Sample records for tarim basin china

  1. Geothermal regime of Tarim basin, NW China: insights from borehole temperature logging

    NASA Astrophysics Data System (ADS)

    Liu, S.; Lei, X.

    2013-12-01

    Geothermal regime of sedimentary basin is vital for understanding basin (de)formation process, hydrocarbon generation status and assessing the resource potential. Located at the Precambrian craton block, the Tarim basin is the largest intermountain basin in China, which is also the ongoing target of oil and gas exploration. Previous knowledge of thermal regime of this basin is from limited oil exploration borehole testing temperature, the inherent deficiency of data of this type makes accurate understanding of its thermal regime impossible. Here we reported our latest steady temperature logging results in this basin and analyze its thermal regime as well. In this study, 10 temperature loggings are conducted in the northern Tarim basin where the major oil and gas fields are discovered. All the boreholes for temperature logging are non-production wells and are shut in at least more than 2~3 years, ensuring the temperature equilibrium after drilling. The derived geothermal gradient varies from 20.2 to 26.1 degree/km, with a mean of 22.0 degree/km. However, some previous reported gradients in this area are obviously lower than our results; for example, the previous gradient of THN2 well is 13.2 degree/km but 23.2 degree/km in this study, and not enough equilibrium time in previous logging accounts for this discrepancy. More important, it is found that high gradients usually occur in the gas field and the gradients of the gas fields are larger than those in other oil fields, indicating higher thermal regime in gas field. The cause of this phenomenon is unclear, and the upward migration of hot fluid along fault conduit is speculated as the possible mechanism for this high geothermal anomaly in the oil and gas fields. Combined with measured thermal conductivity data, 10 new heat flow values are also achieved, and the heat flow of the Tarim basin is between 38mW/m2 and 52mW/m2, with a mean of 43 mW/m2. This relatively low heat flow is coincident with that of typical

  2. Neoproterozoic rift basins and their control on the development of hydrocarbon source rocks in the Tarim Basin, NW China

    NASA Astrophysics Data System (ADS)

    Zhu, Guang-You; Ren, Rong; Chen, Fei-Ran; Li, Ting-Ting; Chen, Yong-Quan

    2017-12-01

    The Proterozoic is demonstrated to be an important period for global petroleum systems. Few exploration breakthroughs, however, have been obtained on the system in the Tarim Basin, NW China. Outcrop, drilling, and seismic data are integrated in this paper to focus on the Neoproterozoic rift basins and related hydrocarbon source rocks in the Tarim Basin. The basin consists of Cryogenian to Ediacaran rifts showing a distribution of N-S differentiation. Compared to the Cryogenian basins, those of the Ediacaran are characterized by deposits in small thickness and wide distribution. Thus, the rifts have a typical dual structure, namely the Cryogenian rifting and Ediacaran depression phases that reveal distinct structural and sedimentary characteristics. The Cryogenian rifting basins are dominated by a series of grabens or half grabens, which have a wedge-shaped rapid filling structure. The basins evolved into Ediacaran depression when the rifting and magmatic activities diminished, and extensive overlapping sedimentation occurred. The distributions of the source rocks are controlled by the Neoproterozoic rifts as follows. The present outcrops lie mostly at the margins of the Cryogenian rifting basins where the rapid deposition dominates and the argillaceous rocks have low total organic carbon (TOC) contents; however, the source rocks with high TOC contents should develop in the center of the basins. The Ediacaran source rocks formed in deep water environment of the stable depressions evolving from the previous rifting basins, and are thus more widespread in the Tarim Basin. The confirmation of the Cryogenian to Ediacaran source rocks would open up a new field for the deep hydrocarbon exploration in the Tarim Basin.

  3. Heat flow, deep formation temperature and thermal structure of the Tarim Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Li, Xianglan

    2016-04-01

    Geothermal regime of a sedimentary basin not only provides constraint on understanding the basin formation and evolution, but also offers fundamental parameters for hydrocarbon resources assessment. As one of three Precambrian blocks in China, the Tarim craton is also a current hydrocarbon exploration target where the largest sedimentary basin (Tarim Basin) develops with great potential. Although considerable advancement of geothermal regime of this basin has been made during the past decades, nearly all the temperature data in previous studies are from the exploration borehole formation testing temperatures. Recently, we have conducted the steady-state temperature logging in the Tarim basin, and measured abundant rock thermal properties, enabling us to re-visit the thermal regime of this area with more confidence. Our results show that the present-day geothermal gradients for the Tarim Basin vary from 23 K/km to 27 K/km, with a mean of 22 K/km; the values of heat flow range from 40 mW/m2 to 49 mW/m2, with a mean of 43 mW/m2. These new data confirmed that the Tarim Basin has relatively low heat flow and shares similar geothermal regime with other Precambrian cratons in the world. In addition, the new temperatures from the steady-state logs are larger than the bottom hole temperatures (BHT) as 22 degree Celsius, indicating the thermal non-equilibrium for the BHTs used in previous studies. Spatial distribution of the estimated formation temperatures-at-depth of 1~5km within the basin is similar and mainly controlled by crystalline basement pattern. Generally, the temperatures at the depth of 1km range from 29 to 41 degree Celsius, with a mean of 35 degree Celsius; while the temperatures at 3km vary from 63 to 100 degree Celsius, and the mean is 82 degree Celsius; at 5km below the surface, the temperatures fall into a range between 90 and 160 degree Celsius, with a mean of 129 degree Celsius. We further proposed the long-term low geothermal background and large burial

  4. Estimate of subsurface formation temperature in the Tarim basin, northwest China

    NASA Astrophysics Data System (ADS)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan

    2015-04-01

    Subsurface formation temperature in the Tarim basin, the largest sedimentary basin in China, is significant for its hydrocarbon generation, preservation and geothermal energy potential assessment, but till now is not well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data, drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime, and estimate the formation temperature at specific depths in the range 1000~5000 m in this basin. Results show that the heat flow of the Tarim basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5±7.6 mW/m2; geothermal gradient at the depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7±2.9 °C/km. Formation temperature at the depth of 1000 m is estimated to be between 29 °C and 41°C, with a mean of 35°C; whilst the temperature at 2000 m ranges from 46~71°C with an average of 59°C; 63~100°C is for that at the depth of 3000 m, and the mean is 82°C; the temperature at 4000 m varies from 80 to 130°C, with a mean of 105°C; 97~160°C is for the temperature at 5000 m depth. In addition, the general pattern of the subsurface formation temperatures at different depths is basically similar and is characterized by high temperatures in the uplift areas and low temperatures in the sags. Basement structure and lateral variations in thermal properties account for this pattern of the geo-temperature field in the Tarim basin.

  5. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    NASA Astrophysics Data System (ADS)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  6. Paleomagnetism and tectonics of the Southern Tarim Basin, northwestern China

    NASA Astrophysics Data System (ADS)

    Gilder, Stuart; Zhao, Xixi; Coe, Robert; Meng, Zifang; Courtillot, Vincent; Besse, Jean

    1996-10-01

    We report Late Carboniferous, Permian, and early Tertiary paleomagnetic data from the southern Tarim basin. Prefolding magnetizations were isolated in each case. The Late Carboniferous-Permian and early Tertiary poles lie at 64.6°N, 166.5°E, A95 = 6.3° and 58.1°N, 202.0°E, A95 = 12.7°, respectively. The Late Jurassic to early Tertiary (J3-E1) paleolatitudes of Tarim and several basins throughout central Asia are similar, yet significantly (10° to 20°) shallower than those predicted by the Eurasian apparent polar wander path. Resolving this discrepancy remains a major problem in Asian paleomagnetism. Discordance of the late Paleozoic poles from Tarim and Siberia suggest that Tarim has rotated about 30° counterclockwise with respect to Siberia since the Permian. Where paleomagnetic samples of both Late Carboniferous to Early Triassic (C3-T1) and J3-E1 ages were collected from the same area of Tarim, a great circle passes through the means of the poles and the sampling locality. This suggests that (1) only a difference in inclination (and not declination) distinguishes the two data sets, and (2) vertical axis block rotations of the C3-E1 strata occurred after E1. Although based on data of lesser quality, the mean Early to Middle Jurassic (J1-2) pole from Tarim differs significantly from the Eurasian reference pole, requiring radical tectonic solutions to resolve them. The Tarim J1-2 pole is indistinguishable from both the mean J3-E1 and C3-T1 poles. The similarity of all the poles and the analogous tectonic setting of present-day central Asia to that of the late Paleozoic in eastern North America raises the question whether all the data from Tarim are overprinted.

  7. Mesozoic non-marine petroleum source rocks determined by palynomorphs in the Tarim Basin, Xinjiang, northwestern China

    USGS Publications Warehouse

    Jiang, D.-X.; Wang, Y.-D.; Robbins, E.I.; Wei, J.; Tian, N.

    2008-01-01

    The Tarim Basin in Northwest China hosts petroleum reservoirs of Cambrian, Ordovician, Carboniferous, Triassic, Jurassic, Cretaceous and Tertiary ages. The sedimentary thickness in the basin reaches about 15 km and with an area of 560000 km2, the basin is expected to contain giant oil and gas fields. It is therefore important to determine the ages and depositional environments of the petroleum source rocks. For prospective evaluation and exploration of petroleum, palynological investigations were carried out on 38 crude oil samples collected from 22 petroleum reservoirs in the Tarim Basin and on additionally 56 potential source rock samples from the same basin. In total, 173 species of spores and pollen referred to 80 genera, and 27 species of algae and fungi referred to 16 genera were identified from the non-marine Mesozoic sources. By correlating the palynormorph assemblages in the crude oil samples with those in the potential source rocks, the Triassic and Jurassic petroleum source rocks were identified. Furthermore, the palynofloras in the petroleum provide evidence for interpretation of the depositional environments of the petroleum source rocks. The affinity of the miospores indicates that the petroleum source rocks were formed in swamps in brackish to lacustrine depositional environments under warm and humid climatic conditions. The palynomorphs in the crude oils provide further information about passage and route of petroleum migration, which is significant for interpreting petroleum migration mechanisms. Additionally, the thermal alternation index (TAI) based on miospores indicates that the Triassic and Jurassic deposits in the Tarim Basin are mature petroleum source rocks. ?? Cambridge University Press 2008.

  8. Structural features of northern Tarim basin: Implications for regional tectonics and petroleum traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Jia; Juafu Lu; Dongsheng Cai

    1998-01-01

    The rhombus-shaped Tarim basin in northwestern China is controlled mainly by two left-lateral strike-slip systems: the northeast-trending Altun fault zone along its southeastern side and the northeast-trending Aheqi fault zone along its northwestern side. In this paper, we discuss the northern Tarim basin`s structural features, which include three main tectonic units: the Kalpin uplift, the Kuqa depression, and the North Tarim uplift along the northern margin of the Tarim basin. Structural mapping in the Kalpin uplift shows that a series of imbricated thrust sheets have been overprinted by strike-slip faulting. The amount of strike-slip displacement is estimated to be 148more » km by restoration of strike-slip structures in the uplift. The Kuqa depression is a Mesozoic-Cenozoic foredeep depression with well-developed flat-ramp structures and fault-related folds. The Baicheng basin, a Quaternary pull-apart basin, developed at the center of the Kuqa depression. Subsurface structures in the North Tarim uplift can be divided into the Mesozoic-Cenozoic and the Paleozoic lithotectonic sequences in seismic profiles. The Paleozoic litho-tectonic sequence exhibits the interference of earlier left-lateral and later right-lateral strike-slip structures. Many normal faults in the Mesozoic-Cenozoic litho-tectonic sequence form the negative flower structures in the North Tarim uplift; these structures commonly directly overlie the positive flower structures in the Paleozoic litho-tectonic sequence. The interference regions of the northwest-trending and northeast-trending folds in the Paleozoic tectonic sequence have been identified to have the best trap structures. Our structural analysis indicates that the Tarim basin is a transpressional foreland basin rejuvenated during the Cenozoic.« less

  9. A Decision Support System For The Real-Time Allocation Of The Water Resource Of The Tarim River Basin, China

    NASA Astrophysics Data System (ADS)

    Wei, J.; Wang, G.; Liu, R.

    2008-12-01

    The Tarim River Basin is the longest inland river in China. Due to water scarcity, ecologically-fragile is becoming a significant constraint to sustainable development in this region. To effectively manage the limited water resources for ecological purposes and for conventional water utilization purposes, a real-time water resources allocation Decision Support System (DSS) has been developed. Based on workflows of the water resources regulations and comprehensive analysis of the efficiency and feasibility of water management strategies, the DSS includes information systems that perform data acquisition, management and visualization, and model systems that perform hydrological forecast, water demand prediction, flow routing simulation and water resources optimization of the hydrological and water utilization process. An optimization and process control strategy is employed to dynamically allocate the water resources among the different stakeholders. The competitive targets and constraints are taken into considered by multi-objective optimization and with different priorities. The DSS of the Tarim River Basin has been developed and been successfully utilized to support the water resources management of the Tarim River Basin since 2005.

  10. Relationship between deep structure and oil-gas in the eastern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Yu, Changqing; Qu, Chen; Han, Jianguang

    2017-04-01

    The Tarim Basin is a large composite superimposed basin which developed in the Presinian continental basement. It is an important area for oil and gas replacement in China. In the eastern part of Tarim Basin, the exploration and research degree is very low and less system, especially in the study of tectonic evolution and physical property change. Basing on the study of geophysics, drilling and regional geological data in this area, analysis of comprehensive geophysical, geological and geophysical analysis comparison are lunched by new methods and new technology of geophysical exploration. Fault, tectonic evolution and change of deep character in the eastern Tarim Basin are analyzed in system. Through in-depth study and understanding of the deep structure and physical changes of the eastern region, we obtain the fault characteristics in the study area and the deep structure and physical change maps to better guide the oil and gas exploration in this area. The east area is located in the eastern Tarim Basin, west from the Garr Man depression, Well Kunan 1 - Well Gucheng 4 line to the East, north to Kuruketage uplift group near Qunke 1 wells, south to Cherchen fault zone, east to Lop Nor depression, an area of about 9 * 104 square kilometres, Including the East of Garr Man sag, Yingjisu depression, Kongquehe slope, Tadong low uplift and the Lop Nor uplift, five two grade tectonic units. The east area of Tarim is belonging to Tarim plate. It changes with the evolution of the Tarim plate. The Tarim plate is closely related to the collision between the Yining - the Junggar plate, the Siberia plate and the southern Qiangtang - the central Kunlun plate. Therefore, it creates a complex tectonic pattern in the eastern Tarim basin. Earth electromagnetic, gravity, deep seismic and other geophysical data are processed by a new generation of geophysical information theory and method, including multi-scale inversion of potential field inversion (Hou and Yang, 2011), 3D

  11. Stability and tilting of regional water cycle over Tarim Basin

    NASA Astrophysics Data System (ADS)

    Zhang, Hongquan; Ma, Zhuguo

    2018-06-01

    The Tarim Basin is located upwind of the Gobi Desert where individual deserts have expanded significantly during the last 50 years. In recent history, stable runoff in the Tarim Basin has been observed despite the Lop Nur dry up and dramatic water consumption shift from east to west. This regional water cycle stability is conceptually explained based on the relationship between precipitation and evapotranspiration. The water consumption imbalance is caused by human activities near the river sources, which tilts the humidity profile over the basin. As a result, more water vapour spills from the western part of the basin and causes precipitation to increase in adjacent areas. At the same time, the Westerlies carry the low humidity air mass out of the eastern part of the basin to make the downwind Gobi Desert and surrounding areas drier. Therefore, the observed wetting on the west and drying on the east of northwest China are coupled.

  12. Windblown sediment transport and loss in a desert–oasis ecotone in the Tarim Basin

    USDA-ARS?s Scientific Manuscript database

    The Tarim Basin is regarded as one of the most highly erodible areas in China. Desert comprises 64% of the land use in the Basin, but the desert–oasis ecotone plays a prominent role in maintaining oasis ecological security and stability. Yet, little is known concerning the magnitude of windblown sed...

  13. Estimation of subsurface formation temperature in the Tarim Basin, northwest China: implications for hydrocarbon generation and preservation

    NASA Astrophysics Data System (ADS)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan

    2016-07-01

    Subsurface formation temperature in the Tarim Basin, northwest China, is vital for assessment of hydrocarbon generation and preservation, and of geothermal energy potential. However, it has not previously been well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data with drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime and estimate the subsurface formation temperature at depth in the range of 1000-5000 m, together with temperatures at the lower boundary of each of four major Lower Paleozoic marine source rocks buried in this basin. Results show that heat flow of the Tarim Basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5 ± 7.6 mW/m2; the geothermal gradient at depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7 ± 2.9 °C/km. Formation temperature estimated at the depth of 1000 m is between 29 and 41 °C, with a mean of 35 °C, while 63-100 °C is for the temperature at the depth of 3000 m with a mean of 82 °C. Temperature at 5000 m ranges from 97 to 160 °C, with a mean of 129 °C. Generally spatial patterns of the subsurface formation temperature at depth are basically similar, characterized by higher temperatures in the uplift areas and lower temperatures in the sags, which indicates the influence of basement structure and lateral variations in thermal properties on the geotemperature field. Using temperature to identify the oil window in the source rocks, most of the uplifted areas in the basin are under favorable condition for oil generation and/or preservation, whereas the sags with thick sediments are favorable for gas generation and/or preservation. We conclude that relatively low present-day geothermal regime and large burial depth of the source rocks in the Tarim Basin are favorable for hydrocarbon generation and preservation. In addition, it is found that the

  14. Annual distributions and variations of dust weather occurrence over the Tarim Basin, China

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Zhou, Yang; Wang, Minzhong; Huo, Wen; Huang, Anning; Yang, Xinhua; Yang, Fan

    2018-04-01

    The annual distribution and variations in dust weather occurrence (DWO) have been analyzed using monthly DWO data from 26 stations over the Tarim Basin during the period of 1961 to 2010. The results show that the DWO presents a significant decreasing trend for different parts of the Tarim Basin in recent decades. The monthly DWO has two peaks in the east and west. In the first half of the year, the peak is in April, but in the second half of the year, the peak is in September. According to the concentration period and concentration degree (CD) of DWO, we can find that the maximum DWO occurs in April in the eastern, western, and northern parts of the basin, but it occurs in May in the southern part. The dust weather season is shorter for the northern and eastern parts of the basin than those of the remaining parts. On average, the dust weather season initiates in April in the northeast and in May for the rest of the region. As an indicator for the length of dust weather season, the CD is significantly related to DWO, with a correlation coefficient of -0.51, revealing an interesting feature of regional climate change with declining DWO and declining dust weather season over the Tarim Basin. The correlation analysis exhibits that all the Arctic Oscillation, Antarctic Oscillation, and North Atlantic Oscillation have a negative relation with the DWO but a positive relation with the length of dust weather season.

  15. Soil and Land Resources Information System (SLISYS-Tarim) for Sustainable Management of River Oases along the Tarim River, China

    NASA Astrophysics Data System (ADS)

    Othmanli, Hussein; Zhao, Chengyi; Stahr, Karl

    2017-04-01

    The Tarim River Basin is the largest continental basin in China. The region has extremely continental desert climate characterized by little rainfall <50 mm/a and high potential evaporation >3000 mm/a. The climate change is affecting severely the basin causing soil salinization, water shortage, and regression in crop production. Therefore, a Soil and Land Resources Information System (SLISYS-Tarim) for the regional simulation of crop yield production in the basin was developed. The SLISYS-Tarim consists of a database and an agro-ecological simulation model EPIC (Environmental Policy Integrated Climate). The database comprises relational tables including information about soils, terrain conditions, land use, and climate. The soil data implicate information of 50 soil profiles which were dug, analyzed, described and classified in order to characterize the soils in the region. DEM data were integrated with geological maps to build a digital terrain structure. Remote sensing data of Landsat images were applied for soil mapping, and for land use and land cover classification. An additional database for climate data, land management and crop information were linked to the system, too. Construction of the SLISYS-Tarim database was accomplished by integrating and overlaying the recommended thematic maps within environment of the geographic information system (GIS) to meet the data standard of the global and national SOTER digital database. This database forms appropriate input- and output data for the crop modelling with the EPIC model at various scales in the Tarim Basin. The EPIC model was run for simulating cotton production under a constructed scenario characterizing the current management practices, soil properties and climate conditions. For the EPIC model calibration, some parameters were adjusted so that the modeled cotton yield fits to the measured yield on the filed scale. The validation of the modeling results was achieved in a later step based on remote sensing

  16. Soil wind erodibility based on dry aggregate-size distribution in the Tarim Basin

    USDA-ARS?s Scientific Manuscript database

    The Tarim Basin is an important source of airborne particulate matter that contributes to poor air quality in China. However, little attention has been given to estimating wind erodibility of soils in the region. The objective of this study was to determine the soil wind erodibility for six land use...

  17. Socio-hydrologic Perspectives of the Co-evolution of Humans and Water in the Tarim River Basin, Western China

    NASA Astrophysics Data System (ADS)

    Liu, Ye; Tian, Fuqiang; Hu, Heping; Liu, Dengfeng; Sivapalan, Murugesu

    2013-04-01

    Socio-hydrology studies the co-evolution of coupled human-water systems, which is of great importance for long-term sustainable water resource management in basins suffering from serious eco-environmental degradation. Process socio-hydrology can benefit from the exploring the patterns of historical co-evolution of coupled human-water systems as a way to discovering the organizing principles that may underpin their co-evolution. As a self-organized entity, the human-water system in a river basin would evolve into certain steady states over a sufficiently long time but then could also experience sudden shifts due to internal or external disturbances that exceed system thresholds. In this study, we discuss three steady states (also called stages in the social sciences, including natural, human exploitation and recovery stages) and transitions between these during the past 1500 years in the Tarim River Basin of Western China, which a rich history of civilization including its place in the famous Silk Road that connected China to Europe. Specifically, during the natural stage with a sound environment that existed before the 19th century, shifts in the ecohydrological regime were mainly caused by environmental changes such river channel migration and climate change. During the human exploitation stages in the 5th and again in the 19th-20th centuries, however, humans gradually became the main drivers for system evolution, during which the basin experienced rapid population growth, fast socio-economic development and intense human activities. By the 1970s, after 200 years of colonization, the Tarim River Basin evolved into a new regime with vulnerable ecosystem and water system, and suffered from serious water shortages and desertification. Human society then began to take a critical look into the effects of their activities and reappraise the impact of human development on the ecohydrological system, which eventually led the basin into a treatment and recovery stage

  18. Water resource management in river oases along the Tarim River in North-West of China

    NASA Astrophysics Data System (ADS)

    Kliucininkaite, Lina; Disse, Markus

    2013-04-01

    Tarim River is one of the longest inland rivers in the world. It flows its water in the northern part of the Taklamakan desert in Xinjiang, North-west of China, which is a very hostile region due its climatic conditions and particularly due to low precipitation and very high evaporation rates. During the past five decades intensive exploitation of water resources, mainly by agricultural activities, has changed the temporal and spatial distribution of them and caused serious environmental problems in the Tarim River Basin. The support measures for oasis management along the Tarim River under climatic and societal changes became the overarching goal of this research. The temperature has risen by nearly 1° C over the past 50 years in the Tarim River Basin so more water was available in the mountainous areas of Xinjiang, leading to an increasing trend of the headstream discharges of the Tarim Basin. Aksu, Hotan and Yarkant Rivers are three tributaries of the Tarim River, as well as its main water suppliers. However, under the condition of water increase with the volume of 25×108 m3 in headstreams in recent 10 years, the water to the mainstream has increased less than 108 m3 (in Alar hydrological station), which is less than 3% of the increased water volume of runoff. Moreover, the region is one of the biggest cotton and other cash crops producers in China. In addition, expansion of urban and, in particular, of irrigation areas have caused higher water consumption at different parts of the river, leading to severe ecological effects on rural areas, especially in the lower reaches. Moreover, it also highly affects groundwater level and quality. The aim of this research is to support decision makers, planners and engineers to find right measures in the area for the further development of the region, as well as adaptation to changing climate. Different scenarios for water resource management, as well as water distribution and allocation in a more efficient and water

  19. Late Cenozoic Deformation in the Western Tarim Basin, NW China

    NASA Astrophysics Data System (ADS)

    Thompson, J. A.; Burbank, D. W.; Chen, J.; Li, T.

    2009-12-01

    The Tian Shan in NW China is one of the most active regions of intracontinental deformation in the world, accommodating a large fraction (~40%) of the shortening from the Indo-Eurasian collision. The western Tarim Basin, situated between the southern Tian Shan and Pamir Mountains, manifests this deformation through a series of east-west trending fault-related folds that have formed during the late Cenozoic. Previous studies in this region have focused on the kinematics, style, and timing of detachment folds related to folding within the foreland basin of the southern Tian Shan. In contrast, this study focuses on the deformation caused by fault-propagation folding resulting from the northward movement of the Pamir. The rates of deformation are calculated using a combination of optically stimulated luminescence (OSL) ages, structural mapping and differential GPS surveys of fault scarps and deformed terrace surfaces crossing active folds. OSL dating provides the time since the sediment was last exposed to daylight, i.e., time since burial. Consequently, OSL is useful for dating the abandonment of terrace surfaces due to tectonic (fold growth) or climatic events. OSL quartz samples were collected from silt lenses within gravel topping the terraces. Most of the quartz OSL signals are weak, thus several grain sizes (silt (4-11 µm, 8-15 µm) and sand (90-125 µm)) were analyzed and different integrations of the shine-down curves were explored to calculate equivalent doses. The implications for different equivalent doses and ages on the calculation of rates of deformation are also addressed.

  20. Gravity anomalies and the structure of western Tibet and the southern Tarim Basin

    NASA Technical Reports Server (NTRS)

    Lyon-Caen, H.; Molnar, P.

    1984-01-01

    Gravity anomalies across the western part of the Tarim Basin and the Kunlun mountain belt show that this area is not in local isostatic equilibrium. These data can be explained if a strong plate underlying the Tarim Basin extends southwestward beneath the belt at least 80 km and supports part of the topography of northwest Tibet. This corroborates Norin's inference that late Tertiary crustal shortening has occurred in this area by southward underthrusting of the Tarim Basin beneath the Kunlun. This study places a lower bound on the amount of underthrusting.

  1. A New age Constraint on Sturtian Glaciation: SHRIMP U-Pb zircon geochronology of Neoproterozoic Altungol Formation in Tarim Basin, NW China

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Li, J.; Li, W.; Wang, H.

    2013-12-01

    Neoproterozoic glaciations with a wide distribution, punctuated the largely ice-free Precambrian world within tropical latitudes, interpreted as evidence record the cold paleoclimate intervals which made a Snowball Earth with the frozen ocean. More recently, Quruqtagh of Northeast Tarim Basin, Northwest China, catches the increasing eyes, not only because of its three or four Neoproterzoic glacial periods in China, but also its tectonic significance for breakup of Rodinia supercontinent. There are many Neoproterozoic glaciation strata exposures in Quruqtagh. The Nanhua System is divided into the Bayisi, Zhaobishan (absent in south aera), Altungol and Tereeken formations. Thick tillites were found in Bayisi, Tereeken and Hankalchough formations, while minor was found in Altungol Formation. After the field investigation of the south Yaerdang Mountain in the South aera, it is suggested that the Altungol Formation in the South aera differs from that the North aera. In the North, it is a set of littoral-neritic clastic facies sediment with few volcanic rocks and marine tillites in the bottom. In South Quruqtagh, it consists of 45m-thick gray-green tillites in the bottom with different size and complex components gravels, volcanic interbed near the top of tillites, overlying strata is cap dolomite of 15m thickness, with abundant drop-stones, the upper is black shales and gray to black thin-interbeded siliceous rock. The reported ages without Altungol glaciation age are all focused on the north Quruqtagh and conversely in South Quruqtagh without reported glaciation age. Based on field investigation of Nanhua System (Cryogenian) in NE Tarim Basin, we offer the first set of Sturtian glaciation age 729.4×6.6Ma, in the form of SHRIMP(sensitive high-resolution ion microprobe) U-Pb zircon age dating of volcanic interbedded near the top of Altungol Formation tillites, South Quruqtagh, which provides a new constraint on the Sturtian glaciation from global perspective. It is a

  2. Recognized Multiple Rifts of the Neoproterozoic in the Initiation of the Tarim Craton (NW China) and Their Tectonic Implications

    NASA Astrophysics Data System (ADS)

    He, B.; Jiao, C.; Huang, T.; Zhou, X.; Cai, Z.; Cao, Z.; Jiang, Z.; Cui, J.; Yu, Z.; Chen, W.

    2017-12-01

    The Tarim Basin is the largest, oil-bearing and superimposed basin in the northwest of China. The development and tectonic property of the initial Tarim basin have been acutely disputed and remain enigmatic. Urgently need to reveal the origin and formation dynamics of the Tarim Carton and evaluate the potential of the deep energy resources. However, covered by vast desert and huge-thickness sedimentary strata, suffered by multiple tectonic movements, seismic data with low signal- to- noise ratio in the deep are the critical difficulties. We analyse 4 field outcrops, 18 wells, 27 reprocessed seismic reflection profiles with high SNR across the basin and many ancillary ones and aeromagnetic data. We find about 20 normal fault-controlled rift depressions of the Cryogenian and Ediacaran scattered in the Tarim basin, which developed on the Precambrian metamorphic and crystalline basements and covered by the epeiric sea and basin facies sediments of the Lower Cambrian. The structural styles of the rifts are mainly half grabens, symmetrical troughs and horst-grabens. The regional differences exist obviously in spatial and temporal. The WNW-ESE-trending faults occur in the central part and northern of the basin and the NE, and the NEE-trending faults occur in the southern parts, which response with the anomaly of aeromagnetic. Some main faults of the Ediacaran inherited from the Cryogenian and some occurred newly, the more rifting depressions occurred during the Ediacaran. The extensional NNW-SSE-oriented and NNE-SSW-oriented paleostress field occurred simultaneously during rifting, and accompanied with the clockwise shearing. According to the activities of syn-sedimentary faults, magmatic events and sediments, the tectonic properties of the rifts are different depending on their locations in the Tarim craton. The rifting phases mainly occurred from 780 Ma to 615 Ma. The formation of rifts were associated with the opening of the South Tianshan Ocean and the South Altun

  3. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River Basin, Western China: the Taiji-Tire Model

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Tian, F.; Hu, H.; Sivapalan, M.

    2013-10-01

    This paper presents a historical socio-hydrological analysis of the Tarim Basin, Xinjiang Province, Western China, from the time of the opening of the Silk Road to the present. The analysis is aimed at exploring the historical co-evolution of coupled human-water systems and at identifying common patterns or organizing principles underpinning socio-hydrological systems (SHS). As a self-organized entity, the evolution of the human-water system in the Tarim Basin reached stable states for long periods of time, then punctuated by sudden shifts due to internal or external disturbances. In this study, we discuss three steady periods (i.e. natural, human exploitation, and degradation and recovery) and transitions in between during the past 2000 yr. During the "natural" stage that existed pre-18th century, with small-scale human society and sound environment, evolution of the SHS was mainly driven by natural environmental changes such as river channel migration and climate change. During the human exploitation stage, especially in the 19th and 20th centuries, it experienced rapid population growth, massive land reclamation and fast socio-economic development, and humans became the principal players of system evolution. By the 1970s, the Tarim Basin had evolved into a new regime with a vulnerable eco-hydrological system seemingly populated beyond its carrying capacity, and a human society that began to suffer from serious water shortages, land salinization and desertification. With intensified deterioration of river health and increased recognition of unsustainability of traditional development pattern, human intervention and recovery measures have been adopted. Since then, the basin has shown a reverse regime shift towards some healing of the environmental damage. Spatio-temporal variations of historical socio-hydrological co-evolution are classified into four types: primitive agricultural, traditional agricultural, industrial agricultural and urban SHSs. These co

  4. Sustainable management of river oases along the Tarim River in North-Western China under conditions of climate change

    NASA Astrophysics Data System (ADS)

    Rumbaur, C.; Thevs, N.; Disse, M.; Ahlheim, M.; Brieden, A.; Cyffka, B.; Doluschitz, R.; Duethmann, D.; Feike, T.; Frör, O.; Gärtner, P.; Halik, Ü.; Hill, J.; Hinnenthal, M.; Keilholz, P.; Kleinschmit, B.; Krysanova, V.; Kuba, M.; Mader, S.; Menz, C.; Othmanli, H.; Pelz, S.; Schroeder, M.; Siew, T. F.; Stender, V.; Stahr, K.; Thomas, F. M.; Welp, M.; Wortmann, M.; Zhao, X.; Chen, X.; Jiang, T.; Zhao, C.; Zhang, X.; Luo, J.; Yimit, H.; Yu, R.

    2014-10-01

    The Tarim River Basin, located in Xinjiang, NW China, is the largest endorheic river basin of China and one of the largest in whole Central Asia. Due to the extremely arid climate with an annual precipitation of less than 100 mm, the water supply along the Aksu and Tarim River solely depends on river water. This applies for anthropogenic activities (e.g. agriculture) as well as for the natural ecosystems so that both compete for water. The on-going increase of water consumption by agriculture and other human activities in this region has been enhancing the competition for water between human needs and nature. Against this background, 11 German and 6 Chinese universities and research institutes formed the consortium SuMaRiO (www.sumario.de), which aims at gaining a holistic picture of the availability of water resources in the Tarim River Basin and the impacts on anthropogenic activities and natural ecosystems caused by the water distribution within the Tarim River Basin. The discharge of the Aksu River, which is the major tributary to the Tarim, has been increasing over the past 6 decades due to enhanced glacier melt. Alone from 1989 to 2011, the area under agriculture more than doubled. Thereby, cotton became the major crop and there was a shift from small-scale farming to large-scale intensive farming. The major natural ecosystems along the Aksu and Tarim River are riparian ecosystems: Riparian (Tugai) forests, shrub vegetation, reed beds, and other grassland. Within the SuMaRiO Cluster the focus was laid on the Tugai forests, with Populus euphratica as dominant tree, because the most productive and species-rich natural ecosystems can be found among those forests. On sites with groundwater distance of less than 7.5 m the annual increments correlated with river runoffs of the previous year. But, the further downstream along the Tarim River, the more the natural river dynamics ceased, which impacts on the recruitment of

  5. Windblown sediment transport and loss in a desert-oasis ecotone in the Tarim Basin.

    PubMed

    Pi, Huawei; Sharratt, Brenton; Lei, Jiaqiang

    2017-08-10

    The Tarim Basin is regarded as one of the most highly erodible areas in China. Desert comprises 64% of the land use in the Basin, but the desert-oasis ecotone plays a prominent role in maintaining oasis ecological security and stability. Yet, little is known concerning the magnitude of windblown sediment transport in a desert-oasis ecotone. Therefore, aeolian sediment transport and loss was assessed from a desert-oasis experimental site located near Alaer City in the northwestern Tarim Basin. Sediment transport and factors governing transport were measured during three high wind events in 2012 and four events in 2013. Sediment transport was measured to a height of 10 m using passive aeolian airborne sediment samplers. The mass flux profile over the eroding surface was well represented by the power-law (R 2  > 0.77). Sediment loss from the site ranged from 118 g m -2 for the 20-24Apr 2012 wind event to 2925 g m -2 for the 31Mar-11Apr 2012 event. Suspension accounted for 67.4 to 84.8% of sediment loss across all high wind events. Our results indicate the severity of wind erosion in a desert-oasis ecotone and thus encourage adoption of management practices that will enhance oasis ecological security.

  6. Comparison of Tarim and central Asian FSU basins, I: Phanerozoic paleogeography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heubeck, C.; Shangyou N.

    1996-12-31

    Large amounts of previously unpublished data on the petroleum geology of the FSU`s Central Asian Republics and of China`s Tarim region have found their way into the western public domain in the past few years. These data provide for the first time the opportunity to merge detailed stratigraphic, tectonic, and paleogeographic studies done during the past decades on both sides of the FSU-Chinese border and to place the results in a plate-tectonic and palinspastically restored reference frame. Major tectonic events affecting the active post-Silurian south-facing margin of Asia between the Caspian Sea and Tarim include (1) the collapse of themore » Kazakhstan arc fragments (ca. 400-300 Ma); (2) collision of YiIi with Tarim (ca. 375 Ma); (3) consolidation of the Turan Platform from pre-existing basement blocks (ca. 280-220 Ma), (4) collision of Tarim/Yili with the Kazakhstan arcs (ca. 260 Ma); (5) stabilization of a south-facing Triassic active margin (ca. 250 - 200 Ma); (6) accretion of Cimmeria (ca. 200 Ma) and associated reactivation events in Turan, Syr-Darja, and Tarim; (7) reactivation and modification of intracontinental structures during the collision of central Asia with India (ca. 55 Ma to present) and with the Arabian platform (ca. 25 Ma). Periodic large-scale flooding of denuded continental platforms (Turan, Tadjik) during sea-level highstands is recorded in the Jurassic, Mid-Late Cretaceous, and the Early Tertiary, resulting in extensive tracts of restricted marine sedimentary systems and marine incursions deep into central Asia (SW Tarim, Kuche Depression, Fergana, Turgay). Mesozoic-Cenozoic source rocks are sensitive to rapid lateral facies changes, and understanding their distribution requires detailed stratigraphic analysis. The attempted synthesis of data from China and the FSU with plate-tectonic concepts allows the transfer and testing of play concepts and hydrocarbons systems across the FSU-Chinese border.« less

  7. Multiple cooling episodes in the Central Tarim (Northwest China) revealed by apatite fission track analysis and vitrinite reflectance data

    NASA Astrophysics Data System (ADS)

    Chang, Jian; Qiu, Nansheng; Song, Xinying; Li, Huili

    2016-06-01

    Apatite fission track and vitrinite reflectance are integrated for the first time to study the cooling history in the Central Tarim, northwest China. The paleo-temperature profiles from vitrinite reflectance data of the Z1 and Z11 wells showed a linear relationship with depth, suggesting an approximately 24.8 °C/km paleo-geothermal gradient and 2700-3900 m of erosion during the Early Mesozoic. The measured apatite fission track ages from well Z2 in the Central Tarim range from 39 to 159 Ma and effectively record the Meso-Cenozoic cooling events that occurred in Central Tarim. Moreover, two cooling events at 190-140 Ma in the Early Jurassic-Early Cretaceous and 80-45 Ma in the Late Cretaceous-Paleocene revealed by measured AFT data and thermal modeling results are related to the collisions of the Qiangtang-Lhasa terranes and the Greater India Plate with the southern margin of the Eurasian Plate, respectively. This study provides new insights into the tectonic evolution of the Tarim Basin (and more broadly Central Asia) and for hydrocarbon generation and exploration in the Central Tarim.

  8. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River basin, Western China: the Taiji-Tire model

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Tian, F.; Hu, H.; Sivapalan, M.

    2014-04-01

    This paper presents a historical socio-hydrological analysis of the Tarim River basin (TRB), Xinjiang Uyghur Autonomous Region, in Western China, from the time of the opening of the Silk Road to the present. The analysis is aimed at exploring the historical co-evolution of coupled human-water systems and at identifying common patterns or organizing principles underpinning socio-hydrological systems (SHS). As a self-organized entity, the evolution of the human-water system in the Tarim Basin reached stable states for long periods of time, but then was punctuated by sudden shifts due to internal or external disturbances. In this study, we discuss three stable periods (i.e., natural, human exploitation, and degradation and recovery) and the transitions in between during the past 2000 years. During the "natural" stage that existed pre-18th century, with small-scale human society and sound environment, evolution of the SHS was mainly driven by natural environmental changes such as river channel migration and climate change. During the human exploitation stage, especially in the 19th and 20th centuries, it experienced rapid population growth, massive land reclamation and fast socio-economic development, and humans became the principal players of system evolution. By the 1970s, the Tarim Basin had evolved into a new regime with a vulnerable eco-hydrological system seemingly populated beyond its carrying capacity, and a human society that began to suffer from serious water shortages, land salinization and desertification. With intensified deterioration of river health and increased recognition of unsustainability of traditional development patterns, human intervention and recovery measures have since been adopted. As a result, the basin has shown a reverse regime shift towards some healing of the environmental damage. Based on our analysis within TRB and a common theory of social development, four general types of SHSs are defined according to their characteristic spatio

  9. The significance of 24-norcholestanes, triaromatic steroids and dinosteroids in oils and Cambrian-Ordovician source rocks from the cratonic region of the Tarim Basin, NW China

    USGS Publications Warehouse

    Li, Meijun; Wang, T.-G.; Lillis, Paul G.; Wang, Chunjiang; Shi, Shengbao

    2012-01-01

    Two oil families in Ordovician reservoirs from the cratonic region of the Tarim Basin are distinguished by the distribution of regular steranes, triaromatic steroids, norcholestanes and dinosteroids. Oils with relatively lower contents of C28 regular steranes, C26 20S, C26 20R + C27 20S and C27 20R regular triaromatic steroids, dinosteranes, 24-norcholestanes and triaromatic dinosteroids originated from Middle–Upper Ordovician source rocks. In contrast, oils with abnormally high abundances of the above compounds are derived from Cambrian and Lower Ordovician source rocks. Only a few oils have previously been reported to be of Cambrian and Lower Ordovician origin, especially in the east region of the Tarim Basin. This study further reports the discovery of oil accumulations of Cambrian and Lower Ordovician origin in the Tabei and Tazhong Uplifts, which indicates a potential for further discoveries involving Cambrian and Lower Ordovician sourced oils in the Tarim Basin. Dinosteroids in petroleum and ancient sediments are generally thought to be biomarkers for dinoflagellates and 24-norcholestanes for dinoflagellates and diatoms. Therefore, the abnormally high abundance of these compounds in extracts from the organic-rich sediments in the Cambrian and Lower Ordovician and related oils in the cratonic region of the Tarim Basin suggests that phytoplankton algae related to dinoflagellates have appeared and might have flourished in the Tarim Basin during the Cambrian Period. Steroids with less common structural configurations are underutilized and can expand understanding of the early development history of organisms, as well as define petroleum systems.

  10. Comparison of Tarim and central Asian FSU basins, I: Phanerozoic paleogeography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heubeck, C.; Shangyou N.

    1996-01-01

    Large amounts of previously unpublished data on the petroleum geology of the FSU's Central Asian Republics and of China's Tarim region have found their way into the western public domain in the past few years. These data provide for the first time the opportunity to merge detailed stratigraphic, tectonic, and paleogeographic studies done during the past decades on both sides of the FSU-Chinese border and to place the results in a plate-tectonic and palinspastically restored reference frame. Major tectonic events affecting the active post-Silurian south-facing margin of Asia between the Caspian Sea and Tarim include (1) the collapse of themore » Kazakhstan arc fragments (ca. 400-300 Ma); (2) collision of YiIi with Tarim (ca. 375 Ma); (3) consolidation of the Turan Platform from pre-existing basement blocks (ca. 280-220 Ma), (4) collision of Tarim/Yili with the Kazakhstan arcs (ca. 260 Ma); (5) stabilization of a south-facing Triassic active margin (ca. 250 - 200 Ma); (6) accretion of Cimmeria (ca. 200 Ma) and associated reactivation events in Turan, Syr-Darja, and Tarim; (7) reactivation and modification of intracontinental structures during the collision of central Asia with India (ca. 55 Ma to present) and with the Arabian platform (ca. 25 Ma). Periodic large-scale flooding of denuded continental platforms (Turan, Tadjik) during sea-level highstands is recorded in the Jurassic, Mid-Late Cretaceous, and the Early Tertiary, resulting in extensive tracts of restricted marine sedimentary systems and marine incursions deep into central Asia (SW Tarim, Kuche Depression, Fergana, Turgay). Mesozoic-Cenozoic source rocks are sensitive to rapid lateral facies changes, and understanding their distribution requires detailed stratigraphic analysis. The attempted synthesis of data from China and the FSU with plate-tectonic concepts allows the transfer and testing of play concepts and hydrocarbons systems across the FSU-Chinese border.« less

  11. Cenozoic Deformation of the Tarim Basin (Xinjiang, China): a Record of the Deformation Propagation through the Asian Orogenic System

    NASA Astrophysics Data System (ADS)

    Laborde, A.; Barrier, L.; Simoes, M.; Li, H.

    2016-12-01

    During the Cenozoic, the ongoing India-Eurasia collision resulted in the formation of the Himalayan-Tibetan plateau and reactivated the Tian Shan and Altai ranges located thousands of kilometers further north. Despite numerous studies carried out on the geology and tectonics of this large convergent orogenic system, several mechanisms remain controversial such as the stress propagation through the Asia Continent or the strain partitioning between crustal thickening and lateral extruding of its lithosphere. Located between the Tibetan Plateau and the Tian Shan Range, the Tarim Basin and its several kilometres thick Cenozoic sediments derived from the surrounding mountain belts are key recorders to reconstruct the evolution of the latters. Moreover, this basin is often considered as a relatively rigid block, which behaved as a secondary ``indenter'' transmitting collisional stresses to the Tian Shan. However, due to the size of the Tarim and its thick Cenozoic sedimentary series hiding most of its structures, the constraints on the spatial distribution and timing of the its Cenozoic deformation remain fragmentary. Therefore, the main objective of our study was to produce a synthetic view of this deformation at the scale of the whole basin. Based on numerous surface and subsurface data (satellite images, field surveys, seismic profiles, and well data), we established a tectonic map of the Cenozoic structures in the region and built balanced geological cross-sections across the basin. Our surface and subsurface observations confirm that, contrary to what had been proposed, the Tarim block has also undergone a major deformation during the Cenozoic. The quantification and history of this deformation provide useful insights into the modalities of the crustal shortening in the area and the problems of stress propagation and strain partitioning following the Indo-Asian collision.

  12. Wind erosion of cropland in the northwestern Tarim Basin

    USDA-ARS?s Scientific Manuscript database

    The Aksu region within the Tarim Basin is a major source of windblown dust due to aridity and vast areas under intensive irrigated crop production. Despite the importance of crop production to the local economy and sustenance, little is known about the amount of soil eroded by wind from agricultural...

  13. The Cretaceous - Paleogene paleogeography of Central Asia recorded in depositional environments of the Proto-Paratethys Sea in the Tarim Basin (Western China)

    NASA Astrophysics Data System (ADS)

    Yücel Kaya, Mustafa; Dupont-Nivet, Guillaume; Proust, Jean-Noel; Bougeois, Laurie; Meijer, Niels; Frieling, Joost; Fioroni, Chiara; Stoica, Marius; Roperch, Pierrick; Mamtimin, Mehmut; Aminov, Jovid

    2017-04-01

    The Proto-Paratethys, a shallow epicontinental sea, extended from Cretaceous to Paleogene times across Eurasia from the Mediterranean Tethys to the Tarim Basin in western China. Transgressive and regressive episodes of the Proto-Paratethys Sea have been previously recognized but their timing, extent and depositional environments remain poorly constrained especially for the Cretaceous and early Paleogene. This hampers understanding of their driving mechanisms (geodynamic and/or eustatic) and paleoclimatic consequences on regional aridification and monsoons. As part of the ERC "MAGIC" project, we report an integrated sedimentologic and stratigraphic analysis of the Proto-Paratethys from its initial Cretaceous onset to the final Paleogene retreat from multiple investigated sections in the western border of Tarim Basin. Facies associations include field observations and microfacies analyses from carbonate samples. New bio- and magneto-stratigraphic results from key intervals are also provided to testify the previously constructed regional stratigraphic framework. The previously controversial number of marine incursions in the Tarim Basin is resolved to 6 (3 Cretaceous and 3 Paleogene) also recognized in the neighboring Tajik and Turan Basins to the west and the present-day Alai Valley. The eastward extent of these marine incursions varied through time with a maximum extent during late Paleocene - early Eocene. The first marine incursion is a Cenomanian transgression recorded in the marls and calcareous mudstones of the Kukebai Formation. The next two are Coniacian and Campanian transgressions recognized in the carbonate units of the Yigeziya Formation. The first Paleogene incursion is characterized by thick evaporites of the Paleocene Aertashi Formation overlain by the marine shales of the Lower Qimugen Formation. The latter represents the maximum extent and the deepest environments of the Proto-Paratethys. The marine Kalatar limestones and silty shales of the Wulagen

  14. Semi-natural areas of Tarim Basin in northwest China: Linkage to desertification.

    PubMed

    Liu, Fang; Zhang, Hongqi; Qin, Yuanwei; Dong, Jinwei; Xu, Erqi; Yang, Yang; Zhang, Geli; Xiao, Xiangming

    2016-12-15

    Semi-natural lands are not intensively managed lands, which have ecological significance in protecting artificial oasis and preventing desertification in arid regions. The significant shrinkage and degradation of semi-natural lands in the land-use intensification process have caused severe desertification. However, there is a knowledge gap regarding the spatio-temporal pattern and detailed classification of semi-natural lands and its quantitative relationship with desertification. Taking the Tarim Basin as an example, we proposed a comprehensive classification system to identify semi-natural lands for 1990, 2000, and 2010, respectively, using multi-source datasets at large scales. Spatio-temporal changes of semi-natural lands were then characterized by map comparisons at decade intervals. Finally, statistical relationships between semi-natural lands and desertification were explored based on 241 watersheds. The area of semi-natural lands in Tarim Basin was 10.77×10 4 km 2 in 2010, and desert-vegetation type, native-oasis type, artificial-oasis type, saline type and wetland type accounted for 59.59%, 14.65%, 11.25%, 9.63% and 4.88% of the total area, respectively. A rapid loss of semi-natural lands (9769.05km 2 ) was demonstrated from 1990 to 2010. In the fragile watersheds, the semi-natural lands were mainly converted to desert; while in the watersheds with advanced oasis agriculture, artificial-oasis type reclaimed to arable land was the major change. The occurrence of desertification was closely related to the type, area proportion and combination patterns of semi-natural lands. Desertification was prone to occur in regions abundant in desert-vegetation type and saline type, while less serious desertification was observed in regions with high proportion of artificial-oasis type and wetland type. Policy intervention and reasonable water resource allocation were encouraged to prevent the substantial loss of semi-natural lands, especially for the water

  15. Seasonal predictions of precipitation in the Aksu-Tarim River basin for improved water resources management

    NASA Astrophysics Data System (ADS)

    Hartmann, Heike; Snow, Julie A.; Su, Buda; Jiang, Tong

    2016-12-01

    Since the 1950s, the population in the arid to hyperarid Tarim River basin has grown rapidly concurrent with an expansion of irrigated agriculture. This threatens the Tarim River basin's natural ecosystems and causes water shortages, even though increased discharges in the headwaters have been observed more recently. These increases have mainly been attributed to receding glaciers and are projected to cease when the glaciers are unable to provide sufficient amounts of meltwater. Under these circumstances water management will face a serious challenge in adapting its strategies to changes in river discharge, which to a greater extent will depend on changes in precipitation. In this paper, we aim to develop accurate seasonal predictions of precipitation to improve water resources management. Possible predictors of precipitation for the Tarim River basin were either downloaded directly or calculated using NCEP/NCAR Reanalysis 1 and NOAA Extended Reconstructed Sea Surface Temperature (SST) V3b data in monthly resolution. To evaluate the significance of the predictors, they were then correlated with the monthly precipitation dataset GPCCv6 extracted for the Tarim River basin for the period 1961 to 2010. Prior to the Spearman rank correlation analyses, the precipitation data were averaged over the subbasins of the Tarim River. The strongest correlations were mainly detected with lead times of four and five months. Finally, an artificial neural network model, namely a multilayer perceptron (MLP), and a multiple linear regression (LR) model were developed each in two different configurations for the Aksu River subbasin, predicting precipitation five months in advance. Overall, the MLP using all predictors shows the best performance. The performance of both models drops only slightly when restricting the model input to the SST of the Black Sea and the Siberian High Intensity (SHI) pointing towards their importance as predictors.

  16. Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change

    NASA Astrophysics Data System (ADS)

    Rumbaur, C.; Thevs, N.; Disse, M.; Ahlheim, M.; Brieden, A.; Cyffka, B.; Duethmann, D.; Feike, T.; Frör, O.; Gärtner, P.; Halik, Ü.; Hill, J.; Hinnenthal, M.; Keilholz, P.; Kleinschmit, B.; Krysanova, V.; Kuba, M.; Mader, S.; Menz, C.; Othmanli, H.; Pelz, S.; Schroeder, M.; Siew, T. F.; Stender, V.; Stahr, K.; Thomas, F. M.; Welp, M.; Wortmann, M.; Zhao, X.; Chen, X.; Jiang, T.; Luo, J.; Yimit, H.; Yu, R.; Zhang, X.; Zhao, C.

    2015-03-01

    The Tarim River basin, located in Xinjiang, NW China, is the largest endorheic river basin in China and one of the largest in all of Central Asia. Due to the extremely arid climate, with an annual precipitation of less than 100 mm, the water supply along the Aksu and Tarim rivers solely depends on river water. This is linked to anthropogenic activities (e.g., agriculture) and natural and semi-natural ecosystems as both compete for water. The ongoing increase in water consumption by agriculture and other human activities in this region has been enhancing the competition for water between human needs and nature. Against this background, 11 German and 6 Chinese universities and research institutes have formed the consortium SuMaRiO (Sustainable Management of River Oases along the Tarim River; http://www.sumario.de), which aims to create a holistic picture of the availability of water resources in the Tarim River basin and the impacts on anthropogenic activities and natural ecosystems caused by the water distribution within the Tarim River basin. On the basis of the results from field studies and modeling approaches as well as from suggestions by the relevant regional stakeholders, a decision support tool (DST) will be implemented that will then assist stakeholders in balancing the competition for water, acknowledging the major external effects of water allocation to agriculture and to natural ecosystems. This consortium was formed in 2011 and is funded by the German Federal Ministry of Education and Research. As the data collection phase was finished this year, the paper presented here brings together the results from the fields from the disciplines of climate modeling, cryology, hydrology, agricultural sciences, ecology, geoinformatics, and social sciences in order to present a comprehensive picture of the effects of different water availability schemes on anthropogenic activities and natural ecosystems along the

  17. Ecosystem Services and Related Sustainable Management of River Oases along the Tarim River in Northwest China

    NASA Astrophysics Data System (ADS)

    Disse, M.; Keilholz, P.; Rumbaur, C.; Thevs, N.

    2011-12-01

    Within the Taklimakan Desert of Northwestern China, an area renowned for its extreme climate and vulnerable ecosystems, lies one of the largest inland rivers in the world, the Tarim River. Because the Tarim River is located in a remote area from the oceans, rainfall is extremely rare (less than 50 mm per year) but potential evaporation is high (3000 mm). Thus, the major source of water discharge comes from snowmelt and glacier-melt in the mountains. Though the water discharge into the Tarim River has experienced an increase over the past ten years, global climate change forecasts predict this water supply to decline within the century. The Tarim River is the major source of water in Northwestern China, and has become the hub of many economic activities related to agriculture and urban life. Over the past 50 years increased activity in the area has led to a severe decline in river flow. Both human and natural ecosystems have been impacted by water diversions. Since rainfall is rare, the majority of vegetation in this area depends solely on groundwater for survival, and plants are experiencing stress caused by decreasing groundwater levels. Recently nearby cities have experienced severe dust storms caused by the shrinking of the vegetative region along the river. SuMaRiO (Sustainable Management of River Oases) is a bundle project between Germany and China working to contribute to a sustainable land management which explicitly takes into account ecosystem functions (ESF) and ecosystem services (ESS). In a transdisciplinary research process, SuMaRiO will identify realizable management strategies, considering social, economic and ecological criteria. SuMaRiO is developing tools to work with Chinese decision makers to implement sustainable land management strategies. In addition, research is being conducted to estimate climate change impacts, floodplain biodiversity, and water runoff characteristics. The overarching goal of SuMaRiO is to support oasis management along

  18. Aerodynamic properties of agricultural and natural surfaces in northwestern Tarim Basin

    USDA-ARS?s Scientific Manuscript database

    Friction velocity (u*) and aerodynamic roughness (z0) are important parameters that influence soil erosion, but no attempts have been made to quantify these parameters as affected by different land use types in the northwestern Tarim Basin. Wind velocity profiles were measured and used to determine ...

  19. Neoproterozoic stratigraphic framework of the Tarim Craton in NW China: Implications for rift evolution

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Guan, Shuwei; Zhang, Shuichang; Yang, Haijun; Jin, Jiuqiang; Zhang, Xiaodan; Zhang, Chunyu

    2018-06-01

    The Tarim Craton is overlain by thick Neoproterozoic sedimentary successions in rift tectonic setting. This study examines the latest outcrop, seismic, and drilling core data with the objective of investigating the regional stratigraphy to deeply recognize the evolution of rifting in the craton. Cryogenian to Lower Ediacaran successions are mainly composed of clastic rocks with thicknesses of 2000-3000 m, and the Upper Ediacaran successions are composed of carbonate rocks with thicknesses of 500-800 m. The rift basins and stratigraphic zones are divided into northern and southern parts by a central paleo-uplift. The northern rift basin extends through the northern Tarim Craton in an E-W direction with two depocenters (Aksu and Kuruktag). The southern rift basin is oriented NE-SW. There are three or four phases of tillites in the northern zone, while there are two in the southern zone. Given the north-south difference of the stratigraphic framework, the northern rift basin initiated at ca. 740 Ma and the southern rift basin initiated at ca. 780 Ma. During the Cryogenian and Ediacaran, the northern and southern rift basins were separated by the central paleo-uplift, finally connecting with each other in the early Cambrian. Tectonic deformation in the Late Ediacaran led to the formation of a parallel unconformity in the rift basins and an angular unconformity in the central paleo-uplift. The Neoproterozoic rift basins continued to affect the distribution of Lower Cambrian hydrocarbon source rocks. The north-south distribution and evolution of the rift basins in the Tarim Craton have implications for reconstructions of the Rodinia supercontinent.

  20. Evidence that a West-East admixed population lived in the Tarim Basin as early as the early Bronze Age

    PubMed Central

    2010-01-01

    Background The Tarim Basin, located on the ancient Silk Road, played a very important role in the history of human migration and cultural communications between the West and the East. However, both the exact period at which the relevant events occurred and the origins of the people in the area remain very obscure. In this paper, we present data from the analyses of both Y chromosomal and mitochondrial DNA (mtDNA) derived from human remains excavated from the Xiaohe cemetery, the oldest archeological site with human remains discovered in the Tarim Basin thus far. Results Mitochondrial DNA analysis showed that the Xiaohe people carried both the East Eurasian haplogroup (C) and the West Eurasian haplogroups (H and K), whereas Y chromosomal DNA analysis revealed only the West Eurasian haplogroup R1a1a in the male individuals. Conclusion Our results demonstrated that the Xiaohe people were an admixture from populations originating from both the West and the East, implying that the Tarim Basin had been occupied by an admixed population since the early Bronze Age. To our knowledge, this is the earliest genetic evidence of an admixed population settled in the Tarim Basin. PMID:20163704

  1. Depositional environments and cyclicity of the Early Ordovician carbonate ramp in the western Tarim Basin (NW China)

    NASA Astrophysics Data System (ADS)

    Guo, Chuan; Chen, Daizhao; Song, Yafang; Zhou, Xiqiang; Ding, Yi; Zhang, Gongjing

    2018-06-01

    During the Early Ordovician, the Tarim Basin (NW China) was mainly occupied by an extensive shallow-water carbonate platform, on which a carbonate ramp system was developed in the Bachu-Keping area of the western part of the basin. Three well-exposed typical outcrop sections of the Lower Ordovician Penglaiba Formation were investigated in order to identify the depositional facies and to clarify origins of meter-scale cycles and depositional sequences, thereby the platform evolution. Thirteen lithofacies are identified and further grouped into three depositional facies (associations): peritidal, restricted and open-marine subtidal facies. These lithofacies are vertically stacked into meter-scale, shallowing-upward peritidal and subtidal cycles. The peritidal cycles are mainly distributed in the lower and uppermost parts of the Penglaiba Formation deposited in the inner-middle ramp, and commonly start with shallow subtidal to intertidal facies followed by inter- to supratidal facies. In contrast, the subtidal cycles occur throughout the formation mostly in the middle-outer ramp and are dominated by shallow to relatively deep (i.e., intermediate) subtidal facies. The dominance of asymmetrical and incomplete cycles suggests a dominant control of Earth's orbital forcing on the cyclic deposition on the platform. On the basis of vertical facies and cycle stacking patterns, and accommodation changes illustrated by the Fischer plots from all studied sections, five third-order depositional sequences are recognized in the Penglaiba Formation. Individual sequences comprise a lower transgressive part and an upper regressive one. In shallow-water depositional environments, the transgressive packages are dominated by thicker-than-average subtidal cycles, indicating an increase in accommodation space, whereas regressive parts are mainly represented by thinner-than-average peritidal and subtidal cycles, denoting a decrease in accommodation space. In contrast, in intermediate to

  2. Source, evolution and emplacement of Permian Tarim Basalts: Evidence from U-Pb dating, Sr-Nd-Pb-Hf isotope systematics and whole rock geochemistry of basalts from the Keping area, Xinjiang Uygur Autonomous region, northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Dayu; Zhou, Taofa; Yuan, Feng; Jowitt, Simon M.; Fan, Yu; Liu, Shuai

    2012-04-01

    Permian basalts distribute at least 250,000 km2, and underlie the southwest Tarim Basin in Xinjiang Uygur Autonomous region, northwest China. This vast accumulation of basalt is the main part of the Tarim Large Igneous Province (LIP). The basaltic units in the Lower Permian Kupukuziman and Kaipaizileike Formations in the Keping area, Tarim Basin; were the best exposure of the Permian basalt sequence in the basin. LA-ICP-MS U-Pb dating of zircon from the basal basaltic unit in the section gives an age of 291.9 ± 2.2 Ma (MSWD = 0.30, n = 17); this age, combined with previously published geochronological data, indicates that the basalts in the Tarim Basin were emplaced between 292 Ma and 272 Ma, with about 90% of the basalts being emplaced between 292 and 287 Ma. Basalts from the Keping area have high FeOT (10.8-18.6 wt.%), low Mg#s (0.26-0.60), and exhibit primitive mantle normalized patterns with positive Pb, P and Ti but negative Zr, Y and Ta anomalies. The basalts from both formations have similar 206Pb/204Pb (18.192-18.934), 207Pb/204Pb (15.555-15.598) and 208Pb/204Pb (38.643-38.793) ratios. The basalts also have high ɛSr(t) (45.7-62.1), low ɛNd(t) (-3.6 to -2.2) and low zircon ɛHf(t) (-4.84 to -0.65) values. These characteristics are typical of alkali basalts and suggest that the basalts within the Tarim Basin were derived from an OIB-type mantle source and interacted with enriched mantle (EMI-type) before emplacement. Rare earth element systematics indicate that the parental melts for the basalts were high-degree partial melts derived from garnet lherzolite mantle at the base of the lithosphere. Prior to emplacement, the Tarim Permian Basalts (TPB) underwent fractional crystallization and assimilated crustal material; the basalts were finally emplaced during crustal extension in an intra-plate setting. The wide distribution, deep source and high degree partial melting of the TPB was consistent with a mantle plume origin. The TPB and other coeval igneous

  3. Modern dust aerosol availability in northwestern China.

    PubMed

    Wang, Xunming; Cheng, Hong; Che, Huizheng; Sun, Jimin; Lu, Huayu; Qiang, Mingrui; Hua, Ting; Zhu, Bingqi; Li, Hui; Ma, Wenyong; Lang, Lili; Jiao, Linlin; Li, Danfeng

    2017-08-18

    The sources of modern dust aerosols and their emission magnitudes are fundamental for linking dust with climate and environment. Using field sample data, wind tunnel experiments and statistical analysis, we determined the contributions of wadis, gobi (stony desert), lakebeds, riverbeds, and interdunes to modern dust aerosol availability in the three important potential dust sources including the Tarim Basin, Qaidam Basin, and Ala Shan Plateau of China. The results show that riverbeds are the dominant landscape for modern dust aerosol availabilities in the Qaidam Basin, while wadis, gobi, and interdunes are the main landscapes over the Ala Shan Plateau and Tarim Basin. The Ala Shan Plateau and Tarim Basin are potential dust sources in northwestern China, while the Qaidam Basin is not a major source of the modern dust aerosols nowadays, and it is not acting in a significant way to the Loess Plateau presently. Moreover, most of modern dust aerosol emissions from China originated from aeolian processes with low intensities rather than from major dust events.

  4. A Coupled Modeling Framework of the Co-evolution of Humans and Water: Case Study of Tarim River Basin, Western China

    NASA Astrophysics Data System (ADS)

    Liu, D.; Tian, F.; Lin, M.; Sivapalan, M.

    2014-12-01

    The complex interactions and feedbacks between humans and water are very essential issues but are poorly understood in the newly proposed discipline of socio-hydrology (Sivapalan et al., 2012). An exploratory model with the appropriate level of simplification can be valuable to improve our understanding of the co-evolution and self-organization of socio-hydrological systems driven by interactions and feedbacks operating at different scales. In this study, a simple coupled modeling framework for socio-hydrology co-evolution is developed for the Tarim River Basin in Western China, and is used to illustrate the explanatory power of such a model. The study area is the mainstream of the Tarim River, which is divided into two modeling units. The socio-hydrological system is composed of four parts, i.e., social sub-system, economic sub-system, ecological sub-system, and hydrological sub-system. In each modeling unit, four coupled ordinary differential equations are used to simulate the dynamics of the social sub-system represented by human population, the economic sub-system represented by irrigated crop area, the ecological sub-system represented by natural vegetation cover and the hydrological sub-system represented by stream discharge. The coupling and feedback processes of the four dominant sub-systems (and correspondingly four state variables) are integrated into several internal system characteristics interactively and jointly determined by themselves and by other coupled systems. For example, the stream discharge is coupled to the irrigated crop area by the colonization rate and mortality rate of the irrigated crop area in the upper reach and the irrigated area is coupled to stream discharge through irrigation water consumption. The co-evolution of the Tarim socio-hydrological system is then analyzed within this modeling framework to gain insights into the overall system dynamics and its sensitivity to the external drivers and internal system variables. In the

  5. Soil characteristics of the vadose zone in the flood plain of the Tarim River

    USDA-ARS?s Scientific Manuscript database

    Overflow from rivers plays an important role in ecological conservation. The desert-oasis ecotone in the Tarim River Basin of Northwest China, for example, relies upon overflow from the river to support a diversity of soil, vegetation, and wildlife. There is, however, limited information on soil tex...

  6. Diversity and Contributions to Nitrogen Cycling and Carbon Fixation of Soil Salinity Shaped Microbial Communities in Tarim Basin

    PubMed Central

    Ren, Min; Zhang, Zhufeng; Wang, Xuelian; Zhou, Zhiwei; Chen, Dong; Zeng, Hui; Zhao, Shumiao; Chen, Lingling; Hu, Yuanliang; Zhang, Changyi; Liang, Yunxiang; She, Qunxin; Zhang, Yi; Peng, Nan

    2018-01-01

    Arid and semi-arid regions comprise nearly one-fifth of the earth's terrestrial surface. However, the diversities and functions of their soil microbial communities are not well understood, despite microbial ecological importance in driving biogeochemical cycling. Here, we analyzed the geochemistry and microbial communities of the desert soils from Tarim Basin, northwestern China. Our geochemical data indicated half of these soils are saline. Metagenomic analysis showed that bacterial phylotypes (89.72% on average) dominated the community, with relatively small proportions of Archaea (7.36%) and Eukaryota (2.21%). Proteobacteria, Firmicutes, Actinobacteria, and Euryarchaeota were most abundant based on metagenomic data, whereas genes attributed to Proteobacteria, Actinobacteria, Euryarchaeota, and Thaumarchaeota most actively transcribed. The most abundant phylotypes (Halobacterium, Halomonas, Burkholderia, Lactococcus, Clavibacter, Cellulomonas, Actinomycetospora, Beutenbergia, Pseudomonas, and Marinobacter) in each soil sample, based on metagenomic data, contributed marginally to the population of all microbial communities, whereas the putative halophiles, which contributed the most abundant transcripts, were in the majority of the active microbial population and is consistent with the soil salinity. Sample correlation analyses according to the detected and active genotypes showed significant differences, indicating high diversity of microbial communities among the Tarim soil samples. Regarding ecological functions based on the metatranscriptomic data, transcription of genes involved in various steps of nitrogen cycling, as well as carbon fixation, were observed in the tested soil samples. Metatranscriptomic data also indicated that Thaumarchaeota are crucial for ammonia oxidation and Proteobacteria play the most important role in other steps of nitrogen cycle. The reductive TCA pathway and dicarboxylate-hydroxybutyrate cycle attributed to Proteobacteria and

  7. Characterizing Air Temperature Changes in the Tarim Basin over 1960–2012

    PubMed Central

    Peng, Dongmei; Wang, Xiujun; Zhao, Chenyi; Wu, Xingren; Jiang, Fengqing; Chen, Pengxiang

    2014-01-01

    There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960–2012, and analyzed annual mean temperature (AMT), the annual minimum (Tmin) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the Tmin (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from −0.09 to 0.43 °C/10a) and Tmin (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with Tmin and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960–1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales. PMID

  8. Estimating terrestrial water storage changes in the Tarim River Basin using GRACE data

    NASA Astrophysics Data System (ADS)

    Zhao, Kefei; Li, Xia

    2017-12-01

    Terrestrial water storage (TWS) plays a fundamental role in the arid Tarim River Basin, which is mainly fed by glacier and snow melt water. However, the significant scarcity of ground-based observations, especially in the high-altitude mountain areas, limits our understanding of TWS changes in this region. In this study, TWS variations in the Tarim River Basin were estimated using monthly GRACE Level 2 Release 5 (RL05) products from 2002 to August 2015. The GRACE results were validated against outputs of Global Land Data Assimilation System (GLDAS) including spatial and temporal correlation analysis. The correlation between the regional TWS time-series of GRACE and GLDAS is 0.7777. It was found that GRACE TWS shows a slightly decreasing trend of -1.4069 ± 0.5060 mm yr-1 in the entire Tarim River Basin during the study period and a significant spatial difference over the study area. An apparent decreasing trend in Tien Shan and the Taklamakan Desert, and a significant increasing trend in the Kunlun Mountains and eastern Pamirs Plateau were also detected. Moreover, seasonal analysis of regional TWS time-series, precipitation and the 0 °C isotherm height in summer showed that detrended TWS variations were consistent with precipitation while long-term trends of TWS were contrary to that of the 0 °C isotherm height in summer. It implied that the interannual TWS variations were dominated by precipitation and the long-term trend of TWS changes was affected by changes of the 0 °C isotherm height in summer. This information could enrich our knowledge about water storage changes, including glacier mass balance and groundwater, and its response to climate change in this vast but sparse in-situ measurements area.

  9. Walled Sedimentary Basins of China: Perpetrators or Victims of Plateau Growth?

    NASA Astrophysics Data System (ADS)

    Carroll, A. R.; Graham, S. A.; Smith, M. E.

    2004-12-01

    Western China and adjacent areas of central Asia are characterized by low relief, internally drained sedimentary basins that are divided by actively uplifting mountain ranges. The margins of these basins often show evidence for extensive contractional deformation, yet their interiors are surprisingly stable. Basins such as the Tarim and Junggar also exhibit long and apparently continuous histories of closed drainage in the same approximate location (over 250 my in the case of Junggar). In contrast to traditional foreland basins, these basins are not uniquely associated with a specific thrust belt, nor do they show evidence for underlying decollements. We therefore propose the new term "walled basin", in recognition of the essential role of peripheral orogenic walls in creating and maintaining closed drainage and impounding sediments. Walled basins in Asia currently are restricted to areas that receive less than 40 cm/yr precipitation, suggesting that aridity plays a role in preventing fluvial breach of the basin walls (cf., Sobel et al., 2003). Entrapment of sediment within the closed Qaidam basin in the northeast Tibetan plateau has been implicated as a potential mechanism of plateau growth, based on the observations that the basin retains mass within the orogen and creates level topography. However, we propose that the Qaidam instead represents a walled basin that has been elevated due to underplating of the plateau, and is fated to eventual destruction as deformation continues. Several lines of reasoning support this conclusion. First, DEM analysis shows that modern drainage divides for the Qaidam and other walled basins never rise more than 1-2 km above the basin floors, limiting the amount of possible topgraphic infill. Second, the Tarim and Junggar basins presently remain well below 2000 m and probably have never been higher, despite receiving large influxes of detritus from adjacent ranges. Third, the Qaidam basin, like the Tarim and Junggar basins, has an

  10. [Bayesian geostatistical prediction of soil organic carbon contents of solonchak soils in nor-thern Tarim Basin, Xinjiang, China.

    PubMed

    Wu, Wei Mo; Wang, Jia Qiang; Cao, Qi; Wu, Jia Ping

    2017-02-01

    Accurate prediction of soil organic carbon (SOC) distribution is crucial for soil resources utilization and conservation, climate change adaptation, and ecosystem health. In this study, we selected a 1300 m×1700 m solonchak sampling area in northern Tarim Basin, Xinjiang, China, and collected a total of 144 soil samples (5-10 cm). The objectives of this study were to build a Baye-sian geostatistical model to predict SOC content, and to assess the performance of the Bayesian model for the prediction of SOC content by comparing with other three geostatistical approaches [ordinary kriging (OK), sequential Gaussian simulation (SGS), and inverse distance weighting (IDW)]. In the study area, soil organic carbon contents ranged from 1.59 to 9.30 g·kg -1 with a mean of 4.36 g·kg -1 and a standard deviation of 1.62 g·kg -1 . Sample semivariogram was best fitted by an exponential model with the ratio of nugget to sill being 0.57. By using the Bayesian geostatistical approach, we generated the SOC content map, and obtained the prediction variance, upper 95% and lower 95% of SOC contents, which were then used to evaluate the prediction uncertainty. Bayesian geostatistical approach performed better than that of the OK, SGS and IDW, demonstrating the advantages of Bayesian approach in SOC prediction.

  11. Soil infiltration characteristics in the Tarim River floodplain

    USDA-ARS?s Scientific Manuscript database

    Overflow from rivers play an important role for ecological conservation in Tarim Basin, however, there was limited information on infiltration from overflow of the Tarim River. The objective of this study was to investigate steady infiltration rate for three types of land use (forest, shrub and bare...

  12. A coupled modeling framework of the co-evolution of humans and water: case study of Tarim River Basin, western China

    NASA Astrophysics Data System (ADS)

    Liu, D.; Tian, F.; Lin, M.; Sivapalan, M.

    2014-04-01

    The complex interactions and feedbacks between humans and water are very essential issues but are poorly understood in the newly proposed discipline of socio-hydrology (Sivapalan et al., 2012). An exploratory model with the appropriate level of simplification can be valuable to improve our understanding of the co-evolution and self-organization of socio-hydrological systems driven by interactions and feedbacks operating at different scales. In this study, a simple coupled modeling framework for socio-hydrology co-evolution is developed for the Tarim River Basin in Western China, and is used to illustrate the explanatory power of such a model. The study area is the mainstream of the Tarim River, which is divided into two modeling units. The socio-hydrological system is composed of four parts, i.e. social sub-system, economic sub-system, ecological sub-system, and hydrological sub-system. In each modeling unit, four coupled ordinary differential equations are used to simulate the dynamics of the social sub-system represented by human population, the economic sub-system represented by irrigated crop area, the ecological sub-system represented by natural vegetation cover and the hydrological sub-system represented by stream discharge. The coupling and feedback processes of the four dominant sub-systems (and correspondingly four state variables) are integrated into several internal system characteristics interactively and jointly determined by themselves and by other coupled systems. For example, the stream discharge is coupled to the irrigated crop area by the colonization rate and mortality rate of the irrigated crop area in the upper reach and the irrigated area is coupled to stream discharge through irrigation water consumption. In a similar way, the stream discharge and natural vegetation cover are coupled together. The irrigated crop area is coupled to human population by the colonization rate and mortality rate of the population. The inflow of the lower reach is

  13. Responses of Surface Runoff to Climate Change and Human Activities in the Arid Region of Central Asia: A Case Study in the Tarim River Basin, China

    NASA Astrophysics Data System (ADS)

    Xu, Changchun; Chen, Yaning; Chen, Yapeng; Zhao, Ruifeng; Ding, Hui

    2013-04-01

    Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.

  14. Responses of surface runoff to climate change and human activities in the arid region of central Asia: a case study in the Tarim River basin, China.

    PubMed

    Xu, Changchun; Chen, Yaning; Chen, Yapeng; Zhao, Ruifeng; Ding, Hui

    2013-04-01

    Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.

  15. A conceptual socio-hydrological model of the co-evolution of humans and water: case study of the Tarim River basin, western China

    NASA Astrophysics Data System (ADS)

    Liu, D.; Tian, F.; Lin, M.; Sivapalan, M.

    2015-02-01

    The complex interactions and feedbacks between humans and water are critically important issues but remain poorly understood in the newly proposed discipline of socio-hydrology (Sivapalan et al., 2012). An exploratory model with the appropriate level of simplification can be valuable for improving our understanding of the co-evolution and self-organization of socio-hydrological systems driven by interactions and feedbacks operating at different scales. In this study, a simplified conceptual socio-hydrological model based on logistic growth curves is developed for the Tarim River basin in western China and is used to illustrate the explanatory power of such a co-evolutionary model. The study area is the main stream of the Tarim River, which is divided into two modeling units. The socio-hydrological system is composed of four sub-systems, i.e., the hydrological, ecological, economic, and social sub-systems. In each modeling unit, the hydrological equation focusing on water balance is coupled to the other three evolutionary equations to represent the dynamics of the social sub-system (denoted by population), the economic sub-system (denoted by irrigated crop area ratio), and the ecological sub-system (denoted by natural vegetation cover), each of which is expressed in terms of a logistic growth curve. Four feedback loops are identified to represent the complex interactions among different sub-systems and different spatial units, of which two are inner loops occurring within each separate unit and the other two are outer loops linking the two modeling units. The feedback mechanisms are incorporated into the constitutive relations for model parameters, i.e., the colonization and mortality rates in the logistic growth curves that are jointly determined by the state variables of all sub-systems. The co-evolution of the Tarim socio-hydrological system is then analyzed with this conceptual model to gain insights into the overall system dynamics and its sensitivity to the

  16. Apcocynum Pictum and Sustainable Agriculture Along the Tarim River In Arid Northwest, China

    NASA Astrophysics Data System (ADS)

    Aihemaitijiang, R.

    2014-12-01

    Water scarcity and population increase have been a major limiting factor in oasis development along the Tarim River in Xinjiang, Northwest China which has very continental and dry climate, and all the agriculture and livelihoods depend on glacier melt water from Tarim River. Due to vast land reclamation along the Tarim River to grow cotton, native plant species are facing a severe competition for water, which is essential for their survival. Decreasing river runoff and inefficient water use practices by agriculture and industry has exacerbated already serious situation even worse. In addition, a large influx of migrant famers from Eastern China is being settled in this region to cultivate new agricultural lands that consumed even more water. Under those conditions, the natural riparian vegetation and the irrigation agriculture, especially along the lower reaches, suffers water shortage leading the degradation and economic losses, respectively. Along with the enlargement of irrigation area and periods of water shortage, soil salinization has become a major concern for farmers in the area. Alternative cash crops are much needed to reduce water use, so both native vegetation and human demand for water would be fulfilled. We hypothesized Apocynum Pictum, perennial herb species with multiple uses as potential substitute. Multidisciplinary approach is being used in this study to investigate three related issues to offer a basis for Apocynum's role in sustainable agriculture, such as Biomass production of Apocynum; Water budget of Apocynum; and Economic utilization of Apocynum. A.Pictum is perennial plant distributed in Central Asia and China, which its roots are perennial, while the stems die every year. Thus, A.pictum grow under the arid climate of Central Asia and provide utilization options without irrigation. We initially estimate water requirement for this plant is much less than cotton. In order to validate our hypothesis, we have measured water consumption of the

  17. Origin and production process of eolian dust emitted from the Tarim Basin and their evolution through the Plio-Pleostocene based on ESR signal intensity and crystallinity of quartz

    NASA Astrophysics Data System (ADS)

    Tada, R.; Isozaki, Y.; Zheng, H.; Sun, Y.; Toyoda, S.; Hasegawa, H.; Yoshida, T.

    2010-12-01

    Tarim Basin (or Taklimakan Desert) is regarded as one of the major source area of eolian dust in the northern hemisphere. Although a previous study hypothesized that the detrital materials in the Tarim Basin were produced by glacial activity in the surrounding mountains, delivered by rivers, and homogenized by wind within the basin, not enough evidence has been presented to support this hypothesis. Here, we conducted provenance study of eolian dust in the Tarim Basin by examining fine silt fraction (< 20 μm) of the sediments collected from all over the Tarim Basin. We focused on quartz and measured its electron spin resonance [ESR] signal intensity and Crystallinity Index [CI] in the fine (<16μm) and coarse (> 64μm) fractions of various types of sediments including river sediments derived from the Kunlun and Tian Shan Mountains, dry lake sediments in the eastern part of the basin, and mountain loess on the northern slope of the Kunlun Mountains, to examine the process to produce eolian dust within the Tarim Basin. The result revealed that the coarse fractions of river sediments were derived from bedrocks exposed in the drainage area of each river, and that quartz in coarse fraction of the river sediment has ESR signal intensity and CI values unique to each river. ESR signal intensity and CI of quartz in fine fractions of river sediments discharged from the Tian Shan Mountains, which are located windward of the basin, and those discharged from mountainous rivers show values similar to the values for coarse fractions, suggesting that their sources are the same as those for the coarse fractions. On the other hand, ESR signal intensity and CI of quartz in fine fractions of river sediments discharged from the Kunlun Mountains show values different from those for the coarse fractions, and converged to the values close to the average values for the fine fractions of river sediments in the basin and also for the mountain loess, the latter represents the eolian dust

  18. Quantile regression and clustering analysis of standardized precipitation index in the Tarim River Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Xia, Jun; Zhang, Yongyong; Han, Jian; Wu, Xia

    2017-11-01

    Because drought is a very common and widespread natural disaster, it has attracted a great deal of academic interest. Based on 12-month time scale standardized precipitation indices (SPI12) calculated from precipitation data recorded between 1960 and 2015 at 22 weather stations in the Tarim River Basin (TRB), this study aims to identify the trends of SPI and drought duration, severity, and frequency at various quantiles and to perform cluster analysis of drought events in the TRB. The results indicated that (1) both precipitation and temperature at most stations in the TRB exhibited significant positive trends during 1960-2015; (2) multiple scales of SPIs changed significantly around 1986; (3) based on quantile regression analysis of temporal drought changes, the positive SPI slopes indicated less severe and less frequent droughts at lower quantiles, but clear variation was detected in the drought frequency; and (4) significantly different trends were found in drought frequency probably between severe droughts and drought frequency.

  19. The earliest well-dated archeological site in the hyper-arid Tarim Basin and its implications for prehistoric human migration and climatic change

    NASA Astrophysics Data System (ADS)

    Han, WenXia; Yu, LuPeng; Lai, ZhongPing; Madsen, David; Yang, Shengli

    2014-07-01

    The routes and timing of human occupation of the Tibetan Plateau (TP) are crucial for understanding the evolution of Tibetan populations and associated paleoclimatic conditions. Many archeological sites have been found in/around the Tarim Basin, on the northern margin of the Tibetan Plateau. Unfortunately, most of these sites are surface sites and cannot be directly dated. Their ages can only be estimated based on imprecise artifact comparisons. We recently found and dated an archeological site on a terrace along the Keriya River. Our ages indicate that the site was occupied at ~ 7.0-7.6 ka, making it the earliest well-dated archeological site yet identified in the Tarim Basin. This suggests that early human foragers migrated into this region prior to ~ 7.0-7.6 ka during the early to mid-Holocene climatic optimum, which may have provided the impetus for populating the region. We hypothesize that the Keriya River, together with the other rivers originating from the TP, may have served as access routes onto the TP for early human foragers. These rivers may also have served as stepping stones for migration further west into the now hyper-arid regions of the Tarim Basin, leading ultimately to the development of the Silk Road.

  20. Concept for a Wireless Sensor Network to support GIS based water and land resource management in the Aksu-Tarim Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Doluschitz, Reiner; Feike, Til

    2013-04-01

    Farmers in the oases along the Aksu-Tarim River suffer from severe seasonal water shortage caused by high fluctuations of river run-off. The uncertainty of water availability makes the planning of crop production and related investments extremely difficult. As a consequence farm management is often sub-optimal, manifesting in low input efficiencies, and the value generated in the agricultural sector being way below its potential. The "Tarim Basin Water Resource Bureau" (TBWRB) was founded in the 1990s. Its major task is to implement a basin wide water resources management plan, which involves fair allocation of water resources among the farmers in the different administrative units along the river. Among others, the lack of reliable and timely information on water quantities and qualities within the major water bodies of the basin hinders the implementation of an effective water management plan. Therefore we introduce the concept of a wireless sensor network (WSN) that provides reliable instantaneous information on the status of all important water resources within the basin. In the first step a GIS including all vital geospatial data, like river courses, channel and reservoir network and capacities, soil and land use map, is built. In the second step a WSN that monitors all important parameters at essential positions throughout the basin needs to be established. Measured parameters comprise meteorological data, river run-off, water levels of reservoirs, groundwater levels, and salinity levels of water resources. All data is centrally collected and processed by the TBWRB. Apart from generating a prompt and complete picture of currently available water resources, the TBWRB can use the system to record actual water allocation, and develop an early warning system for upcoming droughts or floods. Finally an integrated water and land management scheme can be established that allocates resources maximizing the benefits at basin level. Financed by public funding, the data

  1. Anomalies of natural gas compositions and carbon isotope ratios caused by gas diffusion - A case from the Donghe Sandstone reservoir in the Hadexun Oilfield, Tarim Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Chen, Jianfa; Pang, Xiongqi; Zhang, Baoshou; Wang, Yifan; He, Liwen; Chen, Zeya; Zhang, Guoqiang

    2018-05-01

    Natural gases in the Carboniferous Donghe Sandstone reservoir within the Block HD4 of the Hadexun Oilfield, Tarim Basin are characterized by abnormally low total hydrocarbon gas contents (<65%), low methane contents (<10%) and low dryness coefficients (<0.5), and a reversal of the normal trend of carbon isotope ratios, showing δ13C methane (C1) > δ13C ethane (C2) < δ13C propane (C3) < δ13C butane (C4). Specifically, methane is enriched in 13C with the variations in δ13C1 values between gases from Block HD4 and gases from its neighboring blocks reaching 10‰. This type of abnormal gas has never been reported previously in the Tarim Basin and such large variations in δ13C have rarely been observed in other basins globally. Based on a comprehensive analysis of gas geochemical data and the geological setting of the Carboniferous reservoirs in the Hadexun Oilfield, we reveal that the anomalies of the gas compositions and carbon isotope ratios in the Donghe Sandstone reservoir are caused by gas diffusion through the poorly-sealed caprock rather than by pathways such as gas mixing, microorganism degradation, different kerogen types or thermal maturity degrees of source rocks. The documentation of an in-reservoir gas diffusion during the post entrapment process as a major cause for gas geochemical anomalies may offer important insight into exploring natural gas resources in deeply buried sedimentary basins.

