Sample records for task directed sensing

  1. Task directed sensing

    NASA Technical Reports Server (NTRS)

    Firby, R. James

    1990-01-01

    High-level robot control research must confront the limitations imposed by real sensors if robots are to be controlled effectively in the real world. In particular, sensor limitations make it impossible to maintain a complete, detailed world model of the situation surrounding the robot. To address the problems involved in planning with the resulting incomplete and uncertain world models, traditional robot control architectures must be altered significantly. Task-directed sensing and control is suggested as a way of coping with world model limitations by focusing sensing and analysis resources on only those parts of the world relevant to the robot's active goals. The RAP adaptive execution system is used as an example of a control architecture designed to deploy sensing resources in this way to accomplish both action and knowledge goals.

  2. Manipulation based on sensor-directed control: An integrated end effector and touch sensing system

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Sword, A. J.

    1973-01-01

    A hand/touch sensing system is described that, when mounted on a position-controlled manipulator, greatly expands the kinds of automated manipulation tasks that can be undertaken. Because of the variety of coordinate conversions, control equations, and completion criteria, control is necessarily dependent upon a small digital computer. The sensing system is designed both to be rugged and to sense the necessary touch and force information required to execute a wide range of manipulation tasks. The system consists of a six-axis wrist sensor, external touch sensors, and a pair of matrix jaw sensors. Details of the construction of the particular sensors, the integration of the end effector into the sensor system, and the control algorithms for using the sensor outputs to perform manipulation tasks automatically are discussed.

  3. Allocentric-heading recall and its relation to self-reported sense-of-direction.

    PubMed

    Sholl, M Jeanne; Kenny, Ryan J; DellaPorta, Katherine A

    2006-05-01

    A sense of direction (SOD) computes the body's facing direction relative to a reference frame grounded in the environment. The authors report on three experiments in which they used a heading-recall task to tap the functioning of a SOD system and then correlated task performance with self-reported SOD as a convergent test of the task's construct validity. On each heading-recall trial, the participant judged the photographer's allocentric heading when photographing a pictured outdoor scene. Participants were tested over the full range of SOD ratings in Experiment 1, and in Experiments 2 and 3 heading-recall at the SOD extremes was tested. In all experiments, there was wide variability in heading-recall accuracy that covaried with self-rated SOD. Parametric manipulation of various task parameters revealed some likely functional properties of the SOD system. The results support the psychological reality of a SOD system and further indicate that there are large individual differences in the efficacy with which the system functions.

  4. The Sense of Agency during Continuous Action: Performance Is More Important than Action-Feedback Association

    PubMed Central

    Wen, Wen; Yamashita, Atsushi; Asama, Hajime

    2015-01-01

    The sense of agency refers to the feeling that one is controlling events through one’s own behavior. This study examined how task performance and the delay of events influence one’s sense of agency during continuous action accompanied by a goal. The participants were instructed to direct a moving dot into a square as quickly as possible by pressing the left and right keys on a keyboard to control the direction in which the dot traveled. The interval between the key press and response of the dot (i.e., direction change) was manipulated to vary task difficulty. Moreover, in the assisted condition, the computer ignored participants’ erroneous commands, resulting in improved task performance but a weaker association between the participants’ commands and actual movements of the dot relative to the condition in which all of the participants’ commands were executed (i.e., self-control condition). The results showed that participants’ sense of agency increased with better performance in the assisted condition relative to the self-control condition, even though a large proportion of their commands were not executed. We concluded that, when the action-feedback association was uncertain, cognitive inference was more dominant relative to the process of comparing predicted and perceived information in the judgment of agency. PMID:25893992

  5. Sense of agency in continuous action: Assistance-induced performance improvement is self-attributed even with knowledge of assistance.

    PubMed

    Inoue, Kazuya; Takeda, Yuji; Kimura, Motohiro

    2017-02-01

    In a task involving continuous action to achieve a goal, the sense of agency increases with an improvement in task performance that is induced by unnoticed computer assistance. This study investigated how explicit instruction about the existence of computer assistance affects the increase of sense of agency that accompanies performance improvement. Participants performed a continuous action task in which they controlled the direction of motion of a dot to a goal by pressing keys. When instructions indicated the absence of assistance, the sense of agency increased with performance improvement induced by computer assistance, replicating previous findings. Interestingly, this increase of sense of agency was also observed even when instructions indicated the presence of assistance. These results suggest that even when a plausible cause of performance improvement other than one's own action exists, the improvement can be misattributed to one's own control of action, resulting in an increased sense of agency. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Position sense at the human elbow joint measured by arm matching or pointing.

