Nott, Melissa T; Chapparo, Christine
2008-09-01
Agitation following traumatic brain injury is characterised by a heightened state of activity with disorganised information processing that interferes with learning and achieving functional goals. This study aimed to identify information processing problems during task performance of a severely agitated adult using the Perceive, Recall, Plan and Perform (PRPP) System of Task Analysis. Second, this study aimed to examine the sensitivity of the PRPP System to changes in task performance over a short period of rehabilitation, and third, to evaluate the guidance provided by the PRPP in directing intervention. A case study research design was employed. The PRPP System of Task Analysis was used to assess changes in task embedded information processing capacity during occupational therapy intervention with a severely agitated adult in a rehabilitation context. Performance is assessed on three selected tasks over a one-month period. Information processing difficulties during task performance can be clearly identified when observing a severely agitated adult following a traumatic brain injury. Processing skills involving attention, sensory processing and planning were most affected at this stage of rehabilitation. These processing difficulties are linked to established descriptions of agitated behaviour. Fluctuations in performance across three tasks of differing processing complexity were evident, leading to hypothesised relationships between task complexity, environment and novelty with information processing errors. Changes in specific information processing capacity over time were evident based on repeated measures using the PRPP System of Task Analysis. This lends preliminary support for its utility as an outcome measure, and raises hypotheses about the type of therapy required to enhance information processing in people with severe agitation. The PRPP System is sensitive to information processing changes in severely agitated adults when used to reassess performance over short intervals and can provide direct guidance to occupational therapy intervention to improve task embedded information processing by categorising errors under four stages of an information processing model: Perceive, Recall, Plan and Perform.
Methods for Conducting Cognitive Task Analysis for a Decision Making Task.
1996-01-01
Cognitive task analysis (CTA) improves traditional task analysis procedures by analyzing the thought processes of performers while they complete a...for using these methods to conduct a CTA for domains which involve critical decision making tasks in naturalistic settings. The cognitive task analysis methods
Using task analysis to improve the requirements elicitation in health information system.
Teixeira, Leonor; Ferreira, Carlos; Santos, Beatriz Sousa
2007-01-01
This paper describes the application of task analysis within the design process of a Web-based information system for managing clinical information in hemophilia care, in order to improve the requirements elicitation and, consequently, to validate the domain model obtained in a previous phase of the design process (system analysis). The use of task analysis in this case proved to be a practical and efficient way to improve the requirements engineering process by involving users in the design process.
Thread concept for automatic task parallelization in image analysis
NASA Astrophysics Data System (ADS)
Lueckenhaus, Maximilian; Eckstein, Wolfgang
1998-09-01
Parallel processing of image analysis tasks is an essential method to speed up image processing and helps to exploit the full capacity of distributed systems. However, writing parallel code is a difficult and time-consuming process and often leads to an architecture-dependent program that has to be re-implemented when changing the hardware. Therefore it is highly desirable to do the parallelization automatically. For this we have developed a special kind of thread concept for image analysis tasks. Threads derivated from one subtask may share objects and run in the same context but may process different threads of execution and work on different data in parallel. In this paper we describe the basics of our thread concept and show how it can be used as basis of an automatic task parallelization to speed up image processing. We further illustrate the design and implementation of an agent-based system that uses image analysis threads for generating and processing parallel programs by taking into account the available hardware. The tests made with our system prototype show that the thread concept combined with the agent paradigm is suitable to speed up image processing by an automatic parallelization of image analysis tasks.
Parallel processing considerations for image recognition tasks
NASA Astrophysics Data System (ADS)
Simske, Steven J.
2011-01-01
Many image recognition tasks are well-suited to parallel processing. The most obvious example is that many imaging tasks require the analysis of multiple images. From this standpoint, then, parallel processing need be no more complicated than assigning individual images to individual processors. However, there are three less trivial categories of parallel processing that will be considered in this paper: parallel processing (1) by task; (2) by image region; and (3) by meta-algorithm. Parallel processing by task allows the assignment of multiple workflows-as diverse as optical character recognition [OCR], document classification and barcode reading-to parallel pipelines. This can substantially decrease time to completion for the document tasks. For this approach, each parallel pipeline is generally performing a different task. Parallel processing by image region allows a larger imaging task to be sub-divided into a set of parallel pipelines, each performing the same task but on a different data set. This type of image analysis is readily addressed by a map-reduce approach. Examples include document skew detection and multiple face detection and tracking. Finally, parallel processing by meta-algorithm allows different algorithms to be deployed on the same image simultaneously. This approach may result in improved accuracy.
Di, Xin; Huang, Jia; Biswal, Bharat B
2017-01-01
Understanding functional connectivity of the amygdala with other brain regions, especially task modulated connectivity, is a critical step toward understanding the role of the amygdala in emotional processes and the interactions between emotion and cognition. The present study performed coordinate-based meta-analysis on studies of task modulated connectivity of the amygdala which used psychophysiological interaction (PPI) analysis. We first analyzed 49 PPI studies on different types of tasks using activation likelihood estimation (ALE) meta-analysis. Widespread cortical and subcortical regions showed consistent task modulated connectivity with the amygdala, including the medial frontal cortex, bilateral insula, anterior cingulate, fusiform gyrus, parahippocampal gyrus, thalamus, and basal ganglia. These regions were in general overlapped with those showed coactivations with the amygdala, suggesting that these regions and amygdala are not only activated together, but also show different levels of interactions during tasks. Further analyses with subsets of PPI studies revealed task specific functional connectivities with the amygdala that were modulated by fear processing, face processing, and emotion regulation. These results suggest a dynamic modulation of connectivity upon task demands, and provide new insights on the functions of the amygdala in different affective and cognitive processes. The meta-analytic approach on PPI studies may offer a framework toward systematical examinations of task modulated connectivity.
Cue Representation and Situational Awareness in Task Analysis
ERIC Educational Resources Information Center
Carl, Diana R.
2009-01-01
Task analysis in human performance technology is used to determine how human performance can be well supported with training, job aids, environmental changes, and other interventions. Early work by Miller (1953) and Gilbert (1969, 1974) addressed cue processing in task execution and recommended cue descriptions in task analysis. Modern task…
10 CFR 712.36 - Medical assessment process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... assigned duties. (b) Employers must provide a job task analysis for those individuals involved in HRP... performed if a job task analysis has not been provided. (c) The medical process by the Designated Physician...
Initiating an ergonomic analysis. A process for jobs with highly variable tasks.
Conrad, K M; Lavender, S A; Reichelt, P A; Meyer, F T
2000-09-01
Occupational health nurses play a vital role in addressing ergonomic problems in the workplace. Describing and documenting exposure to ergonomic risk factors is a relatively straightforward process in jobs in which the work is repetitive. In other types of work, the analysis becomes much more challenging because tasks may be repeated infrequently, or at irregular time intervals, or under different environmental and temporal conditions, thereby making it difficult to observe a "representative" sample of the work performed. This article describes a process used to identify highly variable job tasks for ergonomic analyses. The identification of tasks for ergonomic analysis was a two step process involving interviews and a survey of firefighters and paramedics from a consortium of 14 suburban fire departments. The interviews were used to generate a list of frequently performed, physically strenuous job tasks and to capture clear descriptions of those tasks and associated roles. The goals of the survey were to confirm the interview findings across the entire target population and to quantify the frequency and degree of strenuousness of each task. In turn, the quantitative results from the survey were used to prioritize job tasks for simulation. Although this process was used to study firefighters and paramedics, the approach is likely to be suitable for many other types of occupations in which the tasks are highly variable in content and irregular in frequency.
Toward a Cognitive Task Analysis for Biomedical Query Mediation
Hruby, Gregory W.; Cimino, James J.; Patel, Vimla; Weng, Chunhua
2014-01-01
In many institutions, data analysts use a Biomedical Query Mediation (BQM) process to facilitate data access for medical researchers. However, understanding of the BQM process is limited in the literature. To bridge this gap, we performed the initial steps of a cognitive task analysis using 31 BQM instances conducted between one analyst and 22 researchers in one academic department. We identified five top-level tasks, i.e., clarify research statement, explain clinical process, identify related data elements, locate EHR data element, and end BQM with either a database query or unmet, infeasible information needs, and 10 sub-tasks. We evaluated the BQM task model with seven data analysts from different clinical research institutions. Evaluators found all the tasks completely or semi-valid. This study contributes initial knowledge towards the development of a generalizable cognitive task representation for BQM. PMID:25954589
Toward a cognitive task analysis for biomedical query mediation.
Hruby, Gregory W; Cimino, James J; Patel, Vimla; Weng, Chunhua
2014-01-01
In many institutions, data analysts use a Biomedical Query Mediation (BQM) process to facilitate data access for medical researchers. However, understanding of the BQM process is limited in the literature. To bridge this gap, we performed the initial steps of a cognitive task analysis using 31 BQM instances conducted between one analyst and 22 researchers in one academic department. We identified five top-level tasks, i.e., clarify research statement, explain clinical process, identify related data elements, locate EHR data element, and end BQM with either a database query or unmet, infeasible information needs, and 10 sub-tasks. We evaluated the BQM task model with seven data analysts from different clinical research institutions. Evaluators found all the tasks completely or semi-valid. This study contributes initial knowledge towards the development of a generalizable cognitive task representation for BQM.
A Study of Novice Systems Analysis Problem Solving Behaviors Using Protocol Analysis
1992-09-01
conducted. Each subject was given the same task to perform. The task involved a case study (Appendix B) of a utility company’s customer order processing system...behavior (Ramesh, 1989). The task was to design a customer order processing system that utilized a centralized telephone answering service center...of the utility company’s customer order processing system that was developed based on information obtained by a large systems consulting firm during
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This model curriculum outline was developed using a turbo-DACUM (Developing a Curriculum) process which utilizes practicing experts to undertake a comprehensive job and task analysis. The job and task analysis serves to establish current baseline data accurately and to improve both the process and the product of the job through constant and continuous improvement of training. The DACUM process is based on the following assumptions: (1) Expert workers are the best source for task analysis. (2) Any occupation can be described effectively in terms of tasks. (3) All tasks imply knowledge, skills, and attitudes/values. A DACUM panel, comprised of sixmore » experienced and knowledgeable technicians who are presently working in the field, was given an orientation to the DACUM process. The panel then identified, verified, and sequenced all the necessary job duty areas and tasks. The broad duty categories were rated according to relative importance and assigned percentage ratings in priority order. The panel then rated every task for each of the duties on a scale of 1 to 3. A rating of 3 indicates an {open_quotes}essential{close_quotes} task, a rating of 2 indicates an {open_quotes}important{close_quotes} task, and a rating of 1 indicates a {open_quotes}desirable{close_quotes} task.« less
Memory systems, processes, and tasks: taxonomic clarification via factor analysis.
Bruss, Peter J; Mitchell, David B
2009-01-01
The nature of various memory systems was examined using factor analysis. We reanalyzed data from 11 memory tasks previously reported in Mitchell and Bruss (2003). Four well-defined factors emerged, closely resembling episodic and semantic memory and conceptual and perceptual implicit memory, in line with both memory systems and transfer-appropriate processing accounts. To explore taxonomic issues, we ran separate analyses on the implicit tasks. Using a cross-format manipulation (pictures vs. words), we identified 3 prototypical tasks. Word fragment completion and picture fragment identification tasks were "factor pure," tapping perceptual processes uniquely. Category exemplar generation revealed its conceptual nature, yielding both cross-format priming and a picture superiority effect. In contrast, word stem completion and picture naming were more complex, revealing attributes of both processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riddle, F. J.
2003-06-26
The Automated Hazard Analysis (AHA) application is a software tool used to conduct job hazard screening and analysis of tasks to be performed in Savannah River Site facilities. The AHA application provides a systematic approach to the assessment of safety and environmental hazards associated with specific tasks, and the identification of controls regulations, and other requirements needed to perform those tasks safely. AHA is to be integrated into existing Savannah River site work control and job hazard analysis processes. Utilization of AHA will improve the consistency and completeness of hazard screening and analysis, and increase the effectiveness of the workmore » planning process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shekiro, Joe; Elander, Richard
2015-12-01
The purpose of this cooperative work agreement between General Mills Inc. (GMI) and NREL is to determine the feasibility of producing a valuable food ingredient (xylo-oligosaccharides or XOS), a highly soluble fiber material, from agricultural waste streams, at an advantaged cost level relative to similar existing ingredients. The scope of the project includes pilot-scale process development (Task 1), compositional analysis (Task 2), and techno-economic analysis (Task 3).
No psychological effect of color context in a low level vision task
Pedley, Adam; Wade, Alex R
2013-01-01
Background: A remarkable series of recent papers have shown that colour can influence performance in cognitive tasks. In particular, they suggest that viewing a participant number printed in red ink or other red ancillary stimulus elements improves performance in tasks requiring local processing and impedes performance in tasks requiring global processing whilst the reverse is true for the colour blue. The tasks in these experiments require high level cognitive processing such as analogy solving or remote association tests and the chromatic effect on local vs. global processing is presumed to involve widespread activation of the autonomic nervous system. If this is the case, we might expect to see similar effects on all local vs. global task comparisons. To test this hypothesis, we asked whether chromatic cues also influence performance in tasks involving low level visual feature integration. Methods: Subjects performed either local (contrast detection) or global (form detection) tasks on achromatic dynamic Glass pattern stimuli. Coloured instructions, target frames and fixation points were used to attempt to bias performance to different task types. Based on previous literature, we hypothesised that red cues would improve performance in the (local) contrast detection task but would impede performance in the (global) form detection task. Results: A two-way, repeated measures, analysis of covariance (2×2 ANCOVA) with gender as a covariate, revealed no influence of colour on either task, F(1,29) = 0.289, p = 0.595, partial η 2 = 0.002. Additional analysis revealed no significant differences in only the first attempts of the tasks or in the improvement in performance between trials. Discussion: We conclude that motivational processes elicited by colour perception do not influence neuronal signal processing in the early visual system, in stark contrast to their putative effects on processing in higher areas. PMID:25075280
No psychological effect of color context in a low level vision task.
Pedley, Adam; Wade, Alex R
2013-01-01
A remarkable series of recent papers have shown that colour can influence performance in cognitive tasks. In particular, they suggest that viewing a participant number printed in red ink or other red ancillary stimulus elements improves performance in tasks requiring local processing and impedes performance in tasks requiring global processing whilst the reverse is true for the colour blue. The tasks in these experiments require high level cognitive processing such as analogy solving or remote association tests and the chromatic effect on local vs. global processing is presumed to involve widespread activation of the autonomic nervous system. If this is the case, we might expect to see similar effects on all local vs. global task comparisons. To test this hypothesis, we asked whether chromatic cues also influence performance in tasks involving low level visual feature integration. Subjects performed either local (contrast detection) or global (form detection) tasks on achromatic dynamic Glass pattern stimuli. Coloured instructions, target frames and fixation points were used to attempt to bias performance to different task types. Based on previous literature, we hypothesised that red cues would improve performance in the (local) contrast detection task but would impede performance in the (global) form detection task. A two-way, repeated measures, analysis of covariance (2×2 ANCOVA) with gender as a covariate, revealed no influence of colour on either task, F(1,29) = 0.289, p = 0.595, partial η (2) = 0.002. Additional analysis revealed no significant differences in only the first attempts of the tasks or in the improvement in performance between trials. We conclude that motivational processes elicited by colour perception do not influence neuronal signal processing in the early visual system, in stark contrast to their putative effects on processing in higher areas.
Combined analysis of job and task benzene air exposures among workers at four US refinery operations
Shin, Jennifer (Mi); Unice, Ken M; Gaffney, Shannon H; Kreider, Marisa L; Gelatt, Richard H; Panko, Julie M
2016-01-01
Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (<180 min) samples characterizing 24 tasks were evaluated. Personal air sample data from four individual refineries were pooled based on a number of factors including (1) the consistent sampling approach used by refinery industrial hygienists over time, (2) the use of similar exposure controls, (3) the comparability of benzene content of process streams and end products, (4) the ability to assign uniform job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers’ exposures to benzene over the past 30 years. PMID:26862134
Burns, Amanda; Shin, Jennifer Mi; Unice, Ken M; Gaffney, Shannon H; Kreider, Marisa L; Gelatt, Richard H; Panko, Julie M
2017-03-01
Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (<180 min) samples characterizing 24 tasks were evaluated. Personal air sample data from four individual refineries were pooled based on a number of factors including (1) the consistent sampling approach used by refinery industrial hygienists over time, (2) the use of similar exposure controls, (3) the comparability of benzene content of process streams and end products, (4) the ability to assign uniform job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers' exposures to benzene over the past 30 years.
Heuristic Task Analysis on E-Learning Course Development: A Formative Research Study
ERIC Educational Resources Information Center
Lee, Ji-Yeon; Reigeluth, Charles M.
2009-01-01
Utilizing heuristic task analysis (HTA), a method developed for eliciting, analyzing, and representing expertise in complex cognitive tasks, a formative research study was conducted on the task of e-learning course development to further improve the HTA process. Three instructional designers from three different post-secondary institutions in the…
Neale, Chris; Johnston, Patrick; Hughes, Matthew; Scholey, Andrew
2015-01-01
The Rapid Visual Information Processing (RVIP) task, a serial discrimination task where task performance believed to reflect sustained attention capabilities, is widely used in behavioural research and increasingly in neuroimaging studies. To date, functional neuroimaging research into the RVIP has been undertaken using block analyses, reflecting the sustained processing involved in the task, but not necessarily the transient processes associated with individual trial performance. Furthermore, this research has been limited to young cohorts. This study assessed the behavioural and functional magnetic resonance imaging (fMRI) outcomes of the RVIP task using both block and event-related analyses in a healthy middle aged cohort (mean age = 53.56 years, n = 16). The results show that the version of the RVIP used here is sensitive to changes in attentional demand processes with participants achieving a 43% accuracy hit rate in the experimental task compared with 96% accuracy in the control task. As shown by previous research, the block analysis revealed an increase in activation in a network of frontal, parietal, occipital and cerebellar regions. The event related analysis showed a similar network of activation, seemingly omitting regions involved in the processing of the task (as shown in the block analysis), such as occipital areas and the thalamus, providing an indication of a network of regions involved in correct trial performance. Frontal (superior and inferior frontal gryi), parietal (precuenus, inferior parietal lobe) and cerebellar regions were shown to be active in both the block and event-related analyses, suggesting their importance in sustained attention/vigilance. These networks and the differences between them are discussed in detail, as well as implications for future research in middle aged cohorts.
A dual-task investigation of automaticity in visual word processing
NASA Technical Reports Server (NTRS)
McCann, R. S.; Remington, R. W.; Van Selst, M.
2000-01-01
An analysis of activation models of visual word processing suggests that frequency-sensitive forms of lexical processing should proceed normally while unattended. This hypothesis was tested by having participants perform a speeded pitch discrimination task followed by lexical decisions or word naming. As the stimulus onset asynchrony between the tasks was reduced, lexical-decision and naming latencies increased dramatically. Word-frequency effects were additive with the increase, indicating that frequency-sensitive processing was subject to postponement while attention was devoted to the other task. Either (a) the same neural hardware shares responsibility for lexical processing and central stages of choice reaction time task processing and cannot perform both computations simultaneously, or (b) lexical processing is blocked in order to optimize performance on the pitch discrimination task. Either way, word processing is not as automatic as activation models suggest.
2003-10-01
Among the procedures developed to identify cognitive processes, there are the Cognitive Task Analysis (CTA) and the Cognitive Work Analysis (CWA...of Cognitive Task Design. [11] Potter, S.S., Roth, E.M., Woods, D.D., and Elm, W.C. (2000). Cognitive Task Analysis as Bootstrapping Multiple...Converging Techniques, In Schraagen, Chipman, and Shalin (Eds.). Cognitive Task Analysis . Mahwah, NJ: Lawrence Erlbaum Associates. [12] Roth, E.M
Using task analysis to understand the Data System Operations Team
NASA Technical Reports Server (NTRS)
Holder, Barbara E.
1994-01-01
The Data Systems Operations Team (DSOT) currently monitors the Multimission Ground Data System (MGDS) at JPL. The MGDS currently supports five spacecraft and within the next five years, it will support ten spacecraft simultaneously. The ground processing element of the MGDS consists of a distributed UNIX-based system of over 40 nodes and 100 processes. The MGDS system provides operators with little or no information about the system's end-to-end processing status or end-to-end configuration. The lack of system visibility has become a critical issue in the daily operation of the MGDS. A task analysis was conducted to determine what kinds of tools were needed to provide DSOT with useful status information and to prioritize the tool development. The analysis provided the formality and structure needed to get the right information exchange between development and operations. How even a small task analysis can improve developer-operator communications is described, and the challenges associated with conducting a task analysis in a real-time mission operations environment are examined.
McBride, Dawn M; Anne Dosher, Barbara
2002-09-01
Four experiments were conducted to evaluate explanations of picture superiority effects previously found for several tasks. In a process dissociation procedure (Jacoby, 1991) with word stem completion, picture fragment completion, and category production tasks, conscious and automatic memory processes were compared for studied pictures and words with an independent retrieval model and a generate-source model. The predictions of a transfer appropriate processing account of picture superiority were tested and validated in "process pure" latent measures of conscious and unconscious, or automatic and source, memory processes. Results from both model fits verified that pictures had a conceptual (conscious/source) processing advantage over words for all tasks. The effects of perceptual (automatic/word generation) compatibility depended on task type, with pictorial tasks favoring pictures and linguistic tasks favoring words. Results show support for an explanation of the picture superiority effect that involves an interaction of encoding and retrieval processes.
Pre-processing Tasks in Indonesian Twitter Messages
NASA Astrophysics Data System (ADS)
Hidayatullah, A. F.; Ma'arif, M. R.
2017-01-01
Twitter text messages are very noisy. Moreover, tweet data are unstructured and complicated enough. The focus of this work is to investigate pre-processing technique for Twitter messages in Bahasa Indonesia. The main goal of this experiment is to clean the tweet data for further analysis. Thus, the objectives of this pre-processing task is simply removing all meaningless character and left valuable words. In this research, we divide our proposed pre-processing experiments into two parts. The first part is common pre-processing task. The second part is a specific pre-processing task for tweet data. From the experimental result we can conclude that by employing a specific pre-processing task related to tweet data characteristic we obtained more valuable result. The result obtained is better in terms of less meaningful word occurrence which is not significant in number comparing to the result obtained by just running common pre-processing tasks.
Modeling Cognitive Strategies during Complex Task Performing Process
ERIC Educational Resources Information Center
Mazman, Sacide Guzin; Altun, Arif
2012-01-01
The purpose of this study is to examine individuals' computer based complex task performing processes and strategies in order to determine the reasons of failure by cognitive task analysis method and cued retrospective think aloud with eye movement data. Study group was five senior students from Computer Education and Instructional Technologies…
2006-06-01
heart of a distinction within the CSE community with respect to the differences between Cognitive Task Analysis (CTA) and Cognitive Work Analysis...Wesley. Pirolli, P. and Card, S. (2005). The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis . In...D. D., and Elm, W. C. (2000). Cognitive task analysis as bootstrapping multiple converging techniques. In Schraagen, Chipman, and Shalin (Eds
Chiu, Ming-Chuan; Hsieh, Min-Chih
2016-05-01
The purposes of this study were to develop a latent human error analysis process, to explore the factors of latent human error in aviation maintenance tasks, and to provide an efficient improvement strategy for addressing those errors. First, we used HFACS and RCA to define the error factors related to aviation maintenance tasks. Fuzzy TOPSIS with four criteria was applied to evaluate the error factors. Results show that 1) adverse physiological states, 2) physical/mental limitations, and 3) coordination, communication, and planning are the factors related to airline maintenance tasks that could be addressed easily and efficiently. This research establishes a new analytic process for investigating latent human error and provides a strategy for analyzing human error using fuzzy TOPSIS. Our analysis process complements shortages in existing methodologies by incorporating improvement efficiency, and it enhances the depth and broadness of human error analysis methodology. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Functional Heterogeneity and Convergence in the Right Temporoparietal Junction
Lee, Su Mei; McCarthy, Gregory
2016-01-01
The right temporoparietal junction (rTPJ) is engaged by tasks that manipulate biological motion processing, Theory of Mind attributions, and attention reorienting. The proximity of activations elicited by these tasks raises the question of whether these tasks share common cognitive component processes that are subserved by common neural substrates. Here, we used high-resolution whole-brain functional magnetic resonance imaging in a within-subjects design to determine whether these tasks activate common regions of the rTPJ. Each participant was presented with the 3 tasks in the same imaging session. In a whole-brain analysis, we found that only the right and left TPJs were activated by all 3 tasks. Multivoxel pattern analysis revealed that the regions of overlap could still discriminate the 3 tasks. Notably, we found significant cross-task classification in the right TPJ, which suggests a shared neural process between the 3 tasks. Taken together, these results support prior studies that have indicated functional heterogeneity within the rTPJ but also suggest a convergence of function within a region of overlap. These results also call for further investigation into the nature of the function subserved in this overlap region. PMID:25477367
Benefits of interhemispheric integration on the Japanese Kana script-matching tasks.
Yoshizaki, K; Tsuji, Y
2000-02-01
We tested Banich's hypothesis that the benefits of bihemispheric processing were enhanced as task complexity increased, when some procedural shortcomings in the previous studies were overcome by using Japanese Kana script-matching tasks. In Exp. 1, the 20 right-handed subjects were given the Physical-Identity task (Katakana-Katakana scripts matching) and the Name-Identity task (Katakana-Hiragana scripts matching). On both tasks, a pair of Kana scripts was tachistoscopically presented in the left, right, and bilateral visual fields. Distractor stimuli were also presented with target Kana scripts on both tasks to equate the processing load between the hemispheres. Analysis showed that, while a bilateral visual-field advantage was found on the name-identity task, a unilateral visual-field advantage was found on the physical-identity task, suggesting that, as the computational complexity of the encoding stage was enhanced, the benefits of bilateral hemispheric processing increased. In Exp. 2, the 16 right-handed subjects were given the same physical-identity task as in Exp. 1, except Hiragana scripts were used as distractors instead of digits to enhance task difficulty. Analysis showed no differences in performance between the unilateral and bilateral visual fields. Taking into account these results of physical-identity tasks for both Exps. 1 and 2, enhancing task demand in the stage of ignoring distractors made the unilateral visual-field advantage obtained in Exp. 1 disappear in Exp. 2. These results supported Banich's hypothesis.
GaiaGrid : Its Implications and Implementation
NASA Astrophysics Data System (ADS)
Ansari, S. G.; Lammers, U.; Ter Linden, M.
2005-12-01
Gaia is an ESA space mission to determine positions of 1 billion objects in the Galaxy at micro-arcsecond precision. The data analysis and processing requirements of the mission involves about 20 institutes across Europe, each providing specific algorithms for specific tasks, which range from relativistic effects on positional determination, classification, astrometric binary star detection, photometric analysis, spectroscopic analysis etc. In an initial phase, a study has been ongoing over the past three years to determine the complexity of Gaia's data processing. Two processing categories have materialised: core and shell. While core deals with routine data processing, shell tasks are algorithms to carry out data analysis, which involves the Gaia Community at large. For this latter category, we are currently experimenting with use of Grid paradigms to allow access to the core data and to augment processing power to simulate and analyse the data in preparation for the actual mission. We present preliminary results and discuss the sociological impact of distributing the tasks amongst the community.
Cona, Giorgia; Bisiacchi, Patrizia Silvia; Sartori, Giuseppe; Scarpazza, Cristina
2016-05-17
Remembering to execute pre-defined intentions at the appropriate time in the future is typically referred to as Prospective Memory (PM). Studies of PM showed that distinct cognitive processes underlie the execution of delayed intentions depending on whether the cue associated with such intentions is focal to ongoing activity processing or not (i.e., cue focality). The present activation likelihood estimation (ALE) meta-analysis revealed several differences in brain activity as a function of focality of the PM cue. The retrieval of intention is supported mainly by left anterior prefrontal cortex (Brodmann Area, BA 10) in nonfocal tasks, and by cerebellum and ventral parietal regions in focal tasks. Furthermore, the precuneus showed increased activation during the maintenance phase of intentions compared to the retrieval phase in nonfocal tasks, whereas the inferior parietal lobule showed increased activation during the retrieval of intention compared to maintenance phase in the focal tasks. Finally, the retrieval of intention relies more on the activity in anterior cingulate cortex for nonfocal tasks, and on posterior cingulate cortex for focal tasks. Such focality-related pattern of activations suggests that prospective remembering is mediated mainly by top-down and stimulus-independent processes in nonfocal tasks, whereas by more automatic, bottom-up, processes in focal tasks.
Cona, Giorgia; Bisiacchi, Patrizia Silvia; Sartori, Giuseppe; Scarpazza, Cristina
2016-01-01
Remembering to execute pre-defined intentions at the appropriate time in the future is typically referred to as Prospective Memory (PM). Studies of PM showed that distinct cognitive processes underlie the execution of delayed intentions depending on whether the cue associated with such intentions is focal to ongoing activity processing or not (i.e., cue focality). The present activation likelihood estimation (ALE) meta-analysis revealed several differences in brain activity as a function of focality of the PM cue. The retrieval of intention is supported mainly by left anterior prefrontal cortex (Brodmann Area, BA 10) in nonfocal tasks, and by cerebellum and ventral parietal regions in focal tasks. Furthermore, the precuneus showed increased activation during the maintenance phase of intentions compared to the retrieval phase in nonfocal tasks, whereas the inferior parietal lobule showed increased activation during the retrieval of intention compared to maintenance phase in the focal tasks. Finally, the retrieval of intention relies more on the activity in anterior cingulate cortex for nonfocal tasks, and on posterior cingulate cortex for focal tasks. Such focality-related pattern of activations suggests that prospective remembering is mediated mainly by top-down and stimulus-independent processes in nonfocal tasks, whereas by more automatic, bottom-up, processes in focal tasks. PMID:27185531
From scenarios to domain models: processes and representations
NASA Astrophysics Data System (ADS)
Haddock, Gail; Harbison, Karan
1994-03-01
The domain specific software architectures (DSSA) community has defined a philosophy for the development of complex systems. This philosophy improves productivity and efficiency by increasing the user's role in the definition of requirements, increasing the systems engineer's role in the reuse of components, and decreasing the software engineer's role to the development of new components and component modifications only. The scenario-based engineering process (SEP), the first instantiation of the DSSA philosophy, has been adopted by the next generation controller project. It is also the chosen methodology of the trauma care information management system project, and the surrogate semi-autonomous vehicle project. SEP uses scenarios from the user to create domain models and define the system's requirements. Domain knowledge is obtained from a variety of sources including experts, documents, and videos. This knowledge is analyzed using three techniques: scenario analysis, task analysis, and object-oriented analysis. Scenario analysis results in formal representations of selected scenarios. Task analysis of the scenario representations results in descriptions of tasks necessary for object-oriented analysis and also subtasks necessary for functional system analysis. Object-oriented analysis of task descriptions produces domain models and system requirements. This paper examines the representations that support the DSSA philosophy, including reference requirements, reference architectures, and domain models. The processes used to create and use the representations are explained through use of the scenario-based engineering process. Selected examples are taken from the next generation controller project.
Using Heuristic Task Analysis to Create Web-Based Instructional Design Theory
ERIC Educational Resources Information Center
Fiester, Herbert R.
2010-01-01
The first purpose of this study was to identify procedural and heuristic knowledge used when creating web-based instruction. The second purpose of this study was to develop suggestions for improving the Heuristic Task Analysis process, a technique for eliciting, analyzing, and representing expertise in cognitively complex tasks. Three expert…
Self-reflection modulates the outcome evaluation process: Evidence from an ERP study.
Zhu, Xiangru; Gu, Ruolei; Wu, Haiyan; Luo, Yuejia
2015-12-01
Recent research demonstrated structural overlap between reward and self processing, but the functional relationship that explains how self processing influences reward processing remains unclear. The present study used an experimentally constrained reflection task to investigate whether individuals' outcome evaluations in a gambling task are modulated by task-unrelated self- and other-reflection processes. The self- and other-reflection task contained descriptions of the self or others, and brain event-related potentials (ERPs) were recorded while 16 normal adults performed a gambling task. The ERP analysis focused on the feedback-related negativity (FRN) component. We found that the difference wave of FRN increased in the self-reflection condition compared with the other-reflection condition. The present findings provide direct evidence that self processing can influence reward processing. Copyright © 2015 Elsevier B.V. All rights reserved.
Self-regulated learning processes of medical students during an academic learning task.
Gandomkar, Roghayeh; Mirzazadeh, Azim; Jalili, Mohammad; Yazdani, Kamran; Fata, Ladan; Sandars, John
2016-10-01
This study was designed to identify the self-regulated learning (SRL) processes of medical students during a biomedical science learning task and to examine the associations of the SRL processes with previous performance in biomedical science examinations and subsequent performance on a learning task. A sample of 76 Year 1 medical students were recruited based on their performance in biomedical science examinations and stratified into previous high and low performers. Participants were asked to complete a biomedical science learning task. Participants' SRL processes were assessed before (self-efficacy, goal setting and strategic planning), during (metacognitive monitoring) and after (causal attributions and adaptive inferences) their completion of the task using an SRL microanalytic interview. Descriptive statistics were used to analyse the means and frequencies of SRL processes. Univariate and multiple logistic regression analyses were conducted to examine the associations of SRL processes with previous examination performance and the learning task performance. Most participants (from 88.2% to 43.4%) reported task-specific processes for SRL measures. Students who exhibited higher self-efficacy (odds ratio [OR] 1.44, 95% confidence interval [CI] 1.09-1.90) and reported task-specific processes for metacognitive monitoring (OR 6.61, 95% CI 1.68-25.93) and causal attributions (OR 6.75, 95% CI 2.05-22.25) measures were more likely to be high previous performers. Multiple analysis revealed that similar SRL measures were associated with previous performance. The use of task-specific processes for causal attributions (OR 23.00, 95% CI 4.57-115.76) and adaptive inferences (OR 27.00, 95% CI 3.39-214.95) measures were associated with being a high learning task performer. In multiple analysis, only the causal attributions measure was associated with high learning task performance. Self-efficacy, metacognitive monitoring and causal attributions measures were associated positively with previous performance. Causal attributions and adaptive inferences measures were associated positively with learning task performance. These findings may inform remediation interventions in the early years of medical school training. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
ERIC Educational Resources Information Center
Indefrey, Peter
2006-01-01
This article presents the results of a meta-analysis of 30 hemodynamic experiments comparing first language (L1) and second language (L2) processing in a range of tasks. The results suggest that reliably stronger activation during L2 processing is found (a) only for task-specific subgroups of L2 speakers and (b) within some, but not all regions…
NASA Astrophysics Data System (ADS)
Nawani, Jigna; Rixius, Julia; Neuhaus, Birgit J.
2016-08-01
Empirical analysis of secondary biology classrooms revealed that, on average, 68% of teaching time in Germany revolved around processing tasks. Quality of instruction can thus be assessed by analyzing the quality of tasks used in classroom discourse. This quasi-experimental study analyzed how teachers used tasks in 38 videotaped biology lessons pertaining to the topic 'blood and circulatory system'. Two fundamental characteristics used to analyze tasks include: (1) required cognitive level of processing (e.g. low level information processing: repetiition, summary, define, classify and high level information processing: interpret-analyze data, formulate hypothesis, etc.) and (2) complexity of task content (e.g. if tasks require use of factual, linking or concept level content). Additionally, students' cognitive knowledge structure about the topic 'blood and circulatory system' was measured using student-drawn concept maps (N = 970 students). Finally, linear multilevel models were created with high-level cognitive processing tasks and higher content complexity tasks as class-level predictors and students' prior knowledge, students' interest in biology, and students' interest in biology activities as control covariates. Results showed a positive influence of high-level cognitive processing tasks (β = 0.07; p < .01) on students' cognitive knowledge structure. However, there was no observed effect of higher content complexity tasks on students' cognitive knowledge structure. Presented findings encourage the use of high-level cognitive processing tasks in biology instruction.
Yagahara, Ayako; Yokooka, Yuki; Jiang, Guoqian; Tsuji, Shintarou; Fukuda, Akihisa; Nishimoto, Naoki; Kurowarabi, Kunio; Ogasawara, Katsuhiko
2018-03-01
Describing complex mammography examination processes is important for improving the quality of mammograms. It is often difficult for experienced radiologic technologists to explain the process because their techniques depend on their experience and intuition. In our previous study, we analyzed the process using a new bottom-up hierarchical task analysis and identified key components of the process. Leveraging the results of the previous study, the purpose of this study was to construct a mammographic examination process ontology to formally describe the relationships between the process and image evaluation criteria to improve the quality of mammograms. First, we identified and created root classes: task, plan, and clinical image evaluation (CIE). Second, we described an "is-a" relation referring to the result of the previous study and the structure of the CIE. Third, the procedural steps in the ontology were described using the new properties: "isPerformedBefore," "isPerformedAfter," and "isPerformedAfterIfNecessary." Finally, the relationships between tasks and CIEs were described using the "isAffectedBy" property to represent the influence of the process on image quality. In total, there were 219 classes in the ontology. By introducing new properties related to the process flow, a sophisticated mammography examination process could be visualized. In relationships between tasks and CIEs, it became clear that the tasks affecting the evaluation criteria related to positioning were greater in number than those for image quality. We developed a mammographic examination process ontology that makes knowledge explicit for a comprehensive mammography process. Our research will support education and help promote knowledge sharing about mammography examination expertise.
Task Analysis of Shuttle Entry and Landing Activities
NASA Technical Reports Server (NTRS)
Holland, Albert W.; Vanderark, Stephen T.
1993-01-01
The Task Analysis of Shuttle Entry and Landing (E/L) Activities documents all tasks required to land the Orbiter following an STS mission. In addition to analysis of tasks performed, task conditions are described, including estimated time for completion, altitude, relative velocity, normal and lateral acceleration, location of controls operated or monitored, and level of g's experienced. This analysis precedes further investigations into potential effects of zero g on piloting capabilities for landing the Orbiter following long-duration missions. This includes, but is not limited to, researching the effects of extended duration missions on piloting capabilities. Four primary constraints of the analysis must be clarified: (1) the analysis depicts E/L in a static manner--the actual process is dynamic; (2) the task analysis was limited to a paper analysis, since it was not feasible to conduct research in the actual setting (i.e., observing or filming duration an actual E/L); (3) the tasks included are those required for E/L during nominal, daylight conditions; and (4) certain E/L tasks will vary according to the flying style of each commander.
How Expert Pilots Think Cognitive Processes in Expert Decision Making
1993-02-01
Management (CRM) This document is available to the public Advanced Qualification Program (AQP) through the National Technical Information Cognitive Task Analysis (CTA...8217 Selecting realistic EDM scenarios with critical events and performing a cognitive task analysis of novice vs. expert decision making for these events...scenarios with critical events and performing a cognitive task analysis of novice vs. expert decision making for these events is a basic requirement for
Cognitive Task Analysis, Interface Design, and Technical Troubleshooting.
ERIC Educational Resources Information Center
Steinberg, Linda S.; Gitomer, Drew H.
A model of the interface design process is proposed that makes use of two interdependent levels of cognitive analysis: the study of the criterion task through an analysis of expert/novice differences and the evaluation of the working user interface design through the application of a practical interface analysis methodology (GOMS model). This dual…
ERIC Educational Resources Information Center
Foley, John P., Jr.
A study was conducted to refine and coordinate occupational analysis, job performance aids, and elements of the instructional systems development process for task specific Air Force maintenance training. Techniques for task identification and analysis (TI & A) and data gathering techniques for occupational analysis were related. While TI &…
2014-01-01
Background The processing of verbal fluency tasks relies on the coordinated activity of a number of brain areas, particularly in the frontal and temporal lobes of the left hemisphere. Recent studies using functional magnetic resonance imaging (fMRI) to study the neural networks subserving verbal fluency functions have yielded divergent results especially with respect to a parcellation of the inferior frontal gyrus for phonemic and semantic verbal fluency. We conducted a coordinate-based activation likelihood estimation (ALE) meta-analysis on brain activation during the processing of phonemic and semantic verbal fluency tasks involving 28 individual studies with 490 healthy volunteers. Results For phonemic as well as for semantic verbal fluency, the most prominent clusters of brain activation were found in the left inferior/middle frontal gyrus (LIFG/MIFG) and the anterior cingulate gyrus. BA 44 was only involved in the processing of phonemic verbal fluency tasks, BA 45 and 47 in the processing of phonemic and semantic fluency tasks. Conclusions Our comparison of brain activation during the execution of either phonemic or semantic verbal fluency tasks revealed evidence for spatially different activation in BA 44, but not other regions of the LIFG/LMFG (BA 9, 45, 47) during phonemic and semantic verbal fluency processing. PMID:24456150
Sevinc, Gunes; Spreng, R Nathan
2014-01-01
Human morality has been investigated using a variety of tasks ranging from judgments of hypothetical dilemmas to viewing morally salient stimuli. These experiments have provided insight into neural correlates of moral judgments and emotions, yet these approaches reveal important differences in moral cognition. Moral reasoning tasks require active deliberation while moral emotion tasks involve the perception of stimuli with moral implications. We examined convergent and divergent brain activity associated with these experimental paradigms taking a quantitative meta-analytic approach. A systematic search of the literature yielded 40 studies. Studies involving explicit decisions in a moral situation were categorized as active (n = 22); studies evoking moral emotions were categorized as passive (n = 18). We conducted a coordinate-based meta-analysis using the Activation Likelihood Estimation to determine reliable patterns of brain activity. Results revealed a convergent pattern of reliable brain activity for both task categories in regions of the default network, consistent with the social and contextual information processes supported by this brain network. Active tasks revealed more reliable activity in the temporoparietal junction, angular gyrus and temporal pole. Active tasks demand deliberative reasoning and may disproportionately involve the retrieval of social knowledge from memory, mental state attribution, and construction of the context through associative processes. In contrast, passive tasks reliably engaged regions associated with visual and emotional information processing, including lingual gyrus and the amygdala. A laterality effect was observed in dorsomedial prefrontal cortex, with active tasks engaging the left, and passive tasks engaging the right. While overlapping activity patterns suggest a shared neural network for both tasks, differential activity suggests that processing of moral input is affected by task demands. The results provide novel insight into distinct features of moral cognition, including the generation of moral context through associative processes and the perceptual detection of moral salience.
Sevinc, Gunes; Spreng, R. Nathan
2014-01-01
Background and Objectives Human morality has been investigated using a variety of tasks ranging from judgments of hypothetical dilemmas to viewing morally salient stimuli. These experiments have provided insight into neural correlates of moral judgments and emotions, yet these approaches reveal important differences in moral cognition. Moral reasoning tasks require active deliberation while moral emotion tasks involve the perception of stimuli with moral implications. We examined convergent and divergent brain activity associated with these experimental paradigms taking a quantitative meta-analytic approach. Data Source A systematic search of the literature yielded 40 studies. Studies involving explicit decisions in a moral situation were categorized as active (n = 22); studies evoking moral emotions were categorized as passive (n = 18). We conducted a coordinate-based meta-analysis using the Activation Likelihood Estimation to determine reliable patterns of brain activity. Results & Conclusions Results revealed a convergent pattern of reliable brain activity for both task categories in regions of the default network, consistent with the social and contextual information processes supported by this brain network. Active tasks revealed more reliable activity in the temporoparietal junction, angular gyrus and temporal pole. Active tasks demand deliberative reasoning and may disproportionately involve the retrieval of social knowledge from memory, mental state attribution, and construction of the context through associative processes. In contrast, passive tasks reliably engaged regions associated with visual and emotional information processing, including lingual gyrus and the amygdala. A laterality effect was observed in dorsomedial prefrontal cortex, with active tasks engaging the left, and passive tasks engaging the right. While overlapping activity patterns suggest a shared neural network for both tasks, differential activity suggests that processing of moral input is affected by task demands. The results provide novel insight into distinct features of moral cognition, including the generation of moral context through associative processes and the perceptual detection of moral salience. PMID:24503959
Comparing capacity coefficient and dual task assessment of visual multitasking workload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaha, Leslie M.
Capacity coefficient analysis could offer a theoretically grounded alternative approach to subjective measures and dual task assessment of cognitive workload. Workload capacity or workload efficiency is a human information processing modeling construct defined as the amount of information that can be processed by the visual cognitive system given a specified of amount of time. In this paper, I explore the relationship between capacity coefficient analysis of workload efficiency and dual task response time measures. To capture multitasking performance, I examine how the relatively simple assumptions underlying the capacity construct generalize beyond the single visual decision making tasks. The fundamental toolsmore » for measuring workload efficiency are the integrated hazard and reverse hazard functions of response times, which are defined by log transforms of the response time distribution. These functions are used in the capacity coefficient analysis to provide a functional assessment of the amount of work completed by the cognitive system over the entire range of response times. For the study of visual multitasking, capacity coefficient analysis enables a comparison of visual information throughput as the number of tasks increases from one to two to any number of simultaneous tasks. I illustrate the use of capacity coefficients for visual multitasking on sample data from dynamic multitasking in the modified Multi-attribute Task Battery.« less
ERIC Educational Resources Information Center
Salonen, Pekka; Lepola, Janne; Vauras, Marja
2007-01-01
In this exploratory study we conceptualized and explored socio-cognitive, emotional and motivational regulatory processes displayed in scaffolding interaction between parents and their non-task and task-oriented children. Based on the dynamic systems view and findings from developmental research, we assumed that parents with non-task oriented and…
Cognitive Process Modeling of Spatial Ability: The Assembling Objects Task
ERIC Educational Resources Information Center
Ivie, Jennifer L.; Embretson, Susan E.
2010-01-01
Spatial ability tasks appear on many intelligence and aptitude tests. Although the construct validity of spatial ability tests has often been studied through traditional correlational methods, such as factor analysis, less is known about the cognitive processes involved in solving test items. This study examines the cognitive processes involved in…
Mahé, Gwendoline; Zesiger, Pascal; Laganaro, Marina
2015-11-15
Most of our knowledge on the time-course of the mechanisms involved in reading derived from electrophysiological studies is based on lexical decision tasks. By contrast, very few ERP studies investigated the processes involved in reading aloud. It has been suggested that the lexical decision task provides a good index of the processes occurring during reading aloud, with only late processing differences related to task response modalities. However, some behavioral studies reported different sensitivity to psycholinguistic factors between the two tasks, suggesting that print processing could differ at earlier processing stages. The aim of the present study was thus to carry out an ERP comparison between lexical decision and reading aloud in order to determine when print processing differs between these two tasks. Twenty native French speakers performed a lexical decision task and a reading aloud task with the same written stimuli. Results revealed different electrophysiological patterns on both waveform amplitudes and global topography between lexical decision and reading aloud from about 140 ms after stimulus presentation for both words and pseudowords, i.e., as early as the N170 component. These results suggest that only very early, low-level visual processes are common to the two tasks which differ in core processes. Taken together, our main finding questions the use of the lexical decision task as an appropriate paradigm to investigate reading processes and warns against generalizing its results to word reading. Copyright © 2015 Elsevier Inc. All rights reserved.
Patt, Virginie M; Thomas, Michael L; Minassian, Arpi; Geyer, Mark A; Brown, Gregory G; Perry, William
2014-01-01
The neurocognitive processes involved during classic spatial working memory (SWM) assessment were investigated by examining naturally preferred eye movement strategies. Cognitively healthy adult volunteers were tested in a computerized version of the Corsi Block-Tapping Task--a spatial span task requiring the short term maintenance of a series of locations presented in a specific order--coupled with eye tracking. Modeling analysis was developed to characterize eye-tracking patterns across all task phases, including encoding, retention, and recall. Results revealed a natural preference for local gaze maintenance during both encoding and retention, with fewer than 40% fixated targets. These findings contrasted with the stimulus retracing pattern expected during recall as a result of task demands, with 80% fixated targets. Along with participants' self-reported strategies of mentally "making shapes," these results suggest the involvement of covert attention shifts and higher order cognitive Gestalt processes during spatial span tasks, challenging instrument validity as a single measure of SWM storage capacity.
ERIC Educational Resources Information Center
Braune, Rolf; Foshay, Wellesley R.
1983-01-01
The proposed three-step strategy for research on human information processing--concept hierarchy analysis, analysis of example sets to teach relations among concepts, and analysis of problem sets to build a progressively larger schema for the problem space--may lead to practical procedures for instructional design and task analysis. Sixty-four…
Pusic, Martin V.; LeBlanc, Vicki; Patel, Vimla L.
2001-01-01
Traditional task analysis for instructional design has emphasized the importance of precisely defining behavioral educational objectives and working back to select objective-appropriate instructional strategies. However, this approach may miss effective strategies. Cognitive task analysis, on the other hand, breaks a process down into its component knowledge representations. Selection of instructional strategies based on all such representations in a domain is likely to lead to optimal instructional design. In this demonstration, using the interpretation of cervical spine x-rays as an educational example, we show how a detailed cognitive task analysis can guide the development of computer-aided instruction.
Hsu, Chun-Wei; Goh, Joshua O. S.
2016-01-01
When comparing between the values of different choices, human beings can rely on either more cognitive processes, such as using mathematical computation, or more affective processes, such as using emotion. However, the neural correlates of how these two types of processes operate during value-based decision-making remain unclear. In this study, we investigated the extent to which neural regions engaged during value-based decision-making overlap with those engaged during mathematical and emotional processing in a within-subject manner. In a functional magnetic resonance imaging experiment, participants viewed stimuli that always consisted of numbers and emotional faces that depicted two choices. Across tasks, participants decided between the two choices based on the expected value of the numbers, a mathematical result of the numbers, or the emotional face stimuli. We found that all three tasks commonly involved various cortical areas including frontal, parietal, motor, somatosensory, and visual regions. Critically, the mathematical task shared common areas with the value but not emotion task in bilateral striatum. Although the emotion task overlapped with the value task in parietal, motor, and sensory areas, the mathematical task also evoked responses in other areas within these same cortical structures. Minimal areas were uniquely engaged for the value task apart from the other two tasks. The emotion task elicited a more expansive area of neural activity whereas value and mathematical task responses were in more focal regions. Whole-brain spatial correlation analysis showed that valuative processing engaged functional brain responses more similarly to mathematical processing than emotional processing. While decisions on expected value entail both mathematical and emotional processing regions, mathematical processes have a more prominent contribution particularly in subcortical processes. PMID:27375466
Hsu, Chun-Wei; Goh, Joshua O S
2016-01-01
When comparing between the values of different choices, human beings can rely on either more cognitive processes, such as using mathematical computation, or more affective processes, such as using emotion. However, the neural correlates of how these two types of processes operate during value-based decision-making remain unclear. In this study, we investigated the extent to which neural regions engaged during value-based decision-making overlap with those engaged during mathematical and emotional processing in a within-subject manner. In a functional magnetic resonance imaging experiment, participants viewed stimuli that always consisted of numbers and emotional faces that depicted two choices. Across tasks, participants decided between the two choices based on the expected value of the numbers, a mathematical result of the numbers, or the emotional face stimuli. We found that all three tasks commonly involved various cortical areas including frontal, parietal, motor, somatosensory, and visual regions. Critically, the mathematical task shared common areas with the value but not emotion task in bilateral striatum. Although the emotion task overlapped with the value task in parietal, motor, and sensory areas, the mathematical task also evoked responses in other areas within these same cortical structures. Minimal areas were uniquely engaged for the value task apart from the other two tasks. The emotion task elicited a more expansive area of neural activity whereas value and mathematical task responses were in more focal regions. Whole-brain spatial correlation analysis showed that valuative processing engaged functional brain responses more similarly to mathematical processing than emotional processing. While decisions on expected value entail both mathematical and emotional processing regions, mathematical processes have a more prominent contribution particularly in subcortical processes.
Investigating task inhibition in children versus adults: A diffusion model analysis.
Schuch, Stefanie; Konrad, Kerstin
2017-04-01
One can take n-2 task repetition costs as a measure of inhibition on the level of task sets. When switching back to a Task A after only one intermediate trial (ABA task sequence), Task A is thought to still be inhibited, leading to performance costs relative to task sequences where switching back to Task A is preceded by at least two intermediary trials (CBA). The current study investigated differences in inhibitory ability between children and adults by comparing n-2 task repetition costs in children (9-11years of age, N=32) and young adults (21-30years of age, N=32). The mean reaction times and error rate differences between ABA and CBA sequences did not differ between the two age groups. However, diffusion model analysis revealed that different cognitive processes contribute to the inhibition effect in the two age groups: The adults, but not the children, showed a smaller drift rate in ABA than in CBA, suggesting that persisting task inhibition is associated with slower response selection in adults. In children, non-decision time was longer in ABA than in CBA, possibly reflecting longer task preparation in ABA than in CBA. In addition, Ex-Gaussian functions were fitted to the distributions of correct reaction times. In adults, the ABA-CBA difference was reflected in the exponential parameter of the distribution; in children, the ABA-CBA difference was found in the Gaussian mu parameter. Hence, Ex-Gaussian analysis, although noisier, was generally in line with diffusion model analysis. Taken together, the data suggest that the task inhibition effect found in mean performance is mediated by different cognitive processes in children versus adults. Copyright © 2016 Elsevier Inc. All rights reserved.
Brain activations during bimodal dual tasks depend on the nature and combination of component tasks
Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo
2015-01-01
We used functional magnetic resonance imaging to investigate brain activations during nine different dual tasks in which the participants were required to simultaneously attend to concurrent streams of spoken syllables and written letters. They performed a phonological, spatial or “simple” (speaker-gender or font-shade) discrimination task within each modality. We expected to find activations associated specifically with dual tasking especially in the frontal and parietal cortices. However, no brain areas showed systematic dual task enhancements common for all dual tasks. Further analysis revealed that dual tasks including component tasks that were according to Baddeley's model “modality atypical,” that is, the auditory spatial task or the visual phonological task, were not associated with enhanced frontal activity. In contrast, for other dual tasks, activity specifically associated with dual tasking was found in the left or bilateral frontal cortices. Enhanced activation in parietal areas, however, appeared not to be specifically associated with dual tasking per se, but rather with intermodal attention switching. We also expected effects of dual tasking in left frontal supramodal phonological processing areas when both component tasks required phonological processing and in right parietal supramodal spatial processing areas when both tasks required spatial processing. However, no such effects were found during these dual tasks compared with their component tasks performed separately. Taken together, the current results indicate that activations during dual tasks depend in a complex manner on specific demands of component tasks. PMID:25767443
The DACUM Job Analysis Process.
ERIC Educational Resources Information Center
Dofasco, Inc., Hamilton (Ontario).
This document explains the DACUM (Developing A Curriculum) process for analyzing task-based jobs to: identify where standard operating procedures are required; identify duplicated low value added tasks; develop performance standards; create job descriptions; and identify the elements that must be included in job-specific training programs. The…
Dedicated tool to assess the impact of a rhetorical task on human body temperature.
Koprowski, Robert; Wilczyński, Sławomir; Martowska, Katarzyna; Gołuch, Dominik; Wrocławska-Warchala, Emilia
2017-10-01
Functional infrared thermal imaging is a method widely used in medicine, including analysis of the mechanisms related to the effect of emotions on physiological processes. The article shows how the body temperature may change during stress associated with performing a rhetorical task and proposes new parameters useful for dynamic thermal imaging measurements MATERIALS AND METHODS: 29 healthy male subjects were examined. They were given a rhetorical task that induced stress. Analysis and processing of collected body temperature data in a spatial resolution of 256×512pixels and a temperature resolution of 0.1°C enabled to show the dynamics of temperature changes. This analysis was preceded by dedicated image analysis and processing methods RESULTS: The presented dedicated algorithm for image analysis and processing allows for fully automated, reproducible and quantitative assessment of temperature changes and time constants in a sequence of thermal images of the patient. When performing the rhetorical task, the temperature rose by 0.47±0.19°C in 72.41% of the subjects, including 20.69% in whom the temperature decreased by 0.49±0.14°C after 237±141s. For 20.69% of the subjects only a drop in temperature was registered. For the remaining 6.89% of the cases, no temperature changes were registered CONCLUSIONS: The performance of the rhetorical task by the subjects causes body temperature changes. The ambiguous temperature response to the given stress factor indicates the complex mechanisms responsible for regulating stressful situations. Stress associated with the examination itself induces body temperature changes. These changes should always be taken into account in the analysis of infrared data. Copyright © 2017 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-12
... of performing the technical analysis, management assessment, and program evaluation tasks required to.... Analysis of elements of the review process (including the presubmission process, and investigational device... time to facilitate a more efficient process. This includes analysis of root causes for inefficiencies...
Representation and Analysis of Real-Time Control Structures.
1980-08-01
external processes which cannot be forced to cooperate with programmed processes through use of a synchronization primitive such as a semaphore [Dijkstre...amounts to each task, but the time slices are synchronized with program execution. The length of the codestrip is determined by the response time...which might be synchronous or asynchronous with respect to the executing task. The notation can represent total and partial orderings among its tasks, and
Thye, Melissa D; Ammons, Carla J; Murdaugh, Donna L; Kana, Rajesh K
2018-07-16
Social neuroscience research has focused on an identified network of brain regions primarily associated with processing Theory of Mind (ToM). However, ToM is a broad cognitive process, which encompasses several sub-processes, such as mental state detection and intentional attribution, and the connectivity of brain regions underlying the broader ToM network in response to paradigms assessing these sub-processes requires further characterization. Standard fMRI analyses which focus only on brain activity cannot capture information about ToM processing at a network level. An alternative method, independent component analysis (ICA), is a data-driven technique used to isolate intrinsic connectivity networks, and this approach provides insight into network-level regional recruitment. In this fMRI study, three complementary, but distinct ToM tasks assessing mental state detection (e.g. RMIE: Reading the Mind in the Eyes; RMIV: Reading the Mind in the Voice) and intentional attribution (Causality task) were each analyzed using ICA in order to separately characterize the recruitment and functional connectivity of core nodes in the ToM network in response to the sub-processes of ToM. Based on visual comparison of the derived networks for each task, the spatiotemporal network patterns were similar between the RMIE and RMIV tasks, which elicited mentalizing about the mental states of others, and these networks differed from the network derived for the Causality task, which elicited mentalizing about goal-directed actions. The medial prefrontal cortex, precuneus, and right inferior frontal gyrus were seen in the components with the highest correlation with the task condition for each of the tasks highlighting the role of these regions in general ToM processing. Using a data-driven approach, the current study captured the differences in task-related brain response to ToM in three distinct ToM paradigms. The findings of this study further elucidate the neural mechanisms associated with mental state detection and causal attribution, which represent possible sub-processes of the complex construct of ToM processing. Published by Elsevier B.V.
Evidential Reasoning in Expert Systems for Image Analysis.
1985-02-01
techniques to image analysis (IA). There is growing evidence that these techniques offer significant improvements in image analysis , particularly in the...2) to provide a common framework for analysis, (3) to structure the ER process for major expert-system tasks in image analysis , and (4) to identify...approaches to three important tasks for expert systems in the domain of image analysis . This segment concluded with an assessment of the strengths
Encoding processes during retrieval tasks.
Buckner, R L; Wheeler, M E; Sheridan, M A
2001-04-01
Episodic memory encoding is pervasive across many kinds of task and often arises as a secondary processing effect in tasks that do not require intentional memorization. To illustrate the pervasive nature of information processing that leads to episodic encoding, a form of incidental encoding was explored based on the "Testing" phenomenon: The incidental-encoding task was an episodic memory retrieval task. Behavioral data showed that performing a memory retrieval task was as effective as intentional instructions at promoting episodic encoding. During fMRI imaging, subjects viewed old and new words and indicated whether they remembered them. Relevant to encoding, the fate of the new words was examined using a second, surprise test of recognition after the imaging session. fMRI analysis of those new words that were later remembered revealed greater activity in left frontal regions than those that were later forgotten - the same pattern of results as previously observed for traditional incidental and intentional episodic encoding tasks. This finding may offer a partial explanation for why repeated testing improves memory performance. Furthermore, the observation of correlates of episodic memory encoding during retrieval tasks challenges some interpretations that arise from direct comparisons between "encoding tasks" and "retrieval tasks" in imaging data. Encoding processes and their neural correlates may arise in many tasks, even those nominally labeled as retrieval tasks by the experimenter.