  2. Lithospheric density structure beneath the Tarim basin and surroundings, northwestern China, from the joint inversion of gravity and topography

    USGS Publications Warehouse

    Deng, Yangfan; Levandowski, William Brower; Kusky, Tim

    2017-01-01

    Intraplate strain generally focuses in discrete zones, but despite the profound impact of this partitioning on global tectonics, geodynamics, and seismic hazard, the processes by which deformation becomes localized are not well understood. Such heterogeneous intraplate strain is exemplified in central Asia, where the Indo-Eurasian collision has caused widespread deformation while the Tarim block has experienced minimal Cenozoic shortening. The apparent stability of Tarim may arise either because strain is dominantly accommodated by pre-existing faults in the continental suture zones that bound it—essentially discretizing Eurasia into microplates—or because the lithospheric-scale strength (i.e., viscosity) of the Tarim block is greater than its surroundings. Here, we jointly analyze seismic velocity, gravity, topography, and temperature to develop a 3-D density model of the crust and upper mantle in this region. The Tarim crust is characterized by high density, vs, vp, and vp/vs, consistent with a dominantly mafic composition and with the presence of an oceanic plateau beneath Tarim. Low-density but high-velocity mantle lithosphere beneath southern (southwestern) Tarim underlies a suite of Permian plume-related mafic intrusions and A-type granites sourced in previously depleted mantle lithosphere; we posit that this region was further depleted, dehydrated, and strengthened by Permian plume magmatism. The actively deforming western and southern margins of Tarim—the Tien Shan, Kunlun Shan, and Altyn Tagh fault—are underlain by buoyant upper mantle with low velocity; we hypothesize that this material has been hydrated by mantle-derived fluids that have preferentially migrated along Paleozoic continental sutures. Such hydrous material should be weak, and herein strain focuses there because of lithospheric-scale variations in rheology rather than the pre-existence of faults in the brittle crust. Thus this world-class example of strain partitioning arises not

  3. Model identification and control of development of deeply buried paleokarst reservoir in the central Tarim Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Yu, Jingbo; Li, Zhong; Yang, Liu; Han, Yinxue

    2018-04-01

    The paleokarst reservoirs of the Ordovician Yingshan formation, rich in oil and gas, are deeply buried in the central Tarim Basin, northwest China. Dozens of imaging well-logs in this region reveal five typical paleokarst features, including solution vugs, solution-enlarged fractures, filled caves, unfilled caves and collapsed caves, as well as two typical paleokarst structures located in different paleotopographic sites, including paleokarst vadose and phreatic zones. For seismic data, the large wave impedance contrast between the paleocave system and the surrounding rocks leads to a strong seismic reflection, which is highlighted as a bead-like ‘bright spot’ in a seismic section. By quantitatively estimating the seismic resolution limits of deep seismic reflections, a single paleocave cannot be identified from a seismic profile, and the bead-like reflection represents an entire paleocave complex. The spectral decomposition technique was employed to depict the planar shape and semi-quantitatively measure the size of the paleocave complexes. The results indicate that the sizes of the paleokarst caves are all small, and most of the karst caves are nearly completely filled by clay and calcite. The small cave size and the effective support of cave fills for the overlying strata mean that some individual paleocaves in a paleocave complex are preserved at a burial depth of more than 6000 m. Paleotopography and faults strongly impact the distribution of paleokarst reservoirs. Well-developed paleokarst reservoirs are generally located in paleotopographic highlands and on slopes, and for a specific paleotopographic site, the distribution of paleokarst reservoirs is obviously controlled by NW-SE trending faults. The most favorable area for paleokarst development is the Tazhong No. 10 fault zone, a faulted anticline bounded by two NW-SE trending back thrusts.

  4. Neoproterozoic paleogeography of the Tarim Block: An extended or alternative "missing-link" model for Rodinia?

    NASA Astrophysics Data System (ADS)

    Wen, Bin; Evans, David A. D.; Li, Yong-Xiang

    2017-01-01

    Recent reconstructions of the Rodinia supercontinent and its breakup incorporate South China as a "missing link" between Australia and Laurentia, and place the Tarim craton adjacent to northwestern Australia on the supercontinent's periphery. However, subsequent kinematic evolution toward Gondwana amalgamation requires complex geometric shuffling between South China and Tarim, which cannot be easily resolved with the stratigraphic records of those blocks. Here we present new paleomagnetic data from early Ediacaran strata of northwest Tarim, and document large-scale rotation at near-constant paleolatitudes during Cryogenian time. The rotation is coeval with Rodinia breakup, and Tarim's paleolatitudes are compatible with its placement between Australia and Laurentia, either by itself as an alternative "missing link" or joined with South China in that role. At the same time, indications of subduction-related magmatism in Tarim's Neoproterozoic record suggest that Rodinia breakup was dynamically linked to subduction retreat along its northern margin. Such a model is akin to early stages of Jurassic fragmentation within southern Gondwana, and implies more complicated subduction-related dynamics of supercontinent breakup than superplume impingement alone.

  5. Late Neoproterozoic paleomagnetic results from the Sugetbrak Formation of the Aksu area, Tarim basin (NW China) and their implications on the paleogeographic reconstruction and snowball Earth hypothesis

    NASA Astrophysics Data System (ADS)

    Zhan, S.; Chen, Y.; Xu, B.; Wang, B.; Faure, M.

    2006-12-01

    In order to better constrain the Neoproterozoic paleogeographic reconstruction of continents and improve the understanding of the snowball Earth hypothesis, paleomagnetic collections on Neoproterozoic rocks were carried out in the Aksu area of the northwestern Tarim basin from 2001 to 2005. Six sites of limestone from the Chigebrak formation, 38 sites of sandstone and 4 sites of volcanic rocks from the Sugetbrak formation were sampled. The remaining 24 sites of sandstone and volcanic rocks reveal stable characteristic remanent component (ChRm) isolated from 500 to 680? The computed magnetic directions from these components are relatively consistent and significantly distinguished from those of younger ages. Both normal and reverse polarities have been observed though the normal one is dominant, moreover, the positive fold test is revealed after bedding corrections at 95% confidence level. A paleomagnetic pole is, therefore, calculated: l =19.1? f =149.7? k = 11.2, A95 = 9.3?with n = 24, yielding a paleolatitude of ~27 for the sampling area. The chemostratigraphic correlation of this section with reference ones reveals an average of ~595 Ma for the age for this collection. Comparing paleomagnetic data of the similar ages from Australia and South China as well as other major blocks, the Tarim block seemed being closely located in the north of Australia. A new paleogeographic reconstruction has been attempted which showing a general feature of lower paleolatitude for these blocks. Referring to the paleogeographic reconstruction at about 760Ma proposed by Chen et al. (2004), the continental landmass including the above mentioned blocks seemed having experienced a relatively slow southward kinematic drift and kept their rather low paleolatitude. These observations provide, therefore, evidences to the snowball Earth hypothesis in the late Neoproterozoic time.

  6. Water consumption and allocation strategies along the river oases of Tarim River based on large-scale hydrological modelling

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Disse, Markus; Yu, Ruide

    2016-04-01

    With the mainstream of 1,321km and located in an arid area in northwest China, the Tarim River is China's longest inland river. The Tarim basin on the northern edge of the Taklamakan desert is an extremely arid region. In this region, agricultural water consumption and allocation management are crucial to address the conflicts among irrigation water users from upstream to downstream. Since 2011, the German Ministry of Science and Education BMBF established the Sino-German SuMaRiO project, for the sustainable management of river oases along the Tarim River. The project aims to contribute to a sustainable land management which explicitly takes into account ecosystem functions and ecosystem services. SuMaRiO will identify realizable management strategies, considering social, economic and ecological criteria. This will have positive effects for nearly 10 million inhabitants of different ethnic groups. The modelling of water consumption and allocation strategies is a core block in the SuMaRiO cluster. A large-scale hydrological model (MIKE HYDRO Basin) was established for the purpose of sustainable agricultural water management in the main stem Tarim River. MIKE HYDRO Basin is an integrated, multipurpose, map-based decision support tool for river basin analysis, planning and management. It provides detailed simulation results concerning water resources and land use in the catchment areas of the river. Calibration data and future predictions based on large amount of data was acquired. The results of model calibration indicated a close correlation between simulated and observed values. Scenarios with the change on irrigation strategies and land use distributions were investigated. Irrigation scenarios revealed that the available irrigation water has significant and varying effects on the yields of different crops. Irrigation water saving could reach up to 40% in the water-saving irrigation scenario. Land use scenarios illustrated that an increase of farmland area in the

  7. Kink-style detachment folding in Bachu fold belt of central Tarim Basin, China: geometry and seismic interpretation

    NASA Astrophysics Data System (ADS)

    Bo, Zhang; Jinjiang, Zhang; Shuyu, Yan; Jiang, Liu; Jinhai, Zhang; Zhongpei, Zhang

    2010-05-01

    The phenomenon of Kink banding is well known throughout the engineering and geophysical sciences. Associated with layered structures compressed in a layer-parallel direction, it arises for example in stratified geological systems under tectonic compression. Our work documented it is also possible to develop super large-scale kink-bands in sedimentary sequences. We interpret the Bachu fold uplift belt of the central Tarim basin in western China to be composed of detachment folds flanked by megascopic-scale kink-bands. Those previous principal fold models for the Bachu uplift belt incorporated components of large-scale thrust faulting, such as the imbricate fault-related fold model and the high-angle, reverse-faulted detachment fold model. Based on our observations in the outcrops and on the two-dimension seismic profiles, we interpret that first-order structures in the region are kink-band style detachment folds to accommodate regional shortening, and thrust faulting can be a second-order deformation style occurring on the limb of the detachment folds or at the cores of some folds to accommodate the further strain of these folds. The belt mainly consists of detachment folds overlying a ductile decollement layer. The crests of the detachment folds are bounded by large-scale kink-bands, which are zones of angularly folded strata. These low-signal-tonoise, low-reflectivity zones observed on seismic profiles across the Bachu belt are poorly imaged sections, which resulted from steeply dipping bedding in the kink-bands. The substantial width (beyond 200m) of these low-reflectivity zones, their sub-parallel edges in cross section, and their orientations at a high angle to layering between 50 and 60 degrees, as well as their conjugate geometry, support a kink-band interpretation. The kink-band interpretation model is based on the Maximum Effective Moment Criteria for continuous deformation, rather than Mohr-Column Criteria for brittle fracture. Seismic modeling is done to

  8. Analysis on the adaptive countermeasures to ecological management under changing environment in the Tarim River Basin, China

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Xue, Lianqing; Zhang, Luochen; Chen, Xinfang; Chi, Yixia

    2017-12-01

    This article aims to explore the adaptive utilization strategies of flow regime versus traditional practices in the context of climate change and human activities in the arid area. The study presents quantitative analysis of climatic and anthropogenic factors to streamflow alteration in the Tarim River Basin (TRB) using the Budyko method and adaptive utilization strategies to eco-hydrological regime by comparing the applicability between autoregressive moving average model (ARMA) model and combined regression model. Our results suggest that human activities played a dominant role in streamflow deduction in the mainstream with contribution of 120.7%~190.1%. While in the headstreams, climatic variables were the primary determinant of streamflow by 56.5~152.6% of the increase. The comparison revealed that combined regression model performed better than ARMA model with the qualified rate of 80.49~90.24%. Based on the forecasts of streamflow for different purposes, the adaptive utilization scheme of water flow is established from the perspective of time and space. Our study presents an effective water resources scheduling scheme for the ecological environment and provides references for ecological protection and water allocation in the arid area.

  9. Paleoclimatic and paleomagnetic constraints on the Paleozoic reconstructions of south China, north China and Tarim

    NASA Astrophysics Data System (ADS)

    Shangyou, Nie

    1991-10-01

    Paleomagnetic and paleoclimatic data provide the most useful latitudinal constraints for plate reconstructions. Distributions through the Paleozoic of five types of climatically sensitive sediments (coals, evaporites, reefs, dolomites and limestones) for south China, north China and Tarim are shown on 15 maps that include 1578 reliable data points. These paleoclimatic data agree reasonably well with available paleomagnetic directions, although significant divergence between the two exists for the Early Paleozoic. These data indicate the following: (1) South China was in low latitudes during the entire Paleozoic, with a subtropical position in the Cambrian. (2) North China also remained near the equator in the Early and Late Paleozoic, except for the Ordovian and the Late Permian when extensive evaporites suggest slightly higher latitudinal positions, while its Middle Paleozoic position is uncertain due to the missing stratigraphie record. (3) In south China, local tectonics appears to have played a dominant role in determining paleogeography and therefore marine sedimentation, especially after the Late Ordovician-Early Silurian, because the areal coverage of marine sediments through time is distinctly different from what would be expected from published global sea-level curves. (4) Paleoclimatic and paleomagnetic data are compatible with biogeographic data which suggest that south China was part of eastern Gondwana in the Early Paleozoic, but was widely separated from Gondwana in the Late Paleozoic, and the split between the two probably happened in the Devonian, giving rise to a major break-up unconformity in central south China.

  10. Modifications in the land surface model ORCHIDEE and application in the Tarim basin

    NASA Astrophysics Data System (ADS)

    Zhou, Xudong; Polcher, Jan; Yang, Tao; Nguyen Quang, Trung; Hirabayashi, Yukiko

    2017-04-01

    Land surface modeling in regions mixing high mountains and arid deserts remains a great challenge due to the inadequate representations of physical processes in atmospheric forcings , runoff generation, evaporation and river routing. A few key improvements were analyzed within ORCHIDEE (Organising Carbon and Hydrology in Dynamic Ecosystems) to better understand these limitations as well as quantify their influence on the water cycle over Tarim basin (TRB). The TRB is a representative endorheic basin in center Asia, with glacier and snow melting, limited precipitation but strong evaporation, high spatial heterogeneity and intensive human interference, thus challenging any land surface model. National observations on daily precipitation from China Meteorological Administration (CMA) were used to correct precipitation inputs on the basis of WATCH forcing datasets. The independent glacier melting simulation by HYOGA2 was added to the forcing to overcome the lack of glacier module in ORCHIDEE. Improvements in the snow scheme provided more accurate simulations of the soil temperature which restrict the infiltration process when the soil is frozen. In addition, a novel routing scheme with finer spatial resolution from 50km to 1km was developed based on HydroSHED map. It improves the descriptions of catchments boundaries, the flow direction and the water residence time within sub-basins that make significant difference especially for the mountainous area and flat plains. Model results with these modifications were compared through various atmospheric and hydrological variables (i.e. evaporation, soil moisture, runoff and discharge). In conclusion, the correction by the precipitation observations and involvement of glacier melting simulations increase the water input to the basin by 37.2% and 8.4% respectively, which in turn increases evaporation, soil moisture and runoff to different extents. The new snow and soil freezing scheme advance in time the spring high-water in

  11. Microfacies and depositional environments of the Late Ordovician Lianglitage Formation at the Tazhong Uplift in the Tarim Basin of Northwest China

    NASA Astrophysics Data System (ADS)

    Gao, Da; Lin, Changsong; Yang, Haijun; Zuo, Fanfan; Cai, Zhenzhong; Zhang, Lijuan; Liu, Jingyan; Li, Hong

    2014-04-01

    The Late Ordovician Lianglitage Formation comprises 13 microfacies (Mf1-Mf13) that were deposited on a carbonate platform at the Tazhong Uplift of the Tarim Basin in Northwest China. Each type of microfacies indicates a specific depositional environment with a certain level of wave energy. Four primary groups of microfacies associations (MA1-MA4) were determined. These associations represent different depositional facies, including reef-shoal facies in the platform margin (MA1), carbonate sand shoal facies (MA2) and oncoid shoal (MA3) on open platforms, and lagoon and tidal flat facies (MA4) in the platform interior. Each microfacies association was generated in a fourth-order sedimentary sequence developing within third-order sequences (SQ1, SQ2, and SQ3, from bottom to top), showing a shallowing-upward trend. High-frequency sequences and facies correlation between wells suggests that the reef-shoal facies more successively developed in the southeastern part of the platform margin, and high-energy microfacies were more strictly confined by the top boundary of fourth-order sequences in the northwestern part of the platform. The highstand systems tract (HST) of the SQ2 is characterized by reef-shoals that developed along the platform margin and tidal flats and lagoons that developed in the platform interior, while the SQ3 is characterized by the oncoid shoal facies that generally developed on the uplift due to a regionally extensive transgression that occurred during the latter part of the Late Ordovician. The results of this study can be used for investigating the development and distribution of potential reservoirs; the reservoirs in southeastern part of the platform margin may be of premium quality because the high-energy microfacies were best preserved there.

  12. High Resolution Biostratigraphy and the Origin of the Basal Cambrian Bedded Chert from the Aksu Area (Tarim Block, Northwestern China)

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Liu, H.; Dong, L.

    2017-12-01

    The early Cambrian Yurtus Formation in the Aksu area (Tarim block, northwestern China) consists of two lithostratigraphic units, lower black shale with interbedded chert unit and upper siltstone/carbonate unit. This time period represents the most important Proterozoic- Phanerozoic transition in earth's history. In recent years, the black shale has been confirmed to have high hydrocarbon generation potential. However, the depositional environment of the Yurtus Formation remains controversial and the biostratigraphic constrains are rather poor. The chert that is interbedded with black shale in the Yurtus Formation provides an exceptional taphonomic window to capture the diversity of the early Cambrian microfossils. Meanwhile, the origin of the bedded chert would give us some insight into the environmental background when the source rock was deposited. Therefore, in this research, we focus on the chert in the lower Yurtus formation and our purpose is to establish high resolution biostratigraphic framework and to better understand the depositional environment of the source rock. We investigated 4 sections in the Tarim basin: Kungaikuotan, Sugaite, Kule, and Yurtus VI. Abundant acritarch fossils have been identified, including Heliosphaeridium ampliatum, Yurtusia uniformis, and Comasphaeridium annulare. The tubular fossil Megathrix longus is also very common in this formation. In addition, two new types of specimens have been discovered, sheet-like encrolled fossils ( 0.5 mm in size) and regular spindle-like double layered microfossils ( 10μm in diameter). All of these fossils have constant occurrences in the studied sections, and can be well correlated with those yielded from the equivalent interval in South China. The biostratigraphic work suggests the source rock in the lower unit of the Yurtus Formation could be correlated with the Meishucunian small shelly fossil assemblage I and II. The Gemenium/Silicon ratio of the Yurtus chert is less than 1

  13. Evaluation of evapotranspiration and deep percolation under mulched drip irrigation in an oasis of Tarim basin, China

    NASA Astrophysics Data System (ADS)

    Li, Xianwen; Jin, Menggui; Zhou, Nianqing; Huang, Jinou; Jiang, Simin; Telesphore, Habiyakare

    2016-07-01

    Mulched drip irrigation for cotton field is an effective measure for the utilization of saline water, and the regulation of soil water and salt. However, the reasonable methods for quantifying actual evapotranspiration (ET) and deep percolation of recharge to groundwater are still not very well understood, which restricts the accurate regulation of soil water and salt for cotton growth in oasis. In this paper, a set of experiments of mulched drip irrigation with brackish water were conducted in a typical arid region of Tarim basin in southern Xinjiang, China. The irrigation events were recorded, and ET and fluctuations of groundwater table were carefully measured for two consecutive irrigation periods of flowering and bolling stages. A group of upscaling conversion methods were used to quantify the ET, in which canopy structure was considered to estimate the transpiration from leaf scale to a unit of field scale. The groundwater table had a significant response to the irrigation events, thus the deep percolation was estimated using water-table fluctuation method (WTF). Results showed that during the two irrigation events of flowering and bolling stages, the total ET was 31.1 mm with the soil surface evaporation of only 0.4 mm. The total percolation of recharge to groundwater was 48.2 mm which contributed to the groundwater run-off of 22.1 mm. Transpiration of 30.7 mm accounted for 98.6% of the total ET of 31.1 mm and 34.3% of the irrigation water of 90.6 mm. Compared with transpiration, the deep percolation accounted for 53.2% of irrigation water, indicating a serious excessive irrigation that recharged to groundwater. Soil salt budget showed that the salt leached into groundwater was 1.56 times of the input from brackish irrigation water and fertilization during the two irrigation periods. Even for the irrigation practice with brackish water, the accumulated salt of soil profile could also be leached out under large amount of irrigation water (e.g. 90.6 mm for the

  14. Towards a climate impact assessment of the Tarim River, NW China: integrated hydrological modelling using SWIM

    NASA Astrophysics Data System (ADS)

    Wortmann, Michel

    2014-05-01

    The Tarim River is the principle water source of the Xinjiang Uyghur Autonomous Region, NW China and the country's largest endorheic river, terminating in the Taklamakan desert. The vast majority of discharge is generated in the glaciated mountain ranges to the north (Tian Shan), south (Kunlun Shan/Tibetan Plateau) and west (Pamir Mountains) of the Taklamakan desert. The main water user is the intensive irrigation agriculture for mostly cotton and fruit production in linear river oases of the middle and lower reaches as well as a population of 10 Mil. people. Over the past 40 years, an increase in river discharge was reported, assumed to be caused by enhanced glacier melt due to a warming climate. Rapid population growth and economic development have led to a significant expansion of area under irrigation, resulting in water shortages for downstream users and the floodplain vegetation. Water resource planning and management of the Tarim require integrated assessment tools to examine changes under future climate change, land use and irrigation scenarios. The development of such tools, however, is challenged by sparse climate and discharge data as well as available data on water abstractions and diversions. The semi-distributed, process-based hydrological model SWIM (Soil and Water Integrated Model) was implemented for the headwater and middle reaches that generate over 90% of discharge, including the Aksu, Hotan and Yarkant rivers. It includes the representation of snow and glacier melt as well as irrigation abstractions. Once calibrated and validated to river discharge, the model is used to analyse future climate scenarios provided by one physically-based and one statistical regional climate model (RCM). Preliminary results of the model calibration and validation indicate that SWIM is able simulate river discharge adequately, despite poor data conditions. Snow and glacier melt account for the largest share in river discharge. The modelling results will devise

  15. Data Processing Methods for 3D Seismic Imaging of Subsurface Volcanoes: Applications to the Tarim Flood Basalt.

    PubMed

    Wang, Lei; Tian, Wei; Shi, Yongmin

    2017-08-07

    The morphology and structure of plumbing systems can provide key information on the eruption rate and style of basalt lava fields. The most powerful way to study subsurface geo-bodies is to use industrial 3D reflection seismological imaging. However, strategies to image subsurface volcanoes are very different from that of oil and gas reservoirs. In this study, we process seismic data cubes from the Northern Tarim Basin, China, to illustrate how to visualize sills through opacity rendering techniques and how to image the conduits by time-slicing. In the first case, we isolated probes by the seismic horizons marking the contacts between sills and encasing strata, applying opacity rendering techniques to extract sills from the seismic cube. The resulting detailed sill morphology shows that the flow direction is from the dome center to the rim. In the second seismic cube, we use time-slices to image the conduits, which corresponds to marked discontinuities within the encasing rocks. A set of time-slices obtained at different depths show that the Tarim flood basalts erupted from central volcanoes, fed by separate pipe-like conduits.

  16. Identification of potential impacts of climate change and anthropogenic activities on streamflow alterations in the Tarim River Basin, China.

    PubMed

    Xue, Lianqing; Yang, Fan; Yang, Changbing; Chen, Xinfang; Zhang, Luochen; Chi, Yixia; Yang, Guang

    2017-08-15

    Understanding contributions of climate change and human activities to changes in streamflow is important for sustainable management of water resources in an arid area. This study presents quantitative analysis of climatic and anthropogenic factors to streamflow alteration in the Tarim River Basin (TRB) using the double mass curve method (DMC) and the Budyko methods. The time series (1960~2015) are divided into three periods: the prior impacted period (1960~1972) and the two post impacted periods, 1973~1986 and 1987~2015 with trend analysis. Our results suggest that human activities played a dominant role in deduction in the streamflow in TRB with contribution of 144.6% to 120.68% during the post impacted period I and 228.68% to 140.38% during the post impacted period II. Climatic variables accounted for 20.68%~44.6% of the decrease during the post impacted period I and 40.38% ~128.68% during the post impacted period II. Sensitivity analysis indicates that the streamflow alteration was most sensitive to changes in landscape parameters. The aridity index and all the elasticities showed an obvious increasing trend from the upstream to the downstream in the TRB. Our study suggests that it is important to take effective measures for sustainable development of eco-hydrological and socio-economic systems in the TRB.

  17. Interactions of Multiple Atmospheric Circulation Drive the Drought in Tarim River Basin.

    PubMed

    Wu, Yong-Ping; Feng, Guo-Lin; Li, Bai-Lian

    2016-05-20

    Global warming is likely to cause overall drying of land surfaces and aridity increasing leading to expansion of dry climate zones. There is an increased risk of extremely arid environment and large deserts developed progressively in the central Asia. However, the key factors causing the drying in mid-Asia remain inconclusive. Here, we analyzed the relationship among precipitation, water vapor transportation in Tarim River Basin (TRB) and Multiple Atmospheric Circulation (MAC) to explore the mechanism of MAC driving the drying in TRB, through comparing MAC between abundant and scarce precipitation years. We found that Westerly Circulation (WC) and Asian Summer Monsoon (ASM) are likely to promote the precipitation respectively. Whereas, they not only have their own influence but also restrict each other and facilitate the forming of peculiar water vapor transport channel for TRB, which is probably to restrain the precipitation and its distribution pattern and accelerate the drying in this region. Our results enrich the findings on mechanisms of wet places becoming wetter while dry areas getting drier under the global warming.

  18. Interactions of Multiple Atmospheric Circulation Drive the Drought in Tarim River Basin

    NASA Astrophysics Data System (ADS)

    Wu, Yong-Ping; Feng, Guo-Lin; Li, Bai-Lian

    2016-05-01

    Global warming is likely to cause overall drying of land surfaces and aridity increasing leading to expansion of dry climate zones. There is an increased risk of extremely arid environment and large deserts developed progressively in the central Asia. However, the key factors causing the drying in mid-Asia remain inconclusive. Here, we analyzed the relationship among precipitation, water vapor transportation in Tarim River Basin (TRB) and Multiple Atmospheric Circulation (MAC) to explore the mechanism of MAC driving the drying in TRB, through comparing MAC between abundant and scarce precipitation years. We found that Westerly Circulation (WC) and Asian Summer Monsoon (ASM) are likely to promote the precipitation respectively. Whereas, they not only have their own influence but also restrict each other and facilitate the forming of peculiar water vapor transport channel for TRB, which is probably to restrain the precipitation and its distribution pattern and accelerate the drying in this region. Our results enrich the findings on mechanisms of wet places becoming wetter while dry areas getting drier under the global warming.

  19. Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China

    NASA Astrophysics Data System (ADS)

    Wu, X.; Qi, X.; Zheng, M.

    2015-12-01

    Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas

  20. Horse-mounted invaders from the Russo-Kazakh steppe or agricultural colonists from western Central Asia? A craniometric investigation of the Bronze Age settlement of Xinjiang.

    PubMed

    Hemphill, Brian E; Mallory, J P

    2004-07-01

    Numerous Bronze Age cemeteries in the oases surrounding the Täklamakan Desert of the Tarim Basin in the Xinjiang Uyghur Autonomous Region, western China, have yielded both mummified and skeletal human remains. A dearth of local antecedents, coupled with woolen textiles and the apparent Western physical appearance of the population, raised questions as to where these people came from. Two hypotheses have been offered by archaeologists to account for the origins of Bronze Age populations of the Tarim Basin. These are the "steppe hypothesis" and the "Bactrian oasis hypothesis." Eight craniometric variables from 25 Aeneolithic and Bronze Age samples, comprising 1,353 adults from the Tarim Basin, the Russo-Kazakh steppe, southern China, Central Asia, Iran, and the Indus Valley, are compared to test which, if either, of these hypotheses are supported by the pattern of phenetic affinities possessed by Bronze Age inhabitants of the Tarim Basin. Craniometric differences between samples are compared with Mahalanobis generalized distance (d2), and patterns of phenetic affinity are assessed with two types of cluster analysis (the weighted pair average linkage method and the neighbor-joining method), multidimensional scaling, and principal coordinates analysis. Results obtained by this analysis provide little support for either the steppe hypothesis or the Bactrian oasis hypothesis. Rather, the pattern of phenetic affinities manifested by Bronze Age inhabitants of the Tarim Basin suggests the presence of a population of unknown origin within the Tarim Basin during the early Bronze Age. After 1200 B.C., this population experienced significant gene flow from highland populations of the Pamirs and Ferghana Valley. These highland populations may include those who later became known as the Saka and who may have served as "middlemen" facilitating contacts between East (Tarim Basin, China) and West (Bactria, Uzbekistan) along what later became known as the Great Silk Road. Copyright

  1. Evaluation of two empirical wind erosion models in arid and semi-arid regions of China and the USA

    USDA-ARS?s Scientific Manuscript database

    The Tarim Basin in China and Columbia Plateau in the USA are important agricultural regions as well as source regions of windblown dust that impact air quality in Asia and North America. Wind erosion models are important tools for assessing the potential erodibility of soils and best management prac...

  2. Remote sensing research on fragile ecological environment in continental river basin

    NASA Astrophysics Data System (ADS)

    Wang, Ranghui; Peng, Ruyan; Zhang, Huizhi

    2003-07-01

    Based on some remote sensing data and software platform of image processing and analysis, the standard image for ecological thematic mapping is decided. Moreover, the vegetation type maps and land sandy desertification type maps are made. Relaying on differences of natural resources and ecological environment in Tarim River Basin, the assessment indicator system and ecological fragility index (EFI) of ecological environment are built up. The assessment results are very severely. That is, EFI is only 0.08 in Akesu River Basin, it belongs to slight fragility area. EFI of Yarkant River Basin and upper reaches of Tarim River Basin are 0.23 and 0.25 respectively, both of them belong to general fragility areas. Meanwhile, EFI of Hotan River Basin and middle reaches of Tarim River Basin are 0.32 and 0.49 respectively; they all belong to middle fragility areas. However, the fragility of the lower reaches of Tarim River Basin belongs to severe fragility area that the EFI is 0.87.The maladjustment among water with hot and land as well as salt are hindrance of energy transfer and material circulation and information transmission. It is also the main reason that caused ecological environment fragility.

  3. [Monitoring of soil salinization in Northern Tarim Basin, Xinjiang of China in dry and wet seasons based on remote sensing].

    PubMed

    Yao, Yuan; Ding, Jian-Li; Zhang, Fang; Wang, Gang; Jiang, Hong-Nan

    2013-11-01

    Soil salinization is one of the most important eco-environment problems in arid area, which can not only induce land degradation, inhibit vegetation growth, but also impede regional agricultural production. To accurately and quickly obtain the information of regional saline soils by using remote sensing data is critical to monitor soil salinization and prevent its further development. Taking the Weigan-Kuqa River Delta Oasis in the northern Tarim River Basin of Xinjiang as test object, and based on the remote sensing data from Landsat-TM images of April 15, 2011 and September 22, 2011, in combining with the measured data from field survey, this paper extracted the characteristic variables modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), and the third principal component from K-L transformation (K-L-3). The decision tree method was adopted to establish the extraction models of soil salinization in the two key seasons (dry and wet seasons) of the study area, and the classification maps of soil salinization in the two seasons were drawn. The results showed that the decision tree method had a higher discrimination precision, being 87.2% in dry season and 85.3% in wet season, which was able to be used for effectively monitoring the dynamics of soil salinization and its spatial distribution, and to provide scientific basis for the comprehensive management of saline soils in arid area and the rational utilization of oasis land resources.

  4. Landsat and SPOT data for oil exploration in North-Western China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishidai, Takashi

    1996-07-01

    Satellite remote sensing technology has been employed by Japex to provide information related to oil exploration programs for many years. Since the beginning of the 1980`s, regional geological interpretation through to advanced studies using satellite imagery with high spectral and spatial resolutions (such as Landsat TM and SPOT HRV), have been carried out, for both exploration programs and for scientific research. Advanced techniques (including analysis of airborne hyper-multispectral imaging sensor data) as well as conventional photogeological techniques were used throughout these programs. The first program using remote sensing technology in China focused on the Tarim Basin, Xinjiang Uygur Autonomous Region,more » and was carried out using Landsat MSS data. Landsat MSS imagery allows us to gain useful preliminary geological information about an area of interest, prior to field studies. About 90 Landsat scenes cover the entire Xinjiang Uygru Autonomous Region, this allowed us to give comprehensive overviews of 3 hydrocarbon-bearing basins (Tarim, Junggar, and Turpan-Hami) in NW China. The overviews were based on the interpretations and assessments of the satellite imagery and on a synthesis of the most up-to-date accessible geological and geophysical data as well as some field works. Pairs of stereoscopic SPOT HRV images were used to generate digital elevation data with a 40 in grid cover for part of the Tarim Basin. Topographic contour maps, created from this digital elevation data, at scales of 1:250,000 and 1:100,000 with contour intervals of 100 m and 50 m, allowed us to make precise geological interpretation, and to carry out swift and efficient geological field work. Satellite imagery was also utilized to make medium scale to large scale image maps, not only to interpret geological features but also to support field workers and seismic survey field operations.« less

  5. Role of mantle dynamics in rebuilding the Tianshan Orogenic Belt in NW China: A seismic tomographic investigation

    NASA Astrophysics Data System (ADS)

    He, Chuansong; Santosh, M.

    2018-05-01

    The Tianshan orogenic belt, Junggar terrane and Altai terrane are located at the southwestern part of the Central Asian Orogenic Belt (CAOB). Here, we investigate the velocity structure beneath the Xinjiang region in NW China, which includes the Tarim terrane, Tianshan orogenic belt, Junggar terrane and Altai terrane with a view to evaluate the mantle dynamics based on teleseismic data recorded by 103 seismic stations. Our tomographic results show both high and low velocity perturbations beneath the Tianshan orogenic belt. We suggest that the high velocity perturbations beneath this orogenic belt might represent the northward subducted lithosphere of the Tarim Basin and the southward subducted lithosphere of the Junggar Basin. The low velocity structure beneath the Tianshan orogenic belt might represent asthenosphere upwelling that triggered the extensive magmatism which contributed to rebuilding of the Tianshan orogenic belt.

  6. Eco-physiological response of Populus euphratica Oliv. to water release of the lower reaches of the Tarim River, China

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Ruan, X.; Chen, Y. N.; Li, W. H.

    2007-10-01

    Eco-physiological and plant performance responses and acclimation of Populus euphratica Oliv. to water release of the lower reaches of Tarim River, China were investigated. Three representative areas and 15 transects were selected along the lower reaches of the Tarim River. The groundwater level and salt content as well as plant performance and the contents of proline, soluble sugar, and plant endogenous hormone (ABA, CTK) in leaves were monitored and analyzed before- and after-water release. The groundwater level was raised in different areas and transects by the water release program. The physiological stress to P. euphratica decreased after the water release. Our results suggested that the groundwater level in the studied region changed from -3.15 to -4.12 m, salt content of the groundwater from 67.15 to 72.65 mM, the proline content from 9.28 to 11.06 mM, the soluble sugar content from 224.71 to 252.16 mM, the ABA content from 3.59 to 5.01 ng/(g FW), and the CK content from 4.01 to 4.56 ng/(g FW)- for the optimum growth and recover of P. euphratica indicated by the plant performance parameters, and the efficiency of water release was the highest.

  7. Introduction to special section: China shale gas and shale oil plays

    USGS Publications Warehouse

    Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng

    2015-01-01

    Even though China shale gas and shale oil exploration is still in an early stage, limited data are already available. We are pleased to have selected eight high-quality papers from fifteen submitted manuscripts for this timely section on the topic of China shale gas and shale oil plays. These selected papers discuss various subject areas including regional geology, resource potentials, integrated and multidisciplinary characterization of China shale reservoirs (geology, geophysics, geochemistry, and petrophysics) China shale property measurement using new techniques, case studies for marine, lacustrine, and transitional shale deposits in China, and hydraulic fracturing. One paper summarizes the regional geology and different tectonic and depositional settings of the major prospective shale oil and gas plays in China. Four papers concentrate on the geology, geochemistry, reservoir characterization, lithologic heterogeneity, and sweet spot identification in the Silurian Longmaxi marine shale in the Sichuan Basin in southwest China, which is currently the primary focus of shale gas exploration in China. One paper discusses the Ordovician Salgan Shale in the Tarim Basin in northwest China, and two papers focus on the reservoir characterization and hydraulic fracturing of Triassic lacustrine shale in the Ordos Basin in northern China. Each paper discusses a specific area.

  8. Dynamic Assessment on the Landscape Patterns and Spatio-temporal Change in the mainstream of Tarim River

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Xue, Lianqing; Yang, Changbing; Chen, Xinfang; Zhang, Luochen; Wei, Guanghui

    2018-01-01

    The Tarim River (TR), as the longest inland river at an arid area in China, is a typical regions of vegetation variation research and plays a crucial role in the sustainable development of regional ecological environment. In this paper, the newest dataset of MODND1M NDVI, at a resolution of 500m, were applied to calculate vegetation index in growing season during the period 2000-2015. Using a vegetation coverage index, a trend line analysis, and the local spatial autocorrelation analysis, this paper investigated the landscape patterns and spatio-temporal variation of vegetation coverage at regional and pixel scales over mainstream of the Tarim River, Xinjiang. The results showed that (1) The bare land area on both sides of Tarim River appeared to have a fluctuated downward trend and there were two obvious valley values in 2005 and 2012. (2) Spatially, the vegetation coverage improved areas is mostly distributed in upstream and the degraded areas is mainly distributed in the left bank of midstream and the end of Tarim River during 2000-2005. (3) The local spatial auto-correlation analysis revealed that vegetation coverage was spatially positive autocorrelated and spatial concentrated. The high-high self-related areas are mainly distributed in upstream, where vegetation cover are relatively good, and the low-low self-related areas are mostly with lower vegetation cover in the lower reaches of Tarim River.

  9. Effective Elastic Thickness of the Lithosphere in Continental China from Heat Flow: Implications for the Lithospheric Rheology

    NASA Astrophysics Data System (ADS)

    Liu, S.; Wang, L.

    2006-12-01

    The effective elastic thickness (Te) of lithosphere is one parameter describing the responses of the lithosphere to long term forces, and is still controversial in estimation by different methods. Here we present the effective elastic thickness of the lithosphere in continental China from heat flow data by the method proposed by Burov et al, J.G.R., 1995,100(B3):3905-3927. Our results show that Te varies much in different sub-areas in continental China due to different geological evolution and associated thermal regimes. Te is much greater than the crustal thickness in the area where the heat flow is really low and the lithosphere is really thick, indicating much more contribution from the lithospheric mantle and the dominative control of the mantle with olivine on the rheology of the lithosphere, and the major basins (Tarim, Junggar, Ordos and Sichuan basins) in central-western China share this characteristic. For instance, the Te of the Tarim basin is 66km with crustal thickness of 45km. Te is less than the crustal thickness in the region where the heat flow is relatively high, and approximates to the crustal brittle-ductile transition depth, suggesting more contribution from the crust and the dominative control of the felsic crust on the rheology of the lithosphere, and this phenomenon is obvious in the SE coastal China, eastern North China and the orogenic belts. Compared the estimated Te with the seismogenic layer thickness (Ts) available in China, it is also found that the Te is much greater than Ts in the major basins with low heat flow, and is similar to Ts in the active zones with high heat flow, which is inconsistent with that Te is usually smaller than Ts proposed by Maggi et al., Geology,2000,28(6):495-498. Generally, two end elements rheological modes for continental lithosphere of the strong crust-weak mantle and the weak crust-strong mantle are all available in continental China considering different thermal regime, composition and geological

  10. Reconstruction of the Paleoenvironment of the Early Cambrian Yurtus Black Shale in the Tarim Basin, Northwestern China, and Its Control on Organic Matter Accumulation

    NASA Astrophysics Data System (ADS)

    Li, J.; Ding, W.; Dong, L.

    2017-12-01

    The black shale in the early Cambrian Yurtus Formation (>521 Ma) in the Tarim basin, northwestern China, is characterized by its high TOC value (up to 16%) andgreat lateral continuity. It has been proven to be high-quality hydrocarbon source rocks. Abundant phytoplanktons and small shelly fossils have been reported from the lower Yurtus chert. However, recent biomarker discovery of aryl isoprenoid hydrocarbons suggests the existence of green sulfur bacteria, which indicates that the water column was stratified and the photic zone was prevailingly euxinic. These seemingly contradictory observations hamper our further understanding of the paleoenvironment in which the Yurtus shale was deposited and its control on the accumulation of organic matter. In this study, we systematically collected samples from the Yurtus Formation at the Kungaikuotan Section, and measured the organic carbon and nitrogen isotopic compositions and the content of trace element Barium (Ba). The strong negative excursions of nitrogen isotope ( -13‰) in the lower and upper parts of the Yurtus Formation are likely attributed to the biological activity of green and purple sulfur bacteria, which is consistent with our organic carbon isotope data as well as previous biomarker discovery. As green sulfur bacteria can only live in euxinic photic zone, it may indicate that the water column above this euxinic zone contains prolific organic matters which consume all the dissolved oxidants in surface ocean. It is well accepted that Ba flux can be used as an indicator for surface ocean primary productivity. Significant increase of barium content (from <100 to 2000 ppm) is observed at the same horizon as where the negative excursion of δ15Norg occurs, suggesting the substantive organic matter in the early Cambrian surface ocean mainly result from extremely high primary productivity. The abundant phytoplankton fossil record from this time period also supports this interpretation. In summary, high TOC in the

  11. Kinematics of Active Deformation Across the Western Kunlun Mountain Range (Xinjiang, China) and Potential Seismic Hazards Within the Southern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Guilbaud, Christelle; Simoes, Martine; Barrier, Laurie; Laborde, Amandine; Van der Woerd, Jérôme; Li, Haibing; Tapponnier, Paul; Coudroy, Thomas; Murray, Andrew

    2017-12-01

    The Western Kunlun mountain range is a slowly converging intracontinental orogen where deformation rates are too low to be properly quantified from geodetic techniques. This region has recorded little seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold, along the topographic mountain front in the epicentral area. Using a seismic profile, we derive a structural cross section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised fluvial terraces and alluvial fans. From their incision pattern and using age constraints retrieved on some of these terraces from field sampling, we quantify the slip rate on the underlying blind ramp to 0.5 to 2.5 mm/yr, with a most probable long-term value of 2 to 2.5 mm/yr. The evolution of the Yecheng-Pishan fold is proposed by combining all structural, morphological, and chronological observations. Finally, we compare the seismotectonic context of the Western Kunlun to what has been proposed for the Himalayas of Central Nepal. This allows for discussing the possibility of M ≥ 8 earthquakes if the whole decollement across the southern Tarim Basin is seismically locked and ruptures in one single event.

  12. U-Pb ages of detrital zircon from Cenozoic sediments in the southwestern Tarim Basin, NW China: Implications for Eocene-Pliocene source-to-sink relations and new insights into Cretaceous-Paleogene magmatic sources

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Fu, Ling; Wu, Chaodong; Song, Yan; Jiang, Zhenxue; Luo, Qun; Zhang, Ziya; Zhang, Chen; Zhu, Bei

    2018-05-01

    A detailed investigation of potential provenance is still lacking in the southwestern Tarim Basin, which restricts our complete understanding of Cenozoic source-to-sink relations between the basin interior and the Pamir salient - western Kunlun Mountain Range. Debate also exists concerning the potential sources of the Paleogene and Cretaceous igneous detritus present in the Cenozoic sedimentary sequences. Here, we present U-Pb (LA-ICP-MS) ages of detrital zircons from the continuous Eocene-Pliocene sediment series in the well-exposed Aertashi section to investigate changes in sediment provenance through time. The U-Pb detrital zircon ages range widely from 45 to 3204 Ma and can be divided into seven main groups: 45-65 Ma (sub-peak at 49 Ma), 67-103 Ma (sub-peak at 95 Ma), 196-251 Ma (sub-peak at 208 Ma), 252-416 Ma (sub-peak at 296 Ma), 417-540 Ma (sub-peak at 446 Ma), 550-1429 Ma (sub-peaks at 614 Ma, 828 Ma and 942 Ma) and 1345-3204 Ma (sub-peaks at 1773 Ma and 2480 Ma). These zircons were mainly derived from the western Kunlun Mountain Range and northern Pamir salient to the west and south. The evolution of the provenance and source-to-sink relationship patterns in the southwestern Tarim Basin can be divided into three stages: (1) The Middle Eocene to Lower Oligocene sediments display a wide variety of detrital zircon ages, suggesting that the source area was extensive. (2) A major change in provenance occurred during the Late Oligocene to Early Miocene and was characterized by an abrupt increase in the proportion of Triassic and Lower Paleozoic igneous components, implying a significant adjustment in topography induced by the initial uplift and exhumation of the western Kunlun Mountain Range and northern Pamir salient. (3) In the Late Miocene, the source-to-sink system transformed again, and contributions of Triassic to Lower Paleozoic material weakened substantially due to the sufficient indentation of the Pamir salient. Our integrated analyses of zircon

  13. Temporal and spatial variations of precipitation in Northwest China during 1960-2013

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Xia, Jun; Zhang, Yongyong; Hong, Si

    2017-01-01

    Based on the precipitation data from 96 weather stations in Northwest China (NWC) during 1960-2013, the Continuous Wavelet Transform (CWT) and the Mann-Kendall (MK) test were applied to analyze the precipitation spatiotemporal variations at different time scales. The relationships between the original precipitation and different periodic components were investigated. The results indicated that the annual precipitation was significantly increasing (P < 0.01) at the rate of 0.55 mm/a in the NWC. In terms of seasonal precipitation, the summer original precipitation significantly increased (P < 0.05) in the Southern Altay Mountain Basin (SAMB), Qaidam Basin (QB), Qiang Tang Plateau Basin (QTPB), Turpan-Hami Basin (THB), Tarim Desert Basin (TDB), Northern Tianshan Mountain Basin (NTMB) and NWC. For the winter original precipitation, except the Inner Mongolia Inland Rivers Basin and Northern Kunlun Mountain Basin, the significant increases (P < 0.05) were detected in the other sub-basins. In terms of monthly precipitation, significant increases were detected in January in the SAMB, NTMB and NWC, and July in the QB, Headstreams of Tarim River Basin (HTRB) and N. Additionally, most of the increasing and decreasing trends began in the mid-1980s or mid-1990s. Moreover, the periodic components were not always similar to the original data with the significant trends. The dominant scale of the original data from the periodic components was different in spatiotemporal distribution. Meanwhile, the relationship between the precipitation and El Niño-Southern Oscillation (ENSO) was different from period to period and from time scale to time scale. This study will help to develop better management measures to account for climate change and the supply/demand of water.

  14. Quaternary tectonic evolution of the Pamir-Tian Shan convergence zone, Northwest China

    NASA Astrophysics Data System (ADS)

    Thompson Jobe, Jessica Ann; Li, Tao; Chen, Jie; Burbank, Douglas W.; Bufe, Aaron

    2017-12-01

    The Pamir-Tian Shan collision zone in the western Tarim Basin, northwest China, formed from rapid and ongoing convergence in response to the Indo-Eurasian collision. The arid landscape preserves suites of fluvial terraces crossing structures active since the late Neogene that create fault and fold scarps recording Quaternary deformation. Using geologic and geomorphic mapping, differential GPS surveys of deformed terraces, and optically stimulated luminescence dating, we create a synthesis of the active structures that delineate the timing, rate, and migration of Quaternary deformation during ongoing convergence. New deformation rates on eight faults and folds, when combined with previous studies, highlight the spatial and temporal patterns of deformation within the Pamir-Tian Shan convergence zone during the Quaternary. Terraces spanning 130 to 8 ka record deformation rates between 0.1 and 5.6 mm/yr on individual structures. In the westernmost Tarim Basin, where the Pamir and Tian Shan are already juxtaposed, the fastest rates occur on actively deforming structures at the interface of the Pamir-Tian Shan orogens. Farther east, as the separation between the Pamir-Tian Shan orogens increases, the deformation has not been concentrated on a single structure, but rather has been concurrently distributed across a zone of faults and folds in the Kashi-Atushi fold-and-thrust belt and along the NE Pamir margin, where shortening rates vary on individual structures during the Quaternary. Although numerous structures accommodate the shortening and the locus of deformation shifts during the Quaternary, the total shortening across the western Tarim Basin has remained steady and approximately matches the current geodetic rate of 6-9 mm/yr.

  15. 33 CFR 117.149 - China Basin, Mission Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false China Basin, Mission Creek. 117.149 Section 117.149 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.149 China Basin, Mission...

  16. 33 CFR 117.149 - China Basin, Mission Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false China Basin, Mission Creek. 117.149 Section 117.149 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.149 China Basin, Mission...

  17. 33 CFR 117.149 - China Basin, Mission Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false China Basin, Mission Creek. 117.149 Section 117.149 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.149 China Basin, Mission...

  18. 33 CFR 117.149 - China Basin, Mission Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false China Basin, Mission Creek. 117.149 Section 117.149 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.149 China Basin, Mission...

  19. 33 CFR 117.149 - China Basin, Mission Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false China Basin, Mission Creek. 117.149 Section 117.149 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.149 China Basin, Mission...

  20. Geochemistry and geochronology of the ∼0.82 Ga high-Mg gabbroic dykes from the Quanji Massif, southeast Tarim Block, NW China: Implications for the Rodinia supercontinent assembly

    NASA Astrophysics Data System (ADS)

    Liao, Fanxi; Wang, Qinyan; Chen, Nengsong; Santosh, M.; Xu, Yixian; Mustafa, Hassan Abdelsalam

    2018-05-01

    The role of the Tarim Block in the reconstruction of the Neoproterozoic supercontinent Rodinia remains contentious. Here we report a suite of high-Mg gabbroic dykes from the Yingfeng area in northwestern Quanji Massif, which is considered as a fragment of the Tarim Block in NW China. Magmatic zircons from these dykes yield to have a weighted mean 206Pb/238U age of 822.2 ± 5.3 Ma, recording the timing of their emplacement. The gabbros have high MgO (9.91-13.09 wt%), Mg numbers (69.89-75.73) and CaO (8.41-13.55 wt%), medium FeOt (8.50-9.67 wt%) and TiO2 (0.67-0.93 wt%), variable Al2O3 (13.04-16.07 wt%), and high Cr (346.14-675.25 ppm), but relatively low Ni (138.72-212.94 ppm), suggestive of derivation from a primary magma. The rocks display chondrite-normalized LREE patterns with weak fractionation but flat HREE patterns relative to those of the N-MORB. Their primitive mantle normalized trace elemental patterns show positive Rb, Ba and U but negative Th, Nb, Ti and Zr anomalies, carrying characteristics of both mid-ocean ridge basalts and arc basalts. The εHf(t) values of the zircons from these rocks vary from +4.7 to +13.5 with depleted mantle model ages (TDM) of 1.23-0.85 Ga, and the youngest value nearly approaching that for the coeval depleted mantle, suggesting significant addition of juvenile materials. Our data suggest that the strongly depleted basaltic magma was probably sourced from a depleted mantle source that had undergone metasomatism by subduction-related components in a back-arc setting. Accordingly we postulate that a subduction-related tectonic regime possibly prevailed at ∼0.8 Ga along the southeastern margin of the Tarim Block. Combining with available information from the northern Tarim Block, we propose an opposite verging double-sided subduction model for coeval subduction of the oceanic crust beneath both the southern and northern margins of the Tarim Block during early Neoproterozoic.

  1. Timing and Spatial Distribution of Loess in Xinjiang, NW China.

    PubMed

    Li, Yun; Song, Yougui; Yan, Libin; Chen, Tao; An, Zhisheng

    2015-01-01

    Central Asia is one of the most significant loess regions on Earth, with an important role in understanding Quaternary climate and environmental change. However, in contrast to the widely investigated loess deposits in the Chinese Loess Plateau, the Central Asian loess-paleosol sequences are still insufficiently known and poorly understood. Through field investigation and review of the previous literature, the authors have investigated the distribution, thickness and age of the Xinjiang loess, and analyzed factors that control these parameters in the Xinjiang in northwest China, Central Asia. The loess sediments cover river terraces, low uplands, the margins of deserts and the slopes of the Tianshan Mountains and Kunlun Mountains and are also present in the Ili Basin. The thickness of the Xinjiang loess deposits varies from several meters to 670 m. The variation trend of the sand fraction (>63 μm) grain-size contour can indicate the local major wind directions, so we conclude that the NW and NE winds are the main wind directions in the North and South Xinjiang, and the westerly wind mainly transport dust into the Ili basin. We consider persistent drying, adequate regional wind energy and well-developed river terraces to be the main factors controlling the distribution, thickness and formation age of the Xinjiang loess. The well-outcropped loess sections have mainly developed since the middle Pleistocene in Xinjiang, reflecting the appearance of the persistent drying and the present air circulation system. However, the oldest loess deposits are as old as the beginning of the Pliocene in the Tarim Basin, which suggests that earlier aridification occurred in the Tarim Basin rather than in the Ili Basin and the Junggar Basin.

  2. Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China

    NASA Astrophysics Data System (ADS)

    Wu, Xiaozhi; He, Dengfa; Qi, Xuefeng

    2016-04-01

    Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas

  3. Paleomagnetism of Cretaceous limestones from western Tarim basin suggests negligible latitudinal offset yet significant clockwise rotation

    NASA Astrophysics Data System (ADS)

    Tan, X.; Gilder, S.; Chen, Y.; Cogné, J. P.; Courtillot, V. E.; Cai, J.

    2017-12-01

    Large northward translation of central Asian crustal blocks has been reported from paleomagnetism of Cretaceous and Tertiary terrestrial sediments. This motion was initially taken as evidence of deformation occurred in the Asian interior as a result of indentation of the Indian Plate. However, because the amount of motion is far greater than geological observations, accuracy of the paleomagnetic record has become a controversial issue. To solve the problem, it has been shown that the latitudinal offset can be entirely attributed to inclination shallowing during deposition and compaction processes (Tan et al., 2003; Tauxe and Kent, 2004). On the other hand, coeval volcanic rocks from central Asia did record steeper paleomagnetic inclinations than terrestrial rocks (Gilder et al., 2003). To extend the effort of solving the controversy, we report paleomagnetic results of Cretaceous limestones from western Tarim basin. Our results show that the majority of our collections have been overprinted. Fortunately, a special type of limestones preserved stable characteristic remanence. Fold tests suggest a primary origin of the magnetization. Comparison of the paleomagnetic direction with the coeval expected direction from reference poles indicates a negligible amount of northward movement consistent with previous result of inclination correction based on magnetic fabrics, and a pattern of clockwise rotation symmetric with the style observed in the western flank of the Pamir ranges. Rock magnetic data will also be presented to support the accurate paleomagnetic record.

  4. Reciever Function Transect Across Tibet, Tarim and Tien Shan

    NASA Astrophysics Data System (ADS)

    Marshall, B.; Levin, V. L.; Huang, G.; Roecker, S. W.; Wang, H.

    2010-12-01

    We investigate the region of the ongoing collision between the India and Eurasia tectonic plates that results in widespread deformation of the continental lithosphere. Over the past decade, numerous regional studies were conducted between the Himalaya and the Tien Shan mountains, each illuminating a small part of the area. We combine the data from a number of portable and permanent networks to construct a ~1800 km long profile of lithospheric properties that cross three very different tectonic domains: the Tibetan plateau, the Tarim basin, and the Tien Shan mountains. We use data from 60 stations operated in the region by US, Chinese and French researchers. We use records of distant earthquakes to construct receiver function gathers for each station. The uniformity of processing ensures that our results are comparable along the transect. We examine receiver function gathers at each site, and rank their quality on the basis of number of records, noise levels, and directional stability of the wavefield. We select 27 sites with high-quality data. For these we construct average receiver function traces using data in the 60-85 degree range, and use them as a guide to the lithospheric layering beneath the region. On most receiver functions we constructed the most prominent feature is a positive phase likely associated with the crust-mantle transition. The timing of this phase varies significantly over the length of the profile. Beneath the Tibetan plateau delay times ~7-8 s are seen close to the Himalayas, and nearly 10 s delays are found further north. Delays of 6 to 8 s are seen beneath sites in the Tarim basin and the Tien Shan mountains, and nearly 10 s delays are seen at the border between them. In addition to the pulse associated with the crust-mantle transition we see other locally-consistent features, for example a negative phase with delay values between 3 and 5 s beneath much of the Tibetan plateau.

  5. Coal-type gas provinces in China and their geochemical characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xiaobao; Xu Yonghang; Shen Ping

    1996-12-31

    The distribution of coal - type gases in China can be divided into the east gas province, the central gas province and the west gas province the east gas province lies in the East China Meso - Cenozoic Rift Belt, including Donghai Basin and Bohaiwan Basin. The ages of gas source rocks are Carbo - Permian and Tertiary. The types of gas reservoirs are a anticline or a hidden mountain - fault block combination reservoir. The CH{sub 4} content ofthe gases there is 83 -90%, with {delta}{sup 13}C{sub 1} -35.5 {approximately} -39.9{per_thousand}, and {delta}{sup 13}C{sub 2} -24.0 {approximately} -26.8{per_thousand}. Themore » {delta}{sup 13}C of condensate oils associated with the gases ranges from -25.4{per_thousand} to -26.8{per_thousand}. The central gas province is inside the Central China Paleozoic Plates, including Orclos Basin and Sichuan Basin. The gas source rocks are Carbo - Permian and Triassic. The types of gas reservoirs are an anticline-fault combination or a lithological-tectonic combination reservoir. The {delta}{sup 13}C{sub 1} of the gases there is -37.9 {approximately} -37. l{per_thousand}, with the {delta}{sup 13}C of condensate oil accompanying them - 25.1 {approximately} -26.6{per_thousand}. The west gas province is within the West China Late Paleozoic Intracontinental Compressive Belt, including Tarim Basin, Jungar Basin and Tuna Basin. The age of gas source rocks is Jurassic. The types of gas reservoirs are an anticline or an anticline-fault reservoir. The CH{sub 4} content of the gases there varies from 60 to 90%, with {delta}{sup 13}C{sub 1} from - 38.7 to -43.7{per_thousand} and {delta} {sup 13}C{sub 2} from -25.9{per_thousand} to -29.9{per_thousand}. The {delta} {sup 13}C of light oils and condensate oils accompanying the gases changes from 24.3{per_thousand} to 27.8{per_thousand}.« less

  6. Coal-type gas provinces in China and their geochemical characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xiaobao; Xu Yonghang; Shen Ping

    1996-01-01

    The distribution of coal - type gases in China can be divided into the east gas province, the central gas province and the west gas province the east gas province lies in the East China Meso - Cenozoic Rift Belt, including Donghai Basin and Bohaiwan Basin. The ages of gas source rocks are Carbo - Permian and Tertiary. The types of gas reservoirs are a anticline or a hidden mountain - fault block combination reservoir. The CH[sub 4] content ofthe gases there is 83 -90%, with [delta][sup 13]C[sub 1] -35.5 [approximately] -39.9[per thousand], and [delta][sup 13]C[sub 2] -24.0 [approximately] -26.8[permore » thousand]. The [delta][sup 13]C of condensate oils associated with the gases ranges from -25.4[per thousand] to -26.8[per thousand]. The central gas province is inside the Central China Paleozoic Plates, including Orclos Basin and Sichuan Basin. The gas source rocks are Carbo - Permian and Triassic. The types of gas reservoirs are an anticline-fault combination or a lithological-tectonic combination reservoir. The [delta][sup 13]C[sub 1] of the gases there is -37.9 [approximately] -37. l[per thousand], with the [delta][sup 13]C of condensate oil accompanying them - 25.1 [approximately] -26.6[per thousand]. The west gas province is within the West China Late Paleozoic Intracontinental Compressive Belt, including Tarim Basin, Jungar Basin and Tuna Basin. The age of gas source rocks is Jurassic. The types of gas reservoirs are an anticline or an anticline-fault reservoir. The CH[sub 4] content of the gases there varies from 60 to 90%, with [delta][sup 13]C[sub 1] from - 38.7 to -43.7[per thousand] and [delta] [sup 13]C[sub 2] from -25.9[per thousand] to -29.9[per thousand]. The [delta] [sup 13]C of light oils and condensate oils accompanying the gases changes from 24.3[per thousand] to 27.8[per thousand].« less

  7. Hydrocarbon seeps in petroliferous basins in China: A first inventory

    NASA Astrophysics Data System (ADS)

    Zheng, Guodong; Xu, Wang; Etiope, Giuseppe; Ma, Xiangxian; Liang, Shouyun; Fan, Qiaohui; Sajjad, Wasim; Li, Yang

    2018-01-01

    Natural hydrocarbon seepage is a widespread phenomenon in sedimentary basins, with important implications in petroleum exploration and emission of greenhouse gases to the atmosphere. China has vast petroleum (oil and gas) bearing sedimentary basins, but hydrocarbon seepage has rarely been the object of systematic studies and measurements. Based on the available Chinese literature, we report a first inventory of 932 hydrocarbon seeps or seepage zones (710 onshore seeps and 222 offshore seeps), including 81 mud volcanoes, 449 oil seeps, 215 gas seeps, and 187 solid seeps (bitumen outcrops). The seeps are located within the main 20 Mesozoic-Cenozoic petroliferous sedimentary basins, especially along the marginal, regional and local faults. The type of manifestations (oil, gas or mud volcano) reflects the type and maturity of the subsurface petroleum system and the sedimentary conditions of the basin. Oil seeps are particularly abundant in the Junggar Basin. Gas seeps mostly developed in the Lunpola Basin, in smaller basins of the eastern Guizhou and Yunnan provinces, onshore Taiwan and in the offshore Yinggehai Basin. Mud volcanoes developed in basins (Junggar, Qaidam, Qiangtang, onshore and offshore Taiwan) that experienced rapid sedimentation, which induced gravitative instability of shales and diapirism. In comparison to available global onshore seep data-bases, China results to be the country with the highest number of seeps in the world. The massive gas seepage in China could represent a considerable natural source of methane to the atmosphere, and a key process that may drive future hydrocarbon exploration.

  8. The crustal structure from the Altai Mountains to the Altyn Tagh fault, northwest China

    USGS Publications Warehouse

    Wang, Y.; Mooney, W.D.; Yuan, X.; Coleman, R.G.

    2003-01-01

    We present a new crustal section across northwest China based on a seismic refraction profile and geologic mapping. The 1100-km-long section crosses the southern margin of the Chinese Altai Mountains, Junggar Accretional Belt and eastern Junggar basin, easternmost Tianshan Mountains, and easternmost Tarim basin. The crustal velocity structure and Poisson's ratio (??), which provide a constraint on crustal composition, were determined from P and S wave data. Despite the complex geology, the crustal thickness along the entire profile is nearly uniform at 50 km. The thickest crust (56 km) occurs at the northern end of the profile beneath the Altai Mountains and the thinnest (46 km) crust is beneath the Junggar basin. Beneath surficial sediments, the crust is found to have three layers with P wave velocities (Vp) of 6.0-6.3, 6.3-6.6, and 6.9-7.0 km/s, respectively. The southern half of the profile, including the eastern Tianshan Mountains and eastern margin of the Tarim basin, shows low P wave velocities and ?? = 0.25 to a depth of 30 km, which suggests a quartz-rich, granitic upper crustal composition. The northern half of the profile below the Altai Mountains and Junggar Accretional Belt has a higher Poisson's ratio of ?? = 0.26-0.27 to a depth of 30 km, indicative of an intermediate crustal composition. The entire 1100-km-long profile is underlain by a 15-30 km thick high velocity (6.9-7.0 km/s; ?? = 0.26-0.28) lower-crustal layer that we interpret to have a bulk composition of mafic granulite. At the southern end of the profile, a 5-km-thick midcrustal low-velocity layer (Vp = 5.9 km/s, ?? = 0.25) underlies the Tianshan and the region to the south, and may be indicative of a near-horizontal detachment interface. Pn velocities are ???7.7-7.8 km/s between the Tianshan and the Junggar basin, and ???7.9-8.0 km/s below the Altai Mountains and eastern margin of the Tarim basin. We interpret the consistent three-layer stratification of the crust to indicate that the crust

  9. Genetic features of petroleum systems in rift basins of eastern China

    USGS Publications Warehouse

    Qiang, J.; McCabe, P.J.

    1998-01-01

    Most oil-bearing basins in eastern China are Mesozoic-Cenozoic continental rifts which have played a habitat for oil and gas in China. Investigation of the petroleum systems may give a better understanding of the oil and gas habitats in these basins. Of the essential elements of the petroleum system, the source rock is the most important in rift basins. However, rift tectonic evolution controls all the essential elements and processes nevessary for a petroleum system. A four stage evolution model is suggested for the controls in the rift basin. A rift basin may consist of sub-basins, depressions, sub-depressions, and major, moderate, and minor uplifts. A depression or sub-depression has its own depocentre (mainly occupied by source rock) and all kinds of lacustrine sediments, and thus has all the essential elements of a petroleum system. However, only those depressions or sub-depressions which are rich in organic matter and deeply buried to generate oil and gas form petroleum systems. Immature oil, another characteristic, complicates the petroleum system in the rift basins. Three types of oil and gas habitats are described as a result of this analysis of the petroleum systems of the 26 largest oil and gas fields discovered in eastern China rift basins: uplifts between oil source centres are the most prospective areas for oil and gas accumulations, slopes connecting oil source centres and uplifts are the second, and the third type is subtle traps in the soil source centre.Most oil-bearing basins in eastern China are Mesozoic-Cenozoic continental rifts which have played a habitat for oil and gas in China. Investigation of the petroleum systems may give a better understanding of the oil and gas habitats in these basins. Of the essential elements of the petroleum system, the source rock is the most important in rift basins. However, rift tectonic evolution controls all the essential elements and processes necessary for a petroleum system. A four stage evolution model

  10. Petrography, fluid inclusion and isotope studies in Ordovician carbonate reservoirs in the Shunnan area, Tarim basin, NW China: Implications for the nature and timing of silicification

    NASA Astrophysics Data System (ADS)

    Lu, Ziye; Chen, Honghan; Qing, Hairuo; Chi, Guoxiang; Chen, Qianglu; You, Donghua; Yin, Hang; Zhang, Siyang

    2017-08-01

    The Shunnan (SN) area, located in the center of the Tarim basin, NW China, is a gas field discovered in 2013, where the gas is hosted from deeply buried Ordovician carbonate reservoirs with burial depth > 6000 m and temperature > 190 °C. The most important reservoir rocks in the SN area are silicified limestones, which are characterized by multiple generations/types of authigenic quartz (Qz1-Qz2) and coarse calcite cement (CC1-CC3), in addition to other diagenetic phases. Qz1 is a replacement quartz postdating burial stylolites in both limestone and strongly silicified limestone, and Qz2 are equant and bladed quartz cements developed in fractures or vugs in strongly silicified limestone, also postdating burial stylolite. CC1 is a coarse calcite cement found in the vugs, which postdates medium crystalline dolomite and predates saddle dolomite. CC2 (including CC2a, CC2b and CC2c) is the calcite postdating Qz1 and burial stylolites. CC2a is found in fractures in limestone or slightly silicified limestone. CC2b, CC2c and CC3 are only identified in strongly silicified limestone. CC2b fills intercrystalline pores of Qz1, and CC2c fills fractures, predating Qz2. CC3 is precipitated in remaining space left by Qz2c in fractures or vugs. Sr isotopes were analyzed in CC2a and CC2c. CC2a has 87Sr/86Sr ratios of 0.70890-0.70917. CC2c is characterized with 87Sr/86Sr ratios of 0.70949-0.70972. Fluid inclusions were studied in all the quartz and coarse calcite cements. Fluid inclusions in CC2a are characterized by Th values of 118-131 °C and salinities of 22.9-25.2 wt% NaCl + CaCl2. Fluid inclusions from Qz2a, Qz2b, CC2b and CC2c have Th values of 143-166 °C and salinities of 14.7-23.7 wt% NaCl + CaCl2. Fluid inclusions in Qz2c are characterized by Th values of 125-132 °C and salinities of 24.8-26.8 wt% NaCl + CaCl2, and those in CC3 by Th values of 86-101 °C and salinities of 22.9-25.2 wt% NaCl + CaCl2. The Th drop, from Qz2a, Qz2b and CC2c to Qz2c and CC3, cannot be

  11. Wide area lithologic mapping with ASTER thermal infrared data: Case studies for the regions in/around the Pamir Mountains and the Tarim basin

    NASA Astrophysics Data System (ADS)

    Ninomiya, Yoshiki; Fu, Bihong

    2017-07-01

    After the authors have proposed the mineralogical indices, e.g., Quartz Index (QI), Carbonate Index (CI), Mafic Index (MI) for ASTER thermal infrared (TIR) data, many articles have been applied the indices for the geological case studies and proved to be robust in extracting geological information at the local scale. The authors also have developed a system for producing the regional map with the indices, which needs mosaicking of many scenes considering the relatively narrow spatial coverage of each ASTER scene. The system executes the procedures very efficiently to find ASTER data covering a wide target area in the vast and expanding ASTER data archive. Then the searched ASTER data are conditioned, prioritized, and the indices are calculated before finally mosaicking the imagery. Here in this paper, we will present two case studies of the regional lithologic and mineralogic mapping of the indices covering very wide regions in and around the Pamir Mountains and the Tarim basin. The characteristic features of the indices related to geology are analysed, interpreted and discussed.

  12. The provenance of Taklamakan desert sand

    NASA Astrophysics Data System (ADS)

    Rittner, Martin; Vermeesch, Pieter; Carter, Andrew; Bird, Anna; Stevens, Thomas; Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni; Dutt, Ripul; Xu, Zhiwei; Lu, Huayu

    2016-03-01

    Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous region, PR China) is governed by two competing transport agents: wind and water, which work in diametrically opposed directions. Net aeolian transport is from northeast to south, while fluvial transport occurs from the south to the north and then west to east at the northern rim, due to a gradual northward slope of the underlying topography. We here present the first comprehensive provenance study of Taklamakan desert sand with the aim to characterise the interplay of these two transport mechanisms and their roles in the formation of the sand sea, and to consider the potential of the Tarim Basin as a contributing source to the Chinese Loess Plateau (CLP). Our dataset comprises 39 aeolian and fluvial samples, which were characterised by detrital-zircon U-Pb geochronology, heavy-mineral, and bulk-petrography analyses. Although the inter-sample differences of all three datasets are subtle, a multivariate statistical analysis using multidimensional scaling (MDS) clearly shows that Tarim desert sand is most similar in composition to rivers draining the Kunlun Shan (south) and the Pamirs (west), and is distinctly different from sediment sources in the Tian Shan (north). A small set of samples from the Junggar Basin (north of the Tian Shan) yields different detrital compositions and age spectra than anywhere in the Tarim Basin, indicating that aeolian sediment exchange between the two basins is minimal. Although river transport dominates delivery of sand into the Tarim Basin, wind remobilises and reworks the sediment in the central sand sea. Characteristic signatures of main rivers can be traced from entrance into the basin to the terminus of the Tarim River, and those crossing the desert from the south to north can seasonally bypass sediment through the sand sea. Smaller ephemeral rivers from the Kunlun Shan end in the desert and discharge their sediment there. Both river run

  13. Projection of actual evapotranspiration using the COSMO-CLM regional climate model under global warming scenarios of 1.5 °C and 2.0 °C in the Tarim River basin, China

    NASA Astrophysics Data System (ADS)

    Su, Buda; Jian, Dongnan; Li, Xiucang; Wang, Yanjun; Wang, Anqian; Wen, Shanshan; Tao, Hui; Hartmann, Heike

    2017-11-01

    Actual evapotranspiration (ETa) is an important component of the water cycle. The goals for limiting global warming to below 2.0 °C above pre-industrial levels and aspiring to 1.5 °C were negotiated in the Paris Agreement in 2015. In this study, outputs from the regional climate model COSMO-CLM (CCLM) for the Tarim River basin (TRB) were used to calculate ETa with an advection-aridity model, and changes in ETa under global warming scenarios of 1.5 °C (2020 to 2039) and 2.0 °C (2040 to 2059) were analyzed. Comparison of warming at the global and regional scale showed that regional 1.5 °C warming would occur later than the global average, while regional 2.0 °C warming would occur earlier than the global average. For global warming of 1.5 °C, the average ETa in the TRB is about 222.7 mm annually, which represents an increase of 6.9 mm relative to the reference period (1986-2005), with obvious increases projected for spring and summer. The greatest increases in ETa were projected for the northeast and southwest. The increment in the annual ETa across the TRB considering a warming of 1.5 °C was 4.3 mm less than that for a warming of 2.0 °C, and the reduction between the two levels of warming was most pronounced in the summer, when ETa was 3.4 mm smaller. The reduction in the increment of annual ETa for warming of 1.5 °C relative to warming of 2.0 °C was most pronounced in the southwest and northeast, where it was projected to be 8.2 mm and 9.3 mm smaller, respectively. It is suggested that the higher ETa under a warming of 2.0 °C mainly results from an increase in the sunshine duration (net radiation) in the southwestern basin and an increase in precipitation in the northeastern basin. Vapor is removed from the limited surface water supplies by ETa. The results of this study are therefore particularly relevant for water resource planning in the TRB.

  14. Water Availability for Shale Gas Development in Sichuan Basin, China.

    PubMed

    Yu, Mengjun; Weinthal, Erika; Patiño-Echeverri, Dalia; Deshusses, Marc A; Zou, Caineng; Ni, Yunyan; Vengosh, Avner

    2016-03-15

    Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin.

  15. Physiological acclimation strategies of riparian plants to environment change in the delta of the Tarim River, China

    NASA Astrophysics Data System (ADS)

    Ruan, Xiao; Wang, Qiang; Pan, Cun-De; Chen, Ya-Ning; Jiang, Hao

    2009-06-01

    The occurrence and development of riparian forests, which were mainly dominated by mesophytes species related closely with surface water. Since there was no water discharged to the lower reaches of Tarim River in the past three decade years, the riparian forests degrade severely. The groundwater table, the saline content of the groundwater, as well as the content of free proline, soluble sugars, plant endogenous hormones (abscisic acid (ABA), and cytokinins (CTK)) of the leaves and relative rates of sap flow of the Populus euphratica Oliv. (arbor species), Tamarix ramosissima Ldb. (bush species), and Apocynum venetum L. (herb species) were monitored and analyzed at the lower reaches of the Tarim River in the study area where five positions on a transect were fixed at 100 m intervals along a sampling direction from riverbank to the sand dunes before and after water release. The physiological responses and acclimation strategies of three species to variations in water and salinity stress were discussed. It was found that A. venetum population recovered to groundwater table ranging from -1.73 to -3.56 m, and when exposed to saline content of the groundwater ranging from 36.59 to 93.48 m mol/L; P. euphratica appeared to be more sensitive to the elevation of groundwater table than the A. venetum and T. ramosissima at groundwater table ranging from -5.08 to -5.80 m, and when exposed to saline content of the groundwater ranging from 42.17 to 49.55 m mol/L. T. ramosissima tended to be the best candidate species for reclamation in this hyper-arid area because it responded to groundwater table ranging from -1.73 to -7.05 m, and when exposed to saline content of the groundwater ranging from 36.59 to 93.48 m mol/L. These results explained the distribution patterns of desert vegetation in the lower reaches of the Tarim River. Understanding the relationships among ecological factors variables, physiological response and acclimation strategies of plant individuals could provide

  16. An agricultural drought index to incorporate the irrigation process and reservoir operations: A case study in the Tarim River Basin

    NASA Astrophysics Data System (ADS)

    Li, Zehua; Hao, Zhenchun; Shi, Xiaogang; Déry, Stephen J.; Li, Jieyou; Chen, Sichun; Li, Yongkun

    2016-08-01

    To help the decision making process and reduce climate change impacts, hydrologically-based drought indices have been used to determine drought severity in the Tarim River Basin (TRB) over the past decades. As the major components of the surface water balance, however, the irrigation process and reservoir operations have not been incorporated into drought indices in previous studies. Therefore, efforts are needed to develop a new agricultural drought index, which is based on the Variable Infiltration Capacity (VIC) model coupled with an irrigation scheme and a reservoir module. The new drought index was derived from the simulated soil moisture data from a retrospective VIC simulation from 1961 to 2007 over the irrigated area in the TRB. The physical processes in the coupled VIC model allow the new agricultural drought index to take into account a wide range of hydrologic processes including the irrigation process and reservoir operations. Notably, the irrigation process was found to dominate the surface water balance and drought evolution in the TRB. Furthermore, the drought conditions identified by the new agricultural drought index presented a good agreement with the historical drought events that occurred in 1993-94, 2004, and 2006-07, respectively. Moreover, the spatial distribution of coupled VIC model outputs using the new drought index provided detailed information about where and to what extent droughts occurred.

  17. The water footprint of hydraulic fracturing in Sichuan Basin, China.

    PubMed

    Zou, Caineng; Ni, Yunyan; Li, Jian; Kondash, Andrew; Coyte, Rachel; Lauer, Nancy; Cui, Huiying; Liao, Fengrong; Vengosh, Avner

    2018-07-15

    Shale gas is likely to play a major role in China's transition away from coal. In addition to technological and infrastructural constraints, the main challenges to China's sustainable shale gas development are sufficient shale gas production, water availability, and adequate wastewater management. Here we present, for the first time, actual data of shale gas production and its water footprint from the Weiyuan gas field, one of the major gas fields in Sichuan Basin. We show that shale gas production rates during the first 12 months (24 million m 3 per well) are similar to gas production rates in U.S. shale basins. The amount of water used for hydraulic fracturing (34,000 m 3 per well) and the volume of flowback and produced (FP) water in the first 12 months (19,800 m 3 per well) in Sichuan Basin are also similar to the current water footprints of hydraulic fracturing in U.S. basins. We present salinity data of the FP water (5000 to 40,000 mgCl/L) in Sichuan Basin and the treatment operations, which include sedimentation, dilution with fresh water, and recycling of the FP water for hydraulic fracturing. We utilize the water use data, empirical decline rates of shale gas and FP water productions in Sichuan Basin to generate two prediction models for water use for hydraulic fracturing and FP water production upon achieving China's goals to generate 100 billion m 3 of shale gas by 2030. The first model utilizes the current water use and FP production data, and the second assumes a yearly 5% intensification of the hydraulic fracturing process. The predicted water use for hydraulic fracturing in 2030 (50-65 million m 3 per year), FP water production (50-55 million m 3 per year), and fresh water dilution of FP water (25 million m 3 per year) constitute a water footprint that is much smaller than current water consumption and wastewater generation for coal mining, but higher than those of conventional gas production in China. Given estimates

  18. Little Ice Age Wetting of Interior Asian Deserts and the Rise of the Mongol Empire

    NASA Astrophysics Data System (ADS)

    Putnam, A. E.; Putnam, D.; Andreu-Hayles, L.; Cook, E. R.; Palmer, J. G.; Clark, E. H.; WANG, C.; Chen, F.; Denton, G.; Boyle, D. P.; Bassett, S.; Birkel, S. D.; Martin Fernandez, J.; Hajdas, I.; Southon, J. R.; Garner, C.; Broecker, W. S.

    2015-12-01

    Documenting hydrological responses to past climate changes may provide insights into how ongoing warming will alter the distribution of Earth's water resources. Here we report evidence suggesting that wetter-than-present conditions persisted during the past millennium in the deserts of the Tarim Basin, western China, located at the heart of Asia - Earth's largest and most populous continent. Our assessment is based on observations of landforms composed of waterlain sediments occurring throughout the Taklamakan and Lop Deserts of the Tarim Basin. These landforms are associated with subfossil phreatophyte trees, reeds, and mollusk shells. We applied 14C and dendrochronological dating techniques to construct a chronology for when the Tarim Basin was wetter than today. We also employed hydrological modeling to estimate plausible climatic conditions under which the observed wet environment could have been sustained. Our results indicate that the core of the Asian desert belt was dominantly wetter than today during the last major cold spell of the Holocene: The Little Ice Age. Wetter conditions in the Tarim Basin deserts accompanied northern cooling, snowline lowering, a strengthened boreal jet, and coeval weakening of south Asian monsoons. Southward migration of grasslands in response to wetter conditions may have aided the spread of the Mongol Empire across Asian drylands. On the other hand, net drying over the 20th century has led to drought that is unprecedented for at least the past ~830 years, and which could intensify with further warming.

  19. A new strain of Crimean-Congo hemorrhagic fever virus isolated from Xinjiang, China.

    PubMed

    Guo, Rong; Shen, Shu; Zhang, Yanfang; Shi, Junming; Su, Zhengyuan; Liu, Dan; Liu, Jinliang; Yang, Juan; Wang, Qiguo; Hu, Zhihong; Zhang, Yujiang; Deng, Fei

    2017-02-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus with a fatality rate of up to 50% in humans. CCHFV is widely distributed in countries around the world. Outbreaks of CCHFV infection in humans have occurred in prior years in Xinjiang Province, China. Epidemiological surveys have detected CCHFV RNA in ticks and animals; however, few isolates were identified. In this study, we identified and isolated a new CCHFV strain from Hyalomma asiaticum asiaticum ticks collected from north of Tarim Basin in Xinjiang, China. A preliminary investigation of infection and antigens expression of CCHFV was performed in newborn mice. The target tissues for CCHFV replication in newborn mice were identified. The analysis of the phylogenetic relationships with other Chinese strains suggested that diverse genotypes of CCHFV have circulated in Xinjiang for years. These findings provide important insights into our understanding of CCHFV infection and evolution as well as disease prevention and control for local residents.

  20. Land cover of oases and forest in XinJiang, China retrieved from ASTER data

    NASA Astrophysics Data System (ADS)

    Buhe, Aosier; Tsuchiya, K.; Kaneko, M.; Ohtaishi, N.; Halik, Mahmut

    ASTER aboard NASA’s satellite Terra is a high-resolution multispectral radiometer of 14 bands. The spatial resolution is 15 m in VNIR, 30 m in SWIR and 90 m in TIR spectra, respectively. With the data observed with ASTER, the land cover classification is produced for the Tarim Diversifolious Poplar Protection Area along the Tarim River in the northern Tarim Basin (Taklamakan Desert) in XinJiang, China. The classification of the vegetation (plants) in the arid and semiarid regions using remote-sensing technology is very difficult. Because the cause has low vegetable cover density and the influence of reflection from background soil is large. ASTER data are effective in studying the spectrum characteristics of land cover in arid and semiarid regions. The sensor has several bands in the shortwave infrared wavelength region that is designed for exploration of earth resources and study of the arid and semiarid region natural environment. However, we are not clear combination of which band is the most effective in research of the arid region like the Taklamakan desert in the data of 14 bands of ASTER. The optimum index factor (OIF), based on total variance within bands and correlation coefficient between bands, is a statistical approach to rank all possible three-band combinations. In the process of analyzing the data, the pixel sizes of all the data are converted (layer stacking and re-sampling) into consistent same size of 15 m. The three-band composite with the largest OIF value will have most information (as measured by variance) with the least amount of duplication (as measured by correlation). We used the OIF technique to rank all three-band combinations of ASTER original 14-band data over Tarim River Poplar Protection Area. Our study indicates that RGB color overlay using atmospheric corrected ASTER original bands 2, 3 (VNIR), and 6 (SWIR) has the highest OIF. When NDVI is considered as one ASTER band, highest OIF will have by carrying out bands 3 (VNIR), 4

  1. Validation of SWEEP for creep, saltation, and suspension in a desert-oasis ecotone

    USDA-ARS?s Scientific Manuscript database

    Wind erosion in the desert-oasis ecotone can accelerate desertification and thus impacts oasis ecological security. Little is known about the susceptibility of the desert-oasis ecotone to wind erosion in the Tarim Basin even though the ecotone is a major source of windblown dust in China. The object...

  2. Measurements of wave velocity and electrical conductivity of an amphibolite from southwestern margin of the Tarim Basin at pressures to 1.0 GPa and temperatures to 700 °C: comparison with field observations

    NASA Astrophysics Data System (ADS)

    Zhou, Wenge; Fan, Dawei; Liu, Yonggang; Xie, Hongsen

    2011-12-01

    In situ measurements of elastic wave velocities and electrical conductivities in the three structural directions (normal to foliation Z, perpendicular to lineation in foliation Y and parallel to lineation X) for an amphibolite collected from southwestern margin of the Tarim Basin, northwest China, were carried out in the laboratory. The elastic wave velocity was measured with the combined transmission-reflection method at pressures up to 1.0 GPa (at room temperature) and temperatures up to 700 °C (at 1.0 GPa) and the electrical conductivity was measured with the impedance spectroscopy from 250 to 700 °C at 1.0 GPa. The experimentally determined data included compressional (Vp) and shear wave velocities (Vs), velocity anisotropy (Av), intrinsic pressure and temperature derivatives of Vp and Vs, electrical conductivity (σ), electrical conductivity anisotropy (Aσ) and the parameters of the Arrhenius relationship. Elastic wave velocities increase in the structural directions Z, Y, X, with Vp of 6.63, 6.78 and 6.95 km s-1 and Vs of 3.75, 3.82 and 3.96 km s-1 for Z, Y and X, respectively, at pressure of 1.0 GPa. Elastic wave velocities increase linearly with pressure at room temperature and pressures between 0.25 and 1.0 GPa and decrease linearly with increasing temperature at 1.0 GPa. The pressure coefficients of the sample are in the range of 0.1883-0.2308 km s-1 GPa-1 for Vp and 0.1149-0.1678 km s-1 GPa-1 for Vs. The temperature coefficients are in the range of 2.09-2.35 × 10-4 km s-1 GPa-1 for Vp and 1.28-1.68 × 10-4 km s-1 GPa-1 for Vs. The electrical conductivity increases with increasing temperature, consistent with the Arrhenius relationship. Activation energies for the three structural directions of the amphibolite are in the range of 0.71-0.75 eV. The amphibolite shows velocity anisotropy (4.15-4.86 per cent for Vp and 5.29-5.84 per cent for Vs at 0.25-1.0 GPa) and electrical conductivity anisotropy (11.1-25.2 per cent). Based on the regional crust model

  3. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  4. GRACE captures basin mass dynamic changes in China based on a multi-basin inversion method

    NASA Astrophysics Data System (ADS)

    Yi, Shuang; Wang, Qiuyu; Sun, Wenke

    2016-04-01

    Complex landform, miscellaneous climate and enormous population have enriched China with geophysical phenomena ranging from water depletion in the underground to glaciers retreat on the high mountains and have aroused large scientific interests. This paper, utilizing gravity observations 2003-2014 from the Gravity Recovery and Climate Experiment (GRACE), intends to make a comprehensive estimation of mass status in 16 drainage basins in the whole region. We proposed a multi-basin inversion method, which is featured by resistance to the stripe noise and ability to alleviate signal attenuation due to truncation and smoothing of GRACE data. The results show both positive and negative trends: there is a tremendous mass accumulation spreading from the Tibetan plateau (12.2 ± 0.6 Gt/yr) to the Yangtze River (7.6 ± 1.3 Gt/yr), and further to the southeast coastal areas, which is suggested to involve an increase in the ground water storage, lake and reservoir water volume and likely materials flowed in by tectonic process; a mass loss is occurring in Huang-Huai-Hai-Liao River Basin (-10.5 ± 0.8 Gt/yr), as well as the Brahmaputra-Nujiang-Lancang River Basin (-15.0 ± 0.9 Gt/yr) and Tienshan Mountain (-4.1 ± 0.3 Gt/yr), which is a result of groundwater pumping and glacier melting. The groundwater depletion area is well consistent with the distribution of land subsidence in North China. In the end, we find intensified precipitation can alter the local water supply and GRACE is proficient to capture this dynamics, which could be instructive for the South-to-North Water Diversion - one China's giant hydrologic project.

