle and fatty acids in abdominal subcutaneous. This would lead to an overspill and uptake of excess glucose and triglycerides into visceral adipose tissue, liver and arterial walls.

  15. The habenula and iron metabolism in cerebral mouse models of multiple sclerosis

    PubMed Central

    Sands, Scott A.; Tsau, Sheila; LeVine, Steven M.

    2015-01-01

    Iron accumulates in the CNS of patients with multiple sclerosis, but our understanding of the mechanism accounting for this accumulation is unclear. Mouse models of cerebral experimental autoimmune encephalomyelitis (EAE) in C57BL/6 and SJL mice were used together with a histochemical stain for iron and immunohistochemical stains for transferrin receptor, synaptophysin, iron regulatory protein 1 (IRP1) and/or IRP2 to investigate the role of disease activity on CNS iron metabolism. The expression of transferrin receptor, but not IRP1 or IRP2, increased in the medial habenula, which is adjacent to the third ventricle, in response to both types of cerebral EAE. In the habenula, the elevated expression of transferrin receptor in C57BL/6 mice with cerebral EAE was generally restricted to the medial habenula while the expression in SJL mice with cerebral EAE was more diffusely expressed. Iron levels were increased in all regions of the habenula in C57BL/6 mice with cerebral EAE, and in the medial and medial lateral but not the lateral habenula in SJL mice with cerebral EAE. Synaptophysin, which has been observed previously in endocytic vesicles together with the transferrin receptor, was concentrated at the medial habenula, but its levels did not increase with disease in C57BL/6 mice with cerebral EAE. Our results support the model that the medial habenula responds to disease activity by upregulating transferrin receptor to facilitate the movement of iron into the brain from the third ventricle, raising the possibility that a similar mechanism accounts for iron accumulation in deep gray matter structures in patients with multiple sclerosis. PMID:26362814

  16. Single-target RNA interference for the blockade of multiple interacting proinflammatory and profibrotic pathways in cardiac fibroblasts.

    PubMed

    Tank, Juliane; Lindner, Diana; Wang, Xiaomin; Stroux, Andrea; Gilke, Leona; Gast, Martina; Zietsch, Christin; Skurk, Carsten; Scheibenbogen, Carmen; Klingel, Karin; Lassner, Dirk; Kühl, Uwe; Schultheiss, Heinz-Peter; Westermann, Dirk; Poller, Wolfgang

    2014-01-01

    Therapeutic targets of broad relevance are likely located in pathogenic pathways common to disorders of various etiologies. Screening for targets of this type revealed CCN genes to be consistently upregulated in multiple cardiomyopathies. We developed RNA interference (RNAi) to silence CCN2 and found this single-target approach to block multiple proinflammatory and profibrotic pathways in activated primary cardiac fibroblasts (PCFBs). The RNAi-strategy was developed in murine PCFBs and then investigated in "individual" human PCFBs grown from human endomyocardial biopsies (EMBs). Screening of short hairpin RNA (shRNA) sequences for high silencing efficacy and specificity yielded RNAi adenovectors silencing CCN2 in murine or human PCFBs, respectively. Comparison of RNAi with CCN2-modulating microRNA (miR) vectors expressing miR-30c or miR-133b showed higher efficacy of RNAi. In murine PCFBs, CCN2 silencing resulted in strongly reduced expression of stretch-induced chemokines (Ccl2, Ccl7, Ccl8), matrix metalloproteinases (MMP2, MMP9), extracellular matrix (Col3a1), and a cell-to-cell contact protein (Cx43), suggesting multiple signal pathways to be linked to CCN2. Immune cell chemotaxis towards CCN2-depleted PCFBs was significantly reduced. We demonstrate here that this RNAi strategy is technically applicable to "individual" human PCFBs, too, but that these display individually strikingly different responses to CCN2 depletion. Either genomically encoded factors or stable epigenetic modification may explain different responses between individual PCFBs. The new RNAi approach addresses a key regulator protein induced in cardiomyopathies. Investigation of this and other molecular therapies in individual human PCBFs may help to dissect differential pathogenic processes between otherwise similar disease entities and individuals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Metabolic regulation of inflammation.