Research on the use of space resources
NASA Technical Reports Server (NTRS)
Carroll, W. F. (Editor)
1983-01-01
The second year of a multiyear research program on the processing and use of extraterrestrial resources is covered. The research tasks included: (1) silicate processing, (2) magma electrolysis, (3) vapor phase reduction, and (4) metals separation. Concomitant studies included: (1) energy systems, (2) transportation systems, (3) utilization analysis, and (4) resource exploration missions. Emphasis in fiscal year 1982 was placed on the magma electrolysis and vapor phase reduction processes (both analytical and experimental) for separation of oxygen and metals from lunar regolith. The early experimental work on magma electrolysis resulted in gram quantities of iron (mixed metals) and the identification of significant anode, cathode, and container problems. In the vapor phase reduction tasks a detailed analysis of various process concepts led to the selection of two specific processes designated as ""Vapor Separation'' and ""Selective Ionization.'' Experimental work was deferred to fiscal year 1983. In the Silicate Processing task a thermophysical model of the casting process was developed and used to study the effect of variations in material properties on the cooling behavior of lunar basalt.
Human factors process failure modes and effects analysis (HF PFMEA) software tool
NASA Technical Reports Server (NTRS)
Chandler, Faith T. (Inventor); Relvini, Kristine M. (Inventor); Shedd, Nathaneal P. (Inventor); Valentino, William D. (Inventor); Philippart, Monica F. (Inventor); Bessette, Colette I. (Inventor)
2011-01-01
Methods, computer-readable media, and systems for automatically performing Human Factors Process Failure Modes and Effects Analysis for a process are provided. At least one task involved in a process is identified, where the task includes at least one human activity. The human activity is described using at least one verb. A human error potentially resulting from the human activity is automatically identified, the human error is related to the verb used in describing the task. A likelihood of occurrence, detection, and correction of the human error is identified. The severity of the effect of the human error is identified. The likelihood of occurrence, and the severity of the risk of potential harm is identified. The risk of potential harm is compared with a risk threshold to identify the appropriateness of corrective measures.
Usability Evaluation of an Unstructured Clinical Document Query Tool for Researchers.
Hultman, Gretchen; McEwan, Reed; Pakhomov, Serguei; Lindemann, Elizabeth; Skube, Steven; Melton, Genevieve B
2018-01-01
Natural Language Processing - Patient Information Extraction for Researchers (NLP-PIER) was developed for clinical researchers for self-service Natural Language Processing (NLP) queries with clinical notes. This study was to conduct a user-centered analysis with clinical researchers to gain insight into NLP-PIER's usability and to gain an understanding of the needs of clinical researchers when using an application for searching clinical notes. Clinical researcher participants (n=11) completed tasks using the system's two existing search interfaces and completed a set of surveys and an exit interview. Quantitative data including time on task, task completion rate, and survey responses were collected. Interviews were analyzed qualitatively. Survey scores, time on task and task completion proportions varied widely. Qualitative analysis indicated that participants found the system to be useful and usable in specific projects. This study identified several usability challenges and our findings will guide the improvement of NLP-PIER 's interfaces.
Two-and-a-half-year-olds succeed at a traditional false-belief task with reduced processing demands.
Setoh, Peipei; Scott, Rose M; Baillargeon, Renée
2016-11-22
When tested with traditional false-belief tasks, which require answering a standard question about the likely behavior of an agent with a false belief, children perform below chance until age 4 y or later. When tested without such questions, however, children give evidence of false-belief understanding much earlier. Are traditional tasks difficult because they tap a more advanced form of false-belief understanding (fundamental-change view) or because they impose greater processing demands (processing-demands view)? Evidence that young children succeed at traditional false-belief tasks when processing demands are reduced would support the latter view. In prior research, reductions in inhibitory-control demands led to improvements in young children's performance, but often only to chance (instead of below-chance) levels. Here we examined whether further reductions in processing demands might lead to success. We speculated that: (i) young children could respond randomly in a traditional low-inhibition task because their limited information-processing resources are overwhelmed by the total concurrent processing demands in the task; and (ii) these demands include those from the response-generation process activated by the standard question. This analysis suggested that 2.5-y-old toddlers might succeed at a traditional low-inhibition task if response-generation demands were also reduced via practice trials. As predicted, toddlers performed above chance following two response-generation practice trials; toddlers failed when these trials either were rendered less effective or were used in a high-inhibition task. These results support the processing-demands view: Even toddlers succeed at a traditional false-belief task when overall processing demands are reduced.
Cognitive Requirements for Small Unit Leaders in Military Operations in Urban Terrain
1998-09-01
operations specifically. A cognitive task analysis , based on in depth interviews with subject matter experts (n=7), was conducted to expose the...process. The findings of the cognitive task analysis guided the development of training recommendations, particularly the need for a scenario based
ERIC Educational Resources Information Center
Kamienkowski, Juan E.; Pashler, Harold; Dehaene, Stanislas; Sigman, Mariano
2011-01-01
Does extensive practice reduce or eliminate central interference in dual-task processing? We explored the reorganization of task architecture with practice by combining interference analysis (delays in dual-task experiment) and random-walk models of decision making (measuring the decision and non-decision contributions to RT). The main delay…
2010-09-01
analysis process is to categorize the goal according to (Gagné, 2005) domains of learning . These domains are: verbal information, intellectual...to terrain features. The ability to provide a clear verbal description of a unique feature is a learned task that may be separate from the...and experts differently. The process of verbally encoding information on location and providing this description may detract from the primary task of
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-11-30
Universal Oil Products, Inc. (UOP) of Des Plaines, Illinois has contracted A.E. Roberts & Associates, Inc. (AERA) of Atlanta, Georgia to prepare a sensitivity analysis for the development of the Fluidized-bed Copper Oxide (FBCO) process. As proposed by AERA in September 1991, development of the FBCO process design for a 500 mega-watt (MW) unit was divided into three tasks: (1) Establishment of a Conceptual Design, (2) Conceptual Design, (3) Cost Analysis Task 1 determined the basis for a conceptual design for the 500 megawatt (MW) FBCO process. It was completed by AERA in September of 1992, and a report wasmore » submitted at that time {open_quotes}Establishment of the Design Basis for Application to a 500 MW Coal-fired Facility.{close_quotes} Task 2 gathered all pertinent data available to date and reviewed its applicability to the 500 MW FBCO process. Work on this task was carried out on a joint basis by the AERA team members: Roberts & Schaefers worked on the dense phase transport aspect of the design; Cornell and Carnegie Mellon Universities worked on the design kinetics and modeling; and AERA contributed commercial power and combustion experience. Task 3 provides budgetary cost estimates for the FBCO process and competing alternative technologies for sulfur dioxide and nitrogen oxide removal.« less
Dong, Debo; Wang, Yulin; Jia, Xiaoyan; Li, Yingjia; Chang, Xuebin; Vandekerckhove, Marie; Luo, Cheng; Yao, Dezhong
2017-11-15
Impairment of face perception in schizophrenia is a core aspect of social cognitive dysfunction. This impairment is particularly marked in threatening face processing. Identifying reliable neural correlates of the impairment of threatening face processing is crucial for targeting more effective treatments. However, neuroimaging studies have not yet obtained robust conclusions. Through comprehensive literature search, twenty-one whole brain datasets were included in this meta-analysis. Using seed-based d-Mapping, in this voxel-based meta-analysis, we aimed to: 1) establish the most consistent brain dysfunctions related to threating face processing in schizophrenia; 2) address task-type heterogeneity in this impairment; 3) explore the effect of potential demographic or clinical moderator variables on this impairment. Main meta-analysis indicated that patients with chronic schizophrenia demonstrated attenuated activations in limbic emotional system along with compensatory over-activation in medial prefrontal cortex (MPFC) during threatening faces processing. Sub-task analyses revealed under-activations in right amygdala and left fusiform gyrus in both implicit and explicit tasks. The remaining clusters were found to be differently involved in different types of tasks. Moreover, meta-regression analyses showed brain abnormalities in schizophrenia were partly modulated by age, gender, medication and severity of symptoms. Our results highlighted breakdowns in limbic-MPFC circuit in schizophrenia, suggesting general inability to coordinate and contextualize salient threat stimuli. These findings provide potential targets for neurotherapeutic and pharmacological interventions for schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Zhe; Honomichl, Ryan; Kennedy, Diane; Tan, Enda
2016-06-01
The present study examines 5- to 8-year-old children's relation reasoning in solving matrix completion tasks. This study incorporates a componential analysis, an eye-tracking method, and a microgenetic approach, which together allow an investigation of the cognitive processing strategies involved in the development and learning of children's relational thinking. Developmental differences in problem-solving performance were largely due to deficiencies in engaging the processing strategies that are hypothesized to facilitate problem-solving performance. Feedback designed to highlight the relations between objects within the matrix improved 5- and 6-year-olds' problem-solving performance, as well as their use of appropriate processing strategies. Furthermore, children who engaged the processing strategies early on in the task were more likely to solve subsequent problems in later phases. These findings suggest that encoding relations, integrating rules, completing the model, and generalizing strategies across tasks are critical processing components that underlie relational thinking. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Power, Gerald; Miller, Anne
2007-01-01
Abstract: Cardiopulmonary bypass (CPB) is a complex task requiring high levels of practitioner expertise. Although some education standards exist, few are based on an analysis of perfusionists’ problem-solving needs. This study shows the efficacy of work domain analysis (WDA) as a framework for analyzing perfusionists’ conceptualization and problem-solving strategies. A WDA model of a CPB circuit was developed. A high-fidelity CPB simulator (Manbit) was used to present routine and oxygenator failure scenarios to six proficient perfusionists. The video-cued recall technique was used to elicit perfusionists’ conceptualization strategies. The resulting recall transcripts were coded using the WDA model and analyzed for associations between task completion times and patterns of conceptualization. The WDA model developed was successful in being able to account for and describe the thought process followed by each participant. It was also shown that, although there was no correlation between experience with CPB and ability to change an oxygenator, there was a link between the between specific thought patterns and the efficiency in undertaking this task. Simulators are widely used in many fields of human endeavor, and in this research, the attempt was made to use WDA to gain insights into the complexities of the human thought process when engaged in the complex task of conducting CPB. The assumption that experience equates with ability is challenged, and rather, it is shown that thought process is a more significant determinant of success when engaged in complex tasks. WDA analysis in combination with a CPB simulator may be used to elucidate successful strategies for completing complex tasks. PMID:17972450
Tsujii, Takeo; Watanabe, Shigeru
2009-09-01
Recent dual-process reasoning theories have explained the belief-bias effect, the tendency for human reasoning to be erroneously biased when logical conclusions are incongruent with beliefs about the world, by proposing a belief-based automatic heuristic system and logic-based demanding analytic system. Although these claims are supported by the behavioral finding that high-load secondary tasks enhance the belief-bias effect, the neural correlates of dual-task reasoning remain unknown. The present study therefore examined the relationship between dual-task effect and activity in the inferior frontal cortex (IFC) during belief-bias reasoning by near-infrared spectroscopy (NIRS). Forty-eight subjects participated in this study (MA=23.46 years). They were required to perform congruent and incongruent reasoning trials while responding to high- and low-load secondary tasks. Behavioral analysis showed that the high-load secondary task impaired only incongruent reasoning performance. NIRS analysis found that the high-load secondary task decreased right IFC activity during incongruent trials. Correlation analysis showed that subjects with enhanced right IFC activity could perform better in the incongruent reasoning trials, though subjects for whom right IFC activity was impaired by the secondary task could not maintain better reasoning performance. These findings suggest that the right IFC may be responsible for the dual-task effect in conflicting reasoning processes. When secondary tasks impair right IFC activity, subjects may rely on the automatic heuristic system, which results in belief-bias responses. We therefore offer the first demonstration of neural correlates of dual-task effect on IFC activity in belief-bias reasoning.
Electrophysiological Evidence for Domain-General Processes in Task-Switching
Capizzi, Mariagrazia; Ambrosini, Ettore; Arbula, Sandra; Mazzonetto, Ilaria; Vallesi, Antonino
2016-01-01
The ability to flexibly switch between tasks is a hallmark of cognitive control. Despite previous studies that have investigated whether different task-switching types would be mediated by distinct or overlapping neural mechanisms, no definitive consensus has been reached on this question yet. Here, we aimed at directly addressing this issue by recording the event-related potentials (ERPs) elicited by two types of task-switching occurring in the context of spatial and verbal cognitive domains. Source analysis was also applied to the ERP data in order to track the spatial dynamics of brain activity underlying task-switching abilities. In separate blocks of trials, participants had to perform either spatial or verbal switching tasks both of which employed the same type of stimuli. The ERP analysis, which was carried out through a channel- and time-uninformed mass univariate approach, showed no significant differences between the spatial and verbal domains in the modulation of switch and repeat trials. Specifically, relative to repeat trials, switch trials in both domains were associated with a first larger positivity developing over left parieto-occipital electrodes and with a subsequent larger negativity distributed over mid-left fronto-central sites. The source analysis reconstruction for the two ERP components complemented these findings by highlighting the involvement of left-lateralized prefrontal areas in task-switching. Overall, our results join and extend recent research confirming the existence of left-lateralized domain-general task-switching processes. PMID:27047366
Gong, Anmin; Liu, Jianping; Chen, Si; Fu, Yunfa
2018-01-01
To study the physiologic mechanism of the brain during different motor imagery (MI) tasks, the authors employed a method of brain-network modeling based on time-frequency cross mutual information obtained from 4-class (left hand, right hand, feet, and tongue) MI tasks recorded as brain-computer interface (BCI) electroencephalography data. The authors explored the brain network revealed by these MI tasks using statistical analysis and the analysis of topologic characteristics, and observed significant differences in the reaction level, reaction time, and activated target during 4-class MI tasks. There was a great difference in the reaction level between the execution and resting states during different tasks: the reaction level of the left-hand MI task was the greatest, followed by that of the right-hand, feet, and tongue MI tasks. The reaction time required to perform the tasks also differed: during the left-hand and right-hand MI tasks, the brain networks of subjects reacted promptly and strongly, but there was a delay during the feet and tongue MI task. Statistical analysis and the analysis of network topology revealed the target regions of the brain network during different MI processes. In conclusion, our findings suggest a new way to explain the neural mechanism behind MI.
Metin, Baris; Roeyers, Herbert; Wiersema, Jan R; van der Meere, Jaap J; Thompson, Margaret; Sonuga-Barke, Edmund
2013-03-01
Attention-deficit/hyperactivity disorder (ADHD) is associated with performance deficits across a broad range of tasks. Although individual tasks are designed to tap specific cognitive functions (e.g., memory, inhibition, planning, etc.), these deficits could also reflect general effects related to either inefficient or impulsive information processing or both. These two components cannot be isolated from each other on the basis of classical analysis in which mean reaction time (RT) and mean accuracy are handled separately. Seventy children with a diagnosis of combined type ADHD and 50 healthy controls (between 6 and 17 years) performed two tasks: a simple two-choice RT (2-CRT) task and a conflict control task (CCT) that required higher levels of executive control. RT and errors were analyzed using the Ratcliff diffusion model, which divides decisional time into separate estimates of information processing efficiency (called "drift rate") and speed-accuracy tradeoff (SATO, called "boundary"). The model also provides an estimate of general nondecisional time. Results were the same for both tasks independent of executive load. ADHD was associated with lower drift rate and less nondecisional time. The groups did not differ in terms of boundary parameter estimates. RT and accuracy performance in ADHD appears to reflect inefficient rather than impulsive information processing, an effect independent of executive function load. The results are consistent with models in which basic information processing deficits make an important contribution to the ADHD cognitive phenotype. PsycINFO Database Record (c) 2013 APA, all rights reserved.
ERIC Educational Resources Information Center
Nilsson, Per; Juter, Kristina
2011-01-01
This study aims at exploring processes of flexibility and coordination among acts of visualization and analysis in students' attempt to reach a general formula for a three-dimensional pattern generalizing task. The investigation draws on a case-study analysis of two 15-year-old girls working together on a task in which they are asked to calculate…
Cerebro-cerebellar interactions underlying temporal information processing.
Aso, Kenji; Hanakawa, Takashi; Aso, Toshihiko; Fukuyama, Hidenao
2010-12-01
The neural basis of temporal information processing remains unclear, but it is proposed that the cerebellum plays an important role through its internal clock or feed-forward computation functions. In this study, fMRI was used to investigate the brain networks engaged in perceptual and motor aspects of subsecond temporal processing without accompanying coprocessing of spatial information. Direct comparison between perceptual and motor aspects of time processing was made with a categorical-design analysis. The right lateral cerebellum (lobule VI) was active during a time discrimination task, whereas the left cerebellar lobule VI was activated during a timed movement generation task. These findings were consistent with the idea that the cerebellum contributed to subsecond time processing in both perceptual and motor aspects. The feed-forward computational theory of the cerebellum predicted increased cerebro-cerebellar interactions during time information processing. In fact, a psychophysiological interaction analysis identified the supplementary motor and dorsal premotor areas, which had a significant functional connectivity with the right cerebellar region during a time discrimination task and with the left lateral cerebellum during a timed movement generation task. The involvement of cerebro-cerebellar interactions may provide supportive evidence that temporal information processing relies on the simulation of timing information through feed-forward computation in the cerebellum.
On the importance of Task 1 and error performance measures in PRP dual-task studies.
Strobach, Tilo; Schütz, Anja; Schubert, Torsten
2015-01-01
The psychological refractory period (PRP) paradigm is a dominant research tool in the literature on dual-task performance. In this paradigm a first and second component task (i.e., Task 1 and Task 2) are presented with variable stimulus onset asynchronies (SOAs) and priority to perform Task 1. The main indicator of dual-task impairment in PRP situations is an increasing Task 2-RT with decreasing SOAs. This impairment is typically explained with some task components being processed strictly sequentially in the context of the prominent central bottleneck theory. This assumption could implicitly suggest that processes of Task 1 are unaffected by Task 2 and bottleneck processing, i.e., decreasing SOAs do not increase reaction times (RTs) and error rates of the first task. The aim of the present review is to assess whether PRP dual-task studies included both RT and error data presentations and statistical analyses and whether studies including both data types (i.e., RTs and error rates) show data consistent with this assumption (i.e., decreasing SOAs and unaffected RTs and/or error rates in Task 1). This review demonstrates that, in contrast to RT presentations and analyses, error data is underrepresented in a substantial number of studies. Furthermore, a substantial number of studies with RT and error data showed a statistically significant impairment of Task 1 performance with decreasing SOA. Thus, these studies produced data that is not primarily consistent with the strong assumption that processes of Task 1 are unaffected by Task 2 and bottleneck processing in the context of PRP dual-task situations; this calls for a more careful report and analysis of Task 1 performance in PRP studies and for a more careful consideration of theories proposing additions to the bottleneck assumption, which are sufficiently general to explain Task 1 and Task 2 effects.
On the importance of Task 1 and error performance measures in PRP dual-task studies
Strobach, Tilo; Schütz, Anja; Schubert, Torsten
2015-01-01
The psychological refractory period (PRP) paradigm is a dominant research tool in the literature on dual-task performance. In this paradigm a first and second component task (i.e., Task 1 and Task 2) are presented with variable stimulus onset asynchronies (SOAs) and priority to perform Task 1. The main indicator of dual-task impairment in PRP situations is an increasing Task 2-RT with decreasing SOAs. This impairment is typically explained with some task components being processed strictly sequentially in the context of the prominent central bottleneck theory. This assumption could implicitly suggest that processes of Task 1 are unaffected by Task 2 and bottleneck processing, i.e., decreasing SOAs do not increase reaction times (RTs) and error rates of the first task. The aim of the present review is to assess whether PRP dual-task studies included both RT and error data presentations and statistical analyses and whether studies including both data types (i.e., RTs and error rates) show data consistent with this assumption (i.e., decreasing SOAs and unaffected RTs and/or error rates in Task 1). This review demonstrates that, in contrast to RT presentations and analyses, error data is underrepresented in a substantial number of studies. Furthermore, a substantial number of studies with RT and error data showed a statistically significant impairment of Task 1 performance with decreasing SOA. Thus, these studies produced data that is not primarily consistent with the strong assumption that processes of Task 1 are unaffected by Task 2 and bottleneck processing in the context of PRP dual-task situations; this calls for a more careful report and analysis of Task 1 performance in PRP studies and for a more careful consideration of theories proposing additions to the bottleneck assumption, which are sufficiently general to explain Task 1 and Task 2 effects. PMID:25904890
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, J.; Talbott, J.
1984-01-01
Task 1. Methods development for the speciation of the polysulfides. Work on this task has been completed in December 1983 and reported accordingly in DOE/PC/40783-T13. Task 2. Methods development for the speciation of dithionite and polythionates. Work on Task 2 has been completed in June 1984 and has been reported accordingly in DOE/PC/40783-T15. Task 3. Total accounting of the sulfur balance in representative samples of synfuel process streams. A systematic and critical comparison of results, obtained in the analysis of sulfur moieties in representative samples of coal conversion process streams, revealed the following general trends. (a) In specimens of highmore » pH (9-10) and low redox potential (-0.3 to -0.4 volt versus NHE) sulfidic and polysulfidic sulfur moieties predominate. (b) In process streams of lower pH and more positive redox potential, higher oxidation states of sulfur (notably sulfate) account for most of the total sulfur present. (c) Oxidative wastewater treatment procedures by the PETC stripping process convert lower oxidation states of sulfur into thiosulfate and sulfate. In this context, remarkable similarities were observed between liquefaction and gasification process streams. However, the thiocyanate present in samples from the Grand Forks gasifier were impervious to the PETC stripping process. (d) Total sulfur contaminant levels in coal conversion process stream wastewater samples are primarily determined by the abundance of sulfur in the coal used as starting material than by the nature of the conversion process (liquefaction or gasification). 13 references.« less
ERIC Educational Resources Information Center
Sole, Isabel; Miras, Mariana; Castells, Nuria; Espino, Sandra; Minguela, Marta
2013-01-01
The case study reported here explores the processes involved in producing a written synthesis of three history texts and their possible relation to the characteristics of the texts produced and the degree of comprehension achieved following the task. The processes carried out by 10 final-year compulsory education students (15 and 16 years old) to…
ERIC Educational Resources Information Center
Lin, Wei-Lun; Lien, Yunn-Wen
2013-01-01
This study examined how working memory plays different roles in open-ended versus closed-ended creative problem-solving processes, as represented by divergent thinking tests and insight problem-solving tasks. With respect to the analysis of different task demands and the framework of dual-process theories, the hypothesis was that the idea…
ERIC Educational Resources Information Center
Morimoto, Chie; Hida, Eisuke; Shima, Keisuke; Okamura, Hitoshi
2018-01-01
To identify a specific sensorimotor impairment feature of autism spectrum disorder (ASD), we focused on temporal processing with millisecond accuracy. A synchronized finger-tapping task was used to characterize temporal processing in individuals with ASD as compared to typically developing (TD) individuals. We found that individuals with ASD…
An Assessment of Modafinil for Vestibular and Aviation-Related Effects
2005-10-01
Charlton and Cory Welch for editing and checking references; Ms. Anne Marie Michel for sheparding the urine through the analysis process . Lastly we wish to...superior performance during the sleep deprivation on the following tasks: reaction time task, mathematical processing , memory search, spatial... processing , unstable tracking, and grammatical reasoning. Baranski, Cian, Esquivie, Pigeau, and Raphel (1998) administered a cognitive test battery during a
ERIC Educational Resources Information Center
Nawani, Jigna; Rixius, Julia; Neuhaus, Birgit J.
2016-01-01
Empirical analysis of secondary biology classrooms revealed that, on average, 68% of teaching time in Germany revolved around processing tasks. Quality of instruction can thus be assessed by analyzing the quality of tasks used in classroom discourse. This quasi-experimental study analyzed how teachers used tasks in 38 videotaped biology lessons…
Rostral and caudal prefrontal contribution to creativity: a meta-analysis of functional imaging data
Gonen-Yaacovi, Gil; de Souza, Leonardo Cruz; Levy, Richard; Urbanski, Marika; Josse, Goulven; Volle, Emmanuelle
2013-01-01
Creativity is of central importance for human civilization, yet its neurocognitive bases are poorly understood. The aim of the present study was to integrate existing functional imaging data by using the meta-analysis approach. We reviewed 34 functional imaging studies that reported activation foci during tasks assumed to engage creative thinking in healthy adults. A coordinate-based meta-analysis using Activation Likelihood Estimation (ALE) first showed a set of predominantly left-hemispheric regions shared by the various creativity tasks examined. These regions included the caudal lateral prefrontal cortex (PFC), the medial and lateral rostral PFC, and the inferior parietal and posterior temporal cortices. Further analyses showed that tasks involving the combination of remote information (combination tasks) activated more anterior areas of the lateral PFC than tasks involving the free generation of unusual responses (unusual generation tasks), although both types of tasks shared caudal prefrontal areas. In addition, verbal and non-verbal tasks involved the same regions in the left caudal prefrontal, temporal, and parietal areas, but also distinct domain-oriented areas. Taken together, these findings suggest that several frontal and parieto-temporal regions may support cognitive processes shared by diverse creativity tasks, and that some regions may be specialized for distinct types of processes. In particular, the lateral PFC appeared to be organized along a rostro-caudal axis, with rostral regions involved in combining ideas creatively and more posterior regions involved in freely generating novel ideas. PMID:23966927
ERIC Educational Resources Information Center
Carroll, John B.
Fifty-five recent studies of individual differences (IDs) in elementary cognitive tasks (ECTs) are reviewed. Twenty-five data sets are examined, analyzed, or reanalyzed by factor analysis. The following promising dimensions are identified: basic perceptual processes, reaction and movement times, mental comparison and recognition tasks, retrieval…
Two-and-a-half-year-olds succeed at a traditional false-belief task with reduced processing demands
Scott, Rose M.; Baillargeon, Renée
2016-01-01
When tested with traditional false-belief tasks, which require answering a standard question about the likely behavior of an agent with a false belief, children perform below chance until age 4 y or later. When tested without such questions, however, children give evidence of false-belief understanding much earlier. Are traditional tasks difficult because they tap a more advanced form of false-belief understanding (fundamental-change view) or because they impose greater processing demands (processing-demands view)? Evidence that young children succeed at traditional false-belief tasks when processing demands are reduced would support the latter view. In prior research, reductions in inhibitory-control demands led to improvements in young children’s performance, but often only to chance (instead of below-chance) levels. Here we examined whether further reductions in processing demands might lead to success. We speculated that: (i) young children could respond randomly in a traditional low-inhibition task because their limited information-processing resources are overwhelmed by the total concurrent processing demands in the task; and (ii) these demands include those from the response-generation process activated by the standard question. This analysis suggested that 2.5-y-old toddlers might succeed at a traditional low-inhibition task if response-generation demands were also reduced via practice trials. As predicted, toddlers performed above chance following two response-generation practice trials; toddlers failed when these trials either were rendered less effective or were used in a high-inhibition task. These results support the processing-demands view: Even toddlers succeed at a traditional false-belief task when overall processing demands are reduced. PMID:27821728
Use of modeling to identify vulnerabilities to human error in laparoscopy.
Funk, Kenneth H; Bauer, James D; Doolen, Toni L; Telasha, David; Nicolalde, R Javier; Reeber, Miriam; Yodpijit, Nantakrit; Long, Myra
2010-01-01
This article describes an exercise to investigate the utility of modeling and human factors analysis in understanding surgical processes and their vulnerabilities to medical error. A formal method to identify error vulnerabilities was developed and applied to a test case of Veress needle insertion during closed laparoscopy. A team of 2 surgeons, a medical assistant, and 3 engineers used hierarchical task analysis and Integrated DEFinition language 0 (IDEF0) modeling to create rich models of the processes used in initial port creation. Using terminology from a standardized human performance database, detailed task descriptions were written for 4 tasks executed in the process of inserting the Veress needle. Key terms from the descriptions were used to extract from the database generic errors that could occur. Task descriptions with potential errors were translated back into surgical terminology. Referring to the process models and task descriptions, the team used a modified failure modes and effects analysis (FMEA) to consider each potential error for its probability of occurrence, its consequences if it should occur and be undetected, and its probability of detection. The resulting likely and consequential errors were prioritized for intervention. A literature-based validation study confirmed the significance of the top error vulnerabilities identified using the method. Ongoing work includes design and evaluation of procedures to correct the identified vulnerabilities and improvements to the modeling and vulnerability identification methods. Copyright 2010 AAGL. Published by Elsevier Inc. All rights reserved.
Toward a process-level view of distributed healthcare tasks: Medication management as a case study.
Werner, Nicole E; Malkana, Seema; Gurses, Ayse P; Leff, Bruce; Arbaje, Alicia I
2017-11-01
We aim to highlight the importance of using a process-level view in analyzing distributed healthcare tasks through a case study analysis of medication management (MM). MM during older adults' hospital-to-skilled-home-healthcare (SHHC) transitions is a healthcare process with tasks distributed across people, organizations, and time. MM has typically been studied at the task level, but a process-level is needed to fully understand and improve MM during transitions. A process-level view allows for a broader investigation of how tasks are distributed throughout the work system through an investigation of interactions and the resultant emergent properties. We studied MM during older adults' hospital-to-SHHC transitions through interviews and observations with 60 older adults, their 33 caregivers, and 79 SHHC providers at 5 sites associated with 3 SHHC agencies. Study findings identified key cross-system characteristics not observable at the task-level: (1) identification of emergent properties (e.g., role ambiguity, loosely-coupled teams performing MM) and associated barriers; and (2) examination of barrier propagation across system boundaries. Findings highlight the importance of a process-level view of healthcare delivery occurring across system boundaries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-19
... performing the technical analysis, management assessment, and program evaluation tasks required to address... premarket reviews that meet regulatory review standards. 2. Analysis of elements of the review process... process. This includes analysis of root causes for inefficiencies that may affect review performance and...
Temporal processing impairment in children with attention-deficit-hyperactivity disorder.
Huang, Jia; Yang, Bin-rang; Zou, Xiao-bing; Jing, Jin; Pen, Gang; McAlonan, Gráinne M; Chan, Raymond C K
2012-01-01
The current study aimed to investigate temporal processing in Chinese children with Attention-Deficit-Hyperactivity Disorder(ADHD) using time production, time reproduction paradigm and duration discrimination tasks. A battery of tests specifically designed to measure temporal processing was administered to 94 children with ADHD and 100 demographically matched healthy children. A multivariate analysis of variance (MANOVA) and a repeated measure MANOVA indicated that children with ADHD were impaired in time processing functions. The results of pairwise comparisons showed that the probands with a family history of ADHD performed significantly worse than those without family history in the time production tasks and the time reproduction task. Logistic regression analysis showed duration discrimination had a significant role in predicting whether the children were suffering from ADHD or not, while temporal processing had a significant role in predicting whether the ADHD children had a family history or not. This study provides further support for the existence of a generic temporal processing impairment in ADHD children and suggests that abnormalities in time processing and ADHD share some common genetic factors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Two-dimensional systolic-array architecture for pixel-level vision tasks
NASA Astrophysics Data System (ADS)
Vijverberg, Julien A.; de With, Peter H. N.
2010-05-01
This paper presents ongoing work on the design of a two-dimensional (2D) systolic array for image processing. This component is designed to operate on a multi-processor system-on-chip. In contrast with other 2D systolic-array architectures and many other hardware accelerators, we investigate the applicability of executing multiple tasks in a time-interleaved fashion on the Systolic Array (SA). This leads to a lower external memory bandwidth and better load balancing of the tasks on the different processing tiles. To enable the interleaving of tasks, we add a shadow-state register for fast task switching. To reduce the number of accesses to the external memory, we propose to share the communication assist between consecutive tasks. A preliminary, non-functional version of the SA has been synthesized for an XV4S25 FPGA device and yields a maximum clock frequency of 150 MHz requiring 1,447 slices and 5 memory blocks. Mapping tasks from video content-analysis applications from literature on the SA yields reductions in the execution time of 1-2 orders of magnitude compared to the software implementation. We conclude that the choice for an SA architecture is useful, but a scaled version of the SA featuring less logic with fewer processing and pipeline stages yielding a lower clock frequency, would be sufficient for a video analysis system-on-chip.
Task-technology fit of video telehealth for nurses in an outpatient clinic setting.
Cady, Rhonda G; Finkelstein, Stanley M
2014-07-01
Incorporating telehealth into outpatient care delivery supports management of consumer health between clinic visits. Task-technology fit is a framework for understanding how technology helps and/or hinders a person during work processes. Evaluating the task-technology fit of video telehealth for personnel working in a pediatric outpatient clinic and providing care between clinic visits ensures the information provided matches the information needed to support work processes. The workflow of advanced practice registered nurse (APRN) care coordination provided via telephone and video telehealth was described and measured using a mixed-methods workflow analysis protocol that incorporated cognitive ethnography and time-motion study. Qualitative and quantitative results were merged and analyzed within the task-technology fit framework to determine the workflow fit of video telehealth for APRN care coordination. Incorporating video telehealth into APRN care coordination workflow provided visual information unavailable during telephone interactions. Despite additional tasks and interactions needed to obtain the visual information, APRN workflow efficiency, as measured by time, was not significantly changed. Analyzed within the task-technology fit framework, the increased visual information afforded by video telehealth supported the assessment and diagnostic information needs of the APRN. Telehealth must provide the right information to the right clinician at the right time. Evaluating task-technology fit using a mixed-methods protocol ensured rigorous analysis of fit within work processes and identified workflows that benefit most from the technology.
Reimer, Christina B; Strobach, Tilo; Schubert, Torsten
2017-12-01
Visual attention and response selection are limited in capacity. Here, we investigated whether visual attention requires the same bottleneck mechanism as response selection in a dual-task of the psychological refractory period (PRP) paradigm. The dual-task consisted of an auditory two-choice discrimination Task 1 and a conjunction search Task 2, which were presented at variable temporal intervals (stimulus onset asynchrony, SOA). In conjunction search, visual attention is required to select items and to bind their features resulting in a serial search process around the items in the search display (i.e., set size). We measured the reaction time of the visual search task (RT2) and the N2pc, an event-related potential (ERP), which reflects lateralized visual attention processes. If the response selection processes in Task 1 influence the visual attention processes in Task 2, N2pc latency and amplitude would be delayed and attenuated at short SOA compared to long SOA. The results, however, showed that latency and amplitude were independent of SOA, indicating that visual attention was concurrently deployed to response selection. Moreover, the RT2 analysis revealed an underadditive interaction of SOA and set size. We concluded that visual attention does not require the same bottleneck mechanism as response selection in dual-tasks.
Effects of Age, Task Performance, and Structural Brain Development on Face Processing
Cohen Kadosh, Kathrin; Johnson, Mark H; Dick, Frederic; Cohen Kadosh, Roi; Blakemore, Sarah-Jayne
2013-01-01
In this combined structural and functional MRI developmental study, we tested 48 participants aged 7–37 years on 3 simple face-processing tasks (identity, expression, and gaze task), which were designed to yield very similar performance levels across the entire age range. The same participants then carried out 3 more difficult out-of-scanner tasks, which provided in-depth measures of changes in performance. For our analysis we adopted a novel, systematic approach that allowed us to differentiate age- from performance-related changes in the BOLD response in the 3 tasks, and compared these effects to concomitant changes in brain structure. The processing of all face aspects activated the core face-network across the age range, as well as additional and partially separable regions. Small task-specific activations in posterior regions were found to increase with age and were distinct from more widespread activations that varied as a function of individual task performance (but not of age). Our results demonstrate that activity during face-processing changes with age, and these effects are still observed when controlling for changes associated with differences in task performance. Moreover, we found that changes in white and gray matter volume were associated with changes in activation with age and performance in the out-of-scanner tasks. PMID:22661406
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.
2009-01-01
As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, P.
The purpose of this task was to support ESH-3 in providing Airborne Release Fraction and Respirable Fraction training to safety analysts at LANL who perform accident analysis, hazard analysis, safety analysis, and/or risk assessments at nuclear facilities. The task included preparation of materials for and the conduct of two 3-day training courses covering the following topics: safety analysis process; calculation model; aerosol physic concepts for safety analysis; and overview of empirically derived airborne release fractions and respirable fractions.
‘If you are good, I get better’: the role of social hierarchy in perceptual decision-making
Pannunzi, Mario; Ayneto, Alba; Deco, Gustavo; Sebastián-Gallés, Nuria
2014-01-01
So far, it was unclear if social hierarchy could influence sensory or perceptual cognitive processes. We evaluated the effects of social hierarchy on these processes using a basic visual perceptual decision task. We constructed a social hierarchy where participants performed the perceptual task separately with two covertly simulated players (superior, inferior). Participants were faster (better) when performing the discrimination task with the superior player. We studied the time course when social hierarchy was processed using event-related potentials and observed hierarchical effects even in early stages of sensory-perceptual processing, suggesting early top–down modulation by social hierarchy. Moreover, in a parallel analysis, we fitted a drift-diffusion model (DDM) to the results to evaluate the decision making process of this perceptual task in the context of a social hierarchy. Consistently, the DDM pointed to nondecision time (probably perceptual encoding) as the principal period influenced by social hierarchy. PMID:23946003
Wu, Xia; Yu, Xinyu; Yao, Li; Li, Rui
2014-01-01
Functional magnetic resonance imaging (fMRI) studies have converged to reveal the default mode network (DMN), a constellation of regions that display co-activation during resting-state but co-deactivation during attention-demanding tasks in the brain. Here, we employed a Bayesian network (BN) analysis method to construct a directed effective connectivity model of the DMN and compared the organizational architecture and interregional directed connections under both resting-state and task-state. The analysis results indicated that the DMN was consistently organized into two closely interacting subsystems in both resting-state and task-state. The directed connections between DMN regions, however, changed significantly from the resting-state to task-state condition. The results suggest that the DMN intrinsically maintains a relatively stable structure whether at rest or performing tasks but has different information processing mechanisms under varied states. PMID:25309414
Orienting task effects on text recall in adulthood.
Simon, E W; Dixon, R A; Nowak, C A; Hultsch, D F
1982-09-01
This investigation examined the effects of orienting task-controlled processing on the text recall of younger (18 to 32 years), middle-aged (39 to 51 years), and older (59 to 76 years) adults. The participants were presented with a 500-word narrative text. Three groups performed orienting tasks (syntactic, stylistic, advice) within an incidental memory paradigm. A fourth group was asked for intentional recall. Analysis indicated a significant age by orienting task interaction. Younger adults recalled more propositions when recall was intentional or when it was preceded by a deep-orienting task than when it was preceded by a shallow-orienting task. Middle-aged and older adults recalled more propositions when recall was intentional than when it was incidental, regardless of the depth of the orienting task. There were no significant differences in intentional recall. In addition, a significant age x orienting task x propositional level interaction indicated that younger adults recalled more of the main ideas of the text following deep processing, whereas the middle-aged and older adults recalled more of these ideas following intentional processing.
NASA Astrophysics Data System (ADS)
Collins, Timothy A.
2011-12-01
Science inquiry is central to the science education reform efforts that began in the early 1990's. It is both a topic of instruction and a process to be experienced. Student engagement in the process of scientific inquiry was the focus of this study. The process of scientific inquiry can be conceived as a two-part task. In the initial part of the task, students identify a question or problem to study and then carry out an investigation to address the issue. In the second part of the task, students analyze their data to propose explanations and then report their findings. Knowing that students struggle with science inquiry tasks, this study sought to investigate ways to help students become more successful with the communication demands of science inquiry tasks. The study took place in a high school chemistry class. Students in this study completed a total of three inquiry tasks over the course of one school year. Students were split into four experimental groups in order to determine the effect of goal setting, metacognitive prompts, and sentence stems on student inquiry tasks. The quality of the student written work was assessed using a scoring rubric familiar to the students. In addition, students were asked at four different times in the school year to respond to a self-efficacy survey that measured student self-efficacy for chemistry content and science inquiry processes. Student self-efficacy for the process of scientific inquiry was positive and did not change over the course of the study while student scores on the science inquiry tasks rose significantly. The metacognitive prompts and instruction in goal setting did not have any effect on student inquiry scores. Results related to the effect of the sentence stems were mixed. An analysis of student work indicated that students who received high marks on their initial inquiry task in this study were the ones that adopted the use of the sentence stems. Students who received low marks on their initial inquiry task did not tend to use the sentence stems. An analysis of word counts that compared the number of words used in the Framing section to the number of words used in the Analysis section indicated that students may have been using insufficient writing strategies. This study concludes with implications for classroom practice and recommendations for future research around student writing in the science classroom.
NASA Technical Reports Server (NTRS)
Gopher, D.; Wickens, C. D.
1975-01-01
A one dimensional compensatory tracking task and a digit processing reaction time task were combined in a three phase experiment designed to investigate tracking performance in time sharing. Adaptive techniques, elaborate feedback devices, and on line standardization procedures were used to adjust task difficulty to the ability of each individual subject and manipulate time sharing demands. Feedback control analysis techniques were employed in the description of tracking performance. The experimental results show that when the dynamics of a system are constrained, in such a manner that man machine system stability is no longer a major concern of the operator, he tends to adopt a first order control describing function, even with tracking systems of higher order. Attention diversion to a concurrent task leads to an increase in remnant level, or nonlinear power. This decrease in linearity is reflected both in the output magnitude spectra of the subjects, and in the linear fit of the amplitude ratio functions.
The neural bases underlying social risk perception in purchase decisions.
Yokoyama, Ryoichi; Nozawa, Takayuki; Sugiura, Motoaki; Yomogida, Yukihito; Takeuchi, Hikaru; Akimoto, Yoritaka; Shibuya, Satoru; Kawashima, Ryuta
2014-05-01
Social considerations significantly influence daily purchase decisions, and the perception of social risk (i.e., the anticipated disapproval of others) is crucial in dissuading consumers from making purchases. However, the neural basis for consumers' perception of social risk remains undiscovered, and this novel study clarifies the relevant neural processes. A total of 26 volunteers were scanned while they evaluated purchase intention of products (purchase intention task) and their anticipation of others' disapproval for possessing a product (social risk task), using functional magnetic resonance imaging (fMRI). The fMRI data from the purchase intention task was used to identify the brain region associated with perception of social risk during purchase decision making by using subjective social risk ratings for a parametric modulation analysis. Furthermore, we aimed to explore if there was a difference between participants' purchase decisions and their explicit evaluations of social risk, with reference to the neural activity associated with social risk perception. For this, subjective social risk ratings were used for a parametric modulation analysis on fMRI data from the social risk task. Analysis of the purchase intention task revealed a significant positive correlation between ratings of social risk and activity in the anterior insula, an area of the brain that is known as part of the emotion-related network. Analysis of the social risk task revealed a significant positive correlation between ratings of social risk and activity in the temporal parietal junction and the medial prefrontal cortex, which are known as theory-of-mind regions. Our results suggest that the anterior insula processes consumers' social risk implicitly to prompt consumers not to buy socially unacceptable products, whereas ToM-related regions process such risk explicitly in considering the anticipated disapproval of others. These findings may prove helpful in understanding the mental processes involved in purchase decisions. Copyright © 2014 Elsevier Inc. All rights reserved.
Cognitive task analysis of network analysts and managers for network situational awareness
NASA Astrophysics Data System (ADS)
Erbacher, Robert F.; Frincke, Deborah A.; Wong, Pak Chung; Moody, Sarah; Fink, Glenn
2010-01-01
The goal of our project is to create a set of next-generation cyber situational-awareness capabilities with applications to other domains in the long term. The situational-awareness capabilities being developed focus on novel visualization techniques as well as data analysis techniques designed to improve the comprehensibility of the visualizations. The objective is to improve the decision-making process to enable decision makers to choose better actions. To this end, we put extensive effort into ensuring we had feedback from network analysts and managers and understanding what their needs truly are. This paper discusses the cognitive task analysis methodology we followed to acquire feedback from the analysts. This paper also provides the details we acquired from the analysts on their processes, goals, concerns, etc. A final result we describe is the generation of a task-flow diagram.
Hardy, Chris J D; Agustus, Jennifer L; Marshall, Charles R; Clark, Camilla N; Russell, Lucy L; Bond, Rebecca L; Brotherhood, Emilie V; Thomas, David L; Crutch, Sebastian J; Rohrer, Jonathan D; Warren, Jason D
2017-07-27
Non-verbal auditory impairment is increasingly recognised in the primary progressive aphasias (PPAs) but its relationship to speech processing and brain substrates has not been defined. Here we addressed these issues in patients representing the non-fluent variant (nfvPPA) and semantic variant (svPPA) syndromes of PPA. We studied 19 patients with PPA in relation to 19 healthy older individuals. We manipulated three key auditory parameters-temporal regularity, phonemic spectral structure and prosodic predictability (an index of fundamental information content, or entropy)-in sequences of spoken syllables. The ability of participants to process these parameters was assessed using two-alternative, forced-choice tasks and neuroanatomical associations of task performance were assessed using voxel-based morphometry of patients' brain magnetic resonance images. Relative to healthy controls, both the nfvPPA and svPPA groups had impaired processing of phonemic spectral structure and signal predictability while the nfvPPA group additionally had impaired processing of temporal regularity in speech signals. Task performance correlated with standard disease severity and neurolinguistic measures. Across the patient cohort, performance on the temporal regularity task was associated with grey matter in the left supplementary motor area and right caudate, performance on the phoneme processing task was associated with grey matter in the left supramarginal gyrus, and performance on the prosodic predictability task was associated with grey matter in the right putamen. Our findings suggest that PPA syndromes may be underpinned by more generic deficits of auditory signal analysis, with a distributed cortico-subcortical neuraoanatomical substrate extending beyond the canonical language network. This has implications for syndrome classification and biomarker development.
NASA Technical Reports Server (NTRS)
Wolf, M.
1979-01-01
To facilitate the task of objectively comparing competing process options, a methodology was needed for the quantitative evaluation of their relative cost effectiveness. Such a methodology was developed and is described, together with three examples for its application. The criterion for the evaluation is the cost of the energy produced by the system. The method permits the evaluation of competing design options for subsystems, based on the differences in cost and efficiency of the subsystems, assuming comparable reliability and service life, or of competing manufacturing process options for such subsystems, which include solar cells or modules. This process option analysis is based on differences in cost, yield, and conversion efficiency contribution of the process steps considered.
Cognitive Task Analysis for Instruction in Single-Injection Ultrasound Guided-Regional Anesthesia
ERIC Educational Resources Information Center
Gucev, Gligor V.
2012-01-01
Cognitive task analysis (CTA) is methodology for eliciting knowledge from subject matter experts. CTA has been used to capture the cognitive processes, decision-making, and judgments that underlie expert behaviors. A review of the literature revealed that CTA has not yet been used to capture the knowledge required to perform ultrasound guided…
NASA Technical Reports Server (NTRS)
Kirlik, Alex; Kossack, Merrick Frank
1993-01-01
This status report consists of a thesis entitled 'Ecological Task Analysis: A Method for Display Enhancements.' Previous use of various analysis processes for the purpose of display interface design or enhancement has run the risk of failing to improve user performance due to the analysis resulting in only a sequencial listing of user tasks. Adopting an ecological approach to performing the task analysis, however, may result in the necessary modeling of an unpredictable and variable task domain required to improve user performance. Kirlik has proposed an Ecological Task Analysis framework which is designed for this purpose. It is the purpose of this research to measure this framework's effectiveness at enhancing display interfaces in order to improve user performance. Following the proposed framework, an ecological task analysis of experienced users of a complex and dynamic laboratory task, Star Cruiser, was performed. Based on this analysis, display enhancements were proposed and implemented. An experiment was then conducted to compare this new version of Star Cruiser to the original. By measuring user performance at different tasks, it was determined that during early sessions, use of the enhanced display contributed to better user performance compared to that achieved using the original display. Furthermore, the results indicate that the enhancements proposed as a result of the ecological task analysis affected user performance differently depending on whether they are enhancements which aid in the selection of a possible action or in the performance of an action. Generalizations of these findings to larger, more complex systems were avoided since the analysis was only performed on this one particular system.
Effects of automation of information-processing functions on teamwork.
Wright, Melanie C; Kaber, David B
2005-01-01
We investigated the effects of automation as applied to different stages of information processing on team performance in a complex decision-making task. Forty teams of 2 individuals performed a simulated Theater Defense Task. Four automation conditions were simulated with computer assistance applied to realistic combinations of information acquisition, information analysis, and decision selection functions across two levels of task difficulty. Multiple measures of team effectiveness and team coordination were used. Results indicated different forms of automation have different effects on teamwork. Compared with a baseline condition, an increase in automation of information acquisition led to an increase in the ratio of information transferred to information requested; an increase in automation of information analysis resulted in higher team coordination ratings; and automation of decision selection led to better team effectiveness under low levels of task difficulty but at the cost of higher workload. The results support the use of early and intermediate forms of automation related to acquisition and analysis of information in the design of team tasks. Decision-making automation may provide benefits in more limited contexts. Applications of this research include the design and evaluation of automation in team environments.
A multi-site cognitive task analysis for biomedical query mediation.
Hruby, Gregory W; Rasmussen, Luke V; Hanauer, David; Patel, Vimla L; Cimino, James J; Weng, Chunhua
2016-09-01
To apply cognitive task analyses of the Biomedical query mediation (BQM) processes for EHR data retrieval at multiple sites towards the development of a generic BQM process model. We conducted semi-structured interviews with eleven data analysts from five academic institutions and one government agency, and performed cognitive task analyses on their BQM processes. A coding schema was developed through iterative refinement and used to annotate the interview transcripts. The annotated dataset was used to reconstruct and verify each BQM process and to develop a harmonized BQM process model. A survey was conducted to evaluate the face and content validity of this harmonized model. The harmonized process model is hierarchical, encompassing tasks, activities, and steps. The face validity evaluation concluded the model to be representative of the BQM process. In the content validity evaluation, out of the 27 tasks for BQM, 19 meet the threshold for semi-valid, including 3 fully valid: "Identify potential index phenotype," "If needed, request EHR database access rights," and "Perform query and present output to medical researcher", and 8 are invalid. We aligned the goals of the tasks within the BQM model with the five components of the reference interview. The similarity between the process of BQM and the reference interview is promising and suggests the BQM tasks are powerful for eliciting implicit information needs. We contribute a BQM process model based on a multi-site study. This model promises to inform the standardization of the BQM process towards improved communication efficiency and accuracy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A Multi-Site Cognitive Task Analysis for Biomedical Query Mediation
Hruby, Gregory W.; Rasmussen, Luke V.; Hanauer, David; Patel, Vimla; Cimino, James J.; Weng, Chunhua
2016-01-01
Objective To apply cognitive task analyses of the Biomedical query mediation (BQM) processes for EHR data retrieval at multiple sites towards the development of a generic BQM process model. Materials and Methods We conducted semi-structured interviews with eleven data analysts from five academic institutions and one government agency, and performed cognitive task analyses on their BQM processes. A coding schema was developed through iterative refinement and used to annotate the interview transcripts. The annotated dataset was used to reconstruct and verify each BQM process and to develop a harmonized BQM process model. A survey was conducted to evaluate the face and content validity of this harmonized model. Results The harmonized process model is hierarchical, encompassing tasks, activities, and steps. The face validity evaluation concluded the model to be representative of the BQM process. In the content validity evaluation, out of the 27 tasks for BQM, 19 meet the threshold for semi-valid, including 3 fully valid: “Identify potential index phenotype,” “If needed, request EHR database access rights,” and “Perform query and present output to medical researcher”, and 8 are invalid. Discussion We aligned the goals of the tasks within the BQM model with the five components of the reference interview. The similarity between the process of BQM and the reference interview is promising and suggests the BQM tasks are powerful for eliciting implicit information needs. Conclusions We contribute a BQM process model based on a multi-site study. This model promises to inform the standardization of the BQM process towards improved communication efficiency and accuracy. PMID:27435950
A dual contribution to the involuntary semantic processing of unexpected spoken words.
Parmentier, Fabrice B R; Turner, Jacqueline; Perez, Laura
2014-02-01
Sounds are a major cause of distraction. Unexpected to-be-ignored auditory stimuli presented in the context of an otherwise repetitive acoustic background ineluctably break through selective attention and distract people from an unrelated visual task (deviance distraction). This involuntary capture of attention by deviant sounds has been hypothesized to trigger their semantic appraisal and, in some circumstances, interfere with ongoing performance, but it remains unclear how such processing compares with the automatic processing of distractors in classic interference tasks (e.g., Stroop, flanker, Simon tasks). Using a cross-modal oddball task, we assessed the involuntary semantic processing of deviant sounds in the presence and absence of deviance distraction. The results revealed that some involuntary semantic analysis of spoken distractors occurs in the absence of deviance distraction but that this processing is significantly greater in its presence. We conclude that the automatic processing of spoken distractors reflects 2 contributions, one that is contingent upon deviance distraction and one that is independent from it.
Mueller, Christina J; White, Corey N; Kuchinke, Lars
2017-11-27
The goal of this study was to replicate findings of diffusion model parameters capturing emotion effects in a lexical decision task and investigating whether these findings extend to other tasks of implicit emotion processing. Additionally, we were interested in the stability of diffusion model parameters across emotional stimuli and tasks for individual subjects. Responses to words in a lexical decision task were compared with responses to faces in a gender categorization task for stimuli of the emotion categories: happy, neutral and fear. Main effects of emotion as well as stability of emerging response style patterns as evident in diffusion model parameters across these tasks were analyzed. Based on earlier findings, drift rates were assumed to be more similar in response to stimuli of the same emotion category compared to stimuli of a different emotion category. Results showed that emotion effects of the tasks differed with a processing advantage for happy followed by neutral and fear-related words in the lexical decision task and a processing advantage for neutral followed by happy and fearful faces in the gender categorization task. Both emotion effects were captured in estimated drift rate parameters-and in case of the lexical decision task also in the non-decision time parameters. A principal component analysis showed that contrary to our hypothesis drift rates were more similar within a specific task context than within a specific emotion category. Individual response patterns of subjects across tasks were evident in significant correlations regarding diffusion model parameters including response styles, non-decision times and information accumulation.
Levels-of-processing effects on a task of olfactory naming.
Royet, Jean-Pierre; Koenig, Olivier; Paugam-Moisy, Helene; Puzenat, Didier; Chasse, Jean-Luc
2004-02-01
The effects of odor processing were investigated at various analytical levels, from simple sensory analysis to deep or semantic analysis, on a subsequent task of odor naming. Students (106 women, 23.6 +/- 5.5 yr. old; 65 men, 25.1 +/- 7.1 yr. old) were tested. The experimental procedure included two successive sessions, a first session to characterize a set of 30 odors with criteria that used various depths of processing and a second session to name the odors as quickly as possible. Four processing conditions rated the odors using descriptors before naming the odor. The control condition did not rate the odors before naming. The processing conditions were based on lower-level olfactory judgments (superficial processing), higher-level olfactory-gustatory-somesthetic judgments (deep processing), and higher-level nonolfactory judgments (Deep-Control processing, with subjects rating odors with auditory and visual descriptors). One experimental condition successively grouped lower- and higher-level olfactory judgments (Superficial-Deep processing). A naming index which depended on response accuracy and the subjects' response time were calculated. Odor naming was modified for 18 out of 30 odorants as a function of the level of processing required. For 94.5% of significant variations, the scores for odor naming were higher following those tasks for which it was hypothesized that the necessary olfactory processing was carried out at a deeper level. Performance in the naming task was progressively improved as follows: no rating of odors, then superficial, deep-control, deep, and superficial-deep processings. These data show that the deepest olfactory encoding was later associated with progressively higher performance in naming.
Steinborn, Michael B.; Huestegge, Lynn
2017-01-01
This is a pilot study that examined the effect of cell-phone conversation on cognition using a continuous multitasking paradigm. Current theorizing argues that phone conversation affects behavior (e.g., driving) by interfering at a level of cognitive processes (not peripheral activity) and by implying an attentional-failure account. Within the framework of an intermittent spare–utilized capacity threading model, we examined the effect of aspects of (secondary-task) phone conversation on (primary-task) continuous arithmetic performance, asking whether phone use makes components of automatic and controlled information-processing (i.e., easy vs. hard mental arithmetic) run more slowly, or alternatively, makes processing run less reliably albeit with the same processing speed. The results can be summarized as follows: While neither expecting a text message nor expecting an impending phone call had any detrimental effects on performance, active phone conversation was clearly detrimental to primary-task performance. Crucially, the decrement imposed by secondary-task (conversation) was not due to a constant slowdown but is better be characterized by an occasional breakdown of information processing, which differentially affected automatic and controlled components of primary-task processing. In conclusion, these findings support the notion that phone conversation makes individuals not constantly slower but more vulnerable to commit attention failure, and in this way, hampers stability of (primary-task) information processing. PMID:28634458
Steinborn, Michael B; Huestegge, Lynn
2017-01-01
This is a pilot study that examined the effect of cell-phone conversation on cognition using a continuous multitasking paradigm. Current theorizing argues that phone conversation affects behavior (e.g., driving) by interfering at a level of cognitive processes (not peripheral activity) and by implying an attentional-failure account. Within the framework of an intermittent spare-utilized capacity threading model, we examined the effect of aspects of (secondary-task) phone conversation on (primary-task) continuous arithmetic performance, asking whether phone use makes components of automatic and controlled information-processing (i.e., easy vs. hard mental arithmetic) run more slowly, or alternatively, makes processing run less reliably albeit with the same processing speed. The results can be summarized as follows: While neither expecting a text message nor expecting an impending phone call had any detrimental effects on performance, active phone conversation was clearly detrimental to primary-task performance. Crucially, the decrement imposed by secondary-task (conversation) was not due to a constant slowdown but is better be characterized by an occasional breakdown of information processing, which differentially affected automatic and controlled components of primary-task processing. In conclusion, these findings support the notion that phone conversation makes individuals not constantly slower but more vulnerable to commit attention failure, and in this way, hampers stability of (primary-task) information processing.
Interactive Computer Based Assessment Tasks: How Problem-Solving Process Data Can Inform Instruction
ERIC Educational Resources Information Center
Zoanetti, Nathan
2010-01-01
This article presents key steps in the design and analysis of a computer based problem-solving assessment featuring interactive tasks. The purpose of the assessment is to support targeted instruction for students by diagnosing strengths and weaknesses at different stages of problem-solving. The first focus of this article is the task piloting…
The Endurance of Children's Working Memory: A Recall Time Analysis
ERIC Educational Resources Information Center
Towse, John N.; Hitch, Graham J.; Hamilton, Z.; Pirrie, Sarah
2008-01-01
We analyze the timing of recall as a source of information about children's performance in complex working memory tasks. A group of 8-year-olds performed a traditional operation span task in which sequence length increased across trials and an operation period task in which processing requirements were extended across trials of constant sequence…
Schmithorst, Vincent J; Brown, Rhonda Douglas
2004-07-01
The suitability of a previously hypothesized triple-code model of numerical processing, involving analog magnitude, auditory verbal, and visual Arabic codes of representation, was investigated for the complex mathematical task of the mental addition and subtraction of fractions. Functional magnetic resonance imaging (fMRI) data from 15 normal adult subjects were processed using exploratory group Independent Component Analysis (ICA). Separate task-related components were found with activation in bilateral inferior parietal, left perisylvian, and ventral occipitotemporal areas. These results support the hypothesized triple-code model corresponding to the activated regions found in the individual components and indicate that the triple-code model may be a suitable framework for analyzing the neuropsychological bases of the performance of complex mathematical tasks. Copyright 2004 Elsevier Inc.
Better dual-task processing in simultaneous interpreters
Strobach, Tilo; Becker, Maxi; Schubert, Torsten; Kühn, Simone
2015-01-01
Simultaneous interpreting (SI) is a highly complex activity and requires the performance and coordination of multiple, simultaneous tasks: analysis and understanding of the discourse in a first language, reformulating linguistic material, storing of intermediate processing steps, and language production in a second language among others. It is, however, an open issue whether persons with experience in SI possess superior skills in coordination of multiple tasks and whether they are able to transfer these skills to lab-based dual-task situations. Within the present study, we set out to explore whether interpreting experience is associated with related higher-order executive functioning in the context of dual-task situations of the Psychological Refractory Period (PRP) type. In this PRP situation, we found faster reactions times in participants with experience in simultaneous interpretation in contrast to control participants without such experience. Thus, simultaneous interpreters possess superior skills in coordination of multiple tasks in lab-based dual-task situations. PMID:26528232
Multitasking: Effects of processing multiple auditory feature patterns
Miller, Tova; Chen, Sufen; Lee, Wei Wei; Sussman, Elyse S.