    PubMed

    Tsay, Anthony; Allen, Trevor J; Proske, Uwe

    2016-10-01

    Position sense at the human elbow joint has traditionally been measured in blindfolded subjects using a forearm matching task. Here we compare position errors in a matching task with errors generated when the subject uses a pointer to indicate the position of a hidden arm. Evidence from muscle vibration during forearm matching supports a role for muscle spindles in position sense. We have recently shown using vibration, as well as muscle conditioning, which takes advantage of muscle's thixotropic property, that position errors generated in a forearm pointing task were not consistent with a role by muscle spindles. In the present study we have used a form of muscle conditioning, where elbow muscles are co-contracted at the test angle, to further explore differences in position sense measured by matching and pointing. For fourteen subjects, in a matching task where the reference arm had elbow flexor and extensor muscles contracted at the test angle and the indicator arm had its flexors conditioned at 90°, matching errors lay in the direction of flexion by 6.2°. After the same conditioning of the reference arm and extension conditioning of the indicator at 0°, matching errors lay in the direction of extension (5.7°). These errors were consistent with predictions based on a role by muscle spindles in determining forearm matching outcomes. In the pointing task subjects moved a pointer to align it with the perceived position of the hidden arm. After conditioning of the reference arm as before, pointing errors all lay in a more extended direction than the actual position of the arm by 2.9°-7.3°, a distribution not consistent with a role by muscle spindles. We propose that in pointing muscle spindles do not play the major role in signalling limb position that they do in matching, but that other sources of sensory input should be given consideration, including afferents from skin and joint.

  7. Distributed Task Offloading in Heterogeneous Vehicular Crowd Sensing

    PubMed Central

    Liu, Yazhi; Wang, Wendong; Ma, Yuekun; Yang, Zhigang; Yu, Fuxing

    2016-01-01

    The ability of road vehicles to efficiently execute different sensing tasks varies because of the heterogeneity in their sensing ability and trajectories. Therefore, the data collection sensing task, which requires tempo-spatial sensing data, becomes a serious problem in vehicular sensing systems, particularly those with limited sensing capabilities. A utility-based sensing task decomposition and offloading algorithm is proposed in this paper. The utility function for a task executed by a certain vehicle is built according to the mobility traces and sensing interfaces of the vehicle, as well as the sensing data type and tempo-spatial coverage requirements of the sensing task. Then, the sensing tasks are decomposed and offloaded to neighboring vehicles according to the utilities of the neighboring vehicles to the decomposed sensing tasks. Real trace-driven simulation shows that the proposed task offloading is able to collect much more comprehensive and uniformly distributed sensing data than other algorithms. PMID:27428967

  8. Divided Attention and Processes Underlying Sense of Agency

    PubMed Central

    Wen, Wen; Yamashita, Atsushi; Asama, Hajime

    2016-01-01

    Sense of agency refers to the subjective feeling of controlling events through one’s behavior or will. Sense of agency results from matching predictions of one’s own actions with actual feedback regarding the action. Furthermore, when an action involves a cued goal, performance-based inference contributes to sense of agency. That is, if people achieve their goal, they would believe themselves to be in control. Previous studies have shown that both action-effect comparison and performance-based inference contribute to sense of agency; however, the dominance of one process over the other may shift based on task conditions such as the presence or absence of specific goals. In this study, we examined the influence of divided attention on these two processes underlying sense of agency in two conditions. In the experimental task, participants continuously controlled a moving dot for 10 s while maintaining a string of three or seven digits in working memory. We found that when there was no cued goal (no-cued-goal condition), sense of agency was impaired by high cognitive load. Contrastingly, when participants controlled the dot based on a cued goal (cued-goal-directed condition), their sense of agency was lower than in the no-cued-goal condition and was not affected by cognitive load. The results suggest that the action-effect comparison process underlying sense of agency requires attention. On the other hand, the weaker influence of divided attention in the cued-goal-directed condition could be attributed to the dominance of performance-based inference, which is probably automatic. PMID:26858680

  9. The Nature of Relationships between Mental Rotation, Math, and Language in Deaf Signers

    ERIC Educational Resources Information Center

    Halper, Elizabeth Blaisdell

    2009-01-01

    Three mental rotation tasks, the Card Rotation Task (CRT), the Vandenberg Mental Rotation Test (VMRT), and the Money Road-Map of Direction Sense (MRM), were administered to 60 deaf students from Gallaudet University to determine if mental rotation was predictive of scores on the ACT English or Math subtests. Other predictor variables, such as…

  10. Internal sense of direction and landmark use in pigeons (Columba livia).

    PubMed

    Sutton, Jennifer E; Shettleworth, Sara J

    2005-08-01

    The relative importance of an internal sense of direction based on inertial cues and landmark piloting for small-scale navigation by White King pigeons (Columba livia) was investigated in an arena search task. Two groups of pigeons differed in whether they had access to visual cues outside the arena. In Experiment 1, pigeons were given experience with 2 different entrances and all pigeons transferred accurate searching to novel entrances. Explicit disorientation before entering did not affect accuracy. In Experiments 2-4, landmarks and inertial cues were put in conflict or tested 1 at a time. Pigeons tended to follow the landmarks in a conflict situation but could use an internal sense of direction to search when landmarks were unavailable. Copyright 2005 APA, all rights reserved.