    PubMed

    Gaber, Timo; Strehl, Cindy; Buttgereit, Frank

    2017-05-01

    Immune cells constantly patrol the body via the bloodstream and migrate into multiple tissues where they face variable and sometimes demanding environmental conditions. Nutrient and oxygen availability can vary during homeostasis, and especially during the course of an immune response, creating a demand for immune cells that are highly metabolically dynamic. As an evolutionary response, immune cells have developed different metabolic programmes to supply them with cellular energy and biomolecules, enabling them to cope with changing and challenging metabolic conditions. In the past 5 years, it has become clear that cellular metabolism affects immune cell function and differentiation, and that disease-specific metabolic configurations might provide an explanation for the dysfunctional immune responses seen in rheumatic diseases. This Review outlines the metabolic challenges faced by immune cells in states of homeostasis and inflammation, as well as the variety of metabolic configurations utilized by immune cells during differentiation and activation. Changes in cellular metabolism that contribute towards the dysfunctional immune responses seen in rheumatic diseases are also briefly discussed.

  18. Target-triggering multiple-cycle signal amplification strategy for ultrasensitive detection of DNA based on QCM and SPR.

    PubMed

    Song, Weiling; Yin, Wenshuo; Sun, Wenbo; Guo, Xiaoyan; He, Peng; Yang, Xiaoyan; Zhang, Xiaoru

    2018-04-24

    Detection of ultralow concentrations of nucleic acid sequences is a central challenge in the early diagnosis of genetic diseases. Herein, we developed a target-triggering cascade multiple cycle amplification for ultrasensitive DNA detection using quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). It was based on the exonuclease Ⅲ (Exo Ⅲ)-assisted signal amplification and the hybridization chain reaction (HCR). The streptavidin-coated Au-NPs (Au-NPs-SA) were assembled on the HCR products as recognition element. Upon sensing of target DNA, the duplex DNA probe triggered the Exo Ⅲ cleavage process, accompanied by generating a new secondary target DNA and releasing target DNA. The released target DNA and the secondary target DNA were recycled. Simultaneously, numerous single strands were liberated and acted as the trigger of HCR to generate further signal amplification, resulting in the immobilization of abundant Au-NPs-SA on the gold substrate. The QCM sensor results were found to be comparable to that achieved using a SPR sensor platform. This method exhibited a high sensitivity toward target DNA with a detection limit of 0.70 fM. The high sensitivity and specificity make this method a great potential for detecting DNA with trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Precision Metabolic Engineering: the Design of Responsive, Selective, and Controllable Metabolic Systems

    PubMed Central

    McNerney, Monica P.; Watstein, Daniel M.; Styczynski, Mark P.

    2015-01-01

    Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed “precision metabolic engineering,” involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. PMID:26189665

  20. Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Luca, Chiara; Scordo, Maria G.; Cesareo, Eleonora

    Background: Multiple chemical sensitivity (MCS) is a poorly clinically and biologically defined environment-associated syndrome. Although dysfunctions of phase I/phase II metabolizing enzymes and redox imbalance have been hypothesized, corresponding genetic and metabolic parameters in MCS have not been systematically examined. Objectives: We sought for genetic, immunological, and metabolic markers in MCS. Methods: We genotyped patients with diagnosis of MCS, suspected MCS and Italian healthy controls for allelic variants of cytochrome P450 isoforms (CYP2C9, CYP2C19, CYP2D6, and CYP3A5), UDP-glucuronosyl transferase (UGT1A1), and glutathione S-transferases (GSTP1, GSTM1, and GSTT1). Erythrocyte membrane fatty acids, antioxidant (catalase, superoxide dismutase (SOD)) and glutathione metabolizing (GST,more » glutathione peroxidase (Gpx)) enzymes, whole blood chemiluminescence, total antioxidant capacity, levels of nitrites/nitrates, glutathione, HNE-protein adducts, and a wide spectrum of cytokines in the plasma were determined. Results: Allele and genotype frequencies of CYPs, UGT, GSTM, GSTT, and GSTP were similar in the Italian MCS patients and in the control populations. The activities of erythrocyte catalase and GST were lower, whereas Gpx was higher than normal. Both reduced and oxidised glutathione were decreased, whereas nitrites/nitrates were increased in the MCS groups. The MCS fatty acid profile was shifted to saturated compartment and IFNgamma, IL-8, IL-10, MCP-1, PDGFbb, and VEGF were increased. Conclusions: Altered redox and cytokine patterns suggest inhibition of expression/activity of metabolizing and antioxidant enzymes in MCS. Metabolic parameters indicating accelerated lipid oxidation, increased nitric oxide production and glutathione depletion in combination with increased plasma inflammatory cytokines should be considered in biological definition and diagnosis of MCS.« less