  5. The Canada Basin compared to the southwest South China Sea: Two marginal ocean basins with hyper-extended continent-ocean transitions

    NASA Astrophysics Data System (ADS)

    Li, Lu; Stephenson, Randell; Clift, Peter D.

    2016-11-01

    Both the Canada Basin (a sub-basin within the Amerasia Basin) and southwest (SW) South China Sea preserve oceanic spreading centres and adjacent passive continental margins characterized by broad COT zones with hyper-extended continental crust. We have investigated strain accommodation in the regions immediately adjacent to the oceanic spreading centres in these two basins using 2-D backstripping subsidence reconstructions, coupled with forward modelling constrained by estimates of upper crustal extensional faulting. Modelling is better constrained in the SW South China Sea but our results for the Canada Basin are analogous. Depth-dependent extension is required to explain the great depth of both basins because only modest upper crustal faulting is observed. A weak lower crust in the presence of high heat flow and, accordingly, a lower crust that extends far more the upper crust are suggested for both basins. Extension in the COT may have continued even after seafloor spreading has ceased. The analogous results for the two basins considered are discussed in terms of (1) constraining the timing and distribution of crustal thinning along the respective continental margins, (2) defining the processes leading to hyper-extension of continental crust in the respective tectonic settings and (3) illuminating the processes that control hyper-extension in these basins and more generally.

  6. [Variation trends of natural vegetation net primary productivity in China under climate change scenario].

    PubMed

    Zhao, Dong-sheng; Wu, Shao-hong; Yin, Yun-he

    2011-04-01

    Based on the widely used Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) for climate change study, and according to the features of natural environment in China, the operation mechanism of the model was adjusted, and the parameters were modified. With the modified LPJ model and taking 1961-1990 as baseline period, the responses of natural vegetation net primary productivity (NPP) in China to climate change in 1991-2080 were simulated under the Special Report on Emissions Scenarios (SRES) B2 scenario. In 1961-1990, the total NPP of natural vegetation in China was about 3.06 Pg C a(-1); in 1961-2080, the total NPP showed a fluctuant decreasing trend, with an accelerated decreasing rate. Under the condition of slight precipitation change, the increase of mean air temperature would have definite adverse impact on the NPP. Spatially, the NPP decreased from southeast coast to northwest inland, and this pattern would have less variation under climate change. In eastern China with higher NPP, especially in Northeast China, east of North China, and Loess Plateau, the NPP would mainly have a decreasing trend; while in western China with lower NPP, especially in the Tibetan Plateau and Tarim Basin, the NPP would be increased. With the intensive climate change, such a variation trend of NPP would be more obvious.

  7. Temporal-spatial evolution of the hydrologic drought characteristics of the karst drainage basins in South China

    NASA Astrophysics Data System (ADS)

    He, Zhonghua; Liang, Hong; Yang, Chaohui; Huang, Fasu; Zeng, Xinbo

    2018-02-01

    Hydrologic drought, as a typical natural phenomenon in the context of global climate change, is the extension and development of meteorological and agricultural droughts, and it is an eventual and extreme drought. This study selects 55 hydrological control basins in Southern China as research areas. The study analyzes features, such as intensity and occurrence frequency of hydrologic droughts, and explores the spatial-temporal evolution patterns in the karst drainage basins in Southern China by virtue of Streamflow Drought Index. Results show that (1) the general hydrologic droughts from 1970s to 2010s exhibited ;an upward trend after having experienced a previous decline; in the karst drainage basins in Southern China; the trend was mainly represented by the gradual alleviation of hydrologic droughts from 1970s to 1990s and the gradual aggravation from 2000s to 2010s. (2) The spatial-temporal evolution pattern of occurrence frequency in the karst drainage basins in Southern China was consistent with the intensity of hydrologic droughts. The periods of 1970s and 2010s exhibited the highest occurrence frequency. (3) The karst drainage basins in Southern China experienced extremely complex variability of hydrologic droughts from 1970s to 2010s. Drought intensity and occurrence frequency significantly vary for different types of hydrology.

  8. The South China - Indochina collision: a perspective from sedimentary basins analysis

    NASA Astrophysics Data System (ADS)

    Rossignol, Camille; Bourquin, Sylvie; Hallot, Erwan; Poujol, Marc; Roger, Françoise; Dabard, Marie-Pierre; Martini, Rossana; Villeneuve, Michel; Cornée, Jean-Jacques; Peyrotty, Giovan

    2017-04-01

    Sedimentary basins, through the sedimentary successions and the nature of the deposits, reflect the geology of the area from which the sediments were derived and thus provide valuable record of hinterland tectonism. As the collision between the South China and the Indochina blocks (i.e., the Indosinian orogeny) is still the object of a number of controversies regarding, for instance, its timing and the polarity of the subduction, the sedimentary basins associated with this mountain belt are likely to provide clues to reconstruct its geodynamic evolution. However, both the Sam Nua Basin (located to the south of the inner zones of the Indosinian orogeny and the Song Ma ophiolites) and the Song Da Basin (located to the north of the inner zones), northern Vietnam, are still lacking important information regarding the depositional environments and the ages of the main formations that they contain. Using sedimentological and dating analyses (foraminifers biostratigraphy and U-Pb dating on detrital zircon), we provide a new stratigraphic framework for these basins and propose a geodynamic evolution of the present-day northern Vietnam. During the Early Triassic, the Sam Nua Basin was mainly supplied by volcaniclastic sediments originating from an active volcanic activity. Geochemical investigations, combined with sedimentological and structural analyses, support an arc-related setting for this magmatism. This magmatic arc resulted from the subduction of a south dipping oceanic slab that once separated the South China from the Indochina blocks. During the Middle to the Late Triassic, the Sam Nua Basin underwent erosion that lead to the formation of a major unconformity, termed the Indosinian unconformity. This unconformity is interpreted to result from the erosion of the Indosinian mountain belt, built after the continental collision between the South China and the Indochina blocks. Later, during the Late Triassic, the Sam Nua Basin experienced the deposition of very coarse

  9. Synthetic Analysis of the Effective Elastic Thickness of the Lithosphere in China

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Li, C.

    2017-12-01

    Effective elastic thickness (Te) represents the response of the lithosphere to a long-term (larger than 105 years) geological loading and reflects the deformation mechanism of plate and its thermodynamic state. Temperature and composition of the lithosphere, coupling between crust and lithospheric mantle, and lithospheric structures affect Te. Regional geology in China is quite complex, influenced by the subduction of the Pacific and Philippine Sea plates in the east and the collision of the Eurasia plate with the India-Australia plate in the southwest. Te can help understand the evolution and strength of the lithospheres in different areas and tectonic units. Here we apply the multitaper coherence method to estimate Te in China using the topography (ETOPO1) and Bouguer gravity anomalies (WGM2012) , at different window sizes (600km*600km, 800km*800km, 1000km*1000km) and moving steps. The lateral variation of Te in China coincides well with the geology. The old stable cratons or basins always correspond to larger Te, whereas the oceanic lithosphere or active orogen blocks tend to get smaller Te. We further correlate Te to curie-point depths (Zb) and heat flow to understand how temperature influences the strength of the lithosphere. Despite of a complex correlation between Te and Zb, good positive correlations are found in the North China Block, Tarim Basin, and Lower Yangtze, showing strong influence of temperature on lithospheric strength. Conversely, the Tibetan Plateau, Upper and Middle Yangtze, and East China Sea Basin even show negative correlation, suggesting that lithospheric structures and compositions play more important roles than temperature in these blocks. We also find that earthquakes tend to occur preferably in a certain range of Te. Deeper earthquakes are more likely to occur where the lithosphere is stronger with larger Te. Crust with a larger Te may also have a deeper ductile-brittle boundary, along which deep large earthquakes tend to cluster.

  10. Emission estimation and multimedia fate modeling of seven steroids at the river basin scale in China.

    PubMed

    Zhang, Qian Qian; Zhao, Jian-Liang; Ying, Guang-Guo; Liu, You-Sheng; Pan, Chang-Gui

    2014-07-15

    Steroids are excreted from humans and animals and discharged with wastewaters into the environment, resulting in potential adverse effects on organisms. Based on the excretion rates from different groups of humans and animals, the emissions of seven steroids (estrone (E1), 17β-estradiol (E2), estriol (E3), testosterone (T), androsterone (A), progesterone (P), and cortisol (C)) were comprehensively estimated in 58 river basins of whole China, and their multimedia fate was simulated by using a level III fugacity multimedia model. The results showed that higher emission densities for the steroids were found in the river basins of east China than in west China. This distribution was found to be generally similar to the distribution of Gross Domestic Product (GDP) across China. E3, A, and P displayed higher emission densities than the other steroids in most of the river basins. The total excretion of steroids by humans and animals in China was estimated to be 3069 t/yr. The excretion of steroids from animals was two times larger than that from humans. After various treatments, the total emission of steroids was reduced to 2486 t/yr, of which more than 80% was discharged into the water compartment. The predicted concentrations in water were within an order of magnitude of the measured concentrations available in the literature. Owing to wastewater irrigation, more steroid mass loadings in agricultural soil were found in the basins of Haihe River and Huaihe River in comparison with the other river basins. To the best of our knowledge, this is the first report on the emissions and multimedia fate of seven steroids in the river basins of China.

  11. Study of southern CHAONAN sag lower continental slope basin deposition character in Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Tang, Y.

    2009-12-01

    Northern South China Sea Margin locates in Eurasian plate,Indian-Australia plate,Pacific Plates.The South China Sea had underwent a complicated tectonic evolution in Cenozoic.During rifting,the continental shelf and slope forms a series of Cenozoic sedimentary basins,including Qiongdongnan basin,Pearl River Mouth basin,Taixinan basin.These basins fill in thick Cenozoic fluviolacustrine facies,transitional facies,marine facies,abyssal facies sediment,recording the evolution history of South China Sea Margin rifting and ocean basin extending.The studies of tectonics and deposition of depression in the Southern Chaonan Sag of lower continental slope in the Norther South China Sea were dealt with,based on the sequence stratigraphy and depositional facies interpretation of seismic profiles acquired by cruises of“China and Germany Joint Study on Marine Geosciences in the South China Sea”and“The formation,evolution and key issues of important resources in China marginal sea",and combining with ODP 1148 cole and LW33-1-1 well.The free-air gravity anomaly of the break up of the continental and ocean appears comparatively low negative anomaly traps which extended in EW,it is the reflection of passive margin gravitational effect.Bouguer gravity anomaly is comparatively low which is gradient zone extended NE-SW.Magnetic anomaly lies in Magnetic Quiet Zone at the Northern Continental Margin of the South China Sea.The Cenozoic sediments of lower continental slope in Southern Chaonan Sag can be divided into five stratum interface:SB5.5,SB10.5,SB16.5,SB23.8 and Hg,their ages are of Pliocene-Quaternary,late Miocene,middle Miocene,early Miocene,paleogene.The tectonic evolution of low continental slope depressions can be divided into rifting,rifting-depression transitional and depression stages,while their depositional environments change from river to shallow marine and abyssa1,which results in different topography in different stages.The topographic evolvement in the study

  12. Analysis of water use strategies of the desert riparian forest plant community in inland rivers of two arid regions in northwestern China

    NASA Astrophysics Data System (ADS)

    Chen, Y. N.; Li, W. H.; Zhou, H. H.; Chen, Y. P.; Hao, X. M.; Fu, A. H.; Ma, J. X.

    2014-10-01

    Studies of the water use of the desert riparian forest plant community in arid regions and analyses of the response and adaptive strategies of plants to environmental stress are of great significance to the formulation of effective ecological conservation and restoration strategies. Taking two inland rivers in the arid regions of northwestern China, downstream of the Tarim River and Heihe River Basin as the research target regions, this paper explored the stem water potential, sap flow, root hydraulic lift, and characteristics of plant water sources of the major constructive species in the desert riparian forest, Populus euphratica and Tamarix ramosissima. Specifically, this was accomplished by combining the monitoring of field physiological and ecological indicators, and the analysis of laboratory tests. Then, the water use differences of species in different ecological environments and their ecological significance were analyzed. This study indicated that: (1) in terms of water sources, Populus euphratica and Tamarix ramosissima mainly used deep subsoil water and underground water, but the plant root system in the downstream of the Tarim River was more diversified than that in the downstream of the Heihe River in water absorption, (2) in terms of water distribution, Populus euphratica root possessed hydraulic lift capacity, but Populus euphratica root in the downstream of the Tarim River presented stronger hydraulic lift capacity and more significant ecological effect of water redistribution, (3) in terms of water transport, the plants in the downstream of the Heihe River can adapt to the environment through the current limiting of branch xylem, while plants in the downstream of the Tarim River substantially increased the survival probability of the whole plant by sacrificing weak branches and improving the water acquisition capacity of dominant branches; and (4) in terms of water dissipation, the water use and consumption of Populus euphratica at night exhibited

  13. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia

    NASA Astrophysics Data System (ADS)

    Carrapa, Barbara; DeCelles, Peter G.; Wang, Xin; Clementz, Mark T.; Mancin, Nicoletta; Stoica, Marius; Kraatz, Brian; Meng, Jin; Abdulov, Sherzod; Chen, Fahu

    2015-08-01

    Plate tectonics and eustatic sea-level changes have fundamental effects on paleoenvironmental conditions and bio-ecological changes. The Paratethys Sea was a large marine seaway that connected the Mediterranean Neotethys Ocean with Central Asia during early Cenozoic time. Withdrawal of the Paratethys from central Asia impacted the distribution and composition of terrestrial faunas in the region and has been largely associated with changes in global sea level and climate such as cooling associated with the Eocene/Oligocene transition (EOT). Whereas the regression has been dated in the Tarim basin (China), the pattern and timing of regression in the Tajik basin, 400 km to the west, remain unresolved, precluding a test of current paleogeographic models. Here we date the Paratethys regression in Tajikistan at ca. 39 million years ago (Ma), which is several million years older than the EOT (at ca. 34 Ma) marking the greenhouse to icehouse climate transition of the Cenozoic. Our data also show a restricted, evaporitic marine environment since the middle-late Eocene and establishment of desert like environments after ca. 39 Ma. The overall stratigraphic record from the Tajik basin and southern Tien Shan points to deposition in a foreland basin setting by ca. 40 Ma in response to active tectonic growth of the Pamir-Tibet Mountains at the same time. Combined with the northwestward younging trend of the regression in the region, the Tajik basin record is consistent with northward growth of the Pamir and suggests significant tectonic control on Paratethys regression and paleoenvironmental changes in Central Asia.

  14. The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes.

    PubMed

    Shan, Tianlei; Rong, Wei; Xu, Huijun; Du, Lipu; Liu, Xin; Zhang, Zengyan

    2016-07-01

    The necrotrophic fungus Rhizoctonia cerealis is a major pathogen of sharp eyespot that is a devastating disease of wheat (Triticum aestivum). Little is known about roles of MYB genes in wheat defense response to R. cerealis. In this study, TaRIM1, a R. cerealis-induced wheat MYB gene, was identified by transcriptome analysis, then cloned from resistant wheat CI12633, and its function and preliminary mechanism were studied. Sequence analysis showed that TaRIM1 encodes a R2R3-MYB transcription factor with transcription-activation activity. The molecular-biological assays revealed that the TaRIM1 protein localizes to nuclear and can bind to five MYB-binding site cis-elements. Functional dissection results showed that following R. cerealis inoculation, TaRIM1 silencing impaired the resistance of wheat CI12633, whereas TaRIM1 overexpression significantly increased resistance of transgenic wheat compared with susceptible recipient. TaRIM1 positively regulated the expression of five defense genes (Defensin, PR10, PR17c, nsLTP1, and chitinase1) possibly through binding to MYB-binding sites in their promoters. These results suggest that the R2R3-MYB transcription factor TaRIM1 positively regulates resistance response to R. cerealis infection through modulating the expression of a range of defense genes, and that TaRIM1 is a candidate gene to improve sharp eyespot resistance in wheat.

  15. Adaptive Fusion of Information for Seeing into Ordos Basin, China: A China-Germany-US Joint Venture.

    NASA Astrophysics Data System (ADS)

    Yeh, T. C. J.; Yin, L.; Sauter, M.; Hu, R.; Ptak, T.; Hou, G. C.

    2014-12-01

    Adaptive fusion of information for seeing into geological basins is the theme of this joint venture. The objective of this venture is to initiate possible collaborations between scientists from China, Germany, and US to develop innovative technologies, which can be utilized to characterize geological and hydrological structures and processes as well as other natural resources in regional scale geological basins of hundreds of thousands of kilometers (i.e., the Ordos Basin, China). This adaptive fusion of information aims to assimilate active (manmade) and passive (natural) hydrologic and geophysical tomography surveys to enhance our ability of seeing into hydrogeological basins at the resolutions of our interests. The active hydrogeophysical tomography refers to recently developed hydraulic tomgoraphic surveys by Chinese and German scientists, as well as well-established geophysical tomography surveys (such as electrical resistivity tomography, cross-borehole radars, electrical magnetic surveys). These active hydrogeophysical tomgoraphic surveys have been proven to be useful high-resolution surveys for geological media of tens and hundreds of meters wide and deep. For basin-scale (i.e., tens and hundreds of kilometers) problems, their applicabilities are however rather limited. The passive hydrogeophysical tomography refers to unexplored technologies that exploit natural stimuli as energy sources for tomographic surveys, which include direct lightning strikes, groundwater level fluctuations due to earthquakes, river stage fluctuations, precipitation storms, barometric pressure variations, and long term climate changes. These natural stimuli are spatially varying, recurrent, and powerful, influencing geological media over great distances and depths (e.g., tens and hundreds of kilometers). Monitoring hydrological and geophysical responses of geological media to these stimuli at different locations is tantamount to collecting data of naturally occurring tomographic

  16. Research on and Application to BH-HTC High Density Cementing Slurry System on Tarim Region

    NASA Astrophysics Data System (ADS)

    Yuanhong, Song; Fei, Gao; Jianyong, He; Qixiang, Yang; Jiang, Yang; Xia, Liu

    2017-08-01

    A large section of salt bed is contented in Tarim region Piedmont which constructs complex geological conditions. For high-pressure gas well cementing difficulties from the region, high density cement slurry system has been researched through reasonable level of particle size distribution and second weighting up. The results of laboratory tests and field applications show that the high density cementing slurry system is available to Tarim region cementing because this system has a well performance in slurry stability, gas breakthrough control, fluidity, water loss, and strength.

  17. The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes

    PubMed Central

    Shan, Tianlei; Rong, Wei; Xu, Huijun; Du, Lipu; Liu, Xin; Zhang, Zengyan

    2016-01-01

    The necrotrophic fungus Rhizoctonia cerealis is a major pathogen of sharp eyespot that is a devastating disease of wheat (Triticum aestivum). Little is known about roles of MYB genes in wheat defense response to R. cerealis. In this study, TaRIM1, a R. cerealis-induced wheat MYB gene, was identified by transcriptome analysis, then cloned from resistant wheat CI12633, and its function and preliminary mechanism were studied. Sequence analysis showed that TaRIM1 encodes a R2R3-MYB transcription factor with transcription-activation activity. The molecular-biological assays revealed that the TaRIM1 protein localizes to nuclear and can bind to five MYB-binding site cis-elements. Functional dissection results showed that following R. cerealis inoculation, TaRIM1 silencing impaired the resistance of wheat CI12633, whereas TaRIM1 overexpression significantly increased resistance of transgenic wheat compared with susceptible recipient. TaRIM1 positively regulated the expression of five defense genes (Defensin, PR10, PR17c, nsLTP1, and chitinase1) possibly through binding to MYB-binding sites in their promoters. These results suggest that the R2R3-MYB transcription factor TaRIM1 positively regulates resistance response to R. cerealis infection through modulating the expression of a range of defense genes, and that TaRIM1 is a candidate gene to improve sharp eyespot resistance in wheat. PMID:27364458

  18. Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015.

    PubMed

    Yang, Peng; Xia, Jun; Zhan, Chesheng; Qiao, Yunfeng; Wang, Yueling

    2017-10-01

    With the threat of water shortages intensifying, the need to identify the terrestrial water storage (TWS) variation in the Tarim River Basin (TRB) becomes very significant for managing its water resource. Due to the lack of large-scale hydrological data, this study employed the Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System (GLDAS) to monitor TWS variation in the TRB during the period of 2002-2015, cooperating with two statistical techniques, Principal Component Analysis (PCA) - Empirical Orthogonal Function (EOF) and Multiple Linear Regression (MLR). Results indicated that (1) the Tropical rainfall measuring mission (TRMM) data can be applied well in the TRB; (2) the EOF result showed that both the time series of TRMM precipitation and GRACE-derived TWS in the TRB between 2002 and 2015 were dominated by the annual signals, which were followed by the semiannual signals; (3) the linear trend for the spatially averaged GRACE-derived TWS changes exhibited an decrease of 1.6±1.1mm/a, and the EOF result indicated a significant decrease of 4.1±1.5mm/a in the north of TRB; (4) while the precipitation variations was the major driver for the TWS changes, the GLDAS-derived TWS (i.e., soil moisture) decrease and ground water decrease played the major role in the TWS decrease in the north of TRB for the significant correlation (P<0.05). The changes of TWS might be linked to excessive exploitation of water resources, increased population, and shrinking water supplies, which would impact on the water level of the lakes or reservoir. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Exhumation history of the western Kyrgyz Tien Shan: Implications for intramontane basin formation

    NASA Astrophysics Data System (ADS)

    Bande, Alejandro; Sobel, Edward R.; Mikolaichuk, Alexander; Schmidt, Alexander; Stockli, Daniel F.

    2017-01-01

    The dextral Talas-Fergana Fault separates the western from the central Tien Shan. Recent work has shed light on the Cenozoic evolution of the eastern and central Tien Shan; much less attention has been paid to the western Tien Shan. In this contribution we present new thermochronological ages for the Fergana and Alai ranges that, combined with the available data set, constrain the Cenozoic exhumation history of the western Tien Shan. Following a tectonically quiet early Cenozoic period, we suggest an onset of exhumation at 25 Ma. This early onset was followed by a period of slower exhumation and in some areas minor reheating. A final, strong late Miocene rapid cooling event is well represented in the western Tien Shan as in other sectors of the range. The early onset of uplift of the western Tien Shan dissected the previously continuous westernmost Parathethyan Sea, progressively isolating basins (e.g., Fergana, Tarim, and Alai basins) in the central Asian hinterland. Moreover, the coeval timing of late Miocene uplift along the length of entire Tien Shan implies that neither the Pamir nor Tarim can be the sole driver for exhumation of the entire range.

  20. Joint inversion of high resolution S-wave velocity structure underneath North China Basin

    NASA Astrophysics Data System (ADS)

    Yang, C.; Li, G.; Niu, F.

    2017-12-01

    North China basin is one of earthquake prone areas in China. Many devastating earthquakes occurred in the last century and before, such as the 1937 M7.0 Heze Earthquake in Shandong province, the 1966 M7.2 Xingtai Earthquake and 1976 Tangshan Earthquake in Hebei province. Knowing the structure of the sediment cover is of great importance to predict strong ground motion caused by earthquakes. Unconsolidated sediments are loose materials, ranging from clay to sand to gravel. Earthquakes can liquefy unconsolidated sediments, thus knowing the distribution and thickness of the unconsolidated sediments has significant implication in seismic hazard analysis of the area. Quantitative estimates of the amount of extension of the North China basin is important to understand the thinning and evolution of the eastern North China craton and the underlying mechanism. In principle, the amount of lithospheric stretching can be estimated from sediment and crustal thickness. Therefore an accurate estimate of the sediment and crustal thickness of the area is also important in understanding regional tectonics. In this study, we jointly invert the Rayleigh wave phase-velocity dispersion and Z/H ratio data to construct a 3-D S-wave velocity model beneath North China area. We use 4-year ambient noise data recorded from 249 temporary stations, and 139 earthquake events to extract Rayleigh wave Z/H ratios. The Z/H ratios obtained from ambient noise data and earthquake data show a good agreement within the overlapped periods. The phase velocity dispersion curve was estimated from the same ambient noise data. The preliminary result shows a relatively low Z/H ratio and low velocity anomaly at the shallow part of sediment basins.

  1. Crustal structure of mainland China from deep seismic sounding data

    USGS Publications Warehouse

    Li, S.; Mooney, W.D.; Fan, J.

    2006-01-01

    Since 1958, about ninety seismic refraction/wide angle reflection profiles, with a cumulative length of more than sixty thousand kilometers, have been completed in mainland China. We summarize the results in the form of (1) a new contour map of crustal thickness, (2) fourteen representative crustal seismic velocity-depth columns for various tectonic units, and, (3) a Pn velocity map. We found a north-south-trending belt with a strong lateral gradient in crustal thickness in central China. This belt divides China into an eastern region, with a crustal thickness of 30-45??km, and a western region, with a thickness of 45-75??km. The crust in these two regions has experienced different evolutionary processes, and currently lies within distinct tectonic stress fields. Our compilation finds that there is a high-velocity (7.1-7.4??km/s) layer in the lower crust of the stable Tarim basin and Ordos plateau. However, in young orogenic belts, including parts of eastern China, the Tianshan and the Tibetan plateau, this layer is often absent. One exception is southern Tibet, where the presence of a high-velocity layer is related to the northward injection of the cold Indian plate. This high-velocity layer is absent in northern Tibet. In orogenic belts, there usually is a low-velocity layer (LVL) in the crust, but in stable regions this layer seldom exists. The Pn velocities in eastern China generally range from 7.9 to 8.1??km/s and tend to be isotropic. Pn velocities in western China are more variable, ranging from 7.7 to 8.2??km/s, and may display azimuthal anisotropy. ?? 2006.

  2. Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013

    NASA Astrophysics Data System (ADS)

    Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua

    2018-05-01

    In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for

  3. Cenozoic evolution of the Pamir plateau recorded in surrounding basins, implications on Asian climate and land-sea distribution

    NASA Astrophysics Data System (ADS)

    Dupont-Nivet, Guillaume; Yang, Wei; Blayney, Tamsin; Proust, Jean-Noel; Guo, Zhaojie; Grothe, Arjen; Mandic, Oleg; Fionori, Chiara; Bougeois, Laurie; Najman, Yanina

    2015-04-01

    The Cenozoic Pamir orogen formed in response to the India-Asia collision. Existing datasets shows that the range grew since ca. 25 Ma, however the early Cenozoic history remains particularly enigmatic. In that peculiar period, global climate changed from greenhouse to icehouse, the proto-Paratethys sea retreated out of Asia and continental aridification as well as monsoons established over Asia. These environmental changes are held responsible for major floral and faunal crises including the emergence of plant communities and the dispersion of key mammal groups from Asia onto other continents. However, the causal relationships between these events remains to be established because of the lack of accurate age constraints on their geological records. Here, we provide well-dated stratigraphic records using magneto- and bio-stratigraphy from the basins surrounding the Pamir. Southeast of the Pamir, along the Kunlun Shan into the southwestern Tarim Basin, Eocene marine deposits are continuously overlain by 41 to 15 Ma continental redbeds themselves overlain by conglomerates in a classic foreland sequence with upward increasing grain-size, accumulation rates and provenance proximity. However, North of the Pamir along the southwestern Tian Shan and West of the Pamir into the Afghan-Tadjik Basin, the entire Oligocene period appears to be missing from the record between the last marine and the first continental sediments dated to the Early Miocene. This supports a simple basin evolution model in response to initial Pamir indentation with Eocene foreland basin activation in the Southeast related to the Kunlun Shan northward thrusting, followed much later by early Miocene activation of the northern foreland basin related to the southwestern Tian Shan overthrusting. The coeval activation of a lithospheric right-lateral strike-slip system along the Pamir/Tarim boundary may have enabled to transfer deformation from the India-Asia collision zone to the Tian Shan and possibly the

  4. Cenozoic evolution of the Pamir plateau recorded in surrounding basins, implications on Asian climate, land-sea distribution and biotic crises

    NASA Astrophysics Data System (ADS)

    Dupont Nivet, G.; Yang, W.; Blayney, T.; Bougeois, L.; Manceau, C.; Najman, Y.; Proust, J. N.; Guo, Z.; Grothe, A.; Mandic, O.; Fioroni, C.

    2014-12-01

    The Cenozoic Pamir orogen formed in response to the India-Asia collision. Existing datasets shows that the range grew since ca. 25 Ma, however the early Cenozoic history remains unconstrained. In that period, global climate changed from greenhouse to icehouse, the proto-Paratethys sea retreated out of Asia and continental aridification as well as monsoons established over Asia. These environmental changes are held responsible for major floral and faunal crises. However, the causal relationships between these events remains to be established because of the lack of accurate age constraints on their geological records. Here, we provide well-dated stratigraphic records using magneto- and bio-stratigraphy from the basins surrounding the Pamir. Southeast of the Pamir, along the Kunlun Shan into the southwestern Tarim Basin, Eocene marine deposits are continuously overlain by 41 to 15 Ma continental redbeds themselves overlain by conglomerates in a classic foreland sequence with upward increasing grain-size, accumulation rates and provenance proximity. However, North of the Pamir along the southwestern Tian Shan and West of the Pamir into the Afghan-Tadjik Basin, the entire Oligocene period appears to be missing from the record between the last marine and the first continental sediments dated to the Early Miocene. This supports a simple model in response to initial Eocene Pamir indentation with foreland basin activation in the Southeast related to the Kunlun Shan northward thrusting, followed much later by early Miocene activation of the northern foreland basin related to the southwestern Tian Shan overthrusting. The coeval activation of a lithospheric right-lateral strike-slip system along the Pamir/Tarim boundary may have enabled to transfer deformation from the India-Asia collision to the Tian Shan and possibly the Talas Fergana fault. This simple model suggests the following two-stage paleoenvironmental evolution: (1) Late Eocene sea retreat linked to the onset of

  5. Sediment compaction in deepwater basin of the South China Sea: estimation from ODP 184 and IODP 349 drilling well data.

    NASA Astrophysics Data System (ADS)

    Tuoyu, W.; Xie, Y.

    2017-12-01

    Abnormal compaction in deepwater basins not only cause serious soft sediment deformation, but also significantly affect the safety of the drilling campaign. Therefore, study the compaction condition in the sediments would be an important task in the deepwater basin and associate with the environment variation. We analyze the drilling data from the ODP Leg 184 Site 1144, 1146, 1148 and the IODP Leg 349 Site U1431, U1432, U1433, U1435 to study the sediment compaction and controls in the northern South China Sea. We have found the sedimentation rate, sediment content, distribution area and buried depth control the sediment compaction in deepwater basin of the South China Sea. Among all the factors, the sediment content is the most important factor. The fitted normal compacted coefficients and the mudline porosity for interval 50 m shows disciplinary variation versus depth. The pore pressure predicted from different fitted results shows different overpressure situation. The normal compaction trend from Site 1144 reflects the porosity variation trend in stable deposition basins in the northern South China Sea. The predicted pore pressure shows overpressure at Site 1144, which is attributed to compaction disequilibrium. Nevertheless, the mixed lithology column may influence the predicted overpressure at Site 1148, which is responsible for the confusing result. Above all. we find that sediment compaction should be act as a proxy for pore pressure in the deepwater basin of the South China Sea. The study will help us to nature of sedimentation in the deepwater basin set up and can be used as analog for older sediments deposited in the similar kind of depositional environment in deepwater basin of the South China Sea.

  6. Multimedia fate modeling and risk assessment of a commonly used azole fungicide climbazole at the river basin scale in China.

    PubMed

    Zhang, Qian-Qian; Ying, Guang-Guo; Chen, Zhi-Feng; Liu, You-Sheng; Liu, Wang-Rong; Zhao, Jian-Liang

    2015-07-01

    Climbazole is an antidandruff active ingredient commonly used in personal care products, but little is known about its environmental fate. The aim of this study was to evaluate the fate of climbazole in water, sediment, soil and air compartments of the whole China by using a level III multimedia fugacity model. The usage of climbazole was calculated to be 345 t in the whole China according to the market research data, and after wastewater treatment a total emission of 245 t was discharged into the receiving environment with approximately 93% into the water compartment and 7% into the soil compartment. The developed fugacity model was successfully applied to estimate the contamination levels and mass inventories of climbazole in various environmental compartments of the river basins in China. The predicted environmental concentration ranges of climbazole were: 0.20-367 ng/L in water, and 0.009-25.2 ng/g dry weight in sediment. The highest concentration was mainly found in Haihe River basin and the lowest was in basins of Tibet and Xinjiang regions. The mass inventory of climbazole in the whole China was estimated to be 294 t, with 6.79% in water, 83.7% in sediment, 9.49% in soil, and 0.002% in air. Preliminary risk assessment showed high risks in sediment posed by climbazole in 2 out of 58 basins in China. The medium risks in water and sediment were mostly concentrated in north China. To the best of our knowledge, it is the first report on the emissions and multimedia fate of climbazole in the river basins of the whole China. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China

    NASA Astrophysics Data System (ADS)

    Fang, G. H.; Yang, J.; Chen, Y. N.; Zammit, C.

    2015-06-01

    Water resources are essential to the ecosystem and social economy in the desert and oasis of the arid Tarim River basin, northwestern China, and expected to be vulnerable to climate change. It has been demonstrated that regional climate models (RCMs) provide more reliable results for a regional impact study of climate change (e.g., on water resources) than general circulation models (GCMs). However, due to their considerable bias it is still necessary to apply bias correction before they are used for water resources research. In this paper, after a sensitivity analysis on input meteorological variables based on the Sobol' method, we compared five precipitation correction methods and three temperature correction methods in downscaling RCM simulations applied over the Kaidu River basin, one of the headwaters of the Tarim River basin. Precipitation correction methods applied include linear scaling (LS), local intensity scaling (LOCI), power transformation (PT), distribution mapping (DM) and quantile mapping (QM), while temperature correction methods are LS, variance scaling (VARI) and DM. The corrected precipitation and temperature were compared to the observed meteorological data, prior to being used as meteorological inputs of a distributed hydrologic model to study their impacts on streamflow. The results show (1) streamflows are sensitive to precipitation, temperature and solar radiation but not to relative humidity and wind speed; (2) raw RCM simulations are heavily biased from observed meteorological data, and its use for streamflow simulations results in large biases from observed streamflow, and all bias correction methods effectively improved these simulations; (3) for precipitation, PT and QM methods performed equally best in correcting the frequency-based indices (e.g., standard deviation, percentile values) while the LOCI method performed best in terms of the time-series-based indices (e.g., Nash-Sutcliffe coefficient, R2); (4) for temperature, all

  8. Tectonic evolution and hydrocarbon accumulation in the Yabulai Basin, western China

    NASA Astrophysics Data System (ADS)

    Zheng, Min; Wu, Xiaozhi

    2014-05-01

    The Yabulai petroliferous basin is located at the north of Hexi Corridor, western China, striking NEE and covering an area of 1.5×104 km2. It is bounded on the south by Beidashan Mountain to the Chaoshui Basin, on the east by Bayanwulashan Mountain to the Bayanhaote Basin, and on the northwest by Yabulai Mountain to the Yingen-Ejinaqi Basin. It is a Meso-cenozoic compressive depression residual basin. In view of regional geotectonics, the Yabulai basin sits in the middle-southern transition belt of Arershan massif in North China Craton. Driven by Indosinian movement at the late Triassic, two near EW normal faults were developed under the regional extensional stress along the northern fringe of Beidashan Mountain and the southern fringe of Yabulai Mountain front in the Arershan massif, forming the embryonic form of the Yabulai rift lake basin. Since Yanshan period, the Yabulai basin evolved in two major stages: Jurassic rift lake basin and Cretaceous rift lake basin. During early Yanshan period, EW striking Yabulai tensional rift was formed. Its major controlling fault was Beidashan normal fault, and the depocenter was at the south of this basin. During middle Yanshan period, collision orogenesis led to sharp uplift at the north of this basin where the middle-lower Jurassic formations were intensely eroded. During late Yanshan period, the Alashan massif and its northern area covered in an extensional tectonic environment, and EW striking normal faults were generated at the Yabulai Mountain front. Such faults moved violently and subsided quickly to form a new EW striking extensional rift basin with the depocenter at the south of Yabulai Mountain. During Himalayan period, the Alashan massif remained at a SN horizontal compressional tectonic environment; under the compressional and strike slip actions, a NW striking and south dipping thrusting nappe structure was formed in the south of the Yabulai basin, which broke the Beidashan normal fault to provide the echelon

  9. Assessment of Paleozoic shale gas resources in the Sichuan Basin of China, 2015

    USGS Publications Warehouse

    Potter, Christopher J.; Schenk, Christopher J.; Charpentier, Ronald R.; Gaswirth, Stephanie B.; Klett, Timothy R.; Leathers, Heidi M.; Brownfield, Michael E.; Mercier, Tracey J.; Tennyson, Marilyn E.; Pitman, Janet K.

    2015-10-14

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a mean of 23.9 trillion cubic feet of technically recoverable shale gas resources in Paleozoic formations in the Sichuan Basin of China.

  10. [Correlation Among Soil Organic Carbon, Soil Inorganic Carbon and the Environmental Factors in a Typical Oasis in the Southern Edge of the Tarim Basin].

    PubMed

    Gong, Lu; Zhu, Mei-ling; Liu, Zeng-yuan; Zhang, Xue-ni; Xie, Li-na

    2016-04-15

    We analyzed the differentiation among the environmental factors and soil organic/inorganic carbon contents of irrigated desert soil, brown desert soil, saline soil and aeolian sandy soil by classical statistics methods, and studied the correlation between soil carbon contents and the environmental factor by redundancy analysis (RDA) in a typical oasis of Yutian in the southern edge of the Tarim Basin. The results showed that the average contents of soil organic carbon and soil inorganic carbon were 2.51 g · kg⁻¹ and 25.63 g · kg⁻¹ respectively. The soil organic carbon content of the irrigated desert soil was significantly higher than those of brown desert soil, saline soil and aeolian sandy soil, while the inorganic carbon content of aeolian sandy soil was significantly higher than those of other soil types. The soil moisture and nutrient content were the highest in the irrigated desert soil and the lowest in the aeolian sandy sail. All soil types had high degree of salinization except the irrigated desert soil. The RDA results showed that the impacts of environmental factors on soil carbon contents ranked in order of importance were total nitrogen > available phosphorus > soil moisture > ground water depth > available potassium > pH > total salt. The soil carbon contents correlated extremely significantly with total nitrogen, available phosphorus, soil moisture and ground water depth (P < 0.01), and it correlated significantly with available potassium and pH (P < 0.05). There was no significant correlation between soil carbon contents and other environmental factors (P > 0.05).

  11. A comparison of the South China Sea and Canada Basin: two small marginal ocean basins with hyper-extended margins and central zones of sea-floor spreading.

    NASA Astrophysics Data System (ADS)

    Li, L.

    2015-12-01

    Both the South China Sea and Canada Basin preserve oceanic spreading centres and adjacent passive continental margins characterized by broad COT zones with hyper-extended continental crust. We have investigated the nature of strain accommodation in the regions immediately adjacent to the oceanic spreading centres in these two basins using 2-D backstripping subsidence reconstructions, coupled with forward modelling constrained by estimates of upper crustal extensional faulting. Modelling is better constrained in the South China Sea but our results for the Beaufort Sea are analogous. Depth-dependent extension is required to explain the great depth of both basins because only modest upper crustal faulting is observed. A weak lower crust in the presence of high heat flow is suggested for both basins. Extension in the COT may continue even after sea-floor spreading has ceased. The analogous results for the two basins considered are discussed in terms of (1) constraining the timing and distribution of crustal thinning along the respective continental margins, (2) defining the processes leading to hyper-extension of continental crust in the respective tectonic settings and (3) illuminating the processes that control hyper-extension in these basins and more generally.

  12. Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhang, Zongjiao; Shi, Peijun; Singh, Vijay P.; Gu, Xihui

    2018-01-01

    The Yellow River is the second largest river in China and is the important source for water supply in the northwestern and northern China. It is often regarded as the mother river of China. Owing to climatic change and intensifying human activities, such as increasing withdrawal of water for meeting growing agricultural irrigation needs since 1986, the flow of Yellow River has decreased, with serious impacts on the ecological environment. Using multiple hydrological indicators and Flow Duration Curve (DFC)-based ecodeficit and ecosurplus, this study investigates the impact of hydrological alterations, such as the impact of water reservoirs or dams, on downstream ecological instream flow. Results indicate that: (1) due to the impoundment and hydrological regulations of water reservoirs, occurrence rates and magnitudes of high flow regimes have decreased and the decrease is also found in the magnitudes of low flow events. These changes tend to be more evident from the upper to the lower Yellow River basin; (2) human activities tend to enhance the instream flow variability, particularly after the 1980s;(3) the ecological environment in different parts of the Yellow River basin is under different degrees of ecological risk. In general, lower to higher ecological risk can be detected due to hydrological alterations from the upper to the lower Yellow River basin. This shows that conservation of ecological environment and river health is facing a serious challenge in the lower Yellow River basin; (4) ecological instream flow indices, such as ecodeficit and ecosurplus, and IHA32 hydrological indicators are in strong relationships, suggesting that ecodeficit and ecosurplus can be regarded as appropriate ecological indicators for developing measures for mitigating the adverse impact of human activities on the conservation of ecological environment in the Yellow River basin.

  13. Paleozoic shale gas resources in the Sichuan Basin, China

    USGS Publications Warehouse

    Potter, Christopher J.

    2018-01-01

    The Sichuan Basin, China, is commonly considered to contain the world’s most abundant shale gas resources. Although its Paleozoic marine shales share many basic characteristics with successful United States gas shales, numerous geologic uncertainties exist, and Sichuan Basin shale gas production is nascent. Gas retention was likely compromised by the age of the shale reservoirs, multiple uplifts and orogenies, and migration pathways along unconformities. High thermal maturities raise questions about gas storage potential in lower Paleozoic shales. Given these uncertainties, a new look at Sichuan Basin shale gas resources is advantageous. As part of a systematic effort to quantitatively assess continuous oil and gas resources in priority basins worldwide, the US Geological Survey (USGS) completed an assessment of Paleozoic shale gas in the Sichuan Basin in 2015. Three organic-rich marine Paleozoic shale intervals meet the USGS geologic criteria for quantitative assessment of shale gas resources: the lower Cambrian Qiongzhusi Formation, the uppermost Ordovician Wufeng through lowermost Silurian Longmaxi Formations (currently producing shale gas), and the upper Permian Longtan and Dalong Formations. This study defined geologically based assessment units and calculated probabilistic distributions of technically recoverable shale gas resources using the USGS well productivity–based method. For six assessment units evaluated in 2015, the USGS estimated a mean value of 23.9 tcf (677 billion cubic meters) of undiscovered, technically recoverable shale gas. This result is considerably lower than volumes calculated in previous shale gas assessments of the Sichuan Basin, highlighting a need for caution in this geologically challenging setting.

  14. Monitoring potential geographical distribution of four wild bird species in China

    NASA Astrophysics Data System (ADS)

    Dai, S.; Feng, D.; Xu, B.

    2015-12-01

    The outbreak of highly pathogenic avian influenza (HPAI) of the H5N1 subtype in wild birds and poultry have caught worldwide attention. To explore the association between wild bird migration and avian influenza virus transmission, we monitored potential geographical distribution of four wild bird species that might carry the avian influenza viruses in China. They are Bar-headed geese (Anser indicus), Ruddy Shelduck (Tadorna ferruginea), Whooper Swan (Cygnus cygnus) and Black-headed Gull (Larus ridibundus). They served as major reservoir of the avian influenza viruses. We used bird watching records with the precise latitude/longitude coordinates from January 2002 to August 2014, and environmental variables with a pixel resolution of 5 km × 5 km from 2002 to 2014. The study utilized maximum entropy (MaxEnt) model based on ecological niche model approaches, and got the following results: 1) MaxEnt model have good discriminatory ability with the area under the curve (AUC) of the receiver operating curve (ROC) of 0.86-0.97; 2) The four wild bird species were estimated to concentrate in the North China Plain, the middle and lower region of the Yangtze River, Qinghai Lake, Tianshan Mountain and Tarim Basin, part of Tibet Plateau, and Hengduan Mountains; 3) Radiation and the minimum temperature were found to provide the most significant information. Our findings will help to understand the spread of avian influenza viruses by wild bird migration in China, which benefits for effective monitoring strategies and prevention measures.

  15. Integrated Analysis on Gravity and Magnetic Fields of the Hailar Basin, NE China: Implications for Basement Structure and Deep Tectonics

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Wang, Liangshu; Dong, Ping; Wu, YongJing; Li, Changbo; Hu, Bo; Wang, Chong

    2012-11-01

    The Hailar Basin is one of the typical basins among the NE China Basin Groups, which is situated in the east of East Asia Orogene between the Siberia Plate and the North China Plate. Based on the detailed analysis of magnetic, gravity, petrophysical, geothermal and seismological data, we separate the Gravity and Magnetic Anomalies (GMA) into four orders using Wavelet Multi-scale Decomposition (WMD). The apparent depths of causative sources were then assessed by Power Spectrum Analysis (PSA) of each order. Low-order wavelet detail anomalies were used to study the basin's basement structure such as major faults, the basement lithology, uplifts and depressions. High-order ones were used for the inversion of Moho and Curie discontinuities using the Parker method. The results show that the Moho uplifting area of the Hailar Basin is located at the NE part of the basin, the Curie uplifting area is at the NW part, and neither of them is consistent with the basin's sedimentary center. This indicates that the Hailar Basin may differ in basin building pattern from other middle and eastern basins of the basin groups, and the Hailar Basin might be of a passive type. When the Pacific Plate was subducting to NE China, the frontier of the plate lying on the mantle transition zone didn't pass through the Great Khingan Mountains region, so there is not an obvious magma upwelling or lithospheric extension in the Hailar Basin area. Finally, based on the seismological data and results of WMD, a probable 2D crust model is derived from an across-basin profile using the 2D forward modeling of the Bouguer gravity anomaly. The results agree with those from seismic inversion, suggesting WMD is suitable for identifying major crustal density interfaces.

  16. On the evolution of the geothermal regime of the North China Basin

    NASA Astrophysics Data System (ADS)

    Wang, Ji-yang; Chen, Mo-xiang; Wang, Ji-an; Deng, Xiao

    1985-12-01

    Recent heat flow and regional geothermal studies indicate that the North China Basin is characterized by relatively high heat flow compared with most stable areas in other parts of the world, but lower heat flow than most active tectonic areas. Measured heat flow values range from 61 to 74 mW m -2. The temperature at a depth of 2000 m is generally in the range 75 to 85°C, but sometimes is 90°C or higher. The geothermal gradient in Cenozoic sediments is in the range 30 to 40°C/km for most of the area. The calculated temperature at the Moho is 560 and 640°C for surface heat flow values of 63 and 71 mW m -2, respectively. These thermal data are consistent with other geophysical observations for the North China Basin. Relatively high heat flow in this area is related to Late Cretaceous-Paleogene rifting as described in this paper.

  17. Investigating the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China

    NASA Astrophysics Data System (ADS)

    Wu, S.; Wei, Y.; Zhao, Y.; Zheng, H.

    2017-12-01

    Human's innovative abilities do not only enable rapid expansion of civilization, but also lead to enormous modifications on the natural environment. Technology, while a key factor embedded in socioeconomic developments, its impacts have been rarely appropriately considered in river basin management. This research aims to examine the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China, and how its characteristics interacted with the river basin environment. It adopts a content analysis approach to collect and summarize quantitative technological information in the Heihe River Basin across a time span of more than 2000 years from the Han Dynasty (206 BC) to 2015. Two Chinese academic research databases: Wan Fang Data and China National Knowledge Infrastructure (CNKI) were chosen as data sources. The results show that irrigated agricultural technologies in Heihe River Basin have shifted from focusing on developing new farming tools and cultivation methods to adapting modernized, water-saving irrigation methods and water diversion infrastructures. In additions, the center of irrigated agricultural technology in the Heihe river basin has moved from downstream to middle stream since the Ming Dynasty (1368AD) as a result of degraded natural environment. The developing trend of technology in the Heihe River Basin thus coincides with the change of societal focus from agricultural production efficiency to the human-water balance and environmental remediation. This research demonstrates that irrigated agricultural technologies had a twisted evolutionary history in the Heihe River Basin, influenced by a diverse range of environmental and socioeconomic factors. It provides insights into the fact that technology exhibits a co-evolutionary characteristic with the social development history in the region, pointing towards the urgent need to maintain the balance between human and environment.

  18. Analysis of the spatial-temporal variation characteristics of vegetative drought and its relationship with meteorological factors in China from 1982 to 2010.

    PubMed

    Shen, Qiu; Liang, Liang; Luo, Xiang; Li, Yanjun; Zhang, Lianpeng

    2017-08-25

    Drought is a complex natural phenomenon that can cause reduced water supplies and can consequently have substantial effects on agriculture and socioeconomic activities. The objective of this study was to gain a better understanding of the spatial-temporal variation characteristics of vegetative drought and its relationship with meteorological factors in China. The Vegetation Condition Index (VCI) dataset calculated from NOAA/AVHRR images from 1982 to 2010 was used to analyse the spatial-temporal variation characteristics of vegetative drought in China. This study also examined the trends in meteorological factors and their influences on drought using monitoring data collected from 686 national ground meteorological stations. The results showed that the VCI appeared to slowly rise in China from 1982 to 2010. From 1982 to 1999, the VCI rose slowly. Then, around 2000, the VCI exhibited a severe fluctuation before it entered into a relatively stable stage. Drought frequencies in China were higher, showing a spatial distribution feature of "higher in the north and lower in the south". Based on the different levels of drought, the frequencies of mild and moderate drought in four geographical areas were higher, and the frequency of severe drought was higher only in ecologically vulnerable areas, such as the Tarim Basin and the Qaidam Basin. Drought was mainly influenced by meteorological factors, which differed regionally. In the northern region, the main influential factor was sunshine duration, while the other factors showed minimal effects. In the southern region and Tibetan Plateau, the main influential factors were sunshine duration and temperature. In the northwestern region, the main influential factors were wind velocity and station atmospheric pressure.

  19. Assessment of undiscovered continuous gas resources of the Ordos Basin Province, China, 2015

    USGS Publications Warehouse

    Charpentier, Ronald R.; Klett, Timothy R.; Schenk, Christopher J.; Brownfield, Michael E.; Gaswirth, Stephanie B.; Le, Phuong A.; Leathers-Miller, Heidi M.; Marra, Kristen R.; Mercier, Tracey J.

    2016-01-11

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean resources of 28 trillion cubic feet of tight gas and 5.6 trillion cubic feet of coalbed gas in upper Paleozoic rocks in the Ordos Basin Province, China.

  20. Origin of back-arc basins and effects of western Pacific subduction systems on eastern China geology

    NASA Astrophysics Data System (ADS)

    Niu, Y.

    2013-12-01

    Assuming that subduction initiation is a consequence of lateral compositional buoyancy contrast within the lithosphere [1], and recognizing that subduction initiation within normal oceanic lithosphere is unlikely [1], we can assert that passive continental margins that are locations of the largest compositional buoyancy contrast within the lithosphere are the loci of future subduction zones [1]. We hypothesize that western Pacific back-arc basins were developed as and evolved from rifting at passive continental margins in response to initiation and continuation of subduction zones. This hypothesis can be tested by demonstrating that intra-oceanic island arcs must have basement of continental origin. The geology of the Islands of Japan supports this. The highly depleted forearc peridotites (sub-continental lithosphere material) from Tonga and Mariana offer independent lines of evidence for the hypothesis [1]. The origin and evolution of the Okinawa Trough (back-arc basin) and Ryukyu Arc/Trench systems represents the modern example of subduction initiation and back-arc basin formation along a (Chinese) continental margin. The observation why back-arc basins exit behind some subduction zones (e.g., western Pacific) but not others (e.g., in South America) depends on how the overlying plate responds to subduction, slab-rollback and trench retreat. In the western Pacific, trench retreat towards east results in the development of extension in the upper Eurasian plate and formation of back-arc basins. In the case of South America, where no back-arc basins form because trench retreat related extension is focused at the 'weakest' South Mid-Atlantic Ridge. It is thus conceptually correct that the South Atlantic is equivalent to a huge 'back-arc basin' although its origin may be different. Given the negative Clayperon slope of the Perovskite-ringwoodite phase transition at the 660 km mantle seismic discontinuity (660-D), slab penetration across the 660-D is difficult and

  1. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China.

    PubMed

    Wang, Wei; Potts, Richard; Baoyin, Yuan; Huang, Weiwen; Cheng, Hai; Edwards, R Lawrence; Ditchfield, Peter

    2007-04-01

    A Plio-Pleistocene to Holocene faunal sequence has been recovered from four carefully excavated caves in the Bubing Basin, adjacent to the larger Bose Basin of South China. The caves vary in elevation; we suggest that the higher caves were formed and filled with sediments prior to the lower caves. The highest deposits, which are from Mohui Cave, contain hominoid teeth and other fossilized remains of mammalian taxa most similar to late Pliocene and early Pleistocene faunas. Wuyun Cave ( approximately 50m lower in elevation than Mohui) contains a late middle Pleistocene fauna, which is supported by U-series age constraints from 350 to 200ka. Lower Pubu Cave ( approximately 23m below Wuyun) is assigned to the late Pleistocene, while the Cunkong Cave (the lowest, approximately 2m lower elevation than Lower Pubu) preserves a Holocene fauna. The four faunal assemblages indicate species-level changes in Ailuropoda, Stegodon, and Sus, the appearance of Elephas, the local disappearance of Stegodon, and the migration of Equus hemionus to South China. These initial results of our work call into question the continued value of the Stegodon/Ailuropoda Fauna, a category long used to characterize the Pleistocene faunas of South China. Excavation of karstic caves of varying elevation within the basins of South China holds promise for defining local sequences of mammalian fossils that can be used to investigate faunal variations related to climate change, biogeographic events, and evolutionary change over the past two million years. Stable isotopic analysis of a small sample of mammalian teeth from Bubing Basin caves is consistent with 100% C(3) vegetation in the Bubing/Bose region, with certain delta(13)C values consistent with a canopied woodland or forest. A preliminary assessment of the hominoid teeth indicates the presence of diverse molar and premolar morphologies including dental remains of Gigantopithecus blacki and a sample with similarities to the teeth reported from

  2. Petrogenesis of nephelinites from the Tarim Large Igneous Province, NW China: Implications for mantle source characteristics and plume-lithosphere interaction

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiguo; Zhang, Zhaochong; Hou, Tong; Santosh, M.; Zhang, Dongyang; Ke, Shan

    2015-04-01

    The nephelinite exposed in the Wajilitage area in the northwestern margin of the Tarim large igneous province (TLIP), Xinjiang, NW China display porphyritic textures with clinopyroxene, nepheline and olivine as the major phenocryst phases, together with minor apatite, sodalite and alkali feldspar. The groundmass typically has cryptocrystalline texture and is composed of crystallites of clinopyroxene, nepheline, Fe-Ti oxides, sodalite, apatite, rutile, biotite, amphibole and alkali feldspar. We report rutile SIMS U-Pb age of 268 ± 30 Ma suggesting that the nephelinite may represent the last phase of the TLIP magmatism, which is also confirmed by the field relation. The nephelinite shows depleted Sr-Nd isotopic compositions with age-corrected 87Sr/86Sr and εNd(t) values of 0.70348-0.70371 and + 3.28 to + 3.88 respectively indicating asthenospheric mantle source. Based on the reconstructed primary melt composition, the depth of magma generation is estimated as 115-140 km and the temperatures of mantle melting as 1540-1575 °C. The hotter than normal asthenospheric mantle temperature suggests the involvement of mantle thermal plume. The Mg isotope values display a limited range of δ26Mg from - 0.35 to - 0.55‰, which are lower than the mantle values (- 0.25‰). The Mg isotopic compositions, combined with the Sr-Nd isotopes and major and trace element data suggest that the Wajilitage nephelinite was most likely generated by low-degree partial melting of the hybridized carbonated peridotite/eclogite source, which we correlate with metasomatism by subducted carbonates within the early-middle Paleozoic convergent regime. A plume-lithosphere model is proposed with slight thinning of the lithosphere and variable depth and degree of melting of the carbonated mantle during the plume-lithosphere interaction. This model also accounts for the variation in lithology of the TLIP.

  3. Satellite Imagery and Topographic Data in Verification

    DTIC Science & Technology

    1993-09-28

    terminus of the Himalayan mountains. Within and between these major ranges lie basins of younger age - the Fergana Valley, Tadjik Depression, Tarim... Basin and Issik Kul Basin . The main physiographic regions can be seen in Figures 1 and 2. The Asian platform in this region is represented by the deserts...tighter, north facing arc of the Pamir separates the Tadjik Depression from the Tarim Basin . A narrow inter-montaine valley, the Za-alai, divides the

  4. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China

    NASA Astrophysics Data System (ADS)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye

    2018-04-01

    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  5. Sediment-hosted micro-disseminated gold mineralization constrained by basin paleo-topographic highs in the Youjiang basin, South China

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Ye, Jie; Ying, Hanlong; Liu, Jiajun; Zheng, Minghua; Gu, Xuexiang

    2002-06-01

    The Youjiang basin is a Devonian-Triassic rift basin on the southern margin of the Yangtze Craton in South China. Strong syndepositional faulting defined the basin-and-range style paleo-topography that further developed into isolated carbonate platforms surrounded by siliciclastic filled depressions. Finally, thick Triassic siliciclastic deposits covered the platforms completely. In the Youjiang basin, numerous sediment-hosted, micro-disseminated gold (SMG) deposits occur mainly in Permian-Triassic chert and siliciclastic rocks. SMG ores are often auriferous sedimentary rocks with relatively low sulfide contents and moderate to weak alteration. Similar to Carlin-type gold ores in North America, SMG ores in the Youjiang basin are characterized by low-temperature mineral assemblages of pyrite, arsenopyrite, realgar, stibnite, cinnabar, marcasite, chalcedony and carbonate. Most of the SMG deposits are remarkably distributed around the carbonate platforms. Accordingly, there are platform-proximal and platform-distal SMG deposits. Platform-proximal SMG deposits often occur in the facies transition zone between the underlying platform carbonate rocks and the overlying siliciclastic rocks with an unconformity (often a paleo-karst surface) in between. In the ores and hostrocks there are abundant synsedimentary-syndiagenetic fabrics such as lamination, convolute bedding, slump texture, soft-sediment deformation etc. indicating submarine hydrothermal deposition and syndepositional faulting. Numerous fluid-escape and liquefaction fabrics imply strong fluid migration during sediment basin evolution. Such large-scale geological and fabric evidence implies that SMG ores were formed during basin evolution, probably in connection with basinal fluids. It is well known that basinal fluids (especially sediment-sourced fluids) will migrate generally (1) upwards, (2) towards basin margins or basin topographic highs, (3) and from thicker towards thinner deposits during basin evolution

  6. An integrated multiscale river basin observing system in the Heihe River Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.

    2015-12-01

    Using the watershed as the unit to establish an integrated watershed observing system has been an important trend in integrated eco-hydrologic studies in the past ten years. Thus far, a relatively comprehensive watershed observing system has been established in the Heihe River Basin, northwest China. In addition, two comprehensive remote sensing hydrology experiments have been conducted sequentially in the Heihe River Basin, including the Watershed Allied Telemetry Experimental Research (WATER) (2007-2010) and the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (2012-2015). Among these two experiments, an important result of WATER has been the generation of some multi-scale, high-quality comprehensive datasets, which have greatly supported the development, improvement and validation of a series of ecological, hydrological and quantitative remote-sensing models. The goal of a breakthrough for solving the "data bottleneck" problem has been achieved. HiWATER was initiated in 2012. This project has established a world-class hydrological and meteorological observation network, a flux measurement matrix and an eco-hydrological wireless sensor network. A set of super high-resolution airborne remote-sensing data has also been obtained. In addition, there has been important progress with regard to the scaling research. Furthermore, the automatic acquisition, transmission, quality control and remote control of the observational data has been realized through the use of wireless sensor network technology. The observation and information systems have been highly integrated, which will provide a solid foundation for establishing a research platform that integrates observation, data management, model simulation, scenario analysis and decision-making support to foster 21st-century watershed science in China.

  7. Air Stagnations for China (1985-2014): Climatological Mean Features and Trends

    NASA Astrophysics Data System (ADS)

    Huang, Qianqian; Cai, Xuhui; Song, Yu; Zhu, Tong

    2017-04-01

    Air stagnation is an important meteorological measurement for unfavourable air pollution conditions, but little is known about it in China. We conducted a comprehensive investigation of air stagnation in China, based on sounding and surface observations of 81 stations, from January 1985 to December 2014. The stagnation criteria were revised to be topographically dependent for the great physical diversity in this country. It is found that the annual mean air stagnation occurrences are closely related to general topography and climate features. Two basins in the northwest and southwest of China—Tarim and Sichuan Basins—exhibit the most frequent stagnation occurrence (50% days per year), whereas two plateaus (Tibet-Qinghai and Inner Mongolia Plateau) and the east coastal areas experience the least (20% days per year). Over the whole country, air stagnations achieve maxima in summer and minima in winter, except for Urumqi, a major city in the northwest of China, where stagnations keep a rather constant value yearly around with a minimum in spring. There is a nationwide positive trend in stagnation occurrence during 1985-2014, with the strongest increasing centres over Shandong Peninsula in eastern China and the south of Shaanxi in central China. Dependence degrees of air stagnations on three components (upper- and lower-air winds, precipitation-free days) are examined. It shows that the spatial distribution and trend of air stagnations are mainly driven by the behaviours of upper-air wind speeds. Air stagnation climatology presents a specific view to the natural background of atmosphere features being responsible to air pollution levels. The results presented in this paper may have significant implication to air pollution research, and may be used in atmospheric environment management or air pollution control.

  8. Badlands in humid regions - redbed desertification in Nanxiong Basin, China

    NASA Astrophysics Data System (ADS)

    Yan, Luobin; Hua, Peng; Simonson, Scott

    2016-04-01

    The redbed badlands in Nanxiong City, China, well represent badlands in humid regions. The erosion rate in humid regions is much higher than that in arid regions and can reach 1 cm per month during the summer. The purpose of this study is to introduce the research of badlands in China, which have not been extensively studied so far, and to compare the badlands between arid and humid regions. Furthermore, the aim is to study the impact of mineralogical and chemical composition on the disintegration of soft rock in Nanxiong Basin badlands. For the purpose of this study field observations, sampling, and digging profiles were done. The mineralogical and chemical compositions of the Nanxiong Basin badland lithologies were determined by XRD, XRF and thin sections. Weathering resistance, process of weathering, and disintegration features were studied by weathering experiments under natural conditions. Weathering profiles can be easily divided into four layers: regolith, a strongly weathered layer, a poorly weathered layer, and an unweathered sediment. The depth of the weathering profile is influenced by the weathering resistance of the soft rock. Weathering resistance affects the erosion rate and evolution of landforms in badlands by influencing the rate from unweathered rock to regolith. Analyzed sediments have high content of illite and illite-smectite interstratifications. This composition of clay minerals together with poor sediment consolidation jointly leads to weathering prone sediment. The weathering and disintegration of soft rock in Nanxiong Basin badlands has a close relationship with rainfall. Sheet erosion, a kind of solid-liquid phase flow, formed in the regolith of the badland during rainfall events and can be the most instrumental to erosion. The mineral composition and liquidity plasticity index were also analyzed, and the results show that the regolith are low liquid limit silts with liquid limit of 21%-25%, plastic limit of 13%-18% and plasticity index

  9. Optimization of wetland restoration siting and zoning in flood retention areas of river basins in China: A case study in Mengwa, Huaihe River Basin

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Song, Yuqin

    2014-11-01

    Wetland restoration in floodplains is an ecological solution that can address basin-wide flooding issues and minimize flooding and damages to riverine and downstream areas. High population densities, large economic outputs, and heavy reliance on water resources make flood retention and management pressing issues in China. To balance flood control and sustainable development economically, socially, and politically, flood retention areas have been established to increase watershed flood storage capacities and enhance the public welfare for the populace living in the areas. However, conflicts between flood storage functions and human habitation appear irreconcilable. We developed a site-specific methodology for identifying potential sites and functional zones for wetland restoration in a flood retention area in middle and eastern China, optimizing the spatial distribution and functional zones to maximize flood control and human and regional development. This methodology was applied to Mengwa, one of 21 flood retention areas in China's Huaihe River Basin, using nine scenarios that reflected different flood, climatic, and hydraulic conditions. The results demonstrated improved flood retention and ecological functions, as well as increased economic benefits.

  10. Lower crustal earthquakes in the North China Basin and implications for crustal rheology

    NASA Astrophysics Data System (ADS)

    Yuen, D. A.; Dong, Y.; Ni, S.; LI, Z.

    2017-12-01

    The North China Basin is a Mesozoic-Cenozoic continental rift basin on the eastern North China Craton. It is the central region of craton destruction, also a very seismically active area suffering severely from devastating earthquakes, such as the 1966 Xingtai M7.2 earthquake, the 1967 Hejian M6.3 earthquake, and the 1976 Tangshan M7.8 earthquake. We found remarkable discrepancies of depth distribution among the three earthquakes, for instance, the Xingtai and Tangshan earthquakes are both upper-crustal earthquakes occurring between 9 and 15 km on depth, but the depth of the Hejian earthquake was reported of about 30 72 km, ranging from lowermost crust to upper mantle. In order to investigate the focal depth of earthquakes near Hejian area, we developed a method to resolve focal depth for local earthquakes occurring beneath sedimentary regions by P and S converted waves. With this method, we obtained well-resolved depths of 44 local events with magnitudes between M1.0 and M3.0 during 2008 to 2016 at the Hejian seismic zone, with a mean depth uncertainty of about 2 km. The depth distribution shows abundant earthquakes at depth of 20 km, with some events in the lower crust, but absence of seismicity deeper than 25 km. In particular, we aimed at deducing some constraints on the local crustal rheology from depth-frequency distribution. Therefore, we performed a comparison between the depth-frequency distribution and the crustal strength envelop, and found a good fit between the depth profile in the Hejian seismic zone and the yield strength envelop in the Baikal Rift Systems. As a conclusion, we infer that the seismogenic thickness is 25 km and the main deformation mechanism is brittle fracture in the North China Basin . And we made two hypotheses: (1) the rheological layering of dominant rheology in the North China Basin is similar to that of the Baikal Rift Systems, which can be explained with a quartz rheology at 0 10 km depth and a diabase rheology at 10 35 km

  11. Basin mass dynamic changes in China from GRACE based on a multibasin inversion method

    NASA Astrophysics Data System (ADS)

    Yi, Shuang; Wang, Qiuyu; Sun, Wenke

    2016-05-01

    Complex landforms, miscellaneous climates, and enormous populations have influenced various geophysical phenomena in China, which range from water depletion in the underground to retreating glaciers on high mountains and have attracted abundant scientific interest. This paper, which utilizes gravity observations during 2003-2014 from the Gravity Recovery and Climate Experiment (GRACE), intends to comprehensively estimate the mass status in 16 drainage basins in the region. We propose a multibasin inversion method that features resistance to stripe noise and an ability to alleviate signal attenuation from the truncation and smoothing of GRACE data. The results show both positive and negative trends. Tremendous mass accumulation has occurred from the Tibetan Plateau (12.1 ± 0.6 Gt/yr) to the Yangtze River (7.7 ± 1.3 Gt/yr) and southeastern coastal areas, which is suggested to involve an increase in the groundwater storage, lake and reservoir water volume, and the flow of materials from tectonic processes. Additionally, mass loss has occurred in the Huang-Huai-Hai-Liao River Basin (-10.2 ± 0.9 Gt/yr), the Brahmaputra-Nujiang-Lancang River Basin (-15.0 ± 1.1 Gt/yr), and Tienshan Mountain (-4.1 ± 0.3 Gt/yr), a result of groundwater pumping and glacier melting. Areas with groundwater depletion are consistent with the distribution of cities with land subsidence in North China. We find that intensified precipitation can alter the local water supply and that GRACE can adequately capture these dynamics, which could be instructive for China's South-to-North Water Diversion hydrologic project.

  12. Paleohydrology of China Lake basin and the context of early human occupation in the northwestern Mojave Desert, USA

    NASA Astrophysics Data System (ADS)

    Rosenthal, Jeffrey S.; Meyer, Jack; Palacios-Fest, Manuel R.; Young, D. Craig; Ugan, Andrew; Byrd, Brian F.; Gobalet, Ken; Giacomo, Jason

    2017-07-01

    Considerable prior research has focused on the interconnected pluvial basins of Owens Lake and Searles Lake, resulting in a long record of paleohydrological change in the lower Owens River system. However, the published record is poorly resolved or contradictory for the period encompassing the terminal Pleistocene (22,000 to 11,600 cal BP) and early Holocene (11,600-8200 cal BP). This has resulted in conflicting interpretations about the timing of lacustrine high stands within the intermediate basin of China Lake, which harbors one of the most extensive records of early human occupation in the western Great Basin and California. Here, we report a broad range of radiocarbon-dated paleoenvironmental evidence, including lacustrine deposits and shoreline features, tufa outcrops, and mollusk, ostracode, and fish bone assemblages, as well as spring and other groundwater-related deposits (a.k.a. "black mats") from throughout China Lake basin, its outlet, and inflow drainages. Based on 98 radiocarbon dates, we develop independent evidence for five significant lake-level oscillations between 18,000 and 13,000 cal BP, and document the persistence of groundwater-fed wetlands from the beginning of the Younger Dryas through the early Holocene (12,900-8200 cal BP); including the transition from ground-water fed lake to freshwater marsh between about 13,000 and 12,600 cal BP. Results of this study support and refine existing evidence that shows rapid, high-amplitude oscillations in the water balance of the Owens River system during the terminal Pleistocene, and suggest widespread human use of China Lake basin began during the Younger Dryas.

  13. Quantifying climatic impacts on peatland in the Zoige basin, China

    NASA Astrophysics Data System (ADS)

    Gao, P.; Li, Z.; Hu, X.

    2017-12-01

    Actual evapotranspiration (ET) of the Zoige basin in the Yellow River source region of China is a critical parameter for understanding water balance of peatland in the Zoige basin and hence the cause of the changing land cover. Using daily meteorological data sets of Zoige, Hongyuan, and Maqu stations from 1967 to 2011, the well-known FAO56 Penman-Monteith (P-M) formula was selected to calculate the reference crop evapotranspiration (ET0) in combination with the crop coefficient method in which the crop coefficient Kc is modified in terms of local climatic conditions. By classifying land cover of the Zoige basin in to swamp, grassland, water surface, and desert, the actual ET cover time for each type was obtained. Since late 1990s, the ET0 increased along with the increased air temperature. Different from previous studies, the ET of the swamp was slightly lower than that of water surface, but was slightly larger than the difference between annual precipitation and runoff in the Zoige basin. The increase of ET in the past 45 years was small in comparison with the change of the annual precipitation. More specifically, the annual precipitation, which was about 560-860 mm, slightly decreased between 1967 and 1997, and increased 2.23% in the 1998-2011 period. These results allowed us to conclude that though the slightly increased ET might be a factor leading to the long-term swamp dewatering, it cannot be the primary cause of the degraded peatland swamp and grassland in the Zoige basin.

  14. Simulation of blue and green water resources in the Wei River basin, China

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Zuo, D.

    2014-09-01

    The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool), calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program) based on river discharge in the Wei River basin (WRB). Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit) scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain), one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

  15. Assessment of undiscovered continuous oil and gas resources in the Bohaiwan Basin Province, China, 2017

    USGS Publications Warehouse

    Schenk, Christopher J.; Tennyson, Marilyn E.; Mercier, Tracey J.; Woodall, Cheryl A.; Finn, Thomas M.; Brownfield, Michael E.; Le, Phuong A.; Klett, Timothy R.; Gaswirth, Stephanie B.; Marra, Kristen R.; Leathers-Miller, Heidi M.; Potter, Christopher J.

    2018-02-07

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable continuous resources of 2.0 billion barrels of oil and 20.3 trillion cubic feet of gas in the Bohaiwan Basin Province, China.

  16. The origin of groundwater in Zhangye Basin, northwestern China, using isotopic signature

    NASA Astrophysics Data System (ADS)

    Chen, Jiansheng; Liu, Xiaoyan; Sun, Xiaoxu; Su, Zhiguo; Yong, Bin

    2014-03-01

    Zhangye Basin, in arid northwestern China, has recently been repeatedly flooded by rising groundwater. Isotope signatures of sampled waters gained insight into the recharge source of the groundwater. The summer Heihe River water and most of the spring water in Zhangye and Yongchang basins plotted above the global meteoric water line (GMWL) on the δ18O-δD plot. The spring water had R/Ra ratio >1, low TDS and high tritium, which indicates origin from Qilian Mountain glacier meltwater. The groundwater of Qilian Mountains was transported to the Hexi Corridor (in which Zhangye Basin is located) through underground fault zones. Additionally, some of the groundwater in the alluvial plain, and all spring water surrounding Zhangye Basin, plotted below the GMWL on the δ18O-δD plot along an evaporation line, and had R/Ra ratio < 1 and high TDS. It is proposed that the Tibetan rivers or lakes source the Hexi Corridor groundwater through either the NE-trending or NW-trending buried fault zones. The isotopic signatures presented as part of this study rule out the conventional viewpoint that groundwater of the Zhangye Basin was recharged by local precipitation and infiltration of Heihe River water on the alluvial plain.

  17. Modeled effects of irrigation on surface climate in the Heihe River Basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhen; Xiong, Zhe; Tang, Qiuhong

    2017-08-01

    In Northwest China, water originates from the mountain area and is largely used for irrigation agriculture in the middle reaches. This study investigates the local and remote impact of irrigation on regional climate in the Heihe River Basin, the second largest inland river basin in Northwest China. An irrigation scheme was developed and incorporated into the Weather Research and Forecasting (WRF) model with the Noah-MP land surface scheme (WRF/Noah-MP). The effects of irrigation is assessed by comparing the model simulations with and without consideration of irrigation (hereafter, IRRG and NATU simulations, respectively) for five growth seasons (May to September) from 2009 to 2013. As consequences of irrigation, daily mean temperature decreased by 1.7°C and humidity increased by 2.3 g kg-1 (corresponding to 38.5%) over irrigated area. The temperature and humidity of IRRG simulation matched well with the observations, whereas NATU simulation overestimated temperature and underestimated humidity over irrigated area. The effects on temperature and humidity are generally small outside the irrigated area. The cooling and wetting effects have opposing impacts on convective precipitation, resulting in a negligible change in localized precipitation over irrigated area. However, irrigation may induce water vapor convergence and enhance precipitation remotely in the southeastern portion of the Heihe River Basin.

  18. Oilfield geothermal exploitation in China-A case study from the Liaohe oilfield in Bohai Bay Basin

    NASA Astrophysics Data System (ADS)

    Wang, Shejiao; Yao, Yanhua; Fan, Xianli; Yan, Jiahong

    2017-04-01

    The clean geothermal energy can play a huge role in solving the problem of severe smog in China as it can replace large coal-fired heating in winter. Chinese government has paid close attention on the development and utilization of geothermal energy. In the "13th Five-Year" plan, the geothermal development is included into the national plan for the first time. China is very rich in the medium and low-temperature geothermal resources, ranking first in the geothermal direct use in the world for a long time. The geothermal resources are mainly concentrated in sedimentary basins, especially in petroliferous basins distributed in North China (in North China, heating is needed in winter). These basins are usually close to the large- and medium-sized cities. Therefore, tapping oilfield geothermal energy have attracted a great attention in the last few years as the watercut achieved above 90% in most oilfields and significant progress has been made. In this paper, taking the Liaohe Oilfield in the Bohai Bay Basin as an example, we discussed the distribution and potential of the geothermal resources, discussed how to use the existed technology to harness geothermal energy more effectively, and forecasted the development prospect of the oilfield geothermal energy. By using the volumetric method, we calculated the geothermal resources of the Guantao Formation, Dongying Formation, Shahejie Formation and basement rock in the Liaohe depression. We tested the geothermal energy utilization efficiency in different conditions by applying different pump technologies and utilizing geothermal energy in different depth, such as shallow geothermal energy (0-200m), middle-deep depth geothermal energy (200-4000m), and oilfield sewage heat produced with oil production. For the heat pump systems, we tested the conventional heat pump system, high-temperature heat pump system, super high-temperature heat pump system, and gas heat pump system. Finally, based on the analysis of national policy

  19. Geophysical prospecting for the deep geothermal structure of the Zhangzhou basin, Southeast China

    NASA Astrophysics Data System (ADS)

    Wu, Chaofeng; Liu, Shuang; Hu, Xiangyun; Wang, Guiling; Lin, Wenjing

    2017-04-01

    Zhangzhou basin located at the Southeast margins of Asian plate is one of the largest geothermal fields in Fujian province, Southeast China. High-temperature natural springs and granite rocks are widely distributed in this region and the causes of geothermal are speculated to be involved the large number of magmatic activities from Jurassic to Cretaceous periods. To investigate the deep structure of Zhangzhou basin, magnetotelluric and gravity measurements were carried out and the joint inversion of magnetotelluric and gravity data delineated the faults and the granites distributions. The inversion results also indicated the backgrounds of heat reservoirs, heat fluid paths and whole geothermal system of the Zhangzhou basin. Combining with the surface geological investigation, the geophysical inversion results revealed that the faults activities and magma intrusions are the main reasons for the formation of geothermal resources of the Zhangzhou basin. Upwelling mantle provides enormous heats to the lower crust leading to metamorphic rocks to be partially melt generating voluminous magmas. Then the magmas migration and thermal convection along the faults warm up the upper crust. So finally, the cap rocks, basements and major faults are the three favorable conditions for the formation of geothermal fields of the Zhangzhou basin.

  20. Analysis of vegetation condition and its relationship with meteorological variables in the Yarlung Zangbo River Basin of China

    NASA Astrophysics Data System (ADS)

    Han, Xianming; Zuo, Depeng; Xu, Zongxue; Cai, Siyang; Gao, Xiaoxi

    2018-06-01

    The Yarlung Zangbo River Basin is located in the southwest border of China, which is of great significance to the socioeconomic development and ecological environment of Southwest China. Normalized Difference Vegetation Index (NDVI) is an important index for investigating the change of vegetation cover, which is widely used as the representation value of vegetation cover. In this study, the NDVI is adopted to explore the vegetation condition in the Yarlung Zangbo River Basin during the recent 17 years, and the relationship between NDVI and meteorological variables has also been discussed. The results show that the annual maximum value of NDVI usually appears from July to September, in which August occupies a large proportion. The minimum value of NDVI appears from January to March, in which February takes up most of the percentage. The higher values of NDVI are generally located in the lower elevation area. When the altitude is higher than 3250 m, NDVI began to decline gradually, and the NDVI became gradual stabilization as the elevation is up to 6000 m. The correlation coefficient between NDVI and precipitation in the Yarlung Zangbo River Basin is greater than that with temperature. The Hurst index of the whole basin is 0.51, indicating that the NDVI of the Yarlung Zangbo River Basin shows a weak sustainability.

  1. Sediment compaction and pore pressure prediction in deepwater basin of the South China Sea: Estimation from ODP and IODP drilling well data

    NASA Astrophysics Data System (ADS)

    Xie, Yangbing; Wu, Tuoyu; Sun, Jin; Zhang, Hanyu; Wang, Jiliang; Gao, Jinwei; Chen, Chuanxu

    2018-02-01

    Overpressure in deepwater basins not only causes serious soft sediment deformation, but also significantly affects the safety of drilling operations. Therefore, prediction of overpressure in sediments has become an important task in deepwater oil exploration and development. In this study, we analyze the drilling data from ODP Leg 184 Sites 1144, 1146, and 1148, and IODP Leg 349 Sites U1431, U1432, U1433, and U1435 to study the sediment compaction and controls in the northern South China Sea. Sedimentation rate, sediment content, distribution area, and buried depth are the factors that influence sediment compaction in the deepwater basin of the South China Sea. Among these factors, the sediment content is the most important. The fitted normal compacted coefficients and mudline porosity for an interval of 50 m shows disciplinary variation versus depth. The pore pressure predicted from different fitted results shows varying overpressure situations. The normal compaction trend from Site 1144 reflects the porosity variation trend in stable deposition basins in the northern South China Sea. The predicted pore pressure shows overpressure at Site 1144, which is attributed to compaction disequilibrium. Nevertheless, the mixed lithology column may influence the predicted over-pressure at Site 1148, which is responsible for the confusing result. Above all, we find that sediment compaction should serve as a proxy for pore pressure in the deepwater basin of the South China Sea.

  2. An Integrated Decision Support System with Hydrological Processes and Socio-economic Assessments

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Disse, Markus; Yu, Ruide

    2017-04-01

    The debate over the effectiveness of Integrated Water Resources Management (IWRM) in practice has lasted for years. As the complexity and scope of IWRM increases, the difficulties of hydrological modeling is shifting from the model itself into the links with other cognate sciences, to understand the interactions among water, earth, ecosystem and humans. This work presents the design and development of a decision support system (DSS) that links the outputs of hydrological models with real-time decision making on social-economic assessments and land use changes. Discharge and glacier geometry changes were simulated with hydrological model WASA. Irrigation and ecological water were simulated by a new commercial software MIKE HYDRO. Groundwater was simulated by MODFLOW. All the outputs of theses hydrological models were integrated as inputs into the DSS in three types of links: regression equations, stationary data inputs, or dynamic data inputs into DSS as the models running parallel in the simulation periods. Within DSS, three types of logics were established: equations, conditional statements and fuzzy logics. The programming was realized in C++. The implementation of DSS takes place in the Tarim River Basin. With the mainstream of 1,321km and located in an arid area in northwest China, the Tarim River is China's longest inland river. The Tarim basin on the northern edge of the Taklamakan desert is an extremely arid region. In this region, agricultural water consumption and allocation management are crucial to address the conflicts among irrigation water users from upstream to downstream. Since 2011, the German Ministry of Science and Education BMBF established the Sino-German SuMaRiO project, for the sustainable management of river oases along the Tarim River. Project SuMaRiO focus on realizable management strategies, considering social, economic and ecological criteria. This will have positive effects for nearly 10 million inhabitants of different ethnic groups

  3. Assessment of Permian tight oil and gas resources in the Junggar basin of China, 2016

    USGS Publications Warehouse

    Potter, Christopher J.; Schenk, Christopher J.; Tennyson, Marilyn E.; Klett, Timothy R.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.; Finn, Thomas M.; Brownfield, Michael E.; Pitman, Janet K.; Mercier, Tracey J.; Le, Phuong A.; Drake, Ronald M.

    2017-04-05

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 764 million barrels of oil and 3.5 trillion cubic feet of gas in tight reservoirs in the Permian Lucaogou Formation in the Junggar basin of northwestern China.

  4. Vegetation structure and species composition variation of roadside slopes in the Sichuan Basin of China

    USDA-ARS?s Scientific Manuscript database

    Sichuan Basin in southwestern China is a region of great conservation concern due to poor vegetation recovery on steep roadside slopes, yet little is known about the influence of edaphic factors on plant community dynamics of disturbed slopes. A greater understanding of vegetation patterns across va...

  5. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.

    PubMed

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.

  6. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China

    PubMed Central

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale. PMID:26544070

  7. Blind Thrusting, Surface Folding, and the Development of Geological Structure in the Mw 6.3 2015 Pishan (China) Earthquake

    NASA Astrophysics Data System (ADS)

    Ainscoe, E. A.; Elliott, J. R.; Copley, A.; Craig, T. J.; Li, T.; Parsons, B. E.; Walker, R. T.

    2017-11-01

    The relationship between individual earthquakes and the longer-term growth of topography and of geological structures is not fully understood, but is key to our ability to make use of topographic and geological data sets in the contexts of seismic hazard and wider-scale tectonics. Here we investigate those relationships at an active fold-and-thrust belt in the southwest Tarim Basin, Central Asia. We use seismic waveforms and interferometric synthetic aperture radar (InSAR) to determine the fault parameters and slip distribution of the 2015 Mw6.3 Pishan earthquake—a blind, reverse-faulting event dipping toward the Tibetan Plateau. Our earthquake mechanism and location correspond closely to a fault mapped independently by seismic reflection, indicating that the earthquake was on a preexisting ramp fault over a depth range of ˜9-13 km. However, the geometry of folding in the overlying fluvial terraces cannot be fully explained by repeated coseismic slip in events such as the 2015 earthquake nor by the early postseismic motion shown in our interferograms; a key role in growth of the topography must be played by other mechanisms. The earthquake occurred at the Tarim-Tibet boundary, with the unusually low dip of 21°. We use our source models from Pishan and a 2012 event to argue that the Tarim Basin crust deforms only by brittle failure on faults whose effective coefficient of friction is ≤0.05 ± 0.025. In contrast, most of the Tibetan crust undergoes ductile deformation, with a viscosity of order 1020-1022 Pa s. This contrast in rheologies provides an explanation for the low dip of the earthquake fault plane.