2016-01-01
ERPs and behavioral responses were measured to assess how task-irrelevant sounds interact with task processing demands and affect the ability to monitor and track multiple sound events. Participants listened to four-tone sequential frequency patterns, and responded to frequency pattern deviants (reversals of the pattern). Irrelevant tone feature patterns (duration and intensity) and respective pattern deviants were presented together with frequency patterns and frequency pattern deviants in separate conditions. Responses to task-relevant and task-irrelevant feature pattern deviants were used to test processing demands for irrelevant sound input. Behavioral performance was significantly better when there were no distracting feature patterns. Errors primarily occurred in response to the to-be-ignored feature pattern deviants. Task-irrelevant elicitation of ERP components was consistent with the error analysis, indicating a level of processing for the irrelevant features. Task-relevant elicitation of ERP components was consistent with behavioral performance, demonstrating a “cost” of performance when there were two feature patterns presented simultaneously. These results provide evidence that the brain tracked the irrelevant duration and intensity feature patterns, affecting behavioral performance. Overall, our results demonstrate that irrelevant informational streams are processed at a cost, which may be considered a type of multitasking that is an ongoing, automatic processing of taskirrelevant sensory events. PMID:25939456
Zakay, Dan
2014-01-01
The musical Stroop task is analyzed and compared to the classical Stroop task. The analysis indicates that the two tasks differ in the following significant characteristics: ecological validity, the interrelations between the two perceptual dimensions involved, the nature of the automatic process and the existence of a potential Garner interference. It is concluded that the musical task has no advantage over the classical task.
2010-01-01
and related tech- nologies . Washington, DC: National Academies Press. Neisser , U . (1967) . Cognitive psychology. New York: Appleton-Century-Crofts...behavior (see Neisser [1967] for a review of the early stages of information processing). The result is a characterization of human tasks as involving
Task and spatial frequency modulations of object processing: an EEG study.
Craddock, Matt; Martinovic, Jasna; Müller, Matthias M
2013-01-01
Visual object processing may follow a coarse-to-fine sequence imposed by fast processing of low spatial frequencies (LSF) and slow processing of high spatial frequencies (HSF). Objects can be categorized at varying levels of specificity: the superordinate (e.g. animal), the basic (e.g. dog), or the subordinate (e.g. Border Collie). We tested whether superordinate and more specific categorization depend on different spatial frequency ranges, and whether any such dependencies might be revealed by or influence signals recorded using EEG. We used event-related potentials (ERPs) and time-frequency (TF) analysis to examine the time course of object processing while participants performed either a grammatical gender-classification task (which generally forces basic-level categorization) or a living/non-living judgement (superordinate categorization) on everyday, real-life objects. Objects were filtered to contain only HSF or LSF. We found a greater positivity and greater negativity for HSF than for LSF pictures in the P1 and N1 respectively, but no effects of task on either component. A later, fronto-central negativity (N350) was more negative in the gender-classification task than the superordinate categorization task, which may indicate that this component relates to semantic or syntactic processing. We found no significant effects of task or spatial frequency on evoked or total gamma band responses. Our results demonstrate early differences in processing of HSF and LSF content that were not modulated by categorization task, with later responses reflecting such higher-level cognitive factors.
Kim, Na Young; Wittenberg, Ellen; Nam, Chang S
2017-01-01
This study investigated the interaction between two executive function processes, inhibition and updating, through analyses of behavioral, neurophysiological, and effective connectivity metrics. Although, many studies have focused on behavioral effects of executive function processes individually, few studies have examined the dynamic causal interactions between these two functions. A total of twenty participants from a local university performed a dual task combing flanker and n-back experimental paradigms, and completed the Operation Span Task designed to measure working memory capacity. We found that both behavioral (accuracy and reaction time) and neurophysiological (P300 amplitude and alpha band power) metrics on the inhibition task (i.e., flanker task) were influenced by the updating load (n-back level) and modulated by working memory capacity. Using independent component analysis, source localization (DIPFIT), and Granger Causality analysis of the EEG time-series data, the present study demonstrated that manipulation of cognitive demand in a dual executive function task influenced the causal neural network. We compared connectivity across three updating loads (n-back levels) and found that experimental manipulation of working memory load enhanced causal connectivity of a large-scale neurocognitive network. This network contains the prefrontal and parietal cortices, which are associated with inhibition and updating executive function processes. This study has potential applications in human performance modeling and assessment of mental workload, such as the design of training materials and interfaces for those performing complex multitasking under stress.
Task Inhibition and Response Inhibition in Older vs. Younger Adults: A Diffusion Model Analysis
Schuch, Stefanie
2016-01-01
Differences in inhibitory ability between older (64–79 years, N = 24) and younger adults (18–26 years, N = 24) were investigated using a diffusion model analysis. Participants performed a task-switching paradigm that allows assessing n−2 task repetition costs, reflecting inhibitory control on the level of tasks, as well as n−1 response-repetition costs, reflecting inhibitory control on the level of responses. N−2 task repetition costs were of similar size in both age groups. Diffusion model analysis revealed that for both younger and older adults, drift rate parameters were smaller in the inhibition condition relative to the control condition, consistent with the idea that persisting task inhibition slows down response selection. Moreover, there was preliminary evidence for task inhibition effects in threshold separation and non-decision time in the older, but not the younger adults, suggesting that older adults might apply different strategies when dealing with persisting task inhibition. N−1 response-repetition costs in mean RT were larger in older than younger adults, but in mean error rates tended to be larger in younger than older adults. Diffusion-model analysis revealed longer non-decision times in response repetitions than response switches in both age groups, consistent with the idea that motor processes take longer in response repetitions than response switches due to persisting response inhibition of a previously executed response. The data also revealed age-related differences in overall performance: Older adults responded more slowly and more accurately than young adults, which was reflected by a higher threshold separation parameter in diffusion model analysis. Moreover, older adults showed larger non-decision times and higher variability in non-decision time than young adults, possibly reflecting slower and more variable motor processes. In contrast, overall drift rate did not differ between older and younger adults. Taken together, diffusion model analysis revealed differences in overall performance between the age groups, as well as preliminary evidence for age differences in dealing with task inhibition, but no evidence for an inhibitory deficit in older age. PMID:27895599
Robust Resilience of the Frontotemporal Syntax System to Aging
Samu, Dávid; Davis, Simon W.; Geerligs, Linda; Mustafa, Abdur; Tyler, Lorraine K.
2016-01-01
Brain function is thought to become less specialized with age. However, this view is largely based on findings of increased activation during tasks that fail to separate task-related processes (e.g., attention, decision making) from the cognitive process under examination. Here we take a systems-level approach to separate processes specific to language comprehension from those related to general task demands and to examine age differences in functional connectivity both within and between those systems. A large population-based sample (N = 111; 22–87 years) from the Cambridge Centre for Aging and Neuroscience (Cam-CAN) was scanned using functional MRI during two versions of an experiment: a natural listening version in which participants simply listened to spoken sentences and an explicit task version in which they rated the acceptability of the same sentences. Independent components analysis across the combined data from both versions showed that although task-free language comprehension activates only the auditory and frontotemporal (FTN) syntax networks, performing a simple task with the same sentences recruits several additional networks. Remarkably, functionality of the critical FTN is maintained across age groups, showing no difference in within-network connectivity or responsivity to syntactic processing demands despite gray matter loss and reduced connectivity to task-related networks. We found no evidence for reduced specialization or compensation with age. Overt task performance was maintained across the lifespan and performance in older, but not younger, adults related to crystallized knowledge, suggesting that decreased between-network connectivity may be compensated for by older adults' richer knowledge base. SIGNIFICANCE STATEMENT Understanding spoken language requires the rapid integration of information at many different levels of analysis. Given the complexity and speed of this process, it is remarkably well preserved with age. Although previous work claims that this preserved functionality is due to compensatory activation of regions outside the frontotemporal language network, we use a novel systems-level approach to show that these “compensatory” activations simply reflect age differences in response to experimental task demands. Natural, task-free language comprehension solely recruits auditory and frontotemporal networks, the latter of which is similarly responsive to language-processing demands across the lifespan. These findings challenge the conventional approach to neurocognitive aging by showing that the neural underpinnings of a given cognitive function depend on how you test it. PMID:27170120
Meta-analysis of age and skill effects on recalling chess positions and selecting the best move.
Moxley, Jerad H; Charness, Neil
2013-10-01
A meta-analysis was conducted of studies that measured the effects of both age and skill in chess on the tasks of selecting the best move for chess positions (the best move task) as well as recalling chess game positions (the recall task). Despite a small sample of studies, we demonstrated that there are age and skill effects on both tasks: age being negatively associated with performance on both tasks and skill being positively associated with performance on both tasks. On the best move task, we found that skill was the dominant effect, while on the recall task, skill and age were approximately equally strong effects. We also found that skill was best measured by the best move task. In the case of the best move task, this result is consistent with the argument that it accurately replicates expert performance (Ericsson & Smith, 1991). Results for the recall task argue that this task captures effects related to skill, but also effects likely due to a general aging process. Implications for our understanding of aging in skilled domains are also discussed.
Cortical subnetwork dynamics during human language tasks.
Collard, Maxwell J; Fifer, Matthew S; Benz, Heather L; McMullen, David P; Wang, Yujing; Milsap, Griffin W; Korzeniewska, Anna; Crone, Nathan E
2016-07-15
Language tasks require the coordinated activation of multiple subnetworks-groups of related cortical interactions involved in specific components of task processing. Although electrocorticography (ECoG) has sufficient temporal and spatial resolution to capture the dynamics of event-related interactions between cortical sites, it is difficult to decompose these complex spatiotemporal patterns into functionally discrete subnetworks without explicit knowledge of each subnetwork's timing. We hypothesized that subnetworks corresponding to distinct components of task-related processing could be identified as groups of interactions with co-varying strengths. In this study, five subjects implanted with ECoG grids over language areas performed word repetition and picture naming. We estimated the interaction strength between each pair of electrodes during each task using a time-varying dynamic Bayesian network (tvDBN) model constructed from the power of high gamma (70-110Hz) activity, a surrogate for population firing rates. We then reduced the dimensionality of this model using principal component analysis (PCA) to identify groups of interactions with co-varying strengths, which we term functional network components (FNCs). This data-driven technique estimates both the weight of each interaction's contribution to a particular subnetwork, and the temporal profile of each subnetwork's activation during the task. We found FNCs with temporal and anatomical features consistent with articulatory preparation in both tasks, and with auditory and visual processing in the word repetition and picture naming tasks, respectively. These FNCs were highly consistent between subjects with similar electrode placement, and were robust enough to be characterized in single trials. Furthermore, the interaction patterns uncovered by FNC analysis correlated well with recent literature suggesting important functional-anatomical distinctions between processing external and self-produced speech. Our results demonstrate that subnetwork decomposition of event-related cortical interactions is a powerful paradigm for interpreting the rich dynamics of large-scale, distributed cortical networks during human cognitive tasks. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Hasegawa, Atsushi
2018-01-01
Using the framework of conversation analysis, this study investigated the interactional workings of laughter in task-based interactions. The analysis was drawn from 160 cases of pair work interactions, collected in 2nd-semester Japanese-as-a-foreign-language classrooms. The pair work activities examined in this study are mostly grammar-focused,…
Recognition and reading aloud of kana and kanji word: an fMRI study.
Ino, Tadashi; Nakai, Ryusuke; Azuma, Takashi; Kimura, Toru; Fukuyama, Hidenao
2009-03-16
It has been proposed that different brain regions are recruited for processing two Japanese writing systems, namely, kanji (morphograms) and kana (syllabograms). However, this difference may depend upon what type of word was used and also on what type of task was performed. Using fMRI, we investigated brain activation for processing kanji and kana words with similar high familiarity in two tasks: word recognition and reading aloud. During both tasks, words and non-words were presented side by side, and the subjects were required to press a button corresponding to the real word in the word recognition task and were required to read aloud the real word in the reading aloud task. Brain activations were similar between kanji and kana during reading aloud task, whereas during word recognition task in which accurate identification and selection were required, kanji relative to kana activated regions of bilateral frontal, parietal and occipitotemporal cortices, all of which were related mainly to visual word-form analysis and visuospatial attention. Concerning the difference of brain activity between two tasks, differential activation was found only in the regions associated with task-specific sensorimotor processing for kana, whereas visuospatial attention network also showed greater activation during word recognition task than during reading aloud task for kanji. We conclude that the differences in brain activation between kanji and kana depend on the interaction between the script characteristics and the task demands.
Production of Verb Tense in Agrammatic Aphasia: A Meta-Analysis and Further Data
Faroqi-Shah, Yasmeen; Friedman, Laura
2015-01-01
In a majority of languages, the time of an event is expressed by marking tense on the verb. There is substantial evidence that the production of verb tense in sentences is more severely impaired than other functional categories in persons with agrammatic aphasia. The underlying source of this verb tense impairment is less clear, particularly in terms of the relative contribution of conceptual-semantic and processing demands. This study aimed to provide a more precise characterization of verb tense impairment by examining if there is dissociation within tenses (due to conceptual-semantic differences) and an effect of experimental task (mediated by processing limitations). Two sources of data were used: a meta-analysis of published research (which yielded 143 datasets) and new data from 16 persons with agrammatic aphasia. Tensed verbs were significantly more impaired than neutral (nonfinite) verbs, but there were no consistent differences between past, present, and future tenses. Overall, tense accuracy was mediated by task, such that picture description task was the most challenging, relative to sentence completion, sentence production priming, and grammaticality judgment. An interaction between task and tense revealed a past tense disadvantage for a sentence production priming task. These findings indicate that verb tense impairment is exacerbated by processing demands of the elicitation task and the conceptual-semantic differences between tenses are too subtle to show differential performance in agrammatism. PMID:26457004
Bridges, John F P; Hauber, A Brett; Marshall, Deborah; Lloyd, Andrew; Prosser, Lisa A; Regier, Dean A; Johnson, F Reed; Mauskopf, Josephine
2011-06-01
The application of conjoint analysis (including discrete-choice experiments and other multiattribute stated-preference methods) in health has increased rapidly over the past decade. A wider acceptance of these methods is limited by an absence of consensus-based methodological standards. The International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Good Research Practices for Conjoint Analysis Task Force was established to identify good research practices for conjoint-analysis applications in health. The task force met regularly to identify the important steps in a conjoint analysis, to discuss good research practices for conjoint analysis, and to develop and refine the key criteria for identifying good research practices. ISPOR members contributed to this process through an extensive consultation process. A final consensus meeting was held to revise the article using these comments, and those of a number of international reviewers. Task force findings are presented as a 10-item checklist covering: 1) research question; 2) attributes and levels; 3) construction of tasks; 4) experimental design; 5) preference elicitation; 6) instrument design; 7) data-collection plan; 8) statistical analyses; 9) results and conclusions; and 10) study presentation. A primary question relating to each of the 10 items is posed, and three sub-questions examine finer issues within items. Although the checklist should not be interpreted as endorsing any specific methodological approach to conjoint analysis, it can facilitate future training activities and discussions of good research practices for the application of conjoint-analysis methods in health care studies. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Butensky, Samuel D; Sloan, Andrew P; Meyers, Eric; Carmel, Jason B
2017-07-15
Hand function is critical for independence, and neurological injury often impairs dexterity. To measure hand function in people or forelimb function in animals, sensors are employed to quantify manipulation. These sensors make assessment easier and more quantitative and allow automation of these tasks. While automated tasks improve objectivity and throughput, they also produce large amounts of data that can be burdensome to analyze. We created software called Dexterity that simplifies data analysis of automated reaching tasks. Dexterity is MATLAB software that enables quick analysis of data from forelimb tasks. Through a graphical user interface, files are loaded and data are identified and analyzed. These data can be annotated or graphed directly. Analysis is saved, and the graph and corresponding data can be exported. For additional analysis, Dexterity provides access to custom scripts created by other users. To determine the utility of Dexterity, we performed a study to evaluate the effects of task difficulty on the degree of impairment after injury. Dexterity analyzed two months of data and allowed new users to annotate the experiment, visualize results, and save and export data easily. Previous analysis of tasks was performed with custom data analysis, requiring expertise with analysis software. Dexterity made the tools required to analyze, visualize and annotate data easy to use by investigators without data science experience. Dexterity increases accessibility to automated tasks that measure dexterity by making analysis of large data intuitive, robust, and efficient. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jamal, Wasifa; Das, Saptarshi; Maharatna, Koushik; Pan, Indranil; Kuyucu, Doga
2015-09-01
Degree of phase synchronization between different Electroencephalogram (EEG) channels is known to be the manifestation of the underlying mechanism of information coupling between different brain regions. In this paper, we apply a continuous wavelet transform (CWT) based analysis technique on EEG data, captured during face perception tasks, to explore the temporal evolution of phase synchronization, from the onset of a stimulus. Our explorations show that there exists a small set (typically 3-5) of unique synchronized patterns or synchrostates, each of which are stable of the order of milliseconds. Particularly, in the beta (β) band, which has been reported to be associated with visual processing task, the number of such stable states has been found to be three consistently. During processing of the stimulus, the switching between these states occurs abruptly but the switching characteristic follows a well-behaved and repeatable sequence. This is observed in a single subject analysis as well as a multiple-subject group-analysis in adults during face perception. We also show that although these patterns remain topographically similar for the general category of face perception task, the sequence of their occurrence and their temporal stability varies markedly between different face perception scenarios (stimuli) indicating toward different dynamical characteristics for information processing, which is stimulus-specific in nature. Subsequently, we translated these stable states into brain complex networks and derived informative network measures for characterizing the degree of segregated processing and information integration in those synchrostates, leading to a new methodology for characterizing information processing in human brain. The proposed methodology of modeling the functional brain connectivity through the synchrostates may be viewed as a new way of quantitative characterization of the cognitive ability of the subject, stimuli and information integration/segregation capability.
Dionne-Odom, J Nicholas; Willis, Danny G; Bakitas, Marie; Crandall, Beth; Grace, Pamela J
2015-01-01
Surrogate decision makers (SDMs) face difficult decisions at end of life (EOL) for decisionally incapacitated intensive care unit (ICU) patients. To identify and describe the underlying psychological processes of surrogate decision making for adults at EOL in the ICU. Qualitative case study design using a cognitive task analysis interviewing approach. Participants were recruited from October 2012 to June 2013 from an academic tertiary medical center's ICU located in the rural Northeastern United States. Nineteen SDMs for patients who had died in the ICU completed in-depth semistructured cognitive task analysis interviews. The conceptual framework formulated from data analysis reveals that three underlying, iterative, psychological dimensions (gist impressions, distressing emotions, and moral intuitions) impact an SDM's judgment about the acceptability of either the patient's medical treatments or his or her condition. The framework offers initial insights about the underlying psychological processes of surrogate decision making and may facilitate enhanced decision support for SDMs. Copyright © 2015 Elsevier Inc. All rights reserved.
TARGET - TASK ANALYSIS REPORT GENERATION TOOL, VERSION 1.0
NASA Technical Reports Server (NTRS)
Ortiz, C. J.
1994-01-01
The Task Analysis Report Generation Tool, TARGET, is a graphical interface tool used to capture procedural knowledge and translate that knowledge into a hierarchical report. TARGET is based on VISTA, a knowledge acquisition tool developed by the Naval Systems Training Center. TARGET assists a programmer and/or task expert organize and understand the steps involved in accomplishing a task. The user can label individual steps in the task through a dialogue-box and get immediate graphical feedback for analysis. TARGET users can decompose tasks into basic action kernels or minimal steps to provide a clear picture of all basic actions needed to accomplish a job. This method allows the user to go back and critically examine the overall flow and makeup of the process. The user can switch between graphics (box flow diagrams) and text (task hierarchy) versions to more easily study the process being documented. As the practice of decomposition continues, tasks and their subtasks can be continually modified to more accurately reflect the user's procedures and rationale. This program is designed to help a programmer document an expert's task thus allowing the programmer to build an expert system which can help others perform the task. Flexibility is a key element of the system design and of the knowledge acquisition session. If the expert is not able to find time to work on the knowledge acquisition process with the program developer, the developer and subject matter expert may work in iterative sessions. TARGET is easy to use and is tailored to accommodate users ranging from the novice to the experienced expert systems builder. TARGET is written in C-language for IBM PC series and compatible computers running MS-DOS and Microsoft Windows version 3.0 or 3.1. No source code is supplied. The executable also requires 2Mb of RAM, a Microsoft compatible mouse, a VGA display and an 80286, 386 or 486 processor machine. The standard distribution medium for TARGET is one 5.25 inch 360K MS-DOS format diskette. TARGET was developed in 1991.
Scheduling Operational Operational-Level Courses of Action
2003-10-01
Process modelling and analysis – process synchronisation techniques Information and knowledge management – Collaborative planning systems – Workflow...logistics – Some tasks may consume resources The military user may wish to impose synchronisation constraints among tasks A military end state can be...effects, – constrained with resource and synchronisation considerations, and – lead to the achievement of conditions set in the end state. The COA is
Ergonomic assessment for the task of repairing computers in a manufacturing company: A case study.
Maldonado-Macías, Aidé; Realyvásquez, Arturo; Hernández, Juan Luis; García-Alcaraz, Jorge
2015-01-01
Manufacturing industry workers who repair computers may be exposed to ergonomic risk factors. This project analyzes the tasks involved in the computer repair process to (1) find the risk level for musculoskeletal disorders (MSDs) and (2) propose ergonomic interventions to address any ergonomic issues. Work procedures and main body postures were video recorded and analyzed using task analysis, the Rapid Entire Body Assessment (REBA) postural method, and biomechanical analysis. High risk for MSDs was found on every subtask using REBA. Although biomechanical analysis found an acceptable mass center displacement during tasks, a hazardous level of compression on the lower back during computer's transportation was detected. This assessment found ergonomic risks mainly in the trunk, arm/forearm, and legs; the neck and hand/wrist were also compromised. Opportunities for ergonomic analyses and interventions in the design and execution of computer repair tasks are discussed.
Crew interface with a telerobotic control station
NASA Technical Reports Server (NTRS)
Mok, Eva
1987-01-01
A method for apportioning crew-telerobot tasks has been derived to facilitate the design of a crew-friendly telerobot control station. To identify the most appropriate state-of-the-art hardware for the control station, task apportionment must first be conducted to identify if an astronaut or a telerobot is best to execute the task and which displays and controls are required for monitoring and performance. Basic steps that comprise the task analysis process are: (1) identify space station tasks; (2) define tasks; (3) define task performance criteria and perform task apportionment; (4) verify task apportionment; (5) generate control station requirements; (6) develop design concepts to meet requirements; and (7) test and verify design concepts.
Crew Integration & Automation Testbed and Robotic Follower Programs
2001-05-30
Evolving Technologies for Reduced Crew Operation” Vehicle Tech Demo #1 (VTT) Vehicle Tech Demo #2 ( CAT ATD) Two Man Transition Future Combat...Simulation Advanced Electronic Architecture Concept Vehicle Shown with Onboard Safety Driver Advanced Interfaces CAT ATD Exit Criteria...Provide 1000 Hz control loop for critical real-time tasks CAT Workload IPT Process and Product Schedule Crew Task List Task Timelines Workload Analysis
Local and Global Processing in Blind and Sighted Children in a Naming and Drawing Task
ERIC Educational Resources Information Center
Puspitawati, Ira; Jebrane, Ahmed; Vinter, Annie
2014-01-01
This study investigated the spatial analysis of tactile hierarchical patterns in 110 early-blind children aged 6-8 to 16-18 years, as compared to 90 blindfolded sighted children, in a naming and haptic drawing task. The results revealed that regardless of visual status, young children predominantly produced local responses in both tasks, whereas…
ERIC Educational Resources Information Center
Cai, Jinfa, And Others
1996-01-01
Presents a conceptual framework for analyzing students' mathematical understanding, reasoning, problem solving, and communication. Analyses of student responses indicated that the tasks appear to measure the complex thinking and reasoning processes that they were designed to assess. Concludes that the QUASAR assessment tasks can capture changes in…
'If you are good, I get better': the role of social hierarchy in perceptual decision-making.
Santamaría-García, Hernando; Pannunzi, Mario; Ayneto, Alba; Deco, Gustavo; Sebastián-Gallés, Nuria
2014-10-01
So far, it was unclear if social hierarchy could influence sensory or perceptual cognitive processes. We evaluated the effects of social hierarchy on these processes using a basic visual perceptual decision task. We constructed a social hierarchy where participants performed the perceptual task separately with two covertly simulated players (superior, inferior). Participants were faster (better) when performing the discrimination task with the superior player. We studied the time course when social hierarchy was processed using event-related potentials and observed hierarchical effects even in early stages of sensory-perceptual processing, suggesting early top-down modulation by social hierarchy. Moreover, in a parallel analysis, we fitted a drift-diffusion model (DDM) to the results to evaluate the decision making process of this perceptual task in the context of a social hierarchy. Consistently, the DDM pointed to nondecision time (probably perceptual encoding) as the principal period influenced by social hierarchy. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Tzur, Gabriel; Berger, Andrea
2009-03-17
Theta rhythm has been connected to ERP components such as the error-related negativity (ERN) and the feedback-related negativity (FRN). The nature of this theta activity is still unclear, that is, whether it is related to error detection, conflict between responses or reinforcement learning processes. We examined slow (e.g., theta) and fast (e.g., gamma) brain rhythms related to rule violation. A time-frequency decomposition analysis on a wide range of frequencies band (0-95 Hz) indicated that the theta activity relates to evaluation processes, regardless of motor/action processes. Similarities between the theta activities found in rule-violation tasks and in tasks eliciting ERN/FRN suggest that this theta activity reflects the operation of general evaluation mechanisms. Moreover, significant effects were found also in fast brain rhythms. These effects might be related to the synchronization between different types of cognitive processes involving the fulfillment of a task (e.g., working memory, visual perception, mathematical calculation, etc.).
Fetterhoff, Dustin; Opris, Ioan; Simpson, Sean L.; Deadwyler, Sam A.; Hampson, Robert E.; Kraft, Robert A.
2014-01-01
Background Multifractal analysis quantifies the time-scale-invariant properties in data by describing the structure of variability over time. By applying this analysis to hippocampal interspike interval sequences recorded during performance of a working memory task, a measure of long-range temporal correlations and multifractal dynamics can reveal single neuron correlates of information processing. New method Wavelet leaders-based multifractal analysis (WLMA) was applied to hippocampal interspike intervals recorded during a working memory task. WLMA can be used to identify neurons likely to exhibit information processing relevant to operation of brain–computer interfaces and nonlinear neuronal models. Results Neurons involved in memory processing (“Functional Cell Types” or FCTs) showed a greater degree of multifractal firing properties than neurons without task-relevant firing characteristics. In addition, previously unidentified FCTs were revealed because multifractal analysis suggested further functional classification. The cannabinoid-type 1 receptor partial agonist, tetrahydrocannabinol (THC), selectively reduced multifractal dynamics in FCT neurons compared to non-FCT neurons. Comparison with existing methods WLMA is an objective tool for quantifying the memory-correlated complexity represented by FCTs that reveals additional information compared to classification of FCTs using traditional z-scores to identify neuronal correlates of behavioral events. Conclusion z-Score-based FCT classification provides limited information about the dynamical range of neuronal activity characterized by WLMA. Increased complexity, as measured with multifractal analysis, may be a marker of functional involvement in memory processing. The level of multifractal attributes can be used to differentially emphasize neural signals to improve computational models and algorithms underlying brain–computer interfaces. PMID:25086297
Burgos, Pablo; Kilborn, Kerry; Evans, Jonathan J.
2017-01-01
Objective Time-based prospective memory (PM), remembering to do something at a particular moment in the future, is considered to depend upon self-initiated strategic monitoring, involving a retrieval mode (sustained maintenance of the intention) plus target checking (intermittent time checks). The present experiment was designed to explore what brain regions and brain activity are associated with these components of strategic monitoring in time-based PM tasks. Method 24 participants were asked to reset a clock every four minutes, while performing a foreground ongoing word categorisation task. EEG activity was recorded and data were decomposed into source-resolved activity using Independent Component Analysis. Common brain regions across participants, associated with retrieval mode and target checking, were found using Measure Projection Analysis. Results Participants decreased their performance on the ongoing task when concurrently performed with the time-based PM task, reflecting an active retrieval mode that relied on withdrawal of limited resources from the ongoing task. Brain activity, with its source in or near the anterior cingulate cortex (ACC), showed changes associated with an active retrieval mode including greater negative ERP deflections, decreased theta synchronization, and increased alpha suppression for events locked to the ongoing task while maintaining a time-based intention. Activity in the ACC was also associated with time-checks and found consistently across participants; however, we did not find an association with time perception processing per se. Conclusion The involvement of the ACC in both aspects of time-based PM monitoring may be related to different functions that have been attributed to it: strategic control of attention during the retrieval mode (distributing attentional resources between the ongoing task and the time-based task) and anticipatory/decision making processing associated with clock-checks. PMID:28863146
A multi-phase network situational awareness cognitive task analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erbacher, Robert; Frincke, Deborah A.; Wong, Pak C.
Abstract The goal of our project is to create a set of next-generation cyber situational-awareness capabilities with applications to other domains in the long term. The objective is to improve the decision-making process to enable decision makers to choose better actions. To this end, we put extensive effort into making certain that we had feedback from network analysts and managers and understand what their genuine needs are. This article discusses the cognitive task-analysis methodology that we followed to acquire feedback from the analysts. This article also provides the details we acquired from the analysts on their processes, goals, concerns, themore » data and metadata that they analyze. Finally, we describe the generation of a novel task-flow diagram representing the activities of the target user base.« less
About-face on face recognition ability and holistic processing
Richler, Jennifer J.; Floyd, R. Jackie; Gauthier, Isabel
2015-01-01
Previous work found a small but significant relationship between holistic processing measured with the composite task and face recognition ability measured by the Cambridge Face Memory Test (CFMT; Duchaine & Nakayama, 2006). Surprisingly, recent work using a different measure of holistic processing (Vanderbilt Holistic Face Processing Test [VHPT-F]; Richler, Floyd, & Gauthier, 2014) and a larger sample found no evidence for such a relationship. In Experiment 1 we replicate this unexpected result, finding no relationship between holistic processing (VHPT-F) and face recognition ability (CFMT). A key difference between the VHPT-F and other holistic processing measures is that unique face parts are used on each trial in the VHPT-F, unlike in other tasks where a small set of face parts repeat across the experiment. In Experiment 2, we test the hypothesis that correlations between the CFMT and holistic processing tasks are driven by stimulus repetition that allows for learning during the composite task. Consistent with our predictions, CFMT performance was correlated with holistic processing in the composite task when a small set of face parts repeated over trials, but not when face parts did not repeat. A meta-analysis confirms that relationships between the CFMT and holistic processing depend on stimulus repetition. These results raise important questions about what is being measured by the CFMT, and challenge current assumptions about why faces are processed holistically. PMID:26223027
About-face on face recognition ability and holistic processing.
Richler, Jennifer J; Floyd, R Jackie; Gauthier, Isabel
2015-01-01
Previous work found a small but significant relationship between holistic processing measured with the composite task and face recognition ability measured by the Cambridge Face Memory Test (CFMT; Duchaine & Nakayama, 2006). Surprisingly, recent work using a different measure of holistic processing (Vanderbilt Holistic Face Processing Test [VHPT-F]; Richler, Floyd, & Gauthier, 2014) and a larger sample found no evidence for such a relationship. In Experiment 1 we replicate this unexpected result, finding no relationship between holistic processing (VHPT-F) and face recognition ability (CFMT). A key difference between the VHPT-F and other holistic processing measures is that unique face parts are used on each trial in the VHPT-F, unlike in other tasks where a small set of face parts repeat across the experiment. In Experiment 2, we test the hypothesis that correlations between the CFMT and holistic processing tasks are driven by stimulus repetition that allows for learning during the composite task. Consistent with our predictions, CFMT performance was correlated with holistic processing in the composite task when a small set of face parts repeated over trials, but not when face parts did not repeat. A meta-analysis confirms that relationships between the CFMT and holistic processing depend on stimulus repetition. These results raise important questions about what is being measured by the CFMT, and challenge current assumptions about why faces are processed holistically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilaly, A.K.; Sikdar, S.K.
In this study, the authors introduced several modifications to the WAR (waste reduction) algorithm developed earlier. These modifications were made for systematically handling sensitivity analysis and various tasks of waste minimization. A design hierarchy was formulated to promote appropriate waste reduction tasks at designated levels of the hierarchy. A sensitivity coefficient was used to measure the relative impacts of process variables on the pollution index of a process. The use of the WAR algorithm was demonstrated by a fermentation process for making penicillin.
Effects of memory rehearsal on driver performance: experiment and theoretical account.
Salvucci, Dario D; Beltowska, Joanna
2008-10-01
We report an experiment and a theoretical analysis concerning the effects of an exclusively cognitive task, specifically a memory rehearsal task, on driver performance. Although recent work on driver distraction has elucidated the sometimes significant effects of cognitive processing on driver performance, these studies have typically mixed cognitive with perceptual and motor processing, making it difficult to isolate the effects of cognitive processing alone. We asked participants to drive in a driving simulator during only the rehearsal stage of a serial-recall memory task while we measured their ability to maintain a central lane position and respond to the illumination of a lead vehicle's brake lights. Memory rehearsal significantly affected drivers' steering performance as measured by lateral deviation from lane center, and it also significantly affected drivers' response time to the braking stimulus for the higher load memory task. These results lend support to a theoretical account of cognitive distraction provided by threaded cognition theory in terms of a cognitive bottleneck in procedural processing, and they also suggest that consideration of task urgency may be important in accounting for performance trade-offs among concurrent tasks. The experiment augments the current understanding of cognitive driver distraction and suggests that even exclusively cognitive secondary tasks may sometimes affect driver performance.
Using cognitive task analysis to develop simulation-based training for medical tasks.
Cannon-Bowers, Jan; Bowers, Clint; Stout, Renee; Ricci, Katrina; Hildabrand, Annette
2013-10-01
Pressures to increase the efficacy and effectiveness of medical training are causing the Department of Defense to investigate the use of simulation technologies. This article describes a comprehensive cognitive task analysis technique that can be used to simultaneously generate training requirements, performance metrics, scenario requirements, and simulator/simulation requirements for medical tasks. On the basis of a variety of existing techniques, we developed a scenario-based approach that asks experts to perform the targeted task multiple times, with each pass probing a different dimension of the training development process. In contrast to many cognitive task analysis approaches, we argue that our technique can be highly cost effective because it is designed to accomplish multiple goals. The technique was pilot tested with expert instructors from a large military medical training command. These instructors were employed to generate requirements for two selected combat casualty care tasks-cricothyroidotomy and hemorrhage control. Results indicated that the technique is feasible to use and generates usable data to inform simulation-based training system design. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
The project office of the Gaia Data Processing and Analysis Consortium
NASA Astrophysics Data System (ADS)
Mercier, E.; Els, S.; Gracia, G.; O'Mullane, W.; Lock, T.; Comoretto, G.
2010-07-01
Gaia is Europe's future astrometry satellite which is currently under development. The data collected by Gaia will be treated and analyzed by the "Data Processing and Analysis Consortium" (DPAC). DPAC consists of over 400 scientists in more than 22 countries, which are currently developing the required data reduction, analysis and handling algorithms and routines. DPAC is organized in Coordination Units (CU's) and Data Processing Centres (DPCs). Each of these entities is individually responsible for the development of software for the processing of the different data. In 2008, the DPAC Project Office (PO) has been set-up with the task to manage the day-to-day activities of the consortium including implementation, development and operations. This paper describes the tasks DPAC faces and the role of the DPAC PO in the Gaia framework and how it supports the DPAC entities in their effort to fulfill the Gaia promise.
ERIC Educational Resources Information Center
Gilpatrick, Eleanor
The two research reports included in this document describe the application of the Health Services Mobility Study (HSMS) task analysis method to two technologist functions and examine the interrelationships of these tasks with those in diagnostic radiology. (The HSMS method includes processes for using the data for designing job ladders, for…
ERIC Educational Resources Information Center
Glaser, Robert
This paper briefly reviews research on tasks in knowledge-rich domains including developmental studies, work in artificial intelligence, studies of expert/novice problem solving, and information processing analysis of aptitude test tasks that have provided increased understanding of the nature of expertise. Particularly evident is the finding that…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkholzer, J.T.; Barr, D.; Rutqvist, J.
2005-11-15
The DECOVALEX project is an international cooperativeproject initiated by SKI, the Swedish Nuclear Power Inspectorate, withparticipation of about 10 international organizations. The general goalof this project is to encourage multidisciplinary interactive andcooperative research on modelling coupledthermo-hydro-mechanical-chemical (THMC) processes in geologic formationsin support of the performance assessment for underground storage ofradioactive waste. One of the research tasks, initiated in 2004 by theU.S. Department of Energy (DOE), addresses the long-term impact ofgeomechanical and geochemical processes on the flow conditions near wasteemplacement tunnels. Within this task, four international research teamsconduct predictive analysis of the coupled processes in two genericrepositories, using multiple approaches andmore » different computer codes.Below, we give an overview of the research task and report its currentstatus.« less
Huang, Liqiang
2015-05-01
Basic visual features (e.g., color, orientation) are assumed to be processed in the same general way across different visual tasks. Here, a significant deviation from this assumption was predicted on the basis of the analysis of stimulus spatial structure, as characterized by the Boolean-map notion. If a task requires memorizing the orientations of a set of bars, then the map consisting of those bars can be readily used to hold the overall structure in memory and will thus be especially useful. If the task requires visual search for a target, then the map, which contains only an overall structure, will be of little use. Supporting these predictions, the present study demonstrated that in comparison to stimulus colors, bar orientations were processed more efficiently in change-detection tasks but less efficiently in visual search tasks (Cohen's d = 4.24). In addition to offering support for the role of the Boolean map in conscious access, the present work also throws doubts on the generality of processing visual features. © The Author(s) 2015.
Revealing the dual streams of speech processing.
Fridriksson, Julius; Yourganov, Grigori; Bonilha, Leonardo; Basilakos, Alexandra; Den Ouden, Dirk-Bart; Rorden, Christopher
2016-12-27
Several dual route models of human speech processing have been proposed suggesting a large-scale anatomical division between cortical regions that support motor-phonological aspects vs. lexical-semantic aspects of speech processing. However, to date, there is no complete agreement on what areas subserve each route or the nature of interactions across these routes that enables human speech processing. Relying on an extensive behavioral and neuroimaging assessment of a large sample of stroke survivors, we used a data-driven approach using principal components analysis of lesion-symptom mapping to identify brain regions crucial for performance on clusters of behavioral tasks without a priori separation into task types. Distinct anatomical boundaries were revealed between a dorsal frontoparietal stream and a ventral temporal-frontal stream associated with separate components. Collapsing over the tasks primarily supported by these streams, we characterize the dorsal stream as a form-to-articulation pathway and the ventral stream as a form-to-meaning pathway. This characterization of the division in the data reflects both the overlap between tasks supported by the two streams as well as the observation that there is a bias for phonological production tasks supported by the dorsal stream and lexical-semantic comprehension tasks supported by the ventral stream. As such, our findings show a division between two processing routes that underlie human speech processing and provide an empirical foundation for studying potential computational differences that distinguish between the two routes.
Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O
2008-09-16
Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapid and continuous stream of pleasant, neutral, and unpleasant pictures in one experimental condition, processing demands of a concurrent auditory target discrimination task were systematically varied in three further experimental conditions. Participants successfully performed the auditory task as revealed by behavioral performance and selected event-related potential components. Replicating previous results, emotional pictures were associated with a larger posterior negativity compared to neutral pictures. Of main interest, increasing demands of the auditory task did not modulate the selective processing of emotional visual stimuli. With regard to the locus of interference, selective emotion processing as indexed by the EPN does not seem to reflect shared processing resources of visual and auditory modality.
Poppenk, Jordan; Norman, Kenneth A.
2012-01-01
Recent cognitive research has revealed better source memory performance for familiar relative to novel stimuli. Here we consider two possible explanations for this finding. The source memory advantage for familiar stimuli could arise because stimulus novelty induces attention to stimulus features at the expense of contextual processing, resulting in diminished overall levels of contextual processing at study for novel (vs. familiar) stimuli. Another possibility is that stimulus information retrieved from long-term memory (LTM) provides scaffolding that facilitates the formation of item-context associations. If contextual features are indeed more effectively bound to familiar (vs. novel) items, the relationship between contextual processing at study and subsequent source memory should be stronger for familiar items. We tested these possibilities by applying multi-voxel pattern analysis (MVPA) to a recently collected functional magnetic resonance imaging (fMRI) dataset, with the goal of measuring contextual processing at study and relating it to subsequent source memory performance. Participants were scanned with fMRI while viewing novel proverbs, repeated proverbs (previously novel proverbs that were shown in a pre-study phase), and previously known proverbs in the context of one of two experimental tasks. After scanning was complete, we evaluated participants’ source memory for the task associated with each proverb. Drawing upon fMRI data from the study phase, we trained a classifier to detect on-task processing (i.e., how strongly was the correct task set activated). On-task processing was greater for previously known than novel proverbs and similar for repeated and novel proverbs. However, both within- and across participants, the relationship between on-task processing and subsequent source memory was stronger for repeated than novel proverbs and similar for previously known and novel proverbs. Finally, focusing on the repeated condition, we found that higher levels of hippocampal activity during the pre-study phase, which we used as an index of episodic encoding, led to a stronger relationship between on-task processing at study and subsequent memory. Together, these findings suggest different mechanisms may be primarily responsible for superior source memory for repeated and previously known stimuli. Specifically, they suggest that prior stimulus knowledge enhances memory by boosting the overall level of contextual processing, whereas stimulus repetition enhances the probability that contextual features will be successfully bound to item features. Several possible theoretical explanations for this pattern are discussed. PMID:22820636
Schilbach, Leonhard; Bzdok, Danilo; Timmermans, Bert; Fox, Peter T.; Laird, Angela R.; Vogeley, Kai; Eickhoff, Simon B.
2012-01-01
Previous research suggests overlap between brain regions that show task-induced deactivations and those activated during the performance of social-cognitive tasks. Here, we present results of quantitative meta-analyses of neuroimaging studies, which confirm a statistical convergence in the neural correlates of social and resting state cognition. Based on the idea that both social and unconstrained cognition might be characterized by introspective processes, which are also thought to be highly relevant for emotional experiences, a third meta-analysis was performed investigating studies on emotional processing. By using conjunction analyses across all three sets of studies, we can demonstrate significant overlap of task-related signal change in dorso-medial prefrontal and medial parietal cortex, brain regions that have, indeed, recently been linked to introspective abilities. Our findings, therefore, provide evidence for the existence of a core neural network, which shows task-related signal change during socio-emotional tasks and during resting states. PMID:22319593
An analysis of the processing requirements of a complex perceptual-motor task
NASA Technical Reports Server (NTRS)
Kramer, A. F.; Wickens, C. D.; Donchin, E.
1983-01-01
Current concerns in the assessment of mental workload are discussed, and the event-related brain potential (ERP) is introduced as a promising mental-workload index. Subjects participated in a series of studies in which they were required to perform a target acquisition task while also covertly counting either auditory or visual probes. The effects of several task-difficulty manipulations on the P300 component of the ERP elicited by the counted stimulus probes were investigated. With sufficiently practiced subjects the amplitude of the P300 was found to decrease with increases in task difficulty. The second experiment also provided evidence that the P300 is selectively sensitive to task-relevant attributes. A third experiment demonstrated a convergence in the amplitude of the P300s elicited in the simple and difficult versions of the tracking task. The amplitude of the P300 was also found to covary with the measures of tracking performance. The results of the series of three experiments illustrate the sensitivity of the P300 to the processing requirements of a complex target acquisition task. The findings are discussed in terms of the multidimensional nature of processing resources.
Neural networks related to dysfunctional face processing in autism spectrum disorder
Nickl-Jockschat, Thomas; Rottschy, Claudia; Thommes, Johanna; Schneider, Frank; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.
2016-01-01
One of the most consistent neuropsychological findings in autism spectrum disorders (ASD) is a reduced interest in and impaired processing of human faces. We conducted an activation likelihood estimation meta-analysis on 14 functional imaging studies on neural correlates of face processing enrolling a total of 164 ASD patients. Subsequently, normative whole-brain functional connectivity maps for the identified regions of significant convergence were computed for the task-independent (resting-state) and task-dependent (co-activations) state in healthy subjects. Quantitative functional decoding was performed by reference to the BrainMap database. Finally, we examined the overlap of the delineated network with the results of a previous meta-analysis on structural abnormalities in ASD as well as with brain regions involved in human action observation/imitation. We found a single cluster in the left fusiform gyrus showing significantly reduced activation during face processing in ASD across all studies. Both task-dependent and task-independent analyses indicated significant functional connectivity of this region with the temporo-occipital and lateral occipital cortex, the inferior frontal and parietal cortices, the thalamus and the amygdala. Quantitative reverse inference then indicated an association of these regions mainly with face processing, affective processing, and language-related tasks. Moreover, we found that the cortex in the region of right area V5 displaying structural changes in ASD patients showed consistent connectivity with the region showing aberrant responses in the context of face processing. Finally, this network was also implicated in the human action observation/imitation network. In summary, our findings thus suggest a functionally and structurally disturbed network of occipital regions related primarily to face (but potentially also language) processing, which interact with inferior frontal as well as limbic regions and may be the core of aberrant face processing and reduced interest in faces in ASD. PMID:24869925
NASA Technical Reports Server (NTRS)
Ryan, Harry; Junell, Justin; Albasini, Colby; O'Rourke, William; Le, Thang; Strain, Ted; Stiglets, Tim
2011-01-01
A package for the automation of the Engineering Analysis (EA) process at the Stennis Space Center has been customized. It provides the ability to assign and track analysis tasks electronically, and electronically route a task for approval. It now provides a mechanism to keep these analyses under configuration management. It also allows the analysis to be stored and linked to the engineering data that is needed to perform the analysis (drawings, etc.). PTC s (Parametric Technology Corp o ration) Windchill product was customized to allow the EA to be created, routed, and maintained under configuration management. Using Infoengine Tasks, JSP (JavaServer Pages), Javascript, a user interface was created within the Windchill product that allows users to create EAs. Not only does this interface allow users to create and track EAs, but it plugs directly into the out-ofthe- box ability to associate these analyses with other relevant engineering data such as drawings. Also, using the Windchill workflow tool, the Design and Data Management System (DDMS) team created an electronic routing process based on the manual/informal approval process. The team also added the ability for users to notify and track notifications to individuals about the EA. Prior to the Engineering Analysis creation, there was no electronic way of creating and tracking these analyses. There was also a feature that was added that would allow users to track/log e-mail notifications of the EA.
Decision Making and Ratio Processing in Patients with Mild Cognitive Impairment.
Pertl, Marie-Theres; Benke, Thomas; Zamarian, Laura; Delazer, Margarete
2015-01-01
Making advantageous decisions is important in everyday life. This study aimed at assessing how patients with mild cognitive impairment (MCI) make decisions under risk. Additionally, it investigated the relationship between decision making, ratio processing, basic numerical abilities, and executive functions. Patients with MCI (n = 22) were compared with healthy controls (n = 29) on a complex task of decision making under risk (Game of Dice Task-Double, GDT-D), on two tasks evaluating basic decision making under risk, on a task of ratio processing, and on several neuropsychological background tests. Patients performed significantly lower than controls on the GDT-D and on ratio processing, whereas groups performed comparably on basic decision tasks. Specifically, in the GDT-D, patients obtained lower net scores and lower mean expected values, which indicate a less advantageous performance relative to that of controls. Performance on the GDT-D correlated significantly with performance in basic decision tasks, ratio processing, and executive-function measures when the analysis was performed on the whole sample. Patients with MCI make sub-optimal decisions in complex risk situations, whereas they perform at the same level as healthy adults in simple decision situations. Ratio processing and executive functions have an impact on the decision-making performance of both patients and healthy older adults. In order to facilitate advantageous decisions in complex everyday situations, information should be presented in an easily comprehensible form and cognitive training programs for patients with MCI should focus--among other abilities--on executive functions and ratio processing.
Task analysis of information technology-mediated medication management in outpatient care.
van Stiphout, F; Zwart-van Rijkom, J E F; Maggio, L A; Aarts, J E C M; Bates, D W; van Gelder, T; Jansen, P A F; Schraagen, J M C; Egberts, A C G; ter Braak, E W M T
2015-09-01
Educating physicians in the procedural as well as cognitive skills of information technology (IT)-mediated medication management could be one of the missing links for the improvement of patient safety. We aimed to compose a framework of tasks that need to be addressed to optimize medication management in outpatient care. Formal task analysis: decomposition of a complex task into a set of subtasks. First, we obtained a general description of the medication management process from exploratory interviews. Secondly, we interviewed experts in-depth to further define tasks and subtasks. Outpatient care in different fields of medicine in six teaching and academic medical centres in the Netherlands and the United States. 20 experts. Tasks were divided up into procedural, cognitive and macrocognitive tasks and categorized into the three components of dynamic decision making. The medication management process consists of three components: (i) reviewing the medication situation; (ii) composing a treatment plan; and (iii) accomplishing and communicating a treatment and surveillance plan. Subtasks include multiple cognitive tasks such as composing a list of current medications and evaluating the reliability of sources, and procedural tasks such as documenting current medication. The identified macrocognitive tasks were: planning, integration of IT in workflow, managing uncertainties and responsibilities, and problem detection. All identified procedural, cognitive and macrocognitive skills should be included when designing education for IT-mediated medication management. The resulting framework supports the design of educational interventions to improve IT-mediated medication management in outpatient care. © 2015 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
Information processing and dynamics in minimally cognitive agents.
Beer, Randall D; Williams, Paul L
2015-01-01
There has been considerable debate in the literature about the relative merits of information processing versus dynamical approaches to understanding cognitive processes. In this article, we explore the relationship between these two styles of explanation using a model agent evolved to solve a relational categorization task. Specifically, we separately analyze the operation of this agent using the mathematical tools of information theory and dynamical systems theory. Information-theoretic analysis reveals how task-relevant information flows through the system to be combined into a categorization decision. Dynamical analysis reveals the key geometrical and temporal interrelationships underlying the categorization decision. Finally, we propose a framework for directly relating these two different styles of explanation and discuss the possible implications of our analysis for some of the ongoing debates in cognitive science. Copyright © 2014 Cognitive Science Society, Inc.
Adaptive automation of human-machine system information-processing functions.
Kaber, David B; Wright, Melanie C; Prinzel, Lawrence J; Clamann, Michael P
2005-01-01
The goal of this research was to describe the ability of human operators to interact with adaptive automation (AA) applied to various stages of complex systems information processing, defined in a model of human-automation interaction. Forty participants operated a simulation of an air traffic control task. Automated assistance was adaptively applied to information acquisition, information analysis, decision making, and action implementation aspects of the task based on operator workload states, which were measured using a secondary task. The differential effects of the forms of automation were determined and compared with a manual control condition. Results of two 20-min trials of AA or manual control revealed a significant effect of the type of automation on performance, particularly during manual control periods as part of the adaptive conditions. Humans appear to better adapt to AA applied to sensory and psychomotor information-processing functions (action implementation) than to AA applied to cognitive functions (information analysis and decision making), and AA is superior to completely manual control. Potential applications of this research include the design of automation to support air traffic controller information processing.
The effect of changing the secondary task in dual-task paradigms for measuring listening effort.
Picou, Erin M; Ricketts, Todd A
2014-01-01
The purpose of this study was to evaluate the effect of changing the secondary task in dual-task paradigms that measure listening effort. Specifically, the effects of increasing the secondary task complexity or the depth of processing on a paradigm's sensitivity to changes in listening effort were quantified in a series of two experiments. Specific factors investigated within each experiment were background noise and visual cues. Participants in Experiment 1 were adults with normal hearing (mean age 23 years) and participants in Experiment 2 were adults with mild sloping to moderately severe sensorineural hearing loss (mean age 60.1 years). In both experiments, participants were tested using three dual-task paradigms. These paradigms had identical primary tasks, which were always monosyllable word recognition. The secondary tasks were all physical reaction time measures. The stimulus for the secondary task varied by paradigm and was a (1) simple visual probe, (2) a complex visual probe, or (3) the category of word presented. In this way, the secondary tasks mainly varied from the simple paradigm by either complexity or depth of speech processing. Using all three paradigms, participants were tested in four conditions, (1) auditory-only stimuli in quiet, (2) auditory-only stimuli in noise, (3) auditory-visual stimuli in quiet, and (4) auditory-visual stimuli in noise. During auditory-visual conditions, the talker's face was visible. Signal-to-noise ratios used during conditions with background noise were set individually so word recognition performance was matched in auditory-only and auditory-visual conditions. In noise, word recognition performance was approximately 80% and 65% for Experiments 1 and 2, respectively. For both experiments, word recognition performance was stable across the three paradigms, confirming that none of the secondary tasks interfered with the primary task. In Experiment 1 (listeners with normal hearing), analysis of median reaction times revealed a significant main effect of background noise on listening effort only with the paradigm that required deep processing. Visual cues did not change listening effort as measured with any of the three dual-task paradigms. In Experiment 2 (listeners with hearing loss), analysis of median reaction times revealed expected significant effects of background noise using all three paradigms, but no significant effects of visual cues. None of the dual-task paradigms were sensitive to the effects of visual cues. Furthermore, changing the complexity of the secondary task did not change dual-task paradigm sensitivity to the effects of background noise on listening effort for either group of listeners. However, the paradigm whose secondary task involved deeper processing was more sensitive to the effects of background noise for both groups of listeners. While this paradigm differed from the others in several respects, depth of processing may be partially responsible for the increased sensitivity. Therefore, this paradigm may be a valuable tool for evaluating other factors that affect listening effort.
Event-related potentials and secondary task performance during simulated driving.
Wester, A E; Böcker, K B E; Volkerts, E R; Verster, J C; Kenemans, J L
2008-01-01
Inattention and distraction account for a substantial number of traffic accidents. Therefore, we examined the impact of secondary task performance (an auditory oddball task) on a primary driving task (lane keeping). Twenty healthy participants performed two 20-min tests in the Divided Attention Steering Simulator (DASS). The visual secondary task of the DASS was replaced by an auditory oddball task to allow recording of brain activity. The driving task and the secondary (distracting) oddball task were presented in isolation and simultaneously, to assess their mutual interference. In addition to performance measures (lane keeping in the primary driving task and reaction speed in the secondary oddball task), brain activity, i.e. event-related potentials (ERPs), was recorded. Performance parameters on the driving test and the secondary oddball task did not differ between performance in isolation and simultaneous performance. However, when both tasks were performed simultaneously, reaction time variability increased in the secondary oddball task. Analysis of brain activity indicated that ERP amplitude (P3a amplitude) related to the secondary task, was significantly reduced when the task was performed simultaneously with the driving test. This study shows that when performing a simple secondary task during driving, performance of the driving task and this secondary task are both unaffected. However, analysis of brain activity shows reduced cortical processing of irrelevant, potentially distracting stimuli from the secondary task during driving.
Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant
Jahangiri, Mehdi; Hoboubi, Naser; Rostamabadi, Akbar; Keshavarzi, Sareh; Hosseini, Ali Akbar
2015-01-01
Background A permit to work (PTW) is a formal written system to control certain types of work which are identified as potentially hazardous. However, human error in PTW processes can lead to an accident. Methods This cross-sectional, descriptive study was conducted to estimate the probability of human errors in PTW processes in a chemical plant in Iran. In the first stage, through interviewing the personnel and studying the procedure in the plant, the PTW process was analyzed using the hierarchical task analysis technique. In doing so, PTW was considered as a goal and detailed tasks to achieve the goal were analyzed. In the next step, the standardized plant analysis risk-human (SPAR-H) reliability analysis method was applied for estimation of human error probability. Results The mean probability of human error in the PTW system was estimated to be 0.11. The highest probability of human error in the PTW process was related to flammable gas testing (50.7%). Conclusion The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided. PMID:27014485
2007-05-01
of the current project was to unpack and develop the concept of sensemaking, principally by developing and testing a cognitive model of the processes...themselves. In Year 2, new Cognitive Task Analysis data collection methods were developed and used to further test the model. Cognitive Task Analysis is a...2004) to examine the phenomenon of "sensemaking," a concept initially formulated by Weick (1995), but not developed from a cognitive perspective
Reliability Centred Maintenance (RCM) Analysis of Laser Machine in Filling Lithos at PT X
NASA Astrophysics Data System (ADS)
Suryono, M. A. E.; Rosyidi, C. N.
2018-03-01
PT. X used automated machines which work for sixteen hours per day. Therefore, the machines should be maintained to keep the availability of the machines. The aim of this research is to determine maintenance tasks according to the cause of component’s failure using Reliability Centred Maintenance (RCM) and determine the amount of optimal inspection frequency which must be performed to the machine at filling lithos process. In this research, RCM is used as an analysis tool to determine the critical component and find optimal inspection frequencies to maximize machine’s reliability. From the analysis, we found that the critical machine in filling lithos process is laser machine in Line 2. Then we proceed to determine the cause of machine’s failure. Lastube component has the highest Risk Priority Number (RPN) among other components such as power supply, lens, chiller, laser siren, encoder, conveyor, and mirror galvo. Most of the components have operational consequences and the others have hidden failure consequences and safety consequences. Time-directed life-renewal task, failure finding task, and servicing task can be used to overcome these consequences. The results of data analysis show that the inspection must be performed once a month for laser machine in the form of preventive maintenance to lowering the downtime.
Examining Expertise Using Interviews and Verbal Protocols
ERIC Educational Resources Information Center
van de Wiel, Margje W. J.
2017-01-01
To understand expertise and expertise development, interactions between knowledge, cognitive processing and task characteristics must be examined in people at different levels of training, experience, and performance. Interviewing is widely used in the initial exploration of domain expertise. Work and cognitive task analysis chart the knowledge,…
Biomedical image analysis and processing in clouds
NASA Astrophysics Data System (ADS)
Bednarz, Tomasz; Szul, Piotr; Arzhaeva, Yulia; Wang, Dadong; Burdett, Neil; Khassapov, Alex; Chen, Shiping; Vallotton, Pascal; Lagerstrom, Ryan; Gureyev, Tim; Taylor, John
2013-10-01
Cloud-based Image Analysis and Processing Toolbox project runs on the Australian National eResearch Collaboration Tools and Resources (NeCTAR) cloud infrastructure and allows access to biomedical image processing and analysis services to researchers via remotely accessible user interfaces. By providing user-friendly access to cloud computing resources and new workflow-based interfaces, our solution enables researchers to carry out various challenging image analysis and reconstruction tasks. Several case studies will be presented during the conference.
ERP evidence for memory and predictive mechanisms in word-to-text integration
Stafura, Joseph Z.; Rickles, Benjamin; Perfetti, Charles A.
2016-01-01
During reading, word-to-text integration processes proceed quickly and incrementally through both prospective (predictive) and retrospective (memory) processes. Across a sentence boundary, where prediction may be less functional, memorial processes may be especially important. We tested predictive and memory mechanisms with event-related potentials (ERPs) recorded on the first content word across a sentence boundary by manipulating the direction of association between this word and one from the preceding sentence. For comparison with this text comprehension (TC) task, we tested these same word pairs in a word meaning judgment (MJ) task. In both tasks we found reduced N400 amplitudes over central scalp electrodes when the two words were either forward-associated (FA) or backward-associated (BA), relative to task-specific baseline conditions. In the MJ task, FA pairs produced a greater reduction in the N400 reduction than BA pairs over right parietal areas. However, in the TC task, BA pairs produced a greater N400 reduction than FA pairs over left parietal electrodes. A temporal principal component analysis of TC and MJ data showed a component reflecting the central N400. Additional components from TC data reflected FA-BA differences during early (N200) and late (parietal N400 and LPC) phases of processing. Comprehension skill predicted association effects in the MJ task, especially FA, and the BA central N400 effects in the TC task. The results demonstrate that, beyond N400 indicators of prediction effects, ERPs reflect the role of memory processes in word-to-text integration across sentences, part of a dynamic interplay between anticipatory and memorial processes that support comprehension. PMID:27110578
Device research task (processing and high-efficiency solar cells)
NASA Technical Reports Server (NTRS)
1986-01-01
This task has been expanded since the last 25th Project Integration Meeting (PIM) to include process research in addition to device research. The objective of this task is to assist the Flat-plate Solar Array (FSA) Project in meeting its near- and long-term goals by identifying and implementing research in the areas of device physics, device structures, measurement techniques, material-device interactions, and cell processing. The research efforts of this task are described and reflect the deversity of device research being conducted. All of the contracts being reported are either completed or near completion and culminate the device research efforts of the FSA Project. Optimazation methods and silicon solar cell numerical models, carrier transport and recombination parameters in heavily doped silicon, development and analysis of silicon solar cells of near 20% efficiency, and SiN sub x passivation of silicon surfaces are discussed.