  1. Protein Analysis of Sapienic Acid-Treated Porphyromonas gingivalis Suggests Differential Regulation of Multiple Metabolic Pathways.

    PubMed

    Fischer, Carol L; Dawson, Deborah V; Blanchette, Derek R; Drake, David R; Wertz, Philip W; Brogden, Kim A

    2016-01-01

    Lipids endogenous to skin and mucosal surfaces exhibit potent antimicrobial activity against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Our previous work demonstrated the antimicrobial activity of the fatty acid sapienic acid (C(16:1Δ6)) against P. gingivalis and found that sapienic acid treatment alters both protein and lipid composition from those in controls. In this study, we further examined whole-cell protein differences between sapienic acid-treated bacteria and untreated controls, and we utilized open-source functional association and annotation programs to explore potential mechanisms for the antimicrobial activity of sapienic acid. Our analyses indicated that sapienic acid treatment induces a unique stress response in P. gingivalis resulting in differential expression of proteins involved in a variety of metabolic pathways. This network of differentially regulated proteins was enriched in protein-protein interactions (P = 2.98 × 10(-8)), including six KEGG pathways (P value ranges, 2.30 × 10(-5) to 0.05) and four Gene Ontology (GO) molecular functions (P value ranges, 0.02 to 0.04), with multiple suggestive enriched relationships in KEGG pathways and GO molecular functions. Upregulated metabolic pathways suggest increases in energy production, lipid metabolism, iron acquisition and processing, and respiration. Combined with a suggested preferential metabolism of serine, which is necessary for fatty acid biosynthesis, these data support our previous findings that the site of sapienic acid antimicrobial activity is likely at the bacterial membrane. P. gingivalis is an important opportunistic pathogen implicated in periodontitis. Affecting nearly 50% of the population, periodontitis is treatable, but the resulting damage is irreversible and eventually progresses to tooth loss. There is a great need for natural products that can be used to treat and/or prevent the overgrowth of periodontal pathogens and

  2. Glutamate metabolism in HIV-1 infected macrophages: Role of HIV-1 Vpr

    PubMed Central

    Datta, Prasun K.; Deshmane, Satish; Khalili, Kamel; Merali, Salim; Gordon, John C.; Fecchio, Chiara; Barrero, Carlos A.

    2016-01-01

    ABSTRACT HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages. We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation. The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages. Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS. PMID:27245560

  3. MRPrimerW: a tool for rapid design of valid high-quality primers for multiple target qPCR experiments.

    PubMed

    Kim, Hyerin; Kang, NaNa; An, KyuHyeon; Koo, JaeHyung; Kim, Min-Soo

    2016-07-08

    Design of high-quality primers for multiple target sequences is essential for qPCR experiments, but is challenging due to the need to consider both homology tests on off-target sequences and the same stringent filtering constraints on the primers. Existing web servers for primer design have major drawbacks, including requiring the use of BLAST-like tools for homology tests, lack of support for ranking of primers, TaqMan probes and simultaneous design of primers against multiple targets. Due to the large-scale computational overhead, the few web servers supporting homology tests use heuristic approaches or perform homology tests within a limited scope. Here, we describe the MRPrimerW, which performs complete homology testing, supports batch design of primers for multi-target qPCR experiments, supports design of TaqMan probes and ranks the resulting primers to return the top-1 best primers to the user. To ensure high accuracy, we adopted the core algorithm of a previously reported MapReduce-based method, MRPrimer, but completely redesigned it to allow users to receive query results quickly in a web interface, without requiring a MapReduce cluster or a long computation. MRPrimerW provides primer design services and a complete set of 341 963 135 in silico validated primers covering 99% of human and mouse genes. Free access: http://MRPrimerW.com. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Calibrated imaging reveals altered grey matter metabolism related to white matter microstructure and symptom severity in multiple sclerosis.