  8. Sustainability of Water Resources in Arid Ecosystems: A View from Hei River Basin, China (Invited)

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Cheng, G.; Xiao, H.; Ma, R.

    2009-12-01

    The northwest of China is characterized by an arid climate and fragile ecosystems. With irrigated agriculture, the region is a prolific producer of cotton, wheat, and maize with some of the highest output per acre in the country. The region is also rich in ore deposits, with the reserves of numerous minerals ranked at or near the top in the country. However, the sustainability of irrigated agriculture and economic development in the region is threaten by severe eco-environmental problems resulting from both global changes and human activities, such as desertification, salinization, groundwater depletion, and dust storms. All these problems are a direct consequence of water scarcity. As global warming accelerates and rapid economic growth continues, the water shortage crisis is expected to worsen. To improve the bleak outlook for the health of ecosystem and environment in northwest China, the Chinese government has invested heavily in ecosystem restoration and watershed management in recent years. However, the effectiveness of such measures and actions depends on scientific understanding of the complex interplays among ecological, hydrological and socioeconomic factors. This presentation is intended to provide an overview of a major new research initiative supported by the National Natural Science Foundation of China to study the integration of ecological principles, hydrological processes and socioeconomic considerations toward more sustainable exploitation of surface water and groundwater resources in the Hei River Basin in northwest China. The Hei River Basin is an inland watershed located at the center of the arid region in East Asia, stretching from Qilianshan Mountains in the south to the desert in the north bordering China’s Inner Mongolia Autonomous Region and Mongolia. The total area of Hei River Basin is approximately 130,000 km2. The research initiative builds on existing research infrastructure and ecohydrological data and seeks to reveal complex

  9. Using runoff slope-break to determine dominate factors of runoff decline in Hutuo River Basin, North China.

    PubMed

    Tian, Fei; Yang, Yonghui; Han, Shumin

    2009-01-01

    Water resources in North China have declined sharply in recent years. Low runoff (especially in the mountain areas) has been identified as the main factor. Hutuo River Basin (HRB), a typical up-stream basin in North China with two subcatchments (Ye and Hutuo River Catchments), was investigated in this study. Mann-Kendall test was used to determine the general trend of precipitation and runoff for 1960-1999. Then Sequential Mann-Kendall test was used to establish runoff slope-break from which the beginning point of sharp decline in runoff was determined. Finally, regression analysis was done to illustrate runoff decline via comparison of precipitation-runoff correlation for the period prior to and after sharp runoff decline. This was further verified by analysis of rainy season peak runoff flows. The results are as follows: (1) annual runoff decline in the basin is significant while that of precipitation is insignificant at alpha=0.05 confidence level; (2) sharp decline in runoff in Ye River Catchment (YRC) occurred in 1968 while that in Hutuo River Catchment (HRC) occurred in 1978; (3) based on the regression analysis, human activity has the highest impact on runoff decline in the basin. As runoff slope-breaks in both Catchments strongly coincided with increase in agricultural activity, agricultural water use is considered the dominate factor of runoff decline in the study area.

  10. An Integrated 3S and Historical Materials Analysis of the Keriya Paleoriver, NW China

    NASA Astrophysics Data System (ADS)

    Luo, Lei; Wang, Xinyuan; Cai, Heng

    2014-03-01

    Combining analysis of 3S (RS, GIS and GPS) and historical materials (historical records, ancient map and academic and literary writings) allows mapping of the Keriya Paleoriver of Southern Xinjiang, NW China. Keriya Paleoriver, one of the ancient Four Green Corridors which passes through the Taklimakan Desert from south to north in the Tarim Basin, recorded changes of the climate-environment in the ancient Silk Road of the region. According to the archaeological data, historical materials and paleoclimates information, its eco-environment and climate have had great changes since the 1.09Ma B.P., especially during the last 2,000 years, which has led to many famous ancient cities to be abandoned and the route of the ancient Silk Road to be moved southward. Using RS (optical and radar imagery), GIS (mapping and spatial analysis) and GPS (study area investigation), we mapped a major paleodrainage system of Keriya River, which have linked the Kunlun Mountains to the Tienshan Mountains through the Taklimakan Desert, possibly as far back as the early Pleistocene. This study illustrates the capability of the 3S and historical materials, in mapping the Keriya Paleoriver drainage networks and archaeological study on the ancient Silk Road.

  11. Nutrient (N, P) budgets for the Red River basin (Vietnam and China)

    NASA Astrophysics Data System (ADS)

    Quynh, Le Thi Phuong; Billen, Gilles; Garnier, Josette; ThéRy, Sylvain; FéZard, CéDric; Minh, Chau Van

    2005-06-01

    In order to examine the degree of human-induced alteration of the nitrogen and phosphorus cycles at the scale of a tropical watershed of regional dimension, the budgets of these two elements were estimated in the four main sub-basins (Da, Lo, Thao, and Delta) of the Red River system (156 448 km2, Vietnam and China). The four sub-basins differ widely in population density (from 101 inhabitants km-2 in the upstream basins to more than 1000 inhabitants km-2 in the delta), land use, and agricultural practices. In terms of agricultural production, on the one hand, and consumption of food and feed on the other, the upstream sub-basins are autotrophic systems, exporting agricultural goods, while the delta is a heterotrophic system, depending on agricultural goods imports. The budget of the agricultural soils reveals great losses of nitrogen, mostly attributable to denitrification in rice paddy fields and of phosphorus, mostly caused by erosion. The budget of the drainage network shows high retention/elimination of nitrogen (from 62 to 77% in the upstream basins and 59% in the delta), and of phosphorus, with retention rates as high as 80% in the Da and Lo sub-basins which have large reservoirs in their downstream course (Hoa Binh on the Da and Thac Ba on the Lo). The total specific delivery estimated at the outlet of the whole Red River System is 855 kg km-2 yr-1 total N and 325 kg km-2 yr-1 total P. Nitrogen rather than phosphorus seems to be the potential limiting factor of algal growth in the plume of the Red River in Tonkin Bay.

  12. Mapping Electrical Structures in the Jarud Basin, Northeast China through Magnetotelluric Sounding

    NASA Astrophysics Data System (ADS)

    Zhao, W.

    2015-12-01

    In recent years, China Geological Survey (CGS) has launched 3D geological mapping programs from regional to local scales. The project Deep geological survey at the periphery of the Songliao Basin funded by CGS was implemented from 2012 to 2014. Its main goals are to reveal the tectonic framework of the Jarud Basin (JB) as well as to identify the strata distribution of Permian Linxi Formation by integrating new electromagnetic data with existing geophysical and geological data since black mudstones in the Linxi Formation have shown the potential of shale gas. The study area covered dominantly with Cretaceous-Jurassic igneous rocks with exception of the southeast part is situated in Jarud Banner and Ar Horqin Banner, Inner Mongolia, China. It tectonically lies in the southern Great Khingan Range, western margin of the Songliao Basin, and north of Xar Moron Fault. Over the period of 2012 to 2014, a magnetotelluric survey was carried out at the JB. A total of 926 MT sites with nominal spacing 1 km was acquired in the effective frequency range of 0.01 Hz ~ 300 Hz on six NW and five NE profiles, covering area that exceeds 10, 000 km2. After dimensionality analysis and static shift removal, the nonlinear conjugate algorithm was used to conduct 2D inversion for TM and TE modes. The resistivity models underwent examination using sensitivity tests. The optimal resistivity models revealed numerous large faults, some of which constitute the boundaries of the JB, and modified the tectonic framework. Integrated with well logging and geological mapping data, the strata of Linxi Formation were identified and classified into three depressions: Depressions Arituguri, Gadasu and Wufen. Attention should be paid to Depression Gadasu with area of around 500 km2 since it contains reasonably thick conductive sediments exceeding 4 km in depth which are inferred to be black mudstones pertaining to shale gas.

  13. Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, Northern China.

    PubMed

    Wu, Ya; Wang, Yanxin

    2014-05-01

    A hydrogeochemical investigation using integrated methods of stable isotopes ((18)O, (2)H), (87)Sr/(86)Sr ratios, Cl/Br ratios, chloride-mass balance, mass balance and hydrogeochemical modeling was conducted to interpret the geochemical evolution of groundwater salinity in Datong basin, northern China. The δ(2)H, δ(18)O ratios in precipitation exhibited a local meteoric water line of δ(2)H = 6.4 δ(18)O -5 (R(2) = 0.94), while those in groundwater suggested their meteoric origin in a historically colder climatic regime with a speculated recharge rate of less than 20.5 mm overall per year, in addition to recharge from a component of deep residual ancient lake water enriched with Br. According to the Sr isotope binary mixing model, the mixing of recharges from the Shentou karst springs (24%), the western margins (11%) and the eastern margins (65%) accounts for the groundwater from the deep aquifers of the down-gradient parts in the central basin is a possible mixing mechanism. In Datong, hydrolysis of silicate minerals is the most important hydrogeochemical process responsible for groundwater chemistry, in addition to dissolution of carbonate and evaporites. In the recharge areas, silicate chemical weathering is typically at the bisiallitization stage, while that in the central basin is mostly at the monosiallitization stage with limited evidence of being in equilibrium with gibbsite. Na exchange with bound Ca, Mg prevails at basin scale, and intensifies with groundwater salinity, while Ca, Mg exchange with bound Na locally occurs in the east pluvial and alluvial plains. Although groundwater salinity increases with the progress of water-rock/sediment interactions along the flow path, as a result of carbonate solubility control and continuous evapotranspiration, Na-HCO3 and Na-Cl-SO4 types of water are usually characterized respectively in the deep and the shallow aquifers of an inland basin with a silicate terrain in an arid climatic regime.

  14. Farmers' attitudes toward mandatory water-saving policies: A case study in two basins in northwest China.

    PubMed

    Chang, Genying; Wang, Lu; Meng, Liuyi; Zhang, Wenxia

    2016-10-01

    China began to implement stringent water-saving policies in 2012. Mandatory water-saving measures implemented in arid inland river basins include the measures of allocating surface water among upper, middle and lower beaches, restricting household agricultural water use, closing wells, reducing farmland and increasing water prices. These measures have negative influences on the agricultural production of farmers. This study aimed to reveal the demographic and psychological correlates of farmers' attitudes toward these policies. The participants included 672 farmers in the Heihe River Basin and the Shule River Basin in northwest China. Structural equation analyses showed that farmers' awareness of the beneficial consequences of restricting household agricultural water and their perception of policy enforcement had significant relationships with their attitudes toward water-saving policies, whereas the effects of the New Ecological Paradigm and collectivism on farmers' attitudes were mediated through their awareness of beneficial consequences and their perception of policy enforcement. Multivariable regression analyses revealed that as a whole, there were no significant correlations between demographic variables and farmers' attitudes. Policy implications include propagandizing these policies among local farmers, strengthening open and fair policy enforcement, and cautiously using water prices as an instrument to control irrigation water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Adjoint tomography of crust and upper-mantle structure beneath Continental China

    NASA Astrophysics Data System (ADS)

    Chen, M.; Niu, F.; Liu, Q.; Tromp, J.

    2013-12-01

    Four years of regional earthquake recordings from 1,869 seismic stations are used for high-resolution and high-fidelity seismic imaging of the crust and upper-mantle structure beneath Continental China. This unprecedented high-density dataset is comprised of seismograms recorded by the China Earthquake Administration Array (CEArray), NorthEast China Extended SeiSmic Array (NECESSArray), INDEPTH-IV Array, F-net and other global and regional seismic networks, and involves 1,326,384 frequency-dependent phase measurements. Adjoint tomography is applied to this unprecedented dataset, aiming to resolve detailed 3D maps of compressional and shear wavespeeds, and radial anisotropy. Contrary to traditional ray-theory based tomography, adjoint tomography takes into account full 3D wave propagation effects and off-ray-path sensitivity. In our implementation, it utilizes a spectral-element method for precise wave propagation simulations. The tomographic method starts with a 3D initial model that combines smooth radially anisotropic mantle model S362ANI and 3D crustal model Crust2.0. Traveltime and amplitude misfits are minimized iteratively based on a conjugate gradient method, harnessing 3D finite-frequency kernels computed for each updated 3D model. After 17 iterations, our inversion reveals strong correlations of 3D wavespeed heterogeneities in the crust and upper mantle with surface tectonic units, such as the Himalaya Block, the Tibetan Plateau, the Tarim Basin, the Ordos Block, and the South China Block. Narrow slab features emerge from the smooth initial model above the transition zone beneath the Japan, Ryukyu, Philippine, Izu-Bonin, Mariana and Andaman arcs. 3D wavespeed variations appear comparable to or much sharper than in high-frequency P-and S-wave models from previous studies. Moreover our results include new information, such as 3D variations of radial anisotropy and the Vp/Vs ratio, which are expected to shed new light to the composition, thermal state, flow

  16. A 150 year precipitation record preserved in lake sediments of Lake Gahai in the Qaidam Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Li, X.

    2012-12-01

    A 150 year precipitation record preserved in lake sediments of Lake Gahai in the Qaidam Basin, northwest China Li Xiangzhong a, Liu Weiguoa, b a State Key Laboratory of Loess and Quaternary Geology, IEE, CAS, Xi'an, 710075, China b School of Human Settlement and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China Abstract Usually, the oxygen isotopic compositions of ostracods from the lake sediments are interpreted as changes in effective precipitation, temperature and evaporation/input water ratio in a sub-arid or arid area. Here, we compare a 150-year-long oxygen-isotope record that was derived from ostracod carbonate from the sediment core (in a seven-year resolution) of Lake Gahai in the Qaidam Basin with meteorological data (precipitation) and tree-ring evidence for changing precipitation. Our results show that the increased precipitation accompanied a shift to less positive δ18O values in the lake water, and hence of the ostracod shells, whereas decreased precipitation coincides with the opposite in Lake Gahai over the past ~150 years. The sole occurrence of the ostracod E. mareotica also indicates that the lake's salinity may have experienced no marked change over the past 150 years. Therefore, we conclude that the oxygen isotopic compositions of ostracod shells can be used to indicate changes in precipitation for paleoclimatic reconstruction over a short time scale in Lake Gahai. Keywords: oxygen isotope; ostracod; precipitation; Lake Gahai, Qaidam Basin

  17. Assessment of potential unconventional Carboniferous-Permian gas resources of the Liaohe Basin eastern uplift, Liaoning Province, China, 2011

    USGS Publications Warehouse

    Pollastro, Richard M.; Potter, Christopher J.; Schenk, Christopher J.; Charpentier, Ronald R.; Cook, Troy A.; Klett, Timothy R.; Kirschbaum, Mark A.

    2012-01-01

    The U.S. Geological Survey estimated a mean of 448 billion cubic feet of potential technically recoverable unconventional natural gas in Carboniferous and Permian coal-bearing strata in the eastern uplift of the Liaohe Basin, Liaoning Province, China.

  18. Permian charnockites in the Pobeda area: Implications for Tarim mantle plume activity and HT metamorphism in the South Tien Shan range

    NASA Astrophysics Data System (ADS)

    Loury, Chloé; Rolland, Yann; Lanari, Pierre; Guillot, Stéphane; Bosch, Delphine; Ganino, Clément; Jourdon, Anthony; Petit, Carole; Gallet, Sylvain; Monié, Patrick; Riel, Nicolas

    2018-04-01

    The Permian history of the Central Asian Orogenic belt is marked by large-scale strike-slip faults that reactivate former Paleozoic structures, delineated by widespread alkaline magmatism. The genetic link between the syn-kinematic granitoids emplaced in the Tien Shan range and magmas emplaced within the Tarim Large Igneous Province, and the interaction between this plume and transcurrent tectonics, are still unsolved issues. We investigated the Pobeda massif, in the eastern Kyrgyz Tien Shan, located at the boundary between the Tien Shan range and the Tarim Craton, which exhibits a high-temperature unit. In this unit, Permian magmatism resulted in the emplacement of alkaline charnockites at mid-crustal levels. The primary mineralogical assemblage is nominally anhydrous and made of ortho- and clino-pyroxenes, fayalite, K-feldspar, plagioclase and quartz. These charnockites are associated with partially-molten paragneisses and marbles. Thermobarometry on these rocks indicates that the charnockites emplaced following the intrusion of a melt at a temperature > 1000 °C and pressure of around 6 kbar, corresponding to depth of 20 km. The resulting thermal anomaly triggered the partial melting of paragneisses. Bulk geochemistry including Sr, Nd, Pb and Hf isotopes suggests that charnockites fit into the Tarim Large Igneous Province magmatic series, with minor crustal assimilation. U-Pb ages on zircons of charnockites and surrounding paragneisses indicate that charnockites intruded and triggered partial melting of the gneisses at c. 287, 275 and 265 Ma. 40Ar/39Ar dating on amphibole gives a similar age as the U-Pb age at 276.2 ± 2.0 Ma. 40Ar/39Ar dating on biotite from the Charnockite unit marbles gives ages at ca. 256-265 Ma, which shows that exhumation onset directly follows the HT history, and is tentatively correlated to top-to-the-North thrusting of the Charnockite unit in a transpressive context. Additional 40Ar/39Ar dating on syn-kinematic white micas from an

  19. Projection of future runoff change using climate elasticity method derived from Budyko framework in major basins across China

    NASA Astrophysics Data System (ADS)

    Xing, Wanqiu; Wang, Weiguang; Zou, Shan; Deng, Chao

    2018-03-01

    This study established a climate elasticity method based on Budyko hypothesis and enhanced it by selecting the most effective Budyko-type formula to strengthen the runoff change prediction reliability. The spatiotemporal variations in hydrologic variables (i.e., runoff, precipitation and potential evaporation) during historical period were revealed first and the climate elasticities of runoff were investigated. The proposed climate elasticity method was also applied to project the spatiotemporal variations in future runoff and its key influencing factors in 35 watersheds across China. Wherein, the future climate series were retrieved by consulting the historical series, informed by four global climate models (GCMs) under representative concentration pathways from phase five of the Coupled Model Intercomparison Project. Wang-Tang equation was selected as the optimal Budyko-type equation for its best ability in reproducing the runoff change (with a coefficient of determination and mean absolute error of 0.998 and 1.36 mm, respectively). Observed runoff presents significant decreasing trends in the northern and increasing trends in the southern regions of China, and generally its change is identified to be more sensitive to climatic variables in Hai River Basin and lower Yellow River Basin. Compared to the runoff during the reference period, positive change rates in the north and negative change rates in the south of China in the mid-21st century can be practically generalized from the majority of GCMs projections. This maybe resulted from the increasing precipitation, especially in parts of northern basins. Meanwhile, GCMs project a consistently upward trend in potential evaporation although significant decreasing trends occur in the majority of catchments for the historical period. The results indicate that climate change will possibly bring some changes to the water resources over China in the mid-21st century and some countermeasures of water resources planning

  20. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China.

    PubMed

    Li, Chengcheng; Gao, Xubo; Wang, Yanxin

    2015-03-01

    Hydrogeochemical and environmental isotope methods were integrated to delineate the spatial distribution and enrichment of fluoride in groundwater at Yuncheng Basin in northern China. One hundred groundwater samples and 10 Quaternary sediment samples were collected from the Basin. Over 69% of the shallow groundwater (with a F(-) concentration of up to 14.1mg/L), 44% of groundwater samples from the intermediate and 31% from the deep aquifers had F(-) concentrations above the WHO provisional drinking water guideline of 1.5mg/L. Groundwater with high F(-) concentrations displayed a distinctive major ion chemistry: Na-rich and Ca-poor with a high pH value and high HCO3(-) content. Hydrochemical diagrams and profiles and hydrogen and oxygen isotope compositions indicate that variations in the major ion chemistry and pH are controlled by mineral dissolution, cation exchange and evaporation in the aquifer systems, which are important for F(-) mobilization as well. Leakage of shallow groundwater and/or evaporite (gypsum and mirabilite) dissolution may be the major sources for F(-) in groundwater of the intermediate and deep aquifers. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Geothermal regime and Jurassic source rock maturity of the Junggar basin, northwest China

    NASA Astrophysics Data System (ADS)

    Nansheng, Qiu; Zhihuan, Zhang; Ershe, Xu

    2008-01-01

    We analyze the thermal gradient distribution of the Junggar basin based on oil-test and well-logging temperature data. The basin-wide average thermal gradient in the depth interval of 0-4000 m is 22.6 °C/km, which is lower than other sedimentary basins in China. We report 21 measured terrestrial heat flow values based on detailed thermal conductivity data and systematical steady-state temperature data. These values vary from 27.0 to 54.1 mW/m 2 with a mean of 41.8 ± 7.8 mW/m 2. The Junggar basin appears to be a cool basin in terms of its thermal regime. The heat flow distribution within the basin shows the following characteristics. (1) The heat flow decreases from the Luliang Uplift to the Southern Depression; (2) relatively high heat flow values over 50 mW/m 2 are confined to the northern part of the Eastern Uplift and the adjacent parts of the Eastern Luliang Uplift and Central Depression; (3) The lowest heat flow of smaller than 35 mW/m 2 occurs in the southern parts of the basin. This low thermal regime of the Junggar basin is consistent with the geodynamic setting, the extrusion of plates around the basin, the considerably thick crust, the dense lithospheric mantle, the relatively stable continental basement of the basin, low heat generation and underground water flow of the basin. The heat flow of this basin is of great significance to oil exploration and hydrocarbon resource assessment, because it bears directly on issues of petroleum source-rock maturation. Almost all oil fields are limited to the areas of higher heat flows. The relatively low heat flow values in the Junggar basin will deepen the maturity threshold, making the deep-seated widespread Permian and Jurassic source rocks in the Junggar basin favorable for oil and gas generation. In addition, the maturity evolution of the Lower Jurassic Badaowan Group (J 1b) and Middle Jurassic Xishanyao Group (J 2x) were calculated based on the thermal data and burial depth. The maturity of the Jurassic

  2. Influence of intermittent water releases on groundwater chemistry at the lower reaches of the Tarim River, China.

    PubMed

    Chen, Yong-jin; Chen, Ya-ning; Liu, Jia-zhen; Zhang, Er-xun

    2009-11-01

    Based on the data of the depths and the chemical properties of groundwater, salinity in the soil profile, and the basic information on each delivery of water collected from the years 2000 to 2006, the varied character of groundwater chemistry and related factors were studied. The results confirmed the three stages of the variations in groundwater chemistry influenced by the intermittent water deliveries. The factors that had close relations to the variations in groundwater chemistry were the distances of monitoring wells from the water channel, the depths of the groundwater, water flux in watercourse, and the salinities in soils. The relations between chemical variation and groundwater depths indicated that the water quality was the best with the groundwater varying from 5 to 6 m. In addition, the constructive species in the study area can survive well with the depth of groundwater varying from 5 to 6 m, so the rational depth of groundwater in the lower reaches of the Tarim River should be 5 m or so. The redistribution of salts in the soil profile and its relations to the chemical properties and depths of groundwater revealed the linear water delivery at present combining with surface water supply in proper sections would promote water quality optimized and speed up the pace of ecological restoration in the study area.

  3. Preliminary investigation on the occurrence of several sulfonamide antibiotics in the Haihe River Basin of China

    NASA Astrophysics Data System (ADS)

    Zhang, S. L.; Zhang, J.; Wang, Z. G.; Wang, Y. Z.; Liang, S. T.; Liu, C.; Wang, Z.

    2017-08-01

    Several samples collected from lakes, rivers and reservoirs in Haihe river basin of China were analyzed for 8 sulfonamide antibiotics by using solid-phase extraction and liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). All water samples were enriched with HLB extraction cartridges. The antibiotics were separated by gradient elution with methanol as the mobile phase adding 0.1% formic acid. The eluate was then analyzed by the mode of multiple reaction monitoring (MRM). The limits of detection (LOD) and quantification (LOQ) were 0.4-1.0 ng/L and 1.0-3.0 ng/L respectively. The method was used for the analysis of 13 samples from Haihe river basin in China. The results showed that sulfamethoxazole was present in all water samples with maximum concentration of 107.59 ng/L. Sulfadiazine was also frequently detected, concentrations ranging from 2.81 ng/L to 85.35 ng/L. Other sulfonamide antibiotics were not detected in most water samples, especially for those samples from drinking water resources.

  4. Hydrological effects of cropland and climatic changes in arid and semi-arid river basins: A case study from the Yellow River basin, China

    NASA Astrophysics Data System (ADS)

    Li, Huazhen; Zhang, Qiang; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2017-06-01

    The Yellow River basin is a typical semi-arid river basin in northern China. Serious water shortages have negative impacts on regional socioeconomic development. Recent years have witnessed changes in streamflow processes due to increasing human activities, such as agricultural activities and construction of dams and water reservoirs, and climatic changes, e.g. precipitation and temperature. This study attempts to investigate factors potentially driving changes in different streamflow components defined by different quantiles. The data used were daily streamflow data for the 1959-2005 period from 5 hydrological stations, daily precipitation and temperature data from 77 meteorological stations and data pertaining to cropland and large reservoirs. Results indicate a general decrease in streamflow across the Yellow River basin. Moreover significant decreasing streamflow has been observed in the middle and lower Yellow River basin with change points during the mid-1980s till the mid-1990s. The changes of cropland affect the streamflow components and also the cumulative effects on streamflow variations. Recent years have witnessed moderate cropland variations which result in moderate streamflow changes. Further, precipitation also plays a critical role in changes of streamflow components and human activities, i.e. cropland changes, temperature changes and building of water reservoirs, tend to have increasing impacts on hydrological processes across the Yellow River basin. This study provides a theoretical framework for the study of the hydrological effects of human activities and climatic changes on basins over the globe.

  5. Validation of SWEEP for creep, saltation, and suspension in a desert-oasis ecotone

    NASA Astrophysics Data System (ADS)

    Pi, H.; Sharratt, B.; Feng, G.; Lei, J.; Li, X.; Zheng, Z.

    2016-03-01

    Wind erosion in the desert-oasis ecotone can accelerate desertification, but little is known about the susceptibility of the ecotone to wind erosion in the Tarim Basin despite being a major source of windblown dust in China. The objective of this study was to test the performance of the Single-event Wind Erosion Evaluation Program (SWEEP) in simulating soil loss as creep, saltation, and suspension in a desert-oasis ecotone. Creep, saltation, and suspension were measured and simulated in a desert-oasis ecotone of the Tarim Basin during discrete periods of high winds in spring 2012 and 2013. The model appeared to adequately simulate total soil loss (ranged from 23 to 2272 g m-2 across sample periods) according to the high index of agreement (d = 0.76). The adequate agreement of the SWEEP in simulating total soil loss was due to the good performance of the model (d = 0.71) in simulating creep plus saltation. The SWEEP model, however, inadequately simulated suspension based upon a low d (⩽0.43). The slope estimates of the regression between simulated and measured suspension and difference of mean suggested that the SWEEP underestimated suspension. The adequate simulation of creep plus saltation thus provides reasonable estimates of total soil loss using SWEEP in a desert-oasis environment.

  6. Design rainfall depth estimation through two regional frequency analysis methods in Hanjiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Xu, Yue-Ping; Yu, Chaofeng; Zhang, Xujie; Zhang, Qingqing; Xu, Xiao

    2012-02-01

    Hydrological predictions in ungauged basins are of significant importance for water resources management. In hydrological frequency analysis, regional methods are regarded as useful tools in estimating design rainfall/flood for areas with only little data available. The purpose of this paper is to investigate the performance of two regional methods, namely the Hosking's approach and the cokriging approach, in hydrological frequency analysis. These two methods are employed to estimate 24-h design rainfall depths in Hanjiang River Basin, one of the largest tributaries of Yangtze River, China. Validation is made through comparing the results to those calculated from the provincial handbook approach which uses hundreds of rainfall gauge stations. Also for validation purpose, five hypothetically ungauged sites from the middle basin are chosen. The final results show that compared to the provincial handbook approach, the Hosking's approach often overestimated the 24-h design rainfall depths while the cokriging approach most of the time underestimated. Overall, the Hosking' approach produced more accurate results than the cokriging approach.

  7. Fauna of Cladocera and Copepoda from Xinjiang Uyghur Autonomous Region (China).

    PubMed

    Chertoprud, Elena S; Sinev, Artem Y; Dimante-Deimantovica, Inta

    2017-05-03

    This study evaluates the species composition of Cladocera and Copepoda in the five lakes of the Bogda-Shan Mountain range and in the floodplain of the Tarim and Konchedarya rivers located in the Xinjiang Uygur Autonomous Region of China (Xinjiang). We collected seven species of Cladocera and six species of Copepoda. Seven species were identified as new for Xinjiang fauna, and two species (Cyclops cf. herberti Einsle, 1996, and Eucyclops roseus Ishida, 1997) were first records for China. Herein, we characterize the distribution ranges for the detected species and provide taxonomic remarks. The total species list for water bodies in Xinjiang compiled from original data and available literature includes 56 species of Cladocera and 33 species of Copepoda. We also discuss the biogeographical structure of Cladocera and Copepoda faunas in Xinjiang.

  8. Contamination characteristics of organochlorine pesticides in multimatrix sampling of the Hanjiang River Basin, southeast China.

    PubMed

    Liu, Jia; Qi, Shihua; Yao, Jun; Yang, Dan; Xing, Xinli; Liu, Hongxia; Qu, Chengkai

    2016-11-01

    Hanjiang River, the second largest river in Guangdong Province, Southern China, is the primary source of drinking water for the cities of Chaozhou and Shantou. Our previous studies indicated that soils from an upstream catchment area of the Hanjiang River are moderately contaminated with organochlorine pesticides (OCPs), which can easily enter the river system via soil runoff. Therefore, OCPs, especially downstream drinking water sources, may pose harmful health and environmental risks. On the basis of this hypothesis, we measured the OCP concentrations in dissolved phase (DP), suspended particle matter (SPM), and surface sediment (SS) samples collected along the Hanjiang River Basin in Fujian and Guangdong provinces. OCP residue levels were quantified through electron capture detector gas chromatography to identify the OCP sources and deposits. The concentration ranges of OCPs in DP, SPM, and SS, respectively, were 2.11-12.04 (ng/L), 6.60-64.77 (ng/g), and 0.60-4.71 (ng/g) for hexachlorocyclohexanes (HCHs), and 2.49-4.77 (ng/L), 6.75-80.19 (ng/g), and 0.89-252.27 (ng/g) for dichloro-diphenyl-trichloroethanes (DDTs). Results revealed that DDTs represent an ecotoxicological risk to the Hanjiang River Basin, as indicated by international sediment guidelines. This study serves as a basis for the future management of OCP concentrations in the Hanjiang River Basin, and exemplifies a pattern of OCP movement (like OCP partition among multimedia) from upstream to downstream. This pattern may be observed in similar rivers in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of Vegetation Type on Soil Carbon Dynamics Along the Kaidu River in the Yanqi Basin of Northwestern China

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, X.; Wang, W.

    2010-12-01

    The Kaidu River originates from the central southern slopes of the Tian Shan from where it flows through the Yulduz Basin and the Yanqi Basin into Lake Bosten. There has been intensive agricultural development along the Kaidu River in the Yanqi Basin. Corn and pepper are two of the main crops. Here, we present a study includes comparisons of soil organic carbon (SOC) between typical native vegtation types (e.g., Glycyrhiza uralensis Fisch, Achnatherum splendens and Sophora alopecuroides Linn) and agricultural crops (i.e., corn and pepper). Fourteen soil pits were sampled at five depths (0-5, 5-15, 15-30, 30-50 and 50-100 cm) in August 2010 (Figure 1). Soil organic matter are determined using the traditional Walkley and Black method and Loss-on-ignition at 375°C for 17 hours. As expected, agricultural soils contain higher SOC than non-agriculatural lands. Native vegetation has various effects on vertical distribution of SOC. We discuss how root system influences SOC dynamics along the Kaidu River in the central Xinjiang, China. Fig. 1. Map of sampling sites along the Kaidu River in northwestern China.

  10. Luminescence ages for three 'Middle Palaeolithic' sites in the Nihewan Basin, northern China, and their archaeological and palaeoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Guo, Yu-Jie; Li, Bo; Zhang, Jia-Fu; Yuan, Bao-Yin; Xie, Fei; Roberts, Richard Graham

    2016-05-01

    The Nihewan Basin is a key region for studying the Palaeolithic archaeology of East Asia. However, because of the lack of suitable dating methods and representative lithic technologies in this region, the 'Middle Palaeolithic' sites in this basin have been designated based mainly on stratigraphic correlation, which may be unreliable. In this study, three Palaeolithic sites, Motianling, Queergou and Banjingzi, which have been assigned previously to the 'Middle Palaeolithic', are dated based on luminescence dating of K-feldspar grains. Our results show that the cultural layers at Motianling, Queergou and Banjingzi have ages of 315 ± 13, 268 ± 13 and 86 ± 4 ka (corresponding to Marine Isotope Stages 9, 8 and 5), respectively, suggesting that Motianling and Queergou should be assigned to the Lower Palaeolithic, while the age of Banjingzi is consistent with a Middle Palaeolithic attribution. Our results suggest that reassessing the age of 'Middle Palaeolithic' sites in the Nihewan Basin, and elsewhere in North China, is crucial for understanding the presence or absence of the Middle Palaeolithic phase in China. Our dating results also indicate that the Sanggan River developed sometime between about 270 and 86 ka ago.

  11. Incorporation of Complex Hydrological and Socio-economic Factors for Non-point Source Pollution Control: A Case Study at the Yincungang Canal, the Lake Tai Basin of China

    NASA Astrophysics Data System (ADS)

    Yang, X.; Luo, X.; Zheng, Z.

    2012-04-01

    It is increasingly realized that non-point pollution sources contribute significantly to water environment deterioration in China. Compared to developed countries, non-point source pollution in China has the unique characteristics of strong intensity and composition complexity due to its special socioeconomic conditions. First, more than 50% of its 1.3 billion people are rural. Sewage from the majority of the rural households is discharged either without or only with minimal treatment. The large amount of erratic rural sewage discharge is a significant source of water pollution. Second, China is plagued with serious agricultural pollution due to widespread improper application of fertilizers and pesticides. Finally, there lack sufficient disposal and recycling of rural wastes such as livestock manure and crop straws. Pollutant loads from various sources have far exceeded environmental assimilation capacity in many parts of China. The Lake Tai basin is one typical example. Lake Tai is the third largest freshwater lake in China. The basin is located in the highly developed and densely populated Yangtze River Delta. While accounting for 0.4% of its land area and 2.9% of its population, the Lake Tai basin generates more than 14% of China's Gross Domestic Production (GDP), and the basin's GDP per capita is 3.5 times as much as the state average. Lake Tai is vital to the basin's socio-economic development, providing multiple services including water supply for municipal, industrial, and agricultural needs, navigation, flood control, fishery, and tourism. Unfortunately, accompanied with the fast economic development is serious water environment deterioration in the Lake Tai basin. The lake is becoming increasingly eutrophied and has frequently suffered from cyanobacterial blooms in recent decades. Chinese government has made tremendous investment in order to mitigate water pollution conditions in the basin. Nevertheless, the trend of deteriorating water quality has yet to

  12. Lacustrine fan delta deposition alongside intrabasinal structural highs in rift basins: an example from the Early Cretaceous Jiuquan Basin, Northwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, Chengcheng; Muirhead, James D.; Wang, Hua; Chen, Si; Liao, Yuantao; Lu, Zongsheng; Wei, Jun

    2018-01-01

    Development of fan deltas alongside intrabasinal structural highs has been overlooked compared to those forming on basin margins. However, these fan deltas may provide important clues regarding the tectonic and climatic controls on deposition during rift development. This paper documents fan delta deposition alongside an intrabasinal structural high within the Early Cretaceous Xiagou Formation of the Jiuquan Basin, China, using subsurface geological and geophysical data. Deposits observed in drill core support fan delta deposition occurring almost exclusively through subaerial and subaqueous gravity flows. Subsurface mapping reveals a consistent decrease in the areal extent of fan deltas from lowstand to highstand system tracts, suggesting that deposition alongside the structural high is sensitive to lake-level changes. The temporal and spatial distribution of the fan deltas display retrogradational stacking patterns, where fan deltas exhibit a decreasing lateral extent up-sequence until fan delta deposition terminated and was replaced by deposition of fine-grained lacustrine deposits. The retrogradational stacking patterns observed alongside the intrabasinal structural high are not observed in fan deltas along the basin margin in the lower parts of the Xiagou Formation. Subsidence profiles also show differential subsidence across the basin during the earliest stages of this formation, likely resulting from border fault movements. These data suggest that non-uniform stacking patterns in the lower parts of the Xiagou Formation reflect basin-scale tectonic movements as the dominant control on synrift deposition patterns. However, later stages of Xiagou Formation deposition were characterized by uniform subsidence across the basin, and uniform retrogradational stacking patterns for fan deltas alongside the intrabasinal structural high and border fault. These observations suggest that basin-scale tectonic movements played a relatively limited role in controlling

  13. Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Lin, Jingjing; Ma, Rui; Hu, Yalu; Sun, Ziyong; Wang, Yanxin; McCarter, Colin P. R.

    2018-03-01

    The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114 × 104 m3/year in 2017 to 11,875 × 104 m3/year in 2021, and to 17,039 × 104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277 × 104 m3/year in 2017 to 1857 × 104 m3/year in 2021, and to 510 × 104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.

  14. Crustal structure of the basin in the Southwest Subbasin, South China Sea

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Li, J.; Ding, W.; Zhang, J.; Ruan, A.; Niu, X.; Yin, J.

    2016-12-01

    Using two-dimensional seismic tomography, we reported a detailed P-wave velocity model of the basin area and the northern margin in the southwest SWSB. We used two OBS profiles (OBS973-1 and OBS973-3), and 12 OBSs were involved into forward modeling and inversion. The whole profile is approximately 311-km-long. The average thickness of the crust beneath the basin is 5.33 km, and the Moho interface is about 10-12 km. No High Velocity Bodies (HVBs) are observed, and only two thin high-velocity structures ( 7.3 km/s) in the layer 3 are identified beneath the northern continent-ocean transition (COT) and the extinct spreading center. It is suggested that the basin area is a typical oceanic crust. Combined with other refraction profiles in the SWSB, the thickness of crust became thinner from the east to the west, indicating a decreasing magma supply. Besides, the continental block shows asymmetric crustal thickness: the southern margin represents thicker crust than the northern margin, which may be related to the large scale of detachment fault systems developed in the southern margin. Revealed from the multi-channel seismic (MCS) profile, the profile here shows asymmetric structural characteristics between the north and south section of the spreading center, which may be controlled by detachment faults. The initial rifting is likely to occur in the south of our study area.KEY WORDS crustal structure; South China Sea; Southwest Sub-basin Extinct spreading center, Asymmetric extension; Thinned crust

  15. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  16. [Patterns and characteristics of ecological water demand in west arid zone of China--a case study of green corridor in the lower reaches of Tarim River].

    PubMed

    Wang, Ranghui; Lu, Xinming; Song, Yudong; Fan, Zili; Ma, Yingjie

    2003-04-01

    Ecological water demand has some characteristics. The ecological water demand that was used for protection of the green corridor in the lower reaches of Tarim River was chiefly water demand by natural vegetation below Daxihaizi reservoir, and it included gross restoration water amount of ground water level and gross stand water amount in all over the lower reaches of Tarim River. The gross restoration water amount of ground water level mainly included restoration water amount of ground water level and lateral discharge, as well as evaporation of the course. Based on the drainage target of Alagan in 2005, gross ecological water demand was the gross water amount of restoration ground water level between Daxihaizi and Alagan, which would be 13.20 x 10(8) m3. Meanwhile, the annual average water demand would be 2.64 x 10(8) m3. Because the drainage target and vegetation protection target would be all Taitema lake in 2010, the gross ecological water demand included not only the gross water amount of restoration ground water level between Alagan and Taitema lake, but also the ecological stand water amount between Daxihaizi and Taitema lake, which would be 18.32 x 10(8) m3. Meanwhile, the annual average water demand would be 3.66 x 10(8) m3. From the year 2010 to 2030, the gross ecological water demand would be consisted of two parts (the gross stand water amount between Daxihaizi and Alagan, and the water demand by increased vegetation of 18.67 x 10(4) hm2), and the total ecological water demand during the 20 years would be 139.00 x 10(8) m3. Meanwhile, the annual average water demand would be 6.95 x 10(8) m3.

  17. Formation of post-spreading volcanic ridges in the East sub-basin of the South China Sea

    NASA Astrophysics Data System (ADS)

    He, E.; Zhao, M.; Sibuet, J. C.; Tan, P.; Wang, J.; Qiu, X.

    2016-12-01

    In the South China Sea (SCS), the post-spreading magmatism ( 3-13 Ma) largely masks the initial seafloor spreading fabric. The resulting post-spreading seamounts are more numerous in the northern part than in the southern part of the East sub-basin. In the eastern part of the East sub-basin, the post-spreading volcanic ridge (PSVR) is approximately N055° oriented and follows the extinct spreading ridge (ESR). In the western part of the East sub-basin, the PSVR, called the Zhenbei-Huangyan seamounts chain, is E-W oriented and hides the ESR (Sibuet et al., 2016). We conducted a seismic refraction survey covering both the Zhenbei-Huangyan seamount chain and the location of the adjacent ESR. Three E-W oriented profiles and one N-S oriented profile are parallel and perpendicular to the Zhenbei-Huangyan seamounts chain, respectively. Our research is focused on the understanding of the relationship between the crustal thicknesses and crustal seismic velocities. The detailed velocity structure shows that the Zhenbei-Huangyan seamount chain was emplaced through a typical oceanic crust. Crustal thicknesses and seismic velocities suggest an asymmetric generation of seamounts in the East sub-basin, where active upwelling mantle (Holbrook et al., 2001) or buoyancy-driven decompression melting happened (Castillo et al., 2010). The Zhenbei and Huangyan seamounts were probably formed 3-5 Ma and 7-9 Ma, after seafloor spreading cessation; their thickened lower crusts were probably due to magmatic intrusions associated with a high-velocity layer (7.4-7.6 km/s),and their large thickness of upper crust were mainly due to volcanic extrusions. These two seamounts presents a different structural orientation and their crustal thicknesses are different, suggesting an independent origin for their magmatic feeding. This research was granted by the Natural Science Foundation of China (91428204, 91028002, 41176053).

  18. Uplifting of the Jiamusi Block in the eastern Central Asian Orogenic Belt, NE China: evidence from basin provenance and geochronology

    NASA Astrophysics Data System (ADS)

    Liu, Yongjiang; Wen, Quanbo; Han, Guoqing; Li, Wei

    2010-05-01

    The main part of Jiamusi Block, named as Huanan-Uplift, is located in the northeastern Heilongjiang, China. The Huanan-Uplift is surrounded by many relatively small Mesozoic-Cenozoic basins, e.g. Sanjiang Basin, Hulin Basin, Boli Basin, Jixi Basin, Shuangyashan Basin and Shuanghua Basin. However previous research works were mainly focused on stratigraphy and palaeontology of the basins, therefore, the coupling relation between the uplift and the surrounding basins have not been clear. Based on the field investigations, conglomerate provenance studies of the Houshigou Formation in Boli Basin, geochronology of the Huanan-Uplift basement, we have been studied the relationships between Huanan-Uplift and the surrounding basins. The regional stratigraphic correlations indicates that the isolated basins in the area experienced the same evolution during the period of the Chengzihe and the Muling Formations (the Early Cretaceous). The paleogeography reconstructions suggest that the area had been a large-scale basin as a whole during the Early Cretaceous. The Huanan-Uplift did not exist. The paleocurrent directions, sandstone and conglomerate provenance analyses show that the Huanan-Uplift started to be the source area of the surrounding basins during the period of Houshigou Formation (early Late Cretaceous), therefore, it suggests that the Jiamusi Block commenced uplift in the early Late Cretaceous. The granitic gneisses in Huanan-Uplift give 494-415 Ma monazite U-Th-total Pb ages, 262-259 Ma biotite and 246-241 Ma K-feldspar 40Ar/39Ar ages. The cooling rates of 1-2 ℃/Ma from 500-260 Ma and 10-11 ℃/Ma from 260-240 Ma have been calculated based on the ages. This suggests that the Jiamusi Block had a rapid exhumation during late Permian, which should be related to the closure of the Paleo-Asian Ocean between the Siberian and North China continents. It is concluded that during the late Paleozoic the Jiamusi Block was stable with a very slow uplifting. With the closure of

  19. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    NASA Astrophysics Data System (ADS)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  20. Prelude of benthic community collapse during the end-Permian mass extinction in siliciclastic offshore sub-basin: Brachiopod evidence from South China

    NASA Astrophysics Data System (ADS)

    Wu, Huiting; He, Weihong; Weldon, Elizabeth A.

    2018-04-01

    Analysis of the Permian-Triassic palaeocommunities from basinal facies in South China provides an insight into the environmental deterioration occurring in the prelude to the mass extinction event. Quantitative and multivariate analyses on three brachiopod palaeocommunities from the Changhsingian to the earliest Triassic in basinal facies in South China have been undertaken in this study. Although the end-Permian extinction has been proved to be a one-stepped event, ecological warning signals appeared in the palaeocommunities long before the main pulse of the event. A brachiopod palaeocommunity turnover occurred in the upper part of the Clarkina changxingensis Zone, associated with a significant decrease of palaeocommunity diversity and brachiopod body size. During this turnover the dominant genera changed from Fusichonetes and Crurithyris (or/and Paracrurithyris) to the more competitive genus Crurithyris (or/and Paracrurithyris). The brachiopod palaeocommunity turnover was supposed to be triggered by the decreased marine primary productivity and increased volcanic activity. Moreover, such early warning signals are found not only in the deep-water siliceous facies, but also in the shallow-water clastic facies and carbonate rock facies in South China.

  1. A 3056-year tree-ring based annual precipitation reconstruction from southern Qaidam Basin, Qinghai, China

    NASA Astrophysics Data System (ADS)

    Wang, H.; Xuemei, S.; Yin, Z. Y.; LI, M.

    2017-12-01

    Past climate is desired for understanding the forcing of climatic changes, for evaluating present conditions in the long-term context of the past, and for the basis of projecting future climate scenarios. By using tree-ring data, temperature, precipitation, streamflow, and drought history have been reconstructed back to hundreds or even thousands of years. In China, many dendroclimatological studies have focused on west China, particularly in the environmental sensitive Tibetan Plateau. For example, several millennial-long climatic reconstructions for northeast and east Qaidam basin have been published, and got many new achievements. Whereas, there are few samples collected from the dry area in the south. In this study, we developed a new tree ring-width chronology (from 1403 BC to AD 2015) using samples from eight stands in the southeast of Qaidam basin near Nuomuhong. Response analysis showed significant positive correlations with monthly precipitation in July and September of the previous year, May and June of the current year. Statistically, the chronology was appropriate for reconstructing the annual precipitation of July-June from 1040 BC to AD 2015, and explains 45.5% of variance contained in the instrumental date for the calibration periods 1957-2015. In the past 3056 years of reconstruction, the precipitation has experienced 14 wetter periods and 13 drier ones, and the precipitation increased obviously in 20th century. Meanwhile, wavelet analysis shows that there are 2-3, 3-8 and 11 year cycles of variability, which may be associated with ENSO and solar activity. We expect that our reconstruction will improve the understanding of precipitation variation in millennial scale on the southern Qaidam basin.

  2. Hydrological controls on chemical weathering in the typical carbonated river basin, SW China

    NASA Astrophysics Data System (ADS)

    LI, S. L.; Jin, L.; Zhong, J., Sr.

    2016-12-01

    The dynamics of dissolved load in the riverine system could provide an insight in understanding the surface processes, such as chemical weathering and carbon cycle. The Xijiang River is a typical carbonated river basin, located at southwestern China. The Xijiang River catchment is controlled by a humid subtropical climate. In spite of being impacted by monsoonal climate and with significant variations of discharge, the temporal variations of compositions of main ions and chemical weathering of Xijiang River are rarely documented. In this study, a systematic investigation on the seasonal and episodic water geochemistry (major ions and d13CDIC) of the major branch and outlet of Xijiang River were carried out with the purpose of 1) characterizing temporal variations of aqueous geochemistry and its controlling factors, 2) exploring the impact of hydrological controls on chemical weathering of the Xijiang River Basin. The results show that the concentrations of Cl, Na, Ca, Mg, and HCO3 are generally decreased during monsoon season, which should be mainly caused by dilution. However, the dilution effect does not strictly follow the theoretical dilution curve. Moreover, d13CDIC in the high-flow period has more negative values than in low-flow period. More negative δ13CDIC values in the river during the wet season reflected the influx of rain water with biological CO2 during the rain event. This study suggested that hydrochemistry and d13CDIC had a large variation responding to rainstorm events. The calculated results show that the weathering rates of silicate and carbonate as well as that of related CO2 consumption have a positive relation with water discharge, highlighting the hydrological controls on chemical weathering and CO2 consumption rates. The results indicated carbonated weathering rate responding to hydrological condition sensitivity in the typical carbonate river basin. This work was supported by The China National Science Fund for Outstanding Young Scholars

  3. Substrate degradation and nutrient enrichment structuring macroinvertebrate assemblages in agriculturally dominated Lake Chaohu Basins, China.

    PubMed

    Zhang, You; Cheng, Long; Tolonen, Katri E; Yin, Hongbin; Gao, Junfeng; Zhang, Zhiming; Li, Kuanyi; Cai, Yongjiu

    2018-06-15

    Rapid agricultural development has induced severe environmental problems to freshwater ecosystems. In this study, we aimed to examine the structure and environmental determinants of macroinvertebrate assemblages in an agriculture dominated Lake Chaohu Basin, China. A cluster analysis of the macroinvertebrate communities identified four groups of sites that were characterized by significantly different macroinvertebrate species. These four groups of sites had concentric spatial distribution patterns that followed the variation in the environmental conditions from the less anthropogenically disturbed headwaters towards the more anthropogenically disturbed lower reaches of the rivers and the Lake Chaohu. Moreover, taxa richness decreased from the headwaters towards the Lake Chaohu. The increasing practice of agriculture has reduced the abundances and richness of pollution sensitive species while opposite effects on pollution tolerant species. The study identified substrate heterogeneity and nutrient concentrations as the key environmental factors regulating the changes in the macroinvertebrate communities. We propose that particular attentions should be paid to reduce the nutrient enrichment and habitat degradation in the Lake Chaohu Basin and similar agriculture dominated basins. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Analysis of the evolution of precipitation in the Haihe river basin of China under changing environment

    NASA Astrophysics Data System (ADS)

    Ding, Xiangyi; Liu, Jiahong; Gong, Jiaguo

    2018-02-01

    Precipitation is one of the important factors of water cycle and main sources of regional water resources. It is of great significance to analyze the evolution of precipitation under changing environment for identifying the evolution law of water resources, thus can provide a scientific reference for the sustainable utilization of water resources and the formulation of related policies and measures. Generally, analysis of the evolution of precipitation consists of three levels: analysis the observed precipitation change based on measured data, explore the possible factors responsible for the precipitation change, and estimate the change trend of precipitation under changing environment. As the political and cultural centre of China, the climatic conditions in the Haihe river basin have greatly changed in recent decades. This study analyses the evolution of precipitation in the basin under changing environment based on observed meteorological data, GCMs and statistical methods. Firstly, based on the observed precipitation data during 1961-2000 at 26 meteorological stations in the basin, the actual precipitation change in the basin is analyzed. Secondly, the observed precipitation change in the basin is attributed using the fingerprint-based attribution method, and the causes of the observed precipitation change is identified. Finally, the change trend of precipitation in the basin under climate change in the future is predicted based on GCMs and a statistical downscaling model. The results indicate that: 1) during 1961-2000, the precipitation in the basin showed a decreasing trend, and the possible mutation time was 1965; 2) natural variability may be the factor responsible for the observed precipitation change in the basin; 3) under climate change in the future, precipitation in the basin will slightly increase by 4.8% comparing with the average, and the extremes will not vary significantly.

  5. Active tectonics in southern Xinjiang, China: Analysis of terrace riser and normal fault scarp degradation along the Hotan-Qira fault system

    NASA Technical Reports Server (NTRS)

    Avouac, Jean-Philippe; Peltzer, Gilles

    1993-01-01

    The northern piedmont of the western Kunlun mountains (Xinjiang, China) is marked at its easternmost extremity, south of the Hotan-Qira oases, by a set of normal faults trending N50E for nearly 70 km. Conspicuous on Landsat and SPOT images, these faults follow the southeastern border of a deep flexural basin and may be related to the subsidence of the Tarim platform loaded by the western Kunlun northward overthrust. The Hotan-Qira normal fault system vertically offsets the piedmont slope by 70 m. Highest fault scarps reach 20 m and often display evidence for recent reactivations about 2 m high. Successive stream entrenchments in uplifted footwallls have formed inset terraces. We have leveled topographic profiles across fault scarps and transverse abandoned terrace risers. The state of degradation of each terrace edge has been characterized by a degradation coefficient tau, derived by comparison with analytical erosion models. Edges of highest abandoned terraces yield a degradation coefficient of 33 +/- 4 sq.m. Profiles of cumulative fault scarps have been analyzed in a similar way using synthetic profiles generated with a simple incremental fault scarp model.

  6. Public perception of an ecological rehabilitation project in inland river basins in northern China: Success or failure.

    PubMed

    Feng, Qi; Miao, Zheng; Li, Zongxing; Li, Jianguo; Si, Jianhua; S, Yonghong; Chang, Zongqiang

    2015-05-01

    The need for environmental protection challenges societies to deal with difficult problems because strategies designed by scientists to protect the environment often create negative effects on impoverished local residents. We investigated the effects of China's national and regional policies related to environmental protection and rehabilitation projects in inland river basins, by studying the effect of projects in the Heihe and Shiyang river basins, in northwest China. Interviews and surveys were conducted at 30 sites in the lower reaches of these two arid basins, an area that has experienced severe ecological degradation. The survey results show the ecological rehabilitation projects adversely affected the livelihoods of 70.35% of foresters, 64.89% of farmers and 62.24% of herders in the Minqing region in the lower Shiyang River Basin; also, the projects negatively affected 51.9% of residents in the Ejin Qi in the lower Heihe River Basin. This caused 16.33% of foresters, 39.90% of farmers and 45.32% of herders in the Minqing region to not support the project and 37.5% of residents in the Ejin Qi region said they will deforest and graze again after the project ends. The negative impacts of the policies connected to the projects cause these attitudes. The projects prohibit felling and grazing and require residents to give up groundwater mining; this results in a great amount of uncompensated economic loss to them. Extensive survey data document the concerns of local residents, concerns that are supported by the calculation of actual incomes. In addition, the surveys results show poorer interviewees believe the projects greatly affected their livelihoods. While citizens in this region support environment protection work, the poor require considerable assistance if one expects them to support this type of work. Governmental assistance can greatly improve their living conditions, and hence encourage them to participate in and support the implementation of the projects

  7. Assessment of undiscovered continuous oil and gas resources of Upper Cretaceous Shales in the Songliao Basin of China, 2017

    USGS Publications Warehouse

    Potter, Christopher J.; Schenk, Christopher J.; Pitman, Janet K.; Klett, Timothy R.; Tennyson, Marilyn E.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.; Finn, Thomas M.; Brownfield, Michael E.; Mercier, Tracey J.; Marra, Kristen R.; Woodall, Cheryl A.

    2018-05-03

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 3.3 billion barrels of oil and 887 billion cubic feet of gas in shale reservoirs of the Upper Cretaceous Qingshankou and Nenjiang Formations in the Songliao Basin of northeastern China.

  8. Annual runoff and evapotranspiration of forestlands and non-forestlands in selected basins of the Loess Plateau of China.

    Treesearch

    Yanhui Wang; Pengtao Yu; Karl-Heinz Feger; Xiaohua Wei; Ge Sun; et al

    2011-01-01

    Large-scale forestation has been undertaken over decades principally to control the serious soil erosion in the Loess Plateau of China. A quantitative assessment of the hydrological effects of forestation, especially on basin water yield, is critical for the sustainable forestry development within this dry region. In this study, we constructed the multi-annual water...

  9. Spatio-temporal variation analysis of hydrochemical characteristics in the Luanhe River Basin, China.

    PubMed

    Xie, Ying; Li, Xuyong; Wang, Huiliang; Li, Wenzan

    2013-01-01

    The analysis of river pollution and assessment of spatial and temporal variation in hydrochemistry are essential to river water pollution control in the context of rapid economic growth and growing pollution threats in China. In this study, we focused on hydrochemical characteristics of the Luanhe River Basin (China) and evaluation of 12 hydrochemical variables obtained from 32 monitoring stations during 2001-2010. In each study year, the streams were monitored in the three hydrological periods (April, August, and October) to observe differences in the impacts of agricultural activity and rainfall pattern. Multivariate statistical methods were applied to the data set, and the river water hydrochemical characteristics were assessed using the water quality identification index (WQIIM). The results showed that parameters had variable contribution to water quality status in different months except for ammonia nitrogen (NH4-N) and total nitrogen (TN), which were the most important parameters in contributing to water quality variations for all three periods. Results of WQIIM revealed that 18 sites were classified as 'meeting standard' while the other 14 sites were classified as 'not meeting standard', with most of the seriously polluted sites located in urban area, mainly due to discharge of wastewater from domestic and industrial sources. Sites with low pollution level were located primarily in smaller tributaries, whereas sites of medium and high pollution levels were in the main river channel and the larger tributaries. Our findings provide valuable information and guidance for water pollution control and water resource management in the Luanhe River Basin.

  10. Geochemical evidence for the provenance of aeolian deposits in the Qaidam Basin, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Du, Shisong; Wu, Yongqiu; Tan, Lihua

    2018-06-01

    The main purpose of this study is to analyse the material source of different grain-size components of dune sand in the Qaidam Basin. We determined the trace and rare earth element (REE) compositions and Sr-Nd isotopic compositions of the coarse (75-500 μm) and fine (<75 μm) fractions of surface sediment samples. The comparison of the immobile trace element and REE compositions, Sr-Nd isotopic compositions and multidimensional scaling (MDS) results of the dune sands with those of different types of sediments in potential source areas revealed the following information. (1) The fine- and coarse-grained fractions of dune sands in the Qaidam Basin exhibit distinctly different elemental concentrations, elemental patterns and characteristic parameters of REE. Moreover, Sr-Nd isotopic differences also exist between different grain-size fractions of aeolian sand, which means that different grain-size fractions of these dune sands have different source areas. (2) The geochemical characteristics of the coarse particles of dune sand exhibit obvious regional heterogeneity and generally record a local origin derived from local fluvial sediments and alluvial/proluvial sediments. The coarse- and fine-grained dune sand in the southern Qaidam Basin mainly came from Kunlun Mountains, whereas the coarse- and fine-grained dune sand in the northeastern Qaidam Basin mainly came from Qilian Mountains. (3) The fine-grained fractions of sediments throughout the entire Qaidam Basin may have been affected by the input of foreign materials from the Tarim Basin.

  11. Sedimentary and Paleoceanographic Responses to the South China Sea Basin Evolution

    NASA Astrophysics Data System (ADS)

    Jian, Z.; Liu, Z.; Jin, H.; Larsen, H. C.; Alvarez Zarikian, C. A.; Stock, J. M.; Sun, Z.; Klaus, A.

    2017-12-01

    As the largest marginal sea of the western Pacific, the South China Sea (SCS) has experienced a complete Wilson cycle, which had inevitably exerted a profound impact on the sedimentary environment and ocean circulation. Based on the results of four ODP/IODP expeditions to the SCS since 1999, together with other research data in this region, this study aims to explore the sedimentary and paleoceanographic responses to the tectonic events and basin evolution in the SCS. The early history of the SCS from land to deep sea was revealed by foraminiferal fauna: (1) The SCS evolved from continental shelf to an upper bathyal environment around the Oligocene/Eocene boundary, and significantly deepened at the turn of Oligocene/Miocene; (2) The early Oligocene SCS was deep but its shelf was narrow, evidenced by the Para-Tethys type deep-sea agglutinated benthic foraminifers and abundant transported shallow-water species at ODP Site 1148. Along with the SCS basin formation and the development of this semi-closed basin, the deep-sea benthic foraminiferal δ13C decreased when the Antarctic ice sheet began to reestablish at 14 Ma, the Indonesian Seaway and the southern SCS deep-water channel were closed at 10 Ma, the Luzon arc collided with Taiwan at 6.5 Ma, and the Bashi Strait was restricted at 1.2 Ma. Nd isotopes of shark teeth at ODP Site 1148 also support these inferences. An early to middle Miocene succession of red clay was found at all sites deeper than 3500 m water depth, which may be correlated to a basin-wide event related to deep circulation of oxygenated water from the western Pacific. After the earliest late Miocene carbonate crash, the red clay disappeared while the large carbonate platforms were drowned and remarkably shrank in the SCS. Late Miocene sediments display a succession of hemi-pelagic and turbidite deposits, indicating that the deep basin entered its modern state below the CCD. Frequent turbidites ended when Pliocene growth of deep-sea manganese

  12. Assessing the influence of climate change and inter-basin water diversion on Haihe River basin, eastern China: a coupled model approach

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Wang, Qiang; Zhang, Xiang; Wang, Rui; She, Dunxian

    2018-04-01

    The modeling of changes in surface water and groundwater in the areas of inter-basin water diversion projects is quite difficult because surface water and groundwater models are run separately most of the time and the lack of sufficient data limits the application of complex surface-water/groundwater coupling models based on physical laws, especially for developing countries. In this study, a distributed surface-water and groundwater coupling model, named the distributed time variant gain model-groundwater model (DTVGM-GWM), was used to assess the influence of climate change and inter-basin water diversion on a watershed hydrological cycle. The DTVGM-GWM model can reflect the interaction processes of surface water and groundwater at basin scale. The model was applied to the Haihe River Basin (HRB) in eastern China. The possible influences of climate change and the South-to-North Water Diversion Project (SNWDP) on surface water and groundwater in the HRB were analyzed under various scenarios. The results showed that the newly constructed model DTVGM-GWM can reasonably simulate the surface and river runoff, and describe the spatiotemporal distribution characteristics of groundwater level, groundwater storage and phreatic recharge. The prediction results under different scenarios showed a decline in annual groundwater exploitation and also runoff in the HRB, while an increase of groundwater storage and groundwater level after the SNWDP's operation. Additionally, as the project also addresses future scenarios, a slight increase is predicted in the actual evapotranspiration, soil water content and phreatic recharge. This study provides valuable insights for developing sustainable groundwater management options for the HRB.

  13. Remote Sensing Detecting for Hydrocarbon Microseepage and Relationship with the Uranium Mineralization in Dongsheng Area, Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Liu, D.; Gao, Y.

    2005-12-01

    The Ordos Basin is located at the central area of northern China with an area of about 250,000 km2. It is well known "a basin of energy resources" of China for its large reserves of coal, oil and gas. A large-scale sandstone-type uranium metallogenic belt has been found recently in Zhiluo Formation of middle Jurassic in Dongsheng area in the northeastern part of the basin. The ore-forming mechanism remains unsolved so far. There is a hypothesis that the uranium precipitation was related to a hydrocarbon migration from the central basin. In order to explore the evidences of ever existed hydrocarbon microseepage and migration in this area, several indices such as the Iron Oxide Index, Ferrous Index, Clay Mineral Index, Mineral Composite Index, and Ferrous Transfer Percentage Index have been derived. Thorium Normalization of aeroradiometric data and fusion of aeroradiometric and TM data have been carried out as well. Therefore, the subaerial oxide and reduced area, uranium outmigrated and immigrated area, and ancient recharge and discharge of groundwater are thus delineated. As a result, two hydrocarbon microseepage belts in Dongsheng area have been extracted by combining the methods mentioned above. One is in the northern of Dongsheng along a nearly east-westward fault zone and the other one is in the southern of Dongsheng uranium mineralization belt along a nearly northwestward fault zone. The study suggests that the subaerial reduced area was related to hydrocarbon microseepage and the hydrocarbon migration along the fault and fracture zone or penetrable strata played an important role for uranium deposition in Zhiluo Formation near the northwestward fault zone.

  14. Tectonic and magmatic processes of the post-spreading ridge in the Southwest Sub-basin, South China Sea

    NASA Astrophysics Data System (ADS)

    Li, J.; Zhang, J.; Ruan, A.; Niu, X.; Ding, W.

    2016-12-01

    We report here a 3D ocean bottom seismometer experiment on the fossil spreading ridge in the Southwest Sub-basin of the South China Sea. An extreme asymmetric crustal structure across the axis is revealed and caused by lower crust thinning and upper mantle uplifting located on NW side of the ridge. Such crustal extension proposed a low-angle oceanic detachment fault throughout the whole crust on the last or post spreading stages. A low-velocity (7.6-7.9 km/s) on the uplifting upper mantle is possibly induced by both mantle serpentinization and/or decompression melting through the detachment fault. Velocity models also demonstrate that a post-spreading volcano erupted on the axis is mainly formed by an extrusive process with an extrusive/intrusive ratio of 1.92. Very low velocity of upper crust (3.1-4.8 km/s) of the volcano is attributed to the composition of volcaniclastic rocks and high-porosity basalts, which have been observed in the borehole and dredged samples on the seamounts nearby. KEY WORDS post-spreading ridge; wide-angle seismic refraction; crustal structure; South China Sea; Southwest Sub-basin

  15. Intensified pluvial conditions during the twentieth century in the inland Heihe River Basin in arid northwestern China over the past millennium

    NASA Astrophysics Data System (ADS)

    Qin, Chun; Yang, Bao; Burchardt, Iris; Hu, Xiaoli; Kang, Xingcheng

    2010-06-01

    Past streamflow variability is of special significance in the inland river basin, i.e., the Heihe River Basin in arid northwestern China, where water shortage is a serious environmental and social problem. However, the current knowledge of issues related to regional water resources management and long-term planning and management is limited by the lack of long-term hydro-meteorological records. Here we present a 1009-year annual streamflow (August-July) reconstruction for the upstream of the Heihe River in the arid northwestern China based on a well-replicated Qilian juniper ( Sabina przewalskii Kom.) ring-width chronology. This reconstruction accounts for 46.9% of the observed instrumental streamflow variance during the period 1958-2006. Considerable multidecadal to centennial flow variations below and above the long-term average are displayed in the millennium streamflow reconstruction. These periods 1012-1053, 1104-1212, 1259-1352, 1442-1499, 1593-1739 and 1789-1884 are noteworthy for the persistence of low-level river flow, and for the fact that these low streamflow events are not found in the observed instrumental hydrological record during the recent 50 years. The 20th century witnessed intensified pluvial conditions in the upstream of the Heihe River in the arid northwestern China in the context of the last millennium. Comparison with other long-term hydrological reconstructions indicates that the intensification of the hydrological cycle in the twentieth century from different regions could be attributable to regional to large-scale temperature increase during this time. Furthermore, from a practical perspective, the streamflow reconstruction can serve as a robust database for the government to work out more scientific and more reasonable water allocation alternatives for the Heihe River Basin in arid northwestern China.

  16. [Phylogeny and divergence time estimation of Schizothoracinae fishes in Xinjiang].

    PubMed

    Ayelhan, Haysa; Guo, Yan; Meng, Wei; Yang, Tianyan; Ma, Yanwu

    2014-10-01

    Based on combined data of mitochondrial COI, ND4 and 16S RNA genes, molecular phylogeny of 4 genera, 10 species or subspecies of Schizothoracinae fishes distributed in Xinjiang were analyzed. The molecular clock was calibrated by divergence time of Cyprininae and geological segregation event between the upper Yellow River and Qinghai Lake. Divergence time of Schizothoracinae fishes was calculated, and its relationship with the major geological events and the climate changes in surrounding areas of Tarim Basin was discussed. The results showed that genus Aspiorhynchus did not form an independent clade, but clustered with Schizothorax biddulphi and S. irregularis. Kimura 2-parameter model was used to calculate the genetic distance of COI gene, the genetic distance between genus Aspiorhynchus and Schizothorax did not reach genus level, and Aspiorhynchus laticeps might be a specialized species of genus Schizothorax. Cluster analysis showed a different result with morphological classification method, and it did not support the subgenus division of Schizothorax fishes. Divergence of two groups of primitive Schizothoracinae (8.18Ma) and divergence of Gymnodiptychus dybowskii and Diptychus maculates (7.67Ma) occurred in late Miocene, which might be related with the separation of Kunlun Mountain and north Tianshan Mountain River system that was caused by the uplift of Qinghai-Tibet Plateau and Tianshan Mountain, and the aridification of Tarim Basin. The terrain of Tarim Basin that was affected by Quaternary Himalayan movement was high in west but low in east, as a result, Lop Nor became the center of surrounding mountain rivers in Tarim Basin, which shaped the distribution pattern of genus Schizothorax.

  17. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China.

    PubMed

    Yang, Qingchun; Wang, Luchen; Ma, Hongyun; Yu, Kun; Martín, Jordi Delgado

    2016-09-01

    Ordos Basin is located in an arid and semi-arid region of northwestern China, which is the most important energy source bases in China. Salawusu Formation (Q3 s) is one of the most important aquifer systems of Ordos Basin, which is adjacent to Jurassic coalfield areas. A large-scale exploitation of Jurassic coal resources over ten years results in series of influences to the coal minerals, such as exposed to the oxidation process and dissolution into the groundwater due to the precipitation infiltration. Therefore, how these processes impact groundwater quality is of great concerns. In this paper, the descriptive statistical method, Piper trilinear diagram, ratios of major ions and canonical correspondence analysis are employed to investigate the hydrochemical evolution, determine the possible sources of pollution processes, and assess the controls on groundwater compositions using the monitored data in 2004 and 2014 (before and after large-scale coal mining). Results showed that long-term exploration of coal resources do not result in serious groundwater pollution. The hydrochemical types changed from HCO3(-)-CO3(2-) facies to SO4(2-)-Cl facies during 10 years. Groundwater hardness, nitrate and sulfate pollution were identified in 2014, which was most likely caused by agricultural activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Inland Aridification of NW China Since the Late Middle Eocene: Stable Isotope Evidence from Western Qaidam Basin

    NASA Astrophysics Data System (ADS)

    Li, L.; Garzione, C. N.; Pullen, A. T.; Chang, H.; Molnar, P. H.

    2014-12-01

    Cenozoic paleoclimate reconstructions of China, based on pollens, fossils and sedimentary deposits, show a change from planetary aridity to inland aridity of NW China by the early Miocene. However, the initiation of this paleoclimate transition is not well-documented and might be much earlier. The surface uplift of the Tibetan Plateau, the retreat of the Para-Tethys sea, and global cooling have all been suggested to influence the establishment of this inland aridity, although their relative significance remains obscure. This paper presents a stable isotope study of a 4435 m long sedimentary section from the western Qaidam Basin, northern Tibetan Plateau, that spans from the late middle Eocene to late Miocene. The lowermost and uppermost parts of the section are dominated by fluvial and alluvial fan deposits, while the majority of the middle of the section represents palustrine, lower fan delta and marginal to shallow lacustrine fine-grained sediments intercalated with coarse sandstone and conglomerate. Our isotope data show sporadic aridity events in the late middle Eocene to early Oligocene, which might mark the transition from planetary aridity to, or the initiation of, inland aridity in NW China, due to the retreat of the Para-Tethys sea, a process that might be significantly influenced by the early topographic growth of the south-central Tibetan Plateau. A negative shift in oxygen isotope values around 19 Ma is also in accordance with other geological evidence suggesting the Oligocene-early Miocene growth of the Kunlun mountains south of the Qaidam basin. Later intensification of aridity occurred at ~12 Ma that corresponds with a regional climate change event, which we attribute to the upward and outward growth of the northern Tibetan Plateau. The final establishment of extreme inland aridity that is comparable to present day was most likely established at ~3.1-2.6 Ma in the Qaidam basin, and therefore global cooling and northern hemisphere glaciation is a

  19. Quantifying the magnitude of the impact of climate change and human activity on runoff decline in Mian River Basin, China.

    PubMed

    Fan, Jing; Tian, Fei; Yang, Yonghui; Han, Shumin; Qiu, Guoyu

    2010-01-01

    Runoff in North China has been dramatically declining in recent decades. Although climate change and human activity have been recognized as the primary driving factors, the magnitude of impact of each of the above factors on runoff decline is still not entirely clear. In this study, Mian River Basin (a watershed that is heavily influenced by human activity) was used as a proxy to quantify the contributions of human and climate to runoff decline in North China. SWAT (Soil and Water Assessment Tool) model was used to isolate the possible impacts of man and climate. SWAT simulations suggest that while climate change accounts for only 23.89% of total decline in mean annual runoff, human activity accounts for the larger 76.11% in the basin. The gap between the simulated and measured runoff has been widening since 1978, which can only be explained in terms of increasing human activity in the region. Furthermore, comparisons of similar annual precipitation in 3 dry-years and 3 wet-years representing hydrological processes in the 1970s, 1980s, and 1990s were used to isolate the magnitude of runoff decline under similar annual precipitations. The results clearly show that human activity, rather than climate, is the main driving factor of runoff decline in the basin.

  20. [Environmental benefit-loss analysis of agro-ecosystem in Haihe River Basin, China].

    PubMed

    Bai, Yang; Ouyang, Zhi-yun; Zheng, Hua; Xu, Wei-hua; Jiang, Bo; Fang, Yu

    2010-11-01

    According to the connotation of ecosystem services, an evaluation index system for the agro-ecosystem services in the Haihe River basin of China was established, and the economic value of the agro-ecosystem services and environmental costs were evaluated by the methods of market valuation, shadow price, and opportunity cost. In 2005, the total environmental benefit value of the agro-ecosystem services in the basin was 180. 264 billion RMB, with the regulation value of 79.416 billion RMB (44.06%) and the supporting value of 100.848 billion RMB (55.94%). Provision and cultural services were not considered in this research. From the viewpoint of functional type, the ecosystem services value from high to low was in the order of oxygen release > water conservation > nutrient cycling > soil conservation > waste purification > environmental purification > carbon sequestration > straw returning. The environmental costs of the agro-ecosystem were quite high (42. 293 billion RMB), among which, fertilizer loss was 427.42 x 10(4) t, equivalent to 15.191 billion RMB, and greenhouse gases production was calculated as 3599.65 x 10(4) t CO2, equivalent to 27. 102 billion RMB.

  1. Evaluation of Drought Occurrence and Climate Change in the Pearl River Basin in South China

    NASA Astrophysics Data System (ADS)

    DU, Y.; Chen, J.; Wang, K.; Shi, H.

    2015-12-01

    This study uses the Variable Infiltration Capacity (VIC) Model to simulate the hydrological processes over the Pearl River basin in South China. The observed streamflow data in the Pearl River Basin for the period 1951-2000 are used to evaluate the model simulation results. Further, in this study, the 55 datasets of climate projection from 18 General Circulation Models (GCMs) for the IPCC AR4 (SRES A2/A1B/B1) and AR5 (RCP 2.6/4.5/6.0/8.5) are used to drive the VIC model at 0.5°× 0.5°spatial resolution and daily temporal resolution. Then, the monthly Standard Precipitation Index (SPI) and standardized runoff index (SRI) are generated to detect the drought occurrence. This study validates the GCMs projection through comparing the observed precipitation for the period of 2000-2013. Then, spatial variation of the frequency change of moderate drought, severe drought and extreme drought are analyzed for the 21st century. The study reveals that the frequencies of severe drought and extreme drought occurrences over the Pearl River Basin increase along with time. Specifically, for the scenario of AR5 RCP 8.5, the east and west parts of the Pearl River Basin most likely suffer from severe drought and extreme drought with an increased frequency throughout the 21st century.

  2. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  3. The ~2.4 Ga granitoids in the Quanji Massif,NW China: Petrogenesis and Implication for the early Paleoproterozoic Tectonics

    NASA Astrophysics Data System (ADS)

    Gong, S.; Chen, N.; Wang, Q.

    2014-12-01

    The 2.4-2.2 Ga collision-related magmatism had once been considered to be weak or lacking, and were interpreted to represent the stagnation and deceleration of plate subduction. However, large-scale intermediate to acid intrusions at 2.4-2.2 Ga are widely reported in the Trans-North China Orogen and Tarim Craton, NW China. Here we presented geochronological and geochemical and Nd-Hf isotopic studies of the Hudesheng and Delingha granitoids in the Quanji Massif, which could shed new light on the NW China and global tectonics in the Paleoproterozoic. The two granitoids are exposed in the eastern and central parts of the Quanji Massif, showing similar rock types and including mainly the syenogranitic, monzogranitic and adamellitic gneisses, with ~2.41 Ga low P/T-type amphibolite enclaves. They were formed at 2.37-2.39 Ga and underwent medium P/T-type amphibolite-facies metamorphism at ~1.95-1.90 Ga. Both granitoids have relatively high Si, K contents and FeO*/Mg, 104Ga/Al ratios, and are characterized by a relative enrichment in LILEs and LREEs, but depletion in Ba, Sr, Eu and Nb. These signatures are similar to those of the high-K calc-alkaline I-type granites, and with some geochemical features of A-type granites as well, suggesting that their formation might be related to a post-collisional setting with transition from compression to extension regimes at ~2.4 Ga. The whole-rock Nd and zircon Hf isotopes suggest important crustal growth occurred at ~2.5-2.8 Ga, and the precursor magmas of both granitoids were derived from partial melting of the Neo-Archean juvenile and ancient crustal components. Collectively, the ~2.37-2.39 Ga magmatic activities in the Quanji Massif took place right after arc-related metamorphism and arc-continent collision, thus probably making up part of the arc-related ~2.4-2.2 Ga magmatic activities, including those in the Trans-North China Orogen and Tarim Craton, NW China. This implies that a prolonged strong subduction

  4. Experimental study on water transport observations of desert riparian forests in the lower reaches of the Tarim River in China.

    PubMed

    Chen, Yaning; Li, Weihong; Zhou, Honghua; Chen, Yapeng; XinmingHao; Fu, Aihong; Ma, Jianxin

    2017-06-01

    Studying the water use processes of desert riparian vegetation in arid regions and analyzing the response and adaptation strategies of plants to drought stress are of great significance for developing ecological restoration measures. Based on field monitoring and test analyses of physiological ecological indicators of dominant species (Populus euphratica and Tamarix chinensis) in the desert riparian forest in the lower reaches of the Tarim River, the water relations of P. euphratica and T. chinensis under drought stress are discussed and some water use strategies put forward. The results show that (1) concerning plant water uptake, desert riparian forests depend mainly on groundwater to survive under long-term water stress. (2) Concerning plant water distribution, the survival of P. euphratica and nearby shallow root plants is mainly due to the hydraulic lift and water redistribution of P. euphratica under drought stress. (3) Concerning plant water transport, P. euphratica sustains the survival of competitive and advantageous branches by improving their ability to acquire water while restraining the growth of inferior branches. (4) Concerning plant transpiration, the sap flow curves of daily variations of P. euphratica and T. chinensis were wide-peak sin and narrower-peak respectively. T. chinensis has better environmental adaptability.

  5. Contributions of local terrestrial evaporation and transpiration to precipitation using δ18O and D-excess as a proxy in Shiyang inland river basin in China

    NASA Astrophysics Data System (ADS)

    Zongxing, Li; Qi, Feng; Wang, Q. J.; Yanlong, Kong; Aifang, Cheng; Song, Yong; Yongge, Li; Jianguo, Li; Xiaoyan, Guo

    2016-11-01

    Moisture recycling by terrestrial evaporation and transpiration has recently been confirmed as an important source of precipitation, but little is known of this contribution in inland river basins of China. This study determines the fractions contributed by terrestrial evaporation and transpiration to precipitation in the Shiyang river basin, located in Gansu province of northwestern China. The basin has an area of 4.16 × 104 km2 and mean annual precipitation of 300 mm/yr. Hundreds of samples of precipitation, surface water, plant stem water and soil water were collected and analyzed for their isotopic compositions. The Craig-Gordon model and a three-end-member mixing model were used to partition precipitation into water sourced from evaporation, transpiration and advection. On average, evaporation, transpiration and advection were responsible for 9%, 14% and 77%, respectively, of precipitation, and the contribution from terrestrial evaporation and transpiration also increased with elavation; they also varied with season, being highest in August. The significant contribution from transpiration highlights the importance of vegetation conservation in this ecologically fragile basin.

  6. Using stable isotopes and major ions to identify hydrological processes and geochemical characteristics in a typical karstic basin, Guizhou, Southwest China.

    PubMed

    Han, Zhiwei; Tang, Changyuan; Wu, Pan; Zhang, Ruixue; Zhang, Chipeng

    2014-01-01

    The investigation of hydrological processes is very important for water resource development in karst basins. In order to understand these processes associated with complex hydrogeochemical evolution, a typical basin was chosen in Houzai, southwest China. The basin was hydrogeologically classified into three zones based on hydrogen and oxygen isotopes as well as the field surveys. Isotopic values were found to be enriched in zone 2 where paddy fields were prevailing with well-developed underground flow systems, and heavier than those in zone 1. Zone 3 was considered as the mixture of zones 1 and 2 with isotopic values falling in the range between the two zones. A conceptual hydrological model was thus proposed to reveal the probable hydrological cycle in the basin. In addition, major processes of long-term chemical weathering in the karstic basin were discussed, and reactions between water and carbonate rocks proved to be the main geochemical processes in karst aquifers.

  7. Paleostress Analysis with Reflection Seismic Data: Example from the Songliao Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Liu, G.; Persaud, P.; Zhang, Y.

    2017-12-01

    Currently paleostress inversion using fault-slip data is a well established approach. However, the deformation history contained in folds has not yet been fully utilized to determine the paleostress field. By applying a 2D FFT-based algorithm to a structure or isopach map derived from reflection seismic data, we find a new way of exploiting the information preserved in folds to determine the paleostress. Our method requires that the strata have a large areal extent and are well preserved. After pre-processing the maps, we find that in the frequency-wavenumber (F-K) domain, folds with similar strikes are grouped into spectrum belts. Each belt parallels the short axis of the fold group and can therefore indicate the direction of the associated maximum horizontal stress. Some information on the relative chronology of stresses can be deduced by comparing the structure and isopach spectrum maps, e.g., if the structure spectrum map has one more spectrum belt than that of the isopach map (an approximate paleo-structure map of the corresponding stratum), we can conclude that the indicated stress postdated the deposition of the stratum. We selected three Late Cretaceous strata from a 3D seismic survey located in the intracontinental Songliao Basin, northeast China. The Songliao has experienced four episodes of deformation: mantle upwelling, rifting, postrift thermal subsidence and structural inversion (Feng et al., 2009). The selected strata were deposited during the third stage. Three structure and two isopach maps were decomposed in the F-K domain. Spectral analysis of the lower isopach map shows eight paleostress directions. We also identify a ninth paleostress in addition to the previous eight from the structure maps and the upper isopach map. The eight stress directions that exist in both the isopach and structure maps may have been active throughout the time period spanned by the strata. We interpret the ninth paleostress as being active after the deposition of the

  8. A gravity study along a profile across the Sichuan Basin, the Qinling Mountains and the Ordos Basin (central China): Density, isostasy and dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Yongqian; Teng, Jiwen; Wang, Qianshen; Lü, Qingtian; Si, Xiang; Xu, Tao; Badal, José; Yan, Jiayong; Hao, Zhaobing

    2017-10-01

    In order to investigate the structure of the crust beneath the Middle Qinling Mountains (MQL) and neighboring areas in the North China Block and South China Block, a north-south gravity profile from Yuquan in the Sichuan Basin to Yulin in the Ordos Basin was conducted in 2011. The Bouguer gravity anomaly is determined from a high-quality gravity dataset collected between 31°N and 36°N of latitude, and varies between -200 and -110 mGal in the study region. Using accredited velocity density relationships, an initial crust-mantle density model is constructed for MQL and adjacent areas, which is later refined interactively to simulate the observed gravity anomaly. The present study reveals the features of the density and Bouguer gravity with respect to the tectonic units sampled by the profile. The lithosphere density model shows typical density values that depict a layered structure and allow differentiate the blocks that extend along the reference profile. The gravity field calculated by forward modeling from the final density distribution model correlates well with the measured gravity field within a standard deviation of 1.26 mGal. The density in the crystalline crust increases with depth from 2.65 g/cm3 up to the highest value of 2.95 g/cm3 near the bottom of the crust. The Conrad interface is identified as a density jump of about 0.05 g/cm3. The average density of the crust in MQL is clearly lower than the density in the formations on both sides. Starting from a combined Airy-Pratt isostatic compensation model, a partly compensated crust is found below MQL, suggesting future growth of the crust, unlike the Ordos and Sichuan basins that will remain stable. On the basis of the density and isostatic state of the crust and additional seismological research, such as the P-wave velocity model and Poisson's ratio, it is concluded that the lower crust delamination is a reasonable interpretation for the geophysical characteristics below the Qinling Orogen.

  9. Quantifying the influence of natural and socioeconomic factors and their interactive impact on PM2.5 pollution in China.

    PubMed

    Yang, Dongyang; Wang, Xiaomin; Xu, Jianhua; Xu, Chengdong; Lu, Debin; Ye, Chao; Wang, Zujing; Bai, Ling

    2018-06-04

    PM 2.5 pollution is an environmental issue caused by multiple natural and socioeconomic factors, presenting with significant spatial disparities across mainland China. However, the determinant power of natural and socioeconomic factors and their interactive impact on PM 2.5 pollution is still unclear. In the study, the GeogDetector method was used to quantify nonlinear associations between PM 2.5 and potential factors. This study found that natural factors, including ecological environments and climate, were more influential than socioeconomic factors, and climate was the predominant factor (q = 0.56) in influencing PM 2.5 pollution. Among all interactions of the six influencing factors, the interaction of industry and climate had the largest influence (q = 0.66). Two recognized major contaminated areas were the Tarim Basin in the northwest region and the eastern plain region; the former was mainly influenced by the warm temperate arid climate and desert, and the latter was mainly influenced by the warm temperate semi-humid climate and multiple socioeconomic factors. The findings provided an interpretation of the influencing mechanisms of PM 2.5 pollution, which can contribute to more specific policies aimed at successful PM 2.5 pollution control and abatement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Analysis of spatial pattern Change of LU/LC over the upper Tarim River region since 1990 using remote sensing data

    NASA Astrophysics Data System (ADS)

    Bai, L. Y.; Feng, J. Z.; Ma, Y. X.; Ran, Q. Y.; Wang, K.; Zhao, Y.