Glucose and the wandering mind: not paying attention or simply out of fuel?
Birnie, L H W; Smallwood, J; Reay, J; Riby, L M
2015-08-01
The impact of raising glycaemia by ingestion of a glucose drink has revealed cognitive facilitation, particularly for memory and attention. This study aimed to extend current knowledge by examining, for the first time, whether glucose load also moderates task-related (TRT) and task-unrelated thoughts (TUT) during activities that vary in their requirement for sustained attention. A 2 (25 g glucose vs. placebo) × 2 (fast vs. slow version of the Sustained Attention to Response Task (SART)) repeated measures, counterbalanced design was used with 16 healthy adults. Self-report questionnaires probed participants' levels of TRT and TUT during SART performance. Prior to testing, the Short Imaginal Processes Inventory (SIPI) was also administered to help pinpoint the nature of thought processes during the task before and after treatment. Analysis of variance revealed no significant effect of treatment; however, we report a pattern of results that is consistent with glucose facilitation effects on task accuracy for more demanding attention tasks (d = 0.56). Additionally, glucose improved the monitoring and task reflection as measured by TRT (d = 0.33) in the more demanding task but no effect on TUT. Probing the nature of thought processes further, we also report two novel correlations (in the placebo) between fears of failure (indexed by the SIPI) and the number of TUT episodes and perceived poor attention control (indexed by the SIPI) and number of TUT and speculate that glucose may act to buffer against TUT episodes under externally demanding situations. These data extend previous research examining the glucose facilitation effect to the processing of internal thought processes.
Sakurai, Y
2002-01-01
This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.
Reliability and Validity of Nonsymbolic and Symbolic Comparison Tasks in School-Aged Children.
Castro, Danilka; Estévez, Nancy; Gómez, David; Dartnell, Pablo Ricardo
2017-12-04
Basic numerical processing has been regularly assessed using numerical nonsymbolic and symbolic comparison tasks. It has been assumed that these tasks index similar underlying processes. However, the evidence concerning the reliability and convergent validity across different versions of these tasks is inconclusive. We explored the reliability and convergent validity between two numerical comparison tasks (nonsymbolic vs. symbolic) in school-aged children. The relations between performance in both tasks and mental arithmetic were described and a developmental trajectories' analysis was also conducted. The influence of verbal and visuospatial working memory processes and age was controlled for in the analyses. Results show significant reliability (p < .001) between Block 1 and 2 for nonsymbolic task (global adjusted RT (adjRT): r = .78, global efficiency measures (EMs): r = .74) and, for symbolic task (adjRT: r = .86, EMs: r = .86). Also, significant convergent validity between tasks (p < .001) for both adjRT (r = .71) and EMs (r = .70) were found after controlling for working memory and age. Finally, it was found the relationship between nonsymbolic and symbolic efficiencies varies across the sample's age range. Overall, these findings suggest both tasks index the same underlying cognitive architecture and are appropriate to explore the Approximate Number System (ANS) characteristics. The evidence supports the central role of ANS in arithmetic efficiency and suggests there are differences across the age range assessed, concerning the extent to which efficiency in nonsymbolic and symbolic tasks reflects ANS acuity.
Sharp, Marilyn A; Cohen, Bruce S; Boye, Michael W; Foulis, Stephen A; Redmond, Jan E; Larcom, Kathleen; Hydren, Jay R; Gebhardt, Deborah L; Canino, Maria C; Warr, Bradley J; Zambraski, Edward J
2017-11-01
In 2013, the U.S. Army began developing physical tests to predict a recruit's ability to perform the critical, physically demanding tasks (CPDTs) of combat arms jobs previously not open to women. The purpose of this paper is to describe the methodology and results of analyses of the accuracy and inclusiveness of the critical physically demanding task list. While the job analysis included seven combat arms jobs, only data from the 19D Cavalry Scout occupation are presented as the process was similar for all seven jobs. Job analysis METHODS: As the foundation, senior subject matter experts from each job reviewed materials and reached consensus on the CPDTs and performance standards for each job. The list was reviewed by Army leadership and provided to the researchers. The job analysis consisted of reviewing job and task related documents and field manuals, observing >900 soldiers performing the 32 CPDTs, conducting two focus groups for each job, and analyzing responses to widely distributed job analysis questionnaires. Of the 32 CPDTs identified for seven combat jobs, nine were relevant to 19D soldiers. Focus group discussions and job analysis questionnaire results supported the tasks and standards identified by subject matter experts while also identifying additional tasks. The tasks identified by subject matter experts were representative of the physically demanding aspects of the 19D occupation. Published by Elsevier Ltd.
The locus of impairment in English developmental letter position dyslexia
Kezilas, Yvette; Kohnen, Saskia; McKague, Meredith; Castles, Anne
2014-01-01
Many children with reading difficulties display phonological deficits and struggle to acquire non-lexical reading skills. However, not all children with reading difficulties have these problems, such as children with selective letter position dyslexia (LPD), who make excessive migration errors (such as reading slime as “smile”). Previous research has explored three possible loci for the deficit – the phonological output buffer, the orthographic input lexicon, and the orthographic-visual analysis stage of reading. While there is compelling evidence against a phonological output buffer and orthographic input lexicon deficit account of English LPD, the evidence in support of an orthographic-visual analysis deficit is currently limited. In this multiple single-case study with three English-speaking children with developmental LPD, we aimed to both replicate and extend previous findings regarding the locus of impairment in English LPD. First, we ruled out a phonological output buffer and an orthographic input lexicon deficit by administering tasks that directly assess phonological processing and lexical guessing. We then went on to directly assess whether or not children with LPD have an orthographic-visual analysis deficit by modifying two tasks that have previously been used to localize processing at this level: a same-different decision task and a non-word reading task. The results from these tasks indicate that LPD is most likely caused by a deficit specific to the coding of letter positions at the orthographic-visual analysis stage of reading. These findings provide further evidence for the heterogeneity of dyslexia and its underlying causes. PMID:24917802
Temporal Integration Windows in Neural Processing and Perception Aligned to Saccadic Eye Movements.
Wutz, Andreas; Muschter, Evelyn; van Koningsbruggen, Martijn G; Weisz, Nathan; Melcher, David
2016-07-11
When processing dynamic input, the brain balances the opposing needs of temporal integration and sensitivity to change. We hypothesized that the visual system might resolve this challenge by aligning integration windows to the onset of newly arriving sensory samples. In a series of experiments, human participants observed the same sequence of two displays separated by a brief blank delay when performing either an integration or segregation task. First, using magneto-encephalography (MEG), we found a shift in the stimulus-evoked time courses by a 150-ms time window between task signals. After stimulus onset, multivariate pattern analysis (MVPA) decoding of task in occipital-parietal sources remained above chance for almost 1 s, and the task-decoding pattern interacted with task outcome. In the pre-stimulus period, the oscillatory phase in the theta frequency band was informative about both task processing and behavioral outcome for each task separately, suggesting that the post-stimulus effects were caused by a theta-band phase shift. Second, when aligning stimulus presentation to the onset of eye fixations, there was a similar phase shift in behavioral performance according to task demands. In both MEG and behavioral measures, task processing was optimal first for segregation and then integration, with opposite phase in the theta frequency range (3-5 Hz). The best fit to neurophysiological and behavioral data was given by a dampened 3-Hz oscillation from stimulus or eye fixation onset. The alignment of temporal integration windows to input changes found here may serve to actively organize the temporal processing of continuous sensory input. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Materials experiment carrier concepts definition study. Volume 2: Technical report, part 2
NASA Technical Reports Server (NTRS)
1981-01-01
A materials experiment carrier (MEC) that provides effective accommodation of the given baseline materials processing in space (MPS) payloads and demonstration of the MPS platform concept for high priority materials processing science, multidiscipline MPS investigations, host carrier for commercial MPS payloads, and system economy of orbital operations is defined. The study flow of task work is shown. Study tasks featured analysis and trades to identify the MEC system concept options.
ERIC Educational Resources Information Center
Stone, Paul
2012-01-01
In this article I investigate how Japanese students manage interaction together in a task-based English as a foreign language (EFL) classroom. Using methods from conversation analysis and focusing on the contextual dimensions of language, I analyse data from a real classroom task with a view to understanding the ways in which social processes and…
Cognitive Approaches for Medicine in Cloud Computing.
Ogiela, Urszula; Takizawa, Makoto; Ogiela, Lidia
2018-03-03
This paper will present the application potential of the cognitive approach to data interpretation, with special reference to medical areas. The possibilities of using the meaning approach to data description and analysis will be proposed for data analysis tasks in Cloud Computing. The methods of cognitive data management in Cloud Computing are aimed to support the processes of protecting data against unauthorised takeover and they serve to enhance the data management processes. The accomplishment of the proposed tasks will be the definition of algorithms for the execution of meaning data interpretation processes in safe Cloud Computing. • We proposed a cognitive methods for data description. • Proposed a techniques for secure data in Cloud Computing. • Application of cognitive approaches for medicine was described.
Clinical assessment of organizational strategy: An examination of healthy adults.
Banerjee, Pia; White, Desirée A
2015-06-01
During the assessment of patients with cognitive difficulties, clinicians often examine strategic processing, particularly the ability to use organization-based strategies to efficiently complete various tasks. Several commonly used neuropsychological tasks are currently thought to provide measures of organizational strategic processing, but empirical evidence for the construct validity of these strategic measures is needed before interpreting them as measuring the same underlying ability. This is particularly important for the assessment of organizational strategic processing because the measures span cognitive domains (e.g., memory strategy, language strategy) as well as types of organization. In the present study, 200 adults were administered cognitive tasks commonly used in clinical practice to assess organizational strategic processing. Factor analysis was used to examine whether these measures of organizational strategic processing, which involved different cognitive domains and types of organization, could be operationalized as measuring a unitary construct. A very good-fitting model of the data demonstrated no significant shared variance among any of the strategic variables from different tasks (root mean square error of approximation < .0001, standardized root-mean-square residual = .045, comparative fit index = 1.000). These findings suggest that organizational strategic processing is highly specific to the demands and goals of individual tasks even when tasks share commonalities such as involving the same cognitive domain. In the design of neuropsychological batteries involving the assessment of organizational strategic processing, it is recommended that various strategic measures across cognitive domains and types of organizational processing are selected as guided by each patient's individual cognitive difficulties. (c) 2015 APA, all rights reserved).
A Meta-Analysis Suggests Different Neural Correlates for Implicit and Explicit Learning.
Loonis, Roman F; Brincat, Scott L; Antzoulatos, Evan G; Miller, Earl K
2017-10-11
A meta-analysis of non-human primates performing three different tasks (Object-Match, Category-Match, and Category-Saccade associations) revealed signatures of explicit and implicit learning. Performance improved equally following correct and error trials in the Match (explicit) tasks, but it improved more after correct trials in the Saccade (implicit) task, a signature of explicit versus implicit learning. Likewise, error-related negativity, a marker for error processing, was greater in the Match (explicit) tasks. All tasks showed an increase in alpha/beta (10-30 Hz) synchrony after correct choices. However, only the implicit task showed an increase in theta (3-7 Hz) synchrony after correct choices that decreased with learning. In contrast, in the explicit tasks, alpha/beta synchrony increased with learning and decreased thereafter. Our results suggest that explicit versus implicit learning engages different neural mechanisms that rely on different patterns of oscillatory synchrony. Copyright © 2017 Elsevier Inc. All rights reserved.
Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment.
Liu, Qi; Cai, Weidong; Jin, Dandan; Shen, Jian; Fu, Zhangjie; Liu, Xiaodong; Linge, Nigel
2016-08-30
Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR) method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks' execution time can be improved, in particular for some regular jobs.
The Task and Relational Dimensions of Online Social Support.
Beck, Stephenson J; Paskewitz, Emily A; Anderson, Whitney A; Bourdeaux, Renee; Currie-Mueller, Jenna
2017-03-01
Online support groups are attractive to individuals suffering from various types of mental and physical illness due to their accessibility, convenience, and comfort level. Individuals coping with depression, in particular, may seek social support online to avoid the stigma that accompanies face-to-face support groups. We explored how task and relational messages created social support in online depression support groups using Cutrona and Suhr's social support coding scheme and Bales's Interaction Process Analysis coding scheme. A content analysis revealed emotional support as the most common type of social support within the group, although the majority of messages were task rather than relational. Informational support consisted primarily of task messages, whereas network and esteem support were primarily relational messages. Specific types of task and relational messages were associated with different support types. Results indicate task messages dominated online depression support groups, suggesting the individuals who participate in these groups are interested in solving problems but may also experience emotional support when their uncertainty is reduced via task messages.
Xu, Min; Xu, Guiping; Yang, Yang
2016-01-01
Understanding how the nature of interference might influence the recruitments of the neural systems is considered as the key to understanding cognitive control. Although, interference processing in the emotional domain has recently attracted great interest, the question of whether there are separable neural patterns for emotional and non-emotional interference processing remains open. Here, we performed an activation likelihood estimation meta-analysis of 78 neuroimaging experiments, and examined common and distinct neural systems for emotional and non-emotional interference processing. We examined brain activation in three domains of interference processing: emotional verbal interference in the face-word conflict task, non-emotional verbal interference in the color-word Stroop task, and non-emotional spatial interference in the Simon, SRC and Flanker tasks. Our results show that the dorsal anterior cingulate cortex (ACC) was recruited for both emotional and non-emotional interference. In addition, the right anterior insula, presupplementary motor area (pre-SMA), and right inferior frontal gyrus (IFG) were activated by interference processing across both emotional and non-emotional domains. In light of these results, we propose that the anterior insular cortex may serve to integrate information from different dimensions and work together with the dorsal ACC to detect and monitor conflicts, whereas pre-SMA and right IFG may be recruited to inhibit inappropriate responses. In contrast, the dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC) showed different degrees of activation and distinct lateralization patterns for different processing domains, which suggests that these regions may implement cognitive control based on the specific task requirements. PMID:27895564
Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis
Wiens, Stefan; Szychowska, Malina; Nilsson, Mats E.
2016-01-01
Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n = 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN. PMID:26741815
Grace, Sally A; Rossell, Susan L; Heinrichs, Markus; Kordsachia, Catarina; Labuschagne, Izelle
2018-05-24
Oxytocin (OXT) is a neuropeptide which has a critical role in human social behaviour and cognition. Research investigating the role of OXT on functional brain changes in humans has often used task paradigms that probe socioemotional processes. Preliminary evidence suggests a central role of the amygdala in the social cognitive effects of intranasal OXT (IN-OXT), however, inconsistencies in task-design and analysis methods have led to inconclusive findings regarding a cohesive model of the neural mechanisms underlying OXT's actions. The aim of this meta-analysis was to systematically investigate these findings. A systematic search of PubMed, PsycINFO, and Scopus databases was conducted for fMRI studies which compared IN-OXT to placebo in humans. First, we systematically reviewed functional magnetic resonance imaging (fMRI) studies of IN-OXT, including studies of healthy humans, those with clinical disorders, and studies examining resting-state fMRI (rsfMRI). Second, we employed a coordinate-based meta-analysis for task-based neuroimaging literature using activation likelihood estimation (ALE), whereby, coordinates were extracted from clusters with significant differences in IN-OXT versus placebo in healthy adults. Data were included for 39 fMRI studies that reported a total of 374 distinct foci. The meta-analysis identified task-related IN-OXT increases in activity within a cluster of the left superior temporal gyrus during tasks of emotion processing. These findings are important as they implicate regions beyond the amygdala in the neural effects of IN-OXT. The outcomes from this meta-analysis can guide a priori predictions for future OXT research, and provide an avenue for targeted treatment interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chromatic Perceptual Learning but No Category Effects without Linguistic Input.
Grandison, Alexandra; Sowden, Paul T; Drivonikou, Vicky G; Notman, Leslie A; Alexander, Iona; Davies, Ian R L
2016-01-01
Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest.
Development and Validation of Cognitive Screening Instruments.
ERIC Educational Resources Information Center
Jarman, Ronald F.
The author suggests that most research on the early detection of learning disabilities is characterisized by an ineffective and a theoretical method of selecting and validating tasks. An alternative technique is proposed, based on a neurological theory of cognitive processes, whereby task analysis is a first step, with empirical analyses as…
An Experimental Analysis of Memory Processing
ERIC Educational Resources Information Center
Wright, Anthony A.
2007-01-01
Rhesus monkeys were trained and tested in visual and auditory list-memory tasks with sequences of four travel pictures or four natural/environmental sounds followed by single test items. Acquisitions of the visual list-memory task are presented. Visual recency (last item) memory diminished with retention delay, and primacy (first item) memory…
McKenna, Róisín; Rushe, T.; Woodcock, Kate A.
2017-01-01
The structure of executive function (EF) has been the focus of much debate for decades. What is more, the complexity and diversity provided by the developmental period only adds to this contention. The development of executive function plays an integral part in the expression of children's behavioral, cognitive, social, and emotional capabilities. Understanding how these processes are constructed during development allows for effective measurement of EF in this population. This meta-analysis aims to contribute to a better understanding of the structure of executive function in children. A coordinate-based meta-analysis was conducted (using BrainMap GingerALE 2.3), which incorporated studies administering functional magnetic resonance imaging (fMRI) during inhibition, switching, and working memory updating tasks in typical children (aged 6–18 years). The neural activation common across all executive tasks was compared to that shared by tasks pertaining only to inhibition, switching or updating, which are commonly considered to be fundamental executive processes. Results support the existence of partially separable but partially overlapping inhibition, switching, and updating executive processes at a neural level, in children over 6 years. Further, the shared neural activation across all tasks (associated with a proposed “unitary” component of executive function) overlapped to different degrees with the activation associated with each individual executive process. These findings provide evidence to support the suggestion that one of the most influential structural models of executive functioning in adults can also be applied to children of this age. However, the findings also call for careful consideration and measurement of both specific executive processes, and unitary executive function in this population. Furthermore, a need is highlighted for a new systematic developmental model, which captures the integrative nature of executive function in children. PMID:28439231
Use of evidence in a categorization task: analytic and holistic processing modes.
Greco, Alberto; Moretti, Stefania
2017-11-01
Category learning performance can be influenced by many contextual factors, but the effects of these factors are not the same for all learners. The present study suggests that these differences can be due to the different ways evidence is used, according to two main basic modalities of processing information, analytically or holistically. In order to test the impact of the information provided, an inductive rule-based task was designed, in which feature salience and comparison informativeness between examples of two categories were manipulated during the learning phases, by introducing and progressively reducing some perceptual biases. To gather data on processing modalities, we devised the Active Feature Composition task, a production task that does not require classifying new items but reproducing them by combining features. At the end, an explicit rating task was performed, which entailed assessing the accuracy of a set of possible categorization rules. A combined analysis of the data collected with these two different tests enabled profiling participants in regard to the kind of processing modality, the structure of representations and the quality of categorial judgments. Results showed that despite the fact that the information provided was the same for all participants, those who adopted analytic processing better exploited evidence and performed more accurately, whereas with holistic processing categorization is perfectly possible but inaccurate. Finally, the cognitive implications of the proposed procedure, with regard to involved processes and representations, are discussed.
Phase-change lines, scale breaks, and trend lines using Excel 2013.
Deochand, Neil; Costello, Mack S; Fuqua, R Wayne
2015-01-01
The development of graphing skills for behavior analysts is an ongoing process. Specialized graphing software is often expensive, is not widely disseminated, and may require specific training. Dixon et al. (2009) provided an updated task analysis for graph making in the widely used platform Excel 2007. Vanselow and Bourret (2012) provided online tutorials that outline some alternate methods also using Office 2007. This article serves as an update to those task analyses and includes some alternative and underutilized methods in Excel 2013. To examine the utility of our recommendations, 12 psychology graduate students were presented with the task analyses, and the experimenters evaluated their performance and noted feedback. The task analyses were rated favorably. © Society for the Experimental Analysis of Behavior.
Proposal of Constraints Analysis Method Based on Network Model for Task Planning
NASA Astrophysics Data System (ADS)
Tomiyama, Tomoe; Sato, Tatsuhiro; Morita, Toyohisa; Sasaki, Toshiro
Deregulation has been accelerating several activities toward reengineering business processes, such as railway through service and modal shift in logistics. Making those activities successful, business entities have to regulate new business rules or know-how (we call them ‘constraints’). According to the new constraints, they need to manage business resources such as instruments, materials, workers and so on. In this paper, we propose a constraint analysis method to define constraints for task planning of the new business processes. To visualize each constraint's influence on planning, we propose a network model which represents allocation relations between tasks and resources. The network can also represent task ordering relations and resource grouping relations. The proposed method formalizes the way of defining constraints manually as repeatedly checking the network structure and finding conflicts between constraints. Being applied to crew scheduling problems shows that the method can adequately represent and define constraints of some task planning problems with the following fundamental features, (1) specifying work pattern to some resources, (2) restricting the number of resources for some works, (3) requiring multiple resources for some works, (4) prior allocation of some resources to some works and (5) considering the workload balance between resources.
Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus
2016-01-01
The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach “Task-related Edge Density” (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function. PMID:27341204
Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus
2016-01-01
The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.
Task analysis exemplified: the process of resolving unfinished business.
Greenberg, L S; Foerster, F S
1996-06-01
The steps of a task-analytic research program designed to identify the in-session performances involved in resolving lingering bad feelings toward a significant other are described. A rational-empirical methodology of repeatedly cycling between rational conjecture and empirical observations is demonstrated as a method of developing an intervention manual and the components of client processes of resolution. A refined model of the change process developed by these procedures is validated by comparing 11 successful and 11 unsuccessful performances. Four performance components-intense expression of feeling, expression of need, shift in representation of other, and self-validation or understanding of the other-were found to discriminate between resolution and nonresolution performances. These components were measured on 4 process measures: the Structural Analysis of Social Behavior, the Experiencing Scale, the Client's Emotional Arousal Scale, and a need scale.
Auditory Scene Analysis: An Attention Perspective
2017-01-01
Purpose This review article provides a new perspective on the role of attention in auditory scene analysis. Method A framework for understanding how attention interacts with stimulus-driven processes to facilitate task goals is presented. Previously reported data obtained through behavioral and electrophysiological measures in adults with normal hearing are summarized to demonstrate attention effects on auditory perception—from passive processes that organize unattended input to attention effects that act at different levels of the system. Data will show that attention can sharpen stream organization toward behavioral goals, identify auditory events obscured by noise, and limit passive processing capacity. Conclusions A model of attention is provided that illustrates how the auditory system performs multilevel analyses that involve interactions between stimulus-driven input and top-down processes. Overall, these studies show that (a) stream segregation occurs automatically and sets the basis for auditory event formation; (b) attention interacts with automatic processing to facilitate task goals; and (c) information about unattended sounds is not lost when selecting one organization over another. Our results support a neural model that allows multiple sound organizations to be held in memory and accessed simultaneously through a balance of automatic and task-specific processes, allowing flexibility for navigating noisy environments with competing sound sources. Presentation Video http://cred.pubs.asha.org/article.aspx?articleid=2601618 PMID:29049599
NASA Technical Reports Server (NTRS)
Diorio, Kimberly A.
2002-01-01
A process task analysis effort was undertaken by Dynacs Inc. commencing in June 2002 under contract from NASA YA-D6. Funding was provided through NASA's Ames Research Center (ARC), Code M/HQ, and Industrial Engineering and Safety (IES). The John F. Kennedy Space Center (KSC) Engineering Development Contract (EDC) Task Order was 5SMA768. The scope of the effort was to conduct a Human Factors Process Failure Modes and Effects Analysis (HF PFMEA) of a hazardous activity and provide recommendations to eliminate or reduce the effects of errors caused by human factors. The Liquid Oxygen (LOX) Pump Acceptance Test Procedure (ATP) was selected for this analysis. The HF PFMEA table (see appendix A) provides an analysis of six major categories evaluated for this study. These categories include Personnel Certification, Test Procedure Format, Test Procedure Safety Controls, Test Article Data, Instrumentation, and Voice Communication. For each specific requirement listed in appendix A, the following topics were addressed: Requirement, Potential Human Error, Performance-Shaping Factors, Potential Effects of the Error, Barriers and Controls, Risk Priority Numbers, and Recommended Actions. This report summarizes findings and gives recommendations as determined by the data contained in appendix A. It also includes a discussion of technology barriers and challenges to performing task analyses, as well as lessons learned. The HF PFMEA table in appendix A recommends the use of accepted and required safety criteria in order to reduce the risk of human error. The items with the highest risk priority numbers should receive the greatest amount of consideration. Implementation of the recommendations will result in a safer operation for all personnel.
ARBAN-A new method for analysis of ergonomic effort.
Holzmann, P
1982-06-01
ARBAN is a method for the ergonomic analysis of work, including work situations which involve widely differing body postures and loads. The idea of the method is thal all phases of the analysis process that imply specific knowledge on ergonomics are teken over by filming equipment and a computer routine. All tasks that must be carried out by the investigator in the process of analysis are so designed that they appear as evident by the use of systematic common sense. The ARBAN analysis method contains four steps: 1. Recording of the workplace situation on video or film. 2. Coding the posture and load situation at a number of closely spaced 'frozen' situations. 3. Computerisation. 4. Evaluation of the results. The computer calculates figures for the total ergonomic stress on the whole body as well as on different parts of the body separately. They are presented as 'Ergonomic stress/ time curves', where the heavy load situations occur as peaks of the curve. The work cycle may also be divided into different tasks, where the stress and duration patterns can be compared. The integral of the curves are calculated for single-figure comparison of different tasks as well as different work situations.
Mirel, Barbara
2009-02-13
Current usability studies of bioinformatics tools suggest that tools for exploratory analysis support some tasks related to finding relationships of interest but not the deep causal insights necessary for formulating plausible and credible hypotheses. To better understand design requirements for gaining these causal insights in systems biology analyses a longitudinal field study of 15 biomedical researchers was conducted. Researchers interacted with the same protein-protein interaction tools to discover possible disease mechanisms for further experimentation. Findings reveal patterns in scientists' exploratory and explanatory analysis and reveal that tools positively supported a number of well-structured query and analysis tasks. But for several of scientists' more complex, higher order ways of knowing and reasoning the tools did not offer adequate support. Results show that for a better fit with scientists' cognition for exploratory analysis systems biology tools need to better match scientists' processes for validating, for making a transition from classification to model-based reasoning, and for engaging in causal mental modelling. As the next great frontier in bioinformatics usability, tool designs for exploratory systems biology analysis need to move beyond the successes already achieved in supporting formulaic query and analysis tasks and now reduce current mismatches with several of scientists' higher order analytical practices. The implications of results for tool designs are discussed.
Action video games do not improve the speed of information processing in simple perceptual tasks.
van Ravenzwaaij, Don; Boekel, Wouter; Forstmann, Birte U; Ratcliff, Roger; Wagenmakers, Eric-Jan
2014-10-01
Previous research suggests that playing action video games improves performance on sensory, perceptual, and attentional tasks. For instance, Green, Pouget, and Bavelier (2010) used the diffusion model to decompose data from a motion detection task and estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster information processing, reduced response caution, and no difference in motor responding. Because perceptual learning is generally thought to be highly context-specific, this transfer from gaming is surprising and warrants corroborative evidence from a large-scale training study. We conducted 2 experiments in which participants practiced either an action video game or a cognitive game in 5 separate, supervised sessions. Prior to each session and following the last session, participants performed a perceptual discrimination task. In the second experiment, we included a third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the action gamers, the cognitive gamers, and the nongamers and suggest that, in contrast to earlier reports, playing action video games does not improve the speed of information processing in simple perceptual tasks.
Action Video Games Do Not Improve the Speed of Information Processing in Simple Perceptual Tasks
van Ravenzwaaij, Don; Boekel, Wouter; Forstmann, Birte U.; Ratcliff, Roger; Wagenmakers, Eric-Jan
2015-01-01
Previous research suggests that playing action video games improves performance on sensory, perceptual, and attentional tasks. For instance, Green, Pouget, and Bavelier (2010) used the diffusion model to decompose data from a motion detection task and estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster information processing, reduced response caution, and no difference in motor responding. Because perceptual learning is generally thought to be highly context-specific, this transfer from gaming is surprising and warrants corroborative evidence from a large-scale training study. We conducted 2 experiments in which participants practiced either an action video game or a cognitive game in 5 separate, supervised sessions. Prior to each session and following the last session, participants performed a perceptual discrimination task. In the second experiment, we included a third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the action gamers, the cognitive gamers, and the nongamers and suggest that, in contrast to earlier reports, playing action video games does not improve the speed of information processing in simple perceptual tasks. PMID:24933517
Psychophysical Models for Signal Detection with Time Varying Uncertainty. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Gai, E.
1975-01-01
Psychophysical models for the behavior of the human operator in detection tasks which include change in detectability, correlation between observations and deferred decisions are developed. Classical Signal Detection Theory (SDT) is discussed and its emphasis on the sensory processes is contrasted to decision strategies. The analysis of decision strategies utilizes detection tasks with time varying signal strength. The classical theory is modified to include such tasks and several optimal decision strategies are explored. Two methods of classifying strategies are suggested. The first method is similar to the analysis of ROC curves, while the second is based on the relation between the criterion level (CL) and the detectability. Experiments to verify the analysis of tasks with changes of signal strength are designed. The results show that subjects are aware of changes in detectability and tend to use strategies that involve changes in the CL's.
Cognitive conflict increases processing of negative, task-irrelevant stimuli.
Ligeza, Tomasz S; Wyczesany, Miroslaw
2017-10-01
The detection of cognitive conflict is thought to trigger adjustments in executive control. It has been recently shown that cognitive conflict increases processing of stimuli that are relevant to the ongoing task and that these modulations are exerted by the dorsolateral prefrontal cortex (DLPFC). However, it is still unclear whether such control influences are unspecific and might also affect the processing of task-irrelevant stimuli. The aim of the study was to examine if cognitive conflict affects processing of neutral and negative, task-irrelevant pictures. Participants responded to congruent (non-conflict) or to incongruent (conflict-eliciting) trials of a modified flanker task. Each response was followed by a presentation of a neutral or negative picture. The late positive potential (LPP) in response to picture presentation was used to assess the level of picture processing after conflict vs non-conflict trials. Connectivity between the DLPFC and attentional and perceptual areas during picture presentation was analysed to check if the DLPFC might be a source of these modulations. ERP results showed an effect of cognitive conflict only on processing of negative pictures: LPP in response to negative pictures was increased after conflict trials, whereas LPP in response to neutral pictures remained unchanged. Cortical connectivity analysis showed that conflict trials intensified information flow from the DLPFC towards attentional and perceptual regions. Results suggest that cognitive conflict increases processing of task-irrelevant stimuli; however, they must display high biological salience. Increase in cognitive control exerted by the DLPFC over attentional and perceptual regions is a probable mechanism of the effect. Copyright © 2017 Elsevier B.V. All rights reserved.
Cognitive Task Analysis of Network Analysts and Managers for Network Situational Awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erbacher, Robert; Frincke, Deborah A.; Wong, Pak C.
The goal of the project was to create a set of next generation cyber situational awareness capabilities with applications to other domains in the long term. The goal is to improve the decision making process such that decision makers can choose better actions. To this end, we put extensive effort into ensuring we had feedback from network analysts and managers and understood what their needs truly were. Consequently, this is the focus of this portion of the research. This paper discusses the methodology we followed to acquire this feedback from the analysts, namely a cognitive task analysis. Additionally, this papermore » provides the details we acquired from the analysts. This essentially provides details on their processes, goals, concerns, the data and meta-data they analyze, etc. A final result we describe is the generation of a task-flow diagram.« less
An information theory analysis of spatial decisions in cognitive development
Scott, Nicole M.; Sera, Maria D.; Georgopoulos, Apostolos P.
2015-01-01
Performance in a cognitive task can be considered as the outcome of a decision-making process operating across various knowledge domains or aspects of a single domain. Therefore, an analysis of these decisions in various tasks can shed light on the interplay and integration of these domains (or elements within a single domain) as they are associated with specific task characteristics. In this study, we applied an information theoretic approach to assess quantitatively the gain of knowledge across various elements of the cognitive domain of spatial, relational knowledge, as a function of development. Specifically, we examined changing spatial relational knowledge from ages 5 to 10 years. Our analyses consisted of a two-step process. First, we performed a hierarchical clustering analysis on the decisions made in 16 different tasks of spatial relational knowledge to determine which tasks were performed similarly at each age group as well as to discover how the tasks clustered together. We next used two measures of entropy to capture the gradual emergence of order in the development of relational knowledge. These measures of “cognitive entropy” were defined based on two independent aspects of chunking, namely (1) the number of clusters formed at each age group, and (2) the distribution of tasks across the clusters. We found that both measures of entropy decreased with age in a quadratic fashion and were positively and linearly correlated. The decrease in entropy and, therefore, gain of information during development was accompanied by improved performance. These results document, for the first time, the orderly and progressively structured “chunking” of decisions across the development of spatial relational reasoning and quantify this gain within a formal information-theoretic framework. PMID:25698915
KNIME4NGS: a comprehensive toolbox for next generation sequencing analysis.
Hastreiter, Maximilian; Jeske, Tim; Hoser, Jonathan; Kluge, Michael; Ahomaa, Kaarin; Friedl, Marie-Sophie; Kopetzky, Sebastian J; Quell, Jan-Dominik; Mewes, H Werner; Küffner, Robert
2017-05-15
Analysis of Next Generation Sequencing (NGS) data requires the processing of large datasets by chaining various tools with complex input and output formats. In order to automate data analysis, we propose to standardize NGS tasks into modular workflows. This simplifies reliable handling and processing of NGS data, and corresponding solutions become substantially more reproducible and easier to maintain. Here, we present a documented, linux-based, toolbox of 42 processing modules that are combined to construct workflows facilitating a variety of tasks such as DNAseq and RNAseq analysis. We also describe important technical extensions. The high throughput executor (HTE) helps to increase the reliability and to reduce manual interventions when processing complex datasets. We also provide a dedicated binary manager that assists users in obtaining the modules' executables and keeping them up to date. As basis for this actively developed toolbox we use the workflow management software KNIME. See http://ibisngs.github.io/knime4ngs for nodes and user manual (GPLv3 license). robert.kueffner@helmholtz-muenchen.de. Supplementary data are available at Bioinformatics online.
Evidence for a neural dual-process account for adverse effects of cognitive control.
Zink, Nicolas; Stock, Ann-Kathrin; Colzato, Lorenza; Beste, Christian
2018-06-09
Advantageous effects of cognitive control are well-known, but cognitive control may also have adverse effects, for example when it suppresses the implicit processing of stimulus-response (S-R) bindings that could benefit task performance. Yet, the neurophysiological and functional neuroanatomical structures associated with adverse effects of cognitive control are poorly understood. We used an extreme group approach to compare individuals who exhibit adverse effects of cognitive control to individuals who do not by combining event-related potentials (ERPs), source localization, time-frequency analysis and network analysis methods. While neurophysiological correlates of cognitive control (i.e. N2, N450, theta power and theta-mediated neuronal network efficiency) and task-set updating (P3) both reflect control demands and implicit information processing, differences in the degree of adverse cognitive control effects are associated with two independent neural mechanisms: Individuals, who show adverse behavioral effects of cognitive control, show reduced small-world properties and thus reduced efficiency in theta-modulated networks when they fail to effectively process implicit information. In contrast to this, individuals who do not display adverse control effects show enhanced task-set updating mechanism when effectively processing implicit information, which is reflected by the P3 ERP component and associated with the temporo-parietal junction (TPJ, BA 40) and medial frontal gyrus (MFG; BA 8). These findings suggest that implicit S-R contingencies, which benefit response selection without cognitive control, are always 'picked up', but may fail to be integrated with task representations to guide response selection. This provides evidence for a neurophysiological and functional neuroanatomical "dual-process" account of adverse cognitive control effects.
Gathmann, Bettina; Schiebener, Johannes; Wolf, Oliver T.; Brand, Matthias
2015-01-01
Performing two cognitively demanding tasks at the same time is known to decrease performance. The current study investigates the underlying executive functions of a dual-tasking situation involving the simultaneous performance of decision making under explicit risk and a working memory task. It is suggested that making a decision and performing a working memory task at the same time should particularly require monitoring—an executive control process supervising behavior and the state of processing on two tasks. To test the role of a supervisory/monitoring function in such a dual-tasking situation we investigated 122 participants with the Game of Dice Task plus 2-back task (GDT plus 2-back task). This dual task requires participants to make decisions under risk and to perform a 2-back working memory task at the same time. Furthermore, a task measuring a set of several executive functions gathered in the term concept formation (Modified Card Sorting Test, MCST) and the newly developed Balanced Switching Task (BST), measuring monitoring in particular, were used. The results demonstrate that concept formation and monitoring are involved in the simultaneous performance of decision making under risk and a working memory task. In particular, the mediation analysis revealed that BST performance partially mediates the influence of MCST performance on the GDT plus 2-back task. These findings suggest that monitoring is one important subfunction for superior performance in a dual-tasking situation including decision making under risk and a working memory task. PMID:25741308
Berger, Christoph; Erbe, Anna-Katharina; Ehlers, Inga; Marx, Ivo; Hauenstein, Karlheinz; Teipel, Stefan
2015-01-01
Research suggests generally impaired cognitive control functions in working memory (WM) processes in amnestic mild cognitive impairment (MCI) and incipient Alzheimer's disease (AD). Little is known how emotional salience of task-irrelevant stimuli may modulate cognitive control of WM performance and neurofunctional activation in MCI and AD individuals. We investigated the impact of emotional task-irrelevant visual stimuli on cortical activation during verbal WM. Twelve AD/MCI individuals and 12 age-matched healthy individuals performed a verbal WM (nback-) task with task-irrelevant emotionally neutral and emotionally negative background pictures during fMRI measurement. AD/MCI individuals showed decreased WM performance compared with controls; both AD/MCI and control groups reacted slower during presentation of negative pictures, regardless of WM difficulty. The AD/MCI group showed increased activation in the left hemispheric prefrontal network, higher amygdala and less cerebellar activation with increasing WM task difficulty compared to healthy controls. Correlation analysis between neurofunctional activation and WM performance revealed a negative correlation between task sensitivity and activation in the dorsal anterior cingulum for the healthy controls but not for the AD/MCI group. Our data suggest compensatory activation in prefrontal cortex and amygdala, but also dysfunctional inhibition of distracting information in the AD/MCI group during higher WM task difficulty. Additionally, attentional processes affecting the correlation between WM performance and neurofunctional activation seem to be different between incipient AD and healthy aging.
POLLUTION PREVENTION IN THE DESIGN OF CHEMICAL PROCESSES USING HIERARCHICAL DESIGN AND SIMULATION
The design of chemical processes is normally an interactive process of synthesis and analysis. When one also desires or needs to limit the amount of pollution generated by the process the difficulty of the task can increase substantially. In this work, we show how combining hier...
Abney, Drew H; McBride, Dawn M; Petrella, Samantha N
2013-10-01
Past studies (e.g., Marsh, Hicks, & Cook Journal of Experimental Psychology: Learning, Memory, and Cognition 31:68-75, 2005; Meiser & Schult European Journal of Cognitive Psychology 20:290-311, 2008) have shown that transfer-appropriate processing (TAP) effects in event-based prospective memory (PM) depend on the effort directed toward the ongoing task. In the present study, we addressed mixed findings from these studies and examined monitoring in TAP and transfer-inappropriate processing (TIP) conditions. In two experiments, a semantic or orthographic ongoing task was paired with a PM cue that either was matched in processing (TAP) or did not match in processing (TIP). Within each condition, effort was varied across trials. The results indicated that PM accuracy was higher in TAP than in TIP conditions, regardless of effort condition, supporting the findings reported by Meiser and Schult. Ex-Gaussian functions were fit to the mean reaction times (cf. Brewer Journal of Psychology 219:117-124, 2011) in order to examine monitoring across conditions. The analysis of distributional skew (τ parameter) showed sensitivity to ongoing task instructions and properties of the PM cues. These results support Meiser and Schult's suggestion that TIP conditions require more attentional processing, and they also afford novel discussion on the interactive effects of ongoing task condition, PM cue properties, and manipulations of effort.
An Individual Differences Analysis of Memory Control
ERIC Educational Resources Information Center
Salthouse, Timothy A.; Siedlecki, Karen L.; Krueger, Lacy E.
2006-01-01
Performance on a wide variety of memory tasks can be hypothesized to be influenced by processes associated with controlling the contents of memory. In this project 328 adults ranging from 18 to 93 years of age performed six tasks (e.g., multiple trial recall with an interpolated interference list, directed forgetting, proactive interference, and…
ERIC Educational Resources Information Center
Howes, Andrew; Lewis, Richard L.; Vera, Alonso
2009-01-01
The authors assume that individuals adapt rationally to a utility function given constraints imposed by their cognitive architecture and the local task environment. This assumption underlies a new approach to modeling and understanding cognition--cognitively bounded rational analysis--that sharpens the predictive acuity of general, integrated…
Emergence of Tables as First-Graders Cope with Modelling Tasks
ERIC Educational Resources Information Center
Peled, Irit; Keisar, Einav
2015-01-01
In this action research, first-graders were challenged to cope with a sequence of modelling tasks involving an analysis of given situations and choices of mathematical tools. In the course of the sequence, they underwent a change in the nature of their problem-solving processes and developed modelling competencies. Moreover, during the task…
Poppenk, Jordan; Norman, Kenneth A
2012-11-01
Recent cognitive research has revealed better source memory performance for familiar relative to novel stimuli. Here we consider two possible explanations for this finding. The source memory advantage for familiar stimuli could arise because stimulus novelty induces attention to stimulus features at the expense of contextual processing, resulting in diminished overall levels of contextual processing at study for novel (vs. familiar) stimuli. Another possibility is that stimulus information retrieved from long-term memory (LTM) provides scaffolding that facilitates the formation of item-context associations. If contextual features are indeed more effectively bound to familiar (vs. novel) items, the relationship between contextual processing at study and subsequent source memory should be stronger for familiar items. We tested these possibilities by applying multi-voxel pattern analysis (MVPA) to a recently collected functional magnetic resonance imaging (fMRI) dataset, with the goal of measuring contextual processing at study and relating it to subsequent source memory performance. Participants were scanned with fMRI while viewing novel proverbs, repeated proverbs (previously novel proverbs that were shown in a pre-study phase), and previously known proverbs in the context of one of two experimental tasks. After scanning was complete, we evaluated participants' source memory for the task associated with each proverb. Drawing upon fMRI data from the study phase, we trained a classifier to detect on-task processing (i.e., how strongly was the correct task set activated). On-task processing was greater for previously known than novel proverbs and similar for repeated and novel proverbs. However, both within and across participants, the relationship between on-task processing and subsequent source memory was stronger for repeated than novel proverbs and similar for previously known and novel proverbs. Finally, focusing on the repeated condition, we found that higher levels of hippocampal activity during the pre-study phase, which we used as an index of episodic encoding, led to a stronger relationship between on-task processing at study and subsequent memory. Together, these findings suggest different mechanisms may be primarily responsible for superior source memory for repeated and previously known stimuli. Specifically, they suggest that prior stimulus knowledge enhances memory by boosting the overall level of contextual processing, whereas stimulus repetition enhances the probability that contextual features will be successfully bound to item features. Several possible theoretical explanations for this pattern are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Development of Cross-Platform Software for Well Logging Data Visualization
NASA Astrophysics Data System (ADS)
Akhmadulin, R. K.; Miraev, A. I.
2017-07-01
Well logging data processing is one of the main sources of information in the oil-gas field analysis and is of great importance in the process of its development and operation. Therefore, it is important to have the software which would accurately and clearly provide the user with processed data in the form of well logs. In this work, there have been developed a software product which not only has the basic functionality for this task (loading data from .las files, well log curves display, etc.), but can be run in different operating systems and on different devices. In the article a subject field analysis and task formulation have been performed, and the software design stage has been considered. At the end of the work the resulting software product interface has been described.
Baracat, Patrícia Junqueira Ferraz; de Sá Ferreira, Arthur
2013-12-01
The present study investigated the association between postural tasks and center of pressure spatial patterns of three-dimensional statokinesigrams. Young (n=35; 27.0±7.7years) and elderly (n=38; 67.3±8.7years) healthy volunteers maintained an undisturbed standing position during postural tasks characterized by combined sensory (vision/no vision) and biomechanical challenges (feet apart/together). A method for the analysis of three-dimensional statokinesigrams based on nonparametric statistics and image-processing analysis was employed. Four patterns of spatial distribution were derived from ankle and hip strategies according to the quantity (single; double; multi) and location (anteroposterior; mediolateral) of high-density regions on three-dimensional statokinesigrams. Significant associations between postural task and spatial pattern were observed (young: gamma=0.548, p<.001; elderly: gamma=0.582, p<.001). Robustness analysis revealed small changes related to parameter choices for histogram processing. MANOVA revealed multivariate main effects for postural task [Wilks' Lambda=0.245, p<.001] and age [Wilks' Lambda=0.308, p<.001], with interaction [Wilks' Lambda=0.732, p<.001]. The quantity of high-density regions was positively correlated to stabilogram and statokinesigram variables (p<.05 or lower). In conclusion, postural tasks are associated with center of pressure spatial patterns and are similar in young and elderly healthy volunteers. Single-centered patterns reflected more stable postural conditions and were more frequent with complete visual input and a wide base of support. Copyright © 2013 Elsevier B.V. All rights reserved.
Analysis of the Requirements Generation Process for the Logistics Analysis and Wargame Support Tool
2017-06-01
For instance, the requirements for a pen seem straight forward; however, they may vary depending on the context in which the pen will be used...the interactions between the operational elements, specify which tasks are dependent on others and the order of executing task, and estimate how...configuration file to call that spreadsheet. This requirement can be met depending on the situation. If the nodes and arcs are pre-defined and readily
Schmithorst, Vincent J
2005-04-01
Music perception is a quite complex cognitive task, involving the perception and integration of various elements including melody, harmony, pitch, rhythm, and timbre. A preliminary functional MRI investigation of music perception was performed, using a simplified passive listening task. Group independent component analysis (ICA) was used to separate out various components involved in music processing, as the hemodynamic responses are not known a priori. Various components consistent with auditory processing, expressive language, syntactic processing, and visual association were found. The results are discussed in light of various hypotheses regarding modularity of music processing and its overlap with language processing. The results suggest that, while some networks overlap with ones used for language processing, music processing may involve its own domain-specific processing subsystems.
Nguyen, Ngan; Mulla, Ali; Nelson, Andrew J; Wilson, Timothy D
2014-01-01
The present study explored the problem-solving strategies of high- and low-spatial visualization ability learners on a novel spatial anatomy task to determine whether differences in strategies contribute to differences in task performance. The results of this study provide further insights into the processing commonalities and differences among learners beyond the classification of spatial visualization ability alone, and help elucidate what, if anything, high- and low-spatial visualization ability learners do differently while solving spatial anatomy task problems. Forty-two students completed a standardized measure of spatial visualization ability, a novel spatial anatomy task, and a questionnaire involving personal self-analysis of the processes and strategies used while performing the spatial anatomy task. Strategy reports revealed that there were different ways students approached answering the spatial anatomy task problems. However, chi-square test analyses established that differences in problem-solving strategies did not contribute to differences in task performance. Therefore, underlying spatial visualization ability is the main source of variation in spatial anatomy task performance, irrespective of strategy. In addition to scoring higher and spending less time on the anatomy task, participants with high spatial visualization ability were also more accurate when solving the task problems. © 2013 American Association of Anatomists.
The equivalency between logic Petri workflow nets and workflow nets.
Wang, Jing; Yu, ShuXia; Du, YuYue
2015-01-01
Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.
The Equivalency between Logic Petri Workflow Nets and Workflow Nets
Wang, Jing; Yu, ShuXia; Du, YuYue
2015-01-01
Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented. PMID:25821845
2013-05-01
contract or a PhD di sse rtation typically are a " proo f- of-concept" code base that can onl y read a single set of inputs and are not designed ...AFRL-RX-WP-TR-2013-0210 COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) III Task Order 0090: Image Processing Framework: From...public release; distribution unlimited. See additional restrictions described on inside pages. STINFO COPY AIR FORCE RESEARCH LABORATORY
Visuo-spatial performance in autism: a meta-analysis.
Muth, Anne; Hönekopp, Johannes; Falter, Christine M
2014-12-01
Visuo-spatial skills are believed to be enhanced in autism spectrum disorders (ASDs). This meta-analysis tests the current state of evidence for Figure Disembedding, Block Design, Mental Rotation and Navon tasks in ASD and neurotypicals. Block Design (d = 0.32) and Figure Disembedding (d = 0.26) showed superior performance for ASD with large heterogeneity that is unaccounted for. No clear differences were found for Mental Rotation. ASD samples showed a stronger local processing preference for Navon tasks (d = 0.35); less clear evidence for performance differences of a similar magnitude emerged. We discuss the meta-analysis results together with other findings relating to visuo-spatial processing and three cognitive theories of ASD: Weak Central Coherence, Enhanced Perceptual Functioning and Extreme Male Brain theory.
Thomas, Philipp; Rammsayer, Thomas; Schweizer, Karl; Troche, Stefan
2015-01-01
Numerous studies reported a strong link between working memory capacity (WMC) and fluid intelligence (Gf), although views differ in respect to how close these two constructs are related to each other. In the present study, we used a WMC task with five levels of task demands to assess the relationship between WMC and Gf by means of a new methodological approach referred to as fixed-links modeling. Fixed-links models belong to the family of confirmatory factor analysis (CFA) and are of particular interest for experimental, repeated-measures designs. With this technique, processes systematically varying across task conditions can be disentangled from processes unaffected by the experimental manipulation. Proceeding from the assumption that experimental manipulation in a WMC task leads to increasing demands on WMC, the processes systematically varying across task conditions can be assumed to be WMC-specific. Processes not varying across task conditions, on the other hand, are probably independent of WMC. Fixed-links models allow for representing these two kinds of processes by two independent latent variables. In contrast to traditional CFA where a common latent variable is derived from the different task conditions, fixed-links models facilitate a more precise or purified representation of the WMC-related processes of interest. By using fixed-links modeling to analyze data of 200 participants, we identified a non-experimental latent variable, representing processes that remained constant irrespective of the WMC task conditions, and an experimental latent variable which reflected processes that varied as a function of experimental manipulation. This latter variable represents the increasing demands on WMC and, hence, was considered a purified measure of WMC controlled for the constant processes. Fixed-links modeling showed that both the purified measure of WMC (β = .48) as well as the constant processes involved in the task (β = .45) were related to Gf. Taken together, these two latent variables explained the same portion of variance of Gf as a single latent variable obtained by traditional CFA (β = .65) indicating that traditional CFA causes an overestimation of the effective relationship between WMC and Gf. Thus, fixed-links modeling provides a feasible method for a more valid investigation of the functional relationship between specific constructs.
Overlap in the functional neural systems involved in semantic and episodic memory retrieval.
Rajah, M N; McIntosh, A R
2005-03-01
Neuroimaging and neuropsychological data suggest that episodic and semantic memory may be mediated by distinct neural systems. However, an alternative perspective is that episodic and semantic memory represent different modes of processing within a single declarative memory system. To examine whether the multiple or the unitary system view better represents the data we conducted a network analysis using multivariate partial least squares (PLS ) activation analysis followed by covariance structural equation modeling (SEM) of positron emission tomography data obtained while healthy adults performed episodic and semantic verbal retrieval tasks. It is argued that if performance of episodic and semantic retrieval tasks are mediated by different memory systems, then there should differences in both regional activations and interregional correlations related to each type of retrieval task, respectively. The PLS results identified brain regions that were differentially active during episodic retrieval versus semantic retrieval. Regions that showed maximal differences in regional activity between episodic retrieval tasks were used to construct separate functional models for episodic and semantic retrieval. Omnibus tests of these functional models failed to find a significant difference across tasks for both functional models. The pattern of path coefficients for the episodic retrieval model were not different across tasks, nor were the path coefficients for the semantic retrieval model. The SEM results suggest that the same memory network/system was engaged across tasks, given the similarities in path coefficients. Therefore, activation differences between episodic and semantic retrieval may ref lect variation along a continuum of processing during task performance within the context of a single memory system.
Chromatic Perceptual Learning but No Category Effects without Linguistic Input
Grandison, Alexandra; Sowden, Paul T.; Drivonikou, Vicky G.; Notman, Leslie A.; Alexander, Iona; Davies, Ian R. L.
2016-01-01
Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest. PMID:27252669
SUPERFUND REMOTE SENSING SUPPORT
This task provides remote sensing technical support to the Superfund program. Support includes the collection, processing, and analysis of remote sensing data to characterize hazardous waste disposal sites and their history. Image analysis reports, aerial photographs, and assoc...
Van Hoogmoed, A H; Nadel, L; Spanò, G; Edgin, J O
2016-02-01
Event related potentials (ERPs) can help to determine the cognitive and neural processes underlying memory functions and are often used to study populations with severe memory impairment. In healthy adults, memory is typically assessed with active tasks, while in patient studies passive memory paradigms are generally used. In this study we examined whether active and passive continuous object recognition tasks measure the same underlying memory process in typically developing (TD) adults and in individuals with Down syndrome (DS), a population with known hippocampal impairment. We further explored how ERPs in these tasks relate to behavioral measures of memory. Data-driven analysis techniques revealed large differences in old-new effects in the active versus passive task in TD adults, but no difference between these tasks in DS. The group with DS required additional processing in the active task in comparison to the TD group in two ways. First, the old-new effect started 150 ms later. Second, more repetitions were required to show the old-new effect. In the group with DS, performance on a behavioral measure of object-location memory was related to ERP measures across both tasks. In total, our results suggest that active and passive ERP memory measures do not differ in DS and likely reflect the use of implicit memory, but not explicit processing, on both tasks. Our findings highlight the need for a greater understanding of the comparison between active and passive ERP paradigms before they are inferred to measure similar functions across populations (e.g., infants or intellectual disability). Copyright © 2016 Elsevier Ltd. All rights reserved.
Richardson, Miles
2017-04-01
In ergonomics there is often a need to identify and predict the separate effects of multiple factors on performance. A cost-effective fractional factorial approach to understanding the relationship between task characteristics and task performance is presented. The method has been shown to provide sufficient independent variability to reveal and predict the effects of task characteristics on performance in two domains. The five steps outlined are: selection of performance measure, task characteristic identification, task design for user trials, data collection, regression model development and task characteristic analysis. The approach can be used for furthering knowledge of task performance, theoretical understanding, experimental control and prediction of task performance. Practitioner Summary: A cost-effective method to identify and predict the separate effects of multiple factors on performance is presented. The five steps allow a better understanding of task factors during the design process.
Task analysis of intersection driving scenarios : information processing bottlenecks
DOT National Transportation Integrated Search
2006-08-01
The purpose of this report is to identify the information processing bottlenecks that drivers face in specific intersection driving scenarios. These bottlenecks represent situations in which drivers may become 'overloaded' by driving demands, which c...
Xie, Weizhen; Cappiello, Marcus; Meng, Ming; Rosenthal, Robert; Zhang, Weiwei
2018-05-08
This meta-analytical review examines whether a deletion variant in ADRA2B, a gene that encodes α 2B adrenoceptor in the regulation of norepinephrine availability, influences cognitive processing of emotional information in human observers. Using a multilevel modeling approach, this meta-analysis of 16 published studies with a total of 2,752 participants showed that ADRA2B deletion variant was significantly associated with enhanced perceptual and cognitive task performance for emotional stimuli. In contrast, this genetic effect did not manifest in overall task performance when non-emotional content was used. Furthermore, various study-level factors, such as targeted cognitive processes (memory vs. attention/perception) and task procedures (recall vs. recognition), could moderate the size of this genetic effect. Overall, with increased statistical power and standardized analytical procedures, this meta-analysis has established the contributions of ADRA2B to the interactions between emotion and cognition, adding to the growing literature on individual differences in attention, perception, and memory for emotional information in the general population. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Sepehrnoori, K.
1995-12-31
The objective of this research is to develop cost-effective surfactant flooding technology by using simulation studies to evaluate and optimize alternative design strategies taking into account reservoir characteristics process chemistry, and process design options such as horizontal wells. Task 1 is the development of an improved numerical method for our simulator that will enable us to solve a wider class of these difficult simulation problems accurately and affordably. Task 2 is the application of this simulator to the optimization of surfactant flooding to reduce its risk and cost. In this quarter, we have continued working on Task 2 to optimizemore » surfactant flooding design and have included economic analysis to the optimization process. An economic model was developed using a spreadsheet and the discounted cash flow (DCF) method of economic analysis. The model was designed specifically for a domestic onshore surfactant flood and has been used to economically evaluate previous work that used a technical approach to optimization. The DCF model outputs common economic decision making criteria, such as net present value (NPV), internal rate of return (IRR), and payback period.« less
High-Performance Data Analysis Tools for Sun-Earth Connection Missions
NASA Technical Reports Server (NTRS)
Messmer, Peter
2011-01-01
The data analysis tool of choice for many Sun-Earth Connection missions is the Interactive Data Language (IDL) by ITT VIS. The increasing amount of data produced by these missions and the increasing complexity of image processing algorithms requires access to higher computing power. Parallel computing is a cost-effective way to increase the speed of computation, but algorithms oftentimes have to be modified to take advantage of parallel systems. Enhancing IDL to work on clusters gives scientists access to increased performance in a familiar programming environment. The goal of this project was to enable IDL applications to benefit from both computing clusters as well as graphics processing units (GPUs) for accelerating data analysis tasks. The tool suite developed in this project enables scientists now to solve demanding data analysis problems in IDL that previously required specialized software, and it allows them to be solved orders of magnitude faster than on conventional PCs. The tool suite consists of three components: (1) TaskDL, a software tool that simplifies the creation and management of task farms, collections of tasks that can be processed independently and require only small amounts of data communication; (2) mpiDL, a tool that allows IDL developers to use the Message Passing Interface (MPI) inside IDL for problems that require large amounts of data to be exchanged among multiple processors; and (3) GPULib, a tool that simplifies the use of GPUs as mathematical coprocessors from within IDL. mpiDL is unique in its support for the full MPI standard and its support of a broad range of MPI implementations. GPULib is unique in enabling users to take advantage of an inexpensive piece of hardware, possibly already installed in their computer, and achieve orders of magnitude faster execution time for numerically complex algorithms. TaskDL enables the simple setup and management of task farms on compute clusters. The products developed in this project have the potential to interact, so one can build a cluster of PCs, each equipped with a GPU, and use mpiDL to communicate between the nodes and GPULib to accelerate the computations on each node.
Exploring Operational Test and Evaluation of Unmanned Aircraft Systems: A Qualitative Case Study
NASA Astrophysics Data System (ADS)
Saliceti, Jose A.