    PubMed

    Hubbard, Nicholas A; Turner, Monroe P; Ouyang, Minhui; Himes, Lyndahl; Thomas, Binu P; Hutchison, Joanna L; Faghihahmadabadi, Shawheen; Davis, Scott L; Strain, Jeremy F; Spence, Jeffrey; Krawczyk, Daniel C; Huang, Hao; Lu, Hanzhang; Hart, John; Frohman, Teresa C; Frohman, Elliot M; Okuda, Darin T; Rypma, Bart

    2017-11-01

    Multiple sclerosis (MS) involves damage to white matter microstructures. This damage has been related to grey matter function as measured by standard, physiologically-nonspecific neuroimaging indices (i.e., blood-oxygen-level dependent signal [BOLD]). Here, we used calibrated functional magnetic resonance imaging and diffusion tensor imaging to examine the extent to which specific, evoked grey matter physiological processes were associated with white matter diffusion in MS. Evoked changes in BOLD, cerebral blood flow (CBF), and oxygen metabolism (CMRO 2 ) were measured in visual cortex. Individual differences in the diffusion tensor measure, radial diffusivity, within occipital tracts were strongly associated with MS patients' BOLD and CMRO 2 . However, these relationships were in opposite directions, complicating the interpretation of the relationship between BOLD and white matter microstructural damage in MS. CMRO 2 was strongly associated with individual differences in patients' fatigue and neurological disability, suggesting that alterations to evoked oxygen metabolic processes may be taken as a marker for primary symptoms of MS. This work demonstrates the first application of calibrated and diffusion imaging together and details the first application of calibrated functional MRI in a neurological population. Results lend support for neuroenergetic hypotheses of MS pathophysiology and provide an initial demonstration of the utility of evoked oxygen metabolism signals for neurology research. Hum Brain Mapp 38:5375-5390, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach

    PubMed Central

    Chen, Lian; Cui, Hengmin

    2015-01-01

    Glutamine metabolism has been proved to be dysregulated in many cancer cells, and is essential for proliferation of most cancer cells, which makes glutamine an appealing target for cancer therapy. In order to be well used by cells, glutamine must be transported to cells by specific transporters and converted to glutamate by glutaminase. There are currently several drugs that target glutaminase under development or clinical trials. Also, glutamine metabolism restriction has been proved to be effective in inhibiting tumor growth both in vivo and vitro through inducing apoptosis, growth arrest and/or autophagy. Here, we review recent researches about glutamine metabolism in cancer, and cell death induced by targeting glutamine, and their potential roles in cancer therapy. PMID:26402672

  6. Association of sex hormones and glucose metabolism with the severity of multiple sclerosis.

    PubMed

    Triantafyllou, Nikolaos; Thoda, Pinelopi; Armeni, Eleni; Rizos, Demetrios; Kaparos, George; Augoulea, Areti; Alexandrou, Andreas; Creatsa, Maria; Tsivgoulis, Georgios; Artemiades, Artemios; Panoulis, Constantinos; Lambrinoudaki, Irene