    2017-02-01

    The upper reaches of Tarim River (URTR) is an important port of trade between China and central Asia. The development of the URTR is thus significant for the SREB initiative. The LU/LC data in the URTR from 1990 to 2015 were used to quantitatively explore the dynamics of LU/LC changes, and its driving force was discussed from two aspects of nature and human. Results showed that the unused land and grassland were the main land use types in this area, accounting for more than 79%. Compared with the data of 1990, the areas of woodland, water, farmland, and building land of 2015 increased with 3.24%, 6.53%, 10.57%, and 0.40%, respectively, and the areas of unused land and grassland decreased, which accounted for 53.25% and 26.01%, respectively. The increases of the woodland and farmland areas mainly is originated from grassland and unused land. The woodland increased sharply around 2000 due to the abundant water during the period between 1998 and 2000. Subsequently, part of the woodland was shifted into the farmland. The extension of building land wasn’t obvious, but showed a salient feature of population urbanization. It was essential that the LU/LC patterns of the URTR were deeply influenced by human farming and living activities.

  11. Development of a model-based flood emergency management system in Yujiang River Basin, South China

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Cai, Yanpeng; Jia, Peng; Mao, Jiansu

    2014-06-01

    Flooding is the most frequent disaster in China. It affects people's lives and properties, causing considerable economic loss. Flood forecast and operation of reservoirs are important in flood emergency management. Although great progress has been achieved in flood forecast and reservoir operation through using computer, network technology, and geographic information system technology in China, the prediction accuracy of models are not satisfactory due to the unavailability of real-time monitoring data. Also, real-time flood control scenario analysis is not effective in many regions and can seldom provide online decision support function. In this research, a decision support system for real-time flood forecasting in Yujiang River Basin, South China (DSS-YRB) is introduced in this paper. This system is based on hydrological and hydraulic mathematical models. The conceptual framework and detailed components of the proposed DSS-YRB is illustrated, which employs real-time rainfall data conversion, model-driven hydrologic forecasting, model calibration, data assimilation methods, and reservoir operational scenario analysis. Multi-tiered architecture offers great flexibility, portability, reusability, and reliability. The applied case study results show the development and application of a decision support system for real-time flood forecasting and operation is beneficial for flood control.

  12. Nature and tectonic implications of uneven sedimentary filling of the South China Sea oceanic basin

    NASA Astrophysics Data System (ADS)

    Yin, Shaoru; Li, Jiabiao; Ding, Weiwei; Fang, Yinxia

    2017-04-01

    The IODP Expedition 349 in 2014, for the first time, illustrated significant differences of sediment rate and lithology in the central South China Sea (SCS) oceanic basin. Based on seismic reflection profiles tied to IODP349 drilling data, we investigated characteristics of sedimentary filling of the whole SCS oceanic basin, and examined their implications for tectonics. Results show that sediments fill the SCS oceanic basin mainly in three depositional patterns. Firstly, during the Oligocene to middle Miocene, sediments amassed almost solely and then connected like a band parallel to the continent in a low average sediment rate (<10 m/Myr) in the northern oceanic basin. These sediments were deposited mainly in the form of submarine fans and mass transport deposits. Sediments were predominately supplied by the Red and Pearl Rivers and the Dongsha Islands. The sedimentary characteristics likely reflect the latest early Miocene end of seafloor spreading of the SCS and the first-phase rapid uplift of the Tibetan Plateau. Secondly, during the late Miocene, deposition mainly occurred in the Northwest Sub-basin and extended southeastward with a middle average sediment rate ( 30 m/Myr). Sediments were mostly transported by the Red River and Xisha Trough and deposited in the form of submarine fans. The abnormal increase of sediment rate in the Northwest Sub-basin reflects late Miocene slip reversal of the Red River Fault. Finally, since the Pliocene, sediments gradually propagated northeastward in the Southwestern Sub-basin, and accumulated rapidly in the southeastern and northeastern basin, especially in the northern Manila Trench during the Quaternary, in an average sediment rate about 60-80 m/Myr. These sediments were transported mainly by submarine canyons and settled in the form of submarine fans and canyon-overbank deposition. Sediments came from four major sources, including Taiwan, Dongsha Islands, Mekong River, and northern Palawan. The Pliocene to Quaternary

  13. Cenozoic plate reconstruction of the South China Sea region

    NASA Astrophysics Data System (ADS)

    Lee, Tung-Yi; Lawver, Lawrence A.

    1994-07-01

    Reconstructions of the South China Sea region at 60 Ma, 40 Ma, 30 Ma, 20 Ma, 10 Ma and 5 Ma are presented. We have attempted to place the South China Sea Basin in a regional tectonic framework. The tectonic evolution of the major blocks surrounding the South China Sea were analyzed, as well as the relative motions of the Indian and Australian plates. We have tried to correct the tectonic models available in this region. A 3-D graphics terminal was used to derive rotation poles for the different tectonic blocks and our model was then tested to determine its self-consistency. When the model conflicted with previous interpretations the input data were evaluated for alternative explanations. At least two, and possibly three, stages of extension can be recognized in this region. The earliest one, active in the Late Cretaceous to Eocene, involved NW-SE extension. The second one, active from the Late Eocene to Early Miocene involved north-south extension. The third stage of extension, which probably trended NW-SE, can be dated as post-Oligocene. The first extensional event produced the NE-SW trending proto-South China Sea and a series of sedimentary basins along the South China margin. Following the southeastward extrusion of Indochina, the proto-South China Sea was mostly consumed at the Palawan Trough. Renewed north-south extension in the South China continental margin started the present-day South China Sea spreading in the Oligocene. The southeastward extrusion of Indochina, blocked by Sundaland, resulted in the NW-SE trending opening of the South China Sea Basin in the Early Miocene. Collision of the North Palawan microcontinental block with the West Philippines block stopped the opening of the South China Sea at the end of Early Miocene. Spreading activity switched to the Sulu Sea Basin in the Middle Miocene but collision between the Sulu Ridge and the West Philippines at Mindanao halted the opening of the Sulu Sea at the end of the Middle Miocene. In the Late

  14. Temporal and spatial variation of hydrological condition in the Ziwu River Basin of the Han River in China

    NASA Astrophysics Data System (ADS)

    Li, Ziyan; Liu, Dengfeng; Huang, Qiang; Bai, Tao; Zhou, Shuai; Lin, Mu

    2018-06-01

    The middle route of South-To-North Water Diversion in China transfers water from the Han River and Han-To-Wei Water Diversion project of Shaanxi Province will transfer water from the Ziwu River, which is a tributary of the Han River. In order to gain a better understanding of future changes in the hydrological conditions within the Ziwu River basin, a Mann-Kendall (M-K) trend analysis is coupled with a persistence analysis using the rescaled range analysis (R/S) method. The future change in the hydrological characteristics of the Ziwu River basin is obtained by analysing the change of meteorological factors. The results show that, the future precipitation and potential evaporation are seasonal, and the spatial variation is significant. The proportion of basin area where the spring, summer, autumn and winter precipitation is predicted to continue increase is 0.00, 100.00, 19.00 and 16.00 %, meanwhile, the proportion of basin area that will continue to decrease in the future respectively will be 100.00, 0.00, 81.00 and 74.00 %.The future potential evapotranspiration of the four seasons in the basin shows a decreasing trend. The future water supply situation in the spring and autumn of the Ziwu River basin will degrade, and the future water supply situation in the summer and winter will improve. In addition, the areas with the same water supply situation are relatively concentrated. The results will provide scientific basis for the planning and management of river basin water resources and socio-hydrological processes analysis.

  15. Seismic shaking in the North China Basin expected from ruptures of a possible seismic gap

    NASA Astrophysics Data System (ADS)

    Duan, Benchun; Liu, Dunyu; Yin, An

    2017-05-01

    A 160 km long seismic gap, which has not been ruptured over 8000 years, was identified recently in North China. In this study, we use a dynamic source model and a newly available high-resolution 3-D velocity structure to simulate long-period ground motion (up to 0.5 Hz) from possibly worst case rupture scenarios of the seismic gap. We find that the characteristics of the earthquake source and the local geologic structure play a critical role in controlling the amplitude and distribution of the simulated strong ground shaking. Rupture directivity and slip asperities can result in large-amplitude (i.e., >1 m/s) ground shaking near the fault, whereas long-duration shaking may occur within sedimentary basins. In particular, a deep and closed Quaternary basin between Beijing and Tianjin can lead to ground shaking of several tens of cm/s for more than 1 min. These results may provide a sound basis for seismic mitigation in one of the most populated regions in the world.

  16. Tectonic implications of Mesozoic magmatism to initiation of Cenozoic basin development within the passive South China Sea margin

    NASA Astrophysics Data System (ADS)

    Mai, Hue Anh; Chan, Yu Lu; Yeh, Meng Wan; Lee, Tung Yi

    2018-04-01

    The South China Sea (SCS) is one of the classical example of a non-volcanic passive margin situated within three tectonic plates of the Eurasian, Indo-Australian and Philippine Sea plate. The development of SCS resulted from interaction of various types of plate boundaries, and complex tectonic assemblage of micro blocks and accretionary prisms. Numerous models were proposed for the formation of SCS, yet none can fully satisfy different aspects of tectonic forces. Temporal and geographical reconstruction of Cretaceous and Cenozoic magmatism with the isochrones of major basins was conducted. Our reconstruction indicated the SE margin of Asia had gone through two crustal thinning events. The sites for rifting development are controlled by localized thermal weakening of magmatism. NW-SE extension setting during Late Cretaceous revealed by magmatism distribution and sedimentary basins allow us to allocate the retreated subduction of Pacific plate to the cause of first crustal thinning event. A magmatic gap between 75 and 65 Ma prior to the initiation of first basin rifting suggested a significant modification of geodynamic setting occurred. The Tainan basin, Pearl River Mouth basin, and Liyue basins started to develop since 65 Ma where the youngest Late Cretaceous magmatism concentrated. Sporadic bimodal volcanism between 65 and 40 Ma indicates further continental extension prior to the opening of SCS. The E-W extension of Malay basin and West Natuna began since late Eocene followed by N-S rifting of SCS as Neotethys subducted. The SCS ridge developed between Pearl River Mouth basin and Liyue basin where 40 Ma volcanic activities concentrated. The interaction of two continental stretching events by Pacific followed by Neotethys subduction with localized magmatic thermal weakening is the cause for the non-volcanic nature of SCS.

  17. Sediment record of environmental change at Lake Lop Nur (Xinjiang, NW China) from 13.0 to 5.6 cal ka BP

    NASA Astrophysics Data System (ADS)

    Wang, Jingzhong; Jia, Hongjuan

    2017-09-01

    Lake Lop Nur is located in the eastern part of the Tarim Basin in Xinjiang, northwestern China. A 220-cm-long sediment core was collected from the center of the ear-shaped depression forming the basin and dated with AMS14C. Grain size, total organic matter (TOC), total nitrogen (TN), and TOC/TN (C/N) analyses were used to reconstruct climatic conditions from 13.0 to 5.6 cal ka BP. The results showed five main climatic stages. Zone I (13.0-11.3 cal ka BP) was a wet-dry environment, whereas Zone II (11.3-8.9 cal ka BP) consisted of a primarily wet environment. Zone III (8.9-7.7 cal ka BP) was subdivided into Zone IIIa (8.9-8.2 cal ka BP) that indicated lake constriction and dry climate, and Zone IIIb (8.2-7.7 cal ka BP) in which the proxies indicated wet conditions. In Zone IV (7.7-6.6 cal ka BP), the climate presented a bit wet conditions. In Zone V (6.6-5.6 cal ka BP), abundant glauberite is present in the sediment and silt dominates the lithology; these results indicate the lake shrank and the overall climate was dry. Abrupt environmental events were also identified, including six dry events at 11.0, 10.5, 9.3, 8.6, 8.2, and 7.6 cal ka BP and one flood event from 7.8 to 7.7 cal ka BP in the Early-Middle Holocene.

  18. Crustal structure along the geosciences transect from Altay to Altun Tagh

    USGS Publications Warehouse

    Wang, Y.-X.; Han, G.-H.; Jiang, M.; Yuan, X.-C.; Mooney, W.D.; Coleman, R.G.

    2004-01-01

    Based upon the P- and S-wave data acquired along the geoscience transect from Altay to Altun Tagh in Northwest China, the crustal structures of velocities and Poisson's ratio are determined. The crustal velocity structure features an obvious three-layer structure with velocities of 6. 0 ??? 6. 3km/s, 6. 3 ??? 6. 6km/s and 6.9 ??? 7. Okm/s from surface to depth, respectively. The crustal thickness along the. entire profile is mostly 50km with the thickest crust (56km) beneath the Altay and the thinnest (46km) beneath the Junggar basin. The velocities underlying Moho are 7.7 to 7.8km/s between the Tianshan and the Junggar basin, and 7.9 to 8.0km/s below the Altay Mountains and eastern margin of the Tarim basin. The southern half of the profile, including the eastern Tianshan Mountains and eastern margin of the Tarim basin, shows low P-wave velocities and ?? = 0. 25 to a depth, of 30km, which suggests a quartz-rich, granitic upper crustal composition. The northern half of the profile below the Altay Mountains and Junggar Accretional Belt has a higher Poisson's ratio of ?? = 0.26 ??? 0.27 to a depth of 30km, indicative of an intermediate crustal composition, The entire profile is underlain by a 15 to 30km thick high-velocity (6.9 ??? 7.0km/s; ?? = 0. 26 - 0.28) lower crustal layer that we interpret to have a bulk composition of mafic granulite. At the southern end of the profile a 5km-thick midcrustal low-velocity layer ( Vp, = 5.9km/s, ?? = 0.25) underlies the Tianshan and the region to the south, and may be indicative of granitic intrusive in Late Paleozoic.

  19. S-wave attenuation of the shallow sediments in the North China basin based on borehole seismograms of local earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Li, Zhiwei

    2018-06-01

    S-wave velocity and attenuation structures of shallow sediments play important roles in accurate prediction of strong ground motion. However, it is more difficult to investigate the attenuation than velocity structures. In this study, we developed a new approach for estimating frequency-dependent S-wave attenuation (Q_S^{ - 1}) structures of shallow sediments based on multiple time window analysis of borehole seismograms from local earthquakes. Multiple time windows for separating direct and surface-reflected S-waves in local earthquake waveforms at borehole stations are selected with a global optimization scheme. With respect to different time windows, the transfer functions between direct and surface-reflected S-waves are achieved with a weighted averaging scheme, based on which frequency dependent Q_S^{ - 1} values are obtained. Synthetic tests suggest that the proposed method can restore robust and reliableQ_S^{ - 1} values, especially when the dataset of local earthquakes is not abundant. We utilize this method for local earthquake waveforms at 14 borehole seismic stations in the North China basin, and obtain Q_S^{ - 1} values in 2 ˜ 10 Hz frequency band, as well as average {V_P}, {V_S} and {V_P}/{{}}{V_S} ratio for shallow sediments deep to a few hundred meters. Results suggest that Q_S^{ - 1} values are to 0.01˜0.06, and generally decrease with frequency. The average attenuation structure of shallow sediments within the depth of a few hundred meters beneath 14 borehole stations in the North China basin can be modeled as Q_S^{ - 1} = 0.056{f^{ - 0.61}}. It is generally consistent with the attenuation structure of sedimentary basins in other areas, such as Mississippi Embayment sediments in the United States and Sendai basin in Japan.

  20. Petroleum system of the Shelf Rift Basin, East China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, A.C.; Armentrout, J.M.; Prebish, M.

    1996-12-31

    The Tertiary section of the Oujioang and Quiontang Depressions of the East China Sea Basin consists of at least eight rift-related depositional sequences identified seismically by regionally significant onlap and truncation surfaces. These sequences are calibrated by several wells including the Wenzhou 6-1-1 permitting extrapolation of petroleum system elements using seismic facies analysis. Gas and condensate correlated to non-marine source rocks and reservoired in sandstone at the Pinghu field to the north of the study area provides an known petroleum system analogue. In the Shelf Rift Basin, synrift high-amplitude parallel reflections within the graben axes correlate with coaly siltstone stratamore » and are interpreted as coastal plain and possibly lacustrine facies with source rock potential. Synrift clinoform seismic facies prograding from the northwest footwall correlate with non-marine to marginal marine conglomerate, sandstone and siltstone, and are interpreted as possible delta or fan-delta facies with reservoir potential although porosity and permeability is low within the Wenzhou 6-1-1 well. Post-rift thermal sag sequences are characterized by parallel and relatively continuous seismic reflections and locally developed clinoform packages. These facies correlate with porous and permeable marine sandstone and siltstone. Shales of potential sealing capacity occur within marine flooding intervals of both the synrift and post-rift sequences. Traps consist of differentially rotated synrift fill, and post-rift inversion anticlines. Major exploration risk factors include migration from the synrift coaly source rocks to the post-rift porous and permeable sandstones, and seismic imaging and drilling problems associated with extensive Tertiary igneous intrusions.« less

  1. Petroleum system of the Shelf Rift Basin, East China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, A.C.; Armentrout, J.M.; Prebish, M.

    1996-01-01

    The Tertiary section of the Oujioang and Quiontang Depressions of the East China Sea Basin consists of at least eight rift-related depositional sequences identified seismically by regionally significant onlap and truncation surfaces. These sequences are calibrated by several wells including the Wenzhou 6-1-1 permitting extrapolation of petroleum system elements using seismic facies analysis. Gas and condensate correlated to non-marine source rocks and reservoired in sandstone at the Pinghu field to the north of the study area provides an known petroleum system analogue. In the Shelf Rift Basin, synrift high-amplitude parallel reflections within the graben axes correlate with coaly siltstone stratamore » and are interpreted as coastal plain and possibly lacustrine facies with source rock potential. Synrift clinoform seismic facies prograding from the northwest footwall correlate with non-marine to marginal marine conglomerate, sandstone and siltstone, and are interpreted as possible delta or fan-delta facies with reservoir potential although porosity and permeability is low within the Wenzhou 6-1-1 well. Post-rift thermal sag sequences are characterized by parallel and relatively continuous seismic reflections and locally developed clinoform packages. These facies correlate with porous and permeable marine sandstone and siltstone. Shales of potential sealing capacity occur within marine flooding intervals of both the synrift and post-rift sequences. Traps consist of differentially rotated synrift fill, and post-rift inversion anticlines. Major exploration risk factors include migration from the synrift coaly source rocks to the post-rift porous and permeable sandstones, and seismic imaging and drilling problems associated with extensive Tertiary igneous intrusions.« less

  2. Palaeoenvironment and Its Control on the Formation of Miocene Marine Source Rocks in the Qiongdongnan Basin, Northern South China Sea

    PubMed Central

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  3. Assessment of undiscovered conventional oil and gas resources in the West Korea Bay–North Yellow Sea Basin, North Korea and China, 2017

    USGS Publications Warehouse

    Schenk, Christopher J.; Tennyson, Marilyn E.; Mercier, Tracey J.; Hawkins, Sarah J.; Finn, Thomas M.; Gaswirth, Stephanie B.; Marra, Kristen R.; Klett, Timothy R.; Le, Phuong A.; Leathers-Miller, Heidi M.; Woodall, Cheryl A.

    2017-07-11

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable conventional resources of 1.1 billion barrels of oil and 2.2 trillion cubic feet of gas in the West Korea Bay–North Yellow Sea Basin, North Korea and China.

  4. [Spatiotemporal variation characteristics and related affecting factors of actual evapotranspiration in the Hun-Taizi River Basin, Northeast China].

    PubMed

    Feng, Xue; Cai, Yan-Cong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Wu, Jia-Bing; Yuan, Feng-Hui

    2014-10-01

    Based on the meteorological and hydrological data from 1970 to 2006, the advection-aridity (AA) model with calibrated parameters was used to calculate evapotranspiration in the Hun-Taizi River Basin in Northeast China. The original parameter of the AA model was tuned according to the water balance method and then four subbasins were selected to validate. Spatiotemporal variation characteristics of evapotranspiration and related affecting factors were analyzed using the methods of linear trend analysis, moving average, kriging interpolation and sensitivity analysis. The results showed that the empirical parameter value of 0.75 of AA model was suitable for the Hun-Taizi River Basin with an error of 11.4%. In the Hun-Taizi River Basin, the average annual actual evapotranspiration was 347.4 mm, which had a slightly upward trend with a rate of 1.58 mm · (10 a(-1)), but did not change significantly. It also indicated that the annual actual evapotranspiration presented a single-peaked pattern and its peak value occurred in July; the evapotranspiration in summer was higher than in spring and autumn, and it was the smallest in winter. The annual average evapotranspiration showed a decreasing trend from the northwest to the southeast in the Hun-Taizi River Basin from 1970 to 2006 with minor differences. Net radiation was largely responsible for the change of actual evapotranspiration in the Hun-Taizi River Basin.

  5. Examining the effects of urban agglomeration polders on flood events in Qinhuai River basin, China with HEC-HMS model.

    PubMed

    Gao, Yuqin; Yuan, Yu; Wang, Huaizhi; Schmidt, Arthur R; Wang, Kexuan; Ye, Liu

    2017-05-01

    The urban agglomeration polders type of flood control pattern is a general flood control pattern in the eastern plain area and some of the secondary river basins in China. A HEC-HMS model of Qinhuai River basin based on the flood control pattern was established for simulating basin runoff, examining the impact of urban agglomeration polders on flood events, and estimating the effects of urbanization on hydrological processes of the urban agglomeration polders in Qinhuai River basin. The results indicate that the urban agglomeration polders could increase the peak flow and flood volume. The smaller the scale of the flood, the more significant the influence of the polder was to the flood volume. The distribution of the city circle polder has no obvious impact on the flood volume, but has effect on the peak flow. The closer the polder is to basin output, the smaller the influence it has on peak flows. As the level of urbanization gradually improving of city circle polder, flood volumes and peak flows gradually increase compared to those with the current level of urbanization (the impervious rate was 20%). The potential change in flood volume and peak flow with increasing impervious rate shows a linear relationship.

  6. [Spatiotemporal variation of Populus euphratica's radial increment at lower reaches of Tarim River after ecological water transfer].

    PubMed

    An, Hong-Yan; Xu, Hai-Liang; Ye, Mao; Yu, Pu-Ji; Gong, Jun-Jun

    2011-01-01

    Taking the Populus euphratica at lower reaches of Tarim River as test object, and by the methods of tree dendrohydrology, this paper studied the spatiotemporal variation of P. euphratic' s branch radial increment after ecological water transfer. There was a significant difference in the mean radial increment before and after ecological water transfer. The radial increment after the eco-water transfer was increased by 125%, compared with that before the water transfer. During the period of ecological water transfer, the radial increment was increased with increasing water transfer quantity, and there was a positive correlation between the annual radial increment and the total water transfer quantity (R2 = 0.394), suggesting that the radial increment of P. euphratica could be taken as the performance indicator of ecological water transfer. After the ecological water transfer, the radial increment changed greatly with the distance to the River, i.e. , decreased significantly along with the increasing distance to the River (P = 0.007). The P. euphratic' s branch radial increment also differed with stream segment (P = 0.017 ), i.e. , the closer to the head-water point (Daxihaizi Reservoir), the greater the branch radial increment. It was considered that the limited effect of the current ecological water transfer could scarcely change the continually deteriorating situation of the lower reaches of Tarim River.

  7. Pull-Apart vs. Subduction Rollback Mechanisms For The Cenozoic Formation Of Bohai Basin, Eastern China

    NASA Astrophysics Data System (ADS)

    Castellanos, H. A.; Mann, P.

    2005-12-01

    The Bohai basin of eastern China covers an area of about 200,000 km2 and forms one of a family of basins that record Cenozoic extension along the eastern margin of Asia from Viet Nam to northeastern Russia. Two very different deformational mechanisms have been proposed for the Cenozoic formation of the Bohai basin. The first model proposes a two-stage extension model consisting of Paleogene rifting in a WNW-ESE direction followed by Neogene thermal subsidence that controlled overlying and less deformed sag basins above the rifted section (Ye et al., 1985). The mechanism for two-stage rifting is generally attributed to rollback of the subducted Pacific plate beneath the Asian continent, lithospheric extension of the overriding continental plate, and thermally-driven, regional subsidence. A second model invokes a more localized Cenozoic pull-apart basin formed at a right-step in a right-lateral shear system parallel to the Asian continental margin (Allen et al., 1997). Earthquakes and GPS data indicate that right-lateral strike-slip faulting continues to the present-day in a pattern consistent with the regional-scale "lazy-Z" map pattern of the Cenozoic Bohai depocenter. Allen et al. (1997) propose the subsurface of the large pull-apart structure contains diffuse, sub-parallel strike-slip faults offset by smaller-scale, intrabasinal stepovers. In order to better distinguish the timing and mechanism for the formation of the Bohai basin, we have interpreted 1400 km of offshore 2D seismic data, a 3D seismic volume, and integrated lithostratigraphic data from 6 wells that are tied to these reflection data. Three major units were identified and mapped on a basin-wide scale: basement, a syn-rift unit, and a post-rift sag unit. Thickening trends and ages indicate the syn-rift phase occurred from late Paleocene to late Oligocene. Basin opening occurred on a series of half-grabens trending NNE-SSW. Rifting ended during the late Oligocene when a regional uplift and erosional

  8. Lithospheric thermal-rheological structure of the Ordos Basin and its geodynamics

    NASA Astrophysics Data System (ADS)

    Pan, J.; Huang, F.; He, L.; Wu, Q.

    2015-12-01

    The study on the destruction of the North China Craton has always been one of the hottest issues in earth sciences.Both mechanism and spatial variation are debated fiercely, still unclear.However, geothermal research on the subject is relatively few. Ordos Basin, located in the west of the North China Craton, is a typical intraplate. Based on two-dimensional thermal modeling along a profile across Ordos Basin from east to west, obtained the lithospheric thermal structure and rheology. Mantle heat flow in different regions of Ordos Basin is from 21.2 to 24.5 mW/m2. In the east mantle heat flow is higher while heat flow in western region is relatively low. But mantle heat flow is smooth and low overall, showing a stable thermal background. Ratio of crustal and mantle heat flow is between 1.51 and 1.84, indicating that thermal contribution from shallow crust is lower than that from the mantle. Rheological characteristics along the profile are almost showed as "jelly sandwich" model and stable continental lithosphere structure,which is represent by a weak crust portion but a strong lithospheric mantle portion in vertical strength profile. Based on above , both thermal structure and lithospheric rheology of Ordos Basin illustrate that tectonic dynamics environment in the west of North China Craton is relatively stable. By the study on lithospheric thermal structure, we focus on the disparity in thickness between the thermal lithosphere and seismic lithosphere.The difference in western Ordos Basin is about 140km, which decreases gradually from Fenwei graben in the eastern Ordos Basin to the Bohai Bay Basin.That is to say the difference decreases gradually from the west to the east of North China Craton.The simulation results imply that viscosity of the asthenosphere under North China Craton also decreases gradually from west to east, confirming that dehydration of the Pacific subduction is likely to have great effect on the North China Craton.

  9. Tectonics, basin analysis and organic geochemical attributes of Permian through Mesozoic deposits and their derivative oils of the Turpan-Hami basin, northwestern China

    NASA Astrophysics Data System (ADS)

    Greene, Todd Jeremy

    The Turpan-Hami basin is a major physiographic and geologic feature of northwest China, yet considerable uncertainty exists as to the timing of its inception, its late Paleozoic and Mesozoic tectonic history, and the relationship of its petroleum systems to those of the nearby Junggar basin. Mesozoic sedimentary fades, regional unconformities, sediment dispersal patterns, and sediment compositions within the Turpan-Hami and southern Junggar basins suggest that these basins were initially separated between Early Triassic and Early Jurassic time. Prior to separation, Upper Permian profundal lacustrine and fan-delta fades and Triassic coarse-grained braided-fluvial/alluvial fades were deposited across a contiguous Junggar-Turpan-Hami basin. Permian through Triassic fades were derived mainly from the Tian Shan to the south as indicated by northward-directed paleocurrent directions and geochemical provenance of granitoid cobbles. Lower through Middle Jurassic strata begin to reflect ponded coal-forming, lake-plain environments within the Turpan-Hami basin. A sharp change in sedimentary-lithic-rich Lower Jurassic sandstone followed by a return to lithic volcanic-rich Middle Jurassic sandstone points to the initial uplift and unroofing of the largely andesitic Bogda Shan range, which first shed its sedimentary cover as it emerged to become the partition between the Turpan-Hami and southern Junggar basins. In Turpan-Hami, source rock age is one of three major statistically significant discriminators of effective source rocks in the basin. A newly developed biomarker parameter appears to track conifer evolution and can distinguish Permian rocks and their correlative oils from Jurassic coals and mudrocks, and their derivative oils. Source fades is a second key control on petroleum occurrence and character. By erecting rock-to-oil correlation models, the biomarker parameters separate oil families into end-member groups: Group 1 oils---Lower/Middle Jurassic peatland

  10. Effect of land use on the seasonal variation of streamwater quality in the Wei River basin, China

    NASA Astrophysics Data System (ADS)

    Yu, S.; Xu, Z.; Wu, W.; Zuo, D.

    2015-05-01

    The temporal effect of land use on streamwater quality needs to be addressed for a better understanding of the complex relationship between land use and streamwater quality. In this study, GIS and Pearson correlation analysis were used to determine whether there were correlations of land-use types with streamwater quality at the sub-basin scale in the Wei River basin, China, during dry and rainy seasons in 2012. Temporal variation of these relations was observed, indicating that relationships between water quality variables and proportions of different land uses were weaker in the rainy season than that in the dry season. Comparing with other land uses, agriculture and urban lands had a stronger relationship with water quality variables in both the rainy and dry seasons. These results suggest that the aspect of temporal effects should be taken into account for better land-use management.

  11. Present-day crustal motion around eastern margin of the Pamir plateau from GPS measurements

    NASA Astrophysics Data System (ADS)

    Pan, Z.; He, J.; Zhou, Y.; Wang, W.

    2017-12-01

    The Pamir plateau is featured mainly by northward convex thrust faults in its center and by strike-slip faults on its western and eastern sides. To better describe the deformation pattern of the Pamir plateau, a new campaign-mode GPS network has been deployed with 18 stations around the boundary between the Pamir and the Tarim since 2012. The network has been surveyed 3 times, and each site has been surveyed for at least 48 hours with Trimble NetR8 receivers and zephyr geodetic antennas. By combining the nearest Continuous GPS sites (GUAO KIT3 POL2 CHUM URUM ARTU BJFS IISC IRKT LHAZ SHAO ULAB WUHN YIBL), we then processed the observing data with GAMIT/GLOBK software to obtain the velocity field of the network. Results show that, unlike the western margin of the Pamir plateau where significant ( 9mm/yr) left-lateral motion between the Tajik basin and the Pamir was observed, the eastern margin between the Pamir and the Tarim exists negligible strike-slip motion along the boundary. However, perpendicular to the Pamir-Tarim boundary, we observed clearly coeval extension and compression strain across this boundary. By calibrating the strain distribution and the simplified structure profiles, it can be seen that the extension rate locates mainly around the Tashkurghan basin; while the compression strain around the Tashkurghan basin and the Tarim basin. We also predicted that among the total strain rate, the extension rate is about 4-6mm/yr and the compression rate about 2-3mm/yr. This suggests that the general tectonic stress across the eastern margin of the Pamir plateau is extension, in agreement with previous result of anti-clockwise rotation of the Pamir. Finally, the possible mechanics on co-existence of extension and compression along same direction has been discussed by building a two-dimensional viscoelastic finite model.

  12. Holocene vegetation, environment and anthropogenic influence in the Fuzhou Basin, southeast China

    NASA Astrophysics Data System (ADS)

    Yue, Yuanfu; Zheng, Zhuo; Rolett, Barry V.; Ma, Ting; Chen, Cong; Huang, Kangyou; Lin, Gongwu; Zhu, Guangqi; Cheddadi, Rachid

    2015-03-01

    A ∼40 m sediment core (FZ4) was collected from the Fuzhou Basin, near the lower reaches of the Min River, in Fujian Province on the southeast coast of China. The sediment and pollen record contributes to our understanding of Holocene paleogeography, including local changes in vegetation and climate in the context of Neolithic cultural developments. The sediment record reveals a fluvial environment in the Fuzhou Basin during the late Pleistocene, and it demonstrates that a change from fluvial to estuarine conditions at ∼9000 cal yr BP resulted from postglacial sea level rise. Evidence of abundant marine diatoms and tidal flat laminations observed in the FZ4 sediments, implies that the Fuzhou Basin was under marine influence between ∼9000 and ∼2000 cal yr BP. After 2000 cal yr BP, a rapid retreat in coastline associated with fluvial aggradation and coastal progradation produced more shallow water for wetlands and initiated formation of the floodplain landscape. The pollen record reveals the presence of a dense subtropical forest between ca. 9000 and 7000 cal yr BP, representing the Holocene thermal maximum, which is linked with rising sea level and marine transgression in the Fuzhou Basin. Between ca. 5500 and 2000 cal yr BP, the thermophilous forest dominated by Castanopsis retreated and coniferous forest expanded, reflecting moderate climatic cooling during this period. Timing of the high frequencies for Pinus and ferns correspond with the mid-late Holocene cooling trend recorded in local mountain peatland and coastal regions of the lower Yangtze and Hanjiang deltas. Anthropogenically induced land cover change was negligible prior to the Tanshishan cultural period, which marks the beginning of Neolithic era sedentary village life on the Fujian coast around 5500 BP. The pollen transition at ca. 3000-1500 cal yr BP, distinguished by rising frequencies of Poaceae and taxa (including Cyperaceae and Artemisia) closely associated with agricultural land cover

  13. Hydroclimate-driven changes in the landscape structure of the terminal lakes and wetlands of the China's Heihe River Basin.

    PubMed

    Xiao, Shengchun; Xiao, Honglang; Peng, Xiaomei; Song, Xiang

    2015-01-01

    Changes in the landscape structure of terminal lakes and wetlands along inland rivers in arid areas are determined by the water balance in the river basins under the impacts of climate change and human activities. Studying the evolution of these landscapes and the mechanisms driving these changes is critical to the sustainable development of river basins. The terminal lakes and wetlands along the lower reaches of the Heihe River, an inland river in arid northwestern China, can be grouped into three types: runoff-recharged, groundwater-recharged, and precipitation-recharged. These water-recharge characteristics determine the degree to which the landscape structure of a terminal lake or wetland is impacted by climate change and human activities. An analysis of seven remote-sensing and hydroclimatic data sets for the Heihe River basin during the last 50 years indicates that hydrological changes in the basin caused by regional human activities were the primary drivers of the observed changes in the spatial and temporal landscape-structure patterns of the terminal lakes and wetlands of the Heihe River. In this warm, dry climatic context, the lakes and wetlands gradually evolved toward and maintained a landscape dominated by saline-alkaline lands and grasslands.

  14. Insights into the Groundwater Salinization Processes in Manas River Basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Jin, M.; Liu, Y.; Liang, X.

    2017-12-01

    Manas River Basin (MRB) is a typical mountains-oasis-desert inland basin in northwest China, where groundwater salinization is threatening the local water use and the environment, but the groundwater salinization process is not clear. Based on groundwater flow system analysis by integrating flow fields, hydrochemical and isotopic characteristics, a deuterium excess analytical method was used to quantitatively assess salinization mechanism and calculate the contribution ratios of evapoconcentration effect to the salinities. 73 groundwater samples and 11 surface water samples were collected from the basin. Hydrochemical diagrams and δD and δ18O compositions indicated that evapoconcentration, mineral dissolution and transpiration, increased the groundwater salinities (i.e. total dissolved solids). The results showed that the average contribution ratios of evapoconcentration effect to the increased salinities were 5.8% and 32.7% in groundwater and surface water, respectively. From the piedmont plain to the desert plain, the evapoconcentration effect increased the average groundwater loss from 7% to 29%. However, it only increased slight salinity (0 - 0.27 g/L), as determined from the deuterium excess signals. Minerals dissolution and anthropogenic activities are the major cause of groundwater salinization problem. The results revealed that fresh water in the rivers directly and quickly infiltrated the aquifers in the piedmont area with evapoconcentration affected weakly, and the fresh water interacted with the sediments and dissolved soluble minerals, subsequently increasing the salinities. Combined with the groundwater stable isotopic compositions and hydrochemical evolution, the relationships between δ18O and Cl and salinities reveal the soil evaporites leaching by the vertical recharge (irrigation return flow and channels leakage) mainly affect the groundwater salinization processes in the middle alluvial-diluvial plain and the desert land. The saline water

  15. [Correlationships between the coverage of vegetation and the quality of groundwater in the lower reaches of the Tarim River].

    PubMed

    Chen, Yong-jin; Chen, Ya-ning; Liu, Jia-zhen

    2010-03-01

    The variations vegetation coverage is the result of conjunct effects of inner and outer energy of the earth, however, the human activity always makes the coverage of vegetation change a lot. Based on the monitoring data of chemistry of groundwater and the coverage of vegetation from 2002 to 2007 in the lower reaches of Tarim River, relations between vegetation coverage and groundwater chemistry were studied. It is found that vegetation coverage at Sector A was more than 80%, and decreased from sector to sector, the coverage of Sector I was less than 10%. At the same sector, samples near to water source owned high coverage index, and samples far away from the river had low coverage index. The variations of pH in groundwater expressed similar regulation to vegetation coverage, that is, Sectors near the water source had higher pH index comparing than those far away. Regression between groundwater quality and vegetation coverage disclosed that the coverage of Populus euphratica climbed up along with increase of pH in groundwater, change of Tamarix ramosissima coverage expressed an opposite trend to the Populus euphratica with the same environmental factors. This phenomenon can interpret spatial distribution of Populus euphratica and Tamarix ramosissima in lower reaches of the Tarim River.

  16. Water-ecosystem-economy nexus under human intervention and climate change: a study in the Heihe River Basin (China)

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Tian, Y.; Wu, X.; Feng, D.

    2017-12-01

    Recently, "One Belt and One Road" initiative, namely, building the "Silk Road Economic Belt" and "21st Century Maritime Silk Road", has become a global strategy of China and has been discussed as China's "Marshall Plan". The overland route of "One Belt" comes across vast arid lands, where the local population and ecosystem compete keenly for limited water resources. Water and environmental securities represent an important constraint of the "One Belt" development, and therefore understanding the complex water-ecosystem-economy nexus in the arid inland areas is very important. One typical case is Heihe River Basin (HRB), the second largest inland river basin of China, where the croplands in its middle part sucked up the river flow and groundwater, causing serious ecological problems in its lower part (Gobi Desert). We have developed an integrated hydrological-ecological model for the middle and lower HRB (the modeling domain has an area of 90,589 km2), which served as a platform to fuse multi-source data and provided a coherent understanding on the regional water cycle. With this physically based model, we quantitatively investigated how the nexus would be impacted by human intervention, mainly the existing and potential water regulations, and what would be the uncertainty of the nexus under the climate change. In studying the impact of human intervention, simulation-optimization analyses based on surrogate modeling were performed. In studying the uncertainty resulted from the climate change, outputs of multiple GCMs were downscaled for this river basin to drive ecohydrological simulations. Our studies have demonstrated the significant tradeoffs among the crop production in the middle HRB, the water and environmental securities of the middle HRB, and the ecological health of the lower HRB. The underlying mechanisms of the tradeoffs were also systematically addressed. The climate change would cause notable uncertainty of the nexus, which makes the water resources

  17. Sequence stratigraphy and hydrocarbon potential of the Phu Khanh Basin offshore central Vietnam, South China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, G.H.; Watkins, J.S.

    1996-12-31

    The Phu Khanh Basin offshore central Vietnam is one of the few untested basins on the Vietnam margin of the South China Sea. Analysis of over 1,600 km of multi-channel seismic reflection data indicates that the Phu Khanh Basin follows a typical rift-margin order: faulted basement, synrift sedimentation, a breakup unconformity, and postrift sedimentation. Postrift sedimentation consists of a transgressive phase characterized by ramp-like depositional geometries followed by a regressive phase characterized by prograding sequences. An early middle Miocene unconformity separates these two phases. During the transgressive phase rising sea level provided favorable conditions for carbonate buildup development. The regressivemore » interval contains a number of third-order depositional sequences composed of seismically resolvable lowstand, highstand, and rarely, transgressive systems tracts. Lacustrine sediments deposited in graben and half-graben lakes during the rifting stage are probably the principal source rocks. Fractured and/or weathered basement, carbonate complexes, basinfloor fans, and shallows water sands may have good reservoir quality. Potential traps include basement hills, carbonate complexes, fault taps, and stratigraphic traps within lowstand systems tracts. Hydrocarbon indicators such as flat spots, bright spots, gas chimneys with gas mounds on the seafloor occur at a number of locations.« less

  18. Sequence stratigraphy and hydrocarbon potential of the Phu Khanh Basin offshore central Vietnam, South China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, G.H.; Watkins, J.S.

    1996-01-01

    The Phu Khanh Basin offshore central Vietnam is one of the few untested basins on the Vietnam margin of the South China Sea. Analysis of over 1,600 km of multi-channel seismic reflection data indicates that the Phu Khanh Basin follows a typical rift-margin order: faulted basement, synrift sedimentation, a breakup unconformity, and postrift sedimentation. Postrift sedimentation consists of a transgressive phase characterized by ramp-like depositional geometries followed by a regressive phase characterized by prograding sequences. An early middle Miocene unconformity separates these two phases. During the transgressive phase rising sea level provided favorable conditions for carbonate buildup development. The regressivemore » interval contains a number of third-order depositional sequences composed of seismically resolvable lowstand, highstand, and rarely, transgressive systems tracts. Lacustrine sediments deposited in graben and half-graben lakes during the rifting stage are probably the principal source rocks. Fractured and/or weathered basement, carbonate complexes, basinfloor fans, and shallows water sands may have good reservoir quality. Potential traps include basement hills, carbonate complexes, fault taps, and stratigraphic traps within lowstand systems tracts. Hydrocarbon indicators such as flat spots, bright spots, gas chimneys with gas mounds on the seafloor occur at a number of locations.« less

  19. Proterozoic polymetamorphism in the Quanji Block, northwestern China: Evidence from microtextures, garnet compositions and monazite CHIME ages

    NASA Astrophysics Data System (ADS)

    Wang, Qinyan; Pan, Yuanming; Chen, Nengsong; Li, Xiaoyan; Chen, Haihong

    2009-05-01

    The Quanji Block, situated close to the triple junction of three major Precambrian terranes in China (i.e., the North China Craton, the Yangtze Block and the Tarim Block), is composed of Precambrian metamorphic crystalline basement and an unmetamorphosed Mesozoic-Paleozoic sedimentary cover; it has been interpreted as a remnant continental fragment. Microtextural relationships, garnet trace element compositions, and monazite CHIME ages in paragneisses, schists and granitic leucosomes show two episodes of regional metamorphism in the Quanji Block basement. The first regional metamorphism and accompaning anatexis took place at ˜1.93 Ga; the second regional metamorphism occurred between ˜1.75 and ˜1.71 Ga. Mineral compositions of the first metamorphism, including those of monazite, were significantly disturbed by the second event. These two regional metamorphic episodes were most likely linked to assembly and breakup of the supercontinent Columbia, respectively.

  20. A feasibility study of geological CO2 sequestration in the Ordos Basin, China

    USGS Publications Warehouse

    Jiao, Z.; Surdam, R.C.; Zhou, L.; Stauffer, P.H.; Luo, T.

    2011-01-01

    The Shaanxi Province/Wyoming CCS Partnership (supported by DOE NETL) aims to store commercial quantities of CO2 safely and permanently in the Ordovician Majiagou Formation in the northern Ordos Basin, Shaanxi Province, China. This objective is imperative because at present, six coal-to-liquid facilities in Shaanxi Province are capturing and venting significant quantities of CO2. The Wyoming State Geological Survey and the Shaanxi Provincial Institute of Energy Resource and Chemical Engineering conducted a feasibility study to determine the potential for geological CO2 sequestration in the northern Ordos Basin near Yulin. The Shaanbei Slope of the Ordos Basin is a huge monoclinal structure with a high-priority sequestration reservoir (Majiagou Formation) that lies beneath a 2,000+ meter-thick sequence of Mesozoic rocks containing a multitude of lowpermeability lithologies. The targeted Ordovician Majiagou Formation in the location of interest is more than 700 meters thick. The carbonate reservoir is located at depths where pressures and temperatures are well above the supercritical point of CO2. The targeted reservoir contains high-salinity brines (20,000-50,000 ppm) that have little or no economic value. The targeted reservoir is continuous as inferred from well logs, and cores show that porosity ranges from 1 to 15% with average measured porosity of 8%, and that permeability ranges from 1-35 md. This paper focuses on calculations that will help evaluate the capacity estimates through the use of high-resolution multiphase numerical simulation models, as well as a more simple volumetric approach. The preliminary simulation results show that the Ordovician Majiagou Formation in the Ordos Basin has excellent potential for geological CO2 sequestration and could store the CO2 currently emitted by coal-to-liquid facilities in Shaanxi Province for hundreds of years (i.e., 9 Mt/year CO2; 450 Mt over a 50-year period at one injection site). ?? 2011 Published by Elsevier Ltd.

  1. Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions

    NASA Astrophysics Data System (ADS)

    Xu, Junyuan; Ben-Avraham, Zvi; Kelty, Tom; Yu, Ho-Shing

    2014-03-01

    Geometry of basins can indicate their tectonic origin whether they are small or large. The basins of Bohai Gulf, South China Sea, East China Sea, Japan Sea, Andaman Sea, Okhotsk Sea and Bering Sea have typical geometry of dextral pull-apart. The Java, Makassar, Celebes and Sulu Seas basins together with grabens in Borneo also comprise a local dextral, transform-margin type basin system similar to the central and southern parts of the Shanxi Basin in geometry. The overall configuration of the Philippine Sea resembles a typical sinistral transpressional "pop-up" structure. These marginal basins except the Philippine Sea basin generally have similar (or compatible) rift history in the Cenozoic, but there do be some differences in the rifting history between major basins or their sub-basins due to local differences in tectonic settings. Rifting kinematics of each of these marginal basins can be explained by dextral pull-apart or transtension. These marginal basins except the Philippine Sea basin constitute a gigantic linked, dextral pull-apart basin system.

  2. Evolution of Meso-Cenozoic lithospheric thermal-rheological structure in the Jiyang sub-basin, Bohai Bay Basin, eastern North China Craton

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Qiu, Nansheng; Wang, Ye; Chang, Jian

    2018-01-01

    The Meso-Cenozoic lithospheric thermal-rheological structure and lithospheric strength evolution of the Jiyang sub-basin were modeled using thermal history, crustal structure, and rheological parameter data. Results indicate that the thermal-rheological structure of the Jiyang sub-basin has exhibited obvious rheological stratification and changes over time. During the Early Mesozoic, the uppermost portion of the upper crust, middle crust, and the top part of the upper mantle had a thick brittle layer. During the early Early Cretaceous, the top of the middle crust's brittle layer thinned because of lithosphere thinning and temperature increase, and the uppermost portion of the upper mantle was almost occupied by a ductile layer. During the late Early Cretaceous, the brittle layer of the middle crust and the upper mantle changed to a ductile one. Then, the uppermost portion of the middle crust changed to a thin brittle layer in the late Cretaceous. During the early Paleogene, the thin brittle layer of the middle crust became even thinner and shallower under the condition of crustal extension. Currently, with the decrease in lithospheric temperature, the top of the upper crust, middle crust, and the uppermost portion of the upper mantle are of a brittle layer. The total lithospheric strength and the effective elastic thickness ( T e) in Meso-Cenozoic indicate that the Jiyang sub-basin experienced two weakened stages: during the late Early Cretaceous and the early Paleogene. The total lithospheric strength (approximately 4-5 × 1013 N m-1) and T e (approximately 50-60 km) during the Early Mesozoic was larger than that after the Late Jurassic (2-7 × 1012 N m-1 and 19-39 km, respectively). The results also reflect the subduction, and rollback of Pacific plate is the geodynamic mechanism of the destruction of the eastern North China Craton.

  3. Organic petrology and geochemistry of mudrocks from the lacustrine Lucaogou Formation, Santanghu Basin, northwest China: Application to lake basin evolution

    USGS Publications Warehouse

    Hackley, Paul C.; Fishman, Neil; Wu, Tao; Baugher, Gregory

    2016-01-01

    Exploration for tight oil in the frontier Santanghu Basin of northwest China has resulted in recent commercial discoveries sourced from the lacustrine Upper Permian Lucaogou Formation, already considered a “world class source rock” in the Junggar Basin to the west. Here we apply an integrated analytical program to carbonate-dominated mudrocks from the Lucaogou Formation in Santanghu Basin to document the nature of organic matter (OM) in the context of an evolving lake system. The organic-rich samples (TOC 2.8–11.4 wt%; n = 10) were widely spaced from an ~ 200 m cored section, interpreted from textural and mineralogical evidence to document transition from a lower under-filled to an overlying balanced-filled lake. Organic matter is dominated by moderate to strongly fluorescent amorphous material with Type I geochemical signature (HI values 510–755; n = 10) occurring in a continuum from lamellar stringers, 10–20 μm thick, some ≥ 1 mm in length (possible microbial mat; preserved only in lower under-filled section) to finely-disseminated amorphous groundmass intimately intermixed with mineral matrix. Biomarkers for methanotrophs and photosynthetic cyanobacteria indicate a complex microbial consortium. A unicellular prasinophyte green alga(?), similar to Tasmanites in marine rocks, is present as discrete flattened discs 50–100 μm in diameter. Type III OM including vitrinite (some fluorescent) and inertinite also is abundant. Solid bitumen, indicating local kerogen conversion, fills voids and occurs throughout the cored section. Vitrinite reflectance values are 0.47–0.58%, consistent with strong OM fluorescence but may be “suppressed”. Other proxies, e.g., biomarker parameters, indicate the Lucaogou Formation is in the early oil window at this location. On average, slightly more amorphous OM and telalginite are present in the lower section, consistent with a shallow, stratified, saline environment with low sediment dilution. More

  4. Linkages between ENSO/PDO signals and precipitation, streamflow in China during the last 100 years

    NASA Astrophysics Data System (ADS)

    Ouyang, R.; Liu, W.; Fu, G.; Liu, C.; Hu, L.; Wang, H.

    2014-09-01

    This paper investigates the single and combined impacts of El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) on precipitation and streamflow in China over the last century. Results indicate that the precipitation and streamflow overall decrease during El Niño/PDO warm phase periods and increase during La Niña/PDO cool phase periods in the majority of China, although there are regional and seasonal differences. Precipitation and streamflow in the Yellow River basin, Yangtze River basin and Pearl River basin are more significantly influenced by El Niño and La Niña events than is precipitation and streamflow in the Songhua River basin, especially in October and November. Moreover, significant influence of ENSO on streamflow in the Yangtze River mainly occurs in summer and autumn while in the Pearl River influence primarily occurs in the winter and spring. The precipitation and streamflow are relatively greater in the warm PDO phase in the Songhua River basin and several parts of the Yellow River basin and relatively less in the Pearl River basin and most parts of Northwest China compared to those in the cool PDO phase, though there is little significance detected by Wilcoxon signed-rank test. When considering the combined influence of ENSO and PDO, the responses of precipitation/streamflow are shown to be opposite in northern China and southern China, with ENSO-related precipitation/streamflow enhanced in northern China and decreased in southern China during the warm PDO phases, and enhanced in southern China and decreased in northern China during the cool PDO phases. It is hoped that this study will be beneficial for understanding the precipitation/streamflow responses to the changing climate and will correspondingly provide valuable reference for water resources prediction and management across China.

  5. Physical properties, vitrinite reflectance, and microstructure of coal, Taiyuan Formation, Qinshui Basin, China

    NASA Astrophysics Data System (ADS)

    Li, Qiong; Chen, Jie; He, Jian-Jun

    2017-12-01

    In this study, we experimentally established the relationship between physical properties, vitrinite reflectance, and microstructure of coal, Taiyuan Formation, Qinshui Basin, China using representative coal samples collected from three different mines via the rock mechanics testing system (MTS). We analyzed the organic macerals, vitrinite reflectance, and microstructure of 11 coal samples using petrography and scanning electron microscopy (SEM). The experimental results suggest that (1) the elastic parameters can be described by linear equations, (2) both P-and S-wave velocities display anisotropy, (3) the anisotropy negatively correlates with vitrinite reflectance, and (4) the acoustic velocities and Young's modulus are negatively correlated with the volume of micropores. The derived empirical equations can be used in the forward modeling and seismic inversion of physical properties of coal for improving the coal-bed methane (CBM) reservoir characterization.

  6. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China.

    PubMed

    Chen, Yaning; Li, Zhi; Fan, Yuting; Wang, Huaijun; Deng, Haijun

    2015-05-01

    The arid region of Northwest China, located in the central Asia, responds sensitively to global climate change. Based on the newest research results, this paper analyzes the impacts of climate change on hydrology and the water cycle in the arid region of Northwest China. The analysis results show that: (1) In the northwest arid region, temperature and precipitation experienced "sharply" increasing in the past 50 years. The precipitation trend changed in 1987, and since then has been in a state of high volatility, during the 21st century, the increasing rate of precipitation was diminished. Temperature experienced a "sharply" increase in 1997; however, this sharp increasing trend has turned to an apparent hiatus since the 21st century. The dramatic rise in winter temperatures in the northwest arid region is an important reason for the rise in the average annual temperature, and substantial increases in extreme winter minimum temperature play an important role in the rising average winter temperature; (2) There was a significant turning point in the change of pan evaporation in the northwest arid area in 1993, i.e., in which a significant decline reversed to a significant upward trend. In the 21st century, the negative effects of global warming and increasing levels of evaporation on the ecology of the northwest arid region have been highlighted; (3) Glacier change has a significant impact on hydrology in the northwest arid area, and glacier inflection points have appeared in some rivers. The melting water supply of the Tarim River Basin possesses a large portion of water supplies (about 50%). In the future, the amount of surface water will probably remain at a high state of fluctuation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. WRF model for precipitation simulation and its application in real-time flood forecasting in the Jinshajiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Zhou, Jianzhong; Zhang, Hairong; Zhang, Jianyun; Zeng, Xiaofan; Ye, Lei; Liu, Yi; Tayyab, Muhammad; Chen, Yufan

    2017-07-01

    An accurate flood forecasting with long lead time can be of great value for flood prevention and utilization. This paper develops a one-way coupled hydro-meteorological modeling system consisting of the mesoscale numerical weather model Weather Research and Forecasting (WRF) model and the Chinese Xinanjiang hydrological model to extend flood forecasting lead time in the Jinshajiang River Basin, which is the largest hydropower base in China. Focusing on four typical precipitation events includes: first, the combinations and mode structures of parameterization schemes of WRF suitable for simulating precipitation in the Jinshajiang River Basin were investigated. Then, the Xinanjiang model was established after calibration and validation to make up the hydro-meteorological system. It was found that the selection of the cloud microphysics scheme and boundary layer scheme has a great impact on precipitation simulation, and only a proper combination of the two schemes could yield accurate simulation effects in the Jinshajiang River Basin and the hydro-meteorological system can provide instructive flood forecasts with long lead time. On the whole, the one-way coupled hydro-meteorological model could be used for precipitation simulation and flood prediction in the Jinshajiang River Basin because of its relatively high precision and long lead time.

  8. More frequent flooding? Changes in flood frequency in the Pearl River basin, China, since 1951 and over the past 1000 years

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2018-05-01

    Flood risks across the Pearl River basin, China, were evaluated using a peak flood flow dataset covering a period of 1951-2014 from 78 stations and historical flood records of the past 1000 years. The generalized extreme value (GEV) model and the kernel estimation method were used to evaluate frequencies and risks of hazardous flood events. Results indicated that (1) no abrupt changes or significant trends could be detected in peak flood flow series at most of the stations, and only 16 out of 78 stations exhibited significant peak flood flow changes with change points around 1990. Peak flood flow in the West River basin increased and significant increasing trends were identified during 1981-2010; decreasing peak flood flow was found in coastal regions and significant trends were observed during 1951-2014 and 1966-2014. (2) The largest three flood events were found to cluster in both space and time. Generally, basin-scale flood hazards can be expected in the West and North River basins. (3) The occurrence rate of floods increased in the middle Pearl River basin but decreased in the lower Pearl River basin. However, hazardous flood events were observed in the middle and lower Pearl River basin, and this is particularly true for the past 100 years. However, precipitation extremes were subject to moderate variations and human activities, such as building of levees, channelization of river systems, and rapid urbanization; these were the factors behind the amplification of floods in the middle and lower Pearl River basin, posing serious challenges for developing measures of mitigation of flood hazards in the lower Pearl River basin, particularly the Pearl River Delta (PRD) region.

  9. Catagenesis of organic matter of oil source rocks in Upper Paleozoic coal formation of the Bohai Gulf basin (eastern China)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, R.X.; Li, Y.Z.; Gao, Y.W.

    2007-05-15

    The Bohai Gulf basin is the largest petroliferous basin in China. Its Carboniferous-Permian deposits are thick (on the average, ca. 600 m) and occur as deeply as 5000 m. Coal and carbonaceous shale of the Carboniferous Taiyuan Formation formed in inshore plain swamps. Their main hydrocarbon-generating macerals are fluorescent vitrinite, exinite, alginite, etc. Coal and carbonaceous shale of the Permian Shanxi Formation were deposited in delta-alluvial plain. Their main hydrocarbon-generating macerals are vitrinite, exinite, etc. The carbonaceous rocks of these formations are characterized by a high thermal maturity, with the vitrinite reflectance R{sub 0} > 2.0%. The Bohai Gulf basinmore » has been poorly explored so far, but it is highly promising for natural gas.« less

  10. Wilson Cycle studies

    NASA Technical Reports Server (NTRS)

    Burke, Kevin

    1987-01-01

    The main activity relating to the study during this half year was a three week field trip to study Chinese sedimentary basins (June 10 to July 3, 1986) at no cost to the project. This study, while of a reconnaissance character, permitted progress in understanding how the processes of island arc-collision and micro-continental collision operated during the Paleozoic in far western China (especially the Junggar and Tarim basins and in the intervening Tien Shan Mountains). These effects of the continuing collision of India and Asia on the area were also studied. Most specifically, these result in the elevation of the Tien Shan to more than 4 km above sea level and the depression of Turfan to move 150m below sea level. Both thrusting and large-scale strike-slip motion are important in producing these elevation changes. Some effort during the half year was also devoted to the study of greenstone-belts in terms of the Wilson Cycle.

  11. Kinematics of Active Deformation Across the Western Kunlun Mountain Range (Xinjiang, China), and Potential Seismic Hazards Within the Southern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Guilbaud, C.; Simoes, M.; Barrier, L.; Laborde, A.; van der Woerd, J.; Li, H.; Tapponnier, P.; Coudroy, T.; Murray, A. S.

    2017-12-01

    The Western Kunlun mountain range (Xinjiang, north-west China) is a slowly deforming intra-continental orogen where deformation rates are too low to be quantified from geodetic techniques. This region has recorded little historical seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold along the topographic mountain front in the epicentral area. Using field observations and a seismic profile, we derive a structural cross-section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised fluvial terraces and alluvial fans. From their incision pattern and using age constraints retrieved on some of these terraces, we quantify the slip rate on the underlying blind ramp to 0.5 to 2.5 mm/yr over the last 400 kyr, with a most probable long-term value of 2 to 2.5 mm/yr. The evolution of the Yecheng-Pishan fold is then proposed by combining all structural, morphological and chronological observations. Finally, we compare the seismotectonic context of the Western Kunlun to what has been proposed for the Himalayas of Central Nepal. This allows for discussing the possibility of major M ≥ 8-8.5 earthquakes in the case that the whole decollement is presently seismically locked and fully ruptures in one single seismic event.

  12. Scramble in the South China Sea: Regional Conflict and U.S. Strategy

    DTIC Science & Technology

    2013-02-14

    Basin Phu Kanh Basin Cuu Long Basin Nam Con Son Basin South China Sea Platform Baram Delta Basin Palawan Shelf Basin Greater Sarawak Basin...Basin 183 10,599 Greater Sarawak Basin 618 34,083 Phu Kanh Basin 116 10,679 Baram Delta Basin 4,056 12,546 Cuu Long Basin 1,599 487 Palawan Shelf

  13. Preliminary results of water quality assessment using phytoplankton and physicochemical approaches in the Huai River Basin, China.

    PubMed

    Chen, Hao; Zuo, Qi-Ting; Zhang, Yong-Yong

    2017-11-01

    Water pollution has been a significant issue in the Huai River Basin (HRB) of China since the late 1970s. In July and December 2013, two field investigations were carried out at 10 sites along the main streams of the basin. The monitoring indices contained both physicochemical variables and the structure and composition of phytoplankton communities. The correlations between communities and physicochemical variables were analyzed using cluster analysis and redundancy analysis. Moreover, water quality was evaluated using the comprehensive nutrition state index (TLI) and Shannon-Wiener diversity index (H). Results indicated that more phytoplankton species were present in December than in July, but total density was less in December. Phytoplankton communities in the midstream of the Shaying River were affected by the same physicochemical factors throughout the year, but ammonia nitrogen and total phosphorus had the greatest influence on these sites in July and December, respectively. The water pollution status of the sampling sites was much greater in the Shaying River midstream than at other sites. TLI was more suitable than H for assessing water quality in the study area. These results provide valuable information for policy makers and stakeholders in water quality assessment, water ecosystem restoration, and sustainable basin management in the HRB.

  14. Pn tomography with Moho depth correction from eastern Europe to western China

    NASA Astrophysics Data System (ADS)

    Lü, Yan; Ni, Sidao; Chen, Ling; Chen, Qi-Fu

    2017-02-01

    We proposed a modified Pn velocity and anisotropy tomography method by considering the Moho depth variations using the Crust 1.0 model and obtained high-resolution images of the uppermost mantle Pn velocity and anisotropy structure from eastern Europe to western China. The tomography results indicate that the average Pn velocities are approximately 8.0 and 8.1 km/s under the western and eastern parts of the study area, respectively, with maximum velocity perturbations of 3%-4%. We observed high Pn velocities under the Adriatic Sea, Black Sea, Caspian Sea, Arabian Plate, Indian Plate, and in the Tarim and Sichuan Basins but low Pn velocities under the Apennine Peninsula, Dead Sea fault zone, Anatolia, Caucasus, Iranian Plateau, Hindu Kush, and in the Yunnan and Myanmar regions. Generally, regions with stable structures and low lithospheric temperatures exhibit high Pn velocities. Low Pn velocities provide evidence for the upwelling of hot material, which is associated with plate subduction and continental collision processes. Our Pn velocity and anisotropy imaging results indicate that the Adriatic microplate dives to the east and west, the hot material upwelling caused by subduction beneath the Tibetan Plateau is not as significant as that in the Caucasus and Myanmar regions, the lithosphere exhibits coupled rotational movement around the Eastern Himalayan syntaxes, and the areas to the north and south of 26°N in the Yunnan region are affected by different geodynamic processes. Our newly captured images of the uppermost mantle velocity and anisotropy structure provide further information about continental collision processes and associated dynamic mechanisms.

  15. The spatiotemporal distribution of dissolved carbon in the main stems and their tributaries along the lower reaches of Heilongjiang River Basin, Northeast China.

    PubMed

    Wang, Lili; Song, Changchun; Guo, Yuedong

    2016-01-01

    The Heilongjiang River Basin in the eastern Siberia, one of the largest river basins draining to the North Pacific Ocean, is a border river between China, Mongolia, and Russia. In this study, we examined the spatial and seasonal variability in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved total carbon (DTC) concentrations along lower reaches of Heilongjiang River Basin, China. Water samples were collected monthly along the mouths of main rivers (Heilongjiang River, Wusuli River, and Songhua River) and their ten tributary waters for 2 years. The DOC concentrations of waters ranged from 1.74 to 16.64 mg/L, with a mean value of 8.90 ± 0.27 mg/L (n = 165). Notably, mean DIC concentrations were 9.08 ± 0.31 mg/L, accounting for 13.26∼83.27% of DTC. DIC concentrations increased significantly after the Heilongjiang River passed through Northeast China, while DOC concentrations decreased. Over 50% of DIC concentrations were decreased during exports from groundwater to rice fields and from rice fields to ditches. Water dissolved carbon showed large spatial and temporal variations during the 2-year measurement, suggesting that more frequently samplings were required. Carbon (DIC + DOC) loads from the Heilongjiang River to the Sea of Okhotsk were estimated to be 3.26 Tg C/year in this study, accounting for 0.64% of the global water dissolved carbon flux. DIC export contributed an average of 51.84% of the estimated carbon load in the Heilongjiang River, acting as an important carbon component during riverine transport. Our study could provide some guides on agricultural water management and contribute to more accurately estimate global carbon budgets.

  16. The distribution of antibiotics in water of a river basin in South China

    NASA Astrophysics Data System (ADS)

    Meng, T.; Cheng, W.; Wang, M.; Wan, T.; Cheng, M.; Zhang, C. C.; Jia, Z. Y.

    2017-08-01

    In water environment field, one of the most attractive research topics is the determination of contamination characteristics of antibiotics in water. In order to investigate the distribution of antibiotics in surface water and drinking water of a certain river basin in southern China, we determined the types and concentrations of antibiotics that contaminated the river by performing HPLC-ESI-MS/MS method. Thus, we detected 17 antibiotics in four surface water samples (B1, B2, B3, and B4). In sampling points B3 and B4, we detected 16 antibiotics separately. The detection rates of norfloxacin, ofloxacin, and erythromycin-H2O were 100%, and the antibiotic erythromycin-H2O had the maximum concentration. In six drinking water samples (A1, A2, A3, A4, A5, and A6), we detected 13 antibiotics. In A5 water samples, we detected all the 13 antibiotics. The detection rate of ofloxacin and erythromycin-H2O was 100%, and erythromycin-H2O was the antibiotic with the highest concentration. We also found that from the upstream to the downstream of the river basin, the types of antibiotics in river increased gradually. In the upstream water samples (B1), we detected three antibiotics. Erythromycin-H2O was the antibiotic with the highest concentration of 6.61 ng/L, and sulfapyridine had the lowest concentration of 2.82 ng/L. In the downstream water samples (B4), we detected 16 antibiotics. Erythromycin-H2O was the antibiotic with the highest concentration of 277.58 ng/L, and the Sulfamonomethoxine was the antibiotic with the second-highest concentration of 242.1 ng/L. In addition, different membrane treatment processes could remove different amounts of antibiotics from the water samples. The study is an important reference for providing environmental protection to river water basin.

  17. Urban dust in the Guanzhong basin of China, part II: A case study of urban dust pollution using the WRF-Dust model.

    PubMed

    Li, Nan; Long, Xin; Tie, Xuexi; Cao, Junji; Huang, Rujin; Zhang, Rong; Feng, Tian; Liu, Suixin; Li, Guohui

    2016-01-15

    We developed a regional dust dynamical model (WRF-Dust) to simulate surface dust concentrations in the Guanzhong (GZ) basin of China during two typical dust cases (19th Aug. and 26th Nov., 2013), and compared model results with the surface measurements at 17 urban and rural sites. The important improvement of the model is to employ multiple high-resolution (0.5-500 m) remote sensing data to construct dust sources. The new data include the geographic information of constructions, croplands, and barrens over the GZ basin in summer and winter of 2013. For the first time, detailed construction dust emissions have been introduced in a regional dust model in large cities of China. Our results show that by including the detailed dust sources, model performance at simulating dust pollutions in the GZ basin is significantly improved. For example, the simulated dust concentration average for the 17 sites increases from 28 μg m(-3) to 59 μg m(-3), closing to the measured concentration of 66 μg m(-3). In addition, the correlation coefficient (r) between the calculated and measured dust concentrations is also improved from 0.17 to 0.57, suggesting that our model better presents the spatial variation. Further analysis shows that urban construction activities are the crucial source in controlling urban dust pollutions. It should be considered by policy makers for mitigating particulate air pollution in many Chinese cities. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The response of drought in Beiluo River Basin of China based on the comprehensive method of Pa, SPI and fuzzy

    NASA Astrophysics Data System (ADS)

    Zhang, L. P.; Liu, D. F.; Zhang, H. X.; Huang, Q.; Chang, J. X.

    2017-08-01

    The meteorological drought is threatening the agricultural economic development with the change of the climate. In order to analyze the characteristics of drought spatiotemporal change, the precipitation data of eight meteorological stations in the Beiluo River Basin of Shaanxi Province of China have been collected, and the drought index of Pa, SPI and FSE have been selected to analyze the drought in Shaanxi Province for the last 55 years. The results of Pa, SPI and FSE test show that the droughts happened in the Beiluo River Basin are 149, 215 and 203 times in the past 55 years, respectively. Overall, the Beiluo River has a tendency to dry out. The main type of drought is low-grade drought, followed by the mediumgrade drought, and the specially-grade drought happened least. The average rainfall decreases in the Beiluo River Basin from the southeast to the northwest, and the change of the number of drought is just opposite to that of precipitation trend, which increases from southeast to northwest. The results will provide the scientific basis for the monitoring, evaluation, early warning and drought relief.

  19. Land use/land cover change and their effects on landscape patterns in the Yanqi Basin, Xinjiang (China).

    PubMed

    Wang, Shuixian; Wang, Shengli

    2013-12-01

    Human modification of land use and land cover change (LUCC) drives the change of landscape patterns and limits the availability of products and services for human and livestock. LUCC can undermine environmental health. Thus, this study aimed to develop an understanding of LUCC in the Yanqi Basin, Xinjiang, China, an arid area experiencing dramatic water and land resource use. A time series of satellite images (1964, 1973, 1989, 1999, and 2009) were used to calculate the index of landscape patterns to study the processes involved in changes to land uses and landscape patterns and the influence of this changes on landscape patterns. The results show that land uses in the Yanqi Basin have changed dramatically since 1964 with grassland being mainly converted to cropland. Landscape fragmentation and diversity have decreased in the study area, although landscape fragmentation increased from 1964 to 1999 and then decreased by 2009. The index of landscape diversity decreased from 1.64 in 1964 to 0.71 in 2009. The heterogeneity and complexity of the landscape increased during this period. In contrast, the index of dominance decreased from 0.85 in 1964 to 0.83 in 2009. Land use change drives landscape patterns of the development of the watershed toward diversity and a fragmented structure. Population growth, economic development, and industrial policies were the dominant driving forces behind LUCC in the Yanqi Basin. Sustainable use of land resources is a significant factor in maintaining economic development and environmental protection in this arid inland river basin.

  20. The role of lithospheric strength heterogeneities in the dynamics of Tienshan and neighbouring regions

    NASA Astrophysics Data System (ADS)

    Wang, K.; Xiong, X.; Hao, X.; Li, J.

    2017-12-01

    Tienshan mountain is located about 1500 km away from the plate boundary, but it absorbs approximately 30% of the total effect of the Indian-Eurasian collision. As its rapid shortening and distinct deformation, Tienshan is considered as a good laboratory for studying the dynamics of intra-plate compressional deformation. However, a better understanding of the mechanics of Tienshan mountain building processes demands a detailed knowledge of the rheological structure of the lithosphere in Tienshan region.Here we take advantages of the new data sets from the geothermal, seismology and geodesy to re-estimate the strength of lithosphere in the Tienshan mountain and neighbouring region. We have developed two numerical deformation models (two-dimension profile) along the eastern and western Tienshan Mountain in order to investigate the effects of lateral strength heterogeneities on mountain building.We find that (1) the lithospheric strength of Tienshan mountain has significant difference with adjacent area, and its strength is significantly lower than that of Tarim Basin and Junggar Basin; (2) the strength also shows difference between the eastern and western of Tienshan Mountain, the eastern is strong and the western is weak. Our numerical results reveal that (3) the presence of strong Tarim Basin caused the Indian-Eurasian collision effect to be transferred to the Tienshan Mountains beyond 1500km, while the Tarim Basin shows little internal deformation; (4) the Tienshan region with weak lithosphere contributes to its horizontal shortening and vertical uplift; (5) the existence of high strength Junggar Basin is advantageous to the deformation and orogenic of Tienshan, and also prevents the orogenic range from spreading further northward.

  1. Response of ESV to Climate Change and Human Activities in the Yanqi Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Rusuli, Yusufujiang; Sidik, Halida; Gupur, Adila; Hong, Jiang; Kadir, Rayila

    2016-04-01

    Ecosystem goods and services refer to the dependence of economic wealth and human well-being on natural systems. It is a common knowledge that the changing of structure and function of the ecosystem due to climate change and human activities. It is a priority issue to study on various spatiotemporal scales, the sensitivity of ecosystems to climate change and anthropogenic pressure in inland areas. In an effort to better understand the influence of climate change and human activities on ecosystem services, we evaluated the change in ESV of the Yanqi Basin in Xinjiang, China from 1973 to 2014 employing methods of MK, MK Sneyers, ESV and dynamic degree of LUCC. The Landsat images, digital elevation model (DEM) and metrological data were applied to assessing the ESV and its change. According to the degree of effects of the climate change and human activities, the research area was divided into two parts: the mountain area and the plain oasis area at a contour of 1400 m above sea level. According to type and affect, the land cover was classified as water, wetland, desert, fields, glacier, warm shrub grassland, cold meadow steppe and highland vegetation. We analyzed the relationship between the variation of ESV and precipitation, and evaporation and then quantitatively differentiated the influence of climate change and human activities on ESV. Results show that: (1) distinct change points of precipitation and evaporation in mountain and plain oasis of the Yanqi basin were detected by the MK-Sneyers test. The precipitation increased and the evaporation declined in mountain and plain oasis in the same way. Enlargement of agricultural areas to accommodate an increased population and socio-economic development was detected by conversion matrix of LUCC in oasis area. As a result, the variation of ESV was caused by climate change and human activities jointly; (2) the declining trend of ESV in the mountain area was mainly caused by shrinking of the glacier area; (3) ESV was

  2. East China plains: a "basin" of ozone pollution.

    PubMed

    Zhao, Chun; Wang, Yuhang; Zeng, Tao

    2009-03-15

    Economic growth and associated pollution emissions in China are concentrated over three connected plains to the east In this work, we analyze an episode of highly elevated ozone over East China on June 9-14, 2004, using a 3-D chemical transport model. During this episode, the East China plains were under a high-pressure system, which suppressed the ventilation of pollutants from the boundary layer. Simulated ozone concentrations over a major fraction of East China reached high levels, all the way down to the Pearl River Delta region in the southern border. The convergence of pollutant emissions and population over the vast stretch of the geographically flat plains of East China makes the region susceptible to high-ozone exposure. During this episode, the high-03 region extended over an area >1 million km2, which hosts a population of >800 million people. Model results indicate that controlling anthropogenic NOx emissions effectively reduces the area with high-ozone exposure.

  3. Sources, distribution and export coefficient of phosphorus in lowland polders of Lake Taihu Basin, China.

    PubMed

    Huang, Jiacong; Gao, Junfeng; Jiang, Yong; Yin, Hongbin; Amiri, Bahman Jabbarian

    2017-12-01

    Identifying phosphorus (P) sources, distribution and export from lowland polders is important for P pollution management, however, is challenging due to the high complexity of hydrological and P transport processes in lowland areas. In this study, the spatial pattern and temporal dynamics of P export coefficient (PEC) from all the 2539 polders in Lake Taihu Basin, China were estimated using a coupled P model for describing P dynamics in a polder system. The estimated amount of P export from polders in Lake Taihu Basin during 2013 was 1916.2 t/yr, with a spatially-averaged PEC of 1.8 kg/ha/yr. PEC had peak values (more than 4.0 kg/ha/yr) in the polders near/within the large cities, and was high during the rice-cropping season. Sensitivity analysis based on the coupled P model revealed that the sensitive factors controlling the PEC varied spatially and changed through time. Precipitation and air temperature were the most sensitive factors controlling PEC. Culvert controlling and fertilization were sensitive factors controlling PEC during some periods. This study demonstrated an estimation of PEC from 2539 polders in Lake Taihu Basin, and an identification of sensitive environmental factors affecting PEC. The investigation of polder P export in a watershed scale is helpful for water managers to learn the distribution of P sources, to identify key P sources, and thus to achieve best management practice in controlling P export from lowland areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. [Coupling coordination measurement of urbanization and eco-environment system in Huaihe River Basin of China based on fuzzy matter element theory].

    PubMed

    Guo, Yue-Ting; Xu, Jian-Gang

    2013-05-01

    Based on the statistical data of urbanization and eco-environment of 35 cities in the Huaihe River Basin of China in 2010, an index system of urbanization-eco-environment system was established by using fuzzy matter element theory, and the weight of each indicator was calculated by entropy method. The improved function of the coupling coordination degree of urbanization and eco-environment was constructed to measure this coupling coordination degree in the Huaihe River Basin. In 2010, the development level of urbanization subsystem in the Basin was lower than that of the eco-environment subsystem, and the integrated coordination index of urbanization and eco-environment was 0.186, indicating that there was a gap between the two types of indicators. The average coupling degree of urbanization and eco-environment was 0.475, indicating that the urbanization-eco-environment system was at antagonistic stage. There was a greater difference in the development level of urbanization subsystem, but a smaller difference in the development level of eco-environment subsystem among the cities. The average value of the coordination degree of all the cities was 0.706, indicating that the Huaihe River Basin was at high coordination coupling stage, and the integrated coherence and synergistic effect of urbanization and eco-environment construction in the Huaihe River Basin was higher.

  5. Application of the environmental Gini coefficient in allocating water governance responsibilities: a case study in Taihu Lake Basin, China.

    PubMed

    Zhou, Shenbei; Du, Amin; Bai, Minghao

    2015-01-01

    The equitable allocation of water governance responsibilities is very important yet difficult to achieve, particularly for a basin which involves many stakeholders and policymakers. In this study, the environmental Gini coefficient model was applied to evaluate the inequality of water governance responsibility allocation, and an environmental Gini coefficient optimisation model was built to achieve an optimal adjustment. To illustrate the application of the environmental Gini coefficient, the heavily polluted transboundary Taihu Lake Basin in China, was chosen as a case study. The results show that the original environmental Gini coefficient of the chemical oxygen demand (COD) was greater than 0.2, indicating that the allocation of water governance responsibilities in Taihu Lake Basin was unequal. Of seven decision-making units, three were found to be inequality factors and were adjusted to reduce the water pollutant emissions and to increase the water governance inputs. After the adjustment, the environmental Gini coefficient of the COD was less than 0.2 and the reduction rate was 27.63%. The adjustment process provides clear guidance for policymakers to develop appropriate policies and improve the equality of water governance responsibility allocation.

  6. An Observational Study of the Kuroshio in the East China Sea: Local, Regional, and Basin-Wide Perspectives on a Western Boundary Current

    DTIC Science & Technology

    2008-01-01

    a seamount (summit ~320 m depth); the northern section reaches ~460 m depth while the southern section reaches ~1400 m (Oka and Kawabe, 2003). East...AN OBSERVATIONAL STUDY OF THE KUROSHIO IN THE EAST CHINA SEA: LOCAL, REGIONAL, AND BASIN-WIDE PERSPECTIVES ON A WESTERN BOUNDARY CURRENT...BY MAGDALENA ANDRES A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

  7. How to allocate water resources under climate change in the arid endorheic river basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Feng, D.; Tian, Y.; Zheng, Y.

    2017-12-01

    Water resource is of fundamental importance to the society and ecosystem in arid endorheic river basins, and water-use conflicts between upstream and downstream are usually significant. Heihe river basin (HRB) is the second largest endorheic river basin in china, which is featured with dry climate, intensively irrigated farmlands in oases and significant surface water-groundwater interaction. The irrigation districts in the middle HRB consume a large portion of the river flow, and the low HRB, mainly Gobi Desert, has an extremely vulnerable ecological environment. The water resources management has significantly altered the hydrological processes in HRB, and is now facing multiple challenges, including decline of groundwater table in the middle HRB, insufficient environmental flow for the lower HRB. Furthermore, future climate change adds substantial uncertainty to the water system. Thus, it is imperative to have a sustainable water resources management in HRB in order to tackle the existing challenges and future uncertainty. Climate projection form a dynamical downscaled climate change scenario shows precipitation will increase at a rate of approximately 3 millimeter per ten years and temperature will increase at a rate of approximately 0.2 centigrade degree per ten years in the following 50 years in the HRB. Based on an integrated ecohydrological model, we evaluated how the climate change and agricultural development would collaboratively impact the water resources and ecological health in the middle and lower HRB, and investigated how the water management should cope with the complex impact.

  8. Heavy Metal Accumulation by Periphyton Is Related to Eutrophication in the Hai River Basin, Northern China

    PubMed Central

    Tang, Wenzhong; Cui, Jingguo; Shan, Baoqing; Wang, Chao; Zhang, Wenqiang

    2014-01-01

    The Hai River Basin (HRB) is one of the most polluted river basins in China. The basin suffers from various types of pollutants including heavy metals and nutrients due to a high population density and rapid economic development in this area. We assessed the relationship between heavy metal accumulation by periphyton playing an important role in fluvial food webs and eutrophication in the HRB. The concentrations of the unicellular diatoms (type A), filamentous algae with diatoms (type B), and filamentous algae (type C) varied along the river, with type A dominating upstream, and types B then C increasing in concentration further downstream, and this was consistent with changes in the trophic status of the river. The mean heavy metal concentrations in the type A, B and C organisms were Cr: 18, 18 and 24 mg/kg, respectively, Ni: 9.2, 10 and 12 mg/kg, respectively, Cu: 8.4, 19 and 29 mg/kg, respectively, and Pb: 11, 9.8 and 7.1 mg/kg respectively. The bioconcentration factors showed that the abilities of the organisms to accumulate Cr, Ni and Pb decreased in the order type A, type B, then type C, but their abilities to accumulate Cu increased in that order. The Ni concentration was a good predictor of Cr, Cu and Pb accumulation by all three periphyton types. Our study shows that heavy metal accumulation by periphyton is associated with eutrophication in the rivers in the HRB. PMID:24482681

  9. [Spatio-temporal variations of origin, distribution and diffusion of Oncomelania hupensis in Yangtze River Basin].

    PubMed

    Deng, Chen; Li-Yong, Wen

    2017-10-24

    As the only intermediate host of Schistosoma japonicum, Oncomelania hupensis in China is mainly distributed in the Yangtze River Basin. The origin of the O. hupensis and the spatio-temporal variations of its distribution and diffusion in the Yangtze River Basin and the influencing factors, as well as significances in schistosomiasis elimination in China are reviewed in this paper.

  10. [Effects of thinning on Calligonum arborescens growth and soil water-salt distribution in Tarim Desert Highway shelterbelt, Xinjiang of Northwest China].

    PubMed

    Zhang, Jian-Guo; Li, Ying-Gang; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu

    2012-09-01

    In order to understand the effects of thinning on the growth of Calligonum arborescens and the soil water-salt distribution in Tarim Desert Highway shelterbelt, a thinning experiment was conducted on an aged and declined C. arborescens woodland in a demonstration section of the shelterbelt, with the growth of C. arborescens and the soil water-salt distribution monitored. Thinning had no effects on the phenophase of C. arborescens, but after thinning, the growth of the current year plant height, crown width, ground diameter, and new branch length of reserved trees was larger than that of the control, and the increment was in the order of planting space 2 mx 1 m > 1 m x 1 m > the control, with significant differences among the treatments. The assimilation branch surface area in treatments 2 mx 1 m and 1 m x 1 m were 5.97 m2 and 5.22 m2 per plant, respectively, being significantly larger than the control (3.1 m2 per plant). The soil moisture content in 0-160 cm layer was significantly higher in treatments 2 m x 1 m and 1 mx 1 m than in the control, and increased obviously with thinning intensity. The soil salt content was in the order of control > planting space 1 m x 1 m > 2 m x 1 m, and the differences among the treatments were significant. It was suggested that the best reserved plant density after thinning was planting space 2 m x 1 m.

  11. Inversion of the Erlian Basin (NE China) in the early Late Cretaceous: Implications for the collision of the Okhotomorsk Block with East Asia

    NASA Astrophysics Data System (ADS)

    Guo, Zhi-Xin; Shi, Yuan-Peng; Yang, Yong-Tai; Jiang, Shuan-Qi; Li, Lin-Bo; Zhao, Zhi-Gang

    2018-04-01

    A significant transition in tectonic regime from extension to compression occurred throughout East Asia during the mid-Cretaceous and has stimulated much attention. However, the timing and driving mechanisms of the transition remain disputed. The Erlian Basin, a giant late Mesozoic intracontinental petroliferous basin located in the Inner Mongolia, Northeast China, contains important sedimentary and structural records related to the mid-Cretaceous compressional event. The stratigraphical, sedimentological and structural analyses reveal that a NW-SE compressional inversion occurred in the Erlian Basin between the depositions of the Lower Cretaceous Saihan and Upper Cretaceous Erlian formations, causing intense folding of the Saihan Formation and underlying strata, and the northwestward migration of the depocenters of the Erlian Formation. Based on the newly obtained detrital zircon U-Pb data and previously published paleomagnetism- and fossil-based ages, the Saihan and Erlian formations are suggested as latest Aptian-Albian and post-early Cenomanian in age, respectively, implying that the inversion in the Erlian Basin occurred in the early Late Cretaceous (Cenomanian time). Apatite fission-track thermochronological data record an early Late Cretaceous cooling/exhuming event in the basin, corresponding well with the aforementioned sedimentary, structural and chronological analyses. Combining with the tectono-sedimentary evolutions of the neighboring basins of the Erlian Basin, we suggest that the early Late Cretaceous inversional event in the Erlian Basin and the large scale tectonic transition in East Asia shared the common driving mechanism, probably resulting from the Okhotomorsk Block-East Asia collisional event at about 100-89 Ma.

  12. Qualitative and quantitative analysis of Dibenzofuran, Alkyldibenzofurans, and Benzo[b]naphthofurans in crude oils and source rock extracts

    USGS Publications Warehouse

    Meijun Li,; Ellis, Geoffrey S.

    2015-01-01

    Dibenzofuran (DBF), its alkylated homologues, and benzo[b]naphthofurans (BNFs) are common oxygen-heterocyclic aromatic compounds in crude oils and source rock extracts. A series of positional isomers of alkyldibenzofuran and benzo[b]naphthofuran were identified in mass chromatograms by comparison with internal standards and standard retention indices. The response factors of dibenzofuran in relation to internal standards were obtained by gas chromatography-mass spectrometry analyses of a set of mixed solutions with different concentration ratios. Perdeuterated dibenzofuran and dibenzothiophene are optimal internal standards for quantitative analyses of furan compounds in crude oils and source rock extracts. The average concentration of the total DBFs in oils derived from siliciclastic lacustrine rock extracts from the Beibuwan Basin, South China Sea, was 518 μg/g, which is about 5 times that observed in the oils from carbonate source rocks in the Tarim Basin, Northwest China. The BNFs occur ubiquitously in source rock extracts and related oils of various origins. The results of this work suggest that the relative abundance of benzo[b]naphthofuran isomers, that is, the benzo[b]naphtho[2,1-d]furan/{benzo[b]naphtho[2,1-d]furan + benzo[b]naphtho[1,2-d]furan} ratio, may be a potential molecular geochemical parameter to indicate oil migration pathways and distances.