The purpose of this qualitative case study was to explore and identify strategies that may potentially remedy operational test and evaluation procedures used to evaluate Unmanned Aircraft Systems (UAS) technology. The sample for analysis consisted of organizations testing and evaluating UASs (e.g., U.S. Air Force, U.S. Navy, U.S. Army, U.S. Marine Corps, U.S. Coast Guard, and Customs Border Protection). A purposeful sampling technique was used to select 15 subject matter experts in the field of operational test and evaluation of UASs. A questionnaire was provided to participants to construct a descriptive and robust research. Analysis of responses revealed themes related to each research question. Findings revealed operational testers utilized requirements documents to extrapolate measures for testing UAS technology and develop critical operational issues. The requirements documents were (a) developed without the contribution of stakeholders and operational testers, (b) developed with vague or unrealistic measures, and (c) developed without a systematic method to derive requirements from mission tasks. Four approaches are recommended to develop testable operational requirements and assist operational testers: (a) use a mission task analysis tool to derive requirements for mission essential tasks for the system, (b) exercise collaboration among stakeholders and testers to ensure testable operational requirements based on mission tasks, (c) ensure testable measures are used in requirements documents, and (d) create a repository list of critical operational issues by mission areas. The preparation of operational test and evaluation processes for UAS technology is not uniform across testers. The processes in place are not standardized, thus test plan preparation and reporting are different among participants. A standard method to prepare and report UAS technology should be used when preparing and reporting on UAS technology. Using a systematic process, such as mission-based test design, resonated among participants as an analytical method to link UAS mission tasks and measures of performance to the capabilities of the system under test when developing operational test plans. Further research should examine system engineering designs for system requirements traceability matrix of mission tasks and subtasks while using an analysis tool that adequately evaluates UASs with an acceptable level of confidence in the results.
Grotheer, Mareike; Jeska, Brianna; Grill-Spector, Kalanit
2018-03-28
A region in the posterior inferior temporal gyrus (ITG), referred to as the number form area (NFA, here ITG-numbers) has been implicated in the visual processing of Arabic numbers. However, it is unknown if this region is specifically involved in the visual encoding of Arabic numbers per se or in mathematical processing more broadly. Using functional magnetic resonance imaging (fMRI) during experiments that systematically vary tasks and stimuli, we find that mathematical processing, not preference to Arabic numbers, consistently drives both mean and distributed responses in the posterior ITG. While we replicated findings of higher responses in ITG-numbers to numbers than other visual stimuli during a 1-back task, this preference to numbers was abolished when participants engaged in mathematical processing. In contrast, an ITG region (ITG-math) that showed higher responses during an adding task vs. other tasks maintained this preference for mathematical processing across a wide range of stimuli including numbers, number/letter morphs, hands, and dice. Analysis of distributed responses across an anatomically-defined posterior ITG expanse further revealed that mathematical task but not Arabic number form can be successfully and consistently decoded from these distributed responses. Together, our findings suggest that the function of neuronal regions in the posterior ITG goes beyond the specific visual processing of Arabic numbers. We hypothesize that they ascribe numerical content to the visual input, irrespective of the format of the stimulus. Copyright © 2018 Elsevier Inc. All rights reserved.
A Theoretical and Experimental Analysis of the Outside World Perception Process
NASA Technical Reports Server (NTRS)
Wewerinke, P. H.
1978-01-01
The outside scene is often an important source of information for manual control tasks. Important examples of these are car driving and aircraft control. This paper deals with modelling this visual scene perception process on the basis of linear perspective geometry and the relative motion cues. Model predictions utilizing psychophysical threshold data from base-line experiments and literature of a variety of visual approach tasks are compared with experimental data. Both the performance and workload results illustrate that the model provides a meaningful description of the outside world perception process, with a useful predictive capability.
Face and body perception in schizophrenia: a configural processing deficit?
Soria Bauser, Denise; Thoma, Patrizia; Aizenberg, Victoria; Brüne, Martin; Juckel, Georg; Daum, Irene
2012-01-30
Face and body perception rely on common processing mechanisms and activate similar but not identical brain networks. Patients with schizophrenia show impaired face perception, and the present study addressed for the first time body perception in this group. Seventeen patients diagnosed with schizophrenia or schizoaffective disorder were compared to 17 healthy controls on standardized tests assessing basic face perception skills (identity discrimination, memory for faces, recognition of facial affect). A matching-to-sample task including emotional and neutral faces, bodies and cars either in an upright or in an inverted position was administered to assess potential category-specific performance deficits and impairments of configural processing. Relative to healthy controls, schizophrenia patients showed poorer performance on the tasks assessing face perception skills. In the matching-to-sample task, they also responded more slowly and less accurately than controls, regardless of the stimulus category. Accuracy analysis showed significant inversion effects for faces and bodies across groups, reflecting configural processing mechanisms; however reaction time analysis indicated evidence of reduced inversion effects regardless of category in schizophrenia patients. The magnitude of the inversion effects was not related to clinical symptoms. Overall, the data point towards reduced configural processing, not only for faces but also for bodies and cars in individuals with schizophrenia. © 2011 Elsevier Ltd. All rights reserved.
DeSouza, Joseph F X; Ovaysikia, Shima; Pynn, Laura
2012-06-20
The aim of this methods paper is to describe how to implement a neuroimaging technique to examine complementary brain processes engaged by two similar tasks. Participants' behavior during task performance in an fMRI scanner can then be correlated to the brain activity using the blood-oxygen-level-dependent signal. We measure behavior to be able to sort correct trials, where the subject performed the task correctly and then be able to examine the brain signals related to correct performance. Conversely, if subjects do not perform the task correctly, and these trials are included in the same analysis with the correct trials we would introduce trials that were not only for correct performance. Thus, in many cases these errors can be used themselves to then correlate brain activity to them. We describe two complementary tasks that are used in our lab to examine the brain during suppression of an automatic responses: the stroop(1) and anti-saccade tasks. The emotional stroop paradigm instructs participants to either report the superimposed emotional 'word' across the affective faces or the facial 'expressions' of the face stimuli(1,2). When the word and the facial expression refer to different emotions, a conflict between what must be said and what is automatically read occurs. The participant has to resolve the conflict between two simultaneously competing processes of word reading and facial expression. Our urge to read out a word leads to strong 'stimulus-response (SR)' associations; hence inhibiting these strong SR's is difficult and participants are prone to making errors. Overcoming this conflict and directing attention away from the face or the word requires the subject to inhibit bottom up processes which typically directs attention to the more salient stimulus. Similarly, in the anti-saccade task(3,4,5,6), where an instruction cue is used to direct only attention to a peripheral stimulus location but then the eye movement is made to the mirror opposite position. Yet again we measure behavior by recording the eye movements of participants which allows for the sorting of the behavioral responses into correct and error trials(7) which then can be correlated to brain activity. Neuroimaging now allows researchers to measure different behaviors of correct and error trials that are indicative of different cognitive processes and pinpoint the different neural networks involved.
MIA - A free and open source software for gray scale medical image analysis
2013-01-01
Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed. PMID:24119305
MIA - A free and open source software for gray scale medical image analysis.
Wollny, Gert; Kellman, Peter; Ledesma-Carbayo, María-Jesus; Skinner, Matthew M; Hublin, Jean-Jaques; Hierl, Thomas
2013-10-11
Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large.Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers.One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development.Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don't provide an clear approach when one wants to shape a new command line tool from a prototype shell script. The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.
Analysis and asynchronous detection of gradually unfolding errors during monitoring tasks
NASA Astrophysics Data System (ADS)
Omedes, Jason; Iturrate, Iñaki; Minguez, Javier; Montesano, Luis
2015-10-01
Human studies on cognitive control processes rely on tasks involving sudden-onset stimuli, which allow the analysis of these neural imprints to be time-locked and relative to the stimuli onset. Human perceptual decisions, however, comprise continuous processes where evidence accumulates until reaching a boundary. Surpassing the boundary leads to a decision where measured brain responses are associated to an internal, unknown onset. The lack of this onset for gradual stimuli hinders both the analyses of brain activity and the training of detectors. This paper studies electroencephalographic (EEG)-measurable signatures of human processing for sudden and gradual cognitive processes represented as a trajectory mismatch under a monitoring task. Time-locked potentials and brain-source analysis of the EEG of sudden mismatches revealed the typical components of event-related potentials and the involvement of brain structures related to cognitive control processing. For gradual mismatch events, time-locked analyses did not show any discernible EEG scalp pattern, despite related brain areas being, to a lesser extent, activated. However, and thanks to the use of non-linear pattern recognition algorithms, it is possible to train an asynchronous detector on sudden events and use it to detect gradual mismatches, as well as obtaining an estimate of their unknown onset. Post-hoc time-locked scalp and brain-source analyses revealed that the EEG patterns of detected gradual mismatches originated in brain areas related to cognitive control processing. This indicates that gradual events induce latency in the evaluation process but that similar brain mechanisms are present in sudden and gradual mismatch events. Furthermore, the proposed asynchronous detection model widens the scope of applications of brain-machine interfaces to other gradual processes.
Wade, Natasha E; Padula, Claudia B; Anthenelli, Robert M; Nelson, Erik; Eliassen, James; Lisdahl, Krista M
2017-12-01
Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD). We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC). For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. After controlling for family-wise error (p = 0.05), there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC), temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before amore » failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to perform failure modes and effects analysis analysis for a given process Learn what fault trees are all about Learn how to design a quality management program based upon the information obtained from process mapping, failure modes and effects analysis and fault tree analysis. Dunscombe: Director, TreatSafely, LLC and Center for the Assessment of Radiological Sciences; Consultant to IAEA and Varian Thomadsen: President, Center for the Assessment of Radiological Sciences Palta: Vice President of the Center for the Assessment of Radiological Sciences.« less
Sarmiento, Jhon F; Benevides, Alessandro B; Moreira, Marcelo H; Elias, Arlindo; Bastos, Teodiano F; Silva, Ian V; Pelegrina, Claudinei C
2011-01-01
The study of fatigue is an important tool for diagnostics of disease, sports, ergonomics and robotics areas. This work deals with the analysis of sEMG most important fatigue muscle indicators with use of signal processing in isometric and isotonic tasks with the propose of standardizing fatigue protocol to select the data acquisition and processing with diagnostic proposes. As a result, the slope of the RMS, ARV and MNF indicators were successful to describe the fatigue behavior expected. Whereas that, MDF and AIF indicators failed in the description of fatigue. Similarly, the use of a constant load for sEMG data acquisition was the best strategy in both tasks.
NASA Technical Reports Server (NTRS)
Biess, J. J.; Yu, Y.; Middlebrook, R. D.; Schoenfeld, A. D.
1974-01-01
A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks.
ERIC Educational Resources Information Center
Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince; Kraut, Michael; Hart, John, Jr.; Pearlson, Godfrey
2009-01-01
To explore the temporal sequence of, and the relationship between, the left and right hemispheres (LH and RH) during semantic memory (SM) processing we identified the neural networks involved in the performance of functional MRI semantic object retrieval task (SORT) using group independent component analysis (ICA) in 47 healthy individuals. SORT…
ERIC Educational Resources Information Center
Chen, Zhe; Honomichl, Ryan; Kennedy, Diane; Tan, Enda
2016-01-01
The present study examines 5- to 8-year-old children's relation reasoning in solving matrix completion tasks. This study incorporates a componential analysis, an eye-tracking method, and a microgenetic approach, which together allow an investigation of the cognitive processing strategies involved in the development and learning of children's…
Planning applications in image analysis
NASA Technical Reports Server (NTRS)
Boddy, Mark; White, Jim; Goldman, Robert; Short, Nick, Jr.
1994-01-01
We describe two interim results from an ongoing effort to automate the acquisition, analysis, archiving, and distribution of satellite earth science data. Both results are applications of Artificial Intelligence planning research to the automatic generation of processing steps for image analysis tasks. First, we have constructed a linear conditional planner (CPed), used to generate conditional processing plans. Second, we have extended an existing hierarchical planning system to make use of durations, resources, and deadlines, thus supporting the automatic generation of processing steps in time and resource-constrained environments.
Improved silicon nitride for advanced heat engines
NASA Technical Reports Server (NTRS)
Yeh, Hun C.; Fang, Ho T.
1987-01-01
The technology base required to fabricate silicon nitride components with the strength, reliability, and reproducibility necessary for actual heat engine applications is presented. Task 2 was set up to develop test bars with high Weibull slope and greater high temperature strength, and to conduct an initial net shape component fabrication evaluation. Screening experiments were performed in Task 7 on advanced materials and processing for input to Task 2. The technical efforts performed in the second year of a 5-yr program are covered. The first iteration of Task 2 was completed as planned. Two half-replicated, fractional factorial (2 sup 5), statistically designed matrix experiments were conducted. These experiments have identified Denka 9FW Si3N4 as an alternate raw material to GTE SN502 Si3N4 for subsequent process evaluation. A detailed statistical analysis was conducted to correlate processing conditions with as-processed test bar properties. One processing condition produced a material with a 97 ksi average room temperature MOR (100 percent of goal) with 13.2 Weibull slope (83 percent of goal); another condition produced 86 ksi (6 percent over baseline) room temperature strength with a Weibull slope of 20 (125 percent of goal).
A coordination theory for intelligent machines
NASA Technical Reports Server (NTRS)
Wang, Fei-Yue; Saridis, George N.
1990-01-01
A formal model for the coordination level of intelligent machines is established. The framework of the coordination level investigated consists of one dispatcher and a number of coordinators. The model called coordination structure has been used to describe analytically the information structure and information flow for the coordination activities in the coordination level. Specifically, the coordination structure offers a formalism to (1) describe the task translation of the dispatcher and coordinators; (2) represent the individual process within the dispatcher and coordinators; (3) specify the cooperation and connection among the dispatcher and coordinators; (4) perform the process analysis and evaluation; and (5) provide a control and communication mechanism for the real-time monitor or simulation of the coordination process. A simple procedure for the task scheduling in the coordination structure is presented. The task translation is achieved by a stochastic learning algorithm. The learning process is measured with entropy and its convergence is guaranteed. Finally, a case study of the coordination structure with three coordinators and one dispatcher for a simple intelligent manipulator system illustrates the proposed model and the simulation of the task processes performed on the model verifies the soundness of the theory.
A WorkFlow Engine Oriented Modeling System for Hydrologic Sciences
NASA Astrophysics Data System (ADS)
Lu, B.; Piasecki, M.
2009-12-01
In recent years the use of workflow engines for carrying out modeling and data analyses tasks has gained increased attention in the science and engineering communities. Tasks like processing raw data coming from sensors and passing these raw data streams to filters for QA/QC procedures possibly require multiple and complicated steps that need to be repeated over and over again. A workflow sequence that carries out a number of steps of various complexity is an ideal approach to deal with these tasks because the sequence can be stored, called up and repeated over again and again. This has several advantages: for one it ensures repeatability of processing steps and with that provenance, an issue that is increasingly important in the science and engineering communities. It also permits the hand off of lengthy and time consuming tasks that can be error prone to a chain of processing actions that are carried out automatically thus reducing the chance for error on the one side and freeing up time to carry out other tasks on the other hand. This paper aims to present the development of a workflow engine embedded modeling system which allows to build up working sequences for carrying out numerical modeling tasks regarding to hydrologic science. Trident, which facilitates creating, running and sharing scientific data analysis workflows, is taken as the central working engine of the modeling system. Current existing functionalities of the modeling system involve digital watershed processing, online data retrieval, hydrologic simulation and post-event analysis. They are stored as sequences or modules respectively. The sequences can be invoked to implement their preset tasks in orders, for example, triangulating a watershed from raw DEM. Whereas the modules encapsulated certain functions can be selected and connected through a GUI workboard to form sequences. This modeling system is demonstrated by setting up a new sequence for simulating rainfall-runoff processes which involves embedded Penn State Integrated Hydrologic Model(PIHM) module for hydrologic simulation as a kernel, DEM processing sub-sequence which prepares geospatial data for PIHM, data retrieval module which access time series data from online data repository via web services or from local database, post- data management module which stores , visualizes and analyzes model outputs.
New social tasks for cognitive psychology; or, new cognitive tasks for social psychology.
Wettersten, John
2014-01-01
To elucidate how differing theories of rationality lead to differing practices, their social rules must be analyzed. This is true not merely in science but also in society at large. This analysis of social thinking requires both the identification of innate cognitive social psychological processes and explanations of their relations with differing rules of rational practice. These new tasks can enable social psychologists to contribute to the study of how social situations facilitate or inhibit rational practice and enable cognitive psychologists to improve social psychological theory. In contrast to dominant current research strategies, social and cognitive psychologists can integrate social studies of rational practices and their consequences with studies of underlying cognitive psychological processes. In this article I do not attempt to carry out these tasks but rather point to both their lack of recognition and their importance.
Krüger, Melanie; Hinder, Mark R; Puri, Rohan; Summers, Jeffery J
2017-01-01
Objectives: The aim of this study was to investigate how age-related performance differences in a visuospatial sequence learning task relate to age-related declines in cognitive functioning. Method: Cognitive functioning of 18 younger and 18 older participants was assessed using a standardized test battery. Participants then undertook a perceptual visuospatial sequence learning task. Various relationships between sequence learning and participants' cognitive functioning were examined through correlation and factor analysis. Results: Older participants exhibited significantly lower performance than their younger counterparts in the sequence learning task as well as in multiple cognitive functions. Factor analysis revealed two independent subsets of cognitive functions associated with performance in the sequence learning task, related to either the processing and storage of sequence information (first subset) or problem solving (second subset). Age-related declines were only found for the first subset of cognitive functions, which also explained a significant degree of the performance differences in the sequence learning task between age-groups. Discussion: The results suggest that age-related performance differences in perceptual visuospatial sequence learning can be explained by declines in the ability to process and store sequence information in older adults, while a set of cognitive functions related to problem solving mediates performance differences independent of age.
Probabilistic fault tree analysis of a radiation treatment system.
Ekaette, Edidiong; Lee, Robert C; Cooke, David L; Iftody, Sandra; Craighead, Peter
2007-12-01
Inappropriate administration of radiation for cancer treatment can result in severe consequences such as premature death or appreciably impaired quality of life. There has been little study of vulnerable treatment process components and their contribution to the risk of radiation treatment (RT). In this article, we describe the application of probabilistic fault tree methods to assess the probability of radiation misadministration to patients at a large cancer treatment center. We conducted a systematic analysis of the RT process that identified four process domains: Assessment, Preparation, Treatment, and Follow-up. For the Preparation domain, we analyzed possible incident scenarios via fault trees. For each task, we also identified existing quality control measures. To populate the fault trees we used subjective probabilities from experts and compared results with incident report data. Both the fault tree and the incident report analysis revealed simulation tasks to be most prone to incidents, and the treatment prescription task to be least prone to incidents. The probability of a Preparation domain incident was estimated to be in the range of 0.1-0.7% based on incident reports, which is comparable to the mean value of 0.4% from the fault tree analysis using probabilities from the expert elicitation exercise. In conclusion, an analysis of part of the RT system using a fault tree populated with subjective probabilities from experts was useful in identifying vulnerable components of the system, and provided quantitative data for risk management.
Markiewicz, Łukasz; Kubińska, Elżbieta
2015-01-01
This paper aims to provide insight into information processing differences between hot and cold risk taking decision tasks within a single domain. Decision theory defines risky situations using at least three parameters: outcome one (often a gain) with its probability and outcome two (often a loss) with a complementary probability. Although a rational agent should consider all of the parameters, s/he could potentially narrow their focus to only some of them, particularly when explicit Type 2 processes do not have the resources to override implicit Type 1 processes. Here we investigate differences in risky situation parameters' influence on hot and cold decisions. Although previous studies show lower information use in hot than in cold processes, they do not provide decision weight changes and therefore do not explain whether this difference results from worse concentration on each parameter of a risky situation (probability, gain amount, and loss amount) or from ignoring some parameters. Two studies were conducted, with participants performing the Columbia Card Task (CCT) in either its Cold or Hot version. In the first study, participants also performed the Cognitive Reflection Test (CRT) to monitor their ability to override Type 1 processing cues (implicit processes) with Type 2 explicit processes. Because hypothesis testing required comparison of the relative importance of risky situation decision weights (gain, loss, probability), we developed a novel way of measuring information use in the CCT by employing a conjoint analysis methodology. Across the two studies, results indicated that in the CCT Cold condition decision makers concentrate on each information type (gain, loss, probability), but in the CCT Hot condition they concentrate mostly on a single parameter: probability of gain/loss. We also show that an individual's CRT score correlates with information use propensity in cold but not hot tasks. Thus, the affective dimension of hot tasks inhibits correct information processing, probably because it is difficult to engage Type 2 processes in such circumstances. Individuals' Type 2 processing abilities (measured by the CRT) assist greater use of information in cold tasks but do not help in hot tasks.
Markiewicz, Łukasz; Kubińska, Elżbieta
2015-01-01
Objective: This paper aims to provide insight into information processing differences between hot and cold risk taking decision tasks within a single domain. Decision theory defines risky situations using at least three parameters: outcome one (often a gain) with its probability and outcome two (often a loss) with a complementary probability. Although a rational agent should consider all of the parameters, s/he could potentially narrow their focus to only some of them, particularly when explicit Type 2 processes do not have the resources to override implicit Type 1 processes. Here we investigate differences in risky situation parameters' influence on hot and cold decisions. Although previous studies show lower information use in hot than in cold processes, they do not provide decision weight changes and therefore do not explain whether this difference results from worse concentration on each parameter of a risky situation (probability, gain amount, and loss amount) or from ignoring some parameters. Methods: Two studies were conducted, with participants performing the Columbia Card Task (CCT) in either its Cold or Hot version. In the first study, participants also performed the Cognitive Reflection Test (CRT) to monitor their ability to override Type 1 processing cues (implicit processes) with Type 2 explicit processes. Because hypothesis testing required comparison of the relative importance of risky situation decision weights (gain, loss, probability), we developed a novel way of measuring information use in the CCT by employing a conjoint analysis methodology. Results: Across the two studies, results indicated that in the CCT Cold condition decision makers concentrate on each information type (gain, loss, probability), but in the CCT Hot condition they concentrate mostly on a single parameter: probability of gain/loss. We also show that an individual's CRT score correlates with information use propensity in cold but not hot tasks. Thus, the affective dimension of hot tasks inhibits correct information processing, probably because it is difficult to engage Type 2 processes in such circumstances. Individuals' Type 2 processing abilities (measured by the CRT) assist greater use of information in cold tasks but do not help in hot tasks. PMID:26635652
THE DEVELOPMENT OF TRAINING OBJECTIVES.
ERIC Educational Resources Information Center
SMITH, ROBERT G., JR.
A SIX-STEP PROCESS IS DESCRIBED FOR DEFINING JOB-RELEVANT OBJECTIVES FOR THE TRAINING OF MILITARY PERSONNEL. (1) A FORM OF SYSTEM ANALYSIS IS OUTLINED TO PROVIDE THE CONTEXT FOR THE STUDY OF A PARTICULAR MILITARY OCCUPATION SPECIALTY. (2) A TASK INVENTORY IS MADE OF THE MAJOR DUTIES IN THE JOB AND THE MORE SPECIFIC JOB TASKS ASSOCIATED WITH EACH…
A Multifaceted Approach to Investigating Pre-Task Planning Effects on Paired Oral Test Performance
ERIC Educational Resources Information Center
Nitta, Ryo; Nakatsuhara, Fumiyo
2014-01-01
Despite the growing popularity of paired format speaking assessments, the effects of pre-task planning time on performance in these formats are not yet well understood. For example, some studies have revealed the benefits of planning but others have not. Using a multifaceted approach including analysis of the process of speaking performance, the…
Construction of Tasks in Order to Develop and Promote Classroom Communication in Mathematics
ERIC Educational Resources Information Center
Olteanu, Lucian
2015-01-01
In this article, the focus is on task construction and the importance of this process to develop and promote classroom communication in mathematics. The students' tests, examination of students' mathematical work, the teachers' lesson plans, and reports of the lessons' instructions are the basic data for this article. The analysis indicated that…
Categories of Computer Use and Their Relationships with Attitudes toward Computers.
ERIC Educational Resources Information Center
Mitra, Anandra
1998-01-01
Analysis of attitude and use questionnaires completed by undergraduates (n1,444) at Wake Forest University determined that computers were used most frequently for word processing. Other uses were e-mail for task and non-task activities and mathematical and statistical computation. Results suggest that the level of computer use was related to…
The Role of the Left Head of Caudate in Suppressing Irrelevant Words
ERIC Educational Resources Information Center
Ali, Nilufa; Green, David W.; Kherif, Ferath; Devlin, Joseph T.; Price, Cathy J.
2010-01-01
Suppressing irrelevant words is essential to successful speech production and is expected to involve general control mechanisms that reduce interference from task-unrelated processing. To investigate the neural mechanisms that suppress visual word interference, we used fMRI and a Stroop task, using a block design with an event-related analysis.…
Planning and Managing Learning Tasks and Activities. Advances in Research on Teaching. Volume 3.
ERIC Educational Resources Information Center
Brophy, Jere, Ed.
This publication is the third volume in the "Advanced in Research on Teaching" series, which has been established to provide state-of-the-art conceptualization and analysis of the processes involved in functioning as a classroom teacher. This volume focuses on the planning and managing of learning tasks and activities, in particular,…
Cognitive/Information Processing Psychology and Instruction: Reviewing Recent Theory and Practice.
ERIC Educational Resources Information Center
Gallagher, John P.
1979-01-01
Discusses recent developments in instructional psychology relative to cognitive task analysis, individual difference variables, and cognitive models of interactive instructional decision making, which use constructs developed within the field of cognitive/information processing psychology. (Author/WBC)
Schlichting, Nadine; de Jong, Ritske; van Rijn, Hedderik
2018-06-20
Certain EEG components (e.g., the contingent negative variation, CNV, or beta oscillations) have been linked to the perception of temporal magnitudes specifically. However, it is as of yet unclear whether these EEG components are really unique to time perception or reflect the perception of magnitudes in general. In the current study we recorded EEG while participants had to make judgments about duration (time condition) or numerosity (number condition) in a comparison task. This design allowed us to directly compare EEG signals between the processing of time and number. Stimuli consisted of a series of blue dots appearing and disappearing dynamically on a black screen. Each stimulus was characterized by its duration and the total number of dots that it consisted of. Because it is known that tasks like these elicit perceptual interference effects that we used a maximum-likelihood estimation (MLE) procedure to determine, for each participant and dimension separately, to what extent time and numerosity information were taken into account when making a judgement in an extensive post hoc analysis. This approach enabled us to capture individual differences in behavioral performance and, based on the MLE estimates, to select a subset of participants who suppressed task-irrelevant information. Even for this subset of participants, who showed no or only small interference effects and thus were thought to truly process temporal information in the time condition and numerosity information in the number condition, we found CNV patterns in the time-domain EEG signals for both tasks that was more pronounced in the time-task. We found no substantial evidence for differences between the processing of temporal and numerical information in the time-frequency domain.
Analysis of tasks for dynamic man/machine load balancing in advanced helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgensen, C.C.
1987-10-01
This report considers task allocation requirements imposed by advanced helicopter designs incorporating mixes of human pilots and intelligent machines. Specifically, it develops an analogy between load balancing using distributed non-homogeneous multiprocessors and human team functions. A taxonomy is presented which can be used to identify task combinations likely to cause overload for dynamic scheduling and process allocation mechanisms. Designer criteria are given for function decomposition, separation of control from data, and communication handling for dynamic tasks. Possible effects of n-p complete scheduling problems are noted and a class of combinatorial optimization methods are examined.
Blink activity and task difficulty.
Tanaka, Y; Yamaoka, K
1993-08-01
This study investigated the relationship between task difficulty and blink activity, which includes blink rate, blink amplitude, and blink duration. Two kinds of tasks established two levels of difficulty. In Exp. 1, a mental arithmetic task was used to examine the relationship. Analysis showed that blink rate for a difficult task was significantly higher than that for an easier one. In Exp. 2, a letter-search task (hiragana Japanese alphabet) was used while the other conditions were the same as those in Exp. 1; however, the results of this experiment were not influenced by the difficulty of the task. As results indicate that blink rate is related to not only difficulty but also the nature of the task, the nature of the task is probably dependent on a mechanism in information processing. The results for blink amplitude and blink duration showed no systematic change during either experiment.
Parallel task processing of very large datasets
NASA Astrophysics Data System (ADS)
Romig, Phillip Richardson, III
This research concerns the use of distributed computer technologies for the analysis and management of very large datasets. Improvements in sensor technology, an emphasis on global change research, and greater access to data warehouses all are increase the number of non-traditional users of remotely sensed data. We present a framework for distributed solutions to the challenges of datasets which exceed the online storage capacity of individual workstations. This framework, called parallel task processing (PTP), incorporates both the task- and data-level parallelism exemplified by many image processing operations. An implementation based on the principles of PTP, called Tricky, is also presented. Additionally, we describe the challenges and practical issues in modeling the performance of parallel task processing with large datasets. We present a mechanism for estimating the running time of each unit of work within a system and an algorithm that uses these estimates to simulate the execution environment and produce estimated runtimes. Finally, we describe and discuss experimental results which validate the design. Specifically, the system (a) is able to perform computation on datasets which exceed the capacity of any one disk, (b) provides reduction of overall computation time as a result of the task distribution even with the additional cost of data transfer and management, and (c) in the simulation mode accurately predicts the performance of the real execution environment.
Failure modes and effects analysis automation
NASA Technical Reports Server (NTRS)
Kamhieh, Cynthia H.; Cutts, Dannie E.; Purves, R. Byron
1988-01-01
A failure modes and effects analysis (FMEA) assistant was implemented as a knowledge based system and will be used during design of the Space Station to aid engineers in performing the complex task of tracking failures throughout the entire design effort. The three major directions in which automation was pursued were the clerical components of the FMEA process, the knowledge acquisition aspects of FMEA, and the failure propagation/analysis portions of the FMEA task. The system is accessible to design, safety, and reliability engineers at single user workstations and, although not designed to replace conventional FMEA, it is expected to decrease by many man years the time required to perform the analysis.
The effects of task difficulty on visual search strategy in virtual 3D displays.
Pomplun, Marc; Garaas, Tyler W; Carrasco, Marisa
2013-08-28
Analyzing the factors that determine our choice of visual search strategy may shed light on visual behavior in everyday situations. Previous results suggest that increasing task difficulty leads to more systematic search paths. Here we analyze observers' eye movements in an "easy" conjunction search task and a "difficult" shape search task to study visual search strategies in stereoscopic search displays with virtual depth induced by binocular disparity. Standard eye-movement variables, such as fixation duration and initial saccade latency, as well as new measures proposed here, such as saccadic step size, relative saccadic selectivity, and x-y target distance, revealed systematic effects on search dynamics in the horizontal-vertical plane throughout the search process. We found that in the "easy" task, observers start with the processing of display items in the display center immediately after stimulus onset and subsequently move their gaze outwards, guided by extrafoveally perceived stimulus color. In contrast, the "difficult" task induced an initial gaze shift to the upper-left display corner, followed by a systematic left-right and top-down search process. The only consistent depth effect was a trend of initial saccades in the easy task with smallest displays to the items closest to the observer. The results demonstrate the utility of eye-movement analysis for understanding search strategies and provide a first step toward studying search strategies in actual 3D scenarios.
Kim, Hongkeun
2018-03-15
Functional neuroimaging studies on episodic memory retrieval consistently indicated the activation of the precuneus (PCU), mid-cingulate cortex (MCC), and lateral intraparietal sulcus (latIPS) regions. Although studies typically interpreted these activations in terms of memory retrieval processes, resting-state functional connectivity data indicate that these regions are part of the frontoparietal control network, suggesting a more general, cross-functional role. In this regard, this study proposes a novel hypothesis which suggests that the parietal control network plays a strong role in accommodating the co-occurrence of externally directed cognition (EDC) and internally directed cognition (IDC), which are typically antagonistic to each other. To evaluate how well this dual cognitive processes hypothesis can account for parietal activation patterns during memory tasks, this study provides a cross-function meta-analysis involving 3 different memory paradigms, namely, retrieval success (hit > correct rejection), repetition enhancement (repeated > novel), and subsequent forgetting (forgotten > remembered). Common to these paradigms is that the target condition may involve both EDC (stimulus processing and motor responding) and IDC (intentional remembering, involuntary awareness of previous encounter, or task-unrelated thoughts) strongly, whereas the reference condition may involve EDC to a greater extent, but IDC to a lesser extent. Thus, the dual cognitive processes hypothesis predicts that each of these paradigms will activate similar, overlapping PCU, MCC, and latIPS regions. The results were fully consistent with the prediction, supporting the dual cognitive processes hypothesis. Evidence from relevant prior studies suggests that the dual cognitive processes hypothesis may also apply to non-memory domain tasks. Copyright © 2018 Elsevier B.V. All rights reserved.
In situ and in-transit analysis of cosmological simulations
Friesen, Brian; Almgren, Ann; Lukic, Zarija; ...
2016-08-24
Modern cosmological simulations have reached the trillion-element scale, rendering data storage and subsequent analysis formidable tasks. To address this circumstance, we present a new MPI-parallel approach for analysis of simulation data while the simulation runs, as an alternative to the traditional workflow consisting of periodically saving large data sets to disk for subsequent ‘offline’ analysis. We demonstrate this approach in the compressible gasdynamics/N-body code Nyx, a hybrid MPI+OpenMP code based on the BoxLib framework, used for large-scale cosmological simulations. We have enabled on-the-fly workflows in two different ways: one is a straightforward approach consisting of all MPI processes periodically haltingmore » the main simulation and analyzing each component of data that they own (‘ in situ’). The other consists of partitioning processes into disjoint MPI groups, with one performing the simulation and periodically sending data to the other ‘sidecar’ group, which post-processes it while the simulation continues (‘in-transit’). The two groups execute their tasks asynchronously, stopping only to synchronize when a new set of simulation data needs to be analyzed. For both the in situ and in-transit approaches, we experiment with two different analysis suites with distinct performance behavior: one which finds dark matter halos in the simulation using merge trees to calculate the mass contained within iso-density contours, and another which calculates probability distribution functions and power spectra of various fields in the simulation. Both are common analysis tasks for cosmology, and both result in summary statistics significantly smaller than the original data set. We study the behavior of each type of analysis in each workflow in order to determine the optimal configuration for the different data analysis algorithms.« less
Mahoney, Jeannette; Verghese, Joe
2014-01-01
Background. The relationship between executive functions (EF) and gait speed is well established. However, with the exception of dual tasking, the key components of EF that predict differences in gait performance have not been determined. Therefore, the current study was designed to determine whether processing speed, conflict resolution, and intraindividual variability in EF predicted variance in gait performance in single- and dual-task conditions. Methods. Participants were 234 nondemented older adults (mean age 76.48 years; 55% women) enrolled in a community-based cohort study. Gait speed was assessed using an instrumented walkway during single- and dual-task conditions. The flanker task was used to assess EF. Results. Results from the linear mixed effects model showed that (a) dual-task interference caused a significant dual-task cost in gait speed (estimate = 35.99; 95% CI = 33.19–38.80) and (b) of the cognitive predictors, only intraindividual variability was associated with gait speed (estimate = −.606; 95% CI = −1.11 to −.10). In unadjusted analyses, the three EF measures were related to gait speed in single- and dual-task conditions. However, in fully adjusted linear regression analysis, only intraindividual variability predicted performance differences in gait speed during dual tasking (B = −.901; 95% CI = −1.557 to −.245). Conclusion. Among the three EF measures assessed, intraindividual variability but not speed of processing or conflict resolution predicted performance differences in gait speed. PMID:24285744
Hinojosa, J A; Albert, J; López-Martín, S; Carretié, L
2014-06-01
Although divergences between explicit and implicit processing of affective content during word comprehension have been reported, the underlying nature of those differences remains in dispute. Prior studies focused on either the timing or the spatial location of the effects. The present study examined the precise dynamics of the processing of negative words when attention is directed to affective content or to non-emotional properties by capitalizing on fine temporal resolution of the event-related potentials (ERPs) and recent advances in source localization. Tasks were used that required accessing knowledge about different semantic properties of negative and neutral words. In the direct task, participants' attention was directed towards emotional information. By contrast, subjects had to decide whether the words' referent could be touched or not in the indirect task. Regardless of being processed explicitly or implicitly, negative compared to neutral words were associated with more errors and greater key pressure responses. Electrophysiologically, affective processing was reflected in larger amplitudes to negative words in a late positive component (LPC) at the scalp level, and in increased activity in the pre-supplementary motor area (pre-SMA) at the voxel level. Interestingly, an interaction between emotion and type of task was observed. Negative words were associated with more errors, larger anterior distributed LPC amplitudes and increased activity in the posterior cingulate cortex (PCC) in the direct compared to the indirect task. This LPC effect was modulated by the concreteness of the words. Finally, a task effect was found in a posterior negativity around 220ms, with enhanced amplitudes to words in the direct compared to the indirect task. The present results suggest that negative information contained in written language is processed irrespective of controlled attention is directed to it or not, but that this processing is reinforced in the former case. Copyright © 2014 Elsevier Inc. All rights reserved.
Wigton, Rebekah; Radua, Jocham; Allen, Paul; Averbeck, Bruno; Meyer-Lindenberg, Andreas; McGuire, Philip; Shergill, Sukhi S.; Fusar-Poli, Paolo
2015-01-01
Background Oxytocin (OXT) plays a prominent role in social cognition and may have clinical applications for disorders such as autism, schizophrenia and social anxiety. The neural basis of its mechanism of action remains unclear. Methods We conducted a systematic literature review of placebo-controlled imaging studies using OXT as a pharmacological manipulator of brain activity. Results We identified a total of 21 studies for inclusion in our review, and after applying additional selection criteria, 11 of them were included in our fMRI voxel-based meta-analysis. The results demonstrate consistent alterations in activation of brain regions, including the temporal lobes and insula, during the processing of social stimuli, with some variation dependent on sex and task. The meta-analysis revealed significant left insular hyperactivation after OXT administration, suggesting a potential modulation of neural circuits underlying emotional processing. Limitations This quantitative review included only a limited number of studies, thus the conclusions of our analysis should be interpreted cautiously. This limited sample size precluded a more detailed exploration of potential confounding factors, such as sex or other demographic factors, that may have affected our meta-analysis. Conclusion Oxytocin has a wide range of effects over neural activity in response to social and emotional processing, which is further modulated by sex and task specificity. The magnitude of this neural activation is largest in the temporal lobes, and a meta-analysis across all tasks and both sexes showed that the left insula demonstrated the most robust activation to OXT administration. PMID:25520163
Slide Set: Reproducible image analysis and batch processing with ImageJ.
Nanes, Benjamin A
2015-11-01
Most imaging studies in the biological sciences rely on analyses that are relatively simple. However, manual repetition of analysis tasks across multiple regions in many images can complicate even the simplest analysis, making record keeping difficult, increasing the potential for error, and limiting reproducibility. While fully automated solutions are necessary for very large data sets, they are sometimes impractical for the small- and medium-sized data sets common in biology. Here we present the Slide Set plugin for ImageJ, which provides a framework for reproducible image analysis and batch processing. Slide Set organizes data into tables, associating image files with regions of interest and other relevant information. Analysis commands are automatically repeated over each image in the data set, and multiple commands can be chained together for more complex analysis tasks. All analysis parameters are saved, ensuring transparency and reproducibility. Slide Set includes a variety of built-in analysis commands and can be easily extended to automate other ImageJ plugins, reducing the manual repetition of image analysis without the set-up effort or programming expertise required for a fully automated solution.
fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization
NASA Astrophysics Data System (ADS)
Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda
2010-03-01
Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.
Enhancements to the Design Manager's Aide for Intelligent Decomposition (DeMAID)
NASA Technical Reports Server (NTRS)
Rogers, James L.; Barthelemy, Jean-Francois M.
1992-01-01
This paper discusses the addition of two new enhancements to the program Design Manager's Aide for Intelligent Decomposition (DeMAID). DeMAID is a knowledge-based tool used to aid a design manager in understanding the interactions among the tasks of a complex design problem. This is done by ordering the tasks to minimize feedback, determining the participating subsystems, and displaying them in an easily understood format. The two new enhancements include (1) rules for ordering a complex assembly process and (2) rules for determining which analysis tasks must be re-executed to compute the output of one task based on a change in input to that or another task.
Enhancements to the Design Manager's Aide for Intelligent Decomposition (DeMaid)
NASA Technical Reports Server (NTRS)
Rogers, James L.; Barthelemy, Jean-Francois M.
1992-01-01
This paper discusses the addition of two new enhancements to the program Design Manager's Aide for Intelligent Decomposition (DeMAID). DeMAID is a knowledge-based tool used to aid a design manager in understanding the interactions among the tasks of a complex design problem. This is done by ordering the tasks to minimize feedback, determining the participating subsystems, and displaying them in an easily understood format. The two new enhancements include (1) rules for ordering a complex assembly process and (2) rules for determining which analysis tasks must be re-executed to compute the output of one task based on a change in input to that or another task.
NASA Technical Reports Server (NTRS)
Eckel, J. S.; Crabtree, M. S.
1984-01-01
Analytical and subjective techniques that are sensitive to the information transmission and processing requirements of individual communications-related tasks are used to assess workload imposed on the aircrew by A-10 communications requirements for civilian transport category aircraft. Communications-related tasks are defined to consist of the verbal exchanges between crews and controllers. Three workload estimating techniques are proposed. The first, an information theoretic analysis, is used to calculate bit values for perceptual, manual, and verbal demands in each communication task. The second, a paired-comparisons technique, obtains subjective estimates of the information processing and memory requirements for specific messages. By combining the results of the first two techniques, a hybrid analytical scale is created. The third, a subjective rank ordering of sequences of communications tasks, provides an overall scaling of communications workload. Recommendations for future research include an examination of communications-induced workload among the air crew and the development of simulation scenarios.
Cusack, Rhodri; Vicente-Grabovetsky, Alejandro; Mitchell, Daniel J; Wild, Conor J; Auer, Tibor; Linke, Annika C; Peelle, Jonathan E
2014-01-01
Recent years have seen neuroimaging data sets becoming richer, with larger cohorts of participants, a greater variety of acquisition techniques, and increasingly complex analyses. These advances have made data analysis pipelines complicated to set up and run (increasing the risk of human error) and time consuming to execute (restricting what analyses are attempted). Here we present an open-source framework, automatic analysis (aa), to address these concerns. Human efficiency is increased by making code modular and reusable, and managing its execution with a processing engine that tracks what has been completed and what needs to be (re)done. Analysis is accelerated by optional parallel processing of independent tasks on cluster or cloud computing resources. A pipeline comprises a series of modules that each perform a specific task. The processing engine keeps track of the data, calculating a map of upstream and downstream dependencies for each module. Existing modules are available for many analysis tasks, such as SPM-based fMRI preprocessing, individual and group level statistics, voxel-based morphometry, tractography, and multi-voxel pattern analyses (MVPA). However, aa also allows for full customization, and encourages efficient management of code: new modules may be written with only a small code overhead. aa has been used by more than 50 researchers in hundreds of neuroimaging studies comprising thousands of subjects. It has been found to be robust, fast, and efficient, for simple-single subject studies up to multimodal pipelines on hundreds of subjects. It is attractive to both novice and experienced users. aa can reduce the amount of time neuroimaging laboratories spend performing analyses and reduce errors, expanding the range of scientific questions it is practical to address.
Commercial Truck/Equipment Technician. Occupational Competency Analysis Profile.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Vocational Instructional Materials Lab.
This Occupational Competency Analysis Profile (OCAP) for commercial truck and equipment technician is an employer-verified competency list that evolved from a modified DACUM (Developing a Curriculum) job analysis process involving business, industry, labor, and community agency representatives throughout Ohio. The task list of the National…
Wind Sensing, Analysis, and Modeling
NASA Technical Reports Server (NTRS)
Corvin, Michael A.
1995-01-01
The purpose of this task was to begin development of a unified approach to the sensing, analysis, and modeling of the wind environments in which launch system operate. The initial activity was to examine the current usage and requirements for wind modeling for the Titan 4 vehicle. This was to be followed by joint technical efforts with NASA Langley Research Center to develop applicable analysis methods. This work was to be performed in and demonstrate the use of prototype tools implementing an environment in which to realize a unified system. At the convenience of the customer, due to resource limitations, the task was descoped. The survey of Titan 4 processes was accomplished and is reported in this document. A summary of general requirements is provided. Current versions of prototype Process Management Environment tools are being provided to the customer.
Wind sensing, analysis, and modeling
NASA Technical Reports Server (NTRS)
Corvin, Michael A.
1995-01-01
The purpose of this task was to begin development of a unified approach to the sensing, analysis, and modeling of the wind environments in which launch systems operate. The initial activity was to examine the current usage and requirements for wind modeling for the Titan 4 vehicle. This was to be followed by joint technical efforts with NASA Langley Research Center to develop applicable analysis methods. This work was to be performed in and demonstrate the use of prototype tools implementing an environment in which to realize a unified system. At the convenience of the customer, due to resource limitations, the task was descoped. The survey of Titan 4 processes was accomplished and is reported in this document. A summary of general requirements is provided . Current versions of prototype Process Management Environment tools are being provided to the customer.
Thompson, Clarissa A; Ratcliff, Roger; McKoon, Gail
2016-10-01
How do speed and accuracy trade off, and what components of information processing develop as children and adults make simple numeric comparisons? Data from symbolic and non-symbolic number tasks were collected from 19 first graders (Mage=7.12 years), 26 second/third graders (Mage=8.20 years), 27 fourth/fifth graders (Mage=10.46 years), and 19 seventh/eighth graders (Mage=13.22 years). The non-symbolic task asked children to decide whether an array of asterisks had a larger or smaller number than 50, and the symbolic task asked whether a two-digit number was greater than or less than 50. We used a diffusion model analysis to estimate components of processing in tasks from accuracy, correct and error response times, and response time (RT) distributions. Participants who were accurate on one task were accurate on the other task, and participants who made fast decisions on one task made fast decisions on the other task. Older participants extracted a higher quality of information from the stimulus arrays, were more willing to make a decision, and were faster at encoding, transforming the stimulus representation, and executing their responses. Individual participants' accuracy and RTs were uncorrelated. Drift rate and boundary settings were significantly related across tasks, but they were unrelated to each other. Accuracy was mainly determined by drift rate, and RT was mainly determined by boundary separation. We concluded that RT and accuracy operate largely independently. Copyright © 2016 Elsevier Inc. All rights reserved.
Lewis, Richard L; Shvartsman, Michael; Singh, Satinder
2013-07-01
We explore the idea that eye-movement strategies in reading are precisely adapted to the joint constraints of task structure, task payoff, and processing architecture. We present a model of saccadic control that separates a parametric control policy space from a parametric machine architecture, the latter based on a small set of assumptions derived from research on eye movements in reading (Engbert, Nuthmann, Richter, & Kliegl, 2005; Reichle, Warren, & McConnell, 2009). The eye-control model is embedded in a decision architecture (a machine and policy space) that is capable of performing a simple linguistic task integrating information across saccades. Model predictions are derived by jointly optimizing the control of eye movements and task decisions under payoffs that quantitatively express different desired speed-accuracy trade-offs. The model yields distinct eye-movement predictions for the same task under different payoffs, including single-fixation durations, frequency effects, accuracy effects, and list position effects, and their modulation by task payoff. The predictions are compared to-and found to accord with-eye-movement data obtained from human participants performing the same task under the same payoffs, but they are found not to accord as well when the assumptions concerning payoff optimization and processing architecture are varied. These results extend work on rational analysis of oculomotor control and adaptation of reading strategy (Bicknell & Levy, ; McConkie, Rayner, & Wilson, 1973; Norris, 2009; Wotschack, 2009) by providing evidence for adaptation at low levels of saccadic control that is shaped by quantitatively varying task demands and the dynamics of processing architecture. Copyright © 2013 Cognitive Science Society, Inc.
2005-06-01
cognitive task analysis , organizational information dissemination and interaction, systems engineering, collaboration and communications processes, decision-making processes, and data collection and organization. By blending these diverse disciplines command centers can be designed to support decision-making, cognitive analysis, information technology, and the human factors engineering aspects of Command and Control (C2). This model can then be used as a baseline when dealing with work in areas of business processes, workflow engineering, information management,
Task Management in the New ATLAS Production System
NASA Astrophysics Data System (ADS)
De, K.; Golubkov, D.; Klimentov, A.; Potekhin, M.; Vaniachine, A.; Atlas Collaboration
2014-06-01
This document describes the design of the new Production System of the ATLAS experiment at the LHC [1]. The Production System is the top level workflow manager which translates physicists' needs for production level processing and analysis into actual workflows executed across over a hundred Grid sites used globally by ATLAS. As the production workload increased in volume and complexity in recent years (the ATLAS production tasks count is above one million, with each task containing hundreds or thousands of jobs) there is a need to upgrade the Production System to meet the challenging requirements of the next LHC run while minimizing the operating costs. In the new design, the main subsystems are the Database Engine for Tasks (DEFT) and the Job Execution and Definition Interface (JEDI). Based on users' requests, DEFT manages inter-dependent groups of tasks (Meta-Tasks) and generates corresponding data processing workflows. The JEDI component then dynamically translates the task definitions from DEFT into actual workload jobs executed in the PanDA Workload Management System [2]. We present the requirements, design parameters, basics of the object model and concrete solutions utilized in building the new Production System and its components.
Filtering and left ventricle segmentation of the fetal heart in ultrasound images
NASA Astrophysics Data System (ADS)
Vargas-Quintero, Lorena; Escalante-Ramírez, Boris
2013-11-01
In this paper, we propose to use filtering methods and a segmentation algorithm for the analysis of fetal heart in ultrasound images. Since noise speckle makes difficult the analysis of ultrasound images, the filtering process becomes a useful task in these types of applications. The filtering techniques consider in this work assume that the speckle noise is a random variable with a Rayleigh distribution. We use two multiresolution methods: one based on wavelet decomposition and the another based on the Hermite transform. The filtering process is used as way to strengthen the performance of the segmentation tasks. For the wavelet-based approach, a Bayesian estimator at subband level for pixel classification is employed. The Hermite method computes a mask to find those pixels that are corrupted by speckle. On the other hand, we picked out a method based on a deformable model or "snake" to evaluate the influence of the filtering techniques in the segmentation task of left ventricle in fetal echocardiographic images.
Krajcovicova, Lenka; Mikl, Michal; Marecek, Radek; Rektorova, Irena
2014-01-01
Changes in connectivity of the posterior node of the default mode network (DMN) were studied when switching from baseline to a cognitive task using functional magnetic resonance imaging. In all, 15 patients with mild to moderate Alzheimer's disease (AD) and 18 age-, gender-, and education-matched healthy controls (HC) participated in the study. Psychophysiological interactions analysis was used to assess the specific alterations in the DMN connectivity (deactivation-based) due to psychological effects from the complex visual scene encoding task. In HC, we observed task-induced connectivity decreases between the posterior cingulate and middle temporal and occipital visual cortices. These findings imply successful involvement of the ventral visual pathway during the visual processing in our HC cohort. In AD, involvement of the areas engaged in the ventral visual pathway was observed only in a small volume of the right middle temporal gyrus. Additional connectivity changes (decreases) in AD were present between the posterior cingulate and superior temporal gyrus when switching from baseline to task condition. These changes are probably related to both disturbed visual processing and the DMN connectivity in AD and reflect deficits and compensatory mechanisms within the large scale brain networks in this patient population. Studying the DMN connectivity using psychophysiological interactions analysis may provide a sensitive tool for exploring early changes in AD and their dynamics during the disease progression.
NASA Astrophysics Data System (ADS)
Xing, Xi; Rey-de-Castro, Roberto; Rabitz, Herschel
2014-12-01
Optimally shaped femtosecond laser pulses can often be effectively identified in adaptive feedback quantum control experiments, but elucidating the underlying control mechanism can be a difficult task requiring significant additional analysis. We introduce landscape Hessian analysis (LHA) as a practical experimental tool to aid in elucidating control mechanism insights. This technique is applied to the dissociative ionization of CH2BrI using shaped fs laser pulses for optimization of the absolute yields of ionic fragments as well as their ratios for the competing processes of breaking the C-Br and C-I bonds. The experimental results suggest that these nominally complex problems can be reduced to a low-dimensional control space with insights into the control mechanisms. While the optimal yield for some fragments is dominated by a non-resonant intensity-driven process, the optimal generation of other fragments maa difficult task requiring significant additionaly be explained by a non-resonant process coupled to few level resonant dynamics. Theoretical analysis and modeling is consistent with the experimental observations.
Developmental Trends for Object and Spatial Working Memory: A Psychophysiological Analysis
ERIC Educational Resources Information Center
Van Leijenhorst, Linda; Crone, Eveline A.; Van der Molen, Maurits W.
2007-01-01
This study examined developmental trends in object and spatial working memory (WM) using heart rate (HR) to provide an index of covert cognitive processes. Participants in 4 age groups (6-7, 9-10, 11-12, 18-26, n=20 each) performed object and spatial WM tasks, in which each trial was followed by feedback. Spatial WM task performance reached adult…
ERIC Educational Resources Information Center
Foley, John P., Jr.
An overview of the Air Force's Research and Development Program for the Improvement of Maintenance Efficiency is provided. First described are the steps found in any detailed task analysis, a process which results in the complete specification of each task involved in an overall maintenance effort. The factors influencing maintenance effectiveness…
ERIC Educational Resources Information Center
Alexopoulou, Theodora; Michel, Marije; Murakami, Akira; Meurers, Detmar
2017-01-01
Large-scale learner corpora collected from online language learning platforms, such as the EF-Cambridge Open Language Database (EFCAMDAT), provide opportunities to analyze learner data at an unprecedented scale. However, interpreting the learner language in such corpora requires a precise understanding of tasks: How does the prompt and input of a…
ERIC Educational Resources Information Center
Yusoff, Nor'ain Mohd; Salim, Siti Salwah
2012-01-01
E-learning storyboards have been a useful approach in distance learning development to support interaction between instructional designers and subject-matter experts. Current works show that researchers are focusing on different approaches for use in storyboards, and there is less emphasis on the effect of design and process difficulties faced by…
ERIC Educational Resources Information Center
Smallwood, Jonathan; McSpadden, Merrill; Luus, Bryan; Schooler, Joanthan
2008-01-01
Using principal component analysis, we examined whether structural properties in the time series of response time would identify different mental states during a continuous performance task. We examined whether it was possible to identify regular patterns which were present in blocks classified as lacking controlled processing, either…
A collaborative approach to lean laboratory workstation design reduces wasted technologist travel.
Yerian, Lisa M; Seestadt, Joseph A; Gomez, Erron R; Marchant, Kandice K
2012-08-01
Lean methodologies have been applied in many industries to reduce waste. We applied Lean techniques to redesign laboratory workstations with the aim of reducing the number of times employees must leave their workstations to complete their tasks. At baseline in 68 workflows (aggregates or sequence of process steps) studied, 251 (38%) of 664 tasks required workers to walk away from their workstations. After analysis and redesign, only 59 (9%) of the 664 tasks required technologists to leave their workstations to complete these tasks. On average, 3.4 travel events were removed for each workstation. Time studies in a single laboratory section demonstrated that workers spend 8 to 70 seconds in travel each time they step away from the workstation. The redesigned workstations will allow employees to spend less time travelling around the laboratory. Additional benefits include employee training in waste identification, improved overall laboratory layout, and identification of other process improvement opportunities in our laboratory.
Ho, Cheng-Maw; Wakabayashi, Go; Yeh, Chi-Chuan; Hu, Rey-Heng; Sakaguchi, Takanori; Hasegawa, Yasushi; Takahara, Takeshi; Nitta, Hiroyuki; Sasaki, Akira; Lee, Po-Huang
2018-01-01
Liver resection is a complex procedure for trainee surgeons. Cognitive task analysis (CTA) facilitates understanding and decomposing tasks that require a great proportion of mental activity from experts. Using CTA and video-based coaching to compare liver resection by open and laparoscopic approaches, we decomposed the task of liver resection into exposure (visual field building), adequate tension made at the working plane (which may change three-dimensionally during the resection process), and target processing (intervention strategy) that can bridge the gap from the basic surgical principle. The key steps of highly-specialized techniques, including hanging maneuvers and looping of extra-hepatic hepatic veins, were shown on video by open and laparoscopic approaches. Familiarization with laparoscopic anatomical orientation may help surgeons already skilled at open liver resection transit to perform laparoscopic liver resection smoothly. Facilities at hand (such as patient tolerability, advanced instruments, and trained teams of personnel) can influence surgical decision making. Application of the rationale and realizing the interplay between the surgical principles and the other paramedical factors may help surgeons in training to understand the mental abstractions of experienced surgeons, to choose the most appropriate surgical strategy effectively at will, and to minimize the gap.
Han, S; Humphreys, G W; Chen, L
1999-10-01
The role of perceptual grouping and the encoding of closure of local elements in the processing of hierarchical patterns was studied. Experiments 1 and 2 showed a global advantage over the local level for 2 tasks involving the discrimination of orientation and closure, but there was a local advantage for the closure discrimination task relative to the orientation discrimination task. Experiment 3 showed a local precedence effect for the closure discrimination task when local element grouping was weakened by embedding the stimuli from Experiment 1 in a background made up of cross patterns. Experiments 4A and 4B found that dissimilarity of closure between the local elements of hierarchical stimuli and the background figures could facilitate the grouping of closed local elements and enhanced the perception of global structure. Experiment 5 showed that the advantage for detecting the closure of local elements in hierarchical analysis also held under divided- and selective-attention conditions. Results are consistent with the idea that grouping between local elements takes place in parallel and competes with the computation of closure of local elements in determining the selection between global and local levels of hierarchical patterns for response.
Effects of and preference for pay for performance: an analogue analysis.
Long, Robert D; Wilder, David A; Betz, Alison; Dutta, Ami
2012-01-01
We examined the effects of 2 payment systems on the rate of check processing and time spent on task by participants in a simulated work setting. Three participants experienced individual pay-for-performance (PFP) without base pay and pay-for-time (PFT) conditions. In the last phase, we asked participants to choose which system they preferred. For all participants, the PFP condition produced higher rates of check processing and more time spent on task than did the PFT condition, but choice of payment system varied both within and across participants.
NASA Technical Reports Server (NTRS)
Cross, James H., II
1991-01-01
The main objective is the investigation, formulation, and generation of graphical representations of algorithms, structures, and processes for Ada (GRASP/Ada). The presented task, in which various graphical representations that can be extracted or generated from source code are described and categorized, is focused on reverse engineering. The following subject areas are covered: the system model; control structure diagram generator; object oriented design diagram generator; user interface; and the GRASP library.
Toward an Efficient Icing CFD Process Using an Interactive Software Toolkit: Smagglce 2D
NASA Technical Reports Server (NTRS)
Vickerman, Mary B.; Choo, Yung K.; Schilling, Herbert W.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.
2001-01-01
Two-dimensional CID analysis for iced airfoils can be a labor-intensive task. The software toolkit SmaggIce 2D is being developed to help streamline the CID process and provide the unique features needed for icing. When complete, it will include a combination of partially automated and fully interactive tools for all aspects of the tasks leading up to the flow analysis: geometry preparation, domain decomposition. block boundary demoralization. gridding, and linking with a flow solver. It also includes tools to perform ice shape characterization, an important aid in determining the relationship between ice characteristics and their effects on aerodynamic performance. Completed tools, work-in-progress, and planned features of the software toolkit are presented here.