    2016-09-01

    We evaluated possible associations between the severity of multiple sclerosis (MS) and levels of sex hormones as well as biochemical parameters in a sample of ambulatory patients. This cross-sectional study recruited 133 adults (52 men, 66 premenopausal and 15 postmenopausal women), with relapsing-remitting MS. Fasting venous blood samples were drawn for biochemical and hormonal evaluation. These parameters were tested for possible associations with MS severity, assessed using the Expanded Disability Status Scale (EDSS)-scores. Follicle-stimulating hormone correlated with mean EDSS scores (r = -0.369, p = 0.038) in the premenopausal subgroup. However, this association became non-significant in the age-adjusted multivariate analysis (p = 0.141; power = 67%, type α error 0.10). Free androgen exhibited a borderline negative effect on EDSS-scores in the subgroup of men (r = -0.367, p = 0.093), which was lost after adjusting for age and duration of disease (p = 0.192; statistical power = 93%, type α error 0.05). Levels of estradiol tended to affect disability status of postmenopausal women (normal-mild vs. severe impairment: 23.33 ± 11.73pg/mL vs. 14.74 ± 6.30pg/mL, p = 0.095). Levels of sex hormones or indices of glycemic metabolism did not differ between patients presenting with EDSS scores higher or lower than the median value. Sex hormones and indices of glucose metabolism exhibited only a middle effect on EDSS scoring, which was not independent from the presence of confounders like age and duration of MS. The present study highlights the need for additional research, in order to elucidate the role of sex hormones and insulin resistance in the course of MS.

  7. Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance

    NASA Astrophysics Data System (ADS)

    Thomas, Alex; Rahmanian, Sorena; Bordbar, Aarash; Palsson, Bernhard Ø.; Jamshidi, Neema

    2014-01-01

    Recently there has not been a systematic, objective assessment of the metabolic capabilities of the human platelet. A manually curated, functionally tested, and validated biochemical reaction network of platelet metabolism, iAT-PLT-636, was reconstructed using 33 proteomic datasets and 354 literature references. The network contains enzymes mapping to 403 diseases and 231 FDA approved drugs, alluding to an expansive scope of biochemical transformations that may affect or be affected by disease processes in multiple organ systems. The effect of aspirin (ASA) resistance on platelet metabolism was evaluated using constraint-based modeling, which revealed a redirection of glycolytic, fatty acid, and nucleotide metabolism reaction fluxes in order to accommodate eicosanoid synthesis and reactive oxygen species stress. These results were confirmed with independent proteomic data. The construction and availability of iAT-PLT-636 should stimulate further data-driven, systems analysis of platelet metabolism towards the understanding of pathophysiological conditions including, but not strictly limited to, coagulopathies.

  8. Physical Therapy for Metabolic Syndrome Prevention in Workers: Novel Role of Physical Therapist.

    PubMed

    Satoh, Tomonori; Nemoto, Yuki; Utumi, Takako; Munakata, Masanori

    2016-01-01

    In Japan, physical therapists have usually been involved in physical therapy for patients with functional disorders associated with cerebrovascular or orthopedic diseases in hospitals. With the aging of Japanese society, the number of diseased people will progressively increase; thus, it is important to pay much more attention to disease prevention. In this regard, physical therapists are expected to play a new role in the field of preventive medicine. Metabolic syndrome or central obesity with multiple cardiometabolic risks is associated with a high risk of type 2 diabetes or cardiovascular diseases and is now a central target for early detection and intervention for disease prevention. The incidence of metabolic syndrome increases with age, and men showed a higher incidence of metabolic syndrome than women in all generations. We have been involved in the guidance of workers with metabolic syndrome for a long time, and we conducted a multicenter study to establish effective guidance for these worker. In this paper, we will use our evidence to discuss the role of physical therapists in providing guidance for preventing metabolic syndrome. We are now conducting worksite supporting exercise intervention for workers who were resistant to conventional lifestyle guidance. In addition, the unique role of physical therapists in this new trial will be introduced.