  13. Sustainability of mega water diversion projects: Experience and lessons from China.

    PubMed

    Yu, Min; Wang, Chaoran; Liu, Yi; Olsson, Gustaf; Wang, Chunyan

    2018-04-01

    Water availability and water demand are not evenly distributed in time and space. Many mega water diversion projects have been launched to alleviate water shortages in China. This paper analyzes the temporal and spatial features of 59 mega water diversion projects in China using statistical analysis. The relationship between nine major basins is measured using a network analysis method, and the associated economic, environmental and social impacts are explored using an impact analysis method. The study finds the development of water diversion has experienced four stages in China, from a starting period through to a period of high-speed development. Both the length of water diversion channels and the amount of transferred water have increased significantly in the past 50years. As of 2015, over 100billionm 3 of water was transferred in China through 16,000km in channels. These projects reached over half of China's provinces. The Yangtze River Basin is now the largest source of transferred water. Through inter-basin water diversion, China gains the opportunity to increase Gross Domestic Product by 4%. However, the construction costs exceed 150 billion US dollars, larger than in any other country. The average cost per unit of transferred water has increased with time and scale but decreased from western to eastern China. Furthermore, annual total energy consumption for pumping exceeded 50billionkilowatt-hours and the related greenhouse gas emissions are estimated to be 48milliontons. It is worth noting that ecological problems caused by water diversion affect the Han River and Yellow River Basins. Over 500 thousand people have been relocated away from their homes due to water diversion. To improve the sustainability of water diversion, four kinds of innovative measures have been provided for decision makers: national diversion guidelines, integrated water basin management, economic incentives and ex-post evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Expansion of agricultural oasis in the Heihe River Basin of China: Patterns, reasons and policy implications

    NASA Astrophysics Data System (ADS)

    Song, Wei; Zhang, Ying

    The Heihe River Basin (HRB) is the second largest inland river basin in the arid region of northwestern China. An agricultural oasis is a typical landscape in arid regions providing precious fertile soil, living space and ecological services. The agricultural oasis change has been one of the key issues in sustainable development in recent decades. In this paper, we examined the changes in the agricultural oasis in HRB and analyzed the socio-economic and climatic driving forces behind them. It was found that the agricultural oasis in HRB expanded by 25.11% and 14.82% during the periods of 1986-2000 and 2000-2011, respectively. Most of the newly added agricultural oases in HRB were converted from grassland (40.94%) and unused land (40.22%). The expansion in the agricultural oasis mainly occurred in the middle reaches of HRB, particularly in the counties of Shandan, Minle, Jinta and Jiuquan city. Changes in the rural labor force, annual temperature and precipitation have significant positive effects on agricultural oasis changes, while the ratio of irrigated agricultural oases has significant negative effects on agricultural oasis changes. The agricultural oasis expansion in HRB is the combined effect of human activity and climate change.

  15. Dynamic reorganization of river basins.

    PubMed

    Willett, Sean D; McCoy, Scott W; Perron, J Taylor; Goren, Liran; Chen, Chia-Yu

    2014-03-07

    River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance. The ability to measure the dynamic reorganization of river basins presents opportunities to examine landscape-scale interactions among tectonics, erosion, and ecology.

  16. Luminescence dating of the Zeketai loess section in the Ili Basin, northwestern China: Methodological considerations

    NASA Astrophysics Data System (ADS)

    Qin, Jintang; Zhou, Liping

    2018-04-01

    Loess deposits in Xinjiang, northwestern China are ideal archives for past environmental changes in the Westerlies-dominated central Asia. Among previous luminescence dating studies of loess in Xinjiang, few have attempted to systematically investigate the methodological aspects. In this study, we report results of a multiple-procedure luminescence dating of the Zeketai loess section in the Ili Basin, central Xinjiang. Optically stimulated luminescence (OSL) and post-infrared infrared stimulated luminescence (pIRIR) signals were used for quartz and polymineral grains of different sizes. The pIRIR ages obtained with two protocols agree well with each other and constrain the loess deposition between 50 ka and 88 ka. The OSL ages of fine-grained quartz are in stratigraphic order and range from 37 ka to 61 ka, but are ∼30% younger than the pIRIR295 ages of both fine and medium grained polyminerals. Although the causes of the discrepancy between the ages derived from different luminescence dating protocols are still to be understood, we stress that the quartz OSL ages of loess in this region are likely to be underestimated, especially for samples older than 40 ka. The polymineral or potassium feldspar pIRIR signal is recommended for dating loess in the Ili Basin, at least as an internal check.

  17. Consistent C3 plant habitat of hominins during 400-300 ka at the Longyadong Cave site (Luonan Basin, central China) revealed by stable carbon isotope analyses of loess deposits

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyan; Lu, Huayu; Wang, Shejiang

    2017-04-01

    The proportions of woody and grassland taxa in terrestrial ecosystems played an important role in the origin and evolution of early Palaeolithic hominins. However the influence of ecosystem changes on hominin behavior and adaptations in Asia has not been studied in detail. Hominins have exploited the Luonan Basin in the Eastern Qinling Mountains, central China, since the early Paleolithic. Dated sites, consisting of alternating loess and soil deposits with in situ artefacts, are common in the region, and provide a detailed record of Early to Middle Pleistocene hominin environments. Here, we present the results of measurements of the stable carbon isotopic composition of soil organic matter (δ13C) in the loess-paleosol sequences from the Longyadong Cave site. Our analyses of δ13C show that for at least 400 ka the Longyadong Cave site and its surroundings were dominated by C3 woody plants, whereas the nearby Liuwan site was dominated by C4 and C3 mixed grassland or woody grassland vegetation. These findings demonstrate that between 400 and 300 ka in the Luonan Basin, hominins occupied a habitat consisting of a mosaic of grassland and woodland/forest. Although the vegetation of the region changed in response to the glacial-interglacial climatic cycles, patches of woody vegetation in landscapes such as at Longyadong Cave site persisted continuously. Such environments seem to be have been favored by hominins living in the Luonan Basin, possibly because they provided a diverse range of food resources during both glacial and interglacial intervals of the Middle Pleistocene, when most of northern China was experiencing an increasing trend of drying and cooling and steppe environments were expanding. Thus, the Luonan Basin would have served as a refugium for hominin occupation in China during the Middle Pleistocene.

  18. The distribution and tectonic framework of Late Paleozoic volcanoes in the Junggar basin and its adjacent area, NW China

    NASA Astrophysics Data System (ADS)

    Mao, X.; Li, J. H.

    2012-04-01

    We analyse the distribution and characteristics of 145 late Paleozoic volcanoes in north Xinjiang, NW China, including 32 volcanoes on the edge of the Junggar basin. These volcanoes are clustered and can be divided into calderas, volcanic domes, and volcanic necks. There are also 85 volcanoes inside the Junggar basin, which are dominantly distributed in the Ke-Bai fractured zone of the northwestern margin of Junggar Basin, 4 depressions (Dongdaohaizi Depression, Dishuiquan Depression, Sannan Depression and Wucaiwan Depression) and 7 uplifts (Baijiahai uplift, Beisantai uplift, Dibei uplift, Dinan uplift, Sangequan uplift, Shixi uplift and Xiayan uplift). The volcanoes inside the basin are principally controlled by Hercynian Fault Systems, along NE and nearly EW trending faults and most developed in the interjunctions of the faults. The long modification by late-stage weathering and leaching made the volcanoes difficult to identify. Remaining volcanic landforms, changing trends of the volcanic lithofacies and the typical volcanic rock, such as the crypto- explosive breccia, are the typical marks of the late Paleozoic volcanoes in the field; and the concealed volcanic edifices are identified by the techniques of seismic identification, such as seismic slicing, analysis of the attribute and tectonic trend plane. The ages of the volcanic rocks are focused on from 340 Ma to 320Ma and from 300 Ma to 295 Ma, corresponding to the subducting periods of West Junggar and East Junggar. From early Carboniferous to late Carboniferous, the volcanic activities in Junggar Basin and its adjacent areas show a variation trend from undersea to continental, from deep water to shallow water and from continental margin to intracontinental.

  19. Detrital zircon evidence for the ternary sources of the Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Sun, Jimin; Ding, Zhongli; Xia, Xiaoping; Sun, Min; Windley, Brian F.

    2018-04-01

    The provenance of Chinese loess is fundamental for understanding its origin, transportation and climatic significance. In this paper, eight samples were collected for detrital zircon age analysis, five from different deserts, and three from the Jingbian Section in the northern Chinese Loess Plateau, covering an age range of 2.6-0.03 Ma. The new results, integrated with knowledge of relevant topography and wind patterns, demonstrate that the age spectra of the detrital zircons in the loess are different from those of the sands from the Tarim, Junggar and Qaidam basins, implying that these basins were not the sources of the silts of the Loess Plateau. Further analysis suggests that the three sources for the loess are: (1) clastic materials eroded from the mountains of the Central Asian Orogenic Belt (especially the Gobi Altai and Hangay), (2) clastic loess-sized materials generated by erosion of the Qilian Mountains in the NE Tibetan Plateau, and (3) minor clastic debris derived from the mountains of the North China Craton. Thus, silts of the Loess Plateau have a complex origin, although inland basins, long believed to be important sources, have only a minor role at most.

  20. Brittle Deformation in the Ordos Basin in response to the Mesozoic destruction of the North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Jiang, L.

    2012-12-01

    Craton is continental block that has been tectonically stable since at least Proterozoic. Some cratons, however, become unstable for some geodynamic reasons. The North China Craton (NCC) is an example. Structure geological, geochemical, and geophysical works have revealed that the NCC was destructed in Cretaceous and that lithosphere thickness beneath the eastern NCC were thinned by 120 km. The present study will focus on deformation of the western NCC, and to understand the effect of the Mesozoic destruction of the North China Craton (NCC). Structural partitioning of the Ordos Basin, which is located in the western NCC, from the eastern NCC occurred during the Mesozoic. Unlike the eastern NCC where many Cretaceous metamorphic core complexes developed, sedimentary cover of the NCC remains nearly horizontal and deformation is manifested by joint. We visited 216 sites of outcrops and got 1928 joints measurements, among which 270 from Jurassic sandstones, 1378 from the Upper Triassic sandstones, 124 from the Middle and Lower Triassic sandstones, and 156 from Paleozoic sandstones. In the interior of the Ordos Basin, joints developed quite well in the Triassic strata, while joints in the Jurassic stata developed weakly and no joint in the Cretaceous strata. The Mesozoic stratigraphic thickness are: 1000 meters for the Lower Triassic, the Middle Triassic sandstone with thickness of 800 meters, 3000 meters for the Upper Triassic, 4000 meters for the Jurassic, and 1100 meters for the Lower Cretaceous. The vertical difference in joint development might be related to the burying depth of the strata: the higher the strata, the smaller the lithostatic stress, and then the weaker the joint. Joints in all stratigraphic levels showed a similar strain direction with the sigma 1 (the maximum pressure stress) vertical and the sigma 3 (the minimum pressure stress) horizontal and running N-S. The unconformity below the Cretaceous further indicates that joints in Jurassic and Triassic

  1. Modeling of soil erosion and sediment transport in the East River Basin in southern China.

    PubMed

    Wu, Yiping; Chen, Ji

    2012-12-15

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide. Published by Elsevier B.V.

  2. Modeling of soil erosion and sediment transport in the East River Basin in southern China

    USGS Publications Warehouse

    Wu, Yping; Chen, Ji

    2012-01-01

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide.

  3. Rocky Mountain Tertiary coal-basin models and their applicability to some world basins

    USGS Publications Warehouse

    Flores, R.M.

    1989-01-01

    Tertiary intermontane basins in the Rocky Mountain region of the United States contain large amounts of coal resources. The first major type of Tertiary coal basin is closed and lake-dominated, either mud-rich (e.g., North Park Basin, Colorado) or mud plus carbonate (e.g., Medicine Lodge Basin, Montana), which are both infilled by deltas. The second major type of Tertiary coal basin is open and characterized by a preponderance of sediments that were deposited by flow-through fluvial systems (e.g., Raton Basin, Colorado and New Mexico, and Powder River Basin, Wyoming and Montana). The setting for the formation of these coals varies with the type of basin sedimentation, paleotectonism, and paleoclimate. The mud-rich lake-dominated closed basin (transpressional paleotectonism and warm, humid paleoclimate), where infilled by sandy "Gilbert-type" deltas, contains thick coals (low ash and low sulfur) formed in swamps of the prograding fluvial systems. The mud- and carbonate-rich lake-dominated closed basin is infilled by carbonate precipitates plus coarse-grained fan deltas and fine-grained deltas. Here, thin coals (high ash and high sulfur) formed in swamps of the fine-grained deltas. The coarse-clastic, open basins (compressional paleotectonism and warm, paratropical paleoclimate) associated with flow-through fluvial systems contain moderately to anomalously thick coals (high to low ash and low sulfur) formed in swamps developed in intermittently abandoned portions of the fluvial systems. These coal development patterns from the Tertiary Rocky Mountain basins, although occurring in completely different paleotectonic settings, are similar to that found in the Tertiary, Cretaceous, and Permian intermontane coal basins in China, New Zealand, and India. ?? 1989.

  4. Lead contamination in sediments in the past 20 years: A challenge for China.

    PubMed

    Han, Lanfang; Gao, Bo; Hao, Hong; Zhou, Huaidong; Lu, Jin; Sun, Ke

    2018-06-04

    Lead (Pb) contamination was recognized in China early in the 1920s. However, the response of Pb contamination in sediments to China's rapid economic and social development remains uncertain to date. We conducted a literature review of over 1000 articles from 1990 to 2016 and the first national-scale survey of Pb contamination in China. A literature review showed that available research in China focused on the economically highly developed river basins, including the Pearl River Basin (PRB), Yellow River Basin (YRB), and Yangtze River Basin (YtRB), whereas those in the less developed southeastern, southwestern, and northwestern river basins received limited attention. The YtRB and YRB had higher Pb contamination levels than other basins, corresponding with the rapid economic development in those regions. However, the less economically developed river basins in the southeastern and northwestern regions of China were also contaminated by Pb. Analysis of 146 studies in the PRB, YRB, and YtRB revealed that Pb contamination in PRB sediments showed a tendency to improve over time, whereas that from the YtRB exhibited a tendency to worsen. For the YRB, there was a slight increase from 1990 to 2006 and a decreasing trend from 2007 to 2014. The overall temporal trend in Pb levels in PRB and YRB sediments corresponded with that of the Pb discharged in wastewater in the surrounding cities, indicating that industrial wastewater discharge was possibly one of the main anthropogenic sources of Pb in those sediments. For the YtRB, the increasing trend in Pb concentrations was related to the considerably high atmospheric Pb emissions in the surrounding cities and its geographical characteristics. These findings suggested that China should develop systematic and consistent approaches for monitoring Pb contents in sediments and adopt a regional economic development policy focusing on pollution prevention. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Wet and dry nitrogen deposition in the central Sichuan Basin of China

    NASA Astrophysics Data System (ADS)

    Kuang, Fuhong; Liu, Xuejun; Zhu, Bo; Shen, Jianlin; Pan, Yuepeng; Su, Minmin; Goulding, Keith

    2016-10-01

    Reactive nitrogen (Nr) plays a key role in the atmospheric environment and its deposition has induced large negative impacts on ecosystem health and services. Five-year continuous in-situ monitoring of N deposition, including wet (total nitrogen (WTN), total dissolved nitrogen (WTDN), dissolved organic nitrogen (WDON), ammonium nitrogen (WAN) and nitrate nitrogen (WNN)) and dry (DNH3, DHNO3, DpNH4+, DpNO3- and DNO2) deposition, had been conducted since August 2008 to December 2013 (wet) and May 2011 to December 2013 (dry) in Yan-ting, China, a typical agricultural area in the central Sichuan Basin. Mean annual total N deposition from 2011 to 2013 was 30.8 kg N ha-1 yr-1, and speculated that of 2009 and 2010 was averaged 28.2 kg N ha-1 yr-1, respectively. Wet and dry N deposition accounted for 76.3% and 23.7% of annual N deposition, respectively. Reduced N (WAN, DNH3 and DpNH4+) was 1.7 times of oxidized N (WNN, DHNO3, DNO2 and DpNO3-) which accounted for 50.9% and 30.3% of TN, respectively. Maximum loadings of all N forms of wet deposition, gaseous NH3, HNO3 and particulate NH4+ in dry deposition occurred in summer and minimum loadings in winter. Whether monthly, seasonal or annual averaged, dissolved N accounted for more than 70% of the total. N deposition in the central Sichuan Basin increased during the sampling period, especially that of ammonium compounds, and has become a serious threat to local aquatic ecosystems, the surrounding forest and other natural or semi-natural ecosystems in the upper reaches of the Yangtze River.

  6. Correlation between hydrological drought, climatic factors, reservoir operation, and vegetation cover in the Xijiang Basin, South China

    NASA Astrophysics Data System (ADS)

    Lin, Qingxia; Wu, Zhiyong; Singh, Vijay P.; Sadeghi, S. H. R.; He, Hai; Lu, Guihua

    2017-06-01

    The Xijiang River is known as the Golden Watercourse because of its role in the development of the Pearl River Delta Regional Economic System in China, which was made possible by its abundant water resources. At present, the hydrological regime of the Xijiang River has now become complicated, the water shortages and successive droughts pose a threat to regional economic development. However, the complexity of hydroclimatological processes with emphasizes on drought has not been comprehended. In order to effectively predict and develop the adaptation strategies to cope with the water scarcity damage caused by hydrological droughts, it is essential to thoroughly analyze the relationship between hydrological droughts and pre/post-dependent hydroclimatological factors. To accomplish this, the extreme-point symmetric mode decomposition method (ESMD) was utilized to reveal the periodic variation in hydrological droughts that is characterized by the Standardized Drought Index (SDI). In addition, the cross-wavelet transform method was applied to investigate the correlation between large-scale climate indices and drought. The results showed that hydrological drought had the most significant response to spring ENSO (El Niño-Southern Oscillation), and the response lags in sub-basins were mostly 8-9 months except that in Yujiang River were mainly 5 or 8 months. Signal reservoir operation in the Yujiang River reduced drought severity by 52-95.8% from January to April over the 2003-2014 time period. Similarly, the cascade reservoir alleviated winter and spring droughts in the Hongshuihe River Basin. However, autumn drought was aggravated with severity increased by 41.9% in September and by 160.9% in October, so that the land surface models without considering human intervention must be used with caution in the hydrological simulation. The response lags of the VCI (Vegetation Condition Index) to hydrological drought were different in the sub-basins. The response lag for the

  7. Calibrating Late Cretaceous Terrestrial Cyclostratigraphy with High-precision U-Pb Zircon Geochronology: Qingshankou Formation of the Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ramezani, J.; Wang, C.

    2015-12-01

    A continuous succession of Late Cretaceous lacustrine strata has been recovered from the SK-I south (SK-Is) and SKI north (SK-In) boreholes in the long-lived Cretaceous Songliao Basin in Northeast China. Establishing a high-resolution chronostratigraphic framework is a prerequisite for integrating the Songliao record with the global marine Cretaceous. We present high-precision U-Pb zircon geochronology by the chemical abrasion isotope dilution thermal-ionization mass spectrometry method from multiple bentonite core samples from the Late Cretaceous Qingshankou Formation in order to assess the astrochronological model for the Songliao Basin cyclostratigraphy. Our results from the SK-Is core present major improvements in precision and accuracy over the previously published geochronology and allow a cycle-level calibration of the cyclostratigraphy. The resulting choronostratigraphy suggest a good first-order agreement between the radioisotope geochronology and the established astrochronological time scale over the corresponding interval. The dated bentonite beds near the 1780 m depth straddle a prominent oil shale layer of the Qingshankou Formation, which records a basin-wide lake anoxic event (LAE1), providing a direct age constraint for the LAE1. The latter appears to coincide in time with the Late Cretaceous (Turonian) global sea level change event Tu4 presently constrained at 91.8 Ma.

  8. [Interrelations between plant communities and environmental factors of wetlands and surrounding lands in mid- and lower reaches of Tarim River].

    PubMed

    Zhao, Ruifeng; Zhou, Huarong; Qian, Yibing; Zhang, Jianjun

    2006-06-01

    A total of 16 quadrants of wetlands and surrounding lands in the mid- and lower reaches of Tarim River were surveyed, and the data about the characteristics of plant communities and environmental factors were collected and counted. By using PCA (principal component analysis) ordination and regression procedure, the distribution patterns of plant communities and the relationships between the characteristics of plant community structure and environmental factors were analyzed. The results showed that the distribution of the plant communities was closely related to soil moisture, salt, and nutrient contents. The accumulative contribution rate of soil moisture and salt contents in the first principal component accounted for 35.70%, and that of soil nutrient content in the second principal component reached 25.97%. There were 4 types of habitats for the plant community distribution, i. e., fenny--light salt--medium nutrient, moist--medium salt--medium nutrient, mesophytic--medium salt--low nutrient, and medium xerophytic-heavy salt--low nutrient. Along these habitats, swamp vegetation, meadow vegetation, riparian sparse forest, halophytic desert, and salinized shrub were distributed. In the wetlands and surrounding lands of mid- and lower reaches of Tarim River, the ecological dominance of the plant communities was markedly and unitary-linearly correlated with the compound gradient of soil moisture and salt contents. The relationships between species diversity, ecological dominance, and compound gradient of soil moisture and salt contents were significantly accorded to binary-linear regression model.

  9. Influences of climate change on water resources availability in Jinjiang Basin, China.

    PubMed

    Sun, Wenchao; Wang, Jie; Li, Zhanjie; Yao, Xiaolei; Yu, Jingshan

    2014-01-01

    The influences of climate change on water resources availability in Jinjiang Basin, China, were assessed using the Block-wise use of the TOPmodel with the Muskingum-Cunge routing method (BTOPMC) distributed hydrological model. The ensemble average of downscaled output from sixteen GCMs (General Circulation Models) for A1B emission scenario (medium CO2 emission) in the 2050s was adopted to build regional climate change scenario. The projected precipitation and temperature data were used to drive BTOPMC for predicting hydrological changes in the 2050s. Results show that evapotranspiration will increase in most time of a year. Runoff in summer to early autumn exhibits an increasing trend, while in the rest period of a year it shows a decreasing trend, especially in spring season. From the viewpoint of water resource availability, it is indicated that it has the possibility that water resources may not be sufficient to fulfill irrigation water demand in the spring season and one possible solution is to store more water in the reservoir in previous summer.

  10. Influences of Climate Change on Water Resources Availability in Jinjiang Basin, China

    PubMed Central

    Wang, Jie; Li, Zhanjie; Yao, Xiaolei

    2014-01-01

    The influences of climate change on water resources availability in Jinjiang Basin, China, were assessed using the Block-wise use of the TOPmodel with the Muskingum-Cunge routing method (BTOPMC) distributed hydrological model. The ensemble average of downscaled output from sixteen GCMs (General Circulation Models) for A1B emission scenario (medium CO2 emission) in the 2050s was adopted to build regional climate change scenario. The projected precipitation and temperature data were used to drive BTOPMC for predicting hydrological changes in the 2050s. Results show that evapotranspiration will increase in most time of a year. Runoff in summer to early autumn exhibits an increasing trend, while in the rest period of a year it shows a decreasing trend, especially in spring season. From the viewpoint of water resource availability, it is indicated that it has the possibility that water resources may not be sufficient to fulfill irrigation water demand in the spring season and one possible solution is to store more water in the reservoir in previous summer. PMID:24701192

  11. A new species of Euprox (Cervidae, Artiodactyla) from the upper Miocene of the Linxia Basin, Gansu Province, China, with interpretation of its paleoenvironment.

    PubMed

    Hou, Sukuan

    2015-01-16

    The Linxia Basin, Gansu Province, China, is known for its abundant and well preserved fossils. Here a new species, Euprox grandis sp. nov., is established based on a skull and antlers collected from the upper Miocene Liushu Formation of the Linxia Basin. The new species is distinguishable from other Euprox species by its large body size, notably long pedicle and weak burr. The main beam and the brow tine are slightly curved both medially and backwards, and the apex of the main beam turns, curving slightly laterally. The upper cheek teeth are brachydont, with a clear central fold on the premolars and internal postprotocrista and metaconule fold on M1-M2. The cingulum is almost absent, only occasionally weakly developed at the anterior and lingual surface of the teeth. Cladistic analysis was carried out using the TNT software, and two most parsimonious trees were retained. As the strict consensus tree shows E. grandis appears to be an advanced muntiacine form, which may have a close relationship with the genus Muntiacus. The presence of E. grandis in the Linxia Basin adds new evidence to support a warm and humid environment during the late Miocene in the basin

  12. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    NASA Astrophysics Data System (ADS)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  13. Gas Resource Potential of Volcanic Reservoir in Yingtai Fault Depression of Southern Songliao Basin,China

    NASA Astrophysics Data System (ADS)

    Zheng, M.

    2016-12-01

    There are 2 kinds of volcanic reservoir of gas resource in the Yingtai fault depression, southern Songliao basin,China: volcanic lava reservoir in the Yingcheng-1formation and sedimentary pryoclastics rock of the Yingcheng-2 formation. Based on analysis of the 2 kinds of gas pool features and controlling factors, distribution of each kind has been studied. The resources of these gas reservoirs have been estimated by Delphi method and volumetric method, respectively. The results of resources assessment show the total volcanic gas resources of the Yingtai depression is rich, and the resource proving rate is low, with the remaining gas resource in volcanic reservoir accounting for more than 70%. Thus there will be great exploration potential in the volcanic reservoir in the future gas exploration of this area.

  14. Comparative water-quality assessment of the Hai He River basin in the People's Republic of China and three similar basins in the United States

    USGS Publications Warehouse

    Domagalski, Joseph L.; Xinquan, Zhou; Chao, Lin; Deguo, Zhi; Chi, Fan Lan; Kaitai, Xu; Ying, Lu; Luo, Yang; Shide, Liu; Dewen, Liu; Yong, Guo; Qi, Tian; Jing, Liu; Weidong, Yu; Shedlock, Robert; Knifong, Donna

    2001-01-01

    Ground-water quality with respect to nitrate, major inorganic constituents, pesticides, stable isotopes, and tritium was assessed in the agricultural Tangshan region in the Hai He River basin of the People's Republic of China and compared with three similar regions in the United States: the Delmarva Peninsula of the States of Delaware, Maryland, and Virginia, and the San Joaquin and Sacramento Valleys of the State of California. These four regions are considered similar with respect to size, land use, or climate. Median nitrate concentrations were found to be similar in the four regions in most instances, and those median concentrations were below the American nitrate drinking water standard of 10 milligrams per liter, however, higher concentrations, and a greater range of concentration, were evident for the Tangshan region.

  15. Relationship between ancient bridges and population dynamics in the lower Yangtze River Basin, China.

    PubMed

    Zhao, Yang; Jia, Xin; Lee, Harry F; Zhao, Hongqiang; Cai, Shuliang; Huang, Xianjin

    2017-01-01

    It has been suggested that population growth dynamics may be revealed by the geographic distribution and the physical structure of ancient bridges. Yet, this relationship has not been empirically verified. In this study, we applied the archaeological records for ancient bridges to reveal the population growth dynamics in the lower Yangtze River Basin in late imperial China. We investigated 89 ancient bridges in Yixing that were built during the Ming and Qing dynasties (AD1368-1911). Global Position System information and structure (length, width, and span) of those bridges was measured during our field investigations. Their distribution density was calculated by ArcGIS. The historical socio-economic dynamics of Yixing was inferred from the distribution and structure of ancient bridges. Based on the above information, the population growth dynamics in Yixing was projected. Our results show that 77 bridges were built in Yixing during the Qing dynasty, which is 6.41 times more than the number built during the Ming dynasty. In the Ming dynasty, bridges were built on pivotal routes; in the Qing dynasty, bridges were scattered across various places. Over the period, the density distribution of bridges shifted northwestward, while the average length and width of bridges decreased. The increasing number of bridges corresponded to population growth, largely attributable to massive clan migration from northern China during the Little Ice Age. The shift in the density distribution of bridges corresponded to the formation of settlements of large clans and the blossoming of Yixing Teapot handicrafts. The scattering and the reduction in average length and width of bridges was due to the dispersal of population and the associated formation of small settlements in the latter period. Our approach is innovative and robust, and could be employed to recover long-term historical population growth dynamics in other parts of China.

  16. Relationship between ancient bridges and population dynamics in the lower Yangtze River Basin, China

    PubMed Central

    Zhao, Yang; Lee, Harry F.; Zhao, Hongqiang; Cai, Shuliang; Huang, Xianjin

    2017-01-01

    It has been suggested that population growth dynamics may be revealed by the geographic distribution and the physical structure of ancient bridges. Yet, this relationship has not been empirically verified. In this study, we applied the archaeological records for ancient bridges to reveal the population growth dynamics in the lower Yangtze River Basin in late imperial China. We investigated 89 ancient bridges in Yixing that were built during the Ming and Qing dynasties (AD1368–1911). Global Position System information and structure (length, width, and span) of those bridges was measured during our field investigations. Their distribution density was calculated by ArcGIS. The historical socio-economic dynamics of Yixing was inferred from the distribution and structure of ancient bridges. Based on the above information, the population growth dynamics in Yixing was projected. Our results show that 77 bridges were built in Yixing during the Qing dynasty, which is 6.41 times more than the number built during the Ming dynasty. In the Ming dynasty, bridges were built on pivotal routes; in the Qing dynasty, bridges were scattered across various places. Over the period, the density distribution of bridges shifted northwestward, while the average length and width of bridges decreased. The increasing number of bridges corresponded to population growth, largely attributable to massive clan migration from northern China during the Little Ice Age. The shift in the density distribution of bridges corresponded to the formation of settlements of large clans and the blossoming of Yixing Teapot handicrafts. The scattering and the reduction in average length and width of bridges was due to the dispersal of population and the associated formation of small settlements in the latter period. Our approach is innovative and robust, and could be employed to recover long-term historical population growth dynamics in other parts of China. PMID:28792976

  17. Spatiotemporal response of the water cycle to land use conversions in a typical hilly-gully basin on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Qiu, Linjing; Wu, Yiping; Wang, Lijing; Lei, Xiaohui; Liao, Weihong; Hui, Ying; Meng, Xianyong

    2017-12-01

    The hydrological effects of the Grain for Green project (GFGP) on the Loess Plateau have been extensively debated due to the complexity of the water system and its multiple driving factors. The aim of this study was to investigate the response of the hydrological cycle to the GFGP measures based in a case study of the Yanhe Basin, a typical hilly-gully area on the Loess Plateau of China. First, we analyzed the land use and land cover (LULC) changes from 1990 to 2010. Then, we evaluated the effects of LULC changes and sloping land conversion on the main hydrological components in the basin using the Soil and Water Assessment Tool (SWAT). The results indicated that cropland exhibited a decreasing trend, declining from 40.2 % of the basin area in 1990 to 17.6 % in 2010, and that the woodland and grassland areas correspondingly increased. With the land use changes from 1990 to 2010, the water yield showed a decreasing trend which was mainly due to decrease in surface runoff. In contrast, evapotranspiration (ET) showed an increasing trend over the same period, resulting in a persistent decrease in soil water. The conversion of sloping cropland to grassland or woodland exerted negative effects on water yield and soil water. Compared with the land use condition in 2010, the negative effects were most evident where cropland with a slope ≥ 15° was converted to woodland, with decreases in surface runoff and soil water of 17.1 and 6.4 %, respectively. These results suggest that the expansive reforestation on sloping land in the loess hilly-gully region decreased water yield and increased ET, resulting in reduced soil water. The results of this study can be used to support sustainable land use planning and water resource management on the Loess Plateau in China.

  18. Sandstone type uranium deposits in the Ordos Basin, Northwest China: A case study and an overview

    NASA Astrophysics Data System (ADS)

    Akhtar, Shamim; Yang, Xiaoyong; Pirajno, Franco

    2017-09-01

    This paper provides a comprehensive review on studies of sandstone type uranium deposits in the Ordos Basin, Northwest China. As the second largest sedimentary basin, the Ordos Basin has great potential for targeting sandstone type U mineralization. The newly found and explored Dongsheng and Diantou sandstone type uranium deposits are hosted in the Middle Jurassic Zhilou Formation. A large number of investigations have been conducted to trace the source rock compositions and relationship between lithic subarkose sandstone host rock and uranium mineralization. An optical microscopy study reveals two types of alteration associated with the U mineralization: chloritization and sericitization. Some unusual mineral structures, with compositional similarity to coffinite, have been identified in a secondary pyrite by SEM These mineral phases are proposed to be of bacterial origin, following high resolution mapping of uranium minerals and trace element determinations in situ. Moreover, geochemical studies of REE and trace elements constrained the mechanism of uranium enrichment, displaying LREE enrichment relative to HREE. Trace elements such as Pb, Mo and Ba have a direct relationship with uranium enrichment and can be used as index for mineralization. The source of uranium ore forming fluids and related geological processes have been studied using H, O and C isotope systematics of fluid inclusions in quartz veins and the calcite cement of sandstone rocks hosting U mineralization. Both H and O isotopic compositions of fluid inclusions reveal that ore forming fluids are a mixture of meteoric water and magmatic water. The C and S isotopes of the cementing material of sandstone suggest organic origin and bacterial sulfate reduction (BSR), providing an important clue for U mineralization. Discussion of the ore genesis shows that the greenish gray sandstone plays a crucial role during processes leading to uranium mineralization. Consequently, an oxidation-reduction model for

  19. Sedimentary Provenance Constraints on the Middle Jurassic to Late Cretaceous Paleogeography of the Sichuan Basin, SW China

    NASA Astrophysics Data System (ADS)

    Li, Y.; He, D.; Li, D.; Lu, R.

    2017-12-01

    Sedimentary provenance of the Middle Jurassic to Late Cretaceous sediments in the Sichuan Basin is constrained by sandstone petrology and detrital zircon U-Pb geochronology, which provides critical insights into mid-late Mesozoic paleogeographic evolution of the Sichuan Basin. Petrographic analyses of 22 sandstone samples indicate moderate to high mature sediments and are primarily derived from cratonic or recycled sources. U-Pb age data for the Middle Jurassic to Late Cretaceous detrital zircons generally show populations at 130-200, 200-330, 400-490, 680-890, 1730-1960, and 2360-2600 Ma, with up-section variations. The Middle Jurassic sediments contain a relatively high density of 1.85 and 2.5 Ga zircons and a low density of the 800 Ma zircons, which are consistent with derivation mainly from the Songpan-Ganzi terrane and the South Qinling belt, and secondarily from the Western Jiangnan Orogen. The Late Jurassic and Early Cretaceous sedimentation with a scattered age distribution shared common multiple-source to sink systems that were predominantly draining towards the south and southeast, but increasingly drained southward, and were later disrupted by a synchronous northeastward drainage capture. Late Cretaceous sediments have a distinct reduction in <213 Ma zircons, suggesting that sedimentation involved southeastward and southwestward transport of sediments likely derived from the Songpan-Ganzi terrane, the south segment of the Longmenshan fault belt and western Yangtze Craton, and the uplifting areas of the N- and NE-Sichuan Basin. Changes in provenances during the mid-late Mesozoic period are coincident with temporal-spatial variations in depocenter migration and paleogeographic evolution of the Sichuan Basin, which are closely related to the multi-stage intracontinental subduction associated with clockwise rotation of the South China Block.

  20. Morphotectonic study of the Brahmaputra basin using geoinformatics

    NASA Astrophysics Data System (ADS)

    Nath Sarma, Jogendra; Acharjee, Shukla; murgante, Beniamino

    2013-04-01

    The Brahmaputra River basin occupies an area of 580,000 km2 lying in Tibet (China), Bhutan, India and Bangladesh. It is bounded on the north by the Nyen-Chen-Tanghla mountains, on the east by the Salween River basin and Patkari range of hills, on the south by Nepal Himalayas and the Naga Hills and on the west by the Ganga sub-basin. Brahmaputra river originates at an elevation of about 5150 m in south-west Tibet and flows for about 2900 km through Tibet (China), India and Bangladesh to join the Ganga.. The Brahmaputra River basin is investigated to examine the influence of active structures by applying an integrated study on geomorphology, morphotectonics, Digital Elevation Model (DEM) using topographic map, satellite data, SRTM, and seismic data. The indices for morphotectonic analysis, viz. basin elongation ratio (Re) indicated tectonically active, transverse topographic symmetry (T = 0.018-0.664) indicated asymmetric nature, asymmetric factor (AF=33) suggested tilt, valley floor width to valley height ratio (Vf = 0.0013-2.945) indicated active incision and mountain-front sinuosity (Smf = 1.11-1.68) values indicated active tectonics in the area. A great or major earthquake in the modern times, in this region may create havoc with huge loss of life and property due to high population density and rapidly developing infrastructure. Keywords: .Morphotectonic, Brahmaputra river, earthquake

  1. Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in surface water from Liaohe River Basin, northeast China.

    PubMed

    Lv, Jiapei; Xu, Jian; Guo, Changsheng; Zhang, Yuan; Bai, Yangwei; Meng, Wei

    2014-01-01

    Liaohe River Basin is an important region in northeast China, which consists of several main rivers including Liao River, Taizi river, Daliao River, and Hun River. As a highly industrialized region, the basin receives dense waste discharges, causing severe environmental problems. In this study, the spatial and temporal distribution of aqueous polycyclic aromatic hydrocarbons (PAHs) in Liaohe River Basin from 50 sampling sites in both dry (May) and level (October) periods in 2012 was investigated. Sixteen USEPA priority PAHs were quantified by gas chromatography/mass selective detector. The total PAH concentration ranged from 111.8 to 2,931.6 ng/L in the dry period and from 94.8 to 2766.0 ng/L in the level period, respectively. As for the spatial distribution, the mean concentration of PAHs followed the order of Taizi River > Daliao River > Hun River > Liao River, showing higher concentrations close to large cities with dense industries. The composition and possible sources of PAHs in the water samples were also determined. The fractions of low molecular weight PAHs ranged from 58.2 to 93.3 %, indicating the influence of low or moderate temperature combustion process. Diagnostic ratios, principal component analysis, and hierarchical cluster analysis were used to study the possible source categories in the study area, and consistent results were obtained from different techniques, that PAHs in water samples mainly originated from complex sources, i.e., both pyrogenic and petrogenic sources. The benzo[a]pyrene equivalents (EBaP) characterizing the ecological risk of PAHs to the aquatic environment suggested that PAHs in Liaohe River Basin had already caused environmental health risks.

  2. Determination of In-situ Rock Thermal Properties from Geophysical Log Data of SK-2 East Borehole, Continental Scientific Drilling Project of Songliao Basin, NE China

    NASA Astrophysics Data System (ADS)

    Zou, C.; Zhao, J.; Zhang, X.; Peng, C.; Zhang, S.

    2017-12-01

    Continental Scientific Drilling Project of Songliao Basin is a drilling project under the framework of ICDP. It aims at detecting Cretaceous environmental/climate changes and exploring potential resources near or beneath the base of the basin. The main hole, SK-2 East Borehole, has been drilled to penetrate through the Cretaceous formation. A variety of geophysical log data were collected from the borehole, which provide a great opportunity to analyze thermal properties of in-situ rock surrounding the borehole.The geothermal gradients were derived directly from temperature logs recorded 41 days after shut-in. The matrix and bulk thermal conductivity of rock were calculated with the geometric-mean model, in which mineral/rock contents and porosity were required as inputs (Fuchs et. al., 2014). Accurate mineral contents were available from the elemental capture spectroscopy logs and porosity data were derived from conventional logs (density, neutron and sonic). The heat production data were calculated by means of the concentrations of uranium, thorium and potassium determined from natural gamma-ray spectroscopy logs. Then, the heat flow was determined by using the values of geothermal gradients and thermal conductivity.The thermal parameters of in-situ rock over the depth interval of 0 4500m in the borehole were derived from geophysical logs. Statistically, the numerical ranges of thermal parameters are in good agreement with the measured values from both laboratory and field in this area. The results show that high geothermal gradient and heat flow exist over the whole Cretaceous formation, with anomalously high values in the Qingshankou formation (1372.0 1671.7m) and the Quantou formation (1671.7 2533.5m). It is meaningful for characterization of geothermal regime and exploration of geothermal resources in the basin. Acknowledgment: This work was supported by the "China Continental Scientific Drilling Program of Cretaceous Songliao Basin (CCSD-SK)" of China

  3. Mantle transition zone discontinuities beneath the Tien Shan

    NASA Astrophysics Data System (ADS)

    Yu, Youqiang; Zhao, Dapeng; Lei, Jianshe

    2017-10-01

    To better understand geodynamic processes of intracontinental mountain building, we conduct a systematic investigation of the mantle transition zone (MTZ) beneath the Tien Shan and its surrounding areas using a receiver function method under non-plane wave front assumption. The resulting apparent depths of the 410 km (d410) and 660 km (d660) discontinuities and the MTZ thickness display significant lateral variations. Both the central Tien Shan and the Pamir Plateau are characterized by a thick MTZ, which can be well explained by the existence of lithospheric segments resulted from possible break-off of the subducted slab or lithosphere delamination. A thin MTZ and an obviously depressed d410, which may be induced by asthenosphere upwelling associated with the dropping lithospheric segment, are revealed beneath the Kazakh Shield. Seismic evidence is obtained for the potential existence of lower mantle upwelling beneath the Tarim Basin based on the observed thin MTZ and relatively significant uplift of d660. The subduction of the Kazakh Shield and Tarim lithosphere driven by the India-Eurasia collision possibly plays an essential role in the formation and evolution of the Tien Shan orogenic belt, and the lower mantle upwelling revealed beneath the Tarim Basin may promote the uplift of the Tien Shan by softening the upper mantle.

  4. Ecological status classification of the Taizi River Basin, China: a comparison of integrated risk assessment approaches.

    PubMed

    Fan, Juntao; Semenzin, Elena; Meng, Wei; Giubilato, Elisa; Zhang, Yuan; Critto, Andrea; Zabeo, Alex; Zhou, Yun; Ding, Sen; Wan, Jun; He, Mengchang; Lin, Chunye

    2015-10-01

    Integrated risk assessment approaches allow to achieve a sound evaluation of ecological status of river basins and to gain knowledge about the likely causes of impairment, useful for informing and supporting the decision-making process. In this paper, the integrated risk assessment (IRA) methodology developed in the EU MODELKEY project (and implemented in the MODELKEY Decision Support System) is applied to the Taizi River (China), in order to assess its Ecological and Chemical Status according to EU Water Framework Directive (WFD) requirements. The available dataset is derived by an extensive survey carried out in 2009 and 2010 across the Taizi River catchment, including the monitoring of physico-chemical (i.e. DO, EC, NH3-_N, chemical oxygen demand (COD), biological oxygen demand in 5 days (BOD5) and TP), chemical (i.e. polycyclic aromatic hydrocarbons (PAHs) and metals), biological (i.e. macroinvertebrates, fish, and algae), and hydromorphological parameters (i.e. water quantity, channel change and morphology diversity). The results show a negative trend in the ecological status from the highland to the lowland of the Taizi River Basin. Organic pollution from agriculture and domestic sources (i.e. COD and BOD5), unstable hydrological regime (i.e. water quantity shortage) and chemical pollutants from industry (i.e. PAHs and metals) are found to be the main stressors impacting the ecological status of the Taizi River Basin. The comparison between the results of the IRA methodology and those of a previous study (Leigh et al. 2012) indicates that the selection of indicators and integrating methodologies can have a relevant impact on the classification of the ecological status. The IRA methodology, which integrates information from five lines of evidence (i.e., biology, physico-chemistry, chemistry, ecotoxicology and hydromorphology) required by WFD, allows to better identify the biological communities that are potentially at risk and the stressors that are most

  5. The Research of Tectonic Framework and the Fault Activity in Large Detachment Basin System on Northern Margin of South China Sea

    NASA Astrophysics Data System (ADS)

    Pan, L., Sr.; Ren, J.

    2017-12-01

    The South China Sea (SCS) is one of the largest marginal sea on southeast Asia continental margin, developed Paleogene extension-rifting continental margin system which is rare in the world and preserving many deformed characterizes of this kind system. With the investigation of the SCS, guiding by the development of tectonics and geo-physics, especially the development of tectonics and the high quality seismic data based on the development of geo-physics, people gradually accept that the northern margin of the SCS has some detachment basin characterizes. After researching the northern margin of the SCS, we come up with lithosphere profiles across the shelf, slope and deep sea basin in the northeast of the SCS to confirm the tectonic style of ocean-continental transition and the property of the detachment fault. Furthermore, we describe the outline of large detachment basins at northern SCS. Based on the large number of high-quality 2D and 3D deep seismic profile(TWT,10s), drilling and logging data, combined with domestic and international relevant researches, using basin dynamics and tectono-stratigraphy theory, techniques and methods of geology and geophysics, qualitative and quantitative, we describe the formation of the detachment basin and calculate the fault activity rate, stretching factor and settlement. According to the research, we propose that there is a giant and complete detachment basin system in the northern SCS and suggest three conclusions. First of all, the detachment basin system can be divided into three domains: proximal domain covering the Yangjiang Sag, Shenhu uplift and part of Shunde Sag, necking zone covering part of the Shunde Sag and Heshan Sag, distal domain covering most part of Heshan Sag. Second, the difference of the stretching factor is observed along the three domains of the detachment basin system. The factor of the proximal domain is the minimum among them. On the other side, the distal domain is the maximum among them. This

  6. Thermal-history reconstruction of the Baiyun Sag in the deep-water area of the Pearl River Mouth Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoyin; Yang, Shuchun; Hu, Shengbiao

    2017-11-01

    The Baiyun Sag, located in the deep-water area of the northern South China Sea, is the largest and deepest subbasin in the Pearl River Mouth Basin and one of the most important hydrocarbon-accumulation depression areas in China. Thermal history is widely thought to be of great importance in oil and gas potential assessment of a basin as it controls the timing of hydrocarbon generation and expulsion from the source rock. In order to unravel the paleo-heat flow of the Baiyun Sag, we first analyzed tectonic subsidence of 55 pseudo-wells constructed based on newly interpreted seismic profiles, along with three drilled wells. We then carried out thermal modeling using the multi-stage finite stretching method and calibrated the results using collected present-day vitrinite reflectance data and temperature data. Results indicate that the first and second heating of the Baiyun Sag after 49 Ma ceased at 33.9 Ma and 23 Ma. Reconstructed average basal paleoheat flow values at the end of the rifting periods are 57.7-86.2 mW/m2 and 66.7-97.3 mW/m2, respectively. Following the last heating period at 23 Ma, the study area has undergone a persistent thermal attenuation phase, and basal heat flow has cooled down to 64.0-79.2 mW/m2 at present.

  7. Vast geologic basins attract Indonesian oil exploration. Pt. 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeparjadi, R.A.; Slocum, R.C.

    1973-10-01

    This concluding article of a 3-part series describes key geologic features that make Indonesia's S. and E. Kalimantan, Irian Jaya, and S. China Sea areas prime targets for continuing oil and gas exploration. Thick sedimentary basins in E. Kalimantan contain Indonesia'a largest offshore oilfield and other important developments. New reef discoveries in Irian Jaya highlight an extensive exploration effort. Continued drilling in the huge S. China Sea is assured by near commercial shows in recent wildcats. While many thousands of square miles still do not claim a significant discovery, proven successes such as Kalimantan's Attaka field (Indonesia's largest offshore producer)more » and Irian Jaya's new 23,600 bopd Kasim 3 well provide ample incentive for intensive oil searches. Near commercial recoveries of both gas and oil in Indonesia's huge S. China Sea and the recent testing of a 6,000 bopd oil well in nearby Malaysian waters spur interest in the area's W. Natuna and Miri-Seria sedimentary basins.« less

  8. Assessment of spatial distribution of soil loss over the upper basin of Miyun reservoir in China based on RS and GIS techniques.

    PubMed

    Chen, Tao; Niu, Rui-qing; Wang, Yi; Li, Ping-xiang; Zhang, Liang-pei; Du, Bo

    2011-08-01

    Soil conservation planning often requires estimates of the spatial distribution of soil erosion at a catchment or regional scale. This paper applied the Revised Universal Soil Loss Equation (RUSLE) to investigate the spatial distribution of annual soil loss over the upper basin of Miyun reservoir in China. Among the soil erosion factors, which are rainfall erosivity (R), soil erodibility (K), slope length (L), slope steepness (S), vegetation cover (C), and support practice factor (P), the vegetative cover or C factor, which represents the effects of vegetation canopy and ground covers in reducing soil loss, has been one of the most difficult to estimate over broad geographic areas. In this paper, the C factor was estimated based on back propagation neural network and the results were compared with the values measured in the field. The correlation coefficient (r) obtained was 0.929. Then the C factor and the other factors were used as the input to RUSLE model. By integrating the six factor maps in geographical information system (GIS) through pixel-based computing, the spatial distribution of soil loss over the upper basin of Miyun reservoir was obtained. The results showed that the annual average soil loss for the upper basin of Miyun reservoir was 9.86 t ha(-1) ya(-1) in 2005, and the area of 46.61 km(2) (0.3%) experiences extremely severe erosion risk, which needs suitable conservation measures to be adopted on a priority basis. The spatial distribution of erosion risk classes was 66.9% very low, 21.89% low, 6.18% moderate, 2.89% severe, and 1.84% very severe. Thus, by using RUSLE in a GIS environment, the spatial distribution of water erosion can be obtained and the regions which susceptible to water erosion and need immediate soil conservation planning and application over the upper watershed of Miyun reservoir in China can be identified.

  9. Evaluation of the pollution and human health risks posed by heavy metals in the atmospheric dust in Ebinur Basin in Northwest China.

    PubMed

    Abuduwailil, Jilili; Zhaoyong, Zhang; Fengqing, Jiang

    2015-09-01

    Recently, a large amount of research assessing pollution levels and the related health risks posed by atmosphere dust has been undertaken worldwide. However, little work has been done in the oases of the arid regions of Northwest China. In this paper, we studied the pollution and health risks over a year of seven heavy metals in the atmospheric dust of Ebinur Basin, a typical oasis in Northwest China. The results showed the following: (1) The annual amount of atmospheric deposition in Ebinur Basin was 298.23 g m(-2) and the average monthly atmospheric deposition was 25.06 g m(-2). The average and maximum values of the seven heavy metals measured were all below the National Soil Environmental Quality Standards (2nd). (2) Heavy metals of Cu, Cr, and As in the atmospheric deposition mainly originated from the natural geological background, while Zn came from human activity. This study also showed that among the seven measured heavy metals, the ratios of the no-pollution status of Pb, Cd, and Hg were higher than those of others with moderate degrees of pollution also accounting for a certain ratio. (3) The carcinogenic risks from As, Cd, and Cr were all lower than the corresponding standard limit values, and these metals are considered not harmful to the health of the basin. However, there is a relatively high risk of exposure for children from hand-to-mouth intake, which is worthy of attention. This research showed that both human activity and natural factors, such as wind and altitude, influenced the heavy metal contents in the atmospheric dust of the study area. Furthermore, recent human activity in the study area had the most negative influence on the accumulation of the heavy metals and the corresponding health risks, especially for Hg, Pb, and Cd, which is worthy of attention.

  10. Ecological risk assessment of ecosystem services in the Taihu Lake Basin of China from 1985 to 2020.

    PubMed

    Xu, Xibao; Yang, Guishan; Tan, Yan; Zhuang, Qianlai; Li, Hengpeng; Wan, Rongrong; Su, Weizhong; Zhang, Jian

    2016-06-01

    There are tremendous theoretical, methodological and policy challenges in evaluating the impact of land-use change on the degradation of ecosystem services (ES) at the regional scale. This study addresses these challenges by developing an interdisciplinary methodology based on the Procedure for Ecological Tiered Assessment of Risk (PETAR). This novel methodology integrates ecological models with a land-use change model. This study quantifies the multi-dimensional degradation risks of ES in the Taihu Lake Basin (TLB) of China from 1985 to 2020. Four key ES related to water purification, water quantity adjustment, carbon sequestration and grain production are selected. The study employs models of Denitrification-Decomposition (DNDC), Soil-Water-Atmosphere-Plant (SWAP), Biome-BGC and Agro-ecological Zoning (AEZ) for assimilations. Land-use changes by 2020 were projected using a geographically weighted multinomial logit-cellular automata (GWML-CA) model. The results show that rapid land-use change has posed a great degradation risk of ES in the region in 1985-2020. Slightly less than two-thirds of the basin experienced degradation of ES over the 1985-2010 period, and about 12% of the basin will continue to experience degradation until 2020. Hot spots with severe deterioration in 2010-2020 are projected to be centered around some small and less developed cities in the region. Regulating accelerated urban sprawl and population growth, reinforcing current environmental programs, and establishing monitoring systems for observing dynamics of regional ES are suggested as practical counter-measures. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes

    NASA Astrophysics Data System (ADS)

    Ding, Weiwei; Sun, Zhen; Dadd, Kelsie; Fang, Yinxia; Li, Jiabiao

    2018-04-01

    Internal structures in mature oceanic crust can elucidate understanding of the processes and mechanism of crustal accretion. In this study, we present two multi-channel seismic (MCS) transects across the northern flank of the South China Sea basin to reveal the internal structures related to Cenozoic tectono-magmatic processes during seafloor spreading. Bright reflectors within the oceanic crust, including the Moho, upper crustal reflectors, and lower crustal reflectors, are clearly imaged in these two transects. The Moho reflection displays varied character in continuity, shape and amplitude from the continental slope area to the abyssal basin, and becomes absent in the central part of the basin where abundant seamounts and seamount chains formed after the cessation of seafloor spreading. Dipping reflectors are distinct in most parts of the MCS data but generally confined to the lower crust above the Moho reflection. These lower crustal reflectors merge downward into the Moho without offsetting it, probably arising from shear zones between the crust and mantle characterized by interstitial melt, although we cannot exclude other possibilities such as brittle faulting or magmatic layering in the local area. A notable feature of these lower crustal reflector events is their opposite inclinations. We suggest the two groups of conjugate lower crustal reflector events observed between magnetic anomalies C11 and C8 were associated with two unusual accretionary processes arising from plate reorganizations with southward ridge jumps.

  12. Holocene moisture changes in western China, Central Asia, inferred from stalagmites

    NASA Astrophysics Data System (ADS)

    Cai, Yanjun; Chiang, John C. H.; Breitenbach, Sebastian F. M.; Tan, Liangcheng; Cheng, Hai; Edwards, R. Lawrence; An, Zhisheng

    2017-02-01

    Central Asia lies at the convergence between the Mediterranean and Asian monsoon climates, and there is a complex interaction between the westerlies with the monsoon to form the climate of that region and its variability. The region is highly vulnerable to changes in rainfall, highlighting the need to understand the underlying controls. We present a stalagmite-based δ18O record from Kesang Cave in western China, using MC-ICP-MS U-series dating and stable isotope analysis. Stalagmite calcite δ18O largely documents changes in the δ18O of precipitation. δ18O in stalagmites was low during the early and middle Holocene (10.0-3.0 ka BP), and shifted to higher values between 3.0 and 2.0 ka BP. After 2.0 ka BP, δ18O fluctuates with distinct centennial-scale variations. Drawing from results of state-of-the-art atmospheric general circulation model simulations for the preindustrial period and 9 ka BP, we propose that changes in moisture source regions and the wetter climate both contributed to the isotopic depletion of precipitation during the early and middle Holocene. Multiple records from surrounding regions indicate a generally wetter climate during the early and mid- Holocene, supporting our interpretation on the speleothem δ18O. Changes in precipitation seasonality do not appear to be a viable explanation for the observed changes, nor increased penetration of monsoonal moisture to the study site. We speculate that the climatic regime shifted around 3.0-2.0 ka BP towards a drier climate, resulting in temperature having dominant control on precipitation δ18O. The demise of three settlements around 500AD at the margin of Tarim Basin coincided with a period of decreased precipitation and increased temperature that likely affected local water resources, underscoring the potential impact of climate on human habitation in this region.

  13. Determination of Cenozoic sedimentary structures using integrated geophysical surveys: A case study in the Barkol Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Chen, Chao; Du, Jinsong; Wang, Limin; Lei, Binhua

    2018-01-01

    Thickness estimation of sedimentary basin is a complex geological problem, especially in an orogenic environment. Intense and multiple tectonic movements and climate changes result in inhomogeneity of sedimentary layers and basement configurations, which making sedimentary structure modelling difficult. In this study, integrated geophysical methods, including gravity, magnetotelluric (MT) sounding and electrical resistivity tomography (ERT), were used to estimate basement relief to understand the geological structure and evolution of the eastern Barkol Basin in China. This basin formed with the uplift of the eastern Tianshan during the Cenozoic. Gravity anomaly map revealed the framework of the entire area, and ERT as well as MT sections reflected the geoelectric features of the Cenozoic two-layer distribution. Therefore, gravity data, constrained by MT, ERT and boreholes, were utilized to estimate the spatial distribution of the Quaternary layer. The gravity effect of the Quaternary layer related to the Tertiary layer was later subtracted to obtain the residual anomaly for inversion. For the Tertiary layer, the study area was divided into several parts because of lateral difference of density contrasts. Gravity data were interpreted to determine the density contrast constrained by the MT results. The basement relief can be verified by geological investigation, including the uplift process and regional tectonic setting. The agreement between geophysical survey and prior information from geology emphasizes the importance of integrated geophysical survey as a complementary means of geological studies in this region.

  14. Integrated use of remotely sensed imagery and other data sets to infer the tectonics, structural style, and hydrocarbon habitats of the basins of the Tien Shan orogenic belt, Western China: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, J.L.; Nishidai, T.

    1996-08-01

    Remotely sensed imagery and various other published regional data sets (gravity, magnetics, earthquake data) were integrated in order to interpret the structural style, both at deep crustal levels and at the relatively shallow levels of interest to explorationists, of the Tien Shan. Cross-sections through the range were systematically prepared, and then palinspastically restored, constrained by the remote sensing interpretation, potential fields data, and published microplate movement vectors. Since large portions of the area are covered by late Tertiary orogenic sediments, the resulting interpretation focused on these areas, and what and how much geology lies concealed beneath them. We were ablemore » to demonstrate the likely consumption in the late Tertiary of over 100 km of Tarim Basin west along a broad front south of the Tien Shan, as well as within the Kuruktag area, where basins are compressional rather than extensional. There are also local areas of extension within the orogenic zone, and these can be explained using the known microplate boundaries, backward extrapolation of present microplate motions, and the type and extent of late Tertiary deformation within the plates as constraints. Relative and absolute microplate motions have to change greatly through Tertiary time in order to comply with these constraints. The results of this work allow one to infer the affinities, and hence something of the hydrocarbon potential, of fragmentary plates by reconstructing their motions. They also allow one to infer the nature of the stratigraphy, the likely depth of burial, and something of the maturation history of pre-Tertiary rocks buried by Tertiary sediments deposited in both compressional and extensional regimes.« less

  15. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China

    PubMed Central

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995–2014) and near future (2015–2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses. PMID:27348224

  16. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China.

    PubMed

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995-2014) and near future (2015-2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses.

  17. Cretaceous combined structure in eastern Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, P.; Liu, S.

    2009-12-01

    Eastern Sichuan Basin is confined by two thin-skinned fold-thrust belt, NW-trending Southern Daba Shan (Shan=Mountain) (SDB) in the northeast and NNE- or NE-trending Western XueFeng Shan (WXF) in the southeast, which constitute two convergent salients convex to the inner basin respectively. Although many factors can lead to the formation of fold-thrust belt salients, the eastern Sichuan salients would be attributed to the combined structure (firstly nominated by Chinese geologist, Li Siguang), which means the interaction of two structural belts in the same period. By field surveying and geological map interpreting, we found that WXF deformation began in Late Jurassic along the eastern side of structral belt, where the synclines cored by Upper-Middle Jurassic rock. The initial time of SDB deformation remains poorly determined, however our palaeocurrent data of Lower Cretaceous rock in adjecent foreland basin indicate the provenance from northeast or east. Hence we considered the two fold-thrust belt started interactive in Late Jurassic and mainly combined during Cretaceous. In Early Cretaceous, the front belt of WXF salient arrived near KaiXian where NEE-trending arc-shape folds converged with the NWW-trending arc-shape folds of SDB.The two salients shaped like an westward "open mouth", east of which EW-trending folds of two structural belts juxtaposed. Particularly in the middle belt of WXF (FengJie - WuFeng) the earlier NEE-trending folds were refolded by later NNE-trending folds. We interpret the NEE-trending folds as the front belt of earlier (maybe Late Jurassic) WXF salient. When the two combined fold belts propagated westward together, the original NNE-trending front belt of WXF constrained by the front belt of SDB and formed the curved fold trend lines convex to NNW. Then as WXF deformation continued but SDB gradually terminated, the consequent NNE-trending folds could not be curved and would superpose on the earlier NEE-trending folds.In Late Cretaceous

  18. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China

    NASA Astrophysics Data System (ADS)

    Chen, Zhongsheng; Chen, Yaning; Li, Baofu

    2013-02-01

    Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Kaidu River Basin in the arid region of northwest China were analyzed to investigate changes in annual runoff during the period of 1960-2009. The nonparametric Mann-Kendall test and the Mann-Kendall-Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. Step change point in annual runoff was identified in the basin, which occurred in the year around 1993 dividing the long-term runoff series into a natural period (1960-1993) and a human-induced period (1994-2009). Then, the hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. In 1994-2009, climate variability was the main factor that increased runoff with contribution of 90.5 %, while the increasing percentage due to human activities only accounted for 9.5 %, showing that runoff in the Kaidu River Basin is more sensitive to climate variability than human activities. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.

  19. Climatic impacts of the Middle Route of the South-to-North Water Transfer Project over the Haihe River basin in North China simulated by a regional climate model

    NASA Astrophysics Data System (ADS)

    Zou, Jing; Zhan, Chesheng; Xie, Zhenghui; Qin, Peihua; Jiang, Shanshan

    2016-08-01

    The Middle Route of the South-to-North Water Transfer Project (MSWTP) was constructed to ease the water crisis over the North China Plain. In this study, we incorporated a water transfer scheme into the regional climate model RegCM4 and investigated the climatic impacts of the MSWTP over the Haihe River Basin in North China. Four 10 year simulation tests were conducted from 2001 to 2010 where different volumes of water were transferred. The results demonstrated that before the MSWTP was conducted the original groundwater exploitation and consumption over the Haihe River Basin led to wetting and cooling at the land surface with rapidly falling groundwater depth. The extra water input from the MSWTP slightly enhanced the wetting and cooling effects over the basin, as well as reduced the falling rate in the groundwater depth along the conveyance line. However, the weak climatic effects of the MSWTP were limited at a local scale and had no obvious interannual trends, because the transfer volume of the MSWTP was far lower than the total demand which has been conventionally satisfied through local water exploitation. In terms of seasonal variations, the greatest changes due to the MSWTP occurred in the summer for precipitation and soil moisture and in the spring for energy-related variables (heat fluxes and 2 m air temperature).

  20. Searching for the optimal drought index and timescale combination to detect drought: a case study from the lower Jinsha River basin, China

    NASA Astrophysics Data System (ADS)

    Fluixá-Sanmartín, Javier; Pan, Deng; Fischer, Luzia; Orlowsky, Boris; García-Hernández, Javier; Jordan, Frédéric; Haemmig, Christoph; Zhang, Fangwei; Xu, Jijun

    2018-02-01

    Drought indices based on precipitation are commonly used to identify and characterize droughts. Due to the general complexity of droughts, the comparison of index-identified events with droughts at different levels of the complete system, including soil humidity or river discharges, relies typically on model simulations of the latter, entailing potentially significant uncertainties. The present study explores the potential of using precipitation-based indices to reproduce observed droughts in the lower part of the Jinsha River basin (JRB), proposing an innovative approach for a catchment-wide drought detection and characterization. Two indicators, namely the Overall Drought Extension (ODE) and the Overall Drought Indicator (ODI), have been defined. These indicators aim at identifying and characterizing drought events on the basin scale, using results from four meteorological drought indices (standardized precipitation index, SPI; rainfall anomaly index, RAI; percent of normal precipitation, PN; deciles, DEC) calculated at different locations of the basin and for different timescales. Collected historical information on drought events is used to contrast results obtained with the indicators. This method has been successfully applied to the lower Jinsha River basin in China, a region prone to frequent and severe droughts. Historical drought events that occurred from 1960 to 2014 have been compiled and cataloged from different sources, in a challenging process. The analysis of the indicators shows a good agreement with the recorded historical drought events on the basin scale. It has been found that the timescale that best reproduces observed events across all the indices is the 6-month timescale.

  1. Effects of land-use patterns on in-stream nitrogen in a highly-polluted river basin in Northeast China.

    PubMed

    Bu, Hongmei; Zhang, Yuan; Meng, Wei; Song, Xianfang

    2016-05-15

    This study investigated the effects of land-use patterns on nitrogen pollution in the Haicheng River basin in Northeast China during 2010 by conducting statistical and spatial analyses and by analyzing the isotopic composition of nitrate. Correlation and stepwise regressions indicated that land-use types and landscape metrics were correlated well with most river nitrogen variables and significantly predicted them during different sampling seasons. Built-up land use and shape metrics dominated in predicting nitrogen variables over seasons. According to the isotopic compositions of river nitrate in different zones, the nitrogen sources of the river principally originated from synthetic fertilizer, domestic sewage/manure, soil organic matter, and atmospheric deposition. Isotope mixing models indicated that source contributions of river nitrogen significantly varied from forested headwaters to densely populated towns of the river basin. Domestic sewage/manure was a major contributor to river nitrogen with the proportions of 76.4 ± 6.0% and 62.8 ± 2.1% in residence and farmland-residence zones, respectively. This research suggested that regulating built-up land uses and reducing discharges of domestic sewage and industrial wastewater would be effective methods for river nitrogen control. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Mid-Neolithic Exploitation of Mollusks in the Guanzhong Basin of Northwestern China: Preliminary Results

    PubMed Central

    Li, Fengjiang; Wu, Naiqin; Lu, Houyuan; Zhang, Jianping; Wang, Weilin; Ma, Mingzhi; Zhang, Xiaohu; Yang, Xiaoyan

    2013-01-01

    Mollusk remains are abundant in archaeological sites in the Guanzhong Basin of Northwestern China, providing good opportunities for investigations into the use of mollusks by prehistoric humans. Here we report on freshwater gastropod and bivalve mollusks covering the time interval from about 5600 to 4500 cal. yrs BP from sites of Mid-Late Neolithic age. They are identified as Cipangopaludina chinensis and Unio douglasiae, both of which are currently food for humans. The shells are well preserved and have no signs of abrasion. They are all freshwater gastropods and bivalves found in pits without water-reworked deposits and have modern representatives which can be observed in rivers, reservoirs, and paddy fields in the studied region. Mollusk shells were frequently recovered in association with mammal bones, lithic artifacts, and pottery. These lines of evidence indicate that the mollusks are the remains of prehistoric meals. The mollusk shells were likely discarded into the pits by prehistoric humans after the flesh was eaten. However, these mollusk remains may not have been staple food since they are not found in large quantities. Mollusk shell tools and ornaments are also observed. Shell tools include shell knives, shell reaphooks and arrowheads, whereas shell ornaments are composed of pendants and loops. All the shell tools and ornaments are made of bivalve mollusks and do not occur in large numbers. The finding of these freshwater mollusk remains supports the view that the middle Holocene climate in the Guanzhong Basin may have been warm and moist, which was probably favorable to freshwater mollusks growing and developing in the region. PMID:23544050

  3. Seismic investigation of an ocean-continent transition zone in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Qiu, X.; Xu, H.; Zhan, W.; Sun, Z.

    2011-12-01

    Rifted continental margins and basins are mainly formed by the lithospheric extension. Thined lithosphere of passive continental margins results in decompression melt of magma and created oceanic crust and thined ocean-continent transition (OCT) zone. Two refraction profiles used ocean bottom seismometers deployed in the broad continental shelf and three multi-channel seismic reflection lines in the northern South China Sea, acquired by the ship "Shiyan 2" of the South China Sea Institute of Oceanology, Chinese Academy of Sciences in 2010, are processed and interpreted in this study. Seismic reflection lines cut through the Dongsha rise, Zhu-1 and Zhu-2 depression within a Tertiary basin, Pear River Mouth basin (called as Zhujiangkou basin). These tectonic features are clear imaged in the seismic reflection records. Numerous normal faults, cutted through the basement and related to the stretch of the northern South China Sea margin, are imaged and interpreted. Reflection characteristics of the ocean-continent transition (OCT) zone are summaried and outlined. The COT zone is mainly divided into the northern syn-rift subsidence zone, central volcano or buried volcano uplift zone and tilt faulted block near the South Chia Sea basin. Compared to the previous seismic reflection data and refraction velocity models, the segmentation range of the OCT zone is outlined, from width of about 225 km in the northeastern South China Sea , of 160 km in the central to of 110 km in the north-central South China Sea. Based on the epicenter distribution of sporadic and large than 6 magnitude earthquakes, it suggests the OCT zone in the northern South China Sea at present is still an active seismic zone.

  4. Coseismic and blind fault of the 2015 Pishan Mw 6.5 earthquake: Implications for the sedimentary-tectonic framework of the western Kunlun Mountains, northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lu, Renqi; Xu, Xiwei; He, Dengfa; Liu, Bo; Tan, Xibin; Wang, Xiaoshan

    2016-04-01

    On 3 July 2015, the Mw 6.5 Pishan earthquake occurred in the western Kunlun Mountains front, at the northern margin of the Tibetan Plateau. To reveal the sedimentary-tectonic framework of the seismically active structure, three high-resolution seismic reflection profiles and well drilling data were collected for seismic interpretation. The western Kunlun Mountains and Tarim Basin have two gypseous detachments and one basement detachment that control the tectonic framework and structural deformation. The upper gypseous detachment (D1) is in the lower Paleocene, and the middle gypseous detachment (D2) is in the Middle to Lower Cambrian. A Neogene shallow thrust system is developing above D1 and includes the Zepu fault (F2) and Mazar Tagh fault (F3). A deep thrust system is developing between D1 and D2 and forms a large-scale structural wedge beneath the western Kunlun Mountains front. The Pishan Mw 6.5 earthquake was triggered on a frontal blind fault of this deep thrust system. The lower detachment is in the Proterozoic basement (D3), which extends into the Tarim Basin and develops another deep thrust (F4) beneath the F3 belt. D1, D2, D3, and the Tiekelike fault (F1) merge together at depth. Crustal shortening of the western Kunlun Mountains front continues for approximately 54 km. Two tectonic evolutionary stages have occurred since the Miocene according to sedimentary unconformity, axial analysis, and fault interpretation. The results of this study indicate a regime of episodic growth of the western Kunlun Mountains and Tarim Basin during the Cenozoic.

  5. Water geochemistry of the Qiantangjiang River, East China: Chemical weathering and CO2 consumption in a basin affected by severe acid deposition

    NASA Astrophysics Data System (ADS)

    Liu, Wenjing; Shi, Chao; Xu, Zhifang; Zhao, Tong; Jiang, Hao; Liang, Chongshan; Zhang, Xuan; Zhou, Li; Yu, Chong

    2016-09-01

    The chemical composition of the Qiantangjiang River, the largest river in Zhejiang province in eastern China, was measured to understand the chemical weathering of rocks and the associated CO2 consumption and anthropogenic influences within a silicate-dominated river basin. The average total dissolved solids (TDS, 113 mg l-1) and total cation concentration (TZ+, 1357 μeq l-1) of the river waters are comparable with those of global major rivers. Ca2+ and HCO3- followed by Na2+ and SO42-, dominate the ionic composition of the river water. There are four major reservoirs (carbonates, silicates, atmospheric and anthropogenic inputs) contributing to the total dissolved load of the investigated rivers. The dissolved loads of the rivers are dominated by both carbonate and silicate weathering, which together account for about 76.3% of the total cationic load origin. The cationic chemical weathering rates of silicate and carbonate for the Qiantangjiang basin are estimated to be approximately 4.9 ton km-2 a-1 and 13.9 ton km-2 a-1, respectively. The calculated CO2 consumption rates with the assumption that all the protons involved in the weathering reaction are provided by carbonic acid are 369 × 103 mol km-2 a-1 and 273 × 103 mol km-2 a-1 by carbonate and silicate weathering, respectively. As one of the most severe impacted area by acid rain in China, H2SO4 from acid precipitation is also an important proton donor in weathering reactions. When H2SO4 is considered, the CO2 consumption rates for the river basin are estimated at 286 × 103 mol km-2 a-1 for carbonate weathering and 211 × 103 mol km-2 a-1 for silicate weathering, respectively. The results highlight that the drawdown effect of CO2 consumption by carbonate and silicate weathering can be largely overestimated if the role of sulfuric acid is ignored, especially in the area heavily impacted by acid deposition like Qiantangjiang basin. The actual CO2 consumption rates (after sulfuric acid weathering effect

  6. Two Generations of Detachment System in an Aborted Hyper-extended Rift Basin: A Case in the Baiyun Sag, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Mei, L.; Liu, J.; Chen, L.; Zheng, J.

    2016-12-01

    Three episodes of rifting started from the latest Cretaceous and contributed to final breakup of the South China Sea in Early Oligocene. The Baiyun Sag developed in the continental slope of northern South China Sea was supposed to be only affected by the second and third rifting events and defined as a hyper-extended rift basin with extremely thinned crust through a deep seismic reflection profile by former researchers. In this paper, 19 supplementary deep seismic images were used to investigate the deep crustal structure. The results suggest that only 4-km-thick continental crust is preserved in the middle of the Baiyun Sag, whereas about 26-km-thick in the adjacent relatively unextended regions, such as Panyu Low Uplift in the north and Shunhe Uplift in the southwest. Furthermore, recently gathered 2D/3D offshore seismic data almost cover the whole research region, allowing us to recognize a Cenozoic detachment system which consists of six major detachment faults. In contrast to the performance of the distal domains in the Iberia and Mid-Norway rifted margins, all of these detachment faults dipped toward the continent and thinned the crust effectively, indicating that the extension of the Baiyun Sag was independent of the future lithospheric breakup zone. Consequently, we define the Baiyun Sag as an aborted hyper-extended rift basin formed during Paleocene to Early Oligocene. The inherited basement structures will clearly influence the evolution process of new born rift basin. Under the top basement, a pre-Cenozoic detachment system is also well described in our research area and act as a series of surface with strong amplitude in seismic imaging. We argue that the Cenozoic detachment system was built on the basis of the pre-rift detachment system which is speculated to have formed in the Late Cretaceous. Extensional style of a conveyor belt is recognized in this sediment-rich, aborted hyper-extended supra-detachment basin, showing that the breakaway blocks or

  7. Watershed prioritization in the upper Han River basin for soil and water conservation in the South-to-North Water Transfer Project (middle route) of China.

    PubMed

    Wu, Haibing

    2018-01-01

    Watershed prioritization with the objective of identifying critical areas to undertake soil and water conservation measures was conducted in the upper Han River basin, the water source area of approximately 95,000 km 2 for the middle route of China's South-to-North Water Transfer Project. Based on the estimated soil erosion intensity in uplands and clustering analysis of measured nutrient concentrations in rivers, the basin was grouped into very-high-, high-, moderate-, and low-priority regions for water and soil conservation, respectively. The results indicated that soil erosion was primarily controlled by topography, and nutrients in rivers were associated with land use and land cover in uplands. Also, there was large spatial disparity between soil erosion intensity in the uplands and nutrient concentrations in the rivers across the basin. Analysis was then performed to prioritize the basin by the integration of the soil erosion intensity and water quality on a GIS platform in order to identify critical areas for water and soil conservation in the basin. The identified high-priority regions which occupy 5.74% of the drainage areas need immediate attention for soil and water conservation treatments, of which 5.28% is critical for soil erosion prevention and 0.46% for water conservation. Understandings of the basin environment and pollutant loading with spatial explicit are critical to the soil and water resource conservation for the interbasin water transfer project.

  8. Carboniferous Proto-type Basin Evolution of Junggar Basin in Northwest China: Implications for the Growth Models of Central Asia Orogenic Belt

    NASA Astrophysics Data System (ADS)

    He, D.

    2016-12-01

    The Junggar Basin locates in the central part of Paleo-Asian Ocean tectonic domain, and records the dynamic processes of the Central Asian Orogenic Belt from subduction-accretion-collision to later intracontinental deformations. Carboniferous is the key period from subduction to closure in the tectonic evolution of Paleo-Asian Ocean. Based on the borehole, outcrop, seismic and gravity and magnetic anomaly data, the paper made analysis of the Carboniferous basin evolution.Geo-chronological results for the borehole volcanic rocks suggest that the Junggar Basin and adjacent area had five periods of volcanic activities, including two periods in the Early Carboniferous (359-347Ma 347-331Ma and 331-324Ma) and three periods in the Late Carboniferous (323-307Ma and 307-300Ma). Regional unconformities divided the Carboniferous into two tectono-stratigraphic sequences: Lower Carboniferous and Upper Carboniferous. The former is characterized by compressional structures and involves massive calc-alkaline basalts, andesites, dacites and rhyolites, whereas the later is mainly controlled by extensional faults and dominated by intermediate-mafic volcanic rocks, with bimodal volcanic rocks in parts. The paper determined four Carboniferous arc-basin belts in the Junggar Basin and adjacent area from north to south: the Saur-Fuhai-Dulate, Heshituoluogai-Wulungu-Yemaquan, Darbut-Luliang-Karamaili, and Zhongguai-Mosuowan-Baijiahai-Qitai, and identified multi-type basins, such as fore-arc basin, retro-arc basin, intra-arc rift basin, foreland basin and passive continental margin basin,etc.. The Carboniferous proto-type basin evolution of the Junggar Basin can be divided into three phases such as, the early to middle Early Carboniferous subduction-related compressional phase, the late Early Carboniferous to middle Late Carboniferous subduction-related extensional phase and the late Late Carboniferous intra-continental fault-sag phase. The study discloses that the Junggar Basin is likely

  9. Evaluation of blue and green water resources in the upper Yellow River basin of China

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoxi; Zuo, Depeng; Xu, Zongxue; Cai, Siyang; Xianming, Han

    2018-06-01

    The total amount of water resources severely affects socioeconomic development of a region or watershed, which means that accurate quantification of the total amount of water resources is vital for the area, especially for the arid and semi-arid regions. Traditional evaluation of water resources only focused on the qualification of blue water, while the importance of green water was not fully considered. As the second largest river in China, the Yellow River plays an important role in socioeconomic development of the Yellow River basin. Therefore, the blue and green water resources in the upper Yellow River basin (UYRB) were evaluated by the SWAT model in this study. The results show that the average annual total amount of water resources in the UYRB was 140.5 billion m3, in which the blue water resources is 37.8 billion m3, and green water resources is 107.7 billion m3. The intra-annual variability of the blue water and green water is relatively similar during the same period. The higher temperature, the greater difference between the blue and green water. The inter-annual variability of the blue and green water shows that the trends in precipitation, blue and green water have a relatively similar characteristic. The spatial distribution of the blue and green water is characteristic with gradually decreasing from the northwest to the southeast, and the blue water around the main stream is greater than that in the other areas.

  10. Arsenic release by indigenous bacteria Bacillus cereus from aquifer sediments at Datong Basin, northern China

    NASA Astrophysics Data System (ADS)

    Xie, Zuoming; Wang, Yanxin; Duan, Mengyu; Xie, Xianjun; Su, Chunli

    2011-03-01

    Endemic arsenic poisoning due to long-term drinking of high arsenic groundwater has been reported in Datong Basin, northern China. To investigate the effects of microbial activities on arsenic mobilization in contaminated aquifers, Bacillus cereus ( B. cereus) isolated from high arsenic aquifer sediments of the basin was used in our microcosm experiments. The arsenic concentration in the treatment with both bacteria and sodium citrate or glucose had a rapid increase in the first 18 d, and then, it declined. Supplemented with bacteria only, the concentration could increase on the second day. By contrast, the arsenic concentration in the treatment supplemented with sodium citrate or glucose was kept very low. These results indicate that bacterial activities promoted the release of arsenic in the sediments. Bacterial activities also influenced other geochemical parameters of the aqueous phase, such as pH, Eh, and the concentrations of dissolved Fe, Mn, and Al that are important controls on arsenic release. The removal of Fe, Mn, and Al from sediment samples was observed with the presence of B. cereus. The effects of microbial activities on Fe, Mn, and Al release were nearly the same as those on As mobilization. The pH values of the treatments inoculated with bacteria were lower than those without bacteria, still at alkaline levels. With the decrease of Eh values in treatments inoculated with bacteria, the microcosms became more reducing and are thus favorable for arsenic release.

  11. Multi-azimuth 3D Seismic Exploration and Processing in the Jeju Basin, the Northern East China Sea

    NASA Astrophysics Data System (ADS)

    Yoon, Youngho; Kang, Moohee; Kim, Jin-Ho; Kim, Kyong-O.

    2015-04-01

    Multi-azimuth(MAZ) 3D seismic exploration is one of the most advanced seismic survey methods to improve illumination and multiple attenuation for better image of the subsurface structures. 3D multi-channel seismic data were collected in two phases during 2012, 2013, and 2014 in Jeju Basin, the northern part of the East China Sea Basin where several oil and gas fields were discovered. Phase 1 data were acquired at 135° and 315° azimuths in 2012 and 2013 comprised a full 3D marine seismic coverage of 160 km2. In 2014, phase 2 data were acquired at the azimuths 45° and 225°, perpendicular to those of phase 1. These two datasets were processed through the same processing workflow prior to velocity analysis and merged to one MAZ dataset. We performed velocity analysis on the MAZ dataset as well as two phases data individually and then stacked these three datasets separately. We were able to pick more accurate velocities in the MAZ dataset compare to phase 1 and 2 data while velocity picking. Consequently, the MAZ seismic volume provide us better resolution and improved images since different shooting directions illuminate different parts of the structures and stratigraphic features.

  12. A lacustrine record from Lop Nur, Xinjiang, China: Implications for paleoclimate change during Late Pleistocene

    USGS Publications Warehouse

    Chao, L.; Zicheng, P.; Dong, Y.; Weiguo, L.; Zhaofeng, Z.; Jianfeng, H.; Chenlin, C.

    2009-01-01

    Climate variability during the Late Pleistocene is studied from the proxies in core CK-2 drilled from the Luobei Depression (91??03???E, 40??47???N), Lop Nur in the eastern Tarim Basin, Xinjiang, China. Geophysical and geochemical properties, including magnetic susceptibility, granularity, chroma, carbonate content, loss on ignition and trace elements, have been determined to reconstruct the environmental evolution of the area during 32-9 ka BP. The chronology is established by uranium-thorium disequilibrium dating techniques. Our data suggest four paleoclimate stages, indicating glacial variations between cold-humid and warm-arid environments. A period of extreme humidity occurred during 31,900-19,200 yr BP is attributed the last glacial maximum (LGM). The period was followed by a warm-arid episode during 19,200-13,500 yr BP. Then a cold-humid interval during 13,500-12,700 yr BP may correspond to another cooling phases at high latitudes of the Northern Hemisphere. The last stage from 12,700 to 9000 yr BP has a trend that the climate turned warm and arid. The Lop Nur region is characterized by particularly humid stadials and arid interstadials. The climate variability in Lop Nur was constrained by global climate change because it is correlated with Dansgaard-Oeschger and Heinrich events, which were observed at the northern high latitudes. The synchroneity of the palaeoclimatic events suggested that cold air activity at the northern high latitudes was the most important factor that influenced the climate evolution in the Lop Nur region. A probable mechanism that involves the migration of westerly winds is proposed to interpret this synchroneity. ?? 2008 Elsevier Ltd.

  13. Alluvial fan facies of the Yongchong Basin: Implications for tectonic and paleoclimatic changes during Late Cretaceous in SE China

    NASA Astrophysics Data System (ADS)

    Chen, Liuqin; Steel, Ronald J.; Guo, Fusheng; Olariu, Cornel; Gong, Chenglin

    2017-02-01

    Late Cretaceous continental redbeds, the Guifeng Group of the Yongchong Basin in SE China have been investigated to conduct detailed fan facies description and interpretation. Tectonic activities determined the alluvial fan development along the basin margin, but the alluvial facies was linked with paleoclimate changes. The Guifeng Group is divided into the Hekou, Tangbian and Lianhe formations in ascending order. The Hekou conglomerates are typically polymict, moderately sorted with erosional bases, cut-and-fill features, normal grading and sieve deposits, representing dominant stream-flows on alluvial fans during the initial opening stage of the basin infill. The Tangbian Formation, however, is characterized by structureless fine-grained sediments with dispersed coarse clasts, and couplets of conglomerate and sandstone or siltstone and mudstone, recording a change to a playa and ephemeral lake environments with occasional stream flooding, thus indicating a basin expanding stage. The hallmark of the Lianhe Formation is disorganized, poorly sorted conglomerates lack of erosional bases, and a wide particle-size range from clay to boulders together reflect mud-rich debris-flows accumulating on fans, likely related to reactivation of faulting along the northwestern mountain fronts during a post-rift stage. The depositional system changes from stream-flows up through playa with ephemeral streams to debris-flows during the accumulation of the three formations are thus attributed to different source rocks and climatic conditions. Therefore, the fluvial-dominated fans of the Hekou Formation recorded a subhumid paleoclimate (Coniacian-Santonian Age). The dominant semiarid climate during the Campanian Age produced abundant fine-grained sediments in the playa and ephemeral lake environments of the Tangbian Formation. A climatic change towards more humidity during the late stage of the Guifeng Group (Maastrichtian Age) probably yielded high deposition rate of coarse clasts in

  14. Genesis of Miocene litho-stratigraphic trap and hydrocarbon accumulation in the Qiongdongnan Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Fan, Caiwei; Jiang, Tao; Liu, Kun; Tan, Jiancai; Li, Hu; Li, Anqi

    2018-12-01

    In recent years, several large gas fields have been discovered in western Qiongdongnan Basin. It is important and necessary to illustrate their sedimentary characteristics and hydrocarbon migration so that more gas fields could be discovered in the future. Previous regional tectonic-sedimentary researchers show that large-scale source rock of the Yacheng Formation developed in the Ledong and Lingshui sags due to the Red River Fault pull-apart strike slip in early Oligocene. The main targets for hydrocarbon exploration in this area are the Miocene deep water reservoirs. In late Miocene, the Huangliu Formation reservoirs are composed of the early channels which were sourced by river systems in Hainan uplift and the consequent channels were sourced by Qiupen River in Kunsong uplift. Both axial channels exhibit unique spatial distribution patterns and geometries. The other kind of reservoir developed in the middle Miocene Meishan Formation, which compose of slope break-controlled submarine fan. They can be further classified into three types—slope channelized fan, basin floor fan, and bottom current reworked fan. The various fans have different reservoir quality. These two kinds of reservoirs contribute to four types of litho-stratigraphic traps under the actions of sedimentation and subsidence. The overpressure caused by hydrocarbon generation can fracture deeper strata and result in regional fractured network for hydrocarbon migration. Therefore, free gas driven by overpressure and buoyancy force can be migrated into Miocene litho-stratigraphic traps to accumulate. The revealed genesis of Miocene lithologic trap and hydrocarbon accumulation in the Qiongdongnan Basin would greatly contribute to the further hydrocarbon exploration in northern South China Sea and can be helpful for other deep water areas around the world.