Zhao, Jing; Kwok, Rosa K. W.; Liu, Menglian; Liu, Hanlong; Huang, Chen
2017-01-01
Reading fluency is a critical skill to improve the quality of our daily life and working efficiency. The majority of previous studies focused on oral reading fluency rather than silent reading fluency, which is a much more dominant reading mode that is used in middle and high school and for leisure reading. It is still unclear whether the oral and silent reading fluency involved the same underlying skills. To address this issue, the present study examined the relationship between the visual rapid processing and Chinese reading fluency in different modes. Fifty-eight undergraduate students took part in the experiment. The phantom contour paradigm and the visual 1-back task were adopted to measure the visual rapid temporal and simultaneous processing respectively. These two tasks reflected the temporal and spatial dimensions of visual rapid processing separately. We recorded the temporal threshold in the phantom contour task, as well as reaction time and accuracy in the visual 1-back task. Reading fluency was measured in both single-character and sentence levels. Fluent reading of single characters was assessed with a paper-and-pencil lexical decision task, and a sentence verification task was developed to examine reading fluency on a sentence level. The reading fluency test in each level was conducted twice (i.e., oral reading and silent reading). Reading speed and accuracy were recorded. The correlation analysis showed that the temporal threshold in the phantom contour task did not correlate with the scores of the reading fluency tests. Although, the reaction time in visual 1-back task correlated with the reading speed of both oral and silent reading fluency, the comparison of the correlation coefficients revealed a closer relationship between the visual rapid simultaneous processing and silent reading. Furthermore, the visual rapid simultaneous processing exhibited a significant contribution to reading fluency in silent mode but not in oral reading mode. These findings suggest that the underlying mechanism between oral and silent reading fluency is different at the beginning of the basic visual coding. The current results also might reveal a potential modulation of the language characteristics of Chinese on the relationship between visual rapid processing and reading fluency. PMID:28119663
Zhao, Jing; Kwok, Rosa K W; Liu, Menglian; Liu, Hanlong; Huang, Chen
2016-01-01
Reading fluency is a critical skill to improve the quality of our daily life and working efficiency. The majority of previous studies focused on oral reading fluency rather than silent reading fluency, which is a much more dominant reading mode that is used in middle and high school and for leisure reading. It is still unclear whether the oral and silent reading fluency involved the same underlying skills. To address this issue, the present study examined the relationship between the visual rapid processing and Chinese reading fluency in different modes. Fifty-eight undergraduate students took part in the experiment. The phantom contour paradigm and the visual 1-back task were adopted to measure the visual rapid temporal and simultaneous processing respectively. These two tasks reflected the temporal and spatial dimensions of visual rapid processing separately. We recorded the temporal threshold in the phantom contour task, as well as reaction time and accuracy in the visual 1-back task. Reading fluency was measured in both single-character and sentence levels. Fluent reading of single characters was assessed with a paper-and-pencil lexical decision task, and a sentence verification task was developed to examine reading fluency on a sentence level. The reading fluency test in each level was conducted twice (i.e., oral reading and silent reading). Reading speed and accuracy were recorded. The correlation analysis showed that the temporal threshold in the phantom contour task did not correlate with the scores of the reading fluency tests. Although, the reaction time in visual 1-back task correlated with the reading speed of both oral and silent reading fluency, the comparison of the correlation coefficients revealed a closer relationship between the visual rapid simultaneous processing and silent reading. Furthermore, the visual rapid simultaneous processing exhibited a significant contribution to reading fluency in silent mode but not in oral reading mode. These findings suggest that the underlying mechanism between oral and silent reading fluency is different at the beginning of the basic visual coding. The current results also might reveal a potential modulation of the language characteristics of Chinese on the relationship between visual rapid processing and reading fluency.
Berryman, Carolyn; Wise, Vikki; Stanton, Tasha R; McFarlane, Alexander; Moseley, G Lorimer
2017-02-01
Somatic hypervigilance describes a clinical presentation in which people report more, and more intense, bodily sensations than is usual. Most explanations of somatic hypervigilance implicate altered information processing, but strong empirical data are lacking. Attention and working memory are critical for information processing, and we aimed to evaluate brain activity during attention/working memory tasks in people with and without somatic hypervigilance. Data from 173 people with somatic hypervigilance and 173 controls matched for age, gender, handedness, and years of education were analyzed. Event-related potential (ERP) data, extracted from the continuous electroencephalograph recordings obtained during performance of the Auditory Oddball task, and the Two In A Row (TIAR) task, for N1, P2, N2, and P3, were used in the analysis. Between-group differences for P3 amplitude and N2 amplitude and latency were assessed with two-tailed independent t tests. Between-group differences for N1 and P2 amplitude and latency were assessed using mixed, repeated measures analyses of variance (ANOVAs) with group and Group × Site factors. Linear regression analysis investigated the relationship between anxiety and depression and any outcomes of significance. People with somatic hypervigilance showed smaller P3 amplitudes-Auditory Oddball task: t(285) = 2.32, 95% confidence interval, CI [3.48, 4.47], p = .026, d = 0.27; Two-In-A-Row (TIAR) task: t(334) = 2.23, 95% CI [2.20; 3.95], p = .021, d = 0.24-than case-matched controls. N2 amplitude was also smaller in people with somatic hypervigilance-TIAR task: t(318) = 2.58, 95% CI [0.33, 2.47], p = .010, d = 0.29-than in case-matched controls. Neither depression nor anxiety was significantly associated with any outcome. People with somatic hypervigilance demonstrated an event-related potential response to attention/working memory tasks that is consistent with altered information processing.
Early differential processing of material images: Evidence from ERP classification.
Wiebel, Christiane B; Valsecchi, Matteo; Gegenfurtner, Karl R
2014-06-24
Investigating the temporal dynamics of natural image processing using event-related potentials (ERPs) has a long tradition in object recognition research. In a classical Go-NoGo task two characteristic effects have been emphasized: an early task independent category effect and a later task-dependent target effect. Here, we set out to use this well-established Go-NoGo paradigm to study the time course of material categorization. Material perception has gained more and more interest over the years as its importance in natural viewing conditions has been ignored for a long time. In addition to analyzing standard ERPs, we conducted a single trial ERP pattern analysis. To validate this procedure, we also measured ERPs in two object categories (people and animals). Our linear classification procedure was able to largely capture the overall pattern of results from the canonical analysis of the ERPs and even extend it. We replicate the known target effect (differential Go-NoGo potential at frontal sites) for the material images. Furthermore, we observe task-independent differential activity between the two material categories as early as 140 ms after stimulus onset. Using our linear classification approach, we show that material categories can be differentiated consistently based on the ERP pattern in single trials around 100 ms after stimulus onset, independent of the target-related status. This strengthens the idea of early differential visual processing of material categories independent of the task, probably due to differences in low-level image properties and suggests pattern classification of ERP topographies as a strong instrument for investigating electrophysiological brain activity. © 2014 ARVO.
Egidi, Giovanna; Caramazza, Alfonso
2016-10-01
This research studies the neural systems underlying two integration processes that take place during natural discourse comprehension: consistency evaluation and passive comprehension. Evaluation was operationalized with a consistency judgment task and passive comprehension with a passive listening task. Using fMRI, the experiment examined the integration of incoming sentences with more recent, local context and with more distal, global context in these two tasks. The stimuli were stories in which we manipulated the consistency of the endings with the local context and the relevance of the global context for the integration of the endings. A whole-brain analysis revealed several differences between the two tasks. Two networks previously associated with semantic processing and attention orienting showed more activation during the judgment than the passive listening task. A network previously associated with episodic memory retrieval and construction of mental scenes showed greater activity when global context was relevant, but only during the judgment task. This suggests that evaluation, more than passive listening, triggers the reinstantiation of global context and the construction of a rich mental model for the story. Finally, a network previously linked to fluent updating of a knowledge base showed greater activity for locally consistent endings than inconsistent ones, but only during passive listening, suggesting a mode of comprehension that relies on a local scope approach to language processing. Taken together, these results show that consistency evaluation and passive comprehension weigh differently on distal and local information and are implemented, in part, by different brain networks.
A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing.
Wu, Chiao-Yi; Ho, Moon-Ho Ringo; Chen, Shen-Hsing Annabel
2012-10-15
A growing body of neuroimaging evidence has shown that Chinese character processing recruits differential activation from alphabetic languages due to its unique linguistic features. As more investigations on Chinese character processing have recently become available, we applied a meta-analytic approach to summarize previous findings and examined the neural networks for orthographic, phonological, and semantic processing of Chinese characters independently. The activation likelihood estimation (ALE) method was used to analyze eight studies in the orthographic task category, eleven in the phonological and fifteen in the semantic task categories. Converging activation among three language-processing components was found in the left middle frontal gyrus, the left superior parietal lobule and the left mid-fusiform gyrus, suggesting a common sub-network underlying the character recognition process regardless of the task nature. With increasing task demands, the left inferior parietal lobule and the right superior temporal gyrus were specialized for phonological processing, while the left middle temporal gyrus was involved in semantic processing. Functional dissociation was identified in the left inferior frontal gyrus, with the posterior dorsal part for phonological processing and the anterior ventral part for semantic processing. Moreover, bilateral involvement of the ventral occipito-temporal regions was found for both phonological and semantic processing. The results provide better understanding of the neural networks underlying Chinese orthographic, phonological, and semantic processing, and consolidate the findings of additional recruitment of the left middle frontal gyrus and the right fusiform gyrus for Chinese character processing as compared with the universal language network that has been based on alphabetic languages. Copyright © 2012 Elsevier Inc. All rights reserved.
Qiao, Lei; Zhang, Lijie
2017-01-01
Cognitive flexibility forms the core of the extraordinary ability of humans to adapt, but the precise neural mechanisms underlying our ability to nimbly shift between task sets remain poorly understood. Recent functional magnetic resonance imaging (fMRI) studies employing multivoxel pattern analysis (MVPA) have shown that a currently relevant task set can be decoded from activity patterns in the frontoparietal cortex, but whether these regions support the dynamic transformation of task sets from trial to trial is not clear. Here, we combined a cued task-switching protocol with human (both sexes) fMRI, and harnessed representational similarity analysis (RSA) to facilitate a novel assessment of trial-by-trial changes in neural task-set representations. We first used MVPA to define task-sensitive frontoparietal and visual regions and found that neural task-set representations on switch trials are less stably encoded than on repeat trials. We then exploited RSA to show that the neural representational pattern dissimilarity across consecutive trials is greater for switch trials than for repeat trials, and that the degree of this pattern dissimilarity predicts behavior. Moreover, the overall neural pattern of representational dissimilarities followed from the assumption that repeating sets, compared with switching sets, results in stronger neural task representations. Finally, when moving from cue to target phase within a trial, pattern dissimilarities tracked the transformation from previous-trial task representations to the currently relevant set. These results provide neural evidence for the longstanding assumptions of an effortful task-set reconfiguration process hampered by task-set inertia, and they demonstrate that frontoparietal and stimulus processing regions support “dynamic adaptive coding,” flexibly representing changing task sets in a trial-by-trial fashion. SIGNIFICANCE STATEMENT Humans can fluently switch between different tasks, reflecting an ability to dynamically configure “task sets,” rule representations that link stimuli to appropriate responses. Recent studies show that neural signals in frontal and parietal brain regions can tell us which of two tasks a person is currently performing. However, it is not known whether these regions are also involved in dynamically reconfiguring task-set representations when switching between tasks. Here we measured human brain activity during task switching and tracked the similarity of neural task-set representations from trial to trial. We show that frontal and parietal brain regions flexibly recode changing task sets in a trial-by-trial fashion, and that task-set similarity over consecutive trials predicts behavior. PMID:28972126
An Analysis of the Automobile Sales Occupation.
ERIC Educational Resources Information Center
Bohac, Robert D.; Vernon, Robert C.
The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the auto sales occupation. The analysis follows the salesperson through the essential everyday performance of the tasks in the occupation. The duties involve the process of obtaining the prospects and…
Medication Reconciliation: Work Domain Ontology, prototype development, and a predictive model.
Markowitz, Eliz; Bernstam, Elmer V; Herskovic, Jorge; Zhang, Jiajie; Shneiderman, Ben; Plaisant, Catherine; Johnson, Todd R
2011-01-01
Medication errors can result from administration inaccuracies at any point of care and are a major cause for concern. To develop a successful Medication Reconciliation (MR) tool, we believe it necessary to build a Work Domain Ontology (WDO) for the MR process. A WDO defines the explicit, abstract, implementation-independent description of the task by separating the task from work context, application technology, and cognitive architecture. We developed a prototype based upon the WDO and designed to adhere to standard principles of interface design. The prototype was compared to Legacy Health System's and Pre-Admission Medication List Builder MR tools via a Keystroke-Level Model analysis for three MR tasks. The analysis found the prototype requires the fewest mental operations, completes tasks in the fewest steps, and completes tasks in the least amount of time. Accordingly, we believe that developing a MR tool, based upon the WDO and user interface guidelines, improves user efficiency and reduces cognitive load.
Medication Reconciliation: Work Domain Ontology, Prototype Development, and a Predictive Model
Markowitz, Eliz; Bernstam, Elmer V.; Herskovic, Jorge; Zhang, Jiajie; Shneiderman, Ben; Plaisant, Catherine; Johnson, Todd R.
2011-01-01
Medication errors can result from administration inaccuracies at any point of care and are a major cause for concern. To develop a successful Medication Reconciliation (MR) tool, we believe it necessary to build a Work Domain Ontology (WDO) for the MR process. A WDO defines the explicit, abstract, implementation-independent description of the task by separating the task from work context, application technology, and cognitive architecture. We developed a prototype based upon the WDO and designed to adhere to standard principles of interface design. The prototype was compared to Legacy Health System’s and Pre-Admission Medication List Builder MR tools via a Keystroke-Level Model analysis for three MR tasks. The analysis found the prototype requires the fewest mental operations, completes tasks in the fewest steps, and completes tasks in the least amount of time. Accordingly, we believe that developing a MR tool, based upon the WDO and user interface guidelines, improves user efficiency and reduces cognitive load. PMID:22195146
Walker, Judith; von Bergmann, HsingChi
2015-03-01
The purpose of this study was to explore the use of cognitive task analysis to inform the teaching of psychomotor skills and cognitive strategies in clinical tasks in dental education. Methods used were observing and videotaping an expert at one dental school thinking aloud while performing a specific preclinical task (in a simulated environment), interviewing the expert to probe deeper into his thinking processes, and applying the same procedures to analyze the performance of three second-year dental students who had recently learned the analyzed task and who represented a spectrum of their cohort's ability to undertake the procedure. The investigators sought to understand how experts (clinical educators) and intermediates (trained students) overlapped and differed at points in the procedure that represented the highest cognitive load, known as "critical incidents." Findings from this study and previous research identified possible limitations of current clinical teaching as a result of expert blind spots. These findings coupled with the growing evidence of the effectiveness of peer teaching suggest the potential role of intermediates in helping novices learn preclinical dentistry tasks.
Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment
Liu, Qi; Cai, Weidong; Jin, Dandan; Shen, Jian; Fu, Zhangjie; Liu, Xiaodong; Linge, Nigel
2016-01-01
Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR) method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks’ execution time can be improved, in particular for some regular jobs. PMID:27589753
An fMRI study of sex differences in regional activation to a verbal and a spatial task.
Gur, R C; Alsop, D; Glahn, D; Petty, R; Swanson, C L; Maldjian, J A; Turetsky, B I; Detre, J A; Gee, J; Gur, R E
2000-09-01
Sex differences in cognitive performance have been documented, women performing better on some phonological tasks and men on spatial tasks. An earlier fMRI study suggested sex differences in distributed brain activation during phonological processing, with bilateral activation seen in women while men showed primarily left-lateralized activation. This blood oxygen level-dependent fMRI study examined sex differences (14 men, 13 women) in activation for a spatial task (judgment of line orientation) compared to a verbal-reasoning task (analogies) that does not typically show sex differences. Task difficulty was manipulated. Hypothesized ROI-based analysis documented the expected left-lateralized changes for the verbal task in the inferior parietal and planum temporal regions in both men and women, but only men showed right-lateralized increase for the spatial task in these regions. Image-based analysis revealed a distributed network of cortical regions activated by the tasks, which consisted of the lateral frontal, medial frontal, mid-temporal, occipitoparietal, and occipital regions. The activation was more left lateralized for the verbal and more right for the spatial tasks, but men also showed some left activation for the spatial task, which was not seen in women. Increased task difficulty produced more distributed activation for the verbal and more circumscribed activation for the spatial task. The results suggest that failure to activate the appropriate hemisphere in regions directly involved in task performance may explain certain sex differences in performance. They also extend, for a spatial task, the principle that bilateral activation in a distributed cognitive system underlies sex differences in performance. Copyright 2000 Academic Press.
Cao, Fan; Lee, Rebecca; Shu, Hua; Yang, Yanhui; Xu, Guoqing; Li, Kuncheng; Booth, James R
2010-05-01
Developmental differences in phonological and orthographic processing in Chinese were examined in 9 year olds, 11 year olds, and adults using functional magnetic resonance imaging. Rhyming and spelling judgments were made to 2-character words presented sequentially in the visual modality. The spelling task showed greater activation than the rhyming task in right superior parietal lobule and right inferior temporal gyrus, and there were developmental increases across tasks bilaterally in these regions in addition to bilateral occipital cortex, suggesting increased involvement over age on visuo-orthographic analysis. The rhyming task showed greater activation than the spelling task in left superior temporal gyrus and there were developmental decreases across tasks in this region, suggesting reduced involvement over age on phonological representations. The rhyming and spelling tasks included words with conflicting orthographic and phonological information (i.e., rhyming words spelled differently or nonrhyming words spelled similarly) or nonconflicting information. There was a developmental increase in the difference between conflicting and nonconflicting words in left inferior parietal lobule, suggesting greater engagement of systems for mapping between orthographic and phonological representations. Finally, there were developmental increases across tasks in an anterior (Broadman area [BA] 45, 46) and posterior (BA 9) left inferior frontal gyrus, suggesting greater reliance on controlled retrieval and selection of posterior lexical representations.
The neural correlates of implicit self-relevant processing in low self-esteem: an ERP study.
Yang, Juan; Guan, Lili; Dedovic, Katarina; Qi, Mingming; Zhang, Qinglin
2012-08-30
Previous neuroimaging studies have shown that implicit and explicit processing of self-relevant (schematic) material elicit activity in many of the same brain regions. Electrophysiological studies on the neural processing of explicit self-relevant cues have generally supported the view that P300 is an index of attention to self-relevant stimuli; however, there has been no study to date investigating the temporal course of implicit self-relevant processing. The current study seeks to investigate the time course involved in implicit self-processing by comparing processing of self-relevant with non-self-relevant words while subjects are making a judgment about color of the words in an implicit attention task. Sixteen low self-esteem participants were examined using event-related potentials technology (ERP). We hypothesized that this implicit attention task would involve P2 component rather than the P300 component. Indeed, P2 component has been associated with perceptual analysis and attentional allocation and may be more likely to occur in unconscious conditions such as this task. Results showed that latency of P2 component, which indexes the time required for perceptual analysis, was more prolonged in processing self-relevant words compared to processing non-self-relevant words. Our results suggested that the judgment of the color of the word interfered with automatic processing of self-relevant information and resulted in less efficient processing of self-relevant word. Together with previous ERP studies examining processing of explicit self-relevant cues, these findings suggest that the explicit and the implicit processing of self-relevant information would not elicit the same ERP components. Copyright © 2012 Elsevier B.V. All rights reserved.
Persistency and flexibility of complex brain networks underlie dual-task interference.
Alavash, Mohsen; Hilgetag, Claus C; Thiel, Christiane M; Gießing, Carsten
2015-09-01
Previous studies on multitasking suggest that performance decline during concurrent task processing arises from interfering brain modules. Here, we used graph-theoretical network analysis to define functional brain modules and relate the modular organization of complex brain networks to behavioral dual-task costs. Based on resting-state and task fMRI we explored two organizational aspects potentially associated with behavioral interference when human subjects performed a visuospatial and speech task simultaneously: the topological overlap between persistent single-task modules, and the flexibility of single-task modules in adaptation to the dual-task condition. Participants showed a significant decline in visuospatial accuracy in the dual-task compared with single visuospatial task. Global analysis of topological similarity between modules revealed that the overlap between single-task modules significantly correlated with the decline in visuospatial accuracy. Subjects with larger overlap between single-task modules showed higher behavioral interference. Furthermore, lower flexible reconfiguration of single-task modules in adaptation to the dual-task condition significantly correlated with larger decline in visuospatial accuracy. Subjects with lower modular flexibility showed higher behavioral interference. At the regional level, higher overlap between single-task modules and less modular flexibility in the somatomotor cortex positively correlated with the decline in visuospatial accuracy. Additionally, higher modular flexibility in cingulate and frontal control areas and lower flexibility in right-lateralized nodes comprising the middle occipital and superior temporal gyri supported dual-tasking. Our results suggest that persistency and flexibility of brain modules are important determinants of dual-task costs. We conclude that efficient dual-tasking benefits from a specific balance between flexibility and rigidity of functional brain modules. © 2015 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Marcum, Deanna; Boss, Richard
1983-01-01
Relates office automation to its application in libraries, discussing computer software packages for microcomputers performing tasks involved in word processing, accounting, statistical analysis, electronic filing cabinets, and electronic mail systems. (EJS)
Auditory processing efficiency deficits in children with developmental language impairments
NASA Astrophysics Data System (ADS)
Hartley, Douglas E. H.; Moore, David R.
2002-12-01
The ``temporal processing hypothesis'' suggests that individuals with specific language impairments (SLIs) and dyslexia have severe deficits in processing rapidly presented or brief sensory information, both within the auditory and visual domains. This hypothesis has been supported through evidence that language-impaired individuals have excess auditory backward masking. This paper presents an analysis of masking results from several studies in terms of a model of temporal resolution. Results from this modeling suggest that the masking results can be better explained by an ``auditory efficiency'' hypothesis. If impaired or immature listeners have a normal temporal window, but require a higher signal-to-noise level (poor processing efficiency), this hypothesis predicts the observed small deficits in the simultaneous masking task, and the much larger deficits in backward and forward masking tasks amongst those listeners. The difference in performance on these masking tasks is predictable from the compressive nonlinearity of the basilar membrane. The model also correctly predicts that backward masking (i) is more prone to training effects, (ii) has greater inter- and intrasubject variability, and (iii) increases less with masker level than do other masking tasks. These findings provide a new perspective on the mechanisms underlying communication disorders and auditory masking.
NASA Technical Reports Server (NTRS)
Kaber, David B.; McClernon, Christopher K.; Perry, Carlene M.; Segall, Noa
2004-01-01
The goal of this research was to define a measure of situation awareness (SA) in an air traffic control (ATC) task and to assess the influence of adaptive automation (AA) of various information processing functions on controller perception, comprehension and projection. The measure was also to serve as a basis for defining and developing an approach to triggering dynamic control allocations, as part of AA, based on controller SA. To achieve these objectives, an enhanced version of an ATC simulation (Multitask (copyright)) was developed for use in two human factors experiments. The simulation captured the basic functions of Terminal Radar Approach Control (TRACON) and was capable of presenting to operators four different modes of control, including information acquisition, information analysis, decision making and action implementation automation, as well as a completely manual control mode. The SA measure that was developed as part of the research was based on the Situation Awareness Global Assessment Technique (SAGAT), previous goal-directed task analyses of enroute control and TRACON, and a separate cognitive task analysis on the ATC simulation. The results of the analysis on Multitask were used as a basis for formulating SA queries as part of the SAGAT-based approach to measuring controller SA, which was used in the experiments. A total of 16 subjects were recruited for both experiments. Half the subjects were used in Experiment #1, which focused on assessing the sensitivity and reliability of the SA measurement approach in the ATC simulation. Comparisons were made of manual versus automated control. The remaining subjects were used in the second experiment, which was intended to more completely describe the SA implications of AA applied to specific controller information processing functions, and to describe how the measure could ultimately serve as a trigger of dynamic function allocations in the application of AA to ATC. Comparisons were made of the sensitivity of the SA measure to automation manipulations impacting both higher-order information processing functions, such as information analysis and decision making, versus lower-order functions, including information acquisition and action implementation. All subjects were exposed to all forms of AA of the ATC task and the manual control condition. The approach to AA used in both experiments was to match operator workload, assessed using a secondary task, to dynamic control allocations in the primary task. In total, the subjects in each experiment participated in 10 trials with each lasting between 45 minutes and 1 hour. In both experiments, ATC performance was measured in terms of aircraft cleared, conflicting, and collided. Secondary task (gauge monitoring) performance was assessed in terms of a hit-to-signal ratio. As part of the SA measure, three simulation freezes were conducted during each trial to administer queries on Level 1, 2, and 3 SA.
Aligning Event Logs to Task-Time Matrix Clinical Pathways in BPMN for Variance Analysis.
Yan, Hui; Van Gorp, Pieter; Kaymak, Uzay; Lu, Xudong; Ji, Lei; Chiau, Choo Chiap; Korsten, Hendrikus H M; Duan, Huilong
2018-03-01
Clinical pathways (CPs) are popular healthcare management tools to standardize care and ensure quality. Analyzing CP compliance levels and variances is known to be useful for training and CP redesign purposes. Flexible semantics of the business process model and notation (BPMN) language has been shown to be useful for the modeling and analysis of complex protocols. However, in practical cases one may want to exploit that CPs often have the form of task-time matrices. This paper presents a new method parsing complex BPMN models and aligning traces to the models heuristically. A case study on variance analysis is undertaken, where a CP from the practice and two large sets of patients data from an electronic medical record (EMR) database are used. The results demonstrate that automated variance analysis between BPMN task-time models and real-life EMR data are feasible, whereas that was not the case for the existing analysis techniques. We also provide meaningful insights for further improvement.
A Bayesian hierarchical diffusion model decomposition of performance in Approach–Avoidance Tasks
Krypotos, Angelos-Miltiadis; Beckers, Tom; Kindt, Merel; Wagenmakers, Eric-Jan
2015-01-01
Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated with each individual's point estimate of performance. Here, we discuss a Bayesian hierarchical diffusion model and apply it to RT data. This model allows researchers to decompose performance into meaningful psychological processes and to account optimally for individual differences and commonalities, even with relatively sparse data. We highlight the advantages of the Bayesian hierarchical diffusion model decomposition by applying it to performance on Approach–Avoidance Tasks, widely used in the emotion and psychopathology literature. Model fits for two experimental data-sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model overcomes important limitations of current analysis procedures and provides deeper insight in latent psychological processes of interest. PMID:25491372
The effects of attention on perceptual implicit memory.
Rajaram, S; Srinivas, K; Travers, S
2001-10-01
Reports on the effects of dividing attention at study on subsequent perceptual priming suggest that perceptual priming is generally unaffected by attentional manipulations as long as word identity is processed. We tested this hypothesis in three experiments by using the implicit word fragment completion and word stem completion tasks. Division of attention was instantiated with the Stroop task in order to ensure the processing of word identity even when the participant's attention was directed to a stimulus attribute other than the word itself. Under these conditions, we found that even though perceptual priming was significant, it was significantly reduced in magnitude. A stem cued recall test in Experiment 2 confirmed a more deleterious effect of divided attention on explicit memory. Taken together, our findings delineate the relative contributions of perceptual analysis and attentional processes in mediating perceptual priming on two ubiquitously used tasks of word fragment completion and word stem completion.
Global processing takes time: A meta-analysis on local-global visual processing in ASD.
Van der Hallen, Ruth; Evers, Kris; Brewaeys, Katrien; Van den Noortgate, Wim; Wagemans, Johan
2015-05-01
What does an individual with autism spectrum disorder (ASD) perceive first: the forest or the trees? In spite of 30 years of research and influential theories like the weak central coherence (WCC) theory and the enhanced perceptual functioning (EPF) account, the interplay of local and global visual processing in ASD remains only partly understood. Research findings vary in indicating a local processing bias or a global processing deficit, and often contradict each other. We have applied a formal meta-analytic approach and combined 56 articles that tested about 1,000 ASD participants and used a wide range of stimuli and tasks to investigate local and global visual processing in ASD. Overall, results show no enhanced local visual processing nor a deficit in global visual processing. Detailed analysis reveals a difference in the temporal pattern of the local-global balance, that is, slow global processing in individuals with ASD. Whereas task-dependent interaction effects are obtained, gender, age, and IQ of either participant groups seem to have no direct influence on performance. Based on the overview of the literature, suggestions are made for future research. (c) 2015 APA, all rights reserved).
The Influence of Task-Irrelevant Music on Language Processing: Syntactic and Semantic Structures
Hoch, Lisianne; Poulin-Charronnat, Benedicte; Tillmann, Barbara
2011-01-01
Recent research has suggested that music and language processing share neural resources, leading to new hypotheses about interference in the simultaneous processing of these two structures. The present study investigated the effect of a musical chord's tonal function on syntactic processing (Experiment 1) and semantic processing (Experiment 2) using a cross-modal paradigm and controlling for acoustic differences. Participants read sentences and performed a lexical decision task on the last word, which was, syntactically or semantically, expected or unexpected. The simultaneously presented (task-irrelevant) musical sequences ended on either an expected tonic or a less-expected subdominant chord. Experiment 1 revealed interactive effects between music-syntactic and linguistic-syntactic processing. Experiment 2 showed only main effects of both music-syntactic and linguistic-semantic expectations. An additional analysis over the two experiments revealed that linguistic violations interacted with musical violations, though not differently as a function of the type of linguistic violations. The present findings were discussed in light of currently available data on the processing of music as well as of syntax and semantics in language, leading to the hypothesis that resources might be shared for structural integration processes and sequencing. PMID:21713122
How can survival processing improve memory encoding?
Luo, Meng; Geng, Haiyan
2013-11-01
We investigated the psychological mechanism of survival processing advantage from the perspective of false memory in two experiments. Using a DRM paradigm in combination with analysis based on signal detection theory, we were able to separately examine participants' utilization of verbatim representation and gist representation. Specifically, in Experiment 1, participants rated semantically related words in a survival scenario for a survival condition but rated pleasantness of words in the same DRM lists for a non-survival control condition. The results showed that participants demonstrated more gist processing in the survival condition than in the pleasantness condition; however, the degree of item-specific processing in the two encoding conditions did not significantly differ. In Experiment 2, the control task was changed to a category rating task, in which participants were asked to make category ratings of words in the category lists. We found that the survival condition involved more item-specific processing than did the category condition, but we found no significant difference between the two encoding conditions at the level of gist processing. Overall, our study demonstrates that survival processing can simultaneously promote gist and item-specific representations. When the control tasks only promoted either item-specific representation or gist representation, memory advantages of survival processing occurred.
Zhang, Sheng; Li, Chiang-Shan Ray
2010-01-15
Brain imaging has provided a useful tool to examine the neural processes underlying human cognition. A critical question is whether and how task engagement influences the observed regional brain activations. Here we highlighted this issue and derived a neural measure of task engagement from the task-residual low-frequency blood oxygenation level-dependent (BOLD) activity in the precuneus. Using independent component analysis, we identified brain regions in the default circuit - including the precuneus and medial prefrontal cortex (mPFC) - showing greater activation during resting as compared to task residuals in 33 individuals. Time series correlations with the posterior cingulate cortex as the seed region showed that connectivity with the precuneus was significantly stronger during resting as compared to task residuals. We hypothesized that if the task-residual BOLD activity in the precuneus reflects engagement, it should account for a certain amount of variance in task-related regional brain activation. In an additional experiment of 59 individuals performing a stop signal task, we observed that the fractional amplitude of low-frequency fluctuation (fALFF) of the precuneus but not the mPFC accounted for approximately 10% of the variance in prefrontal activation related to attentional monitoring and response inhibition. Taken together, these results suggest that task-residual fALFF in the precuneus may be a potential indicator of task engagement. This measurement may serve as a useful covariate in identifying motivation-independent neural processes that underlie the pathogenesis of a psychiatric or neurological condition.
Syntactic processing as a marker for cognitive impairment in amyotrophic lateral sclerosis
Tsermentseli, Stella; Leigh, P. Nigel; Taylor, Lorna J.; Radunovic, Aleksandar; Catani, Marco; Goldstein, Laura H.
2016-01-01
Despite recent interest in cognitive changes in patients with amyotrophic lateral sclerosis (ALS), investigations of language function looking at the level of word, sentence and discourse processing are relatively scarce. Data were obtained from 26 patients with sporadic ALS and 26 healthy controls matched for age, education, gender, anxiety, depression and executive function performance. Standardized language tasks included confrontation naming, semantic access, and syntactic comprehension. Quantitative production analysis (QPA) was used to analyse connected speech samples of the Cookie Theft picture description task. Results showed that the ALS patients were impaired on standardized measures of grammatical comprehension and action/verb semantics. At the level of discourse, ALS patients were impaired on measures of syntactic complexity and fluency; however, the latter could be better explained by disease related factors. Discriminant analysis revealed that syntactic measures differentiated ALS patients from controls. In conclusion, patients with ALS exhibit deficits in receptive and expressive language on tasks of comprehension and connected speech production, respectively. Our findings suggest that syntactic processing deficits seem to be the predominant feature of language impairment in ALS and that these deficits can be detected by relatively simple language tests. PMID:26312952
Syntactic processing as a marker for cognitive impairment in amyotrophic lateral sclerosis.
Tsermentseli, Stella; Leigh, P Nigel; Taylor, Lorna J; Radunovic, Aleksandar; Catani, Marco; Goldstein, Laura H
2015-01-01
Despite recent interest in cognitive changes in patients with amyotrophic lateral sclerosis (ALS), investigations of language function looking at the level of word, sentence and discourse processing are relatively scarce. Data were obtained from 26 patients with sporadic ALS and 26 healthy controls matched for age, education, gender, anxiety, depression and executive function performance. Standardized language tasks included confrontation naming, semantic access, and syntactic comprehension. Quantitative production analysis (QPA) was used to analyse connected speech samples of the Cookie Theft picture description task. Results showed that the ALS patients were impaired on standardized measures of grammatical comprehension and action/verb semantics. At the level of discourse, ALS patients were impaired on measures of syntactic complexity and fluency; however, the latter could be better explained by disease related factors. Discriminant analysis revealed that syntactic measures differentiated ALS patients from controls. In conclusion, patients with ALS exhibit deficits in receptive and expressive language on tasks of comprehension and connected speech production, respectively. Our findings suggest that syntactic processing deficits seem to be the predominant feature of language impairment in ALS and that these deficits can be detected by relatively simple language tests.
Altitude deviations: Breakdowns of an error-tolerant system
NASA Technical Reports Server (NTRS)
Palmer, Everett A.; Hutchins, Edwin L.; Ritter, Richard D.; Vancleemput, Inge
1993-01-01
Pilot reports of aviation incidents to the Aviation Safety Reporting System (ASRS) provide a window on the problems occurring in today's airline cockpits. The narratives of 10 pilot reports of errors made in the automation-assisted altitude-change task are used to illustrate some of the issues of pilots interacting with automatic systems. These narratives are then used to construct a description of the cockpit as an information processing system. The analysis concentrates on the error-tolerant properties of the system and on how breakdowns can occasionally occur. An error-tolerant system can detect and correct its internal processing errors. The cockpit system consists of two or three pilots supported by autoflight, flight-management, and alerting systems. These humans and machines have distributed access to clearance information and perform redundant processing of information. Errors can be detected as deviations from either expected behavior or as deviations from expected information. Breakdowns in this system can occur when the checking and cross-checking tasks that give the system its error-tolerant properties are not performed because of distractions or other task demands. Recommendations based on the analysis for improving the error tolerance of the cockpit system are given.
FitzPatrick, Beverly; Hawboldt, John; Doyle, Daniel; Genge, Terri
2015-02-17
To determine whether national educational outcomes, course objectives, and classroom assessments for 2 therapeutics courses were aligned for curricular content and cognitive processes, and if they included higher-order thinking. Document analysis and student focus groups were used. Outcomes, objectives, and assessment tasks were matched for specific therapeutics content and cognitive processes. Anderson and Krathwohl's Taxonomy was used to define higher-order thinking. Students discussed whether assessments tested objectives and described their thinking when responding to assessments. There were 7 outcomes, 31 objectives, and 412 assessment tasks. The alignment for content and cognitive processes was not satisfactory. Twelve students participated in the focus groups. Students thought more short-answer questions than multiple choice questions matched the objectives for content and required higher-order thinking. The alignment analysis provided data that could be used to reveal and strengthen the enacted curriculum and improve student learning.
Robotics in a controlled, ecological life support system
NASA Technical Reports Server (NTRS)
Miles, Gaines E.; Krom, Kimberly J.
1993-01-01
Controlled, Ecological Life Support Systems (CELSS) that utilize plants to provide food, water and oxygen could consume considerable amounts of labor unless crop production, recovery and processing are automated. Robotic manipulators equipped with special end-effectors and programmed to perform the sensing and materials handling tasks would minimize the amount of astronaut labor required. The Human Rated Test Facility (HRTF) planned for Johnson Space Center could discover and demonstrate techniques of crop production which can be reliably integrated with machinery to minimize labor requirements. Before the physical components (shelves, lighting fixtures, etc.) can be selected, a systems analysis must be performed to determine which alternative processes should be followed and how the materials handling tasks should be automated. Given that the current procedures used to grow crops in a CELSS may not be the best methods to automate, then what are the alternatives? How may plants be grown, harvested, processed for food, and the inedible components recycled? What commercial technologies current exist? What research efforts are underway to develop new technologies which might satisfy the need for automation in a CELSS? The answers to these questions should prove enlightening and provide some of the information necessary to perform the systems analysis. The planting, culturing, gathering, threshing and separation, food processing, and recovery of inedible portions of wheat were studied. The basic biological and materials handling processes of each task are defined and discussed. Current practices at Johnson Space Center and other NASA centers are described and compared to common production practices in the plant production industry. Technologies currently being researched which might be applicable are identified and illustrated. Finally, based on this knowledge, several scenarios are proposed for automating the tasks for wheat.
Application of GIS Technology for Town Planning Tasks Solving
NASA Astrophysics Data System (ADS)
Kiyashko, G. A.
2017-11-01
For developing territories, one of the most actual town-planning tasks is to find out the suitable sites for building projects. The geographic information system (GIS) allows one to model complex spatial processes and can provide necessary effective tools to solve these tasks. We propose several GIS analysis models which can define suitable settlement allocations and select appropriate parcels for construction objects. We implement our models in the ArcGIS Desktop package and verify by application to the existing objects in Primorsky Region (Primorye Territory). These suitability models use several variations of the analysis method combinations and include various ways to resolve the suitability task using vector data and a raster data set. The suitability models created in this study can be combined, and one model can be integrated into another as its part. Our models can be updated by other suitability models for further detailed planning.
Tjiam, Irene M; Schout, Barbara M A; Hendrikx, Ad J M; Scherpbier, Albert J J M; Witjes, J Alfred; van Merriënboer, Jeroen J G
2012-01-01
Most studies of simulator-based surgical skills training have focused on the acquisition of psychomotor skills, but surgical procedures are complex tasks requiring both psychomotor and cognitive skills. As skills training is modelled on expert performance consisting partly of unconscious automatic processes that experts are not always able to explicate, simulator developers should collaborate with educational experts and physicians in developing efficient and effective training programmes. This article presents an approach to designing simulator-based skill training comprising cognitive task analysis integrated with instructional design according to the four-component/instructional design model. This theory-driven approach is illustrated by a description of how it was used in the development of simulator-based training for the nephrostomy procedure.
Reimer, Christina B; Schubert, Torsten
2017-09-15
Both response selection and visual attention are limited in capacity. According to the central bottleneck model, the response selection processes of two tasks in a dual-task situation are performed sequentially. In conjunction search, visual attention is required to select the items and to bind their features (e.g., color and form), which results in a serial search process. Search time increases as items are added to the search display (i.e., set size effect). When the search display is masked, visual attention deployment is restricted to a brief period of time and target detection decreases as a function of set size. Here, we investigated whether response selection and visual attention (i.e., feature binding) rely on a common or on distinct capacity limitations. In four dual-task experiments, participants completed an auditory Task 1 and a conjunction search Task 2 that were presented with an experimentally modulated temporal interval between them (Stimulus Onset Asynchrony, SOA). In Experiment 1, Task 1 was a two-choice discrimination task and the conjunction search display was not masked. In Experiment 2, the response selection difficulty in Task 1 was increased to a four-choice discrimination and the search task was the same as in Experiment 1. We applied the locus-of-slack method in both experiments to analyze conjunction search time, that is, we compared the set size effects across SOAs. Similar set size effects across SOAs (i.e., additive effects of SOA and set size) would indicate sequential processing of response selection and visual attention. However, a significantly smaller set size effect at short SOA compared to long SOA (i.e., underadditive interaction of SOA and set size) would indicate parallel processing of response selection and visual attention. In both experiments, we found underadditive interactions of SOA and set size. In Experiments 3 and 4, the conjunction search display in Task 2 was masked. Task 1 was the same as in Experiments 1 and 2, respectively. In both experiments, the d' analysis revealed that response selection did not affect target detection. Overall, Experiments 1-4 indicated that neither the response selection difficulty in the auditory Task 1 (i.e., two-choice vs. four-choice) nor the type of presentation of the search display in Task 2 (i.e., not masked vs. masked) impaired parallel processing of response selection and conjunction search. We concluded that in general, response selection and visual attention (i.e., feature binding) rely on distinct capacity limitations.
High performance computing environment for multidimensional image analysis
Rao, A Ravishankar; Cecchi, Guillermo A; Magnasco, Marcelo
2007-01-01
Background The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications. Results We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478× speedup. Conclusion Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets. PMID:17634099
High performance computing environment for multidimensional image analysis.
Rao, A Ravishankar; Cecchi, Guillermo A; Magnasco, Marcelo
2007-07-10
The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications. We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478x speedup. Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets.
Research on Intelligent Synthesis Environment
NASA Technical Reports Server (NTRS)
Loftin, R. Bowen; Dryer, David; Major, Debra; Fletcher, Tom
2002-01-01
The ultimate goal of this research project is to develop a methodology for the assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments. This review provides the theoretical foundation upon which subsequent empirical work will be based. Our review of the team performance literature has identified the following 12 conceptually distinct team interaction processes as characteristic of effective teams. 1) Mission Analysis; 2) Resource Distribution; 3) Leadership; 4) Timing; 5) Intra-team Feedback; 6) Motivational Functions; 7) Team Orientation; 8) Communication; 9) Coordination; 10) Mutual Performance Monitoring; 11) Back-up Behaviors; and 12) Cooperation. In addition, this review summarizes how team task characteristics (i.e., task type, task complexity, motivation, and temporal changes), team characteristics (i.e., team structure and team knowledge), and individual team member characteristics (i.e., dispositions and teamwork knowledge, skills, and abilities) affect team interaction processes, determine the relevance of these processes, and influence team performance. The costs and benefits of distributed team collaboration are also considered. The review concludes with a brief discussion of the nature of collaborative team engineering tasks.
Research on Intelligent Synthesis Environment
NASA Astrophysics Data System (ADS)
Loftin, R. Bowen; Dryer, David; Major, Debra; Fletcher, Tom
2002-10-01
The ultimate goal of this research project is to develop a methodology for the assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments. This review provides the theoretical foundation upon which subsequent empirical work will be based. Our review of the team performance literature has identified the following 12 conceptually distinct team interaction processes as characteristic of effective teams. 1) Mission Analysis; 2) Resource Distribution; 3) Leadership; 4) Timing; 5) Intra-team Feedback; 6) Motivational Functions; 7) Team Orientation; 8) Communication; 9) Coordination; 10) Mutual Performance Monitoring; 11) Back-up Behaviors; and 12) Cooperation. In addition, this review summarizes how team task characteristics (i.e., task type, task complexity, motivation, and temporal changes), team characteristics (i.e., team structure and team knowledge), and individual team member characteristics (i.e., dispositions and teamwork knowledge, skills, and abilities) affect team interaction processes, determine the relevance of these processes, and influence team performance. The costs and benefits of distributed team collaboration are also considered. The review concludes with a brief discussion of the nature of collaborative team engineering tasks.
The paradox of intragroup conflict: a meta-analysis.
de Wit, Frank R C; Greer, Lindred L; Jehn, Karen A
2012-03-01
Since the meta-analysis by De Dreu and Weingart (2003b) on the effects of intragroup conflict on group outcomes, more than 80 new empirical studies of conflict have been conducted, often investigating more complex, moderated relationships between conflict and group outcomes, as well as new types of intragroup conflict, such as process conflict. To explore the trends in this new body of literature, we conducted a meta-analysis of 116 empirical studies of intragroup conflict (n = 8,880 groups) and its relationship with group outcomes. To address the heterogeneity across the studies included in the meta-analysis, we also investigated a number of moderating variables. Stable negative relationships were found between relationship and process conflict and group outcomes. In contrast to the results of De Dreu and Weingart, we did not find a strong and negative association between task conflict and group performance. Analyses of main effects as well as moderator analyses revealed a more complex picture. Task conflict and group performance were more positively related among studies where the association between task and relationship conflict was relatively weak, in studies conducted among top management teams rather than non-top management teams, and in studies where performance was measured in terms of financial performance or decision quality rather than overall performance.
Visualizing and Writing Video Programs.
ERIC Educational Resources Information Center
Floyd, Steve
1979-01-01
Reviews 10 steps which serve as guidelines to simplify the creative process of producing a video training program: (1) audience analysis, (2) task analysis, (3) definition of objective, (4) conceptualization, (5) visualization, (6) storyboard, (7) video storyboard, (8) evaluation, (9) revision, and (10) production. (LRA)
A Sensitivity Analysis Method to Study the Behavior of Complex Process-based Models
NASA Astrophysics Data System (ADS)
Brugnach, M.; Neilson, R.; Bolte, J.
2001-12-01
The use of process-based models as a tool for scientific inquiry is becoming increasingly relevant in ecosystem studies. Process-based models are artificial constructs that simulate the system by mechanistically mimicking the functioning of its component processes. Structurally, a process-based model can be characterized, in terms of its processes and the relationships established among them. Each process comprises a set of functional relationships among several model components (e.g., state variables, parameters and input data). While not encoded explicitly, the dynamics of the model emerge from this set of components and interactions organized in terms of processes. It is the task of the modeler to guarantee that the dynamics generated are appropriate and semantically equivalent to the phenomena being modeled. Despite the availability of techniques to characterize and understand model behavior, they do not suffice to completely and easily understand how a complex process-based model operates. For example, sensitivity analysis studies model behavior by determining the rate of change in model output as parameters or input data are varied. One of the problems with this approach is that it considers the model as a "black box", and it focuses on explaining model behavior by analyzing the relationship input-output. Since, these models have a high degree of non-linearity, understanding how the input affects an output can be an extremely difficult task. Operationally, the application of this technique may constitute a challenging task because complex process-based models are generally characterized by a large parameter space. In order to overcome some of these difficulties, we propose a method of sensitivity analysis to be applicable to complex process-based models. This method focuses sensitivity analysis at the process level, and it aims to determine how sensitive the model output is to variations in the processes. Once the processes that exert the major influence in the output are identified, the causes of its variability can be found. Some of the advantages of this approach are that it reduces the dimensionality of the search space, it facilitates the interpretation of the results and it provides information that allows exploration of uncertainty at the process level, and how it might affect model output. We present an example using the vegetation model BIOME-BGC.
Paucke, Madlen; Oppermann, Frank; Koch, Iring; Jescheniak, Jörg D
2015-12-01
Previous dual-task picture-naming studies suggest that lexical processes require capacity-limited processes and prevent other tasks to be carried out in parallel. However, studies involving the processing of multiple pictures suggest that parallel lexical processing is possible. The present study investigated the specific costs that may arise when such parallel processing occurs. We used a novel dual-task paradigm by presenting 2 visual objects associated with different tasks and manipulating between-task similarity. With high similarity, a picture-naming task (T1) was combined with a phoneme-decision task (T2), so that lexical processes were shared across tasks. With low similarity, picture-naming was combined with a size-decision T2 (nonshared lexical processes). In Experiment 1, we found that a manipulation of lexical processes (lexical frequency of T1 object name) showed an additive propagation with low between-task similarity and an overadditive propagation with high between-task similarity. Experiment 2 replicated this differential forward propagation of the lexical effect and showed that it disappeared with longer stimulus onset asynchronies. Moreover, both experiments showed backward crosstalk, indexed as worse T1 performance with high between-task similarity compared with low similarity. Together, these findings suggest that conditions of high between-task similarity can lead to parallel lexical processing in both tasks, which, however, does not result in benefits but rather in extra performance costs. These costs can be attributed to crosstalk based on the dual-task binding problem arising from parallel processing. Hence, the present study reveals that capacity-limited lexical processing can run in parallel across dual tasks but only at the expense of extraordinary high costs. (c) 2015 APA, all rights reserved).
Exploring Learning-Oriented Assessment Processes
ERIC Educational Resources Information Center
Carless, David
2015-01-01
This paper proposes a model of learning-oriented assessment to inform assessment theory and practice. The model focuses on three interrelated processes: the assessment tasks which students undertake; students' development of self-evaluative capacities; and student engagement with feedback. These three strands are explored through the analysis of…
The effects of task difficulty on visual search strategy in virtual 3D displays
Pomplun, Marc; Garaas, Tyler W.; Carrasco, Marisa
2013-01-01
Analyzing the factors that determine our choice of visual search strategy may shed light on visual behavior in everyday situations. Previous results suggest that increasing task difficulty leads to more systematic search paths. Here we analyze observers' eye movements in an “easy” conjunction search task and a “difficult” shape search task to study visual search strategies in stereoscopic search displays with virtual depth induced by binocular disparity. Standard eye-movement variables, such as fixation duration and initial saccade latency, as well as new measures proposed here, such as saccadic step size, relative saccadic selectivity, and x−y target distance, revealed systematic effects on search dynamics in the horizontal-vertical plane throughout the search process. We found that in the “easy” task, observers start with the processing of display items in the display center immediately after stimulus onset and subsequently move their gaze outwards, guided by extrafoveally perceived stimulus color. In contrast, the “difficult” task induced an initial gaze shift to the upper-left display corner, followed by a systematic left-right and top-down search process. The only consistent depth effect was a trend of initial saccades in the easy task with smallest displays to the items closest to the observer. The results demonstrate the utility of eye-movement analysis for understanding search strategies and provide a first step toward studying search strategies in actual 3D scenarios. PMID:23986539
Oscillatory brain dynamics associated with the automatic processing of emotion in words.
Wang, Lin; Bastiaansen, Marcel
2014-10-01
This study examines the automaticity of processing the emotional aspects of words, and characterizes the oscillatory brain dynamics that accompany this automatic processing. Participants read emotionally negative, neutral and positive nouns while performing a color detection task in which only perceptual-level analysis was required. Event-related potentials and time frequency representations were computed from the concurrently measured EEG. Negative words elicited a larger P2 and a larger late positivity than positive and neutral words, indicating deeper semantic/evaluative processing of negative words. In addition, sustained alpha power suppressions were found for the emotional compared to neutral words, in the time range from 500 to 1000ms post-stimulus. These results suggest that sustained attention was allocated to the emotional words, whereas the attention allocated to the neutral words was released after an initial analysis. This seems to hold even when the emotional content of the words is task-irrelevant. Copyright © 2014 Elsevier Inc. All rights reserved.
Holtzer, Roee; Mahoney, Jeannette; Verghese, Joe
2014-08-01
The relationship between executive functions (EF) and gait speed is well established. However, with the exception of dual tasking, the key components of EF that predict differences in gait performance have not been determined. Therefore, the current study was designed to determine whether processing speed, conflict resolution, and intraindividual variability in EF predicted variance in gait performance in single- and dual-task conditions. Participants were 234 nondemented older adults (mean age 76.48 years; 55% women) enrolled in a community-based cohort study. Gait speed was assessed using an instrumented walkway during single- and dual-task conditions. The flanker task was used to assess EF. Results from the linear mixed effects model showed that (a) dual-task interference caused a significant dual-task cost in gait speed (estimate = 35.99; 95% CI = 33.19-38.80) and (b) of the cognitive predictors, only intraindividual variability was associated with gait speed (estimate = -.606; 95% CI = -1.11 to -.10). In unadjusted analyses, the three EF measures were related to gait speed in single- and dual-task conditions. However, in fully adjusted linear regression analysis, only intraindividual variability predicted performance differences in gait speed during dual tasking (B = -.901; 95% CI = -1.557 to -.245). Among the three EF measures assessed, intraindividual variability but not speed of processing or conflict resolution predicted performance differences in gait speed. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Shiki, N; Ohno, Y; Fujii, A; Murata, T; Matsumura, Y
2009-01-01
We propose a new business-process analysis approach, Time Process Study (TPS), which comprises process analysis and time and motion studies (TMS). TPS offsets weaknesses of TMS; the cost of field studies and the difficulties in applying them to tasks whose time span differs from those of usual tasks. In TPS, the job procedures are first displayed using a unified modeling language (UML). Next, time and manpower for each procedure are studied through interviews and TMS, and the information is appended to the UML diagram. We applied TPS in the case of a hospital-based cancer registry (HCR) of a university hospital to clarify the work procedure and the time required, and investigated TPS's availability. Meetings for the study were held once a month from July to September in 2008, and one inquirer committed a total of eight hours to the hospital survey. TPS revealed that HCR consisted of three tasks and 14 functions. The registration required 123 hours/month/person, the quality control required 6.5 hours/ 6 months/person and filing data into the population-based cancer registry required 0.5 hours/6 months/person. Of the total tasks involved in registration, 116.5 hours/month/person were undertaken by a registration worker, which shows the necessity of employing one full-time staff. With TPS, it is straightforward to share the concept among the study-team because the job procedure is first displayed using UML. Therefore, it requires a few workload to conduct TMS and interview. The obtained results were adopted for the review of staff assignment of HCR by Japanese government.
OpenMS: a flexible open-source software platform for mass spectrometry data analysis.
Röst, Hannes L; Sachsenberg, Timo; Aiche, Stephan; Bielow, Chris; Weisser, Hendrik; Aicheler, Fabian; Andreotti, Sandro; Ehrlich, Hans-Christian; Gutenbrunner, Petra; Kenar, Erhan; Liang, Xiao; Nahnsen, Sven; Nilse, Lars; Pfeuffer, Julianus; Rosenberger, George; Rurik, Marc; Schmitt, Uwe; Veit, Johannes; Walzer, Mathias; Wojnar, David; Wolski, Witold E; Schilling, Oliver; Choudhary, Jyoti S; Malmström, Lars; Aebersold, Ruedi; Reinert, Knut; Kohlbacher, Oliver
2016-08-30
High-resolution mass spectrometry (MS) has become an important tool in the life sciences, contributing to the diagnosis and understanding of human diseases, elucidating biomolecular structural information and characterizing cellular signaling networks. However, the rapid growth in the volume and complexity of MS data makes transparent, accurate and reproducible analysis difficult. We present OpenMS 2.0 (http://www.openms.de), a robust, open-source, cross-platform software specifically designed for the flexible and reproducible analysis of high-throughput MS data. The extensible OpenMS software implements common mass spectrometric data processing tasks through a well-defined application programming interface in C++ and Python and through standardized open data formats. OpenMS additionally provides a set of 185 tools and ready-made workflows for common mass spectrometric data processing tasks, which enable users to perform complex quantitative mass spectrometric analyses with ease.
Banks, Victoria A; Stanton, Neville A; Harvey, Catherine
2014-01-01
Although task analysis of pedestrian detection can provide us with useful insights into how a driver may behave in emergency situations, the cognitive elements of driver decision-making are less well understood. To assist in the design of future Advanced Driver Assistance Systems, such as Autonomous Emergency Brake systems, it is essential that the cognitive elements of the driving task are better understood. This paper uses verbal protocol analysis in an exploratory fashion to uncover the thought processes underlying behavioural outcomes represented by hard data collected using the Southampton University Driving Simulator.
Effect of relevance on amygdala activation and association with the ventral striatum.
Ousdal, Olga Therese; Reckless, Greg E; Server, Andres; Andreassen, Ole A; Jensen, Jimmy
2012-08-01
While the amygdala historically has been implicated in emotional stimuli processing, recent data suggest a general role in parceling out the relevance of stimuli, regardless of their emotional properties. Using functional magnetic resonance imaging, we tested the relevance hypothesis by investigating human amygdala responses to emotionally neutral stimuli while manipulating their relevance. The task was operationalized as highly relevant if a subsequent opportunity to respond for a reward depended on response accuracy of the task, and less relevant if the reward opportunity was independent of task performance. A region of interest analysis revealed bilateral amygdala activations in response to the high relevance condition compared to the low relevance condition. An exploratory whole-brain analysis yielded robust similar results in bilateral ventral striatum. A subsequent functional connectivity analysis demonstrated increased connectivity between amygdala and ventral striatum for the highly relevant stimuli compared to the less relevant stimuli. These findings suggest that the amygdala's processing profile goes beyond detection of emotions per se, and directly support the proposed role in relevance detection. In addition, the findings suggest a close relationship between amygdala and ventral striatal activity when processing relevant stimuli. Thus, the results may indicate that human amygdala modulates ventral striatum activity and subsequent behaviors beyond that observed for emotional cues, to encompass a broader range of relevant stimuli. Copyright © 2012 Elsevier Inc. All rights reserved.
Huq, M. Saiful; Fraass, Benedick A.; Dunscombe, Peter B.; Gibbons, John P.; Mundt, Arno J.; Mutic, Sasa; Palta, Jatinder R.; Rath, Frank; Thomadsen, Bruce R.; Williamson, Jeffrey F.; Yorke, Ellen D.
2016-01-01
The increasing complexity of modern radiation therapy planning and delivery challenges traditional prescriptive quality management (QM) methods, such as many of those included in guidelines published by organizations such as the AAPM, ASTRO, ACR, ESTRO, and IAEA. These prescriptive guidelines have traditionally focused on monitoring all aspects of the functional performance of radiotherapy (RT) equipment by comparing parameters against tolerances set at strict but achievable values. Many errors that occur in radiation oncology are not due to failures in devices and software; rather they are failures in workflow and process. A systematic understanding of the likelihood and clinical impact of possible failures throughout a course of radiotherapy is needed to direct limit QM resources efficiently to produce maximum safety and quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and has developed a framework for designing QM activities, based on estimates of the probability of identified failures and their clinical outcome through the RT planning and delivery process. The Task Group has chosen a specific radiotherapy process required for “intensity modulated radiation therapy (IMRT)” as a case study. The goal of this work is to apply modern risk-based analysis techniques to this complex RT process in order to demonstrate to the RT community that such techniques may help identify more effective and efficient ways to enhance the safety and quality of our treatment processes. The task group generated by consensus an example quality management program strategy for the IMRT process performed at the institution of one of the authors. This report describes the methodology and nomenclature developed, presents the process maps, FMEAs, fault trees, and QM programs developed, and makes suggestions on how this information could be used in the clinic. The development and implementation of risk-assessment techniques will make radiation therapy safer and more efficient. PMID:27370140
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huq, M. Saiful, E-mail: HUQS@UPMC.EDU
The increasing complexity of modern radiation therapy planning and delivery challenges traditional prescriptive quality management (QM) methods, such as many of those included in guidelines published by organizations such as the AAPM, ASTRO, ACR, ESTRO, and IAEA. These prescriptive guidelines have traditionally focused on monitoring all aspects of the functional performance of radiotherapy (RT) equipment by comparing parameters against tolerances set at strict but achievable values. Many errors that occur in radiation oncology are not due to failures in devices and software; rather they are failures in workflow and process. A systematic understanding of the likelihood and clinical impact ofmore » possible failures throughout a course of radiotherapy is needed to direct limit QM resources efficiently to produce maximum safety and quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and has developed a framework for designing QM activities, based on estimates of the probability of identified failures and their clinical outcome through the RT planning and delivery process. The Task Group has chosen a specific radiotherapy process required for “intensity modulated radiation therapy (IMRT)” as a case study. The goal of this work is to apply modern risk-based analysis techniques to this complex RT process in order to demonstrate to the RT community that such techniques may help identify more effective and efficient ways to enhance the safety and quality of our treatment processes. The task group generated by consensus an example quality management program strategy for the IMRT process performed at the institution of one of the authors. This report describes the methodology and nomenclature developed, presents the process maps, FMEAs, fault trees, and QM programs developed, and makes suggestions on how this information could be used in the clinic. The development and implementation of risk-assessment techniques will make radiation therapy safer and more efficient.« less
Huq, M Saiful; Fraass, Benedick A; Dunscombe, Peter B; Gibbons, John P; Ibbott, Geoffrey S; Mundt, Arno J; Mutic, Sasa; Palta, Jatinder R; Rath, Frank; Thomadsen, Bruce R; Williamson, Jeffrey F; Yorke, Ellen D
2016-07-01
The increasing complexity of modern radiation therapy planning and delivery challenges traditional prescriptive quality management (QM) methods, such as many of those included in guidelines published by organizations such as the AAPM, ASTRO, ACR, ESTRO, and IAEA. These prescriptive guidelines have traditionally focused on monitoring all aspects of the functional performance of radiotherapy (RT) equipment by comparing parameters against tolerances set at strict but achievable values. Many errors that occur in radiation oncology are not due to failures in devices and software; rather they are failures in workflow and process. A systematic understanding of the likelihood and clinical impact of possible failures throughout a course of radiotherapy is needed to direct limit QM resources efficiently to produce maximum safety and quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and has developed a framework for designing QM activities, based on estimates of the probability of identified failures and their clinical outcome through the RT planning and delivery process. The Task Group has chosen a specific radiotherapy process required for "intensity modulated radiation therapy (IMRT)" as a case study. The goal of this work is to apply modern risk-based analysis techniques to this complex RT process in order to demonstrate to the RT community that such techniques may help identify more effective and efficient ways to enhance the safety and quality of our treatment processes. The task group generated by consensus an example quality management program strategy for the IMRT process performed at the institution of one of the authors. This report describes the methodology and nomenclature developed, presents the process maps, FMEAs, fault trees, and QM programs developed, and makes suggestions on how this information could be used in the clinic. The development and implementation of risk-assessment techniques will make radiation therapy safer and more efficient.