  9. microRNAs and lipid metabolism

    PubMed Central

    Aryal, Binod; Singh, Abhishek K.; Rotllan, Noemi; Price, Nathan; Fernández-Hernando, Carlos

    2017-01-01

    Purpose of review Work over the last decade has identified the important role of microRNAs (miRNAS) in regulating lipoprotein metabolism and associated disorders including metabolic syndrome, obesity and atherosclerosis. This review summarizes the most recent findings in the field, highlighting the contribution of miRNAs in controlling low-density lipoprotein (LDL) and high-density lipoprotein (HDL) metabolism. Recent findings A number of miRNAs have emerged as important regulators of lipid metabolism, including miR-122 and miR-33. Work over the last two years has identified additional functions of miR-33 including the regulation of macrophage activation and mitochondrial metabolism. Moreover, it has recently been shown that miR-33 regulates vascular homeostasis and cardiac adaptation in response to pressure overload. In addition to miR-33 and miR-122, recent GWAS have identified single nucleotide polymorphisms (SNP) in the proximity of miRNAs genes associated with abnormal levels of circulating lipids in humans. Several of these miRNA, such as miR-148a and miR-128-1, target important proteins that regulate cellular cholesterol metabolism, including the low-density lipoprotein receptor (LDLR) and the ATP-binding cassette A1 (ABCA1). Summary microRNAs have emerged as critical regulators of cholesterol metabolism and promising therapeutic targets for treating cardiometabolic disorders including atherosclerosis. Here, we discuss the recent findings in the field highlighting the novel mechanisms by which miR-33 controls lipid metabolism and atherogenesis and the identification of novel miRNAs that regulate LDL metabolism. Finally, we summarize the recent findings that identified miR-33 as an important non-coding RNA that controls cardiovascular homeostasis independent of its role in regulating lipid metabolism. PMID:28333713

  10. [Piperine regulates glucose metabolism disorder in HepG2 cells of insulin resistance models via targeting upstream target of AMPK signaling pathway].

    PubMed

    Wan, Chun-Ping; Wei, Ya-Gai; Li, Xiao-Xue; Zhang, Li-Jun; Yang, Rui; Bao, Zhao-Ri-Ge-Tu

    2017-02-01

    To investigate the effect of piperine on the disorder of glucose metabolism in the cell model with insulin resistance (IR) and explore the molecules mechanism on intervening the upstream target of AMPK signaling pathway. The insulin resistance models in HepG2 cells were established by fat emulsion stimulation. Then glucose consumption in culture supernatant was detected by GOD-POD method. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of leptin(LEP) and adiponectin(APN) in culture supernatant; Real-time quantitative PCR was used to assess the mRNA expression of APN and LEP; and the protein expression levels of LepR, AdipoR1, AdipoR2 and the activation of AMPK signaling pathway were detected by Western blot analysis. The results showed that piperine, rosiglitazone and AMPK agonist AICAR could significantly elevate the glucose consumption in insulin resistance cell models, enhance the level of APN, promote APN mRNA transcripts and increase the protein expression of Adipo receptor. Meanwhile,AMPKα mRNA and р-AMPKα protein expressions were also increased in piperine treated cells, but both LEP mRNA expression and LepR protein expressions were decreased in piperine treated group. The results indicated that piperine could significantly ameliorate the glucose metabolism disorder in insulin resistance cell models through regulating upstream molecules (APN and LEP) of AMPK signaling pathway, and thus activate the AMPK signaling pathway. Copyright© by the Chinese Pharmaceutical Association.

  11. Metabolic reprogramming: a hallmark of viral oncogenesis.

    PubMed

    Lévy, P; Bartosch, B

    2016-08-11

    More than 1 in 10 cases of cancer in the world are due to chronic viral infections. Viruses induce oncogenesis by targeting the same pathways known to be responsible for neoplasia in tumor cells, such as control of cell cycle progression, cell migration, proliferation and evasion from cell death and the host's immune defense. In addition, metabolic reprogramming has been identified over a century ago as a requirement for growth of transformed cells. Renewed interest in this topic has emerged recently with the discovery that basically all metabolic changes in tumor cells are finely orchestrated by oncogenes and tumor suppressors. Indeed, cancer cells activate biosynthetic pathways in order to provide them with sufficient levels of energy and building blocks to proliferate. Interestingly, viruses introduce into their host cells similar metabolic adaptations, and importantly, it seems that they depend on these changes for their persistence and amplification. The central carbon metabolism, for example, is not only frequently altered in tumor cells but also modulated by human papillomavirus, hepatitis B and C viruses, Epstein-Barr virus and Kaposi's Sarcoma-associated virus. Moreover, adenoviruses (Ad) and human cytomegalovirus, which are not directly oncogenic but present oncomodulatory properties, also divert cellular metabolism in a tumor cell-like mnner. Thus, metabolic reprogramming appears to be a hallmark of viral infection and provides an interesting therapeutic target, in particular, for oncogenic viruses. Therapeutic targeting of metabolic pathways may not only allow to eliminate or control the viral infection but also to prevent virus-induced carcinogenesis.