  15. Impacts of land use changes on net ecosystem production in the Taihu Lake Basin of China from 1985 to 2010

    NASA Astrophysics Data System (ADS)

    Xu, Xibao; Yang, Guishan; Tan, Yan; Tang, Xuguang; Jiang, Hong; Sun, Xiaoxiang; Zhuang, Qianlai; Li, Hengpeng

    2017-03-01

    Land use changes play a major role in determining sources and sinks of carbon at regional and global scales. This study employs a modified Global biome model-biogeochemical cycle model to examine the changes in the spatiotemporal pattern of net ecosystem production (NEP) in the Taihu Lake Basin of China during 1985-2010 and the extent to which land use change impacted NEP. The model is calibrated with observed NEP at three flux sites for three dominant land use types in the basin including cropland, evergreen needleleaf forest, and mixed forest. Two simulations are conducted to distinguish the net effects of land use change and increasing atmospheric concentrations of CO2 and nitrogen deposition on NEP. The study estimates that NEP in the basin decreased by 9.8% (1.57 Tg C) from 1985 to 2010, showing an overall downward trend. The NEP distribution exhibits an apparent spatial heterogeneity at the municipal level. Land use changes during 1985-2010 reduced the regional NEP (3.21 Tg C in year 2010) by 19.9% compared to its 1985 level, while the increasing atmospheric CO2 concentrations and nitrogen deposition compensated for a half of the total carbon loss. Critical measures for regulating rapid urban expansion and population growth and reinforcing environment protection programs are recommended to increase the regional carbon sink.

  16. Occurrence of phthalic acid esters in source waters: a nationwide survey in China during the period of 2009-2012.

    PubMed

    Liu, Xiaowei; Shi, Jianghong; Bo, Ting; Zhang, Hui; Wu, Wei; Chen, Qingcai; Zhan, Xinmin

    2014-01-01

    The first nationwide survey of six phthalic acid esters (PAEs) (diethyl phthalate (DEP); dimethyl phthalate (DMP); di-n-butyl phthalate (DBP); butyl benzyl phthalate (BBP); bis(2-ethylhexyl) phthalate (DEHP); di-n-octyl phthalate (DnOP)) in source waters was conducted in China. The results showed these PAEs were ubiquitous in source waters. DBP and DEHP were the most frequently detected with high concentrations ranging nd-1.52 μg/L and nd-6.35 μg/L, respectively. These PAEs concentrations (except DBP) in surface water (rivers, lakes and reservoirs) were generally higher than those in groundwater; DBP had high concentrations in groundwater in Northeast China (Liao River Basin) and North China (Hai River Basin). Their concentrations in the northern regions were generally higher than those in the southern and eastern regions; particularly, in North China. Three short-chain PAEs (DMP, DEP and DBP) were detected with high concentrations in Hai River Basin, Pearl River Basin and Yellow River Basin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Regional scale soil salinity assessment using remote sensing based environmental factors and vegetation indicators

    NASA Astrophysics Data System (ADS)

    Ma, Ligang; Ma, Fenglan; Li, Jiadan; Gu, Qing; Yang, Shengtian; Ding, Jianli

    2017-04-01

    Land degradation, specifically soil salinization has rendered large areas of China west sterile and unproductive while diminishing the productivity of adjacent lands and other areas where salting is less severe. Up to now despite decades of research in soil mapping, few accurate and up-to-date information on the spatial extent and variability of soil salinity are available for large geographic regions. This study explores the po-tentials of assessing soil salinity via linear and random forest modeling of remote sensing based environmental factors and indirect indicators. A case study is presented for the arid oases of Tarim and Junggar Basin, Xinjiang, China using time series land surface temperature (LST), evapotranspiration (ET), TRMM precipitation (TRM), DEM product and vegetation indexes as well as their second order products. In par-ticular, the location of the oasis, the best feature sets, different salinity degrees and modeling approaches were fully examined. All constructed models were evaluated for their fit to the whole data set and their performance in a leave-one-field-out spatial cross-validation. In addition, the Kruskal-Wallis rank test was adopted for the statis-tical comparison of different models. Overall, the random forest model outperformed the linear model for the two basins, all salinity degrees and datasets. As for feature set, LST and ET were consistently identified to be the most important factors for two ba-sins while the contribution of vegetation indexes vary with location. What's more, models performances are promising for the salinity ranges that are most relevant to agricultural productivity.

  18. Terrestrial tight oil reservoir characteristics and Graded Resource Assessment in China

    NASA Astrophysics Data System (ADS)

    Wang, Shejiao; Wu, Xiaozhi; Guo, Giulin

    2016-04-01

    The success of shale/tight plays and the advanced exploitation technology applied in North America have triggered interest in exploring and exploiting tight oil in China. Due to the increased support of exploration and exploitation,great progress has been made in Erdos basin, Songliao basin, Junggar basin, Santanghu basin, Bohai Bay basin, Qaidam Basin, and Sichuan basin currently. China's first tight oil field has been found in Erdos basin in 2015, called xinanbian oil field, with over one hundred million tons oil reserves and one million tons of production scale. Several hundred million tons of tight oil reserve has been found in other basins, showing a great potential in China. Tight oil in China mainly developed in terrestrial sedimentary environment. According to the relations of source rock and reservoir, the source-reservoir combination of tight oil can be divided into three types, which are bottom generating and top storing tight oil,self- generating and self-storing tight oil,top generating and bottom storing tight oil. The self- generating and self-storing tight oil is the main type discovered at present. This type of tight oil has following characteristics:(1) The formation and distribution of tight oil are controlled by high quality source rocks. Terrestrial tight oil source rocks in China are mainly formed in the deep to half deep lacustrine facies. The lithology includes dark mudstone, shale, argillaceous limestone and dolomite. These source rocks with thickness between 20m-150m, kerogen type mostly I-II, and peak oil generation thermal maturity(Ro 0.6-1.4%), have great hydrocarbon generating potential. Most discovered tight oil is distributed in the area of TOC greater than 2 %.( 2) the reservoir with strong heterogeneity is very tight. In these low porosity and permeability reservoir,the resources distribution is controlled by the physical property. Tight sandstone, carbonate and hybrid sedimentary rocks are three main tight reservoir types in

  19. Research on Formation Mechanisms of Hot Dry Rock Resources in China

    NASA Astrophysics Data System (ADS)

    Wang, G.; Xi, Y.

    2017-12-01

    As an important geothermal resource, hot dry rock(HDR) reserves have been studied in many countries. HDR resources in China have huge capacity and have become one of the most important resources for the potential replacement of fossil fuels. However, HDR resources are difficult to develop and utilise. Technologies for use with HDR, such as high-temperature drilling, reservoir characterisation, reservoir fracturing, microseismic monitoring and high-temperature power stations, originate from the field of oil and drilling. Addressing how to take advantage of these developed technologies is a key factor in the development of HDR reserves. Based on the thermal crustal structure in China, HDR resources can be divided into four types: high radioactive heat production, sedimentary basin, modern volcano and the inner-plate active tectonic belt. The prospective regions of HDR resources are located in South Tibet, West Yunnan, the southeast coast of China, Bohai Rim, Songliao Basin and Guanzhong Basin. The related essential technologies are relatively mature, and the prospect of HDR power generation is promising. Therefore, analysing the formation mechanisms of HDR resources and promoting the transformation of technological achievements, large-scale development and the utilisation of HDR resources can be achieved in China.

  20. Sequence stratigraphy, sedimentary systems and petroleum plays in a low-accommodation basin: Middle to upper members of the Lower Jurassic Sangonghe Formation, Central Junggar Basin, Northwestern China

    NASA Astrophysics Data System (ADS)

    Feng, Youliang; Jiang, Shu; Wang, Chunfang

    2015-06-01

    The Lower Jurassic Junggar Basin is a low-accommodation basin in northwestern China. Because of low subsidence rates and a warm, wet climate, deposits of the Central subbasin of the Junggar Basin formed from fluvial, deltaic, shallow lake facies. Sequence stratigraphy and sedimentary systems of the Lower Jurassic members of the Sangonghe Formation (J1s) were evaluated by observing cores, interpreting wireline logs and examining seismic profiles. Two third-order sequences were recognized in the strata. The distribution of the sedimentary systems in the systems tracts shows that tectonic movement, paleorelief, paleoclimate and changes in lake level controlled the architecture of individual sequences. During the development of the lowstand systems tract (LST), the intense structural movement of the basin resulted in a significant fall in the water level in the lake, accompanied by rapid accommodation decrease. Braided rivers and their deltaic systems were also developed in the Central Junggar Basin. Sediments carried by braided rivers were deposited on upward slopes of the paleorelief, and braid-delta fronts were deposited on downward slopes. During the transgressive systems tract (TST), the tectonic movement of the basin was quiescent and the climate was warm and humid. Lake levels rose and accommodation increased quickly, shoal lines moved landward, and shore- to shallow-lake deposits, sublacustrine fans and deep-lake facies were deposited in shallow- to deep-lake environments. During the highstand systems tract (HST), the accommodation no longer increased but sediment supply continued, far exceeding accommodation. HST deposits slowly formed in shallow-lake to meandering river delta-front environments. Relatively low rates of structural subsidence and low accommodation resulted in coarse-grained successions that were fining upward. Deposits were controlled by structural movement and paleorelief within the LST to TST deposits in the Central subbasin. Fine- to medium

  1. Assessing the changes in land use and ecosystem services in an oasis agricultural region of Yanqi Basin, Northwest China.

    PubMed

    Wang, Shuixian; Wu, Bin; Yang, Pengnian

    2014-12-01

    The Yanqi Basin, one of the most productive agricultural areas, has a high population density in Xinjiang, Northwest China. Land use changes, mainly driven by oasis expansion, significantly impact ecosystem services and functions, but these effects are difficult to quantify. The valuation of ecosystem services is important to clarify the ecological and environmental changes caused by agriculturalization of oasis. This study aimed to investigate variations in ecosystem services in response to land use changes during oasis agricultural expansion activities in the Yanqi Basin from 1964 to 2009. The methods used were based on formula of ecosystem service value (ESV) and ESV coefficients. Satellite data were combined with the ESV coefficients to quantify land use changes and ecosystem service changes in the study area. Sensitivity analysis determined the effect of manipulating the coefficients on the estimated values. The results show that the total ESVs in the Yanqi Basin were $1,674, $1,692, $1,471, $1,732, and $1,603 million in 1964, 1973, 1989, 1999, and 2009, respectively. The net deline in ESV was $71 million in the past 46 years, but the ESVs of each types of landscape changed significantly. The aggregated ESVs of water areas and wetlands were approximately 80 % of the total ESV. Water supply and waste treatment were the two largest service functions and contributed approximately 65 % of the total ESV. The estimated ESVs in this study were elastic with respect to the value coefficients. Therefore, the estimations were robust in spite of uncertainties on the value coefficients. These significant changes in land use occur within the entire basin over the study period. These changes cause environmental problems, such as land degradation, vegetation degeneracy, and changes in aquatic environment.

  2. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China.

    PubMed

    Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu

    2015-07-01

    Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential.

  3. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin.

    PubMed

    Gao, Xin; Niu, Cuijuan; Chen, Yushun; Yin, Xuwang

    2014-04-01

    Understanding the effects of watershed land uses (e.g., agriculture, urban industry) on stream ecological conditions is important for the management of large river basins. A total of 41 and 56 stream sites (from first to fourth order) that were under a gradient of watershed land uses were monitored in 2009 and 2010, respectively, in the Liao River Basin, Northeast China. The monitoring results showed that a total of 192 taxa belonging to four phyla, seven classes, 21 orders and 91 families were identified. The composition of macroinvertebrate community in the Liao River Basin was dominated by aquatic insect taxa (Ephemeroptera and Diptera), Oligochaeta and Molluscs. The functional feeding group GC (Gatherer/Collector) was dominant in the whole basin. Statistical results showed that sites with less watershed impacts (lower order sites) were characterized by higher current velocity and habitat score, more sensitive taxa (e.g., Ephemeroptera), and the substrate was dominated by high percentage of cobble and pebble. The sites with more impacts from agriculture and urban industry (higher order sites) were characterized by higher biochemical (BOD5) and chemical oxygen demand (COD), more tolerant taxa (e.g., Chironominae), and the substrate was dominated by silt and sand. Agriculture and urban-industry activities have reduced habitat condition, increased organic pollutants, reduced macroinvertebrate abundance, diversity, and sensitive taxa in streams of the lower Liao River Basin. Restoration of degraded habitat condition and control of watershed organic pollutants could be potential management priorities for the Basin.

  4. Impact of phosphate mining and separation of mined materials on the hydrology and water environment of the Huangbai River basin, China.

    PubMed

    Wang, Kang; Lin, Zhongbing; Zhang, Renduo

    2016-02-01

    The objective of this study was to investigate the influence of large-scale phosphate mining (PM) on hydrology and water quality in the Huangbai River basin, China. Rainfall and runoff data were used to analyze hydrological changes of the basin before (from 1978 to 2002) and during (from 2003 to 2014) the PM period. From 2009 to 2014, flow rate and concentrations of ammonia nitrogen (NH4(+)), nitrate (NO3(-)), fluoride (F(-)), suspended solids (SS), total nitrogen (TN), soluble phosphorus (SP), and total phosphorus (TP) were measured at the outfalls of PM as well as at outlets of sub-basins with and without PM practices. Results showed that the PM activities generally reduced runoff (i.e., the runoff coefficient and runoff peak). The sequential Mann Kendall test revealed a decrease trend of runoff during wet seasons after 2008 in the PM regions. For a mining scale of one unit of PM productivity (i.e., 10(8)kg phosphate ore per year or 2.74×10(5) kg d(-1)), TN, SS, and TP of 0.633, 1.46 to 5.22, and 0.218 to 0.554 kg d(-1) were generated, respectively. The NH4(+) and TN loads in the sub-basins with PM were significantly higher than these in the sub-basins without PM; however, the NH4(+) and TN loads that discharged into rivers from the background non-point sources discharged were less in the sub-basins with PM than those without PM. The result was attributed to the reduction of runoff volume by PM. The annual mean concentrations of TN in reservoir water increased with the scales of PM, whereas the mean concentrations of SP were low. Nevertheless, the SP concentrations in the reservoirs greatly increased after 2012, mainly related to the dissolution of apatite in the sediment. The information from this study should improve the understanding of changes in hydrology and water quality in regions with large-scale PM. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Applying the input-output method to account for water footprint and virtual water trade in the Haihe River basin in China.

    PubMed

    Zhao, Xu; Yang, Hong; Yang, Zhifeng; Chen, Bin; Qin, Yan

    2010-12-01

    The virtual water strategy which advocates importing water intensive products and exporting products with low water intensity is gradually accepted as one of the options for solving water crisis in severely water scarce regions. However, if we count the virtual water embodied in imported products as the water saved for a region, we might overestimate the saving by including the virtual water that is later re-exported in association with the proceeded products made from the originally imported products. This problem can be avoided by accounting for the saved water through calculating water footprint (WF) in domestic final consumptive products. In this paper, an input-output analysis (IOA) based on the water footprint accounting framework is built to account for WF and virtual water trade of final consumptive products in the water stressed Haihe River basin in China for the year 1997, 2000, and 2002. The input-output transaction tables of the three years are constructed. The results show WF of 46.57, 44.52, and 42.71 billion m(3) for the three years, respectively. These volumes are higher than the water used directly in the corresponding years in the basin. A WF intensity (WFI) indicator is then used to assess if the economic activities in the basin are consistent with the virtual water strategy. The temporal change of the WFI is also decomposed by the index number analysis method. The results showed that the basin was silently importing virtual water through the trade of raw and processed food commodities under the background of the whole economic circulation.

  6. Shale Gas Exploration and Development Progress in China and the Way Forward

    NASA Astrophysics Data System (ADS)

    Chen, Jianghua

    2018-02-01

    Shale gas exploration in China started late but is progressing very quickly with the strong support from Central Government. China has 21.8 tcm technically recoverable shale gas resources and 764.3 bcm proved shale gas reserve, mainly in marine facies in Sichuan basin. In 2016, overall shale gas production in China is around 7.9 bcm, while it is set to reach 10 bcm in 2017 and 30 bcm in 2020. BP is the only remaining IOC actor in shale gas exploration in China partnering with CNPC in 2 blocks in Sichuan basin. China is encouraging shale gas business both at Central level and at Provincial level through establishing development plan, continuation of subsidies and research funding. Engineering services for shale gas development and infrastructures are developing, while the overall cost and gas marketing conditions will be key factors for the success in shale gas industry.

  7. Geothermal fields of China

    NASA Astrophysics Data System (ADS)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  8. Geochemical indications and Detrital Zircon U-Pb ages of net-like laterite from Youjiang terrace, Bose Basin, southwestern China: new evidence of proximal provenance for laterite sediments

    NASA Astrophysics Data System (ADS)

    Cheng, F.; Hong, H.; Li, C.; Ye, H.; Yang, H.

    2015-12-01

    The net-like laterite sediments is widely spread over the terraces and high lands of the river valley in southern China during mid-Pleistocene, although whose origin is still debated. The Xiaomei laterite sediments on the terraces of Youjiang River, Guangxi Zhuang Autonomous Region, southern China, was dominated by the intermittently uplift of the Tibetan Plateau for the mechanism during the Quaternary times. Compared to the loess-paleosol deposits in Chinese Loess Plateau (CLP), the upper continental crust (UCC) and the post-Archean Australian average shale (PAAS), the sediments show notable depletion of the relative mobile compositions like CaO, MgO, Na2O, K2O, Sr, Ba and the accumulation of TiO2, Al2O3, Fe2O3(t), Zr, but similar with other laterite sediments (the Xuancheng and Jiujiang laterite profiles) in the middle to lower reaches of Yangtze River, southern China. The relatively uniform La/Th ratio, U/Pb vs. Th/Pb ratio and chondrite-normalized REE distribution pattern of Xiaomei samples are similar with the loess-paleosol deposits and UCC values, which suggesting the sediments have experienced well-mixing prior to deposition and intense superficial weathering. The low ɛNd(t) values and uniform 147Sm/144Nd ratios with the 87Sr/86Sr vs. Rb/Sr ratios show the notable differences with loess-paleosol deposits and the recycling function of the old fluvial sediments which are similar with the Pearl River sediments. The stable zircon age distribution pattern with three age groups of 240-300Ma, 420-480Ma and 900-1000Ma for Xiaomei laterite samples are different with the loess-paleosol deposits and its source regions. The zircons are mainly derived from a source of the Upper Permian to Middle Triassic clastic rocks in Youjiang Basin, superordinate tectonic unit of Bose Basin, and their potential source areas like the Emeishan Large Igneous Province (Emeishan LIP) and the southeastern area of south China Craton (SCC). For the basis of these data, we suggest that that

  9. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  10. Distribution and migration mechanism of fluoride in groundwater in the Manas River Basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Liu, Yalei; Jin, Menggui; Ma, Bin; Wang, Jianjun

    2018-04-01

    Elevated fluoride (F) concentration in groundwater is posing a public health risk in the Manas River Basin (MRB), Northwest China. Based on the characterization of regional groundwater flow, 90 groundwater samples from aquifers were analyzed, along with top-soil leachate and pore-water samples from aquitards. Stable oxygen (δ18O) and hydrogen isotopes, radiocarbon and hydrochemical analyses of the groundwater and pore-water samples were conducted to trace groundwater hydrological and hydrochemical processes and thereby understand the distribution and migration mechanism of F. The groundwater is recharged by meteoric precipitation through vapor condensation processes in the Tianshan Mountains. The F concentration in groundwater samples from this basin ranged from 0.11 to 48.15 mg/L (mean 2.56 mg/L). In 37 of the 90 groundwater samples, the F concentrations were above the safe level for drinking water. The F concentrations progressively increased with the residence time and well depths in the northwest of the alluvial-fluvial plain, where groundwater is overexploited for agricultural and domestic use. Positive correlations between F and sodium (Na)/calcium (Ca) indicate that the enrichment and migration of F are influenced by cation exchange processes under high-Na and alkaline pH conditions. The relationships between δ18O and F and chloride (Cl) concentrations were nonlinear due to leaching and mixing processes. This shows that vertical leaching by irrigation return flow and mixing with pore water are the dominant processes driving the migration of F in the groundwater flow system of MRB, in addition to geochemical processes.

  11. Modes, hydrodynamic processes and ecological impacts exerted by river-groundwater transformation in Junggar Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, Wenke; Wang, Zhan; Hou, Rongzhe; Guan, Longyao; Dang, Yan; Zhang, Zaiyong; Wang, Hao; Duan, Lei; Wang, Zhoufeng

    2018-05-01

    The hydrodynamic processes and impacts exerted by river-groundwater transformation need to be studied at regional and catchment scale, especially with respect to diverse geology and lithology. This work adopted an integrated method to study four typical modes (characterized primarily by lithology, flow subsystems, and gaining/losing river status) and the associated hydrodynamic processes and ecological impacts in the southern part of Junggar Basin, China. River-groundwater transformation occurs one to four times along the basin route. For mode classification, such transformation occurs: once or twice, controlled by lithological factors (mode 1); twice, impacted by geomorphic features and lithological structures (mode 2); and three or four times, controlled by both geological and lithological structures (modes 3 and 4). Results also suggest: (1) there exist local and regional groundwater flow subsystems at 400 m depth, which form a multistage nested groundwater flow system. The groundwater flow velocities are 0.1-1.0 and <0.1 m/day for each of two subsystems; (2) the primary groundwater hydro-chemical type takes on apparent horizontal and vertical zoning characteristics, and the TDS of the groundwater evidently increases along the direction of groundwater flow, driven by hydrodynamic processes; (3) the streams, wetland and terminal lakes are the end-points of the local and regional groundwater flow systems. This work indicates that not only are groundwater and river water derived from the same source, but also hydrodynamic and hydro-chemical processes and ecological effects, as a whole in arid areas, are controlled by stream-groundwater transformation.

  12. Modeling Nutrient Release in the Tai Lake Basin of China: Source Identification and Policy Implications

    NASA Astrophysics Data System (ADS)

    Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun

    2013-03-01

    Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a-1 and 5254.4 tons P a-1, and annual area-specific nutrient loads were 1.94 tons N km-2 and 0.31 tons P km-2. Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.

  13. Model simulations of potential contribution of the proposed Huangpu Gate to flood control in the Lake Taihu basin of China

    NASA Astrophysics Data System (ADS)

    Zhang, Hanghui; Liu, Shuguang; Ye, Jianchun; Yeh, Pat J.-F.

    2017-10-01

    The Lake Taihu basin (36 895 km2), one of the most developed regions in China located in the hinterland of the Yangtze River Delta, has experienced increasing flood risk. The largest flood in history occurred in 1999 with a return period estimate of 200 years, considerably larger than the current capacity of the flood defense with a design return period of 50 years. Due to its flat saucer-like terrain, the capacity of the flood control system in this basin depends on flood control infrastructures and peripheral tidal conditions. The Huangpu River, an important river of the basin connecting Lake Taihu upstream and Yangtze River estuaries downstream, drains two-fifths of the entire basin. Since the water level in the Huangpu River is significantly affected by the high tide conditions in estuaries, constructing an estuary gate is considered an effective solution for flood mitigation. The main objective of this paper is to assess the potential contributions of the proposed Huangpu Gate to the flood control capacity of the basin. To achieve this goal, five different scenarios of flooding conditions and the associated gate operations are considered by using numerical model simulations. Results of quantitative analyses show that the Huangpu Gate is effective for evacuating floodwaters. It can help to reduce both peak values and duration of high water levels in Lake Taihu to benefit surrounding areas along the Taipu Canal and the Huangpu River. The contribution of the gate to the flood control capacity is closely associated with its operation modes and duration. For the maximum potential contribution of the gate, the net outflow at the proposed site is increased by 52 %. The daily peak level is decreased by a maximum of 0.12 m in Lake Taihu, by maxima of 0.26-0.37 and 0.46-0.60 m in the Taipu Canal and the Huangpu River, respectively, and by 0.05-0.39 m in the surrounding areas depending on the local topography. It is concluded that the proposed Huangpu Gate can reduce

  14. Terrestrial paleoclimatic changes in northeast Asia during OAE 3 in the Late Cretaceous: Organic geochemical evidences from the Songliao paleo-lake Basin, northeast China

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Wang, C.; Huang, H.

    2016-12-01

    Oceanic anoxic events (OAEs) in the Cretaceous greenhouse world record significant paleoclimatic changes and represent major disturbances in the global carbon cycle. The Coniacian-Santonian oceanic anoxic event (OAE 3), the last of the Cretaceous OAEs, is characterized by restricted black shale deposits in equatorial to mid-latitude Atlantic and adjacent basins. Continental hydroclimate on tropical Africa and South America was proved have a strong effect on carbon burial in ocean basins during OAE 3, although terrestrial paleoclimatic changes on the other continents were not well understood. The Continental Scientific Drilling Project of the Songliao paleo-lake Basin (northeast China) recovered 500m thick, continuous, dark-colored, deep lacustrine mudstone of the Qingshankou Formation, with the age of 92.0-86.2Ma tightly constrained by radiometric dating on volcanic ashes, magnetostratigraphy and cyclostratigraphy. These sediments thus provide an opportunity to study terrestrial paleoclimate changes in northeast Asia during OAE 3. Our high-resolution ( 1m interval) TOC and δ13Corg data of the Qingshankou Formation in the Songliao Basin show several positive δ13Corg excursions over the OAE 3 time period. Spectrum analysis shows remarkable Milankovich cycles including eccentricity cycles ( 400kyr) and precession cycles ( 20 kyr). These data suggest that dark-colored mudstone deposition in the Songliao paleo-lake was probably controlled by regional hydroclimatic changes which were influenced by orbital forcing.

  15. The Perspective of Riverbank Filtration in China

    NASA Astrophysics Data System (ADS)

    Li, J.; Teng, Y.; Zhai, Y.; Zuo, R.

    2014-12-01

    Sustainable drinking water supply can affect the health of people, and the surrounding ecosystems. According to statistics of the monitoring program of drinking water sources in 309 at or above prefecture level of China in 2013, the major pollutants index were total phosphorus, ammonia and manganese in surface drinking water sources, respectively, iron, ammonia and manganese in groundwater drinking water sources, respectively. More than 150 drinking water emergency environmental accidents happened since 2006, 52 of these accidents led to the disruption of water supply in waterworks, and a population of over ten million were affected. It indicated that there is a potential risk for people's health by the use of river water directly and it is necessary to require alternative techniques such as riverbank filtration for improving the drinking water quality. Riverbank filtration is an inexpensive natural process, not only smoothing out normal pollutant concentration found in surface water but also significantly reducing the risk from such emergency events as chemical spill into the river. Riverbank filtration technique has been used in many countries more than 100 years, including China. In China, in 1950s, the bank infiltration technique was first applied in northeast of China. Extensive bank infiltration application was conducted in 1980s, and more than 300 drinking water sources utilities bank infiltration established mainly near the Songhua River Basin, the Yellow River Basin, Haihe River Basin. However, the comparative lack of application and researches on riverbank filtration have formed critical scientific data gap in China. As the performance of riverbank filtration technique depend on not only the design and setting such as well type, pumping rate, but also the local hydrogeology and environmental properties. We recommend more riverbank filtration project and studies to be conducted to collect related significant environmental geology data in China

  16. Seasonal characteristics, formation mechanisms and source origins of PM2.5 in two megacities in Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, Huanbo; Tian, Mi; Chen, Yang; Shi, Guangming; Liu, Yuan; Yang, Fumo; Zhang, Leiming; Deng, Liqun; Yu, Jiayan; Peng, Chao; Cao, Xuyao

    2018-01-01

    To investigate the characteristics of PM2.5 and its major chemical components, formation mechanisms, and geographical origins in the two megacities, Chengdu (CD) and Chongqing (CQ), in Sichuan Basin of southwest China, daily PM2.5 samples were collected simultaneously at one urban site in each city for four consecutive seasons from autumn 2014 to summer 2015. Annual mean concentrations of PM2.5 were 67.0 ± 43.4 and 70.9 ± 41.4 µg m-3 at CD and CQ, respectively. Secondary inorganic aerosol (SNA) and organic matter (OM) accounted for 41.1 and 26.1 % of PM2.5 mass at CD, and 37.4 and 29.6 % at CQ, respectively. Seasonal variations of PM2.5 and major chemical components were significant, usually with the highest mass concentration in winter and the lowest in summer. Daily PM2.5 concentration exceeded the national air quality standard on 30 % of the sampling days at both sites, and most of the pollution events were at the regional scale within the basin formed under stagnant meteorological conditions. The concentrations of carbonaceous components were higher at CQ than CD, likely partially caused by emissions from the large number of motorcycles and the spraying processes used during automobile production in CQ. Heterogeneous reactions probably played an important role in the formation of SO42-, while both homogeneous and heterogeneous reactions contributed to the formation of NO3-. Geographical origins of emissions sources contributing to high PM2.5 masses at both sites were identified to be mainly distributed within the basin based on potential source contribution function (PSCF) analysis.

  17. Analyzing the water budget and hydrological characteristics and responses to land use in a monsoonal climate river basin in South China

    USGS Publications Warehouse

    Wu, Yiping; Chen, Ji

    2013-01-01

    Hydrological models have been increasingly used by hydrologists and water resource managers to understand natural processes and human activities that affect watersheds. In this study, we use the physically based model, Soil and Water Assessment Tool (SWAT), to investigate the hydrological processes in the East River Basin in South China, a coastal area dominated by monsoonal climate. The SWAT model was calibrated using 8-year (1973–1980) record of the daily streamflow at the basin outlet (Boluo station), and then validated using data collected during the subsequent 8 years (1981–1988). Statistical evaluation shows that SWAT can consistently simulate the streamflow of the East River with monthly Nash–Sutcliffe efficiencies of 0.93 for calibration and 0.90 for validation at the Boluo station. We analyzed the model simulations with calibrated parameters, presented the spatiotemporal distribution of the key hydrological components, and quantified their responses to different land uses. Watershed managers can use the results of this study to understand hydrological features and evaluate water resources of the East River in terms of sustainable development and effective management.

  18. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China.

    PubMed

    Jin, Hangbiao; Zhu, Lingyan

    2016-10-15

    Bisphenol analogues are widely used in the manufacture of polycarbonate plastics and epoxy resins, and the demand and production capacity of these compounds are growing rapidly in China. The occurrence and distribution of bisphenol analogues other than bisphenol A (BPA) in the aquatic environment is still poorly understood. In this study, nine bisphenol analogues were measured in water and sediment samples from Taihu Lake (TL), Liaohe River basin, including Liaohe River (LR) and Hunhe River (HR), China. Water samples from LR and HR contained much higher total bisphenols (∑BPs) concentrations. BPA and bisphenol S (BPS) were predominant with a summed contribution of 55, 75, and 75% to the ∑BPs in TL, LR, and HR waters, respectively. This suggests that BPA and BPS were the most widely used and manufactured bisphenols in these regions. In sediment, BPA was always predominant, with the next abundant compound bisphenol F (BPF) in TL and HR sediment, but BPS in LR sediment. The average field sediment-water partitioning coefficients (log Koc) were calculated for the first time for certain bisphenols and were determined to be 4.7, 4.6, 3.8, 3.7, and 3.5 mL/g for BPF, BPAP, BPA, BPAF, and BPS, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Estimates of long-term water total phosphorus (TP) concentrations in three large shallow lakes in the Yangtze River basin, China.

    PubMed

    Wu, Pan; Qin, Boqiang; Yu, Ge

    2016-03-01

    The shallow lakes in the eastern China developed on alluvial plains with high-nutrient sediments, and most overflow into the Yangtze River with short hydraulic residence times, whereas they become eutrophic over long time periods. Assuming strong responses to hydrogeological changes in the basin, we attempted to determine the dynamic eutrophication history of these lakes. Although evaluation models for internal total phosphorus (TP) loading are widely used for deep lakes in Europe and North America, the accuracy of these models for shallow lakes that have smaller water volumes controlled by the geometrical morphology and greater basin area of alluvial plains is unknown. To describe the magnitude of changes in velocity of trophic state for the studied shallow lakes, we first evaluated the P retention model in relation to the major forces driving lake morphology, basin climate, and external discharge and then used the model to estimate changes in TP in three large shallow lakes (Taihu, Chao, and Poyang) over 60 years (1950-2009 AD). The observed levels of TP were verified against the relative error of the three lakes (<6.43 %) and Nash-Sutcliffe coefficients (0.67-0.75). The results showed that the predicted TP concentrations largely increased with hydraulic residence time, especially in extreme drought years, with a generally rising trend in trophic status. The simulated trophic state index showed that lakes Taihu and Poyang became eutrophic in the 1990s, whereas Lake Chao became eutrophic in the 1980s; lakes Taihu and Chao ultimately became hypereutrophic in the 2000s. The analysis suggested that the tropic status of the shallow lakes was affected by both the hydroclimate and geological sedimentation of the Yangtze River basin. This work will contribute to the development of an internal P loading model for further evaluating trophic states.

  20. Climate change and human occupations in the Lake Daihai basin, north-central China over the last 4500 years: A geo-archeological perspective

    NASA Astrophysics Data System (ADS)

    Xu, Lichen; Liu, Yan; Sun, Qianli; Chen, Jing; Cheng, Peng; Chen, Zhongyuan

    2017-05-01

    High-resolution climate variations since the last 4500 years in the monsoonal-arid transition zone of north-central China were revealed through the integration of proxies from sediment cores in the Lake Daihai basin. Human occupations in the lake basin deduced from archeological findings and historical literatures were then incorporated into the climate sequence to demonstrate the patterns of human responses to the climate changes, and the recent anthropogenic effects. It indicated that: (1) Climate dominated human-environment adaptations prevailed prior to ∼2700 cal yr BP. An amicable climate setting before ∼4100 cal yr BP would facilitate the growth of the Laohushan Culture (LC) in the lake basin, while a pronounced deterioration of water thermal condition after that had led to human exodus and the collapse of the LC. The reduced human activity in the lake basin indicated at ∼3800-3500 cal yr BP and a subsequent cultural blank at ∼3500-2700 cal yr BP, were both in response to the climate and lake level fluctuations during ∼3800-2800 cal yr BP. (2) Transition to a positive human adaptation was seen at ∼2700-1100 cal yr BP, represented by the exploitation of arable land for cultivation and animal husbandry as the lake contracted. (3) An increasing human presence that affected environmental processes became more severe over the last ∼1100 cal yr BP. This was basically due to the ongoing lake shore reclamation for cropping, and more recently heavy metals emissions from fossil fuel combustion and local industries.

  1. The Occurrence, Sources and Spatial Characteristics of Soil Salt and Assessment of Soil Salinization Risk in Yanqi Basin, Northwest China

    PubMed Central

    Zhaoyong, Zhang; Abuduwaili, Jilili; Yimit, Hamid

    2014-01-01

    In order to evaluate the soil salinization risk of the oases in arid land of northwest China, we chose a typical oasis-the Yanqi basin as the research area. Then, we collected soil samples from the area and made comprehensive assessment for soil salinization risk in this area. The result showed that: (1) In all soil samples, high variation was found for the amount of Ca2+ and K+, while the other soil salt properties had moderate levels of variation. (2) The land use types and the soil parent material had a significant influence on the amount of salt ions within the soil. (3) Principle component (PC) analysis determined that all the salt ion values, potential of hydrogen (pHs) and ECs fell into four PCs. Among them, PC1 (C1-, Na+, SO4 2-, EC, and pH) and PC2 (Ca2+, K+, Mg2+and total amount of salts) are considered to be mainly influenced by artificial sources, while PC3 and PC4 (CO3 - and HCO3 2-) are mainly influenced by natural sources. (4) From a geo-statistical point of view, it was ascertained that the pH and soil salt ions, such as Ca2+, Mg2+ and HCO3 -, had a strong spatial dependency. Meanwhile, Na+ and Cl- had only a weak spatial dependency in the soil. (5) Soil salinization indicators suggested that the entire area had a low risk of soil salinization, where the risk was mainly due to anthropogenic activities and climate variation. This study can be considered an early warning of soil salinization and alkalization in the Yanqi basin. It can also provide a reference for environmental protection policies and rational utilization of land resources in the arid region of Xinjiang, northwest China, as well as for other oases of arid regions in the world. PMID:25211240

  2. Spatio-temporal evolution of water-related ecosystem services: Taihu Basin, China.

    PubMed

    Chen, Junyu; Cui, Tao; Wang, Huimin; Liu, Gang; Gilfedder, Mat; Bai, Yang

    2018-01-01

    Water-related ecosystem services (WESs) arise from the interaction between water ecosystems and their surrounding terrestrial ecosystems. They are critical for human well-being as well as for the whole ecological circle. An urgent service-oriented reform for the utilization and supervision of WESs can assist in avoiding ecological risks and achieving a more sustainable development in the Taihu Basin, China (THB). Spatially distributed models allow the multiple impacts of land use/land cover conversion and climate variation on WESs to be estimated and visualized efficiently, and such models can form a useful component in the toolbox for integrated water ecosystem management. The Integrated Valuation of Ecosystem Services and Tradeoffs model is used here to evaluate and visualize the spatio-temporal evolution of WESs in the THB from 2000 to 2010. Results indicate that water retention service experienced a decline from 2000 to 2005 with a recovery after 2005, while there was ongoing water scarcity in urban areas. Both the water purification service and the soil retention service underwent a slight decrease over the study period. Nutrients export mainly came from developed land and cultivated land, with the hilly areas in the south of the THB forming the primary area for soil loss. The quantity and distribution of WESs were impacted significantly by the shrinkage of cultivated land and the expansion of developed land. These findings will lay a foundation for a service-oriented management of WESs in the THB and support evidence-based decision making.

  3. Shahejie-Shahejie/Guantao/Wumishan and Carboniferous/Permian Coal-Paleozoic Total Petroleum Systems in the Bohaiwan Basin, China (based on geologic studies for the 2000 World Energy Assessment Project of the U.S. Geological Survey)

    USGS Publications Warehouse

    Ryder, Robert T.; Qiang, Jin; McCabe, Peter J.; Nuccio, Vito F.; Persits, Felix

    2012-01-01

    This report discusses the geologic framework and petroleum geology used to assess undiscovered petroleum resources in the Bohaiwan basin province for the 2000 World Energy Assessment Project of the U.S. Geological Survey. The Bohaiwan basin in northeastern China is the largest petroleum-producing region in China. Two total petroleum systems have been identified in the basin. The first, the Shahejie&ndashShahejie/Guantao/Wumishan Total Petroleum System, involves oil and gas generated from mature pods of lacustrine source rock that are associated with six major rift-controlled subbasins. Two assessment units are defined in this total petroleum system: (1) a Tertiary lacustrine assessment unit consisting of sandstone reservoirs interbedded with lacustrine shale source rocks, and (2) a pre-Tertiary buried hills assessment unit consisting of carbonate reservoirs that are overlain unconformably by Tertiary lacustrine shale source rocks. The second total petroleum system identified in the Bohaiwan basin is the Carboniferous/Permian Coal–Paleozoic Total Petroleum System, a hypothetical total petroleum system involving natural gas generated from multiple pods of thermally mature coal beds. Low-permeability Permian sandstones and possibly Carboniferous coal beds are the reservoir rocks. Most of the natural gas is inferred to be trapped in continuous accumulations near the center of the subbasins. This total petroleum system is largely unexplored and has good potential for undiscovered gas accumulations. One assessment unit, coal-sourced gas, is defined in this total petroleum system.

  4. Deriving Scaling Factors Using a Global Hydrological Model to Restore GRACE Total Water Storage Changes for China's Yangtze River Basin

    NASA Technical Reports Server (NTRS)

    Long, Di; Yang, Yuting; Yoshihide, Wada; Hong, Yang; Liang, Wei; Chen, Yaning; Yong, Bin; Hou, Aizhong; Wei, Jiangfeng; Chen, Lu

    2015-01-01

    This study used a global hydrological model (GHM), PCR-GLOBWB, which simulates surface water storage changes, natural and human induced groundwater storage changes, and the interactions between surface water and subsurface water, to generate scaling factors by mimicking low-pass filtering of GRACE signals. Signal losses in GRACE data were subsequently restored by the scaling factors from PCR-GLOBWB. Results indicate greater spatial heterogeneity in scaling factor from PCR-GLOBWB and CLM4.0 than that from GLDAS-1 Noah due to comprehensive simulation of surface and subsurface water storage changes for PCR-GLOBWB and CLM4.0. Filtered GRACE total water storage (TWS) changes applied with PCR-GLOBWB scaling factors show closer agreement with water budget estimates of TWS changes than those with scaling factors from other land surface models (LSMs) in China's Yangtze River basin. Results of this study develop a further understanding of the behavior of scaling factors from different LSMs or GHMs over hydrologically complex basins, and could be valuable in providing more accurate TWS changes for hydrological applications (e.g., monitoring drought and groundwater storage depletion) over regions where human-induced interactions between surface water and subsurface water are intensive.

  5. Onychostoma brevibarba, a new cyprinine fish (Pisces: Teleostei) from the middle Chang Jiang basin in Hunan Province, South China.

    PubMed

    Song, Xue-Ling; Cao, Liang; Zhang, E

    2018-04-16

    Onychostoma brevibarba, a new cyprinid species, is described from two tributaries flowing into the Xiang Jiang (= River) of the middle Chang Jiang basin in Hunan Province, South China. The new species is morphologically similar to two Chinese congeners, O. minnanense and O. barbatulum, but differs from them in the anteromedian extension of the postlabial groove. It further differs from O. minnanense in the maxillary-barbel length, shape and body coloration, and from O. barbatulum in the number of lateral-line perforated scales and the width of the mouth opening. The validity of the new species and its close relationship with these two species were affirmed by a molecular phylogenetic analysis based on the mitochondrial cyt b and CO1 genes.

  6. Schistura megalodon species nova, a new river loach from the Irra-waddy basin in Dehong, Yunnan, China (Teleostei: Cypriniformes: Nemacheilidae)

    PubMed Central

    Endruweit, Marco

    2014-01-01

    A new species of river loach, Schistura megalodon sp. nov., is described from the Irrawaddy basin in Yingjiang County, Dehong Autonomous Prefecture, Yunnan Province, China. The following combination of diagnostic characters serve to distinguish it from all other congeners in the given zoogeographical region: a large processus dentiformes in the upper jaw, a short pre-anus length of 65.4%-66.3% of SL, long paired fins (pectoral: 20.8%-24.2% of SL; pelvic: 17.9%-20.6% of SL), a wide body of 9.7%-11.3% of SL at anal fin origin, an incomplete lateral line, the absence of an orbital lobe, and a broad and distinct basicaudal bar with forward extensions. PMID:25297074

  7. Schistura megalodon species nova, a new river loach from the Irra-waddy basin in Dehong, Yunnan, China (Teleostei: Cypriniformes: Nemacheilidae).

    PubMed

    Endruweit, Marco

    2014-09-01

    A new species of river loach, Schistura megalodon sp. nov., is described from the Irrawaddy basin in Yingjiang County, Dehong Autonomous Prefecture, Yunnan Province, China. The following combination of diagnostic characters serve to distinguish it from all other congeners in the given zoogeographical region: a large processus dentiformes in the upper jaw, a short pre-anus length of 65.4%-66.3% of SL, long paired fins (pectoral: 20.8%-24.2% of SL; pelvic: 17.9%-20.6% of SL), a wide body of 9.7%-11.3% of SL at anal fin origin, an incomplete lateral line, the absence of an orbital lobe, and a oad and distinct basicaudal bar with forward extensions.

  8. Amalgamation of East Eurasia Since Late Paleozoic: Constraints from the Apparent Polar Wander Paths of the Major China Blocks

    NASA Astrophysics Data System (ADS)

    Wu, L.; Kravchinsky, V. A.; Potter, D. K.

    2014-12-01

    It has been a longstanding challenge in the last few decades to quantitatively reconstruct the paleogeographic evolution of East Eurasia because of its great tectonic complexities. As the core region, the major China cratons including North China Block, South China Block and Tarim Block hold the key clues for the understanding of the amalgamation history, tectonic activities and biological affinity among the component blocks and terranes in East Eurasia. Compared with the major Gondwana and Laurentia plates, however, the apparent polar wander paths of China are not well constrained due to the outdated paleomagnetic database and relatively loose pole selection process. With the recruitment of the new high-fidelity poles published in the last decade, the rejection of the low quality data and the strict implementation of Voo's grading scheme, we build an updated paleomagnetic database for the three blocks from which three types of apparent polar wander paths (APWP) are computed. Version 1 running mean paths are constructed during the pole selection and compared with those from the previous publications. Version 2 running mean and spline paths with different sliding time windows are computed from the thoroughly examined poles to find the optimal paths with the steady trend, reasonable speed for the polar drift and plate rotation. The spline paths are recommended for the plate reconstructions, however, considering the poor data coverage during certain periods. Our new China APWPs, together with the latest European reference path, the geological, geochronological and biological evidence from the studied Asian plates allow us to reevaluate the paleogeographic and tectonic history of East Eurasia.

  9. The role of scenario analysis in water resources management in Yanqi Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Li, N.; Kinzelbach, W. K.; Li, W.; Dong, X.

    2011-12-01

    With the rapid increase of world population and food demand, the demand for water resources is also increasing. At the same time shifts in rain patterns due to global climate change make the water resources situation more uncertain. A global water crisis can therefore not be excluded. The socio-economic and environmental problems induced by such a water crisis are especially prominent in arid and semiarid regions. The Yanqi Basin in Xinjiang province is a typical case study in China's arid and semi-arid areas, where rainfall is scarce and evaporation is extremely high. Thus its water resources have been under great pressure to satisfy the increasing water demand of agriculture and urban and industrial expansion in the last decades. The development has been accompanied by a number of environmental problems. Yanqi Basin is an important cultivated area which is irrigated by water diverted from rivers. Because of the long-term flood irrigation and an inefficient drainage system, the groundwater level under the cultivated area rose, accelerating the phreatic evaporation and leading to increased soil salinization. Simultaneously, the water quantity and quality of Boston Lake have been impaired in past years because of the decreased river discharge and the increased salt flux contained in the drainage discharge. Thus the ecosystems depending on the inflow to and outflow from the lake suffered. The riverine forests in the downstream area were degraded due to declining groundwater levels, and aquatic life as well as downstream water users had to cope with deteriorating water quality. The big challenge for decision makers in the basin is how to balance the justified requirements of agriculture, industrial development and the ecosystem. In order to provide a scientific basis to the decision making process, a scenario analysis was adopted. Here several scenarios are proposed: the basic scenario, scenario 1, describes the status of the year 2008. A second scenario maximizes the

  10. Late Eocene white pines (Pinus subgenus Strobus) from southern China.

    PubMed

    Xu, Qingqing; Zhou, Wenjun; Kodrul, Tatiana M; Naugolnykh, Serge V; Jin, Jianhua

    2015-11-09

    Fossil records indicate that the genus Pinus L. split into two subgenera by the Late Cretaceous, although subgenus Strobus (D. Don) Lemmon is less well documented than subgenus Pinus L., especially in eastern Asia. In this paper, Pinus maomingensis sp. nov. is established based on a compressed seed cone from the upper Eocene of the Maoming Basin of southern China. This species is attributed to genus Pinus, subgenus Strobus, section Quinquefoliae Duhamel, subsection Strobus Loudon based on the combination of morphological characters obtained from the cone scales, specifically from the terminal umbo, rhombic apophysis, and cuticle structure. Associated fascicles of needle leaves with deciduous sheaths and bulbous bases are recognized as Pinus sp. and also represent Pinus subgenus Strobus. This new discovery from the Maoming Basin constitutes the first megafossil record of subgenus Strobus from southern China and implies that the members of this subgenus arrived in the southern region of China by the late Eocene. The extant species of subgenus Strobus are mainly distributed in northern temperate and tropical to subtropical mountainous regions. We propose that the Maoming Basin was adjacent to a mountainous region during the late Eocene.

  11. Late Eocene white pines (Pinus subgenus Strobus) from southern China

    PubMed Central

    Xu, Qingqing; Zhou, Wenjun; Kodrul, Tatiana M.; Naugolnykh, Serge V.; Jin, Jianhua

    2015-01-01

    Fossil records indicate that the genus Pinus L. split into two subgenera by the Late Cretaceous, although subgenus Strobus (D. Don) Lemmon is less well documented than subgenus Pinus L., especially in eastern Asia. In this paper, Pinus maomingensis sp. nov. is established based on a compressed seed cone from the upper Eocene of the Maoming Basin of southern China. This species is attributed to genus Pinus, subgenus Strobus, section Quinquefoliae Duhamel, subsection Strobus Loudon based on the combination of morphological characters obtained from the cone scales, specifically from the terminal umbo, rhombic apophysis, and cuticle structure. Associated fascicles of needle leaves with deciduous sheaths and bulbous bases are recognized as Pinus sp. and also represent Pinus subgenus Strobus. This new discovery from the Maoming Basin constitutes the first megafossil record of subgenus Strobus from southern China and implies that the members of this subgenus arrived in the southern region of China by the late Eocene. The extant species of subgenus Strobus are mainly distributed in northern temperate and tropical to subtropical mountainous regions. We propose that the Maoming Basin was adjacent to a mountainous region during the late Eocene. PMID:26548658

  12. Coalbed methane accumulation and dissipation patterns: A Case study of the Junggar Basin, NW China

    NASA Astrophysics Data System (ADS)

    Li, Xin; Fu, Xuehai; Yang, Xuesong; Ge, Yanyan; Quan, Fangkai

    2018-07-01

    The Junggar Basin is a potential replacement area of coalbed methane (CBM) development in China. To improve the efficiency of CBM exploration, we investigated CBM accumulation and dissipation patterns of coal profiles located in the northwestern, southern, eastern, and central Junggar Basin based on the following criteria: burial depth, hydrogeological zone, CBM origin, CBM phase, and CBM migration type. We identified four types of CBM accumulation patterns: (1) a self-sourcing CBM pattern containing adsorbed gas of biogenic origin from shallow-depth coal within a weak runoff zone; (2) an endogenic migration pattern containing adsorbed gas of thermogenic origin from the medium and deep coals within a stagnant zone; (3) an exogenic migration pattern containing adsorbed gas of thermogenic origin from deep coal within a stagnant zone; and (4) an exogenic migration pattern containing adsorbed and free gas of thermogenic origin from ultra-deep coal within a stagnant zone. We also identified two types of CBM dissipation patterns: (1) shallow-depth coal within a runoff zone with mixed origin CBM; and (2) shallow and medium-deep coal seams with mixed origin CBM. CBM migration in low-rank coals was more substantial than that adsorbed in high-rank coal. CBM in shallow coal could easily escape, in the absence of closed structures or hydrogeological seals. CBM reservoirs occurred in deep coal where oversaturated gas may accumulate. Future exploration should focus on gas-water sealing structures in shallow coalbeds. CBM that occurred in adsorbed and free phases and other unconventional natural gas dominated by free gas in the coal stratum should be co-explored and co-developed.

  13. Modeling nutrient release in the Tai Lake basin of China: source identification and policy implications.

    PubMed

    Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun

    2013-03-01

    Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a(-1) and 5254.4 tons P a(-1), and annual area-specific nutrient loads were 1.94 tons N km(-2) and 0.31 tons P km(-2). Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.

  14. Atmospheric deposition of PBDEs and DPs in Dongjiang River Basin, South China.

    PubMed

    Wu, Xiaowei; Wang, Yan; Hou, Minmin; Luo, Chunling; Zhao, Hongxia; Zhang, Gan

    2017-02-01

    The atmospheric deposition fluxes of polybrominated diphenyl ethers (PBDEs) and Dechlorane Plus (DPs) in Dongjiang River Basin of the Pearl River Delta in South China were investigated during winter and summer, respectively. The total deposition fluxes varied from 4.74 to 27.0 ng/m 2 /day for PBDEs and 8.77 to 206 ng/m 2 /day for DPs, respectively. The fractions of anti-DP to the total DPs (f anti ) varied from 0.28 to 0.63 (mean = 0.43 ± 0.06), i.e., generally lower than those in commercial products, which might be attributed to the different environmental fates of the two isomers. Significant seasonal and spatial variations of PBDEs and DPs were observed. The deposition fluxes in summer were generally higher than those in winter, which may be due to the relatively high temperature and rainfall in summer under the influence of prevailing subtropical monsoon climate. Moreover, high deposition fluxes of PBDEs and DPs in urban areas and significant urban/rural gradient implied that local industrial activities in the urban areas were primary sources, which were further confirmed by the results of principal component analysis. The highest deposition of PBDE and DP fluxes was found at different sampling sites, suggesting PBDEs and DPs may be derived from different industries or products.

  15. Freshwater Choices in China: Options That Will Impact South and Southeast Asia

    DTIC Science & Technology

    2014-12-04

    engineering infrastructure upstream on shared international river basins within its borders, and will be able to effectively use the threat of...constructing hydro-engineering infrastructure upstream on shared international river basins within its borders, and will be able to effectively use the...international river basins within its borders, China will be able to effectively use the threat of restricting freshwater flows as a political weapon to

  16. Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, Northern China

    NASA Astrophysics Data System (ADS)

    Xie, Z.; Zou, J.; Qin, P.; Sun, Q.

    2014-12-01

    In this study, we incorporated a groundwater exploitation scheme into the land surface model CLM3.5 to investigate the effects of the anthropogenic exploitation of groundwater on land surface processes in a river basin. Simulations of the Haihe River Basin in northern China were conducted for the years 1965-2000 using the model. A control simulation without exploitation and three exploitation simulations with different water demands derived from socioeconomic data related to the Basin were conducted. The results showed that groundwater exploitation for human activities resulted in increased wetting and cooling effects at the land surface and reduced groundwater storage. A lowering of the groundwater table, increased upper soil moisture, reduced 2 m air temperature, and enhanced latent heat flux were detected by the end of the simulated period, and the changes at the land surface were related linearly to the water demands. To determine the possible responses of the land surface processes in extreme cases (i.e., in which the exploitation process either continued or ceased), additional hypothetical simulations for the coming 200 years with constant climate forcing were conducted, regardless of changes in climate. The simulations revealed that the local groundwater storage on the plains could not contend with high-intensity exploitation for long if the exploitation process continues at the current rate. Changes attributable to groundwater exploitation reached extreme values and then weakened within decades with the depletion of groundwater resources and the exploitation process will therefore cease. However, if exploitation is stopped completely to allow groundwater to recover, drying and warming effects, such as increased temperature, reduced soil moisture, and reduced total runoff, would occur in the Basin within the early decades of the simulation period. The effects of exploitation will then gradually disappear, and the land surface variables will approach the

  17. 26Al/10Be Burial Dating of Xujiayao-Houjiayao Site in Nihewan Basin, Northern China

    PubMed Central

    Tu, Hua; Shen, Guanjun; Li, Haixu; Xie, Fei; Granger, Darryl E.

    2015-01-01

    The Xujiayao-Houjiayao site in Nihewan Basin is among the most important Paleolithic sites in China for having provided a rich collection of hominin and mammalian fossils and lithic artifacts. Based on biostratigraphical correlation and exploratory results from a variety of dating methods, the site has been widely accepted as early Upper Pleistocene in time. However, more recent paleomagnetic analyses assigned a much older age of ∼500 ka (thousand years). This paper reports the application of 26Al/10Be burial dating as an independent check. Two quartz samples from a lower cultural horizon give a weighted mean age of 0.24 ± 0.05 Ma (million years, 1σ). The site is thus younger than 340 ka at 95% confidence, which is at variance with the previous paleomagnetic results. On the other hand, our result suggests an age of older than 140 ka for the site’s lower cultural deposits, which is consistent with recent post-infrared infrared stimulated luminescence (pIR-IRSL) dating at 160–220 ka. PMID:25706272

  18. 26Al/10Be burial dating of Xujiayao-Houjiayao site in Nihewan Basin, northern China.

    PubMed

    Tu, Hua; Shen, Guanjun; Li, Haixu; Xie, Fei; Granger, Darryl E

    2015-01-01

    The Xujiayao-Houjiayao site in Nihewan Basin is among the most important Paleolithic sites in China for having provided a rich collection of hominin and mammalian fossils and lithic artifacts. Based on biostratigraphical correlation and exploratory results from a variety of dating methods, the site has been widely accepted as early Upper Pleistocene in time. However, more recent paleomagnetic analyses assigned a much older age of ∼500 ka (thousand years). This paper reports the application of 26Al/10Be burial dating as an independent check. Two quartz samples from a lower cultural horizon give a weighted mean age of 0.24 ± 0.05 Ma (million years, 1σ). The site is thus younger than 340 ka at 95% confidence, which is at variance with the previous paleomagnetic results. On the other hand, our result suggests an age of older than 140 ka for the site's lower cultural deposits, which is consistent with recent post-infrared infrared stimulated luminescence (pIR-IRSL) dating at 160-220 ka.

  19. Digital Earth system based river basin data integration

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Li, Wanqing; Lin, Chao

    2014-12-01

    Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.

  20. The Chinese Cretaceous Continental Scientific Drilling Project in the Songliao Basin, NE China: Organic-rich source rock evaluation with geophysical logs from Borehole SK-2

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zou, C.

    2017-12-01

    The Cretaceous strata have been recognized as an important target of oil or gas exploration in the Songliao Basin, northeast China. The second borehole (SK-2) of the Chinese Cretaceous Continental Scientific Drilling Project in the Songliao Basin (CCSD-SK) is the first one to drill through the Cretaceous continental strata in the frame of ICDP. It was designed not only to solve multiple scientific problems (including the Cretaceous paleoenvironment and paleoclimate, as well as deep resources exploration of the Songliao Basin), but also to expect to achieve new breakthroughs in oil and gas exploration. Based on the project, various geophysical log data (including gamma, sonic, resistivity, density etc.) and core samples have been collected from Borehole SK-2. We do research on organic-rich source rocks estimation using various geophysical log data. Firstly, we comprehensively analyzed organic-rich source rocks' geophysical log response characteristics. Then, source rock's identification methods were constructed to identify organic-rich source rocks with geophysical logs. The main identification methods include cross-plot, multiple overlap and Decision Tree method. Finally, the technique and the CARBOLOG method were applied to evaluate total organic carbon (TOC) content from geophysical logs which provide continuous vertical profile estimations (Passey, 1990; Carpentier et al., 1991). The results show that source rocks are widely distributed in Borehole SK-2, over a large depth strata (985 5700m), including Nenjiang, Qingshankou, Denglouku, Yingcheng, Shahezi Formations. The organic-rich source rocks with higher TOC content occur in the Qingshankou (1647 1650m), Denglouku (2534 2887m) and Shahezi (3367 5697m) Formations. The highest TOC content in these formations can reach 10.31%, 6.58%, 12.79% respectively. The bed thickness of organic-rich source rocks in the these formations are totally up to 7.88m, 74.34m, 276.60m respectively. These organic-rich rocks in the

  1. Spatial and temporal variability of reference evapotranspiration and influenced meteorological factors in the Jialing River Basin, China

    NASA Astrophysics Data System (ADS)

    Herath, Imali Kaushalya; Ye, Xuchun; Wang, Jianli; Bouraima, Abdel-Kabirou

    2018-02-01

    Reference evapotranspiration (ETr) is one of the important parameters in the hydrological cycle. The spatio-temporal variation of ETr and other meteorological parameters that influence ETr were investigated in the Jialing River Basin (JRB), China. The ETr was estimated using the CROPWAT 8.0 computer model based on the Penman-Montieth equation for the period 1964-2014. Mean temperature (MT), relative humidity (RH), sunshine duration (SD), and wind speed (WS) were the main input parameters of CROPWAT while 12 meteorological stations were evaluated. Linear regression and Mann-Kendall methods were applied to study the spatio-temporal trends while the inverse distance weighted (IDW) method was used to identify the spatial distribution of ETr. Stepwise regression and partial correlation methods were used to identify the meteorological variables that most significantly influenced the changes in ETr. The highest annual ETr was found in the northern part of the basin, whereas the lowest rate was recorded in the western part. In the autumn, the highest ETr was recorded in the southeast part of JRB. The annual ETr reflected neither significant increasing nor decreasing trends. Except for the summer, ETr is slightly increasing in other seasons. The MT significantly increased whereas SD and RH were significantly decreased during the 50-year period. Partial correlation and stepwise regression methods found that the impact of meteorological parameters on ETr varies on an annual and seasonal basis while SD, MT, and RH contributed to the changes of annual and seasonal ETr in the JRB.

  2. A comparison of different turbidite plays in the Yinggehai and Qiongdongnan Basins of the South China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardwell, R.K.; Norris, J.W.

    1996-12-31

    Three different types of turbidite plays have been drilled in the Yinggehai and Qiongdongnan basins of the South China Sea: slope fan turbidites, bottomset turbidites, and channel fill turbidites. Each play type has a distinctive well log signature, lithology, seismic reflector geometry, and reservoir character. Slope fan turbidites are encountered in the YA 21-1-3 well. Well logs are characterized by a ratty SP curve, and mud logs indicate that the turbidites are composed of up to 80 m of sands and silts. Seismic profiles show that these turbidites are found in a distributary channel and levee system on the shelf.more » Bottomset turbidites are encountered in the LD 15-1-1 well. Well logs are characterized by an upward coarsening SP curve, and mud logs indicate that the turbidites are composed of up to 10 m of silty sand. Seismic profiles show these turbidites are deposited by the slumping of shelf sands during a continuous lowstand progradation. Channel fill turbidites are encountered in the LD 30-1-1 well. Well logs are characterized by a blocky SP curve, and mud logs indicate that the turbidites are composed of up to 100 m of massive sand. Seismic profiles show that these turbidites are associated with channel systems that trend parallel to the local basin axis. Distinct cut and fill geometries indicate that the turbidite sands were deposited in a preexisting channel cut.« less

  3. A comparison of different turbidite plays in the Yinggehai and Qiongdongnan Basins of the South China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardwell, R.K.; Norris, J.W.

    1996-01-01

    Three different types of turbidite plays have been drilled in the Yinggehai and Qiongdongnan basins of the South China Sea: slope fan turbidites, bottomset turbidites, and channel fill turbidites. Each play type has a distinctive well log signature, lithology, seismic reflector geometry, and reservoir character. Slope fan turbidites are encountered in the YA 21-1-3 well. Well logs are characterized by a ratty SP curve, and mud logs indicate that the turbidites are composed of up to 80 m of sands and silts. Seismic profiles show that these turbidites are found in a distributary channel and levee system on the shelf.more » Bottomset turbidites are encountered in the LD 15-1-1 well. Well logs are characterized by an upward coarsening SP curve, and mud logs indicate that the turbidites are composed of up to 10 m of silty sand. Seismic profiles show these turbidites are deposited by the slumping of shelf sands during a continuous lowstand progradation. Channel fill turbidites are encountered in the LD 30-1-1 well. Well logs are characterized by a blocky SP curve, and mud logs indicate that the turbidites are composed of up to 100 m of massive sand. Seismic profiles show that these turbidites are associated with channel systems that trend parallel to the local basin axis. Distinct cut and fill geometries indicate that the turbidite sands were deposited in a preexisting channel cut.« less

  4. Response of the groundwater system in the Guanzhong Basin (central China) to climate change and human activities

    NASA Astrophysics Data System (ADS)

    Wang, Wenke; Zhang, Zaiyong; Duan, Lei; Wang, Zhoufeng; Zhao, Yaqian; Zhang, Qian; Dai, Meiling; Liu, Huizhong; Zheng, Xiaoyan; Sun, Yibo

    2018-03-01

    The Guanzhong Basin in central China features a booming economy and has suffered severe drought, resulting in serious groundwater depletion in the last 30 years. As a major water resource, groundwater plays a significant role in water supply. The combined impact of climate change and intensive human activities has caused a substantial decline in groundwater recharge and groundwater levels, as well as degradation of groundwater quality and associated changes in the ecosystems. Based on observational data, an integrated approach was used to assess the impact of climate change and human activities on the groundwater system and the base flow of the river basin. Methods included: river runoff records and a multivariate statistical analysis of data including historical groundwater levels and climate; hydro-chemical investigation and trend analysis of the historical hydro-chemical data; wavelet analysis of climate data; and the base flow index. The analyses indicate a clear warming trend and a decreasing trend in rainfall since the 1960s, in addition to increased human activities since the 1970s. The reduction of groundwater recharge in the past 30 years has led to a continuous depletion of groundwater levels, complex changes of the hydro-chemical environment, localized salinization, and a strong decline of the base flow to the river. It is expected that the results will contribute to a more comprehensive management plan for groundwater and the related eco-environment in the face of growing pressures from intensive human activities superimposed on climate change in this region.

  5. Prediction of hydrological responds to climate changes in the Upper Yangtze River Basin, China

    NASA Astrophysics Data System (ADS)

    Yang, X.; Ren, L.; Wang, Y.; Zhang, M.; Liu, Y.; Jiang, S.; Yuan, F.

    2017-12-01

    Climate changes have direct effects on hydrological cycle, with the increasing temperature and seasonal shift of precipitation. Therefore, understanding of how climate change may affect the population and water resources and economic development is critical to the water and food security for China. This study aims to evaluate the potential impacts of future climate changes on water resources of the upper basin of Yangtze River (the area controlled by the Yichang hydrological station) using the variable infiltration capacity (VIC) model driven by composite observations (1961-2005) and projections of eight CMIP5 models under scenarios RCP4.5 and RCP8.5 from 2006 to 2099. The raw eight CMIP5 models have been downscaled by the equidistant cumulative distribution functions (EDCDF) statistical downscaling approach from 1961 to 2099. The assessment of the performance of model simulated precipitation and temperature were calculated by comparing to the observations during the historical period (1961-2005). For the same variables, eight CMIP5 models for RCP 4.5 and RCP 8.5 downscaled by EDCDF method were generated during the future period (2006-2099). Overall, the VIC model performed well in monthly streamflow simulation, with the Nash-Sutcliffe coefficient of efficiency (NSCE) 0.92 and 0.97 for calibration and validation, respectively. The annual precipitation is projected to increase by 6.3mm and 8.6mm per decade and the annual temperature will increase by 0.22 °C and 0.53°C per decade (2006-2099) for RCP4.5 and RCP8.5, respectively. In the future period, The total runoff of the study basins would either remain stable or moderately increase by 2.7% and 22.4% per decade, the evapotranspiration increase by 2mm and 13mm per decade, and the soil moisture will reduce by -0.1% and -7.4% per decade under RCP4.5 and RCP8.5, respectively. The changes of model-simulated soil moisture, runoff, and evapotranspiration suggest that there probably be an increasing risk of drought in

  6. Dynamics of the lakes in the middle and lower reaches of the Yangtze River basin, China, since late nineteenth century.

    PubMed

    Cui, Lijuan; Gao, Changjun; Zhao, Xinsheng; Ma, Qiongfang; Zhang, Manyin; Li, Wei; Song, Hongtao; Wang, Yifei; Li, Shengnan; Zhang, Yan

    2013-05-01

    The middle and lower reaches of the Yangtze River basin have the most representative and largest concentration of freshwater lakes in China. However, the size and number of these lakes have changed considerably over the past century due to the natural and anthropogenic impact. The lakes, larger than 10 km(2) in size, were chosen from relief maps and remotely sensed images in 1875, 1950, 1970, 1990, 2000, and 2008 to study the dynamics of lakes in the middle and lower reaches of the Yangtze River basin and to examine the causes and consequences of these changes. Results indicated that there was a dramatic reduction in lake areas, which decreased by 7,841.2 km(2) (42.64 %) during the study period (1875-2008), and the number of lakes in this region changed moderately. Meanwhile, a large number of lakes in the middle and lower reaches of the Yangtze River basin were directly converted into paddy fields, ponds, building lands, or other land-use types over the study period. Therefore, all kinds of lake reclamation should be identified as the major driving factors for the loss of lake in this region. Furthermore, flooding, soil erosion, and sedimentation were also the main factors which triggered lake changes in different periods. Some wetland conservation and restoration projects have been implemented since the 1970s, but they have not reversed the lake degradation. These findings were of great importance to managers involved in making policy for the conservation of lake ecosystems and the utilization of lake resources.

  7. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China.

    PubMed

    Xue, Jie; Gui, Dongwei

    2015-01-01

    The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth's hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River.

  8. The Evolution History of South China Sea: a Synthesis of Recent Geophysical, Geological, and Geochemical Results

    NASA Astrophysics Data System (ADS)

    Xue, M.; Li, L.; Chen, L.

    2016-12-01

    South China Sea (SCS) is located in the continental margin of Eurasia plate, where different geological blocks/tectonic plates interact. The dynamic mechanism of the formation of South China Sea (SCS) has been debated for decades. In this study, we first synthesize our geophysical results obtained in South China Sea, including an updated 3D velocity model from surface tomography using surrounding land stations and regional earthquakes, and shear wave splitting results obtained at surrounding land stations and OBS, using local, regional, and teleseismic earthquakes. The observed splitting results in South China Sea are complex: the fast polarization direction beneath the central basin is approximately NE-SW, nearly parallel to the extinct ridge in the central basin of SCS; however, the fast axis within the slab is trench-parallel outside the ridge subduction region. In 3D velocity models, subducting slabs are observed as dipping high velocity anomalies, and discontinuous low velocities are observed above the subduction slab, as well as in the basin. How the splitting observations are connected with the velocity models? How observations are linked to one another? How are the observations in central basin linked with surrounding region? We are aiming to link these observations themselves as well as with newly published results from geophysics, geochemistry, and geology in this region. Such a synthesis will improve our understanding about the evolution of South China Sea and facilitate new ideas.

  9. How did the urban land in floodplains distribute and expand in China from 1992-2015?

    NASA Astrophysics Data System (ADS)

    Du, Shiqiang; He, Chunyang; Huang, Qingxu; Shi, Peijun

    2018-03-01

    Urban land in floodplains (ULF) is a vital component of flood exposure and its variations can cause changes in flood risk. In the context of rapid urbanization, ULF is expanding rapidly in China and imperiling societal sustainability. However, a national-scale analysis of ULF patterns and dynamics has yet to be conducted. Therefore, this study aims to investigate the spatiotemporal changes in China’s ULF at different spatial scales (the country, region, basin, and sub-basin scales) from 1992-2015. We found that ULF accounted for 44.41% of the total urban land in China in 2015, which was 3.68 times greater than the proportion of floodplains relative to the total land area in China (12.06%). From 1992-2015, the ULF area increased by 26.43 × 103 km2, or 542.21%. Moreover, the ULF area is expected to grow by 16.89 × 103 km2 (53.38%) between 2015 and 2050. ULF growth was strongly associated with the flood occurrence in China, and continued growth will pose a considerable challenge to urban sustainability, particularly in basins with poor flood defenses. Greater attention should thus be paid to ULF dynamics in China.

  10. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: Insights into late Mesozoic to early Cenozoic tectonic evolution of the South China Sea area

    NASA Astrophysics Data System (ADS)

    Ye, Qing; Mei, Lianfu; Shi, Hesheng; Shu, Yu; Camanni, Giovanni; Wu, Jing

    2018-04-01

    The basement structure of the Cenozoic Enping Sag, within the Pearl River Mouth Basin on the northern margin of South China Sea, is revealed by borehole-constrained high-quality 3D seismic reflection data. Such data suggest that the Enping Sag is bounded in the north by a low-angle normal fault. We interpret this low-angle normal fault to have developed as the result of the reactivation of a pre-existing thrust fault part of a pre-Cenozoic thrust system. This is demonstrated by the selective reactivation of the pre-existing thrust and by diffuse contractional deformation recognized from the accurate analysis of basement reflections. Another significant result of this study is the finding of some residual rift basins within the basement of the Enping Sag. Both the thrust system and the residual basins are interpreted to have developed after the emplacement of continental margin arc-related granitoids (J3-K1) that define the basement within the study area. Furthermore, seismic sections show that the pre-existing residual rift basins are offset by the main thrust fault and they are both truncated by the Tg unconformity. These structural relationships, interpreted in the frame of previous studies, help us to reconstruct a six-event structural evolution model for the Enping Sag from the late Mesozoic to the early Cenozoic. In particular, we interpret the residual rift basins to have formed as the result of back-arc extension due to the slab roll-back of the Paleo-Pacific Plate subduction in the early K2. The thrust system has recorded a compressional event in the late K2 that followed the back-arc extension in the SCS area. The mechanism of this compressional event is still to be clarified, and might be related to continuous subduction of the Paleo-Pacific Plate or to the continent-continent collision between a micro-continental block and the South China margin.

  11. Impact of climatic and environmental changes on flood-duration-frequencies in the Fengle Rriver (YangTze Basin, China)

    NASA Astrophysics Data System (ADS)

    Salles, Christian; Chu, Yin; Tournoud, Marie-George; Ou, Mengli; Perrin, Jean-Louis; Cres, François-Noël; Ma, Youhua

    2016-04-01

    Future water management challenges such as flood risk are highly relevant to climate and land use changes. Climate change is expected to lead to an ongoing intensification of effects on changes in precipitation and evapotranspiration which could exacerbate flooding issues. Land use changes, modifications of agricultural practices and urbanization alter the apportionment of the different hydrological processes at the basin scale and could significantly affect the seasonality of streamflow. At the local scale, the consequences of climate and land use changes on flood occurrence and magnitude are a major issue for the economic development and management policy of basin area. This study apply a methodology for investigating the potential consequences of land use ,as well as precipitation and temperature changes on flood occurrence, duration and magnitude, accounting for uncertainties in scenario data and hydrological model parameters. The discharge time series predicted for the future were simulated from a calibrated and validated distributed hydrological model. The model was run from inputs which are -predicted rainfall time series based on scenarios of changes identified from a literature review, -future evapotranspiration rates assessed from temperature changes identified from a literature review -and scenarios of land-use changes The study area, the Fengle River basin (1500 km2), is located in the northeast part of Yangtze basin. The river is one of the main tributaries of the Chao Lake, the fifth largest natural lake of China. The lake catchment is 9130 km2 in area, including the city of Hefei and a large extent of agricultural and rural areas. Many changes are expected in land use and agricultural practices in the future, due to the touristic appeal of the Chao Lake shore and the growth of the city of Hefei. Climate changes are also expected in this region, with a high impact on rainfall regime. In the current period heavy storms and floods occur predominantly

  12. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China

    PubMed Central

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123

  13. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    PubMed

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  14. Substantial inorganic carbon sink in closed drainage basins globally

    NASA Astrophysics Data System (ADS)

    Li, Yu; Zhang, Chengqi; Wang, Naiang; Han, Qin; Zhang, Xinzhong; Liu, Yuan; Xu, Lingmei; Ye, Wangting

    2017-07-01

    Arid and semi-arid ecosystems are increasingly recognized as important carbon storage sites. In these regions, extensive sequestration of dissolved inorganic carbon can occur in the terminal lakes of endorheic basins--basins that do not drain to external bodies of water. However, the global magnitude of this dissolved inorganic carbon sink is uncertain. Here we present isotopic, radiocarbon, and chemical analyses of groundwater, river water, and sediments from the terminal region of the endorheic Shiyang River drainage basin, in arid northwest China. We estimate that 0.13 Pg of dissolved inorganic carbon was stored in the basin during the mid-Holocene. Pollen-based reconstructions of basin-scale productivity suggest that the mid-Holocene dissolved inorganic carbon sink was two orders of magnitude smaller than terrestrial productivity in the basin. We use estimates of dissolved inorganic carbon storage based on sedimentary data from 11 terminal lakes of endorheic basins around the world as the basis for a global extrapolation of the sequestration of dissolved organic carbon in endorheic basins. We estimate that 0.152 Pg of dissolved inorganic carbon is buried per year today, compared to about 0.211 Pg C yr-1 during the mid-Holocene. We conclude that endorheic basins represent an important carbon sink on the global scale, with a magnitude similar to deep ocean carbon burial.

  15. [Ecological risk assessment of typical karst basin based on land use change: A case study of Lijiang River basin, Southern China].

    PubMed

    Hu, Jin Long; Zhou, Zhi Xiang; Teng, Ming Jun; Luo, Nan

    2017-06-18

    Taking Lijiang River basin as study area, and based on the remote sensing images of 1973, 1986, 2000 and 2013, the land-use data were extracted, the ecological risk index was constructed, and the characteristics of spatiotemporal variation of ecological risk were analyzed by "3S" technique. The results showed that land use structure of Lijiang River basin was under relatively reasonable state and it was constantly optimizing during 1973-2013. Overall, the ecological risk of Lijiang River basin was maintained at a low level. Lowest and lower ecological risk region was dominant in Lijiang River basin, but the area of highest ecological risk expanded quickly. The spatial distribution of ecological risk was basically stable and showed an obvious ring structure, which gra-dually decreased from the axis of Xingan County Town-Lingchuan County Town-Guilin City-Yangshuo County Town to other regions. Region with lowest ecological risk mainly distributed in natural mountain forest area of the north and mid-eastern parts of Lijiang River basin, and region with highe-st ecological risk concentrated in Guilin City. The ecological risk distribution of Lijiang River basin presented significant slope and altitude differences, and it decreased with increasing slope and altitude. During the study period, the area of low ecological risk converted to high ecological risk gra-dually decreased and vice versa. On the whole, the ecological risk tended to decline rapidly in the Lijiang River basin.

  16. Impacts of Land Use Change on Net Ecosystem Production in China's Taihu Lake Basin in 1985-2010

    NASA Astrophysics Data System (ADS)

    Xu, X.; Yang, G.

    2017-12-01

    Land use change play a major role in determining sources and sinks of carbon at regional and global scales. This study employs a modified BIOME-BGC model to examine the changes in the spatio-temporal pattern of net ecosystem production (NEP) in China's Taihu Lake Basin in 1985-2010 and the extent to which land use change impacted NEP. The BIOME-BGC model was calibrated with observed NEP at three open-path eddy covariance flux sites for three dominant land-use types in the Basin including cropland, evergreen needleleaf forest, and mixed forest. Land use data were interpreted from Landsat TM images in 1985, 2000, 2005 and 2010 at the scale of 1:100,000 based on a decision tree method. Two simulations are conducted to distinguish the net effects of land use change and increasing atmospheric concentrations of CO2 and nitrogen deposition on NEP. S1 deals with the actual outcomes of NEP under the interactions between land use change and increasing atmospheric concentration of CO2 and N deposition. S2 assumes that atmospheric CO2 concentration and N deposition remain unchanged at their 1985 levels: 338.32 ppm and 0.0005 kg m-2, respectively. The study estimates that NEP in the Basin showed an overall downward trend, decreasing by 9.8% (1.57 TgC) and 3.21 TgC (or 20.9%) from 1985 to 2010 under situation S1 and S2, respectively. The NEP distribution exhibits an apparent spatial heterogeneity at the municipal level. Land use changesin 1985-2010 reduced the regional NEP (3.21 Tg C in year 2010) by 19.9% compared to its 1985 level, while the increasing atmospheric CO2 concentrations and nitrogen deposition compensated for a half of the total carbon loss. Critical measures for regulating rapid urban expansion and population growth and reinforcing environment protection programs are recommended to increase the regional carbon sink.

  17. Late Triassic paleolatitude of the Qiangtang block: Implications for the closure of the Paleo-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Song, Peiping; Ding, Lin; Li, Zhenyu; Lippert, Peter C.; Yang, Tianshui; Zhao, Xixi; Fu, Jiajun; Yue, Yahui

    2015-08-01

    To better constrain the Late Triassic paleolatitude of the Qiangtang block and the closure of the Paleo-Tethys Ocean, a combined paleomagnetic and zircon U/Pb geochronological study has been conducted on the Upper Triassic Jiapila Formation volcanic rocks on the northern edge of the Qiangtang block of Central Tibet (34.1°N, 92.4°E). These rocks are dated to 204-213 Ma. Progressive thermal or alternating field demagnetization successfully isolated stable characteristic remanent magnetizations (ChRM) that pass both the fold and reversal tests, consistent with a primary magnetization. These are the first volcanic-based paleomagnetic results from pre-Cretaceous rocks of the Qiangtang block that appear to average secular variation well enough to yield a reliable paleolatitude estimate. Based on our new paleomagnetic data from Upper Triassic lavas, we conclude that the Late Triassic pole of the Qiangtang block was located at 64.0°N, 174.7°E, with A95 = 6.6 ° (N = 29). We compile published paleomagnetic data from the Qiangtang block to calculate a Late Triassic latitude for the Qiangtang block at 31.7 ± 3.0°N. The central Paleo-Tethys Ocean basin was located between the North China (NCB) and Tarim blocks to the north and the Qiangtang block to the south during Late Paleozoic-Early Mesozoic. A comparison of published Early Triassic paleopole from the Qiangtang block with the coeval paleopoles from the NCB and Tarim indicates that the Paleo-Tethys Ocean could not have closed during the Early Triassic and that its width was approximately ∼32-38° latitude (∼3500-4200 km). However, the comparison of our new combined Late Triassic paleomagnetic result with the Late Triassic poles of the NCB and Tarim, as well as numerous geological observations, indicates that the closure of the Paleo-Tethys Ocean at the longitude of the Qiangtang block most likely occurred during the Late Triassic.

  18. Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan Plateau and tectonic implications

    USGS Publications Warehouse

    Zhao, J.; Mooney, W.D.; Zhang, X.; Li, Z.; Jin, Z.; Okaya, N.

    2006-01-01

    We present new seismic refraction/wide-angle-reflection data across the Altyn Tagh Range and its adjacent basins. We find that the crustal velocity structure, and by inference, the composition of the crust changes abruptly beneath the Cherchen fault, i.e., ???100 km north of the northern margin of the Tibetan plateau. North of the Cherchen fault, beneath the Tarim basin, a platform-type crust is evident. In contrast, south the Cherchen fault the crust is characterized by a missing high-velocity lower-crustal layer. Our seismic model indicates that the high topography (???3 km) of the Altyn Tagh Range is supported by a wedge-shaped region with a seismic velocity of 7.6-7.8 km/s that we interpret as a zone of crust-mantle mix. We infer that the Altyn Tagh Range formed by crustal-scale strike-slip motion along the North Altyn Tagh fault and northeast-southwest contraction over the range. The contraction is accommodated by (1) crustal thickening via upper-crustal thrusting and lower-crustal flow (i.e., creep), and (2) slip-parallel (SW-directed) underthrusting of only the lower crust and mantle of the eastern Tarim basin beneath the Altyn Tagh Range. ?? 2005 Elsevier B.V. All rights reserved.

  19. Quantifying sources of elemental carbon over the Guanzhong Basin of China: A consistent network of measurements and WRF-Chem modeling.

    PubMed

    Li, Nan; He, Qingyang; Tie, Xuexi; Cao, Junji; Liu, Suixin; Wang, Qiyuan; Li, Guohui; Huang, Rujin; Zhang, Qiang

    2016-07-01

    We conducted a year-long WRF-Chem (Weather Research and Forecasting Chemical) model simulation of elemental carbon (EC) aerosol and compared the modeling results to the surface EC measurements in the Guanzhong (GZ) Basin of China. The main goals of this study were to quantify the individual contributions of different EC sources to EC pollution, and to find the major cause of the EC pollution in this region. The EC measurements were simultaneously conducted at 10 urban, rural, and background sites over the GZ Basin from May 2013 to April 2014, and provided a good base against which to evaluate model simulation. The model evaluation showed that the calculated annual mean EC concentration was 5.1 μgC m(-3), which was consistent with the observed value of 5.3 μgC m(-3). Moreover, the model result also reproduced the magnitude of measured EC in all seasons (regression slope = 0.98-1.03), as well as the spatial and temporal variations (r = 0.55-0.78). We conducted several sensitivity studies to quantify the individual contributions of EC sources to EC pollution. The sensitivity simulations showed that the local and outside sources contributed about 60% and 40% to the annual mean EC concentration, respectively, implying that local sources were the major EC pollution contributors in the GZ Basin. Among the local sources, residential sources contributed the most, followed by industry and transportation sources. A further analysis suggested that a 50% reduction of industry or transportation emissions only caused a 6% decrease in the annual mean EC concentration, while a 50% reduction of residential emissions reduced the winter surface EC concentration by up to 25%. In respect to the serious air pollution problems (including EC pollution) in the GZ Basin, our findings can provide an insightful view on local air pollution control strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The upper limit of maturity of natural gas generation and its implication for the Yacheng formation in the Qiongdongnan Basin, China

    NASA Astrophysics Data System (ADS)

    Su, Long; Zheng, Jianjing; Chen, Guojun; Zhang, Gongcheng; Guo, Jianming; Xu, Yongchang

    2012-08-01

    Vitrinite reflectance (VR, Ro%) measurements from residual kerogen of pyrolysis experiments were performed on immature Maoming Oil Shale substituted the samples for the gas-prone source rocks of Yacheng formation of the Qiongdongnan Basin in the South China Sea. The work was focused on determination an upper limit of maturity for gas generation (ULMGG) or "the deadline of natural gas generation". Ro values at given temperatures increase with increasing temperature and prolonged heating time, but ΔRo-value, given a definition of the difference of all values for VR related to higher temperature and adjacent lower temperature in open-system non-isothermal experiment at the heating rate of 20 °C/min, is better than VR. And representative examples are presented in this paper. It indicates that the range of natural gas generation for Ro in the main gas generation period is from 0.96% to 2.74%, in which ΔRo is in concordance with the stage for the onset and end of the main gas generation period corresponding to 0.02% up to 0.30% and from 0.30% up to 0.80%, respectively. After the main gas generation period of 0.96-2.74%, the evolution of VR approach to the ULMGG of the whole rock for type II kerogen. It is equal to 4.38% of VR, where the gas generation rates change little with the increase of maturation, ΔRo is the maximum of 0.83% corresponding to VR of 4.38%Ro, and the source rock does not nearly occur in the end process of hydrocarbon gas generation while Ro is over 4.38%. It shows that it is the same the ULMGG from the whole rock for type II kerogen as the method with both comparison and kinetics. By comparing to both the conclusions of pyrolysis experiments and the data of VR from the source rock of Yacheng formation on a series of selected eight wells in the shallow-water continental shelf area, it indicate that the most hydrocarbon source rock is still far from reaching ULMGG from the whole rock for type II kerogen. The source rock of Yacheng formation in the

  1. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2017-08-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  2. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2018-06-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  3. Source apportionment of nitrogen and phosphorus from non-point source pollution in Nansi Lake Basin, China.