Coelho, Daniel Boari; Bourlinova, Catarina; Teixeira, Luis Augusto
2016-12-01
In the present experiment, we aimed to evaluate the interactive effect of performing a cognitive task simultaneously with a manual task requiring either high or low steadiness on APRs. Young volunteers performed the task of recovering upright balance following a mechanical perturbation provoked by unanticipatedly releasing a load pulling the participant's body backwards. The postural task was performed while holding a cylinder steadily on a tray. One group performed that task under high (cylinder' round side down) and another one under low (cylinder' flat side down) manual steadiness constraint. Those tasks were evaluated in the conditions of performing concurrently a cognitive numeric subtraction task and under no cognitive task. Analysis showed that performance of the cognitive task led to increased body and tray displacement, associated with higher displacement at the hip and upper trunk, and lower magnitude of activation of the GM muscle in response to the perturbation. Conversely, high manual steadiness constraint led to reduced tray velocity in association with lower values of trunk displacement, and decreased rotation amplitude at the ankle and hip joints. We found no interactions between the effects of the cognitive and manual tasks on APRs, suggesting that they were processed in parallel in the generation of responses for balance recovery. Modulation of postural responses from the manual and cognitive tasks indicates participation of higher order neural structures in the generation of APRs, with postural responses being affected by multiple mental processes occurring in parallel. Copyright © 2016 Elsevier B.V. All rights reserved.
Kirchner, Elsa A; Kim, Su Kyoung
2018-01-01
Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent ( targets ), motor-task irrelevant infrequent ( deviants ), and motor-task irrelevant frequent ( standards ) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention.
Kirchner, Elsa A.; Kim, Su Kyoung
2018-01-01
Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent (targets), motor-task irrelevant infrequent (deviants), and motor-task irrelevant frequent (standards) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention. PMID:29636660
Demanuele, Charmaine; Bähner, Florian; Plichta, Michael M; Kirsch, Peter; Tost, Heike; Meyer-Lindenberg, Andreas; Durstewitz, Daniel
2015-01-01
Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze (RAM) task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC), but not in the primary visual cortex (V1). Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in multivariate patterns of voxel activity.
Overlapping Risky Decision-Making and Olfactory Processing Ability in HIV-Infected Individuals.
Jackson, Christopher; Rai, Narayan; McLean, Charlee K; Hipolito, Maria Mananita S; Hamilton, Flora Terrell; Kapetanovic, Suad; Nwulia, Evaristus A
2017-09-01
Given neuroimaging evidences of overlap in the circuitries for decision-making and olfactory processing, we examined the hypothesis that impairment in psychophysical tasks of olfaction would independently predict poor performances on Iowa Gambling Task (IGT), a laboratory task that closely mimics real-life decision-making, in a US cohort of HIV-infected (HIV+) individuals. IGT and psychophysical tasks of olfaction were administered to a Washington DC-based cohort of largely African American HIV+ subjects (N=100), and to a small number of demographically-matched non-HIV healthy controls (N=43) from a different study. Constructs of olfactory ability and decision-making were examined through confirmatory factor analysis (CFA). Structural equation models (SEMs) were used to evaluate the validity of the path relationship between these two constructs. The 100 HIV+ participants (56% female; 96% African Americans; median age = 48 years) had median CD4 count of 576 cells/μl and median HIV RNA viral load <48 copies per milliliter. Majority of HIV+ participants performed randomly throughout the course of IGT tasks, and failed to demonstrate a learning curve. Confirmatory factor analysis provided support for a unidimensional factor underlying poor performances on IGT. Nomological validity for correlations between olfactory ability and IGT performance was confirmed through SEM. Finally, factor scores of olfactory ability and IGT performance strongly predicted 6 months history of drug use, while olfaction additionally predicted hallucinogen use. This study suggests that combination of simple, office-based tasks of olfaction and decision-making may identify those HIV+ individuals who are more prone to risky decision-making. This finding may have significant clinical, public health value if joint impairments in olfaction and IGT task correlates with more decreased activity in brain regions relevant to decision-making.
Impaired Decision-Making in Adolescent Suicide Attempters
Bridge, Jeffrey A.; McBee-Strayer, Sandra M.; Cannon, Elizabeth A.; Sheftall, Arielle H.; Reynolds, Brady; Campo, John V.; Pajer, Kathleen A.; Barbe, Rémy P.; Brent, David A.
2012-01-01
Objective Decision-making deficits have been linked to suicidal behavior in adults. However, it remains unclear whether impaired decision-making plays a role in the etiopathogenesis of youth suicidal behavior. The purpose of this study was to examine decision-making processes in adolescent suicide attempters and never-suicidal comparison subjects. Method Using the Iowa Gambling Task, the authors examined decision-making in 40 adolescent suicide attempters, ages 13–18, and 40 never-suicidal, demographically-matched psychiatric comparison subjects. Results Overall, suicide attempters performed significantly worse on the Iowa Gambling Task than comparison subjects. This difference in overall task performance between the groups persisted in an exact conditional logistic regression analysis that controlled for affective disorder, current psychotropic medication use, impulsivity, and hostility (adjusted odds ratio=0.96, 95% confidence interval=0.90–0.99, p<.05). A two-way repeated-measures analysis of variance revealed a significant group-by-block interaction, demonstrating that attempters failed to learn during the task, picking approximately the same proportion of disadvantageous cards in the first and final blocks of the task. In contrast, comparison subjects picked proportionately fewer cards from the disadvantageous decks as the task progressed. Within the attempter group, overall task performance did not correlate with any characteristic of the index attempt or with the personality dimensions of impulsivity, hostility, and emotional lability. Conclusions Similar to findings in adults, impaired decision-making is associated with suicidal behavior in adolescents. Longitudinal studies are needed to elucidate the temporal relationship between decision-making processes and suicidal behavior and help frame potential targets for early identification and preventive interventions to reduce youth suicide and suicidal behavior. PMID:22449645
Uses of software in digital image analysis: a forensic report
NASA Astrophysics Data System (ADS)
Sharma, Mukesh; Jha, Shailendra
2010-02-01
Forensic image analysis is required an expertise to interpret the content of an image or the image itself in legal matters. Major sub-disciplines of forensic image analysis with law enforcement applications include photo-grammetry, photographic comparison, content analysis and image authentication. It has wide applications in forensic science range from documenting crime scenes to enhancing faint or indistinct patterns such as partial fingerprints. The process of forensic image analysis can involve several different tasks, regardless of the type of image analysis performed. Through this paper authors have tried to explain these tasks, which are described in to three categories: Image Compression, Image Enhancement & Restoration and Measurement Extraction. With the help of examples like signature comparison, counterfeit currency comparison and foot-wear sole impression using the software Canvas and Corel Draw.
Three-dimensional rendering of segmented object using matlab - biomed 2010.
Anderson, Jeffrey R; Barrett, Steven F
2010-01-01
The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.
Structuring Effective Student Teams.
ERIC Educational Resources Information Center
Dickson, Ellen L.
1997-01-01
Experience with student teams working on policy analysis projects indicates the need for faculty supervision of teams in the process of addressing complex issues. The problem-solving approach adopted in one policy analysis course is described, including assignments and tasks, issues and sponsors, team dynamics, conflict management, and the…
Analysis of brain activity and response to colour stimuli during learning tasks: an EEG study
NASA Astrophysics Data System (ADS)
Folgieri, Raffaella; Lucchiari, Claudio; Marini, Daniele
2013-02-01
The research project intends to demonstrate how EEG detection through BCI device can improve the analysis and the interpretation of colours-driven cognitive processes through the combined approach of cognitive science and information technology methods. To this end, firstly it was decided to design an experiment based on comparing the results of the traditional (qualitative and quantitative) cognitive analysis approach with the EEG signal analysis of the evoked potentials. In our case, the sensorial stimulus is represented by the colours, while the cognitive task consists in remembering the words appearing on the screen, with different combination of foreground (words) and background colours. In this work we analysed data collected from a sample of students involved in a learning process during which they received visual stimuli based on colour variation. The stimuli concerned both the background of the text to learn and the colour of the characters. The experiment indicated some interesting results concerning the use of primary (RGB) and complementary (CMY) colours.
NASA Astrophysics Data System (ADS)
Barreiro, F. H.; Borodin, M.; De, K.; Golubkov, D.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Padolski, S.; Wenaus, T.; ATLAS Collaboration
2017-10-01
The second generation of the ATLAS Production System called ProdSys2 is a distributed workload manager that runs daily hundreds of thousands of jobs, from dozens of different ATLAS specific workflows, across more than hundred heterogeneous sites. It achieves high utilization by combining dynamic job definition based on many criteria, such as input and output size, memory requirements and CPU consumption, with manageable scheduling policies and by supporting different kind of computational resources, such as GRID, clouds, supercomputers and volunteer-computers. The system dynamically assigns a group of jobs (task) to a group of geographically distributed computing resources. Dynamic assignment and resources utilization is one of the major features of the system, it didn’t exist in the earliest versions of the production system where Grid resources topology was predefined using national or/and geographical pattern. Production System has a sophisticated job fault-recovery mechanism, which efficiently allows to run multi-Terabyte tasks without human intervention. We have implemented “train” model and open-ended production which allow to submit tasks automatically as soon as new set of data is available and to chain physics groups data processing and analysis with central production by the experiment. We present an overview of the ATLAS Production System and its major components features and architecture: task definition, web user interface and monitoring. We describe the important design decisions and lessons learned from an operational experience during the first year of LHC Run2. We also report the performance of the designed system and how various workflows, such as data (re)processing, Monte-Carlo and physics group production, users analysis, are scheduled and executed within one production system on heterogeneous computing resources.
[Computers in biomedical research: I. Analysis of bioelectrical signals].
Vivaldi, E A; Maldonado, P
2001-08-01
A personal computer equipped with an analog-to-digital conversion card is able to input, store and display signals of biomedical interest. These signals can additionally be submitted to ad-hoc software for analysis and diagnosis. Data acquisition is based on the sampling of a signal at a given rate and amplitude resolution. The automation of signal processing conveys syntactic aspects (data transduction, conditioning and reduction); and semantic aspects (feature extraction to describe and characterize the signal and diagnostic classification). The analytical approach that is at the basis of computer programming allows for the successful resolution of apparently complex tasks. Two basic principles involved are the definition of simple fundamental functions that are then iterated and the modular subdivision of tasks. These two principles are illustrated, respectively, by presenting the algorithm that detects relevant elements for the analysis of a polysomnogram, and the task flow in systems that automate electrocardiographic reports.
Deficits in facial affect recognition among antisocial populations: a meta-analysis.
Marsh, Abigail A; Blair, R J R
2008-01-01
Individuals with disorders marked by antisocial behavior frequently show deficits in recognizing displays of facial affect. Antisociality may be associated with specific deficits in identifying fearful expressions, which would implicate dysfunction in neural structures that subserve fearful expression processing. A meta-analysis of 20 studies was conducted to assess: (a) if antisocial populations show any consistent deficits in recognizing six emotional expressions; (b) beyond any generalized impairment, whether specific fear recognition deficits are apparent; and (c) if deficits in fear recognition are a function of task difficulty. Results show a robust link between antisocial behavior and specific deficits in recognizing fearful expressions. This impairment cannot be attributed solely to task difficulty. These results suggest dysfunction among antisocial individuals in specified neural substrates, namely the amygdala, involved in processing fearful facial affect.
Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
Iturrate, I; Montesano, L; Minguez, J
2013-04-01
A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user's mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.
Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces
NASA Astrophysics Data System (ADS)
Iturrate, I.; Montesano, L.; Minguez, J.
2013-04-01
Objective. A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user’s mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials.Approach. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance.Results and significance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.
1980-03-06
performing the present NPFC tasks. Potential automation technologies may include order processing mechanization, demand printing from micrographic or...effort and documented in this volume included the following: a. Functional description of the order processing activities as they currently operate. b...covered under each analysis area. i It is obvious from the exhibit that the functional description of order processing operations was to include COG I
ERIC Educational Resources Information Center
Edmunds, Charlotte E. R.; Milton, Fraser; Wills, Andy J.
2018-01-01
Behavioral evidence for the COVIS dual-process model of category learning has been widely reported in over a hundred publications (Ashby & Valentin, 2016). It is generally accepted that the validity of such evidence depends on the accurate identification of individual participants' categorization strategies, a task that usually falls to…
ERIC Educational Resources Information Center
Choi, Dowon; Hatcher, Ryan C.; Dulong-Langley, Susan; Liu, Xiaochen; Bray, Melissa A.; Courville, Troy; O'Brien, Rebecca; DeBiase, Emily
2017-01-01
The kinds of errors that children and adolescents make on phonological processing tasks were studied with a large sample between ages 4 and 19 (N = 3,842) who were tested on the Kaufman Test of Educational Achievement-Third Edition (KTEA-3). Principal component analysis identified two phonological processing factors: Basic Phonological Awareness…
Charroud, Céline; Steffener, Jason; Le Bars, Emmanuelle; Deverdun, Jérémy; Bonafe, Alain; Abdennour, Meriem; Portet, Florence; Molino, François; Stern, Yaakov; Ritchie, Karen; Menjot de Champfleur, Nicolas; Akbaraly, Tasnime N
2015-11-01
Changes in working memory are sensitive indicators of both normal and pathological brain aging and associated disability. The present study aims to further understanding of working memory in normal aging using a large cohort of healthy elderly in order to examine three separate phases of information processing in relation to changes in task load activation. Using covariance analysis, increasing and decreasing neural activation was observed on fMRI in response to a delayed item recognition task in 337 cognitively healthy elderly persons as part of the CRESCENDO (Cognitive REServe and Clinical ENDOphenotypes) study. During three phases of the task (stimulation, retention, probe), increased activation was observed with increasing task load in bilateral regions of the prefrontal cortex, parietal lobule, cingulate gyrus, insula and in deep gray matter nuclei, suggesting an involvement of central executive and salience networks. Decreased activation associated with increasing task load was observed during the stimulation phase, in bilateral temporal cortex, parietal lobule, cingulate gyrus and prefrontal cortex. This spatial distribution of decreased activation is suggestive of the default mode network. These findings support the hypothesis of an increased activation in salience and central executive networks and a decreased activation in default mode network concomitant to increasing task load. Copyright © 2015 Elsevier Inc. All rights reserved.
Predicting explorative motor learning using decision-making and motor noise.
Chen, Xiuli; Mohr, Kieran; Galea, Joseph M
2017-04-01
A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant's level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning.
Predicting explorative motor learning using decision-making and motor noise
Galea, Joseph M.
2017-01-01
A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant’s level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning. PMID:28437451
Ordering Design Tasks Based on Coupling Strengths
NASA Technical Reports Server (NTRS)
Rogers, J. L.; Bloebaum, C. L.
1994-01-01
The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.
Neural architecture underlying classification of face perception paradigms.
Laird, Angela R; Riedel, Michael C; Sutherland, Matthew T; Eickhoff, Simon B; Ray, Kimberly L; Uecker, Angela M; Fox, P Mickle; Turner, Jessica A; Fox, Peter T
2015-10-01
We present a novel strategy for deriving a classification system of functional neuroimaging paradigms that relies on hierarchical clustering of experiments archived in the BrainMap database. The goal of our proof-of-concept application was to examine the underlying neural architecture of the face perception literature from a meta-analytic perspective, as these studies include a wide range of tasks. Task-based results exhibiting similar activation patterns were grouped as similar, while tasks activating different brain networks were classified as functionally distinct. We identified four sub-classes of face tasks: (1) Visuospatial Attention and Visuomotor Coordination to Faces, (2) Perception and Recognition of Faces, (3) Social Processing and Episodic Recall of Faces, and (4) Face Naming and Lexical Retrieval. Interpretation of these sub-classes supports an extension of a well-known model of face perception to include a core system for visual analysis and extended systems for personal information, emotion, and salience processing. Overall, these results demonstrate that a large-scale data mining approach can inform the evolution of theoretical cognitive models by probing the range of behavioral manipulations across experimental tasks. Copyright © 2015 Elsevier Inc. All rights reserved.
Ordering design tasks based on coupling strengths
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Bloebaum, Christina L.
1994-01-01
The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.
Kolata, Stefan; Light, Kenneth; Matzel, Louis D.
2008-01-01
It has been established that both domain-specific (e.g. spatial) as well as domain-general (general intelligence) factors influence human cognition. However, the separation of these processes has rarely been attempted in studies using laboratory animals. Previously, we have found that the performances of outbred mice across a wide range of learning tasks correlate in such a way that a single factor can explain 30– 44% of the variance between animals. This general learning factor is in some ways qualitatively and quantitatively analogous to general intelligence in humans. The complete structure of cognition in mice, however, has not been explored due to the limited sample sizes of our previous analyses. Here we report a combined analysis from 241 CD-1 mice tested in five primary learning tasks, and a subset of mice tested in two additional learning tasks. At least two (possibly three) of the seven learning tasks placed explicit demands on spatial and/or hippocampus-dependent processing abilities. Consistent with previous findings, we report a robust general factor influencing learning in mice that accounted for 38% of the variance across tasks. In addition, a domain-specific factor was found to account for performance on that subset of tasks that shared a dependence on hippocampal and/or spatial processing. These results provide further evidence for a general learning/cognitive factor in genetically heterogeneous mice. Furthermore (and similar to human cognitive performance), these results suggest a hierarchical structure to cognitive processes in this genetically heterogeneous species. PMID:19129932
NASA Technical Reports Server (NTRS)
Goldman, H.; Wolf, M.
1978-01-01
Several experimental and projected Czochralski crystal growing process methods were studied and compared to available operations and cost-data of recent production Cz-pulling, in order to elucidate the role of the dominant cost contributing factors. From this analysis, it becomes apparent that the specific add-on costs of the Cz-process can be expected to be reduced by about a factor of three by 1982, and about a factor of five by 1986. A format to guide in the accumulation of the data needed for thorough techno-economic analysis of solar cell production processes was developed.
Cohen, Alex S; Dinzeo, Thomas J; Donovan, Neila J; Brown, Caitlin E; Morrison, Sean C
2015-03-30
Vocal expression reflects an integral component of communication that varies considerably within individuals across contexts and is disrupted in a range of neurological and psychiatric disorders. There is reason to suspect that variability in vocal expression reflects, in part, the availability of "on-line" resources (e.g., working memory, attention). Thus, understanding vocal expression is a potentially important biometric index of information processing, not only across but within individuals over time. A first step in this line of research involves establishing a link between vocal expression and information processing systems in healthy adults. The present study employed a dual attention experimental task where participants provided natural speech while simultaneously engaged in a baseline, medium or high nonverbal processing-load task. Objective, automated, and computerized analysis was employed to measure vocal expression in 226 adults. Increased processing load resulted in longer pauses, fewer utterances, greater silence overall and less variability in frequency and intensity levels. These results provide compelling evidence of a link between information processing resources and vocal expression, and provide important information for the development of an automated, inexpensive and uninvasive biometric measure of information processing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Problems and Processes in Medical Encounters: The CASES method of dialogue analysis
Laws, M. Barton; Taubin, Tatiana; Bezreh, Tanya; Lee, Yoojin; Beach, Mary Catherine; Wilson, Ira B.
2013-01-01
Objective To develop methods to reliably capture structural and dynamic temporal features of clinical interactions. Methods Observational study of 50 audio-recorded routine outpatient visits to HIV specialty clinics, using innovative analytic methods. The Comprehensive Analysis of the Structure of Encounters System (CASES) uses transcripts coded for speech acts, then imposes larger-scale structural elements: threads – the problems or issues addressed; and processes within threads –basic tasks of clinical care labeled Presentation, Information, Resolution (decision making) and Engagement (interpersonal exchange). Threads are also coded for the nature of resolution. Results 61% of utterances are in presentation processes. Provider verbal dominance is greatest in information and resolution processes, which also contain a high proportion of provider directives. About half of threads result in no action or decision. Information flows predominantly from patient to provider in presentation processes, and from provider to patient in information processes. Engagement is rare. Conclusions In this data, resolution is provider centered; more time for patient participation in resolution, or interpersonal engagement, would have to come from presentation. Practice Implications Awareness of the use of time in clinical encounters, and the interaction processes associated with various tasks, may help make clinical communication more efficient and effective. PMID:23391684
Problems and processes in medical encounters: the cases method of dialogue analysis.
Laws, M Barton; Taubin, Tatiana; Bezreh, Tanya; Lee, Yoojin; Beach, Mary Catherine; Wilson, Ira B
2013-05-01
To develop methods to reliably capture structural and dynamic temporal features of clinical interactions. Observational study of 50 audio-recorded routine outpatient visits to HIV specialty clinics, using innovative analytic methods. The comprehensive analysis of the structure of encounters system (CASES) uses transcripts coded for speech acts, then imposes larger-scale structural elements: threads--the problems or issues addressed; and processes within threads--basic tasks of clinical care labeled presentation, information, resolution (decision making) and Engagement (interpersonal exchange). Threads are also coded for the nature of resolution. 61% of utterances are in presentation processes. Provider verbal dominance is greatest in information and resolution processes, which also contain a high proportion of provider directives. About half of threads result in no action or decision. Information flows predominantly from patient to provider in presentation processes, and from provider to patient in information processes. Engagement is rare. In this data, resolution is provider centered; more time for patient participation in resolution, or interpersonal engagement, would have to come from presentation. Awareness of the use of time in clinical encounters, and the interaction processes associated with various tasks, may help make clinical communication more efficient and effective. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Age-Related Differences in Working Memory Performance in A 2-Back Task
Wild-Wall, Nele; Falkenstein, Michael; Gajewski, Patrick D.
2011-01-01
The present study aimed to elucidate the neuro-cognitive processes underlying age-related differences in working memory. Young and middle-aged participants performed a two-choice task with low and a 2-back task with high working memory load. The P300, an event-related potential reflecting controlled stimulus–response processing in working memory, and the underlying neuronal sources of expected age-related differences were analyzed using sLORETA. Response speed was generally slower for the middle-aged than the young group. Under low working memory load the middle-aged participants traded speed for accuracy. The middle-aged were less efficient in the 2-back task as they responded slower while the error rates did not differ for groups. An age-related decline of the P300 amplitude and characteristic topographical differences were especially evident in the 2-back task. A more detailed analysis of the P300 in non-target trials revealed that amplitudes in the young but not middle-aged group differentiate between correctly detected vs. missed targets in the following trial. For these trials, source analysis revealed higher activation for the young vs. middle-aged group in brain areas which support working memory processes. The relationship between P300 and overt performance was validated by significant correlations. To sum up, under high working memory load the young group showed an increased neuronal activity before a successful detected target, while the middle-aged group showed the same neuronal pattern regardless of whether a subsequent target will be detected or missed. This stable memory trace before detected targets was reflected by a specific activation enhancement in brain areas which orchestrate maintenance, update, storage, and retrieval of information in working memory. PMID:21909328
Pilot study of cognition in children with unilateral hearing loss.
Ead, Banan; Hale, Sandra; DeAlwis, Duneesha; Lieu, Judith E C
2013-11-01
The objective of this study was to obtain preliminary data on the cognitive function of children with unilateral hearing loss in order to identify, quantify, and interpret differences in cognitive and language functions between children with unilateral hearing loss and with normal hearing. Fourteen children ages 9-14 years old (7 with severe-to-profound sensorineural unilateral hearing loss and 7 sibling controls with normal hearing) were administered five tests that assessed cognitive functions of working memory, processing speed, attention, and phonological processing. Mean composite scores for phonological processing were significantly lower for the group with unilateral hearing loss than for controls on one composite and four subtests. The unilateral hearing loss group trended toward worse performance on one additional composite and on two additional phonological processing subtests. The unilateral hearing loss group also performed worse than the control group on the complex letter span task. Analysis examining performance on the two levels of task difficulty revealed a significant main effect of task difficulty and an interaction between task difficulty and group. Cognitive function and phonological processing test results suggest two related deficits associated with unilateral hearing loss: (1) reduced accuracy and efficiency associated with phonological processing, and (2) impaired executive control function when engaged in maintaining verbal information in the face of processing incoming, irrelevant verbal information. These results provide a possible explanation for the educational difficulties experienced by children with unilateral hearing loss. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Game theoretic approach for cooperative feature extraction in camera networks
NASA Astrophysics Data System (ADS)
Redondi, Alessandro E. C.; Baroffio, Luca; Cesana, Matteo; Tagliasacchi, Marco
2016-07-01
Visual sensor networks (VSNs) consist of several camera nodes with wireless communication capabilities that can perform visual analysis tasks such as object identification, recognition, and tracking. Often, VSN deployments result in many camera nodes with overlapping fields of view. In the past, such redundancy has been exploited in two different ways: (1) to improve the accuracy/quality of the visual analysis task by exploiting multiview information or (2) to reduce the energy consumed for performing the visual task, by applying temporal scheduling techniques among the cameras. We propose a game theoretic framework based on the Nash bargaining solution to bridge the gap between the two aforementioned approaches. The key tenet of the proposed framework is for cameras to reduce the consumed energy in the analysis process by exploiting the redundancy in the reciprocal fields of view. Experimental results in both simulated and real-life scenarios confirm that the proposed scheme is able to increase the network lifetime, with a negligible loss in terms of visual analysis accuracy.
Three-dimensional structural analysis using interactive graphics
NASA Technical Reports Server (NTRS)
Biffle, J.; Sumlin, H. A.
1975-01-01
The application of computer interactive graphics to three-dimensional structural analysis was described, with emphasis on the following aspects: (1) structural analysis, and (2) generation and checking of input data and examination of the large volume of output data (stresses, displacements, velocities, accelerations). Handling of three-dimensional input processing with a special MESH3D computer program was explained. Similarly, a special code PLTZ may be used to perform all the needed tasks for output processing from a finite element code. Examples were illustrated.
Interdisciplinary Investigations in Support of Project DI-MOD
NASA Technical Reports Server (NTRS)
Starks, Scott A. (Principal Investigator)
1996-01-01
Various concepts from time series analysis are used as the basis for the development of algorithms to assist in the analysis and interpretation of remote sensed imagery. An approach to trend detection that is based upon the fractal analysis of power spectrum estimates is presented. Additionally, research was conducted toward the development of a software architecture to support processing tasks associated with databases housing a variety of data. An algorithmic approach which provides for the automation of the state monitoring process is presented.
NASA Technical Reports Server (NTRS)
Diorio, Kimberly A.; Voska, Ned (Technical Monitor)
2002-01-01
This viewgraph presentation provides information on Human Factors Process Failure Modes and Effects Analysis (HF PFMEA). HF PFMEA includes the following 10 steps: Describe mission; Define System; Identify human-machine; List human actions; Identify potential errors; Identify factors that effect error; Determine likelihood of error; Determine potential effects of errors; Evaluate risk; Generate solutions (manage error). The presentation also describes how this analysis was applied to a liquid oxygen pump acceptance test.
Functional connectivity mapping of regions associated with self- and other-processing.
Murray, Ryan J; Debbané, Martin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Simon B
2015-04-01
Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing claims of an intricate self-network, the architecture of which may promote social value processing. © 2014 Wiley Periodicals, Inc.
From perceptual to lexico-semantic analysis--cortical plasticity enabling new levels of processing.
Schlaffke, Lara; Rüther, Naima N; Heba, Stefanie; Haag, Lauren M; Schultz, Thomas; Rosengarth, Katharina; Tegenthoff, Martin; Bellebaum, Christian; Schmidt-Wilcke, Tobias
2015-11-01
Certain kinds of stimuli can be processed on multiple levels. While the neural correlates of different levels of processing (LOPs) have been investigated to some extent, most of the studies involve skills and/or knowledge already present when performing the task. In this study we specifically sought to identify neural correlates of an evolving skill that allows the transition from perceptual to a lexico-semantic stimulus analysis. Eighteen participants were trained to decode 12 letters of Morse code that were presented acoustically inside and outside of the scanner environment. Morse code was presented in trains of three letters while brain activity was assessed with fMRI. Participants either attended to the stimulus length (perceptual analysis), or evaluated its meaning distinguishing words from nonwords (lexico-semantic analysis). Perceptual and lexico-semantic analyses shared a mutual network comprising the left premotor cortex, the supplementary motor area (SMA) and the inferior parietal lobule (IPL). Perceptual analysis was associated with a strong brain activation in the SMA and the superior temporal gyrus bilaterally (STG), which remained unaltered from pre and post training. In the lexico-semantic analysis post learning, study participants showed additional activation in the left inferior frontal cortex (IFC) and in the left occipitotemporal cortex (OTC), regions known to be critically involved in lexical processing. Our data provide evidence for cortical plasticity evolving with a learning process enabling the transition from perceptual to lexico-semantic stimulus analysis. Importantly, the activation pattern remains task-related LOP and is thus the result of a decision process as to which LOP to engage in. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
Systematic review automation technologies
2014-01-01
Systematic reviews, a cornerstone of evidence-based medicine, are not produced quickly enough to support clinical practice. The cost of production, availability of the requisite expertise and timeliness are often quoted as major contributors for the delay. This detailed survey of the state of the art of information systems designed to support or automate individual tasks in the systematic review, and in particular systematic reviews of randomized controlled clinical trials, reveals trends that see the convergence of several parallel research projects. We surveyed literature describing informatics systems that support or automate the processes of systematic review or each of the tasks of the systematic review. Several projects focus on automating, simplifying and/or streamlining specific tasks of the systematic review. Some tasks are already fully automated while others are still largely manual. In this review, we describe each task and the effect that its automation would have on the entire systematic review process, summarize the existing information system support for each task, and highlight where further research is needed for realizing automation for the task. Integration of the systems that automate systematic review tasks may lead to a revised systematic review workflow. We envisage the optimized workflow will lead to system in which each systematic review is described as a computer program that automatically retrieves relevant trials, appraises them, extracts and synthesizes data, evaluates the risk of bias, performs meta-analysis calculations, and produces a report in real time. PMID:25005128
Zhao, Shijie; Han, Junwei; Hu, Xintao; Jiang, Xi; Lv, Jinglei; Zhang, Tuo; Zhang, Shu; Guo, Lei; Liu, Tianming
2018-06-01
Recently, a growing body of studies have demonstrated the simultaneous existence of diverse brain activities, e.g., task-evoked dominant response activities, delayed response activities and intrinsic brain activities, under specific task conditions. However, current dominant task-based functional magnetic resonance imaging (tfMRI) analysis approach, i.e., the general linear model (GLM), might have difficulty in discovering those diverse and concurrent brain responses sufficiently. This subtraction-based model-driven approach focuses on the brain activities evoked directly from the task paradigm, thus likely overlooks other possible concurrent brain activities evoked during the information processing. To deal with this problem, in this paper, we propose a novel hybrid framework, called extendable supervised dictionary learning (E-SDL), to explore diverse and concurrent brain activities under task conditions. A critical difference between E-SDL framework and previous methods is that we systematically extend the basic task paradigm regressor into meaningful regressor groups to account for possible regressor variation during the information processing procedure in the brain. Applications of the proposed framework on five independent and publicly available tfMRI datasets from human connectome project (HCP) simultaneously revealed more meaningful group-wise consistent task-evoked networks and common intrinsic connectivity networks (ICNs). These results demonstrate the advantage of the proposed framework in identifying the diversity of concurrent brain activities in tfMRI datasets.
Vogel, Alecia C; Petersen, Steven E; Schlaggar, Bradley L
2013-10-01
The neurobiological basis of reading is of considerable interest, yet analyzing data from subjects reading words aloud during functional MRI data collection can be difficult. Therefore, many investigators use surrogate tasks such as visual matching or rhyme matching to eliminate the need for spoken output. Use of these tasks has been justified by the presumption of "automatic activation" of reading-related neural processing when a word is viewed. We have tested the efficacy of using a nonreading task for studying "reading effects" by directly comparing blood oxygen level dependent (BOLD) activity in subjects performing a visual matching task and an item naming task on words, pseudowords (meaningless but legal letter combinations), and nonwords (meaningless and illegal letter combinations). When compared directly, there is significantly more activity during the naming task in "reading-related" regions such as the inferior frontal gyrus (IFG) and supramarginal gyrus. More importantly, there are differing effects of lexicality in the tasks. A whole-brain task (matching vs. naming) by string type (word vs. pseudoword vs. nonword) by BOLD timecourse analysis identifies regions showing this three-way interaction, including the left IFG and left angular gyrus (AG). In the majority of the identified regions (including the left IFG and left AG), there is a string type × timecourse interaction in the naming but not the matching task. These results argue that the processing performed in specific regions is contingent on task, even in reading-related regions and is thus nonautomatic. Such differences should be taken into consideration when designing studies intended to investigate reading. Copyright © 2012 Wiley Periodicals, Inc.
Working memory delay period activity marks a domain-unspecific attention mechanism.
Katus, Tobias; Müller, Matthias M
2016-03-01
Working memory (WM) recruits neural circuits that also perform perception- and action-related functions. Among the functions that are shared between the domains of WM and perception is selective attention, which supports the maintenance of task-relevant information during the retention delay of WM tasks. The tactile contralateral delay activity (tCDA) component of the event-related potential (ERP) marks the attention-based rehearsal of tactile information in somatosensory brain regions. We tested whether the tCDA reflects the competition for shared attention resources between a WM task and a perceptual task under dual-task conditions. The two tasks were always performed on opposite hands. In different blocks, the WM task had higher or lower priority than the perceptual task. The tCDA's polarity consistently reflected the hand where the currently prioritized task was performed. This suggests that the process indexed by the tCDA is not specific to the domain of WM, but mediated by a domain-unspecific attention mechanism. The analysis of transient ERP components evoked by stimuli in the two tasks further supports the interpretation that the tCDA marks a goal-directed bias in the allocation of selective attention. Larger spatially selective modulations were obtained for stimulus material related to the high-, as compared to low-priority, task. While our results generally indicate functional overlap between the domains of WM and perception, we also found evidence suggesting that selection in internal (mnemonic) and external (perceptual) stimulus representations involves processes that are not active during shifts of preparatory attention. Copyright © 2016 Elsevier Inc. All rights reserved.
De Guibert, Clément; Maumet, Camille; Jannin, Pierre; Ferré, Jean-Christophe; Tréguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud
2011-01-01
Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting structural language (n=21), to a matched group of typically-developing children using a panel of four language tasks neither requiring reading nor metalinguistic skills, including two auditory lexico-semantic tasks (category fluency and responsive naming) and two visual phonological tasks based on picture naming. Data processing involved normalizing the data with respect to a matched pairs pediatric template, groups and between-groups analysis, and laterality indexes assessment within regions of interest using single and combined task analysis. Children with specific language impairment exhibited a significant lack of left lateralization in all core language regions (inferior frontal gyrus-opercularis, inferior frontal gyrus-triangularis, supramarginal gyrus, superior temporal gyrus), across single or combined task analysis, but no difference of lateralization for the rest of the brain. Between-group comparisons revealed a left hypoactivation of Wernicke’s area at the posterior superior temporal/supramarginal junction during the responsive naming task, and a right hyperactivation encompassing the anterior insula with adjacent inferior frontal gyrus and the head of the caudate nucleus during the first phonological task. This study thus provides evidence that this specific subtype of specific language impairment is associated with atypical lateralization and functioning of core language areas. PMID:21719430
Unified Modeling Language (UML) for hospital-based cancer registration processes.
Shiki, Naomi; Ohno, Yuko; Fujii, Ayumi; Murata, Taizo; Matsumura, Yasushi
2008-01-01
Hospital-based cancer registry involves complex processing steps that span across multiple departments. In addition, management techniques and registration procedures differ depending on each medical facility. Establishing processes for hospital-based cancer registry requires clarifying specific functions and labor needed. In recent years, the business modeling technique, in which management evaluation is done by clearly spelling out processes and functions, has been applied to business process analysis. However, there are few analytical reports describing the applications of these concepts to medical-related work. In this study, we initially sought to model hospital-based cancer registration processes using the Unified Modeling Language (UML), to clarify functions. The object of this study was the cancer registry of Osaka University Hospital. We organized the hospital-based cancer registration processes based on interview and observational surveys, and produced an As-Is model using activity, use-case, and class diagrams. After drafting every UML model, it was fed-back to practitioners to check its validity and improved. We were able to define the workflow for each department using activity diagrams. In addition, by using use-case diagrams we were able to classify each department within the hospital as a system, and thereby specify the core processes and staff that were responsible for each department. The class diagrams were effective in systematically organizing the information to be used for hospital-based cancer registries. Using UML modeling, hospital-based cancer registration processes were broadly classified into three separate processes, namely, registration tasks, quality control, and filing data. An additional 14 functions were also extracted. Many tasks take place within the hospital-based cancer registry office, but the process of providing information spans across multiple departments. Moreover, additional tasks were required in comparison to using a standardized system because the hospital-based cancer registration system was constructed with the pre-existing computer system in Osaka University Hospital. Difficulty of utilization of useful information for cancer registration processes was shown to increase the task workload. By using UML, we were able to clarify functions and extract the typical processes for a hospital-based cancer registry. Modeling can provide a basis of process analysis for establishment of efficient hospital-based cancer registration processes in each institute.
Advanced automation for in-space vehicle processing
NASA Technical Reports Server (NTRS)
Sklar, Michael; Wegerif, D.
1990-01-01
The primary objective of this 3-year planned study is to assure that the fully evolved Space Station Freedom (SSF) can support automated processing of exploratory mission vehicles. Current study assessments show that required extravehicular activity (EVA) and to some extent intravehicular activity (IVA) manpower requirements for required processing tasks far exceeds the available manpower. Furthermore, many processing tasks are either hazardous operations or they exceed EVA capability. Thus, automation is essential for SSF transportation node functionality. Here, advanced automation represents the replacement of human performed tasks beyond the planned baseline automated tasks. Both physical tasks such as manipulation, assembly and actuation, and cognitive tasks such as visual inspection, monitoring and diagnosis, and task planning are considered. During this first year of activity both the Phobos/Gateway Mars Expedition and Lunar Evolution missions proposed by the Office of Exploration have been evaluated. A methodology for choosing optimal tasks to be automated has been developed. Processing tasks for both missions have been ranked on the basis of automation potential. The underlying concept in evaluating and describing processing tasks has been the use of a common set of 'Primitive' task descriptions. Primitive or standard tasks have been developed both for manual or crew processing and automated machine processing.
Auditory Scene Analysis: An Attention Perspective
ERIC Educational Resources Information Center
Sussman, Elyse S.
2017-01-01
Purpose: This review article provides a new perspective on the role of attention in auditory scene analysis. Method: A framework for understanding how attention interacts with stimulus-driven processes to facilitate task goals is presented. Previously reported data obtained through behavioral and electrophysiological measures in adults with normal…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
... Research and Development Center (FFRDC) to facilitate the modernization of business processes and... Health and Human Services (DHHS), intends to sponsor a study and analysis, delivery system, simulations... modernization of business processes and supporting systems and their operations. Some of the broad task areas...
Processing Trade-Offs in Non-Native Learners' Performance of Narrative Tasks
ERIC Educational Resources Information Center
Ben Maad, Mohamed Ridha
2011-01-01
Exploring learners' processes of memory and analysis has captivated considerable attention among language-learning researchers due to the recent prevalence of key concepts from feeder disciplines such as cognitive psychology and phraseology. However, there has been little empirical effort to describe the nature of interaction between these two…
Collaborative Planning in Process: An Ethnomethodological Perspective
ERIC Educational Resources Information Center
Lee, Josephine; Burch, Alfred Rue
2017-01-01
Following Ellis's (2005) call for more social and process-oriented planning research, this study explores how learners approach collaborative planning tasks in the classroom as a locally contingent activity in situ. Drawing on ethnomethodology and conversation analysis, the present study focuses on a group planning stage that precedes the final…
Wakabayashi, Go; Yeh, Chi-Chuan; Hu, Rey-Heng; Sakaguchi, Takanori; Hasegawa, Yasushi; Takahara, Takeshi; Nitta, Hiroyuki; Sasaki, Akira; Lee, Po-Huang
2018-01-01
Background Liver resection is a complex procedure for trainee surgeons. Cognitive task analysis (CTA) facilitates understanding and decomposing tasks that require a great proportion of mental activity from experts. Methods Using CTA and video-based coaching to compare liver resection by open and laparoscopic approaches, we decomposed the task of liver resection into exposure (visual field building), adequate tension made at the working plane (which may change three-dimensionally during the resection process), and target processing (intervention strategy) that can bridge the gap from the basic surgical principle. Results The key steps of highly-specialized techniques, including hanging maneuvers and looping of extra-hepatic hepatic veins, were shown on video by open and laparoscopic approaches. Conclusions Familiarization with laparoscopic anatomical orientation may help surgeons already skilled at open liver resection transit to perform laparoscopic liver resection smoothly. Facilities at hand (such as patient tolerability, advanced instruments, and trained teams of personnel) can influence surgical decision making. Application of the rationale and realizing the interplay between the surgical principles and the other paramedical factors may help surgeons in training to understand the mental abstractions of experienced surgeons, to choose the most appropriate surgical strategy effectively at will, and to minimize the gap. PMID:29445607
Self-narrative reconstruction in emotion-focused therapy: A preliminary task analysis.
Cunha, Carla; Mendes, Inês; Ribeiro, António P; Angus, Lynne; Greenberg, Leslie S; Gonçalves, Miguel M
2017-11-01
This research explored the consolidation phase of emotion-focused therapy (EFT) for depression and studies-through a task-analysis method-how client-therapist dyads evolved from the exploration of the problem to self-narrative reconstruction. Innovative moments (IMs) were used to situate the process of self-narrative reconstruction within sessions, particularly through reconceptualization and performing change IMs. We contrasted the observation of these occurrences with a rational model of self-narrative reconstruction, previously built. This study presents the rational model and the revised rational-empirical model of the self-narrative reconstruction task in three EFT dyads, suggesting nine steps necessary for task resolution: (1) Explicit recognition of differences in the present and steps in the path of change; (2) Development of a meta-perspective contrast between present self and past self; (3) Amplification of contrast in the self; (4) A positive appreciation of changes is conveyed; (5) Occurrence of feelings of empowerment, competence, and mastery; (6) Reference to difficulties still present; (7) Emphasis on the loss of centrality of the problem; (8) Perception of change as a gradual, developing process; and (9) Reference to projects, experiences of change, or elaboration of new plans. Central aspects of therapist activity in facilitating the client's progression along these nine steps are also elaborated.
Cognitive strategies in the mental rotation task revealed by EEG spectral power.
Gardony, Aaron L; Eddy, Marianna D; Brunyé, Tad T; Taylor, Holly A
2017-11-01
The classic mental rotation task (MRT; Shepard & Metzler, 1971) is commonly thought to measure mental rotation, a cognitive process involving covert simulation of motor rotation. Yet much research suggests that the MRT recruits both motor simulation and other analytic cognitive strategies that depend on visuospatial representation and visual working memory (WM). In the present study, we investigated cognitive strategies in the MRT using time-frequency analysis of EEG and independent component analysis. We scrutinized sensorimotor mu (µ) power reduction, associated with motor simulation, parietal alpha (pα) power reduction, associated with visuospatial representation, and frontal midline theta (fmθ) power enhancement, associated with WM maintenance and manipulation. µ power increased concomitant with increasing task difficulty, suggesting reduced use of motor simulation, while pα decreased and fmθ power increased, suggesting heightened use of visuospatial representation processing and WM, respectively. These findings suggest that MRT performance involves flexibly trading off between cognitive strategies, namely a motor simulation-based mental rotation strategy and WM-intensive analytic strategies based on task difficulty. Flexible cognitive strategy use may be a domain-general cognitive principle that underlies aptitude and spatial intelligence in a variety of cognitive domains. We close with discussion of the present study's implications as well as future directions. Published by Elsevier Inc.
Lee, Junghee; Cohen, Mark S; Engel, Stephen A; Glahn, David; Nuechterlein, Keith H; Wynn, Jonathan K; Green, Michael F
2010-07-01
Visual masking paradigms assess the early part of visual information processing, which may reflect vulnerability measures for schizophrenia. We examined the neural substrates of visual backward performance in unaffected sibling of schizophrenia patients using functional magnetic resonance imaging (fMRI). Twenty-one unaffected siblings of schizophrenia patients and 19 healthy controls performed a backward masking task and three functional localizer tasks to identify three visual processing regions of interest (ROI): lateral occipital complex (LO), the motion-sensitive area, and retinotopic areas. In the masking task, we systematically manipulated stimulus onset asynchronies (SOAs). We analyzed fMRI data in two complementary ways: 1) an ROI approach for three visual areas, and 2) a whole-brain analysis. The groups did not differ in behavioral performance. For ROI analysis, both groups increased activation as SOAs increased in LO. Groups did not differ in activation levels of the three ROIs. For whole-brain analysis, controls increased activation as a function of SOAs, compared with siblings in several regions (i.e., anterior cingulate cortex, posterior cingulate cortex, inferior prefrontal cortex, inferior parietal lobule). The study found: 1) area LO showed sensitivity to the masking effect in both groups; 2) siblings did not differ from controls in activation of LO; and 3) groups differed significantly in several brain regions outside visual processing areas that have been related to attentional or re-entrant processes. These findings suggest that LO dysfunction may be a disease indicator rather than a risk indicator for schizophrenia. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Family environment influences emotion recognition following paediatric traumatic brain injury.
Schmidt, Adam T; Orsten, Kimberley D; Hanten, Gerri R; Li, Xiaoqi; Levin, Harvey S
2010-01-01
This study investigated the relationship between family functioning and performance on two tasks of emotion recognition (emotional prosody and face emotion recognition) and a cognitive control procedure (the Flanker task) following paediatric traumatic brain injury (TBI) or orthopaedic injury (OI). A total of 142 children (75 TBI, 67 OI) were assessed on three occasions: baseline, 3 months and 1 year post-injury on the two emotion recognition tasks and the Flanker task. Caregivers also completed the Life Stressors and Resources Scale (LISRES) on each occasion. Growth curve analysis was used to analyse the data. Results indicated that family functioning influenced performance on the emotional prosody and Flanker tasks but not on the face emotion recognition task. Findings on both the emotional prosody and Flanker tasks were generally similar across groups. However, financial resources emerged as significantly related to emotional prosody performance in the TBI group only (p = 0.0123). Findings suggest family functioning variables--especially financial resources--can influence performance on an emotional processing task following TBI in children.
Cognitive simulation as a tool for cognitive task analysis.
Roth, E M; Woods, D D; Pople, H E
1992-10-01
Cognitive simulations are runnable computer programs that represent models of human cognitive activities. We show how one cognitive simulation built as a model of some of the cognitive processes involved in dynamic fault management can be used in conjunction with small-scale empirical data on human performance to uncover the cognitive demands of a task, to identify where intention errors are likely to occur, and to point to improvements in the person-machine system. The simulation, called Cognitive Environment Simulation or CES, has been exercised on several nuclear power plant accident scenarios. Here we report one case to illustrate how a cognitive simulation tool such as CES can be used to clarify the cognitive demands of a problem-solving situation as part of a cognitive task analysis.
The source of dual-task limitations: Serial or parallel processing of multiple response selections?
Marois, René
2014-01-01
Although it is generally recognized that the concurrent performance of two tasks incurs costs, the sources of these dual-task costs remain controversial. The serial bottleneck model suggests that serial postponement of task performance in dual-task conditions results from a central stage of response selection that can only process one task at a time. Cognitive-control models, by contrast, propose that multiple response selections can proceed in parallel, but that serial processing of task performance is predominantly adopted because its processing efficiency is higher than that of parallel processing. In the present study, we empirically tested this proposition by examining whether parallel processing would occur when it was more efficient and financially rewarded. The results indicated that even when parallel processing was more efficient and was incentivized by financial reward, participants still failed to process tasks in parallel. We conclude that central information processing is limited by a serial bottleneck. PMID:23864266
Jones, A Kyle; Heintz, Philip; Geiser, William; Goldman, Lee; Jerjian, Khachig; Martin, Melissa; Peck, Donald; Pfeiffer, Douglas; Ranger, Nicole; Yorkston, John
2015-11-01
Quality control (QC) in medical imaging is an ongoing process and not just a series of infrequent evaluations of medical imaging equipment. The QC process involves designing and implementing a QC program, collecting and analyzing data, investigating results that are outside the acceptance levels for the QC program, and taking corrective action to bring these results back to an acceptable level. The QC process involves key personnel in the imaging department, including the radiologist, radiologic technologist, and the qualified medical physicist (QMP). The QMP performs detailed equipment evaluations and helps with oversight of the QC program, the radiologic technologist is responsible for the day-to-day operation of the QC program. The continued need for ongoing QC in digital radiography has been highlighted in the scientific literature. The charge of this task group was to recommend consistency tests designed to be performed by a medical physicist or a radiologic technologist under the direction of a medical physicist to identify problems with an imaging system that need further evaluation by a medical physicist, including a fault tree to define actions that need to be taken when certain fault conditions are identified. The focus of this final report is the ongoing QC process, including rejected image analysis, exposure analysis, and artifact identification. These QC tasks are vital for the optimal operation of a department performing digital radiography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, A. Kyle, E-mail: kyle.jones@mdanderson.org; Geiser, William; Heintz, Philip
Quality control (QC) in medical imaging is an ongoing process and not just a series of infrequent evaluations of medical imaging equipment. The QC process involves designing and implementing a QC program, collecting and analyzing data, investigating results that are outside the acceptance levels for the QC program, and taking corrective action to bring these results back to an acceptable level. The QC process involves key personnel in the imaging department, including the radiologist, radiologic technologist, and the qualified medical physicist (QMP). The QMP performs detailed equipment evaluations and helps with oversight of the QC program, the radiologic technologist ismore » responsible for the day-to-day operation of the QC program. The continued need for ongoing QC in digital radiography has been highlighted in the scientific literature. The charge of this task group was to recommend consistency tests designed to be performed by a medical physicist or a radiologic technologist under the direction of a medical physicist to identify problems with an imaging system that need further evaluation by a medical physicist, including a fault tree to define actions that need to be taken when certain fault conditions are identified. The focus of this final report is the ongoing QC process, including rejected image analysis, exposure analysis, and artifact identification. These QC tasks are vital for the optimal operation of a department performing digital radiography.« less
Howes, Andrew; Lewis, Richard L; Vera, Alonso
2009-10-01
The authors assume that individuals adapt rationally to a utility function given constraints imposed by their cognitive architecture and the local task environment. This assumption underlies a new approach to modeling and understanding cognition-cognitively bounded rational analysis-that sharpens the predictive acuity of general, integrated theories of cognition and action. Such theories provide the necessary computational means to explain the flexible nature of human behavior but in doing so introduce extreme degrees of freedom in accounting for data. The new approach narrows the space of predicted behaviors through analysis of the payoff achieved by alternative strategies, rather than through fitting strategies and theoretical parameters to data. It extends and complements established approaches, including computational cognitive architectures, rational analysis, optimal motor control, bounded rationality, and signal detection theory. The authors illustrate the approach with a reanalysis of an existing account of psychological refractory period (PRP) dual-task performance and the development and analysis of a new theory of ordered dual-task responses. These analyses yield several novel results, including a new understanding of the role of strategic variation in existing accounts of PRP and the first predictive, quantitative account showing how the details of ordered dual-task phenomena emerge from the rational control of a cognitive system subject to the combined constraints of internal variance, motor interference, and a response selection bottleneck.
Task conflicts and exclusive professionalism in nursing in South Korea.
Jung, Minsoo
2014-01-01
Task conflicts among medical professions are essential problems to be solved in health care organizations. This study examined job conflicts between practical nurses (PNs) and registered nurses (RNs) in their duties and tasks with representative panelists from South Korea. This qualitative study used the Dacum Task Analysis process. Subject-matter experts in practical nursing were recruited utilizing stratified sampling: Ten experts developed job descriptions of PNs, and 20 validated the descriptions. The on-site tasks and duties of the PNs were measured by means of Dacum, and the results were reviewed by RNs using 3 focus-group interviews. The job description of PNs consisted of 10 duties and 117 tasks, overlapping with some tasks of RNs. Core tasks performed by PNs, such as invasive activities, led to task conflicts between the 2 groups, as these activities were regarded as the inherent duty of nursing professions. Thus, the RNs did not concede the expanded job scope of the PNs in terms of exclusive professionalism. To reduce task conflict, there is a need for the balanced development of nursing professionalism.
The Pan-STARRS PS1 Image Processing Pipeline
NASA Astrophysics Data System (ADS)
Magnier, E.
The Pan-STARRS PS1 Image Processing Pipeline (IPP) performs the image processing and data analysis tasks needed to enable the scientific use of the images obtained by the Pan-STARRS PS1 prototype telescope. The primary goals of the IPP are to process the science images from the Pan-STARRS telescopes and make the results available to other systems within Pan-STARRS. It also is responsible for combining all of the science images in a given filter into a single representation of the non-variable component of the night sky defined as the "Static Sky". To achieve these goals, the IPP also performs other analysis functions to generate the calibrations needed in the science image processing, and to occasionally use the derived data to generate improved astrometric and photometric reference catalogs. It also provides the infrastructure needed to store the incoming data and the resulting data products. The IPP inherits lessons learned, and in some cases code and prototype code, from several other astronomy image analysis systems, including Imcat (Kaiser), the Sloan Digital Sky Survey (REF), the Elixir system (Magnier & Cuillandre), and Vista (Tonry). Imcat and Vista have a large number of robust image processing functions. SDSS has demonstrated a working analysis pipeline and large-scale databasesystem for a dedicated project. The Elixir system has demonstrated an automatic image processing system and an object database system for operational usage. This talk will present an overview of the IPP architecture, functional flow, code development structure, and selected analysis algorithms. Also discussed is the HW highly parallel HW configuration necessary to support PS1 operational requirements. Finally, results are presented of the processing of images collected during PS1 early commissioning tasks utilizing the Pan-STARRS Test Camera #3.
Huff, Mark J.; Bodner, Glen E.
2014-01-01
Whether encoding variability facilitates memory is shown to depend on whether item-specific and relational processing are both performed across study blocks, and whether study items are weakly versus strongly related. Variable-processing groups studied a word list once using an item-specific task and once using a relational task. Variable-task groups’ two different study tasks recruited the same type of processing each block. Repeated-task groups performed the same study task each block. Recall and recognition were greatest in the variable-processing group, but only with weakly related lists. A variable-processing benefit was also found when task-based processing and list-type processing were complementary (e.g., item-specific processing of a related list) rather than redundant (e.g., relational processing of a related list). That performing both item-specific and relational processing across trials, or within a trial, yields encoding-variability benefits may help reconcile decades of contradictory findings in this area. PMID:25018583
Application of the NUREG/CR-6850 EPRI/NRC Fire PRA Methodology to a DOE Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom Elicson; Bentley Harwood; Richard Yorg
2011-03-01
The application NUREG/CR-6850 EPRI/NRC fire PRA methodology to DOE facility presented several challenges. This paper documents the process and discusses several insights gained during development of the fire PRA. A brief review of the tasks performed is provided with particular focus on the following: • Tasks 5 and 14: Fire-induced risk model and fire risk quantification. A key lesson learned was to begin model development and quantification as early as possible in the project using screening values and simplified modeling if necessary. • Tasks 3 and 9: Fire PRA cable selection and detailed circuit failure analysis. In retrospect, it wouldmore » have been beneficial to perform the model development and quantification in 2 phases with detailed circuit analysis applied during phase 2. This would have allowed for development of a robust model and quantification earlier in the project and would have provided insights into where to focus the detailed circuit analysis efforts. • Tasks 8 and 11: Scoping fire modeling and detailed fire modeling. More focus should be placed on detailed fire modeling and less focus on scoping fire modeling. This was the approach taken for the fire PRA. • Task 14: Fire risk quantification. Typically, multiple safe shutdown (SSD) components fail during a given fire scenario. Therefore dependent failure analysis is critical to obtaining a meaningful fire risk quantification. Dependent failure analysis for the fire PRA presented several challenges which will be discussed in the full paper.« less
SPARX, a new environment for Cryo-EM image processing.
Hohn, Michael; Tang, Grant; Goodyear, Grant; Baldwin, P R; Huang, Zhong; Penczek, Pawel A; Yang, Chao; Glaeser, Robert M; Adams, Paul D; Ludtke, Steven J
2007-01-01
SPARX (single particle analysis for resolution extension) is a new image processing environment with a particular emphasis on transmission electron microscopy (TEM) structure determination. It includes a graphical user interface that provides a complete graphical programming environment with a novel data/process-flow infrastructure, an extensive library of Python scripts that perform specific TEM-related computational tasks, and a core library of fundamental C++ image processing functions. In addition, SPARX relies on the EMAN2 library and cctbx, the open-source computational crystallography library from PHENIX. The design of the system is such that future inclusion of other image processing libraries is a straightforward task. The SPARX infrastructure intelligently handles retention of intermediate values, even those inside programming structures such as loops and function calls. SPARX and all dependencies are free for academic use and available with complete source.
Weir, Charlene R; Nebeker, Jonathan J R; Hicken, Bret L; Campo, Rebecca; Drews, Frank; Lebar, Beth
2007-01-01
Computerized Provider Order Entry (CPOE) with electronic documentation, and computerized decision support dramatically changes the information environment of the practicing clinician. Prior work patterns based on paper, verbal exchange, and manual methods are replaced with automated, computerized, and potentially less flexible systems. The objective of this study is to explore the information management strategies that clinicians use in the process of adapting to a CPOE system using cognitive task analysis techniques. Observation and semi-structured interviews were conducted with 88 primary-care clinicians at 10 Veterans Administration Medical Centers. Interviews were taped, transcribed, and extensively analyzed to identify key information management goals, strategies, and tasks. Tasks were aggregated into groups, common components across tasks were clarified, and underlying goals and strategies identified. Nearly half of the identified tasks were not fully supported by the available technology. Six core components of tasks were identified. Four meta-cognitive information management goals emerged: 1) Relevance Screening; 2) Ensuring Accuracy; 3) Minimizing memory load; and 4) Negotiating Responsibility. Strategies used to support these goals are presented. Users develop a wide array of information management strategies that allow them to successfully adapt to new technology. Supporting the ability of users to develop adaptive strategies to support meta-cognitive goals is a key component of a successful system.
The Neural Bases of Event Monitoring across Domains: a Simultaneous ERP-fMRI Study
Tarantino, Vincenza; Mazzonetto, Ilaria; Formica, Silvia; Causin, Francesco; Vallesi, Antonino
2017-01-01
The ability to check and evaluate the environment over time with the aim to detect the occurrence of target stimuli is supported by sustained/tonic as well as transient/phasic control processes, which overall might be referred to as event monitoring. The neural underpinning of sustained attentional control processes involves a fronto-parietal network. However, it has not been well-defined yet whether this cortical circuit acts irrespective of the specific material to be monitored and whether this mediates sustained as well as transient monitoring processes. In the current study, the functional activity of brain during an event monitoring task was investigated and compared between two cognitive domains, whose processing is mediated by differently lateralized areas. Namely, participants were asked to monitor sequences of either faces (supported by right-hemisphere regions) or tools (left-hemisphere). In order to disentangle sustained from transient components of monitoring, a simultaneous EEG-fMRI technique was adopted within a block design. When contrasting monitoring versus control blocks, the conventional fMRI analysis revealed the sustained involvement of bilateral fronto-parietal regions, in both task domains. Event-related potentials (ERPs) showed a more positive amplitude over frontal sites in monitoring compared to control blocks, providing evidence of a transient monitoring component. The joint ERP-fMRI analysis showed that, in the case of face monitoring, this transient component relies on right-lateralized areas, including the inferior parietal lobule and the middle frontal gyrus. In the case of tools, no fronto-parietal areas correlated with the transient ERP activity, suggesting that in this domain phasic monitoring processes were masked by tonic ones. Overall, the present findings highlight the role of bilateral fronto-parietal regions in sustained monitoring, independently of the specific task requirements, and suggest that right-lateralized areas subtend transient monitoring processes, at least in some task contexts. PMID:28785212
Schuch, Stefanie; Werheid, Katja; Koch, Iring
2012-01-01
The present study investigated whether the processing characteristics of categorizing emotional facial expressions are different from those of categorizing facial age and sex information. Given that emotions change rapidly, it was hypothesized that processing facial expressions involves a more flexible task set that causes less between-task interference than the task sets involved in processing age or sex of a face. Participants switched between three tasks: categorizing a face as looking happy or angry (emotion task), young or old (age task), and male or female (sex task). Interference between tasks was measured by global interference and response interference. Both measures revealed patterns of asymmetric interference. Global between-task interference was reduced when a task was mixed with the emotion task. Response interference, as measured by congruency effects, was larger for the emotion task than for the nonemotional tasks. The results support the idea that processing emotional facial expression constitutes a more flexible task set that causes less interference (i.e., task-set "inertia") than processing the age or sex of a face.