  12. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    NASA Astrophysics Data System (ADS)

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-04-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.

  13. Metabolic Diseases Downregulate the Majority of Histone Modification Enzymes, Making a Few Upregulated Enzymes Novel Therapeutic Targets--"Sand Out and Gold Stays".

    PubMed

    Shao, Ying; Chernaya, Valeria; Johnson, Candice; Yang, William Y; Cueto, Ramon; Sha, Xiaojin; Zhang, Yi; Qin, Xuebin; Sun, Jianxin; Choi, Eric T; Wang, Hong; Yang, Xiao-feng

    2016-02-01

    To determine whether the expression of histone modification enzymes is regulated in physiological and pathological conditions, we took an experimental database mining approach pioneered in our labs to determine a panoramic expression profile of 164 enzymes in 19 human and 17 murine tissues. We have made the following significant findings: (1) Histone enzymes are differentially expressed in cardiovascular, immune, and other tissues; (2) our new pyramid model showed that heart and T cells are among a few tissues in which histone acetylation/deacetylation, and histone methylation/demethylation are in the highest varieties; and (3) histone enzymes are more downregulated than upregulated in metabolic diseases and regulatory T cell (Treg) polarization/ differentiation, but not in tumors. These results have demonstrated a new working model of "Sand out and Gold stays," where more downregulation than upregulation of histone enzymes in metabolic diseases makes a few upregulated enzymes the potential novel therapeutic targets in metabolic diseases and Treg activity.

  14. Non-stationary (13)C-metabolic flux ratio analysis.

    PubMed

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. © 2013 Wiley Periodicals, Inc.

  15. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu

    2015-08-28

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observedmore » in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER{sup +} and ER{sup −} breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen.« less

  16. Development of Novel Therapeutics Targeting Isocitrate Dehydrogenase Mutations in Cancer.

    PubMed

    Sharma, Horrick

    2018-05-17

    Isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) are key metabolic enzymes that catalyze the conversion of isocitrate to α-ketoglutarate (αKG). IDH 1 and IDH2 regulate several cellular processes, including oxidative respiration, glutamine metabolism, lipogenesis, and cellular defense against oxidative damage. Mutations in IDH1 and IDH2 have recently been observed in multiple tumor types, including gliomas, acute myeloid leukemia, myelodysplastic syndromes, and chondrosarcoma. IDH1 and IDH2 mutations involve a gain in neomorphic activity that catalyze αKG conversion to (R)-2-hydroxyglutarate ((R)-2HG). IDH mutation-mediated accumulation of (R)-2HG result in epigenetic dysregulation, altered gene expression, and a block in cellular differentiation. Targeting mutant IDH by development of small molecule inhibitors is a rapidly emerging therapeutic approach as evidenced by the recent approval of the first selective mutant IDH2 inhibitor AG-221 (Enasidenib) for the treatment of IDH2-mutated AML. This review will focus on mutant isocitrate dehydrogenase as a therapeutic drug target and provides an update on selective and pan-mutant IDH 1/2 inhibitors in clinical trials and other mutant IDH inhibitors that are under development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. A universal entropy-driven mechanism for thioredoxin–target recognition

    PubMed Central

    Palde, Prakash B.; Carroll, Kate S.