    PubMed

    Zhang, Bao-Lei; Cui, Bo-Hao; Zhang, Shu-Min; Wu, Quan-Yuan; Yao, Lei

    2018-05-03

    Nitrogen (N) and phosphorus (P) from non-point source (NPS) pollution in Nansi Lake Basin greatly influenced the water quality of Nansi Lake, which is the determinant factor for the success of East Route of South-North Water Transfer Project in China. This research improved Johnes export coefficient model (ECM) by developing a method to determine the export coefficients of different land use types based on the hydrological and water quality data. Taking NPS total nitrogen (TN) and total phosphorus (TP) as the study objects, this study estimated the contributions of different pollution sources and analyzed their spatial distributions based on the improved ECM. The results underlined that the method for obtaining output coefficients of land use types using hydrology and water quality data is feasible and accurate, and is suitable for the study of NPS pollution at large-scale basins. The average output structure of NPS TN from land use, rural breeding and rural life is 33.6, 25.9, and 40.5%, and the NPS TP is 31.6, 43.7, and 24.7%, respectively. Especially, dry land was the main land use source for both NPS TN and TP pollution, with the contributed proportions of 81.3 and 81.8% respectively. The counties of Zaozhuang, Tengzhou, Caoxian, Yuncheng, and Shanxian had higher contribution rates and the counties of Dingtao, Juancheng, and Caoxian had the higher load intensities for both NPS TN and TP pollution. The results of this study allowed for an improvement in the understanding of the pollution source contribution and enabled researchers and planners to focus on the most important sources and regions of NPS pollution.

  4. A record of astronomically forced climate change in a late Ordovician (Sandbian) deep marine sequence, Ordos Basin, North China

    NASA Astrophysics Data System (ADS)

    Fang, Qiang; Wu, Huaichun; Hinnov, Linda A.; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong

    2016-07-01

    The late Ordovician Pingliang Formation on the southwestern margin of the Ordos Basin, North China, consists of rhythmic alternations of shale, limestone, and siliceous beds. To explore the possible astronomical forcing preserved in this lithological record, continuous lithological rank and magnetic susceptibility (MS) stratigraphic series were obtained from a 34 m thick section of the Pingliang Formation at Guanzhuang. Power spectral analysis of the MS and rank series reveal 85.5 cm to 124 cm, 23 cm to 38 cm, and 15 cm to 27 cm thick sedimentary cycles that in ratio match that of late Ordovician short eccentricity, obliquity and precession astronomical cycles. The power spectrum of the MS time series, calibrated to interpreted short orbital eccentricity cycles, aligns with spectral peaks to astronomical parameters, including 95 kyr short orbital eccentricity, 35.3 kyr and 30.6 kyr obliquity, and 19.6 kyr and 16.3 kyr precession cycles. The 15 cm to 27 cm thick limestone-shale couplets mainly represent precession cycles, and siliceous bed deposition may be related to both precession and obliquity forcing. We propose that precession-forced sea-level fluctuations mainly controlled production of lime mud in a shallow marine environment, and transport to the basin. Precession and obliquity controlled biogenic silica productivity, and temperature-dependent preservation of silica may have been influenced by obliquity forcing.

  5. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Wang, Tiantian; Ramezani, Jahandar; Wang, Chengshan; Wu, Huaichun; He, Huaiyu; Bowring, Samuel A.

    2016-07-01

    The Cretaceous continental sedimentary records are essential to our understanding of how the terrestrial geologic and ecologic systems responded to past climate fluctuations under greenhouse conditions and our ability to forecast climate change in the future. The Songliao Basin of Northeast China preserves a near-complete, predominantly lacustrine, Cretaceous succession, with sedimentary cyclicity that has been tied to Milankocitch forcing of the climate. Over 900 meters of drill-core recovered from the Upper Cretaceous (Turonian to Campanian) of the Songliao Basin has provided a unique opportunity for detailed analyses of its depositional and paleoenvironmental records through integrated and high-resolution cyclostratigraphic, magnetostratigraphic and geochronologic investigations. Here we report high-precision U-Pb zircon dates (CA-ID-TIMS method) from four interbedded bentonites from the drill-core that offer substantial improvements in accuracy, and a ten-fold enhancement in precision, compared to the previous U-Pb SIMS geochronology, and allow a critical evaluation of the Songliao astrochronological time scale. The results indicate appreciable deviations of the astrochronologic model from the absolute radioisotope geochronology, which more likely reflect cyclostratigraphic tuning inaccuracies and omitted cycles due to depositional hiatuses, rather than suspected limitations of astronomical models applied to distant geologic time. Age interpolation based on our new high-resolution geochronologic framework and the calibrated cyclostratigraphy places the end of the Cretaceous Normal Superchon (C34n-C33r chron boundary) in the Songliao Basin at 83.07 ± 0.15 Ma. This date also serves as a new and improved estimate for the global Santonian-Campanian stage boundary.

  6. Post-rift Tectonic History of the Songliao Basin, NE China: Cooling Events and Post-rift Unconformities Driven by Orogenic Pulses From Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Song, Ying; Stepashko, Andrei; Liu, Keyu; He, Qingkun; Shen, Chuanbo; Shi, Bingjie; Ren, Jianye

    2018-03-01

    The classic lithosphere-stretching model predicts that the post-rift evolution of extensional basin should be exclusively controlled by decaying thermal subsidence. However, the stratigraphy of the Songliao Basin in northeastern China shows that the post-rift evolution was punctuated by multiple episodes of uplift and exhumation events, commonly attributed to the response to regional tectonic events, including the far-field compression from plate margins. Three prominent tectonostratigraphic post-rift unconformities are recognized in the Late Cretaceous strata of the basin: T11, T03, and T02. The subsequent Cenozoic history is less constrained due to the incomplete record of younger deposits. In this paper, we utilize detrital apatite fission track (AFT) thermochronology to unravel the enigmatic timing and origin of post-rift unconformities. Relating the AFT results to the unconformities and other geological data, we conclude that in the post-rift stage, the basin experienced a multiepisodic tectonic evolution with four distinct cooling and exhumation events. The thermal history and age pattern document the timing of the unconformities in the Cretaceous succession: the T11 unconformity at 88-86 Ma, the T03 unconformity at 79-75 Ma, and the T02 unconformity at 65-50 Ma. A previously unrecognized Oligocene unconformity is also defined by a 32-24 Ma cooling event. Tectonically, all the cooling episodes were regional, controlled by plate boundary stresses. We propose that Pacific dynamics influenced the wider part of eastern Asia during the Late Cretaceous until Cenozoic, whereas the far-field effects of the Neo-Tethys subduction and collision processes became another tectonic driver in the later Cenozoic.

  7. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China

    PubMed Central

    Xue, Jie

    2015-01-01

    The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth’s hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River. PMID:26244113

  8. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method

    NASA Astrophysics Data System (ADS)

    Fu, X. Q.; Zou, Z. H.

    2018-03-01

    Evaluating the water quality of 12 monitoring sections in the Yellow River Basin comprehensively by grey clustering method based on the water quality monitoring data from the Ministry of environmental protection of China in May 2016 and the environmental quality standard of surface water. The results can reflect the water quality of the Yellow River Basin objectively. Furthermore, the evaluation results are basically the same when compared with the fuzzy comprehensive evaluation method. The results also show that the overall water quality of the Yellow River Basin is good and coincident with the actual situation of the Yellow River basin. Overall, gray clustering method for water quality evaluation is reasonable and feasible and it is also convenient to calculate.

  9. Impact and monitoring of dust storms in Taklimakan desert

    NASA Astrophysics Data System (ADS)

    Feng, G. G.; Li, X.; Zheng, Z.

    2012-12-01

    The Taklimakan is China's largest, driest, and warmest desert in total area of 338000km^2 with perimeter of 436 km, it is also known as one of the world's largest shifting-sand deserts. Fully 85 percent of the total area consists of mobile, crescent-shaped sand dunes and are virtually devoid of vegetation. The abundant sand provides material for frequent intense dust storms. The Taklimakan desert fills the expansive Tarim Basin between the Kunlun Mountains and the Tibet Plateau to the south and the Tian Shan Mountains to the north. The Tarim River flows across the basin from west-to-east. In these places, the oases created by fresh surface water support agriculture. Studies outside Xinjiang indicated that 80% dust source of storms was from farmland. Dust storms in the Tarim Basin occur for 20 to 59 days, mainly in spring every year. However, little effort was taken to investigate soil wind erosion and dust emission around the desert. Quantitative understanding of individual dust events in the arid Taklimakan desert, for example, the dust emission rates and the long-range transport, are still incomplete. Therefore, the dust events were observed through routine satellite sensors, lidar instruments, airborne samplers, and surface-based aerosol monitors. Soil wind erosion and suspended particulates emission of four major dust storms from the desert and the typical oasis farmlands at the north rim of the desert were measured using creep sampler, BSNE and TSP at eight heights in 2012. In addition, Aqua satellite AOD data, the NAAPS Global Aeosol model, the CALIPSO satellite products, EPA's AirNow AQI of PM2.5 and HYSPLIT Back Trajectory model were applied to analyze dust transport across the Pacific. Four significant dust storms were observed at the north rim of Taklimakan desert in the spring, 2012. During those events, predominant wind direction ranged from 296 to 334°, wind speed over 7 m/s at 2 m lasted for 471-1074 min, gust wind speed ranged from 11-18m/s. It was

  10. A comparison of integrated river basin management strategies: A global perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  11. Tectonics and distribution of gold deposits in China - An overview

    USGS Publications Warehouse

    Zhou, T.; Goldfarb, R.J.; Phillips, G.N.

    2002-01-01

    Gold exploration in China has expanded rapidly during the last two decades since a modern approach to economic development has become a national priority. China currently produces 180 tonnes (t) of gold annually, which is still significantly less than South Africa, USA, and Australia. However, China is now recognized as possessing significant gold resources in a wide range of mineral deposit types. Present estimates of gold resources in China exceed 4,500 t, which comprise 60% in gold-only deposits, more than 25% in base metal-rich skarn, porphyry, and vein deposits, and more than 10% in placer accumulations. The major gold provinces in China formed during the main episodes of Phanerozoic tectonism. Such tectonism involved interaction of China's three major Precambrian cratons, North China, Tarim, and Yangtze (or South China when combined with Cathysia block), with the Angara (or Siberian), Kazakhstan-Kyrgyzstan, and Indian cratons. Resulting collisions included deformation of accreted oceanic sequences between the cratonic blocks. The most important ore-forming orogenies were (1) the late Paleozoic Variscan (405-270 Ma), which led to amalgamation of the Angara, North China and Yangtze cratons, (2) the Indosinian (270-208 Ma), which led to the collision of North China and South China cratons, (3) the Yanshanian (208-90 Ma), which was largely influenced by the subduction of the Izanagi-Pacific plates beneath eastern China, and (4) the Himalayan (<90 Ma) indentation of the Indian continent into Eurasia. No important Precambrian gold systems are recognized in China, mainly because of reworking of exposed Precambrian rocks by these younger orogenies, but there are a few Caledonian (600-405 Ma) gold-bearing system in northern Xinjiang. Most of China's orogenic, epithermal, and Carlinlike gold deposits are in the reworkerd margins of major cratonic blocks and in metasedimentary rock-dominated fold belts adjacent to these margins. Accordingly, the major gold provinces are

  12. Crustal and upper-mantle structure of South China from Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    Shan, B.; Xiong, X.; Zhao, K. F.; Xie, Z. J.; Zheng, Y.; Zhou, L.

    2017-03-01

    In this study, we image the crust and upper-mantle seismic velocity structures in South China using teleseismic Rayleigh waves recorded at 354 stations from the Chinese provincial networks (CEArray). We process Rayleigh wave data from 1087 teleseismic events and construct phase velocity maps at periods of 40-150 s. By combining dispersion curves at 6-70 s from Zhou et al. and at 40-150 s from the teleseismic surface wave tomography of this study, we construct a 3-D shear velocity model of the crust and upper mantle of South China. Distinct seismic structures are revealed from the eastern part of South China (including the South China Fold System and the eastern Yangtze Craton) to the western Yangtze Craton. The South China Fold System and eastern Yangtze Craton are characterized by lower velocities and shallow lithosphere-asthenosphere boundary (∼90 km), which are similar to the lithospheric thermal and seismic velocity structures of the North China basin. These observations may imply that the lithospheric destruction and thinning occurred not only beneath the North China Craton, but also beneath the eastern part of South China. The western Yangtze Craton, including the Sichuan Basin and Jiangnan Orogen, is underlain by a thicker and colder lithosphere with high velocities. The contrast of the lithosphere structure between the western Yangtze Craton and other parts of South China indicates that the lithospheric destruction and thinning of the east and southeast parts of South China may terminate at the boundary of the Jiangnan Orogen.

  13. Observed changes of temperature extremes during 1960-2005 in China: natural or human-induced variations?

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Jianfeng; David Chen, Yongqin; Chen, Xiaohong

    2011-12-01

    The purpose of this study was to statistically examine changes of surface air temperature in time and space and to analyze two factors potentially influencing air temperature changes in China, i.e., urbanization and net solar radiation. Trends within the temperature series were detected by using Mann-Kendall trend test technique. The scientific problem this study expected to address was that what could be the role of human activities in the changes of temperature extremes. Other influencing factors such as net solar radiation were also discussed. The results of this study indicated that: (1) increasing temperature was observed mainly in the northeast and northwest China; (2) different behaviors were identified in the changes of maximum and minimum temperature respectively. Maximum temperature seemed to be more influenced by urbanization, which could be due to increasing urban albedo, aerosol, and air pollutions in the urbanized areas. Minimum temperature was subject to influences of variations of net solar radiation; (3) not significant increasing and even decreasing temperature extremes in the Yangtze River basin and the regions south to the Yangtze River basin could be the consequences of higher relative humidity as a result of increasing precipitation; (4) the entire China was dominated by increasing minimum temperature. Thus, we can say that the warming process of China was reflected mainly by increasing minimum temperature. In addition, consistently increasing temperature was found in the upper reaches of the Yellow River basin, the Yangtze River basin, which have the potential to enhance the melting of permafrost in these areas. This may trigger new ecological problems and raise new challenges for the river basin scale water resource management.

  14. Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River Basin of China

    NASA Astrophysics Data System (ADS)

    Pan, Yun; Zhang, Chong; Gong, Huili; Yeh, Pat J.-F.; Shen, Yanjun; Guo, Ying; Huang, Zhiyong; Li, Xiaojuan

    2017-04-01

    Regional evapotranspiration (ET) can be enhanced by human activities such as irrigation or reservoir impoundment. Here the potential of using Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage data in water budget calculations to detect human-induced ET change is investigated over the Haihe River basin of China. Comparison between GRACE-based monthly ET estimate (2005-2012) and Global Land Data Assimilation System (GLDAS)-modeled ET indicates that human-induced ET due to intensive groundwater irrigation from March to May can only be detected by GRACE. GRACE-based ET (521.7±21.1 mm/yr), considerably higher than GLDAS ET (461.7±29.8 mm/yr), agrees well with existing estimates found in the literature and indicates that human activities contribute to a 12% increase in ET. The double-peak seasonal pattern of ET (in May and August) as reported in published studies is well reproduced by GRACE-based ET estimate. This study highlights the unique capability of GRACE in detecting anthropogenic signals over regions with large groundwater consumption.

  15. Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China

    NASA Astrophysics Data System (ADS)

    Pan, Yun; Zhang, Chong; Gong, Huili; Yeh, Pat J.-F.; Shen, Yanjun; Guo, Ying; Huang, Zhiyong; Li, Xiaojuan

    2017-01-01

    Regional evapotranspiration (ET) can be enhanced by human activities such as irrigation or reservoir impoundment. Here the potential of using Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage data in water budget calculations to detect human-induced ET change is investigated over the Haihe River basin of China. Comparison between GRACE-based monthly ET estimate (2005-2012) and Global Land Data Assimilation System (GLDAS)-modeled ET indicates that human-induced ET due to intensive groundwater irrigation from March to May can only be detected by GRACE. GRACE-based ET (521.7 ± 21.1 mm/yr), considerably higher than GLDAS ET (461.7 ± 29.8 mm/yr), agrees well with existing estimates found in the literature and indicates that human activities contribute to a 12% increase in ET. The double-peak seasonal pattern of ET (in May and August) as reported in published studies is well reproduced by GRACE-based ET estimate. This study highlights the unique capability of GRACE in detecting anthropogenic signals over regions with large groundwater consumption.

  16. Late tectonic uplift of an inverted oceanic basin in South East Asia: the case of Palawan Island (western Philippines)

    NASA Astrophysics Data System (ADS)

    Meresse, F.; Savva, D.; Pubellier, M.; Steuer, S.; Franke, D.; Cordey, F.; Muller, C.; Sapin, F.; Mouly, B.; Auxiètre, J.-L.

    2012-04-01

    The elongated island of Palawan, bounded by two marginal basins, the South China Sea to the North and the Sulu Sea to the South is composed of remnants of an inverted basin (Proto-South China Sea) thrusted onto the margin of a continental terrane which rifted away from the Chinese-Vietnamese margin. Based on field observations coupled with seismic and drill-holes data, our study focuses on the structural architecture of the island in order to decipher the geodynamic evolution of the southern margin of the South China Sea. Structurally, the Palawan Island consists of: (i) the Palawan wedge, which extends towards the South China Sea is composed of deformed slope to deep ocean deposits of Cretaceous (north Palawan) to Tertiary (central and south Palawan) ages. This accretionnary wedge is characterized by small wavelength folds of mainly NE-SW trend. Offshore, the unconformable Middle-Late Miocene Tabon limestones unit postdates the last stages of the Palawan wedge growth/setting; (ii) On top of this wedge lie thrust slices of ophiolite bodies comprising ribbon cherts of Albian age as indicated by radiolarians.; these bodies are likely to be relicts of the now-subducted Proto South China Sea; (iii) The central and southern parts of the Palawan island are characterized by a large wavelength antiform of NE-SW trend. This structure is sealed by the slightly tilted Early Pliocene marls unit; (iv) The island also presents necking zones bordered by N-S trending transform faults. This area witnessed the geodynamic evolution of the South East Asia which consists of a succession of opening/closure of oceanic basins and block accretions. The Palawan Island therefore results of the closing of the Proto-South China Sea which once formed both the Palawan accretionary wedge and the overlying ophiolite tectonic slices. During a later compressive event, the rifted continental margin which composes the basement of the Island was inverted, inducing the uplift and the large scale folding

  17. Spatial and temporal variations of river nitrogen exports from major basins in China.

    PubMed

    Ti, Chaopu; Yan, Xiaoyuan

    2013-09-01

    Provincial-level data for population, livestock, land use, economic growth, development of sewage systems, and wastewater treatment rates were used to construct a river nitrogen (N) export model in this paper. Despite uncertainties, our results indicated that river N export to coastal waters increased from 531 to 1,244 kg N km(-2) year(-1) in the Changjiang River basin, 107 to 223 kg N km(-2) year(-1) in the Huanghe River basin, and 412 to 1,219 kg N km(-2) year(-1) in the Zhujiang River basin from 1980 to 2010 as a result of rapid population and economic growth. Significant temporal changes in water N sources showed that as the percentage of runoff from croplands increased, contributions of natural system runoff and rural human and livestock excreta decreased in the three basins from 1980 to 2010. Moreover, the nonpoint source N decreased from 72 to 58 % in the Changjiang River basin, 80 to 67 % in the Huanghe River basin, and 69 to 51 % in the Zhujiang River basin, while the contributions of point sources increased greatly during the same period. Estimated results indicated that the N concentrations in the Changjiang, Huanghe, and Zhujiang rivers during 1980-2004 were higher than those in the St. Lawrence River in Canada and lower than those in the Thames, Donau, Rhine, Seine, and Han rivers during the same period. River N export will reduce by 58, 54, and 57 % for the Changjiang River, Huanghe River, and Zhujiang River in the control scenario in 2050 compared with the basic scenario.

  18. Estimation of nitrogen and phosphorus flows in livestock production in Dianchi Lake basin, China.

    PubMed

    Anzai, Hiroki; Wang, Lin; Oishi, Kazato; Irbis, Chagan; Li, Kunzhi; Kumagai, Hajime; Inamura, Tatsuya; Hirooka, Hiroyuki

    2016-01-01

    We assessed the nitrogen (N) and phosphorus (P) flows in intensified livestock production systems by investigating nutrient budgets and cycling in the basin of Dianchi Lake, one of the most eutrophic lakes in China. We conducted field surveys based on feed samplings and interviews of livestock farmers. The N and P in local and external feeds, animal body retentions, animal products and excretions were calculated at the individual level for dairy cattle, fattening pigs, breeding sows, broilers and laying hens. The N and P flows in the total livestock production system in the area were estimated by multiplying the individual N and P budgets by the number of animals. For the dairy and fattening pig productions, N and P supplied from local crops or by-products accounted for large parts of the inputs. For the other livestock categories, most of the N and P inputs depended on external resources. The N and P outputs through animal manure into the cropland were 287 and 66 kg/ha/year, respectively, which were higher than the N and P inputs into the livestock production systems from the cropland. The N and P loads from manure should be reduced for the establishment of sustainable agricultural production systems. © 2015 Japanese Society of Animal Science.

  19. Estimation of potassium and magnesium flows in animal production in Dianchi Lake basin, China.

    PubMed

    Amachika, Yuta; Anzai, Hiroki; Wang, Lin; Oishi, Kazato; Irbis, Chagan; Li, Kunzhi; Kumagai, Hajime; Inamura, Tatsuya; Hirooka, Hiroyuki

    2016-07-01

    The objectives of this study were to estimate and evaluate potassium (K) and magnesium (Mg) budgets and flows of animal production in the basin of Dianchi Lake, China. Feed sampling and farmer interviews were conducted in field surveys. The supplies of K and Mg from local and external feeds and the retention, production and excretion of animals were calculated individually for dairy cows, fattening pigs, breeding sows, and broilers and laying hens. The K and Mg flows on a regional level were estimated using the individual budgets. At the individual level, in dairy cattle, the K and Mg supplied from local feeds accounted for large parts of the total nutrient intakes, whereas in the other animal categories most of the K and Mg in the feeds depended on external resources. Our findings also suggested that excessive Mg intake resulted in high Mg excretion and low use efficiency in dairy cattle and fattening pigs. At the regional level, the K and Mg amounts of manure produced and applied in the area (K: 339 and Mg: 143 t/year) exceeded those used as local feeds. Our results imply the animal production potentially increased the K and Mg loads in the regional agriculture system. © 2015 Japanese Society of Animal Science.

  20. Simulation of regional temperature change effect of land cover change in agroforestry ecotone of Nenjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Liu, Tingxiang; Zhang, Shuwen; Yu, Lingxue; Bu, Kun; Yang, Jiuchun; Chang, Liping

    2017-05-01

    The Northeast China is one of typical regions experiencing intensive human activities within short time worldwide. Particularly, as the significant changes of agriculture land and forest, typical characteristics of pattern and process of agroforestry ecotone change formed in recent decades. The intensive land use change of agroforestry ecotone has made significant change for regional land cover, which had significant impact on the regional climate system elements and the interactions among them. This paper took agroforestry ecotone of Nenjiang River Basin in China as study region and simulated temperature change based on land cover change from 1950s to 1978 and from 1978 to 2010. The analysis of temperature difference sensitivity to land cover change based on Weather Research and Forecasting (WRF) model showed that the land cover change from 1950s to 1978 induced warming effect over all the study area, including the change of grassland to agriculture land, grassland to deciduous broad-leaved forest, and deciduous broad-leaved forest to shrub land. The land cover change from 1978 to 2010 induced cooling effect over all the study area, including the change of deciduous broad-leaved forest to agriculture land, grassland to agriculture land, shrub land to agriculture land, and deciduous broad-leaved forest to grassland. In addition, the warming and cooling effect of land cover change was more significant in the region scale than specific land cover change area.

  1. Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, northern China

    NASA Astrophysics Data System (ADS)

    Zou, Jing; Xie, Zhenghui; Zhan, Chesheng; Qin, Peihua; Sun, Qin; Jia, Binghao; Xia, Jun

    2015-05-01

    In this study, we incorporated a groundwater exploitation scheme into the land surface model CLM3.5 to investigate the effects of the anthropogenic exploitation of groundwater on land surface processes in a river basin. Simulations of the Haihe River Basin in northern China were conducted for the years 1965-2000 using the model. A control simulation without exploitation and three exploitation simulations with different water demands derived from socioeconomic data related to the Basin were conducted. The results showed that groundwater exploitation for human activities resulted in increased wetting and cooling effects at the land surface and reduced groundwater storage. A lowering of the groundwater table, increased upper soil moisture, reduced 2 m air temperature, and enhanced latent heat flux were detected by the end of the simulated period, and the changes at the land surface were related linearly to the water demands. To determine the possible responses of the land surface processes in extreme cases (i.e., in which the exploitation process either continued or ceased), additional hypothetical simulations for the coming 200 years with constant climate forcing were conducted, regardless of changes in climate. The simulations revealed that the local groundwater storage on the plains could not contend with high-intensity exploitation for long if the exploitation process continues at the current rate. Changes attributable to groundwater exploitation reached extreme values and then weakened within decades with the depletion of groundwater resources and the exploitation process will therefore cease. However, if exploitation is stopped completely to allow groundwater to recover, drying and warming effects, such as increased temperature, reduced soil moisture, and reduced total runoff, would occur in the Basin within the early decades of the simulation period. The effects of exploitation will then gradually disappear, and the variables will approach the natural state and

  2. Postseismic deformation of the 2015 Mw 6.5 Pishan, Xijiang earthquake from Sentinel-1 observations

    NASA Astrophysics Data System (ADS)

    Wen, Y.; Feng, Y.; Xu, C.; Liu, Y.; Jiang, G.

    2017-12-01

    On 3 July 2015, a Mw 6.5 earthquake struck Pishan in Xinjiang, western China, which is located in the boundary between the southwestern Tarim Basin and the northwestern Tibetan Plateau. The event caused at least four deaths, 48 injuries and hundreds of building collapses. Due to its unique location, the event provides an opportunity to help us better understand the tectonic behaviors of the Tarim and surrounding regions. In this study, a multitemporal Interferometric SAR (InSAR) time series technique is used to map the postseismic motion following the Pishan event. Firstly, SAR data from two ascending tracks and one descending track of Sentinel-1 satellite under Terrain Observation with Progressive Scans (TOPS) mode are used to generate interferograms with GAMMA software. Then a global high-resolution atmospheric model ERA-Interim provided by the European Center for Medium Range Weather Forecast (HRES-ECMWF) and a global network orbital correction are applied to remove atmospheric effect, and the long-wavelength orbital errors, respectively, for the interferograms. Finally, InSAR time series technique is adopted to derive the displacement time series within 1.5 year after the event. The results show that displacement in radar line of sight is about 2 cm around the epicenter during the period and decays with time. The observed surface displacements are consistent with afterslip on the shallow part of the coseismic fault plane, which indicates that the unreleased accumulated strain energy is mainly released by the afterslip. The magnitude of accumulated afterslip is about Mw 6.4, which is slightly smaller than the main event.

  3. Land Desertification and it’s Control in Gonghe Basin of Qinghai Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Gao, S.; Lu, R.

    2009-12-01

    Land desertification is an important environmental and social-economic problems that threatening people’s living conditions and impacting social sustainable development. The Gonghe basin in Qinghai Plateau is a fragile cold alpine area which is one of the places seriously threatened by desertification in China. This paper selected Gonghe basin as a study area to study land sandy desertification and its controlling measures. The engineering measures for sandy desertification control include setting clay sand barrier, Salix cheilophila sand barrier, Tamarix sand barrier, Artemisia sand barrier and straw-checker sand-barriers to fix dunes; the biological measures include closure for natural vegetation recovery, direct seeding forestation, transplanting seedlings, and so on. The combination of engineering and biologic measures can fix dunes 2~3 years earlier than the common single measure; and the costs were basically identical. A synthesized evaluation system established based on experimental results and experience in recent years indicated that the effectiveness of the four kinds of sand barrier for prevention and control of sand in study area were: Tamarix sand barrier > Artemisia sand barrier > clay sand barrier > straw-checker sand-barriers. In addition, different optimized management model can be selected according to local material and geographical place. New plants such as Salix cheilophila and Tamarix, which are available in study area, can change from dead sand barrier to live one set in proper seasons, changing engineering measure to biological one directly speeds the progress of forestation and dunes fixation. In addition, we developed new technique of deep planting Salix cheilophila and Tamarix with their long stem, which can effectively resist drought. We found that it had lower cost and higher live rate, and has a better sand prevention effect than deep planting of Poplar. Finally we choose the optimize management model as follows: Artemisia direct

  4. Decoupling of Mg-C and Sr-Nd-O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiguo; Zhang, Zhaochong; Hou, Tong; Santosh, M.; Chen, Lili; Ke, Shan; Xu, Lijuan

    2017-04-01

    The Tarim Large Igneous Province in NW China hosts numerous magmatic carbonatite dikes along its northern margin. The carbonatites are composed mainly of dolomite (90 vol.%) and minor calcite (5 vol.%), with apatite, barite, celestine, aegirine, monazite and bastnaesite as accessory minerals. The rocks correspond to magnesiocarbonatites with a compositional range of 13.73-19.59 wt.% MgO, and 20.03-30.11 wt.% CaO, along with 1.65-3.31 wt.% total Fe2O3, 0.02-2.39 wt.% SiO2 and other minor elements, such as P2O5, Na2O and K2O. These magnesiocarbonatites are characterized by extreme enrichment in incompatible elements with high total rare earth element (REE) contents of 372-36965 ppm. The strontium [(87Sr/86Sr)i = 0.70378-0.70386], neodymium [εNd(t) = +2.51 - +3.59] and oxygen (δ18OV-SMOW = 5.9‰-8.0‰) isotope values of these rocks are consistent with a mantle origin, whereas the magnesium (δ26Mg = -1.09‰ to -0.85‰) and carbon (δ13CV-PDB = -4.1‰ to -5.9‰) isotopes are decoupled from mantle values and reflect signature of recycled sedimentary carbonates. Global plate tectonic models predict that sedimentary carbonates in convergent margins are subducted to deep domains in the mantle, with phase transitions from calcite/dolomite to magnesite, and eventually to periclase/perovskite. The involvement of a mantle plume enhances the normal mantle geotherms and promotes decomposition reactions of magnesite. The decoupling of Mg-C and Sr-Nd-O isotopes in the mangesiocarbonatites provides insights on the origin of carbonatites, and also illustrates a case of interaction between mantle plume and subduction-related components.

  5. Simultaneous assessments of occurrence, ecological, human health, and organoleptic hazards for 77 VOCs in typical drinking water sources from 5 major river basins, China.

    PubMed

    Chen, Xichao; Luo, Qian; Wang, Donghong; Gao, Jijun; Wei, Zi; Wang, Zijian; Zhou, Huaidong; Mazumder, Asit

    2015-11-01

    Owing to the growing public awareness on the safety and aesthetics in water sources, more attention has been given to the adverse effects of volatile organic compounds (VOCs) on aquatic organisms and human beings. In this study, 77 target VOCs (including 54 common VOCs, 13 carbonyl compounds, and 10 taste and odor compounds) were detected in typical drinking water sources from 5 major river basins (the Yangtze, the Huaihe, the Yellow, the Haihe and the Liaohe River basins) and their occurrences were characterized. The ecological, human health, and olfactory assessments were performed to assess the major hazards in source water. The investigation showed that there existed potential ecological risks (1.30 × 10 ≤ RQtotals ≤ 8.99 × 10) but little human health risks (6.84 × 10(-7) ≤ RQtotals ≤ 4.24 × 10(-4)) by VOCs, while that odor problems occurred extensively. The priority contaminants in drinking water sources of China were also listed based on the present assessment criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Mongolian Oil Shale, hosted in Mesozoic Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Bat-Orshikh, E.; Lee, I.; Norov, B.; Batsaikhan, M.

    2016-12-01

    Mongolia contains several Mesozoic sedimentary basins, which filled >2000 m thick non-marine successions. Late Triassic-Middle Jurassic foreland basins were formed under compression tectonic conditions, whereas Late Jurassic-Early Cretaceous rift valleys were formed through extension tectonics. Also, large areas of China were affected by these tectonic events. The sedimentary basins in China host prolific petroleum and oil shale resources. Similarly, Mongolian basins contain hundreds meter thick oil shale as well as oil fields. However, petroleum system and oil shale geology of Mongolia remain not well known due to lack of survey. Mongolian oil shale deposits and occurrences, hosted in Middle Jurassic and Lower Cretaceous units, are classified into thirteen oil shale-bearing basins, of which oil shale resources were estimated to be 787 Bt. Jurassic oil shale has been identified in central Mongolia, while Lower Cretaceous oil shale is distributed in eastern Mongolia. Lithologically, Jurassic and Cretaceous oil shale-bearing units (up to 700 m thick) are similar, composed mainly of alternating beds of oil shale, dolomotic marl, siltstone and sandstone, representing lacustrine facies. Both Jurassic and Cretaceous oil shales are characterized by Type I kerogen with high TOC contents, up to 35.6% and low sulfur contents ranging from 0.1% to 1.5%. Moreover, S2 values of oil shales are up to 146 kg/t. The numbers indicate that the oil shales are high quality, oil prone source rocks. The Tmax values of samples range from 410 to 447, suggesting immature to early oil window maturity levels. PI values are consistent with this interpretation, ranging from 0.01 to 0.03. According to bulk geochemistry data, Jurassic and Cretaceous oil shales are identical, high quality petroleum source rocks. However, previous studies indicate that known oil fields in Eastern Mongolia were originated from Lower Cretaceous oil shales. Thus, further detailed studies on Jurassic oil shale and its

  7. Using the nonlinear aquifer storage-discharge relationship to simulate the base flow of glacier- and snowmelt-dominated basins in northwest China

    NASA Astrophysics Data System (ADS)

    Gan, R.; Luo, Y.

    2013-09-01

    Base flow is an important component in hydrological modeling. This process is usually modeled by using the linear aquifer storage-discharge relation approach, although the outflow from groundwater aquifers is nonlinear. To identify the accuracy of base flow estimates in rivers dominated by snowmelt and/or glacier melt in arid and cold northwestern China, a nonlinear storage-discharge relationship for use in SWAT (Soil Water Assessment Tool) modeling was developed and applied to the Manas River basin in the Tian Shan Mountains. Linear reservoir models and a digital filter program were used for comparisons. Meanwhile, numerical analysis of recession curves from 78 river gauge stations revealed variation in the parameters of the nonlinear relationship. It was found that the nonlinear reservoir model can improve the streamflow simulation, especially for low-flow period. The higher Nash-Sutcliffe efficiency, logarithmic efficiency, and volumetric efficiency, and lower percent bias were obtained when compared to the one-linear reservoir approach. The parameter b of the aquifer storage-discharge function varied mostly between 0.0 and 0.1, which is much smaller than the suggested value of 0.5. The coefficient a of the function is related to catchment properties, primarily the basin and glacier areas.

  8. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Endorheic Basins

    NASA Astrophysics Data System (ADS)

    Li, Xin; Cheng, Guodong; Ge, Yingchun; Li, Hongyi; Han, Feng; Hu, Xiaoli; Tian, Wei; Tian, Yong; Pan, Xiaoduo; Nian, Yanyun; Zhang, Yanlin; Ran, Youhua; Zheng, Yi; Gao, Bing; Yang, Dawen; Zheng, Chunmiao; Wang, Xusheng; Liu, Shaomin; Cai, Ximing

    2018-01-01

    Endorheic basins around the world are suffering from water and ecosystem crisis. To pursue sustainable development, quantifying the hydrological cycle is fundamentally important. However, knowledge gaps exist in how climate change and human activities influence the hydrological cycle in endorheic basins. We used an integrated ecohydrological model, in combination with systematic observations, to analyze the hydrological cycle in the Heihe River Basin, a typical endorheic basin in arid region of China. The water budget was closed for different landscapes, river channel sections, and irrigation districts of the basin from 2001 to 2012. The results showed that climate warming, which has led to greater precipitation, snowmelt, glacier melt, and runoff, is a favorable factor in alleviating water scarcity. Human activities, including ecological water diversion, cropland expansion, and groundwater overexploitation, have both positive and negative effects. The natural oasis ecosystem has been restored considerably, but the overuse of water in midstream and the use of environmental flow for agriculture in downstream have exacerbated the water stress, resulting in unfavorable changes in surface-ground water interactions and raising concerns regarding how to fairly allocate water resources. Our results suggest that the water resource management in the region should be adjusted to adapt to a changing hydrological cycle, cropland area must be reduced, and the abstraction of groundwater must be controlled. To foster long-term benefits, water conflicts should be handled from a broad socioeconomic perspective. The findings can provide useful information on endorheic basins to policy makers and stakeholders around the world.

  9. Morphology, sedimentary features and evolution of a large palaeo submarine canyon in Qiongdongnan basin, Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Xiangquan; Fairweather, Luke; Wu, Shiguo; Ren, Jianye; Zhang, Hongjie; Quan, Xiayun; Jiang, Tao; Zhang, Cheng; Su, Ming; He, Yunlong; Wang, Dawei

    2013-01-01

    The large Miocene-aged palaeo canyon that extents through the Qiongdongnan basin (QDNB) and Yinggehai basin (YGHB) of Northern South China Sea has been of considerable interest both economically and scientifically over the past decade. Stemmed from this, significant research has been employed into understanding the mechanism for its existence, incision, and sedimentary fill, yet debate remains. In the first case the canyon itself is actually quite anomalous. Alone from the size (over 570 km in length and more than 8 km in width (Yuan et al., 2009)), which is considerably more than most ancient deep-water channels (REFS), the canyon's sedimentary fill is also distinctly different. Some explanations have been given to explain the canyon's origin and existence, these include increased sediment supply from the Red River which is genetically linked to uplift of the Tibetan Plateau, lowstand turbidite and mass-transport activity, reactivation and dextral displacement of the Red River Fault zone inducing erosive gravity-flows, regional tilt of the QDNB and YGHB, paleo-seafloor morphology and seal-level fluctuations. With the application of new data obtained from interpretations of a large number of 2D seismic profiles, core and well log data, and tectonic and sedimentary analysis this contribution aims to: (1) Present models to explain the Canyon's sedimentary fill and basin plain deposits, which provided significant understanding of processes pre-, syn- and post-incision and; (2) review the plausibility and likelihood of each of the controlling mechanisms, hoping to shed light on this controversial aspect. We conclude that the final erosive event that shaped the canyon is dated at 5.5 Ma. The Canyon's unusual fill is a product of variation in the interaction between turbidity currents and MTD that blocked the canyon's axis, and the reduction in gravity flow energy through time; and therefore the complete succession represents one major erosive and cut event at 5.5 Ma and

  10. Application of UTCI in China from tourism perspective

    NASA Astrophysics Data System (ADS)

    Ge, Quansheng; Kong, Qinqin; Xi, Jianchao; Zheng, Jingyun

    2017-05-01

    This study uses ERA-Interim reanalysis data and the Universal Thermal Climate Index (UTCI) to investigate the spatial pattern of thermal bioclimatic conditions in China. Our results show that the annual UTCI increases with decreasing latitude throughout most of China. Areas that experience "no thermal stress" are located southeast of the line formed by the Yanshan Mountains, Taihang Mountains, the southern edge of the Loess Plateau, and the eastern edge of the Qinghai-Tibet Plateau, with an area of 312.83e4 km2. During spring and autumn, the UTCI distribution is similar to the annual distribution. During summer, areas with "no thermal stress" cover the largest area (563.55e4 km2), including northern and southwestern China; in contrast, during winter, areas with "no thermal stress" only occur south of the Nanling Mountains. The annual number of days with "no thermal stress" increases from north to south in central and eastern China, exceeding 200 days in the Sichuan Basin, the southeastern coastal regions and the Yungui Plateau. The minimum and maximum values occur on the Qinghai-Tibet Plateau (≤10 days) and the southern Yungui Plateau (>280 days). Seasonal analysis indicates that there are over 70 days with "no thermal stress" in the Sichuan Basin, the Yungui Plateau and the middle and lower reaches of the Yangtze River during spring and autumn, while there are more than 80 days in northern and southwestern China during summer and over 80 days in areas south of the Nanling Mountains during winter. The results of this study can be helpful for optimization of the tourism industry and tourism destinations development in China.

  11. Late Paleozoic SEDEX deposits in South China formed in a carbonate platform at the northern margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Qiu, Wenhong Johnson; Zhou, Mei-Fu; Liu, Zerui Ray

    2018-05-01

    SEDEX sulfide deposits hosted in black shale and carbonate are common in the South China Block. The Dajiangping pyrite deposit is the largest of these deposits and is made up of stratiform orebodies hosted in black shales. Sandstone interlayered with stratiform orebodies contains detrital zircon grains with the youngest ages of 429 Ma. Pyrite from the orebodies has a Re-Os isochron age of 389 ± 62 Ma, indicative of formation of the hosting strata and syngenetic pyrite ores in the mid-late Devonian. The hosting strata is a transgression sequence in a passive margin and composed of carbonaceous limestone in the lower part and black shales in the upper part. The ore-hosting black shales have high TOC (total organic carbon), Mo, As, Pb, Zn and Cd, indicating an anoxic-euxinic deep basin origin. The high redox proxies, V/(V + Ni) > 0.6 and V/Cr > 1, and the positive correlations of TOC with Mo and V in black shales are also consistent with an anoxic depositional environment. The Dajiangping deposit is located close to the NE-trending Wuchuan-Sihui fault, which was active during the Devonian. The mid-late Devonian mineralization age and the anoxic-euxinic deep basinal condition of this deposit thus imply that the formation of this deposit was causally linked to hydrothermal fluid exhalation in an anoxic fault-bounded basin that developed in a carbonate platform of the South China Block. The regional distribution of many Devonian, stratiform, carbonaceous sediment-hosted sulfide deposits along the NE-trending fault-bounded basins in South China, similar to the Dajiangping deposit, indicates that these deposits formed at a basin developed in the passive margin setting of the South China Block during the Devonian. This environment was caused by the break-up and northward migration of the South China Block from Gandwana.

  12. The origin of gas seeps and shallow gas in northern part of South China Sea

    NASA Astrophysics Data System (ADS)

    Li, M.; Jin, X.

    2003-04-01

    The northern part of South China Sea is of passive continental margin, which geologic units include shelf, slope and deep sea basin. There are rifting basins forming during Paleogene (or Cretaceous ?) to Quaternary developed on shelf and slope, which sediments are dominated by fluvial and lake clastic rock of Paleogene, and marine clastic rock and carbonate of Neogene - Quaternary. The main basins include the Pearl River Mouth Basin, Beibu Gulf basin, Qiongdongnan Basin and Yinggehai basin. They contain rich oil and gas resources, and have become important industrial oil and gas producing region in South China Sea. With the increasing of petroleum exploration actives and marine petroleum engineering, it has been paid more attention to the investigation and research of gas seeps and shallow gas, for they become a potential threaten to the marine engineering while they are regarded as the indicators of industrial oil and gas. By study the distribution and geochemical characteristics of gas seeps in northeast part of Yinggehai basin and shallow gas in sediments on slope, combined with their regional geologic background, this paper deals with the origin, migration pathway and emission mechanism of gas seeps and shallow gas in northern part of South China Sea, for providing a base knowledge for the evaluation of marine engineering geology. In northeast part of Yinggehai basin gas seeps have been found and recorded for near 100 years. During 1990s, as a part of petroleum exploration, the gas seeps in the basin have been investigated and research by oil companies (Baojia Huang et al., 1992; Jiaqiong He et al., 2000). Gas seeps were found in shallow water area along southwest coast of Hainan Island, water depth usually less than 50 m. The occurrence of gas seeps can be divided into two types: (1) gas continuously emission, continuous gas bubbles groups can be detected by sonar underwater and observed on water surface. (2) gas intermittently emission, the time intervals

  13. Integrating ecosystem services trade-offs with paddy land-to-dry land decisions: A scenario approach in Erhai Lake Basin, southwest China.

    PubMed

    Hu, Yi'na; Peng, Jian; Liu, Yanxu; Tian, Lu

    2018-06-01

    Ecosystem services are the benefits people obtain from ecosystems, and ecosystem services trade-offs have been widely applied to the development of land-use policy. Although previous studies have focused on trade-offs of ecosystem services, a scenario approach has been seldom used. The scenario approach can reveal the changes of ecosystem services for different land-use patterns in the future, and is of great significance for land-use decisions and ecosystem management. Based on the actual situation of deteriorating water quality and dwindling water supply in the Erhai Lake Basin of southwest China, this study put forward to convert paddy land to dry land (PLDL) in the basin, and simulated its potential impact on ecosystem services. Taking environmental pollution, social impact, economic benefit and residential participation into consideration, four scenarios of PLDL were designed. Then, four ecosystem services (water purification, water yield, soil conservation and rice production) were calculated for each scenario. The optimal scenario of PLDL in the Erhai Lake Basin was identified by trade-offs of the four ecosystem services. The results showed that the total nitrogen export could be reduced by 42.07% and water yield can be increased by 5.61% after converting 100% of paddy lands to dry land, thereby greatly improving the water quality and increasing the water yield of Erhai Lake. However, PLDL involving 100% of paddy lands also increased the sediment export by 17.22%, and eliminated rice production in the region. By comparing the four PLDL scenarios for converting just 50% of paddy lands, the residential participation scenario was identified to be the best choice for PLDL implementation because it achieved the best level of water purification and had the smallest negative effect on other ecosystem services. The optimal scenario for each township showed spatial differentiation, and there were conflicts between the optimal scenarios at basin scale and township

  14. Spatial and temporal characteristics of droughts in Luanhe River basin, China

    NASA Astrophysics Data System (ADS)

    Wang, Yixuan; Zhang, Ting; Chen, Xu; Li, Jianzhu; Feng, Ping

    2018-02-01

    The spatial and temporal characteristics of drought are investigated for Luanhe River basin, using monthly precipitation data from 26 stations covering the common period of 1958-2011. The spatial pattern of drought was assessed by applying principal component analysis (PCA) to the Standardized Precipitation Index (SPI) computed on 3- and 12-month time scales. In addition, annual SPI and seasonal SPIs (including spring SPI, summer SPI, autumn SPI, and winter SPI) were also defined and considered in this study to characterize seasonal and annual drought conditions, respectively. For all seven SPI cases, three distinctive sub-regions with different temporal evolutions of droughts are well identified, respectively, representing the southeast, middle, and northwest of the Luanhe River basin. The Mann-Kendall (MK) trend test with a trend-free pre-whitening (TFPW) procedure and Sen's method were used to determine the temporal trends in the annual and seasonal SPI time series. The continuous wavelet transform (CWT) was employed for further detecting the periodical features of drought condition in each sub-region. Results of MK and Sen's tests show a general tendency of intensification in summer drought over the entire basin, while a significant mitigating trend in spring drought. On the whole, an aggravating trend of inter-annual drought is discovered across the basin. Based on the CWT, the drought variability in the basin is generally dominated by 16- to 64-month cycles, and the 2- to 6-year cycles appear to be obvious when concerned with annual and seasonal droughts. Furthermore, a cross wavelet analysis was performed to examine the possible links between the drought conditions and large-scale climate patterns. The teleconnections of ENSO, NAO, PDO, and AMO show significant influences on the regional droughts principally concentrated in the 16- to 64-month period, maybe responsible for the physical causes of the cyclical behavior of drought occurrences. PDO and AMO also

  15. Will urban expansion lead to an increase in future water pollution loads?--a preliminary investigation of the Haihe River Basin in northeastern China.

    PubMed

    Dong, Yang; Liu, Yi; Chen, Jining

    2014-01-01

    Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process.

  16. Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China

    USGS Publications Warehouse

    Dai, S.; Ren, D.; Chou, C.-L.; Li, S.; Jiang, Y.

    2006-01-01

    This paper discusses the mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. The results show that the vitrinite reflectance (0.58%) is lowest and the proportions of inertinite and liptinite (37.4% and 7.1%, respectively) in the No. 6 Coal of the Junger Coalfield are highest among all of the Late Paleozoic coals in the Ordos Basin. The No. 6 Coal may be divided vertically into four sections based on their mineral compositions and elemental concentrations. A high boehmite content (mean 6.1%) was identified in the No. 6 Coal. The minerals associated with the boehmite in the coal include goyazite, rutile, zircon, and Pb-bearing minerals (galena, clausthalite, and selenio-galena). The boehmite is derived from weathered and oxidized bauxite in the weathered crust of the underlying Benxi Formation (Pennsylvanian). A high Pb-bearing mineral content of samples ZG6-2 and ZG6-3 is likely of hydrothermal origin. The No. 6 coal is enriched in Ga (44.8 ??g/g), Se (8.2 ??g/g), Sr (423 ??g/g), Zr (234 ??g/g), REEs (193.3 ??g/g), Hg (0.35 ??g/g), Pb (35.7 ??g/ g), and Th (17.8 ??g/g). Gallium and Th in the No. 6 Coal mainly occur in boehmite, and the Pb-bearing selenide and sulfide minerals contribute not only to Se and Pb contents in the coal, but also probably to Hg content. A high Zr content is attributed to the presence of zircon, and Sr is related to goyazite. The REEs in the coal are supplied from the sediment-source region, and the REEs leached from the adjacent partings by groundwater. ?? 2005 Elsevier B.V. All rights reserved.

  17. A new framework to evaluate ecosystem health: a case study in the Wei River basin, China.

    PubMed

    Wu, Wei; Xu, Zongxue; Zhan, Chesheng; Yin, Xuwang; Yu, Songyan

    2015-07-01

    Due to the rapid growth of the population and the development of economies in the Guanzhong district, central China, the river ecosystem is gradually deteriorating, which makes it important to assess the aquatic ecosystem health and take measures to restore the damaged ecosystem. An index of catchment ecosystem health has been developed to assist large-scale management of watersheds by providing an integrated measure of ecosystem health, including aquatic and terrestrial ecosystem. Most researches focus on aquatic ecosystem or terrestrial ecosystem, but little research integrates both of them to assess the catchment ecosystem health. In this paper, we combine these two aspects into catchment ecosystem health. Ecosystem indicators derived from field samples and modeling are identified to integrate into ecosystem health. These included indicators of ecological landscape pattern (based on normalized difference vegetation index (NDVI), vegetation cover, dominance index, Shannon's diversity index, Shannon's evenness index, and fragmentation index), hydrology regime (based on 33 hydrological parameters), physical form condition (based on substrate, habitat complexity, velocity/depth regimes, bank stability, channel alteration), water quality (based on electrical conductivity (Cond), dissolved oxygen (DO), NH3_N, total nitrogen (TN), total phosphorus (TP), chemical oxygen demand-permanganate (CODMn)), and biological quality (based on fish abundance). The index of ecosystem health is applied in the Guanzhong district, and the ecosystem health was fair. The ecosystem health in the upstream to Linjiacun (U-L) and Linjiacun to Weijiabao (L-W) reaches was in good situation, while that in Weijiabao to Xianyang (W-X), Xianyang-Weijiabao (X-W), and Weijiabao to Tongguan (W-T) reaches was in fair situation. There is a trend that the ecosystem health in the upstream was better than that in the downstream. The ecosystem health assessment is expected to play a key role in future

  18. Subsidence transition during the post-rift stage of the Dongpu Sag, Bohai Bay Basin, NE China: A new geodynamic model

    NASA Astrophysics Data System (ADS)

    Xu, Han; Wang, Xin-Wen; Yan, Dan-Ping; Qiu, Liang

    2018-06-01

    The Dongpu Sag, located in the Bohai Bay Basin, NE China, is a Cenozoic continental rift basin. The post-rift evolution of the Dongpu Sag is associated with the development of petroleum reservoirs and has implications for Neogene-Quaternary basin evolution along the eastern margin of Eurasia. To determine the nature and origin of post-rift subsidence in the Dongpu Sag, we apply backstripping, modified strain-rate inversion, and revised finite extension modelling techniques, using data from 14 real and synthetic wells that are intersected by three seismic lines. Our results reveal discrepancies by subsidence based on backstripping of well data (the observed subsidence) minus that predicted by modified strain-rate inversion and revised finite extension modelling (the predicted subsidence). During the Miocene, the observed subsidence was smaller than the predicted subsidence, leaving negative discrepancies referred to here as "insufficient subsidence" ranging from -343 to -96 m. In contrast, during the Pliocene-Quaternary the observed subsidence was greater than the predicted subsidence by +123 to +407 m, which left positive discrepancies referred to as "over-sufficient subsidence". Therefore, we infer a transition from insufficient to over-sufficient subsidence during the post-rift stage. Normal faulting that started at ca. 5.3 Ma is estimated to have produced only ∼20% of the over-sufficient subsidence. Therefore, the remaining over-sufficient subsidence, as well as the preceding insufficient subsidence and the transition between the two, were likely controlled by lithosphere processes. We propose a new tectonic model in which variations in the conditions (e.g. rate, direction, and angle) associated with subduction of the Pacific plate resulted in a change of heat flow decreasing from a linear to a curvilinear pattern, leading to a transition from insufficient to over-sufficient subsidence.

  19. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea

    USGS Publications Warehouse

    Wang, Xiujuan; Qiang, Jin; Collett, Timothy S.; Shi, Hesheng; Yang, Shengxiong; Yan, Chengzhi; Li, Yuanping; Wang, Zhenzhen; Chen, Duanxin

    2016-01-01

    A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.

  20. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Liang; Luo, Qing; Zhao, Jian; Jackson, Matthew G.; Guo, Li-Shuang; Zhong, Li-Feng

    2018-05-01

    The Indian-type mantle (i.e., above the north hemisphere reference line on the plot of 208Pb/204Pb vs. 206Pb/204Pb) has been considered as a "Southern Hemisphere" geochemical signature, whose origin remains enigmatic. The South China Sea is an extensional basin formed after rifting of the Euro-Asia continent in the Northern Hemisphere, however, the geochemical nature of the igneous crust remains unexplored. For the first time, IODP Expedition 349 has recovered seafloor basalts covered by the thick sediments in the Southwest sub-basin (Sites U1433 and U1434) and the East sub-basin (Site U1431). The Southwest sub-basin consists of enriched (E)-MORB type basalts, and the East sub-basin consists of both normal (N)-MORB-type and E-MORB-type basalts based on trace element compositions. The basalts of the two sub-basins are Indian-type MORBs based on Sr-Nd-Pb-Hf isotope compositions, and the Southwest sub-basin basalts show isotopic compositions (i.e., 206Pb/204Pb of 17.59-17.89) distinctly different from the East sub-basin (i.e., 206Pb/204Pb of 18.38-18.57), suggesting a sub-basin scale mantle compositional heterogeneity and different histories of mantle compositional evolution. Two different enriched mantle end-members (EM1 and EM2) are responsible for the genesis of the Indian-type mantle in the South China Sea. We have modeled the influences of Hainan mantle plume and lower continental crust based on Sr-Nd-Pb-Hf isotope compositions. The results indicate that the influence of Hainan plume can explain the elevated 206Pb/204Pb of the East sub-basin basalts, and the recycling of lower continental crust can explain the low 206Pb/204Pb of the Southwest sub-basin basalts. Based on the strong geochemical imprints of Hainan plume in the ridge magmatism, we propose that the Hainan plume might have promoted the opening of the South China Sea, during which the Hainan plume contributed enriched component to the sub-ridge mantle and caused thermal erosion and return of lower

  1. Tethyan evolution of central Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengor, A.M.C.

    1990-05-01

    The study area extends from the eastern shores of the Caspian Sea in the west to the Helan Shan and Longmen Shan in the east and from about 40{degree}N parallel in the north to the neo-Tethyan sutures in the south, thus including what is called Middle Asia in the Soviet literature. In the region thus delineated lies the boundary between the largely late Paleozoic core of Asia (Altaids) and the Tethyside superorogenic complex. This boundary passes through continental objects that collided with nuclear Asia in the late Paleozoic to terminate its Altaid evolution. Subduction to the south of some ofmore » these had commenced before they collided (e.g., Tarim in the Kuen-Lun), in others later (e.g., South Ghissar area west of Pamirs). This subduction 1ed, in the late Paleozoic, to the opening of marginal basins, at least one of which may be partly extant (Tarim). Giant subduction accretion complexes of Paleozoic to earliest Triassic age dominate farther south in the basement of Turan (mainly in Turkmenian SSR) and in the Kuen-Lun/Nan Shan ranges. No discrete continental collisions or any continental basement in these regions could be unequivocally recognized contrary to most current interpretations. Magmatic arcs that developed along the southern margin of Asia in the late Paleozoic to early Mesozoic grew atop these subduction-accretion complexes and record a gradual southerly migration of magmatism through time. Subduction also dominated the northern margin of Gondwanaland between Iran and China in late Paleozoic time, although the record in Afghanistan and northwest Tibet is scrappy. It led to back-arc basin formation, which in Iran and Oman became neo-Tethys and, in at least parts of central Asia, the Waser-Mushan-Pshart/Banggong Co-Nu Jiang ocean. This ocean was probably connected with the Omani part of the neo-Tethys via the Sistan region.« less

  2. Sedimentation of Jurassic fan-delta wedges in the Xiahuayuan basin reflecting thrust-fault movements of the western Yanshan fold-and-thrust belt, China

    NASA Astrophysics Data System (ADS)

    Lin, Chengfa; Liu, Shaofeng; Zhuang, Qitian; Steel, Ronald J.

    2018-06-01

    Mesozoic thrusting within the Yanshan fold-and-thrust belt of North China resulted in a series of fault-bounded intramontane basins whose infill and evolution remain poorly understood. In particular, the bounding faults and adjacent sediment accumulations along the western segments of the belt are almost unstudied. A sedimentological and provenance analysis of the Lower Jurassic Xiahuayuan Formation and the Upper Jurassic Jiulongshan Formation have been mapped to show two distinctive clastic wedges: an early Jurassic wedge representing a mass-flow-dominated, Gilbert-type fan delta with a classic tripartite architecture, and an late Jurassic shoal-water fan delta without steeply inclined strata. The basinward migration of the fan-delta wedges, together with the analysis of their conglomerate clast compositions, paleocurrent data and detrital zircon U-Pb age spectra, strongly suggest that the northern-bounding Xuanhuan thrust fault controlled their growth during accumulation of the Jiulongshan Formation. Previous studies have suggested that the fan-delta wedge of the Xiahuayuan Formation was also syntectonic, related to movement on the Xuanhua thrust fault. Two stages of thrusting therefore exerted an influence on the formation and evolution of the Xiahuayuan basin during the early-late Jurassic.

  3. Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment (Taihu lake basin, China)

    NASA Astrophysics Data System (ADS)

    Li, Dan; Christakos, George; Ding, Xinxin; Wu, Jiaping

    2018-01-01

    Spatial rainfall data is an essential input to Distributed Hydrological Models (DHM), and a significant contributor to hydrological model uncertainty. Model uncertainty is higher when rain gauges are sparse, as is often the case in practice. Currently, satellite-based precipitation products increasingly provide an alternative means to ground-based rainfall estimates, in which case a rigorous product assessment is required before implementation. Accordingly, the twofold objective of this work paper was the real-world assessment of both (a) the Tropical Rainfall Measuring Mission (TRMM) rainfall product using gauge data, and (b) the TRMM product's role in forcing data for hydrologic simulations in the area of the Tiaoxi catchment (Taihu lake basin, China). The TRMM rainfall products used in this study are the Version-7 real-time 3B42RT and the post-real-time 3B42. It was found that the TRMM rainfall data showed a superior performance at the monthly and annual scales, fitting well with surface observation-based frequency rainfall distributions. The Nash-Sutcliffe Coefficient of Efficiency (NSCE) and the relative bias ratio (BIAS) were used to evaluate hydrologic model performance. The satisfactory performance of the monthly runoff simulations in the Tiaoxi study supports the view that the implementation of real-time 3B42RT allows considerable room for improvement. At the same time, post-real-time 3B42 can be a valuable tool of hydrologic modeling, water balance analysis, and basin water resource management, especially in developing countries or at remote locations in which rainfall gauges are scarce.

  4. Rayleigh Wave Group Velocity Distributions for East Asia from Ambient Seismic Noise Tomography

    NASA Astrophysics Data System (ADS)

    Witek, M.; van der Lee, S.; Kang, T. S.; Chang, S. J.; Ning, S.; Ning, J.

    2014-12-01

    We have collected continuous vertical-component broadband data from 1109 seismic stations in regional networks across China, Korea, and Japan for the year 2011 to perform the largest surface wave tomography study in the region. Using this data set, we have measured over half a million Rayleigh wave group velocity dispersion curves from 1-year stacks of station-pair ambient seismic noise cross-correlations. Quality control is performed by measuring the coherency of the positive and negative lag time sides of the cross-correlations. If the coherency is below an empirically determined threshold, the dispersion curve is measured on the side of the highest SNR. Otherwise, the positive and negative sides of the cross-correlation are averaged before dispersion curve measurement. Group velocity measurements for which the SNR was less than 10 are discarded. The Rayleigh wave group velocity dispersion curves are regionalized on a tessellated spherical shell grid in the period range 10 to 50 s to produce maps of Rayleigh wave group velocity distributions. Preliminary maps at 10 seconds period match well with geologic features at the surface. In particular, we observe low group velocities in the Songliao, Bohai Bay, Sichuan, Ordos, Tarim, and Junggar Basins in China, and the Ulleung and Yamato Basins in the East Sea (Sea of Japan). Higher group velocities are observed in regions with less sediment cover. At periods around 30 s, we observe group velocity decreases going from east to west in China, representing an overall trend of crustal thickening due to the collision between the Indian and Eurasian plates. The Ordos and Sichuan blocks show higher group velocities relative to the eastern margin of the Tibetan Plateau, possibly reflecting low temperatures in these cratons.

  5. The South China sea margins: Implications for rifting contrasts

    USGS Publications Warehouse

    Hayes, D.E.; Nissen, S.S.

    2005-01-01

    Implications regarding spatially complex continental rifting, crustal extension, and the subsequent evolution to seafloor spreading are re-examined for the northern and southern-rifted margins of the South China Sea. Previous seismic studies have shown dramatic differences in the present-day crustal thicknesses as the manifestations of the strain experienced during the rifting of the margin of south China. Although the total crustal extension is presumed to be the same along the margin and adjacent ocean basin, the amount of continental crustal extension that occurred is much less along the east and central segments of the margin than along the western segment. This difference was accommodated by the early formation of oceanic crust (creating the present-day South China Sea basin) adjacent to the eastern margin segment while continued extension of continental crust was sustained to the west. Using the observed cross-sectional areas of extended continental crust derived from deep penetration seismics, two end-member models of varying rift zone widths and varying initial crustal thicknesses are qualitatively examined for three transects. Each model implies a time difference in the initiation of seafloor spreading inferred for different segments along the margin. The two models examined predict that the oceanic crust of the South China Sea basin toward the west did not begin forming until sometime between 6-12 my after its initial formation (???32 Ma) toward the east. These results are compatible with crustal age interpretations of marine magnetic anomalies. Assuming rifting symmetry with conjugate margin segments now residing along the southern portions of the South China Sea basin implies that the total width of the zone of rifting in the west was greater than in the east by about a factor of two. We suggest the most likely causes of the rifting differences were east-west variations in the rheology of the pre-rift crust and associated east-west variations in the

  6. Coupled production and emission of short chain perfluoroalkyl acids from a fast developing fluorochemical industry: Evidence from yearly and seasonal monitoring in Daling River Basin, China.

    PubMed

    Wang, Pei; Lu, Yonglong; Wang, Tieyu; Zhu, Zhaoyun; Li, Qifeng; Meng, Jing; Su, Hongqiao; Johnson, Andrew C; Sweetman, Andrew J

    2016-11-01

    Short chain perfluoroalkyl acids (PFAAs) have been developed since 2002 by the major manufacturers to replace the conventional C8 and higher homologues, with much of the world production shifted to China in recent years. In this study, we conducted a continuous monitoring program over the period 2011-2014 with seasonal monitoring in 2013 for PFAAs emitted from two rapidly developing fluorochemical industry parks located in the Daling River Basin, Northern China. The trend of PFAA contamination was identified, dominated by perfluorobutane sulfonic acid (PFBS), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA), with the maximum concentrations of 3.78 μg/L, 3.70 μg/L, and 1.95 μg/L, respectively. Seasonal monitoring uncovered the occasional emission of perfluorooctane sulfonic acid (PFOS). Construction trends of new facilities and associated manufacturing capacity of the main products were also analyzed to assess correlations with PFAA emissions. An assessment of the data over the period 2011-2014 found a positive correlation with fluorocarbon alcohol (FCA) production and emission of PFAAs. Groundwater and tap water around the main source indicated that the dominant PFAAs had different diffusion behaviors. PFBS levels were higher in surface water, while PFBA was dominant in groundwater and tap water, with PFOA levels being higher in downstream groundwater. Considering the continuous expansion and development of fluorochemical industry in the Daling River Basin, this study will provide abundant information on the effectiveness of risk assessment and management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Detrital zircon U-Pb geochronology and stratigraphy of the Cretaceous Sanjiang Basin in NE China: Provenance record of an abrupt tectonic switch in the mode and nature of the NE Asian continental margin evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Feng-Qi; Chen, Han-Lin; Batt, Geoffrey E.; Dilek, Yildirim; A, Min-Na; Sun, Ming-Dao; Yang, Shu-Feng; Meng, Qi-An; Zhao, Xue-Qin

    2015-12-01

    The age spectra obtained from 505 spots of detrital zircon U-Pb ages of five representative sandstone samples from the Sanjiang Basin in NE China point to a significant change in its provenance during the Coniacian-Santonian. The predominant detrital source for the Sanjiang Basin during the early Cretaceous was the Zhangguangcai Range magmatic belt and Jiamusi Block along its western and southern periphery, whereas it changed in the late Cretaceous to its eastern periphery. The timing of these inferred changes in the detrital source regions and drainage patterns nearly coincide with the age of a regional unconformity in and across the basin. The time interval of non-deposition and unconformity development was coeval with a transitional period between an extensional tectonic regime in the early Cretaceous and a contractional deformation episode in the late Cretaceous. The Sanjiang Basin evolved during this time window from a backarc to a foreland basin. The migration of the coastal orogenic belt and the fold and thrust belt development farther inland during the late Cretaceous marked the onset of regional-scale shortening and surface uplift in the upper plate of a flat (or very shallow-dipping) subduction zone. The stratigraphic record, the detrital source and geochronology of the basinal strata, and the internal structure of the Sanjiang Basin present, therefore, an important record of a tectonic switch in the nature of continental margin evolution of Northeast Asia during the late Mesozoic.

  8. Changes of evapotranspiration and water yield in China's terrestrial ecosystems during the period from 2000 to 2010

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhou, Y.; Ju, W.; Chen, J.; Wang, S.; He, H.; Wang, H.; Guan, D.; Zhao, F.; Li, Y.; Hao, Y.

    2013-04-01

    Terrestrial carbon and water cycles are interactively linked at various spatial and temporal scales. Evapotranspiration (ET) plays a key role in the terrestrial water cycle and altering carbon sequestration of terrestrial ecosystems. The study of ET and its response to climate and vegetation changes is critical in China since water availability is a limiting factor for the functioning of terrestrial ecosystems in vast arid and semiarid regions. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model was employed in conjunction with a newly developed leaf area index (LAI) dataset and other spatial data to simulate daily ET and water yield at a spatial resolution of 500 m over China for the period from 2000 to 2010. The spatial and temporal variations of ET and water yield and influences of temperature, precipitation, land cover types, and LAI on ET were analyzed. The validations with ET measured at 5 typical ChinaFLUX sites and inferred using statistical hydrological data in 10 basins showed that the BEPS model was able to simulate daily and annual ET well at site and basin scales. Simulated annual ET exhibited a distinguishable southeast to northwest decreasing gradient, corresponding to climate conditions and vegetation types. It increased with the increase of LAI in 74% of China's landmass and was positively correlated with temperature in most areas of southwest, south, east, and central China and with precipitation in the arid and semiarid areas of northwest and north China. In the Tibet Plateau and humid southeast China, the increase in precipitation might cause ET to decrease. The national mean annual ET varied from 345.5 mm yr-1 in 2001 to 387.8 mm yr-1 in 2005, with an average of 369.8 mm yr-1 during the study period. The overall increase rate of 1.7 mm yr-2 (r = 0.43 p = 0.19) was mainly driven by the increase of total ET in forests. During the period from 2006 to 2009, precipitation and LAI decreased widely and consequently

  9. Hydrologic Evaluation of Integrated Multi-satellite Retrivals for GPM over Nanliu River Basin in Southern China

    NASA Astrophysics Data System (ADS)

    Zhenqing, L.; Sheng, C.; Chaoying, H.

    2017-12-01

    The core satellite of Global Precipitation Measurement (GPM) mission was launched on 27 February2014 with two core sensors dual-frequency precipitation radar (DPR) and microwave imager (GMI). The algorithm of Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG) blends the advantages of currently most popular satellite-based quantitative precipitation estimates (QPE) algorithms, i.e. TRMM Multi-satellite Precipitation Analysis (TMPA), Climate Prediction Center morphing technique (CMORPH) ADDIN EN.CITE ADDIN EN.CITE.DATA , Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS).Therefore, IMERG is deemed to be the state-of-art precipitation product with high spatio-temporal resolution of 0.1°/30min. The real-time and post real-time IMERG products are now available online at https://stormpps.gsfc.nasa.gov/storm. Early studies about assessment of IMERG with gauge observations or analysis products show that the current version GPM Day-1 product IMERG demonstrates promising performance over China [1], Europe [2], and United States [3]. However, few studies are found to study the IMERG' potentials of hydrologic utility.In this study, the real-time and final run post real-time IMERG products are hydrologically evaluated with gauge analysis product as reference over Nanliu River basin (Fig.1) in Southern China since March 2014 to February 2017 with Xinanjiang model. Statistics metrics Relative Bias (RB), Root-Mean-Squared Error (RMSE), Correlation Coefficient (CC), Probability Of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), and Nash-Sutcliffe (NSCE) index will be used to compare the stream flow simulated with IMERG to the observed stream flow. This timely hydrologic evaluation is expected to offer insights into IMERG' potentials in hydrologic utility and thus provide useful feedback to the IMERG algorithm developers and

  10. Association between Changing Mortality of Digestive Tract Cancers and Water Pollution: A Case Study in the Huai River Basin, China

    PubMed Central

    Ren, Hongyan; Wan, Xia; Yang, Fei; Shi, Xiaoming; Xu, Jianwei; Zhuang, Dafang; Yang, Gonghuan

    2014-01-01

    The relationship between the ever-increasing cancer mortality and water pollution is an important public concern in China. This study aimed to explore the association between serious water pollution and increasing digestive cancer mortality in the Huai River Basin (HRB) in China. A series of frequency of serious pollution (FSP) indices including water quality grade (FSPWQG), biochemical oxygen demand (FSPBOD), chemical oxygen demand (FSPCOD), and ammonia nitrogen (FSPAN) were used to characterize the surface water quality between 1997 and 2006. Data on the county-level changing mortality (CM) due to digestive tract cancers between 1975 and 2006 were collected for 14 counties in the study area. Most of investigated counties (eight) with high FSPWQG (>50%) distributed in the northern region of the HRB and had larger CMs of digestive tract cancers. In addition to their similar spatial distribution, significant correlations between FSP indices and CMs were observed by controlling for drinking water safety (DWS), gross domestic product (GDP), and population (POP). Furthermore, the above-mentioned partial correlations were clearly increased when only controlling for GDP and POP. Our study indicated that county-level variations of digestive cancer mortality are remarkably associated with water pollution, and suggested that continuous measures for improving surface water quality and DWS and hygienic interventions should be effectively implemented by local governments. PMID:25546281

  11. Association between changing mortality of digestive tract cancers and water pollution: a case study in the Huai River Basin, China.

    PubMed

    Ren, Hongyan; Wan, Xia; Yang, Fei; Shi, Xiaoming; Xu, Jianwei; Zhuang, Dafang; Yang, Gonghuan

    2014-12-23

    The relationship between the ever-increasing cancer mortality and water pollution is an important public concern in China. This study aimed to explore the association between serious water pollution and increasing digestive cancer mortality in the Huai River Basin (HRB) in China. A series of frequency of serious pollution (FSP) indices including water quality grade (FSPWQG), biochemical oxygen demand (FSPBOD), chemical oxygen demand (FSPCOD), and ammonia nitrogen (FSPAN) were used to characterize the surface water quality between 1997 and 2006. Data on the county-level changing mortality (CM) due to digestive tract cancers between 1975 and 2006 were collected for 14 counties in the study area. Most of investigated counties (eight) with high FSPWQG (>50%) distributed in the northern region of the HRB and had larger CMs of digestive tract cancers. In addition to their similar spatial distribution, significant correlations between FSP indices and CMs were observed by controlling for drinking water safety (DWS), gross domestic product (GDP), and population (POP). Furthermore, the above-mentioned partial correlations were clearly increased when only controlling for GDP and POP. Our study indicated that county-level variations of digestive cancer mortality are remarkably associated with water pollution, and suggested that continuous measures for improving surface water quality and DWS and hygienic interventions should be effectively implemented by local governments.

  12. Analysis of the geological structure and tectonic evolution of Xingning-Jinghai sag in deep water area, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Han, Xiaoying; Ren, Jianye; Lin, Zi; Yang, Linlong

    2015-04-01

    Recent years, oil and gas exploration of the Pearl River Mouth Basin in the northern margin of South China Sea continuously achieved historic breakthroughs. The Xingning-Jinghai sag, which is located in southeast of the Pearl River Mouth Basin, is a deep-water sag with a great exploration potential. Its tectonic evolution is extremely complex. It experienced Mesozoic subduction to Cenozoic intra-continental rifting background, and finally evolved into a deep-water sag of the northern continental margin of South China Sea. The geological characteristics and the tectonic evolution of Xingning-Jinghai sag was closely related to the process of formation and evolution of the passive continental margin of the northern South China Sea. It is confirmed by many geophysical data that compared with adjacent Chaoshan depression, the crustal thickness of Xingning-Jinghai sag was rapidly thinning, and it developed detachment faults with later magmatic intrusion. The development of detachment faults have dynamic significance for the spreading of the South China Sea. Based on the seismic geological interpretation of 2D seismic data in the study area, the characteristics of detachment fault and supra-detachment basin have been proposed in this study. The characteristics of the detachment fault are low angle and high ratio between heave and throw. The geometry of the detachment fault is a typical lisric shape, with the dip of fault decreasing generally from the seismic profile. The detachment basin where sediments are not deposited over a tilting hanging-wall block but onto a tectonically exhumed footwall which is different from the typical half graben basin. Seismic profiles indicate two different structural styles in the east and west part of Xingning-Jinghai sag. In the west of the sag, there developed two large detachment faults, which control their detachment basin systems and the typical H block, and the two detachment faults are dipping landward and seaward, respectively. In

  13. Petroleum systems of the Malay Basin Province, Malaysia

    USGS Publications Warehouse

    Bishop, Michele G.

    2002-01-01

    The offshore Malay Basin province is a Tertiary oil and gas province composed of a complex of half grabens that were filled by lacustrine shales and continental clastics.These deposits were overlain by clastics of a large delta system that covered the basin.Delta progradation was interupted by transgressions of the South China Sea to the southeast, which finally flooded the basin to form the Gulf of Thailand.Oil and gas from the Oligocene to Miocene lacustrine shales and Miocene deltaic coals is trapped primarily in anticlines formed by inversion of the half grabens during the late Miocene.Hydrocarbon reserves that have been discovered amount to 12 billion barrels of oil equivalent.The U.S. Geological Survey assessment of the estimated quantities of conventional oil, gas and condensate that have the potential to be added to reserves by the year 2025 for this province is 6.3 billion barrels of oil equivalent (BBOE) (U. S. Geological Survey World Energy Assessment Team, 2000).

  14. Lacustrine deposits in rifted deep basins of Yellow Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, J.H.

    1985-02-01

    The central Yellow Sea is a typical intracratonic rifted basin that consists of 4 major depressions bounded by aligned listric faults along horst blocks of uplifted basement (Kunsan, West Kunsan, Yellow Sea sub-basins, and Central Trough). The depressions are half grabens caused by pull-apart extensional stresses. Core analysis and micropaleotologic study indicate that more than 5 km of lacustrine sediments were accumulated in the central part of the West Kunsan basin. Two distinctive sedimentary successions are recognized in the core descriptions: alternation of reddish-brown siltstones and sandstones containing evaporites and marlstones, and an overlying progradational sequence including minor limestone bedsmore » in the lower part of the sequence. The progradational sequence is interpreted as lacustrine deltaic deposits. Abundant palynofloral occurrence of freshwater green algae, Pediastrum, and absence of marine fauna such as dinoflagellates are also supporting evidence for a lacustrine environment. The lithofacies and tectonic framework of the Yellow Sea are very similar to those of Cretaceous lacustrine sediments of the Korea Peninsula onshore and Pohai coastal basin in China.« less

  15. Distributions, Early Diagenesis, and Spatial Characteristics of Amino Acids in Sediments of Multi-Polluted Rivers: A Case Study in the Haihe River Basin, China.

    PubMed

    Zhao, Yu; Shan, Baoqing; Tang, Wenzhong; Zhang, Hong; Rong, Nan; Ding, Yuekui

    2016-02-19

    The Haihe River Basin, which is one of the most water-scarce and polluted river basins in China, has abnormally high nitrogen levels. In this study, total hydrolyzable amino acids (THAAs) were measured in surface sediment and sediment core samples in the Haihe River Basin to determine if amino acids were potential sources of ammonium, organic nitrogen, and organic carbon. The rivers were found to be in a state of hypoxia and contain abnormally high levels of ammonium and organic nitrogen. Additionally, NH₃-N was the predominant form of inorganic nitrogen in the surface sediments, while organic nitrogen accounted for 92.53% of sedimentary nitrogen. THAAs-C accounted for 14.92% of the total organic carbon, while THAAs-N accounted for more than 49.59% of organic nitrogen and 45.68% of total nitrogen. The major fraction of THAAs were protein amino acids. Three sediment cores of the most heavily polluted rivers also showed high levels of THAAs. Evaluation of the degradation index (DI) of sedimentary organic matter in sediments evaluated based on the THAAs revealed that most positive DI values were found in the downstream portion of the Ziya River Watershed. Additionally, the DI of surface sediment was correlated with THAAs (r² = 0.763, p < 0.001), as was the DI of sediment cores (r² = 0.773, p < 0.001). Overall, amino acids in sediments were found to be an important potential source of ammonium, organic nitrogen, and organic carbon.

  16. Distributions, Early Diagenesis, and Spatial Characteristics of Amino Acids in Sediments of Multi-Polluted Rivers: A Case Study in the Haihe River Basin, China

    PubMed Central

    Zhao, Yu; Shan, Baoqing; Tang, Wenzhong; Zhang, Hong; Rong, Nan; Ding, Yuekui

    2016-01-01

    The Haihe River Basin, which is one of the most water-scarce and polluted river basins in China, has abnormally high nitrogen levels. In this study, total hydrolyzable amino acids (THAAs) were measured in surface sediment and sediment core samples in the Haihe River Basin to determine if amino acids were potential sources of ammonium, organic nitrogen, and organic carbon. The rivers were found to be in a state of hypoxia and contain abnormally high levels of ammonium and organic nitrogen. Additionally, NH3-N was the predominant form of inorganic nitrogen in the surface sediments, while organic nitrogen accounted for 92.53% of sedimentary nitrogen. THAAs-C accounted for 14.92% of the total organic carbon, while THAAs-N accounted for more than 49.59% of organic nitrogen and 45.68% of total nitrogen. The major fraction of THAAs were protein amino acids. Three sediment cores of the most heavily polluted rivers also showed high levels of THAAs. Evaluation of the degradation index (DI) of sedimentary organic matter in sediments evaluated based on the THAAs revealed that most positive DI values were found in the downstream portion of the Ziya River Watershed. Additionally, the DI of surface sediment was correlated with THAAs (r2 = 0.763, p < 0.001), as was the DI of sediment cores (r2 = 0.773, p < 0.001). Overall, amino acids in sediments were found to be an important potential source of ammonium, organic nitrogen, and organic carbon. PMID:26907310

  17. Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China.

    PubMed

    Lei, Xinglin; Huang, Dongjian; Su, Jinrong; Jiang, Guomao; Wang, Xiaolong; Wang, Hui; Guo, Xin; Fu, Hong

    2017-08-11

    This paper presents a timely and detailed study of significant injection-induced seismicity recently observed in the Sichuan Basin, China, where shale-gas hydraulic fracturing has been initiated and the aggressive production of shale gas is planned for the coming years. Multiple lines of evidence, including an epidemic-type aftershock sequence model, relocated hypocenters, the mechanisms of 13 large events (M W  > 3.5), and numerically calculated Coulomb failure stress results, convincingly suggest that a series of earthquakes with moment magnitudes up to M W 4.7 has been induced by "short-term" (several months at a single well pad) injections for hydraulic fracturing at depths of 2.3 to 3 km. This, in turn, supports the hypothesis that they represent examples of injection-induced fault reactivation. The geologic reasons why earthquake magnitudes associated with hydraulic fracturing operations are so high in this area are discussed. Because hydraulic fracturing operations are on the rise in the Sichuan Basin, it would be beneficial for the geoscience, gas operator, regulator, and academic communities to work collectively to elucidate the local factors governing the high level of injection-induced seismicity, with the ultimate goal of ensuring that shale gas fracking can be carried out effectively and safely.

  18. Effects of climate change on hydrology and hydraulics of Qu River Basin, East China.

    NASA Astrophysics Data System (ADS)

    Gao, C.; Zhu, Q.; Zhao, Z.; Pan, S.; Xu, Y. P.

    2015-12-01

    The impacts of climate change on regional hydrological extreme events have attracted much attention in recent years. This paper aims to provide a general overview of changes on future runoffs and water levels in the Qu River Basin, upper reaches of Qiantang River, East China by combining future climate scenarios, hydrological model and 1D hydraulic model. The outputs of four GCMs BCC, BNU, CanESM and CSIRO under two scenarios RCP4.5 and RCP8.5 for 2021-2050 are chosen to represent future climate change projections. The LARS-WG statistical downscaling method is used to downscale the coarse GCM outputs and generate 50 years of synthetic precipitation and maximum and minimum temperatures to drive the GR4J hydrological model and the 1D hydraulic model for the baseline period 1971-2000 and the future period 2021-2050. Finally the POT (Peaks Over Threshold) method is applied to analyze the change of extreme events in the study area. The results show that design runoffs and water levels all indicate an increasing trend in the future period for Changshangang River, Jiangshangang River and Qu River at most cases, especially for small return periods(≤20), and for Qu River the increase becomes larger, which suggests that the risk of flooding will probably become greater and appropriate adaptation measures need to be taken.

  19. Long-term accumulation and transport of anthropogenic phosphorus in three river basins

    NASA Astrophysics Data System (ADS)

    Powers, Stephen M.; Bruulsema, Thomas W.; Burt, Tim P.; Chan, Neng Iong; Elser, James J.; Haygarth, Philip M.; Howden, Nicholas J. K.; Jarvie, Helen P.; Lyu, Yang; Peterson, Heidi M.; Sharpley, Andrew N.; Shen, Jianbo; Worrall, Fred; Zhang, Fusuo

    2016-05-01

    Global food production depends on phosphorus. Phosphorus is broadly applied as fertilizer, but excess phosphorus contributes to eutrophication of surface water bodies and coastal ecosystems. Here we present an analysis of phosphorus fluxes in three large river basins, including published data on fertilizer, harvested crops, sewage, food waste and river fluxes. Our analyses reveal that the magnitude of phosphorus accumulation has varied greatly over the past 30-70 years in mixed agricultural-urban landscapes of the Thames Basin, UK, the Yangtze Basin, China, and the rural Maumee Basin, USA. Fluxes of phosphorus in fertilizer, harvested crops, food waste and sewage dominate over the river fluxes. Since the late 1990s, net exports from the Thames and Maumee Basins have exceeded inputs, suggesting net mobilization of the phosphorus pool accumulated in earlier decades. In contrast, the Yangtze Basin has consistently accumulated phosphorus since 1980. Infrastructure modifications such as sewage treatment and dams may explain more recent declines in total phosphorus fluxes from the Thames and Yangtze Rivers. We conclude that human-dominated river basins may undergo a prolonged but finite accumulation phase when phosphorus inputs exceed agricultural demand, and this accumulated phosphorus may continue to mobilize long after inputs decline.

  20. Recent ground fissures in the Hetao basin, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    He, Zhongtai; Ma, Baoqi; Long, Jianyu; Zhang, Hao; Liang, Kuan; Jiang, Dawei

    2017-10-01

    Ground fissures are a geological hazard with complex formation mechanisms. Increasing amounts of human activity have created more ground fissures, which can destroy buildings and threaten human security. Some ground fissures indicate potentially devastating earthquakes, so we must pay attention to these hazards. This paper documents recently discovered ground fissures in the Hetao basin. These ground fissures are located along the frontal margins of the terraces of the Sertengshan piedmont fault. These fissures are 600-1600 m long, 5-50 cm wide, and at most 1 m deep. These ground fissures emerged after 2010 and ruptured newly constructed roads and field ridges. The deep geodynamic mechanisms within this extensional environment, which is dominated by NE-SW principal compressive shear, involve N-S tensile stress, which has produced continuous subsidence in the Hetao basin and continuous activity along the Sertengshan piedmont fault since the late Quaternary. Trenches across the ground fissures reveal that the fissures are the latest manifestation of the activity of preexisting faults and are the result of creep-slip movement along the faults. The groundwater level in the Hetao basin has been dropping since the 1960s because of overexploitation, resulting in subsidence. When the tensile stress exceeds the ultimate tensile strength of the strata, the strata rupture along preexisting faults, producing ground fissures. Thus, the Sertengshan piedmont fault planes are the structural foundation of the ground fissures, and groundwater extraction induces the development of ground fissures.