Icon and user interface design for emergency medical information systems: a case study.
Salman, Y Batu; Cheng, Hong-In; Patterson, Patrick E
2012-01-01
A usable medical information system should allow for reliable and accurate interaction between users and the system in emergencies. A participatory design approach was used to develop a medical information system in two Turkish hospitals. The process consisted of task and user analysis, an icon design survey, initial icon design, final icon design and evaluation, and installation of the iconic medical information system with the icons. We observed work sites to note working processes and tasks related to the information system and interviewed medical personnel. Emergency personnel then participated in the design process to develop a usable graphical user interface, by drawing icon sketches for 23 selected tasks. Similar sketches were requested for specific tasks such as family medical history, contact information, translation, addiction, required inspections, requests and applications, and nurse observations. The sketches were analyzed and redesigned into computer icons by professional designers and the research team. A second group of physicians and nurses then tested the understandability of the icons. The user interface layout was examined and evaluated by system users, followed by the system's installation. Medical personnel reported the participatory design process was interesting and believed the resulting designs would be more familiar and friendlier. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
2012-01-01
Background Catching an object is a complex movement that involves not only programming but also effective motor coordination. Such behavior is related to the activation and recruitment of cortical regions that participates in the sensorimotor integration process. This study aimed to elucidate the cortical mechanisms involved in anticipatory actions when performing a task of catching an object in free fall. Methods Quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 20 healthy right-handed participants performed the catching ball task. We used the EEG coherence analysis to investigate subdivisions of alpha (8-12 Hz) and beta (12-30 Hz) bands, which are related to cognitive processing and sensory-motor integration. Results Notwithstanding, we found the main effects for the factor block; for alpha-1, coherence decreased from the first to sixth block, and the opposite effect occurred for alpha-2 and beta-2, with coherence increasing along the blocks. Conclusion It was concluded that to perform successfully our task, which involved anticipatory processes (i.e. feedback mechanisms), subjects exhibited a great involvement of sensory-motor and associative areas, possibly due to organization of information to process visuospatial parameters and further catch the falling object. PMID:22364485
Beneventi, Harald; Tønnessen, Finn Egil; Ersland, Lars
2009-01-01
Dyslexia is primarily associated with a phonological processing deficit. However, the clinical manifestation also includes a reduced verbal working memory (WM) span. It is unclear whether this WM impairment is caused by the phonological deficit or a distinct WM deficit. The main aim of this study was to investigate neuronal activation related to phonological storage and rehearsal of serial order in WM in a sample of 13-year-old dyslexic children compared with age-matched nondyslexic children. A sequential verbal WM task with two tasks was used. In the Letter Probe task, the probe consisted of a single letter and the judgment was for the presence or absence of that letter in the prior sequence of six letters. In the Sequence Probe (SP) task, the probe consisted of all six letters and the judgment was for a match of their serial order with the temporal order in the prior sequence. Group analyses as well as single-subject analysis were performed with the statistical parametric mapping software SPM2. In the Letter Probe task, the dyslexic readers showed reduced activation in the left precentral gyrus (BA6) compared to control group. In the Sequence Probe task, the dyslexic readers showed reduced activation in the prefrontal cortex and the superior parietal cortex (BA7) compared to the control subjects. Our findings suggest that a verbal WM impairment in dyslexia involves an extended neural network including the prefrontal cortex and the superior parietal cortex. Reduced activation in the left BA6 in both the Letter Probe and Sequence Probe tasks may be caused by a deficit in phonological processing. However, reduced bilateral activation in the BA7 in the Sequence Probe task only could indicate a distinct working memory deficit in dyslexia associated with temporal order processing.
Mohan, S N; Mukhtar, F; Jobson, L
2016-01-01
Introduction Depression is a mood disorder that affects a significant proportion of the population worldwide. In Malaysia and Australia, the number of people diagnosed with depression is on the rise. It has been found that impairments in emotion processing and emotion regulation play a role in the development and maintenance of depression. This study is based on Matsumoto and Hwang's biocultural model of emotion and Triandis' Subjective Culture model. It aims to investigate the influence of culture on emotion processing among Malaysians and Australians with and without major depressive disorder (MDD). Methods and analysis This study will adopt a between-group design. Participants will include Malaysian Malays and Caucasian Australians with and without MDD (N=320). There will be four tasks involved in this study, namely: (1) the facial emotion recognition task, (2) the biological motion task, (3) the subjective experience task and (4) the emotion meaning task. It is hypothesised that there will be cultural differences in how participants with and without MDD respond to these emotion tasks and that, pan-culturally, MDD will influence accuracy rates in the facial emotion recognition task and the biological motion task. Ethics and dissemination This study is approved by the Universiti Putra Malaysia Research Ethics Committee (JKEUPM) and the Monash University Human Research Ethics Committee (MUHREC). Permission to conduct the study has also been obtained from the National Medical Research Register (NMRR; NMRR-15-2314-26919). On completion of the study, data will be kept by Universiti Putra Malaysia for a specific period of time before they are destroyed. Data will be published in a collective manner in the form of journal articles with no reference to a specific individual. PMID:27798019
Working memory capacity and the scope and control of attention.
Shipstead, Zach; Harrison, Tyler L; Engle, Randall W
2015-08-01
Complex span and visual arrays are two common measures of working memory capacity that are respectively treated as measures of attention control and storage capacity. A recent analysis of these tasks concluded that (1) complex span performance has a relatively stronger relationship to fluid intelligence and (2) this is due to the requirement that people engage control processes while performing this task. The present study examines the validity of these conclusions by examining two large data sets that include a more diverse set of visual arrays tasks and several measures of attention control. We conclude that complex span and visual arrays account for similar amounts of variance in fluid intelligence. The disparity relative to the earlier analysis is attributed to the present study involving a more complete measure of the latent ability underlying the performance of visual arrays. Moreover, we find that both types of working memory task have strong relationships to attention control. This indicates that the ability to engage attention in a controlled manner is a critical aspect of working memory capacity, regardless of the type of task that is used to measure this construct.
Classification of visual and linguistic tasks using eye-movement features.
Coco, Moreno I; Keller, Frank
2014-03-07
The role of the task has received special attention in visual-cognition research because it can provide causal explanations of goal-directed eye-movement responses. The dependency between visual attention and task suggests that eye movements can be used to classify the task being performed. A recent study by Greene, Liu, and Wolfe (2012), however, fails to achieve accurate classification of visual tasks based on eye-movement features. In the present study, we hypothesize that tasks can be successfully classified when they differ with respect to the involvement of other cognitive domains, such as language processing. We extract the eye-movement features used by Greene et al. as well as additional features from the data of three different tasks: visual search, object naming, and scene description. First, we demonstrated that eye-movement responses make it possible to characterize the goals of these tasks. Then, we trained three different types of classifiers and predicted the task participants performed with an accuracy well above chance (a maximum of 88% for visual search). An analysis of the relative importance of features for classification accuracy reveals that just one feature, i.e., initiation time, is sufficient for above-chance performance (a maximum of 79% accuracy in object naming). Crucially, this feature is independent of task duration, which differs systematically across the three tasks we investigated. Overall, the best task classification performance was obtained with a set of seven features that included both spatial information (e.g., entropy of attention allocation) and temporal components (e.g., total fixation on objects) of the eye-movement record. This result confirms the task-dependent allocation of visual attention and extends previous work by showing that task classification is possible when tasks differ in the cognitive processes involved (purely visual tasks such as search vs. communicative tasks such as scene description).
Divide and rule: A qualitative analysis of the debriefing process in elite team sports.
Macquet, A-C; Ferrand, C; Stanton, N A
2015-11-01
This article aimed to gain an understanding of the process of debriefing during major competitions in elite team sports. Debrief interviews were conducted with 9 head coaches. The interview data were used to identify how head coaches divided up the tasks given to staff and team members prior to, and during the post-match debriefing. Results showed that debriefing consisted of two steps: preparation and presentation. Preparation referred to four successive tasks. Presentation to the team of players consisted of eight tasks relating to transformational and transactional styles of leadership. Coaches were shown to divide the labor within the staff and team. The data tend to support the view that in elite team sports, coaches are both transformational and transactional leaders, adapting their style of leadership to the situation, athletes and time available. This study provides insights into the task-work and team-work underlying team functioning and division of labor. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
The Analysis of Detective Genre in Media Studies in the Student Audience
ERIC Educational Resources Information Center
Fedorov, Alexander
2011-01-01
Development of skills for the critical analysis of media texts--an important task of media education. However, media literacy practice shows that students have the problems with the discussion/analysis of entertainment genres in the early stages of media studies, for example, the difficulties in the process of understanding and interpreting the…
Llerena, Katiah; Wynn, Jonathan K; Hajcak, Greg; Green, Michael F; Horan, William P
2016-07-01
Accurately monitoring one's performance on daily life tasks, and integrating internal and external performance feedback are necessary for guiding productive behavior. Although internal feedback processing, as indexed by the error-related negativity (ERN), is consistently impaired in schizophrenia, initial findings suggest that external performance feedback processing, as indexed by the feedback negativity (FN), may actually be intact. The current study evaluated internal and external feedback processing task performance and test-retest reliability in schizophrenia. 92 schizophrenia outpatients and 63 healthy controls completed a flanker task (ERN) and a time estimation task (FN). Analyses examined the ΔERN and ΔFN defined as difference waves between correct/positive versus error/negative feedback conditions. A temporal principal component analysis was conducted to distinguish the ΔERN and ΔFN from overlapping neural responses. We also assessed test-retest reliability of ΔERN and ΔFN in patients over a 4-week interval. Patients showed reduced ΔERN accompanied by intact ΔFN. In patients, test-retest reliability for both ΔERN and ΔFN over a four-week period was fair to good. Individuals with schizophrenia show a pattern of impaired internal, but intact external, feedback processing. This pattern has implications for understanding the nature and neural correlates of impaired feedback processing in schizophrenia. Published by Elsevier B.V.
Visual information processing of faces in body dysmorphic disorder.
Feusner, Jamie D; Townsend, Jennifer; Bystritsky, Alexander; Bookheimer, Susan
2007-12-01
Body dysmorphic disorder (BDD) is a severe psychiatric condition in which individuals are preoccupied with perceived appearance defects. Clinical observation suggests that patients with BDD focus on details of their appearance at the expense of configural elements. This study examines abnormalities in visual information processing in BDD that may underlie clinical symptoms. To determine whether patients with BDD have abnormal patterns of brain activation when visually processing others' faces with high, low, or normal spatial frequency information. Case-control study. University hospital. Twelve right-handed, medication-free subjects with BDD and 13 control subjects matched by age, sex, and educational achievement. Intervention Functional magnetic resonance imaging while performing matching tasks of face stimuli. Stimuli were neutral-expression photographs of others' faces that were unaltered, altered to include only high spatial frequency visual information, or altered to include only low spatial frequency visual information. Blood oxygen level-dependent functional magnetic resonance imaging signal changes in the BDD and control groups during tasks with each stimulus type. Subjects with BDD showed greater left hemisphere activity relative to controls, particularly in lateral prefrontal cortex and lateral temporal lobe regions for all face tasks (and dorsal anterior cingulate activity for the low spatial frequency task). Controls recruited left-sided prefrontal and dorsal anterior cingulate activity only for the high spatial frequency task. Subjects with BDD demonstrate fundamental differences from controls in visually processing others' faces. The predominance of left-sided activity for low spatial frequency and normal faces suggests detail encoding and analysis rather than holistic processing, a pattern evident in controls only for high spatial frequency faces. These abnormalities may be associated with apparent perceptual distortions in patients with BDD. The fact that these findings occurred while subjects viewed others' faces suggests differences in visual processing beyond distortions of their own appearance.
Piguet, Olivier; Leyton, Cristian E; Gleeson, Liam D; Hoon, Chris; Hodges, John R
2015-01-01
The two non-semantic variants of primary progressive aphasia (PPA), nonfluent/agrammatic PPA (nfv-PPA) and logopenic variant PPA (lv-PPA), share language features despite their different underlying pathology, and may be difficult to distinguish for non-language experts. To improve diagnostic accuracy of nfv-PPA and lv-PPA using tasks measuring non-language cognition and emotion processing. Thirty-eight dementia patients meeting diagnostic criteria for PPA (nfv-PPA 20, lv-PPA 18) and 21 matched healthy Controls underwent a comprehensive assessment of cognition and emotion processing, as well as a high-resolution structural MRI and a PiB-PET scan, a putative biomarker of Alzheimer's disease. Task performances were compared between the groups and those found to differ significantly were entered into a logistic regression analysis. Analyses revealed a double dissociation between nfv-PPA and lv-PPA. nfv-PPA exhibited significant emotion processing disturbance compared to lv-PPA and Controls. In contrast, only the lv-PPA group was significantly impaired on tasks of episodic memory. Logistic regression analyses showed that 87% of patients were correctly classified using emotion processing and episodic memory composite scores, together with a measure of visuospatial ability. Non-language presenting features can help differentiate between the two non-semantic PPA syndromes, with a double dissociation observed on tasks of episodic memory and emotion processing. Based on performance on these tasks, we propose a decision tree as a complementary method to differentiate between the two non-semantic variants. These findings have important clinical implications, with identification of patients who may potentially benefit existing therapeutic interventions currently available for Alzheimer's disease.
Temporal and spectral profiles of stimulus-stimulus and stimulus-response conflict processing.
Wang, Kai; Li, Qi; Zheng, Ya; Wang, Hongbin; Liu, Xun
2014-04-01
The ability to detect and resolve conflict is an essential function of cognitive control. Laboratory studies often use stimulus-response-compatibility (SRC) tasks to examine conflict processing in order to elucidate the mechanism and modular organization of cognitive control. Inspired by two influential theories regarding cognitive control, the conflict monitoring theory (Botvinick, Braver, Barch, Carter, & Cohen, 2001) and dimensional overlap taxonomy (Kornblum, Hasbroucq, & Osman, 1990), we explored the temporal and spectral similarities and differences between processing of stimulus-stimulus (S-S) and stimulus-response (S-R) conflicts with event related potential (ERP) and time-frequency measures. We predicted that processing of S-S conflict starts earlier than that of S-R conflict and that the two types of conflict may involve different frequency bands. Participants were asked to perform two parallel SRC tasks, both combining the Stroop task (involving S-S conflict) and Simon task (involving S-R conflict). ERP results showed pronounced SRC effects (incongruent vs. congruent) on N2 and P3 components for both S-S and S-R conflicts. In both tasks, SRC effects of S-S conflict took place earlier than those of S-R conflict. Time-frequency analysis revealed that both types of SRC effects modulated theta and alpha bands, while S-R conflict effects additionally modulated power in the beta band. These results indicated that although S-S and S-R conflict processing shared considerable ERP and time-frequency properties, they differed in temporal and spectral dynamics. We suggest that the modular organization of cognitive control should take both commonality and distinction of S-S and S-R conflict processing into consideration. Copyright © 2013 Elsevier Inc. All rights reserved.
Wassenburg, Stephanie I.; de Koning, Björn B.; de Vries, Meinou H.; van der Schoot, Menno
2016-01-01
Using a component processes task (CPT) that differentiates between higher-level cognitive processes of reading comprehension provides important advantages over commonly used general reading comprehension assessments. The present study contributes to further development of the CPT by evaluating the relative contributions of its components (text memory, text inferencing, and knowledge integration) and working memory to general reading comprehension within a single study using path analyses. Participants were 173 third- and fourth-grade children. As hypothesized, knowledge integration was the only component of the CPT that directly contributed to reading comprehension, indicating that the text-inferencing component did not assess inferential processes related to reading comprehension. Working memory was a significant predictor of reading comprehension over and above the component processes. Future research should focus on finding ways to ensure that the text-inferencing component taps into processes important for reading comprehension. PMID:27378989
Argo: an integrative, interactive, text mining-based workbench supporting curation
Rak, Rafal; Rowley, Andrew; Black, William; Ananiadou, Sophia
2012-01-01
Curation of biomedical literature is often supported by the automatic analysis of textual content that generally involves a sequence of individual processing components. Text mining (TM) has been used to enhance the process of manual biocuration, but has been focused on specific databases and tasks rather than an environment integrating TM tools into the curation pipeline, catering for a variety of tasks, types of information and applications. Processing components usually come from different sources and often lack interoperability. The well established Unstructured Information Management Architecture is a framework that addresses interoperability by defining common data structures and interfaces. However, most of the efforts are targeted towards software developers and are not suitable for curators, or are otherwise inconvenient to use on a higher level of abstraction. To overcome these issues we introduce Argo, an interoperable, integrative, interactive and collaborative system for text analysis with a convenient graphic user interface to ease the development of processing workflows and boost productivity in labour-intensive manual curation. Robust, scalable text analytics follow a modular approach, adopting component modules for distinct levels of text analysis. The user interface is available entirely through a web browser that saves the user from going through often complicated and platform-dependent installation procedures. Argo comes with a predefined set of processing components commonly used in text analysis, while giving the users the ability to deposit their own components. The system accommodates various areas and levels of user expertise, from TM and computational linguistics to ontology-based curation. One of the key functionalities of Argo is its ability to seamlessly incorporate user-interactive components, such as manual annotation editors, into otherwise completely automatic pipelines. As a use case, we demonstrate the functionality of an in-built manual annotation editor that is well suited for in-text corpus annotation tasks. Database URL: http://www.nactem.ac.uk/Argo PMID:22434844
The safer clinical systems project in renal care.
Weale, Andy R
2013-09-01
Current systems in place in healthcare are designed to detect harm after it has happened (e.g critical incident reports) and make recommendations based on an assessment of that event. Safer Clinical Systems, a Health Foundation funded project, is designed to proactively search for risk within systems, rather than being reactive to harm. The aim of the Safer Clinical Systems project in Renal Care was to reduce the risks associated with shared care for patients who are undergoing surgery but are looked after peri-operatively by nephrology teams on nephrology wards. This report details our findings of the diagnostic phase of Safer Clinical Systems: the proactive search for risk. We have evaluated the current system of care using a set of risk evaluation and process mapping tools (Failure Modes and Effects Analysis (FMEA) and Hierarchical Task Analysis HTA). We have engaged staff with the process mapping and risk assessment tools. We now understand our system and understand where the highest risk tasks are undertaken during a renal in-patient stay during which a patient has an operation. These key tasks occur across the perioperaive period and are not confined to one aspect of care. A measurement strategy and intervention plan have been designed around these tasks. Safer Clinical Systems has identified high risk, low reliability tasks in our system. We look forward to fully reporting these data in 2014. © 2013 European Dialysis and Transplant Nurses Association/European Renal Care Association.
Scalable Performance Measurement and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamblin, Todd
2009-01-01
Concurrency levels in large-scale, distributed-memory supercomputers are rising exponentially. Modern machines may contain 100,000 or more microprocessor cores, and the largest of these, IBM's Blue Gene/L, contains over 200,000 cores. Future systems are expected to support millions of concurrent tasks. In this dissertation, we focus on efficient techniques for measuring and analyzing the performance of applications running on very large parallel machines. Tuning the performance of large-scale applications can be a subtle and time-consuming task because application developers must measure and interpret data from many independent processes. While the volume of the raw data scales linearly with the number ofmore » tasks in the running system, the number of tasks is growing exponentially, and data for even small systems quickly becomes unmanageable. Transporting performance data from so many processes over a network can perturb application performance and make measurements inaccurate, and storing such data would require a prohibitive amount of space. Moreover, even if it were stored, analyzing the data would be extremely time-consuming. In this dissertation, we present novel methods for reducing performance data volume. The first draws on multi-scale wavelet techniques from signal processing to compress systemwide, time-varying load-balance data. The second uses statistical sampling to select a small subset of running processes to generate low-volume traces. A third approach combines sampling and wavelet compression to stratify performance data adaptively at run-time and to reduce further the cost of sampled tracing. We have integrated these approaches into Libra, a toolset for scalable load-balance analysis. We present Libra and show how it can be used to analyze data from large scientific applications scalably.« less
Task-Rest Modulation of Basal Ganglia Connectivity in Mild to Moderate Parkinson’s Disease
Müller-Oehring, Eva M.; Sullivan, Edith V.; Pfefferbaum, Adolf; Huang, Neng C.; Poston, Kathleen L.; Bronte-Stewart, Helen M.; Schulte, Tilman
2014-01-01
Parkinson’s disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG–cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen–medial parietal and pallidum–occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate–supramarginal gyrus and pallidum–inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal–cortical connectivity, specifically between caudate–prefrontal, caudate–precuneus, and putamen–motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance. PMID:25280970
Functional brain microstate predicts the outcome in a visuospatial working memory task.
Muthukrishnan, Suriya-Prakash; Ahuja, Navdeep; Mehta, Nalin; Sharma, Ratna
2016-11-01
Humans have limited capacity of processing just up to 4 integrated items of information in the working memory. Thus, it is inevitable to commit more errors when challenged with high memory loads. However, the neural mechanisms that determine the accuracy of response at high memory loads still remain unclear. High temporal resolution of Electroencephalography (EEG) technique makes it the best tool to resolve the temporal dynamics of brain networks. EEG-defined microstate is the quasi-stable scalp electrical potential topography that represents the momentary functional state of brain. Thus, it has been possible to assess the information processing currently performed by the brain using EEG microstate analysis. We hypothesize that the EEG microstate preceding the trial could determine its outcome in a visuospatial working memory (VSWM) task. Twenty-four healthy participants performed a high memory load VSWM task, while their brain activity was recorded using EEG. Four microstate maps were found to represent the functional brain state prior to the trials in the VSWM task. One pre-trial microstate map was found to determine the accuracy of subsequent behavioural response. The intracranial generators of the pre-trial microstate map that determined the response accuracy were localized to the visuospatial processing areas at bilateral occipital, right temporal and limbic cortices. Our results imply that the behavioural outcome in a VSWM task could be determined by the intensity of activation of memory representations in the visuospatial processing brain regions prior to the trial. Copyright © 2016 Elsevier B.V. All rights reserved.
Human performance on the temporal bisection task.
Kopec, Charles D; Brody, Carlos D
2010-12-01
The perception and processing of temporal information are tasks the brain must continuously perform. These include measuring the duration of stimuli, storing duration information in memory, recalling such memories, and comparing two durations. How the brain accomplishes these tasks, however, is still open for debate. The temporal bisection task, which requires subjects to compare temporal stimuli to durations held in memory, is perfectly suited to address these questions. Here we perform a meta-analysis of human performance on the temporal bisection task collected from 148 experiments spread across 18 independent studies. With this expanded data set we are able to show that human performance on this task contains a number of significant peculiarities, which in total no single model yet proposed has been able to explain. Here we present a simple 2-step decision model that is capable of explaining all the idiosyncrasies seen in the data. Copyright © 2010 Elsevier Inc. All rights reserved.
Closing Intelligence Gaps: Synchronizing the Collection Management Process
information flow. The US military divides the world into six distinct geographic areas with corresponding commanders managing risk and weighing...analyzed information , creating a mismatch between supply and demand. The result is a burden on all facets of the intelligence process. However, if the target...system, or problem requiring analysis is not collected, intelligence fails. Executing collection management under the traditional tasking process
ERIC Educational Resources Information Center
Navarro, Juan-Jose; Mora, Joaquin
2011-01-01
The renewed interest in the dynamic assessment of specific domains has led to reconsideration of this theory and the technique's contribution to the learning-teaching process. In this article, we analyze some elements concerning the internal structure of a dynamic assessment device of processes involved in reading tasks, establishing some of the…
ERIC Educational Resources Information Center
Losinski, Mickey Lee
2013-01-01
Structural analysis (SA) is an assessment process developed to analyze hypothesized relationships between contextual variables and subsequent behaviors. In the present study, an alternating treatments design investigated the effectiveness of environmentally-based interventions to reduce disruptive behaviors and increase on-task behaviors of…
ERIC Educational Resources Information Center
Vann, Linda S.
2017-01-01
Instructional designers are tasked with making instructional strategy decisions to facilitate achievement of learning outcomes as part of their professional responsibilities. While the instructional design process includes learner analysis, that analysis alone does not embody opportunities to assist instructional designers with demonstrations of…
An Analysis of the Baking Occupation.
ERIC Educational Resources Information Center
Boyadjid, Thomas A; Paoletti, Donald J.
The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the baking occupation. Such tasks as choosing ingredients and the actual baking process are logical primary concerns, but also explored are the safety and sanitation factors and management problems in a…
Lavric, Aureliu; Mizon, Guy A; Monsell, Stephen
2008-09-01
Changing between cognitive tasks requires a reorganization of cognitive processes. Behavioural evidence suggests this can occur in advance of the stimulus. However, the existence or detectability of an anticipatory task-set reconfiguration process remains controversial, in part because several neuroimaging studies have not detected extra brain activity during preparation for a task switch relative to a task repeat. In contrast, electrophysiological studies have identified potential correlates of preparation for a task switch, but their interpretation is hindered by the scarcity of evidence on their relationship to performance. We aimed to: (i) identify the brain potential(s) reflecting effective preparation for a task-switch in a task-cuing paradigm that shows clear behavioural evidence for advance preparation, and (ii) characterize this activity by means of temporal segmentation and source analysis. Our results show that when advance preparation was effective (as indicated by fast responses), a protracted switch-related component, manifesting itself as widespread posterior positivity and concurrent right anterior negativity, preceded stimulus onset for approximately 300 ms, with sources primarily in the left lateral frontal, right inferior frontal and temporal cortices. When advance preparation was ineffective (as implied by slow responses), or made impossible by a short cue-stimulus interval (CSI), a similar component, with lateral prefrontal generators, peaked approximately 300 ms poststimulus. The protracted prestimulus component (which we show to be distinct from P3 or contingent negative variation, CNV) also correlated over subjects with a behavioural measure of preparation. Furthermore, its differential lateralization for word and picture cues was consistent with a role for verbal self-instruction in preparatory task-set reconfiguration.
A model of human event detection in multiple process monitoring situations
NASA Technical Reports Server (NTRS)
Greenstein, J. S.; Rouse, W. B.
1978-01-01
It is proposed that human decision making in many multi-task situations might be modeled in terms of the manner in which the human detects events related to his tasks and the manner in which he allocates his attention among his tasks once he feels events have occurred. A model of human event detection performance in such a situation is presented. An assumption of the model is that, in attempting to detect events, the human generates the probability that events have occurred. Discriminant analysis is used to model the human's generation of these probabilities. An experimental study of human event detection performance in a multiple process monitoring situation is described and the application of the event detection model to this situation is addressed. The experimental study employed a situation in which subjects simulataneously monitored several dynamic processes for the occurrence of events and made yes/no decisions on the presence of events in each process. Input to the event detection model of the information displayed to the experimental subjects allows comparison of the model's performance with the performance of the subjects.
Working Memory Processing In Normal Subjects and Subjects with Dyslexia
NASA Astrophysics Data System (ADS)
Bowyer, S. M.; Lajiness-O'Neill, R.; Weiland, B. J.; Mason, K.; Tepley, N.
2004-10-01
Magnetoencephalography (MEG) was used to determine the neuroanatomical location of working memory (WM) processes. Differences between subjects with dyslexia (SD; n=5) and normal readers (NR; n=5) were studied during two WM tasks. A spatial WM task (SMW) consisted of blocks visually presented in one of 12 positions for 2 s each. Subjects were to determine if the current position matched the position presented 2 slides earlier (N-Back Test). The verbal task (VMW) consisted of presentation of a single letter. The location of cortical activity during SWM in NR (determined with MR-FOCUSS analysis) was in the right superior temporal gyrus (STG) and right angular gyrus (AG). Similar activation was seen in SD with a slight delay of approximately 20 ms. During VWM activity was seen in LEFT STG and LEFT AG in NR. In contrast for SD, activation was in the RIGHT STG and RIGHT AG. This study demonstrates the possibility to differentiate WM processing in subjects with and without learning disorders.
Database Management in Design Optimization.
1983-10-30
processing program(s) engaged in the task of preparing input data for the (finite-element) analysis and optimization phases primary storage the main...and extraction of data from the database for further processing . It can be divided into two phases: a) The process of selection and identification of ...user wishes to stop the reading or the writing process . The meaning of END depends on the method specified for retrieving data: a) Row-wise - then
Intrinsic, stimulus-driven and task-dependent connectivity in human auditory cortex.
Häkkinen, Suvi; Rinne, Teemu
2018-06-01
A hierarchical and modular organization is a central hypothesis in the current primate model of auditory cortex (AC) but lacks validation in humans. Here we investigated whether fMRI connectivity at rest and during active tasks is informative of the functional organization of human AC. Identical pitch-varying sounds were presented during a visual discrimination (i.e. no directed auditory attention), pitch discrimination, and two versions of pitch n-back memory tasks. Analysis based on fMRI connectivity at rest revealed a network structure consisting of six modules in supratemporal plane (STP), temporal lobe, and inferior parietal lobule (IPL) in both hemispheres. In line with the primate model, in which higher-order regions have more longer-range connections than primary regions, areas encircling the STP module showed the highest inter-modular connectivity. Multivariate pattern analysis indicated significant connectivity differences between the visual task and rest (driven by the presentation of sounds during the visual task), between auditory and visual tasks, and between pitch discrimination and pitch n-back tasks. Further analyses showed that these differences were particularly due to connectivity modulations between the STP and IPL modules. While the results are generally in line with the primate model, they highlight the important role of human IPL during the processing of both task-irrelevant and task-relevant auditory information. Importantly, the present study shows that fMRI connectivity at rest, during presentation of sounds, and during active listening provides novel information about the functional organization of human AC.
When the Brain Takes a Break: A Model-Based Analysis of Mind Wandering
Boekel, Wouter; Tucker, Adrienne M.; Turner, Brandon M.; Heathcote, Andrew; Forstmann, Birte U.
2014-01-01
Mind wandering is an ubiquitous phenomenon in everyday life. In the cognitive neurosciences, mind wandering has been associated with several distinct neural processes, most notably increased activity in the default mode network (DMN), suppressed activity within the anti-correlated (task-positive) network (ACN), and changes in neuromodulation. By using an integrative multimodal approach combining machine-learning techniques with modeling of latent cognitive processes, we show that mind wandering in humans is characterized by inefficiencies in executive control (task-monitoring) processes. This failure is predicted by a single-trial signature of (co)activations in the DMN, ACN, and neuromodulation, and accompanied by a decreased rate of evidence accumulation and response thresholds in the cognitive model. PMID:25471568
A Cognitive Analysis of Armor Procedural Task Training
1982-03-01
Verbal Behavior, 8, 323-343. Craik , F. I. M., & Lockhart , R. S. (1972). Levels of processing : A framework for memory research. Journal of Verbal Learning...concep- tual or meaningful) coding of the task to be learned (e.g., Bjork, 1975; Craik & Lockhart , 1972; Melton & Martin, 1972). In order to remember a...were several serious problems with applying this approach in the context of entry- level military training. In particular, the soldier did not always
Jaušovec, Norbert
2012-04-18
The objective of the study was to evaluate the factor of sex in terms of its influence on event-related potential components during the solution of a complex mental rotation task. To evaluate the factor of sex, independent of differences in ability levels and hormonal changes, women and men were equalized with respect to general intelligence and spatial ability. In addition, all women were tested during the low-estrogen phase of the menstrual cycle. The event-related potential analysis indicated that men showed shorter P3 and longer P1 latencies, as well as lower N1 amplitudes. These results suggest that men devoted more time to the analysis of irrelevant information presented in the rotation tasks, which resulted in mental rotation taking place earlier in men than in women. It can be concluded that, even though men and women showed similar performances on complex rotation tasks, they differed in their solution processes.
[Spatiotemporal pattern analysis of event-related potentials elicited by emotional Stroop task].
Liu, Qi; Liu, Ling; He, Hui; Zhou, Shu
2007-05-01
To investigate the spatiotemporal pattern of event-related potentials (ERPs) induced by emotional Stroop task. The ERPs of 19 channels were recorded from 13 healthy subjects while performing emotional Stroop task by pressing the buttons representing the colors in which the words denoting different emotions were displayed. A repeated-measures factorial design was adopted with three levels (word valence: positive, neutral and negative). The result of ERP analysis was presented in the form of statistical parametric mapping (SPM) of F value. No significant difference was found in either reaction time or accuracy. The SPM of ERPs suggested significant emotional valence effects in the occipital region (200-220 ms), the left and central frontal regions (270-300 ms), and the bilateral temporal and parietal cortex (560-580 and 620-630 ms, respectively). Processing of task-irrelevant emotional valence information involves the dynamic operation of extensive brain regions. The ERPs are more sensitive than the behavioral indices in emotional evaluation.
NASA Astrophysics Data System (ADS)
Grigoras, Costin; Carminati, Federico; Vladimirovna Datskova, Olga; Schreiner, Steffen; Lee, Sehoon; Zhu, Jianlin; Gheata, Mihaela; Gheata, Andrei; Saiz, Pablo; Betev, Latchezar; Furano, Fabrizio; Mendez Lorenzo, Patricia; Grigoras, Alina Gabriela; Bagnasco, Stefano; Peters, Andreas Joachim; Saiz Santos, Maria Dolores
2011-12-01
With the LHC and ALICE entering a full operation and production modes, the amount of Simulation and RAW data processing and end user analysis computational tasks are increasing. The efficient management of all these tasks, all of which have large differences in lifecycle, amounts of processed data and methods to analyze the end result, required the development and deployment of new tools in addition to the already existing Grid infrastructure. To facilitate the management of the large scale simulation and raw data reconstruction tasks, ALICE has developed a production framework called a Lightweight Production Manager (LPM). The LPM is automatically submitting jobs to the Grid based on triggers and conditions, for example after a physics run completion. It follows the evolution of the job and publishes the results on the web for worldwide access by the ALICE physicists. This framework is tightly integrated with the ALICE Grid framework AliEn. In addition to the publication of the job status, LPM is also allowing a fully authenticated interface to the AliEn Grid catalogue, to browse and download files, and in the near future will provide simple types of data analysis through ROOT plugins. The framework is also being extended to allow management of end user jobs.
Beyond perceptual load and dilution: a review of the role of working memory in selective attention
de Fockert, Jan W.
2013-01-01
The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintenance of task-relevant processing depends on cognitive control mechanisms, including working memory. The key prediction is that working memory plays a role in keeping clear processing priorities in the face of potential distraction, and the evidence reviewed and evaluated in a meta-analysis here supports this claim, by showing that the processing of distracting information tends to be enhanced when load on a concurrent task of working memory is high. Low working memory capacity is similarly associated with greater distractor processing in selective attention, again suggesting that the unavailability of working memory during selective attention leads to an increase in distractibility. Together, these findings suggest that selective attention against distractors that are processed beyond perception depends on the availability of working memory. Possible mechanisms for the effects of working memory on selective attention are discussed. PMID:23734139
Beyond perceptual load and dilution: a review of the role of working memory in selective attention.
de Fockert, Jan W
2013-01-01
The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintenance of task-relevant processing depends on cognitive control mechanisms, including working memory. The key prediction is that working memory plays a role in keeping clear processing priorities in the face of potential distraction, and the evidence reviewed and evaluated in a meta-analysis here supports this claim, by showing that the processing of distracting information tends to be enhanced when load on a concurrent task of working memory is high. Low working memory capacity is similarly associated with greater distractor processing in selective attention, again suggesting that the unavailability of working memory during selective attention leads to an increase in distractibility. Together, these findings suggest that selective attention against distractors that are processed beyond perception depends on the availability of working memory. Possible mechanisms for the effects of working memory on selective attention are discussed.
Scotch, Matthew; Parmanto, Bambang; Monaco, Valerie
2008-06-09
Data analysis in community health assessment (CHA) involves the collection, integration, and analysis of large numerical and spatial data sets in order to identify health priorities. Geographic Information Systems (GIS) enable for management and analysis using spatial data, but have limitations in performing analysis of numerical data because of its traditional database architecture.On-Line Analytical Processing (OLAP) is a multidimensional datawarehouse designed to facilitate querying of large numerical data. Coupling the spatial capabilities of GIS with the numerical analysis of OLAP, might enhance CHA data analysis. OLAP-GIS systems have been developed by university researchers and corporations, yet their potential for CHA data analysis is not well understood. To evaluate the potential of an OLAP-GIS decision support system for CHA problem solving, we compared OLAP-GIS to the standard information technology (IT) currently used by many public health professionals. SOVAT, an OLAP-GIS decision support system developed at the University of Pittsburgh, was compared against current IT for data analysis for CHA. For this study, current IT was considered the combined use of SPSS and GIS ("SPSS-GIS"). Graduate students, researchers, and faculty in the health sciences at the University of Pittsburgh were recruited. Each round consisted of: an instructional video of the system being evaluated, two practice tasks, five assessment tasks, and one post-study questionnaire. Objective and subjective measurement included: task completion time, success in answering the tasks, and system satisfaction. Thirteen individuals participated. Inferential statistics were analyzed using linear mixed model analysis. SOVAT was statistically significant (alpha = .01) from SPSS-GIS for satisfaction and time (p < .002). Descriptive results indicated that participants had greater success in answering the tasks when using SOVAT as compared to SPSS-GIS. Using SOVAT, tasks were completed more efficiently, with a higher rate of success, and with greater satisfaction, than the combined use of SPSS and GIS. The results from this study indicate a potential for OLAP-GIS decision support systems as a valuable tool for CHA data analysis.
Scotch, Matthew; Parmanto, Bambang; Monaco, Valerie
2008-01-01
Background Data analysis in community health assessment (CHA) involves the collection, integration, and analysis of large numerical and spatial data sets in order to identify health priorities. Geographic Information Systems (GIS) enable for management and analysis using spatial data, but have limitations in performing analysis of numerical data because of its traditional database architecture. On-Line Analytical Processing (OLAP) is a multidimensional datawarehouse designed to facilitate querying of large numerical data. Coupling the spatial capabilities of GIS with the numerical analysis of OLAP, might enhance CHA data analysis. OLAP-GIS systems have been developed by university researchers and corporations, yet their potential for CHA data analysis is not well understood. To evaluate the potential of an OLAP-GIS decision support system for CHA problem solving, we compared OLAP-GIS to the standard information technology (IT) currently used by many public health professionals. Methods SOVAT, an OLAP-GIS decision support system developed at the University of Pittsburgh, was compared against current IT for data analysis for CHA. For this study, current IT was considered the combined use of SPSS and GIS ("SPSS-GIS"). Graduate students, researchers, and faculty in the health sciences at the University of Pittsburgh were recruited. Each round consisted of: an instructional video of the system being evaluated, two practice tasks, five assessment tasks, and one post-study questionnaire. Objective and subjective measurement included: task completion time, success in answering the tasks, and system satisfaction. Results Thirteen individuals participated. Inferential statistics were analyzed using linear mixed model analysis. SOVAT was statistically significant (α = .01) from SPSS-GIS for satisfaction and time (p < .002). Descriptive results indicated that participants had greater success in answering the tasks when using SOVAT as compared to SPSS-GIS. Conclusion Using SOVAT, tasks were completed more efficiently, with a higher rate of success, and with greater satisfaction, than the combined use of SPSS and GIS. The results from this study indicate a potential for OLAP-GIS decision support systems as a valuable tool for CHA data analysis. PMID:18541037
Automated Tracking of Cell Migration with Rapid Data Analysis.
DuChez, Brian J
2017-09-01
Cell migration is essential for many biological processes including development, wound healing, and metastasis. However, studying cell migration often requires the time-consuming and labor-intensive task of manually tracking cells. To accelerate the task of obtaining coordinate positions of migrating cells, we have developed a graphical user interface (GUI) capable of automating the tracking of fluorescently labeled nuclei. This GUI provides an intuitive user interface that makes automated tracking accessible to researchers with no image-processing experience or familiarity with particle-tracking approaches. Using this GUI, users can interactively determine a minimum of four parameters to identify fluorescently labeled cells and automate acquisition of cell trajectories. Additional features allow for batch processing of numerous time-lapse images, curation of unwanted tracks, and subsequent statistical analysis of tracked cells. Statistical outputs allow users to evaluate migratory phenotypes, including cell speed, distance, displacement, and persistence, as well as measures of directional movement, such as forward migration index (FMI) and angular displacement. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Korsch, Margarethe; Frühholz, Sascha; Herrmann, Manfred
2016-01-01
Aging is usually accompanied by alterations of cognitive control functions such as conflict processing. Recent research suggests that aging effects on cognitive control seem to vary with degree and source of conflict, and conflict specific aging effects on performance measures as well as neural activation patterns have been shown. However, there is sparse information whether and how aging affects different stages of conflict processing as indicated by event related potentials (ERPs) such as the P2, N2 and P3 components. In the present study, 19 young and 23 elderly adults performed a combined Flanker conflict and stimulus-response-conflict (SRC) task. Analysis of the reaction times (RTs) revealed an increased SRC related conflict effect in elderly. ERP analysis furthermore demonstrated an age-related increase of the P2 amplitude in response to the SRC task. In addition, elderly adults exhibited an increased P3 amplitude modulation induced by incongruent SRC and Flanker conflict trials.
Altered cortical processing of motor inhibition in schizophrenia.
Lindberg, Påvel G; Térémetz, Maxime; Charron, Sylvain; Kebir, Oussama; Saby, Agathe; Bendjemaa, Narjes; Lion, Stéphanie; Crépon, Benoît; Gaillard, Raphaël; Oppenheim, Catherine; Krebs, Marie-Odile; Amado, Isabelle
2016-12-01
Inhibition is considered a key mechanism in schizophrenia. Short-latency intracortical inhibition (SICI) in the motor cortex is reduced in schizophrenia and is considered to reflect locally deficient γ-aminobutyric acid (GABA)-ergic modulation. However, it remains unclear how SICI is modulated during motor inhibition and how it relates to neural processing in other cortical areas. Here we studied motor inhibition Stop signal task (SST) in stabilized patients with schizophrenia (N = 28), healthy siblings (N = 21) and healthy controls (n = 31) matched in general cognitive status and educational level. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were used to investigate neural correlates of motor inhibition. SST performance was similar in patients and controls. SICI was modulated by the task as expected in healthy controls and siblings but was reduced in patients with schizophrenia during inhibition despite equivalent motor inhibition performance. fMRI showed greater prefrontal and premotor activation during motor inhibition in schizophrenia. Task-related modulation of SICI was higher in subjects who showed less inhibition-related activity in pre-supplementary motor area (SMA) and cingulate motor area. An exploratory genetic analysis of selected markers of inhibition (GABRB2, GAD1, GRM1, and GRM3) did not explain task-related differences in SICI or cortical activation. In conclusion, this multimodal study provides direct evidence of a task-related deficiency in SICI modulation in schizophrenia likely reflecting deficient GABA-A related processing in motor cortex. Compensatory activation of premotor areas may explain similar motor inhibition in patients despite local deficits in intracortical processing. Task-related modulation of SICI may serve as a useful non-invasive GABAergic marker in development of therapeutic strategies in schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Moyer, Jason T; Gnatkovsky, Vadym; Ono, Tomonori; Otáhal, Jakub; Wagenaar, Joost; Stacey, William C; Noebels, Jeffrey; Ikeda, Akio; Staley, Kevin; de Curtis, Marco; Litt, Brian; Galanopoulou, Aristea S
2017-11-01
Electroencephalography (EEG)-the direct recording of the electrical activity of populations of neurons-is a tremendously important tool for diagnosing, treating, and researching epilepsy. Although standard procedures for recording and analyzing human EEG exist and are broadly accepted, there are no such standards for research in animal models of seizures and epilepsy-recording montages, acquisition systems, and processing algorithms may differ substantially among investigators and laboratories. The lack of standard procedures for acquiring and analyzing EEG from animal models of epilepsy hinders the interpretation of experimental results and reduces the ability of the scientific community to efficiently translate new experimental findings into clinical practice. Accordingly, the intention of this report is twofold: (1) to review current techniques for the collection and software-based analysis of neural field recordings in animal models of epilepsy, and (2) to offer pertinent standards and reporting guidelines for this research. Specifically, we review current techniques for signal acquisition, signal conditioning, signal processing, data storage, and data sharing, and include applicable recommendations to standardize collection and reporting. We close with a discussion of challenges and future opportunities, and include a supplemental report of currently available acquisition systems and analysis tools. This work represents a collaboration on behalf of the American Epilepsy Society/International League Against Epilepsy (AES/ILAE) Translational Task Force (TASK1-Workgroup 5), and is part of a larger effort to harmonize video-EEG interpretation and analysis methods across studies using in vivo and in vitro seizure and epilepsy models. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
ERIC Educational Resources Information Center
Schneider, Michael; Beeres, Kassandra; Coban, Leyla; Merz, Simon; Schmidt, S. Susan; Stricker, Johannes; De Smedt, Bert
2017-01-01
Many studies have investigated the association between numerical magnitude processing skills, as assessed by the numerical magnitude comparison task, and broader mathematical competence, e.g. counting, arithmetic, or algebra. Most correlations were positive but varied considerably in their strengths. It remains unclear whether and to what extent…
Methods for Maximizing the Learning Process: A Theoretical and Experimental Analysis.
ERIC Educational Resources Information Center
Atkinson, Richard C.
This research deals with optimizing the instructional process. The approach adopted was to limit consideration to simple learning tasks for which adequate mathematical models could be developed. Optimal or suitable suboptimal instructional strategies were developed for the models. The basic idea was to solve for strategies that either maximize the…
Sequential Analysis of the Numerical Stroop Effect Reveals Response Suppression
ERIC Educational Resources Information Center
Kadosh, Roi Cohen; Gevers, Wim; Notebaert, Wim
2011-01-01
Automatic processing of irrelevant stimulus dimensions has been demonstrated in a variety of tasks. Previous studies have shown that conflict between relevant and irrelevant dimensions can be reduced when a feature of the irrelevant dimension is repeated. The specific level at which the automatic process is suppressed (e.g., perceptual repetition,…
Analysis of Alternatives (AoA) Process Improvement Study
2016-12-01
stakeholders, and mapped the process activities and durations. We tasked the SAG members with providing the information required on case studies and...are the expected time saves/cost/risk of any changes? (3) Utilization of case studies for both “good” and “challenged” AoAs to identify lessons...16 4 CASE STUDIES
A Coding Scheme for Analysing Problem-Solving Processes of First-Year Engineering Students
ERIC Educational Resources Information Center
Grigg, Sarah J.; Benson, Lisa C.
2014-01-01
This study describes the development and structure of a coding scheme for analysing solutions to well-structured problems in terms of cognitive processes and problem-solving deficiencies for first-year engineering students. A task analysis approach was used to assess students' problem solutions using the hierarchical structure from a…
Modeling as a Decision-Making Process
ERIC Educational Resources Information Center
Bleiler-Baxter, Sarah K.; Stephens, D. Christopher; Baxter, Wesley A.; Barlow, Angela T.
2017-01-01
The goal in this article is to support teachers in better understanding what it means to model with mathematics by focusing on three key decision-making processes: Simplification, Relationship Mapping, and Situation Analysis. The authors use the Theme Park task to help teachers develop a vision of how students engage in these three decision-making…
Comparing Latent Dirichlet Allocation and Latent Semantic Analysis as Classifiers
ERIC Educational Resources Information Center
Anaya, Leticia H.
2011-01-01
In the Information Age, a proliferation of unstructured text electronic documents exists. Processing these documents by humans is a daunting task as humans have limited cognitive abilities for processing large volumes of documents that can often be extremely lengthy. To address this problem, text data computer algorithms are being developed.…
Conversion of Questionnaire Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Danny H; Elwood Jr, Robert H
During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relativemore » risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.« less
An application of computer aided requirements analysis to a real time deep space system
NASA Technical Reports Server (NTRS)
Farny, A. M.; Morris, R. V.; Hartsough, C.; Callender, E. D.; Teichroew, D.; Chikofsky, E.
1981-01-01
The entire procedure of incorporating the requirements and goals of a space flight project into integrated, time ordered sequences of spacecraft commands, is called the uplink process. The Uplink Process Control Task (UPCT) was created to examine the uplink process and determine ways to improve it. The Problem Statement Language/Problem Statement Analyzer (PSL/PSA) designed to assist the designer/analyst/engineer in the preparation of specifications of an information system is used as a supporting tool to aid in the analysis. Attention is given to a definition of the uplink process, the definition of PSL/PSA, the construction of a PSA database, the value of analysis to the study of the uplink process, and the PSL/PSA lessons learned.
Muraskin, Jordan; Dodhia, Sonam; Lieberman, Gregory; Garcia, Javier O; Verstynen, Timothy; Vettel, Jean M; Sherwin, Jason; Sajda, Paul
2016-12-01
Post-task resting state dynamics can be viewed as a task-driven state where behavioral performance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post-task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared post-task resting state connectivity using a seed-based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA-L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups suggests variability in modulatory attention in the post-task state, and (3) group differences between BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454-4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Henz, Sonja; Kutz, Dieter F.; Werner, Jana; Hürster, Walter; Kolb, Florian P.; Nida-Ruemelin, Julian
2015-01-01
The aim of the study was to determine whether a deliberative process, leading to a motor action, is detectable in high density EEG recordings. Subjects were required to press one of two buttons. In a simple motor task the subject knew which button to press, whilst in a color-word Stroop task subjects had to press the right button with the right index finger when meaning and color coincided, or the left button with the left index finger when meaning and color were disparate. EEG recordings obtained during the simple motor task showed a sequence of positive (P) and negative (N) cortical potentials (P1-N1-P2) which are assumed to be related to the processing of the movement. The sequence of cortical potentials was similar in EEG recordings of subjects having to deliberate over how to respond, but the above sequence (P1-N1-P2) was preceded by slowly increasing negativity (N0), with N0 being assumed to represent the end of the deliberation process. Our data suggest the existence of neurophysiological correlates of deliberative processes. PMID:26190987
A computational study of whole-brain connectivity in resting state and task fMRI
Goparaju, Balaji; Rana, Kunjan D.; Calabro, Finnegan J.; Vaina, Lucia Maria
2014-01-01
Background We compared the functional brain connectivity produced during resting-state in which subjects were not actively engaged in a task with that produced while they actively performed a visual motion task (task-state). Material/Methods In this paper we employed graph-theoretical measures and network statistics in novel ways to compare, in the same group of human subjects, functional brain connectivity during resting-state fMRI with brain connectivity during performance of a high level visual task. We performed a whole-brain connectivity analysis to compare network statistics in resting and task states among anatomically defined Brodmann areas to investigate how brain networks spanning the cortex changed when subjects were engaged in task performance. Results In the resting state, we found strong connectivity among the posterior cingulate cortex (PCC), precuneus, medial prefrontal cortex (MPFC), lateral parietal cortex, and hippocampal formation, consistent with previous reports of the default mode network (DMN). The connections among these areas were strengthened while subjects actively performed an event-related visual motion task, indicating a continued and strong engagement of the DMN during task processing. Regional measures such as degree (number of connections) and betweenness centrality (number of shortest paths), showed that task performance induces stronger inter-regional connections, leading to a denser processing network, but that this does not imply a more efficient system as shown by the integration measures such as path length and global efficiency, and from global measures such as small-worldness. Conclusions In spite of the maintenance of connectivity and the “hub-like” behavior of areas, our results suggest that the network paths may be rerouted when performing the task condition. PMID:24947491
2017-01-01
Recent studies have challenged the ventral/“what” and dorsal/“where” two-visual-processing-pathway view by showing the existence of “what” and “where” information in both pathways. Is the two-pathway distinction still valid? Here, we examined how goal-directed visual information processing may differentially impact visual representations in these two pathways. Using fMRI and multivariate pattern analysis, in three experiments on human participants (57% females), by manipulating whether color or shape was task-relevant and how they were conjoined, we examined shape-based object category decoding in occipitotemporal and parietal regions. We found that object category representations in all the regions examined were influenced by whether or not object shape was task-relevant. This task effect, however, tended to decrease as task-relevant and irrelevant features were more integrated, reflecting the well-known object-based feature encoding. Interestingly, task relevance played a relatively minor role in driving the representational structures of early visual and ventral object regions. They were driven predominantly by variations in object shapes. In contrast, the effect of task was much greater in dorsal than ventral regions, with object category and task relevance both contributing significantly to the representational structures of the dorsal regions. These results showed that, whereas visual representations in the ventral pathway are more invariant and reflect “what an object is,” those in the dorsal pathway are more adaptive and reflect “what we do with it.” Thus, despite the existence of “what” and “where” information in both visual processing pathways, the two pathways may still differ fundamentally in their roles in visual information representation. SIGNIFICANCE STATEMENT Visual information is thought to be processed in two distinctive pathways: the ventral pathway that processes “what” an object is and the dorsal pathway that processes “where” it is located. This view has been challenged by recent studies revealing the existence of “what” and “where” information in both pathways. Here, we found that goal-directed visual information processing differentially modulates shape-based object category representations in the two pathways. Whereas ventral representations are more invariant to the demand of the task, reflecting what an object is, dorsal representations are more adaptive, reflecting what we do with the object. Thus, despite the existence of “what” and “where” information in both pathways, visual representations may still differ fundamentally in the two pathways. PMID:28821655
Saliasi, Emi; Geerligs, Linda; Lorist, Monicque M.; Maurits, Natasha M.
2014-01-01
To investigate which neural correlates are associated with successful working memory performance, fMRI was recorded in healthy younger and older adults during performance on an n-back task with varying task demands. To identify functional networks supporting working memory processes, we used independent component analysis (ICA) decomposition of the fMRI data. Compared to younger adults, older adults showed a larger neural (BOLD) response in the more complex (2-back) than in the baseline (0-back) task condition, in the ventral lateral prefrontal cortex (VLPFC) and in the right fronto-parietal network (FPN). Our results indicated that a higher BOLD response in the VLPFC was associated with increased performance accuracy in older adults, in both the baseline and the more complex task condition. This ‘BOLD-performance’ relationship suggests that the neural correlates linked with successful performance in the older adults are not uniquely related to specific working memory processes present in the complex but not in the baseline task condition. Furthermore, the selective presence of this relationship in older but not in younger adults suggests that increased neural activity in the VLPFC serves a compensatory role in the aging brain which benefits task performance in the elderly. PMID:24911016
Langner, Robert; Eickhoff, Simon B.
2012-01-01
Maintaining attention for more than a few seconds is essential for mastering everyday life. Yet, our ability to stay focused on a particular task is limited, resulting in well-known performance decrements with increasing time on task. Intriguingly, such decrements are even more likely if the task is cognitively simple and repetitive. The attentional function that enables our prolonged engagement in intellectually unchallenging, uninteresting activities has been termed “vigilant attention.” Here we synthesized what we have learnt from functional neuroimaging about the mechanisms of this essential mental faculty. To this end, a quantitative meta-analysis of pertinent neuroimaging studies was performed, including supplementary analyses of moderating factors. Furthermore, we reviewed the available evidence on neural time-on-task effects, additionally considering information obtained from patients with focal brain damage. Integrating the results of both meta-analysis and review, a set of mainly right-lateralized brain regions was identified that may form the core network subserving vigilant attention in humans, including dorsomedial, mid- and ventrolateral prefrontal cortex, anterior insula, parietal areas (intraparietal sulcus, temporo-parietal junction), and subcortical structures (cerebellar vermis, thalamus, putamen, midbrain). We discuss the potential functional roles of different nodes of this network as well as implications of our findings for a theoretical account of vigilant attention. It is conjectured that sustaining attention is a multi-component, non-unitary mental faculty, involving a mixture of (i) sustained/recurrent processes subserving task-set/arousal maintenance and (ii) transient processes subserving the target-driven reorienting of attention. Finally, limitations of previous studies are considered and suggestions for future research are provided. PMID:23163491
McBride, Dawn M; Abney, Drew H
2012-01-01
We examined multi-process (MP) and transfer-appropriate processing descriptions of prospective memory (PM). Three conditions were compared that varied the overlap in processing type (perceptual/conceptual) between the ongoing and PM tasks such that two conditions involved a match of perceptual processing and one condition involved a mismatch in processing (conceptual ongoing task/perceptual PM task). One of the matched processing conditions also created a focal PM task, whereas the other two conditions were considered non-focal (Einstein & McDaniel, 2005). PM task accuracy and ongoing task completion speed in baseline and PM task conditions were measured. Accuracy results indicated a higher PM task completion rate for the focal condition than the non-focal conditions, a finding that is consistent with predictions made by the MP view. However, reaction time (RT) analyses indicated that PM task cost did not differ across conditions when practice effects are considered. Thus, the PM accuracy results are consistent with a MP description of PM, but RT results did not support the MP view predictions regarding PM cost.
Total systems design analysis of high performance structures
NASA Technical Reports Server (NTRS)
Verderaime, V.
1993-01-01
Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.
Phase 1 of the automated array assembly task of the low cost silicon solar array project
NASA Technical Reports Server (NTRS)
Pryor, R. A.; Grenon, L. A.; Coleman, M. G.
1978-01-01
The results of a study of process variables and solar cell variables are presented. Interactions between variables and their effects upon control ranges of the variables are identified. The results of a cost analysis for manufacturing solar cells are discussed. The cost analysis includes a sensitivity analysis of a number of cost factors.
Task analysis of autonomous on-road driving
NASA Astrophysics Data System (ADS)
Barbera, Anthony J.; Horst, John A.; Schlenoff, Craig I.; Aha, David W.
2004-12-01
The Real-time Control System (RCS) Methodology has evolved over a number of years as a technique to capture task knowledge and organize it into a framework conducive to implementation in computer control systems. The fundamental premise of this methodology is that the present state of the task activities sets the context that identifies the requirements for all of the support processing. In particular, the task context at any time determines what is to be sensed in the world, what world model states are to be evaluated, which situations are to be analyzed, what plans should be invoked, and which behavior generation knowledge is to be accessed. This methodology concentrates on the task behaviors explored through scenario examples to define a task decomposition tree that clearly represents the branching of tasks into layers of simpler and simpler subtask activities. There is a named branching condition/situation identified for every fork of this task tree. These become the input conditions of the if-then rules of the knowledge set that define how the task is to respond to input state changes. Detailed analysis of each branching condition/situation is used to identify antecedent world states and these, in turn, are further analyzed to identify all of the entities, objects, and attributes that have to be sensed to determine if any of these world states exist. This paper explores the use of this 4D/RCS methodology in some detail for the particular task of autonomous on-road driving, which work was funded under the Defense Advanced Research Project Agency (DARPA) Mobile Autonomous Robot Software (MARS) effort (Doug Gage, Program Manager).
Dionne-Odom, J. Nicholas; Willis, Danny G.; Bakitas, Marie; Crandall, Beth; Grace, Pamela J.
2014-01-01
Background Surrogate decision-makers (SDMs) face difficult decisions at end of life (EOL) for decisionally incapacitated intensive care unit (ICU) patients. Purpose Identify and describe the underlying psychological processes of surrogate decision-making for adults at EOL in the ICU. Method Qualitative case study design using a cognitive task analysis (CTA) interviewing approach. Participants were recruited from October 2012 to June 2013 from an academic tertiary medical center’s ICU located in the rural Northeastern United States. Nineteen SDMs for patients who had died in the ICU completed in-depth semi-structured CTA interviews. Discussion The conceptual framework formulated from data analysis reveals that three underlying, iterative, psychological dimensions: gist impressions, distressing emotions, and moral intuitions impact a SDM’s judgment about the acceptability of either the patient’s medical treatments or his or her condition. Conclusion The framework offers initial insights about the underlying psychological processes of surrogate decision-making and may facilitate enhanced decision support for SDMs. PMID:25982772