    2015-01-01

    Cysteine residues in cytosolic proteins are maintained in their reduced state, but can undergo oxidation owing to posttranslational modification during redox signaling or under conditions of oxidative stress. In large part, the reduction of oxidized protein cysteines is mediated by a small 12-kDa thiol oxidoreductase, thioredoxin (Trx). Trx provides reducing equivalents for central metabolic enzymes and is implicated in redox regulation of a wide number of target proteins, including transcription factors. Despite its importance in cellular redox homeostasis, the precise mechanism by which Trx recognizes target proteins, especially in the absence of any apparent signature binding sequence or motif, remains unknown. Knowledge of the forces associated with the molecular recognition that governs Trx–protein interactions is fundamental to our understanding of target specificity. To gain insight into Trx–target recognition, we have thermodynamically characterized the noncovalent interactions between Trx and target proteins before S-S reduction using isothermal titration calorimetry (ITC). Our findings indicate that Trx recognizes the oxidized form of its target proteins with exquisite selectivity, compared with their reduced counterparts. Furthermore, we show that recognition is dependent on the conformational restriction inherent to oxidized targets. Significantly, the thermodynamic signatures for multiple Trx targets reveal favorable entropic contributions as the major recognition force dictating these protein–protein interactions. Taken together, our data afford significant new insight into the molecular forces responsible for Trx–target recognition and should aid the design of new strategies for thiol oxidoreductase inhibition. PMID:26080424

  18. Frequency of metabolic abnormalities in urinary stones patients.

    PubMed

    Ahmad, Iftikhar; Pansota, Mudassar Saeed; Tariq, Muhammad; Tabassum, Shafqat Ali

    2013-11-01

    To determine the frequency of metabolic abnormalities in the serum and urine of patients with urinary stones disease. Two hundred patients with either multiple or recurrent urolithiasis diagnosed on ultrasonography and intravenous urography were included in this study. 24 hour urine sample were collected from each patient and sent for PH, specific gravity, Creatinine, uric acid, calcium, phosphate, oxalate, citrate and magnesium. In addition, blood sample of each patient was also sent for serum levels of urea, creatinine, uric acid, phosphate and calcium. Mean age of patients was 38 ± 7.75 years with male to female ratio of 2:1. The main presenting complaint was lumber pain and 82.5% patients were found to have calcium oxalate stones on chemical analysis. Metabolic abnormalities were found in 90.5% patients, whereas there were no metabolic abnormalities in 19 (9.5%) patients. Forty patients (21.5%) only had one metabolic abnormality and 157 (78.5%) patients had multiple metabolic abnormalities. Hyperoxaluria was the most commonly observed metabolic abnormality and was found in 64.5% patients. Other significant metabolic abnormalities were hypercalciuria, Hypercalcemia, hypocitraturia and hyperuricemia. This study concludes that frequency of metabolic abnormalities is very high in patients with urolithiasis and hyperoxaluria, hypercalciuria and hypocitraturia are the most important metabolic abnormalities observed in these patients.

  19. A Vector Library for Silencing Central Carbon Metabolism Genes with Antisense RNAs in Escherichia coli

    PubMed Central

    Ohno, Satoshi; Yoshikawa, Katsunori; Shimizu, Hiroshi; Tamura, Tomohiro

    2014-01-01

    We describe here the construction of a series of 71 vectors to silence central carbon metabolism genes in Escherichia coli. The vectors inducibly express antisense RNAs called paired-terminus antisense RNAs, which have a higher silencing efficacy than ordinary antisense RNAs. By measuring mRNA amounts, measuring activities of target proteins, or observing specific phenotypes, it was confirmed that all the vectors were able to silence the expression of target genes efficiently. Using this vector set, each of the central carbon metabolism genes was silenced individually, and the accumulation of metabolites was investigated. We were able to obtain accurate information on ways to increase the production of pyruvate, an industrially valuable compound, from the silencing results. Furthermore, the experimental results of pyruvate accumulation were compared to in silico predictions, and both sets of results were consistent. Compared to the gene disruption approach, the silencing approach has an advantage in that any E. coli strain can be used and multiple gene silencing is easily possible in any combination. PMID:24212579

  20. G protein-coupled receptors as therapeutic targets for multiple sclerosis

    PubMed Central

    Du, Changsheng; Xie, Xin

    2012-01-01

    G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spectrum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated demyelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or pharmacological manipulations. Hopefully some of these findings will lead to the development of novel therapies for MS in the near future. PMID:22664908