  11. Cognitive Sciences

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session MP4 includes short reports on: (1) Face Recognition in Microgravity: Is Gravity Direction Involved in the Inversion Effect?; (2) Motor Timing under Microgravity; (3) Perceived Self-Motion Assessed by Computer-Generated Animations: Complexity and Reliability; (4) Prolonged Weightlessness Reference Frames and Visual Symmetry Detection; (5) Mental Representation of Gravity During a Locomotor Task; and (6) Haptic Perception in Weightlessness: A Sense of Force or a Sense of Effort?

  12. 4D light-field sensing system for people counting

    NASA Astrophysics Data System (ADS)

    Hou, Guangqi; Zhang, Chi; Wang, Yunlong; Sun, Zhenan

    2016-03-01

    Counting the number of people is still an important task in social security applications, and a few methods based on video surveillance have been proposed in recent years. In this paper, we design a novel optical sensing system to directly acquire the depth map of the scene from one light-field camera. The light-field sensing system can count the number of people crossing the passageway, and record the direction and intensity of rays at a snapshot without any assistant light devices. Depth maps are extracted from the raw light-ray sensing data. Our smart sensing system is equipped with a passive imaging sensor, which is able to naturally discern the depth difference between the head and shoulders for each person. Then a human model is built. Through detecting the human model from light-field images, the number of people passing the scene can be counted rapidly. We verify the feasibility of the sensing system as well as the accuracy by capturing real-world scenes passing single and multiple people under natural illumination.

  13. The influence of performance on action-effect integration in sense of agency.

    PubMed

    Wen, Wen; Yamashita, Atsushi; Asama, Hajime

    2017-08-01

    Sense of agency refers to the subjective feeling of being able to control an outcome through one's own actions or will. Prior studies have shown that both sensory processing (e.g., comparisons between sensory feedbacks and predictions basing on one's motor intentions) and high-level cognitive/constructive processes (e.g., inferences based on one's performance or the consequences of one's actions) contribute to judgments of sense of agency. However, it remains unclear how these two types of processes interact, which is important for clarifying the mechanisms underlying sense of agency. Thus, we examined whether performance-based inferences influence action-effect integration in sense of agency using a delay detection paradigm in two experiments. In both experiments, participants pressed left and right arrow keys to control the direction in which a moving dot was travelling. The dot's response delay was manipulated randomly on 7 levels (0-480ms) between the trials; for each trial, participants were asked to judge whether the dot response was delayed and to rate their level of agency over the dot. In Experiment 1, participants tried to direct the dot to reach a destination on the screen as quickly as possible. Furthermore, the computer assisted participants by ignoring erroneous commands for half of the trials (assisted condition), while in the other half, all of the participants' commands were executed (self-control condition). In Experiment 2, participants directed the dot as they pleased (without a specific goal), but, in half of the trials, the computer randomly ignored 32% of their commands (disturbed condition) rather than assisted them. The results from the two experiments showed that performance enhanced action-effect integration. Specifically, when task performance was improved through the computer's assistance in Experiment 1, delay detection was reduced in the 480-ms delay condition, despite the fact that 32% of participants' commands were ignored. Conversely, when no feedback on task performance was given (as in Experiment 2), the participants reported greater delay when some of their commands were randomly ignored. Furthermore, the results of a logistic regression analysis showed that the threshold of delay detection was greater in the assisted condition than in the self-control condition in Experiment 1, which suggests a wider time window for action-effect integration. A multivariate analysis also revealed that assistance was related to reduced delay detection via task performance, while reduced delay detection was directly correlated with a better sense of agency. These results indicate an association between the implicit and explicit aspects of sense of agency. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Sensor fusion IV: Control paradigms and data structures; Proceedings of the Meeting, Boston, MA, Nov. 12-15, 1991

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S. (Editor)

    1992-01-01

    Various papers on control paradigms and data structures in sensor fusion are presented. The general topics addressed include: decision models and computational methods, sensor modeling and data representation, active sensing strategies, geometric planning and visualization, task-driven sensing, motion analysis, models motivated biology and psychology, decentralized detection and distributed decision, data fusion architectures, robust estimation of shapes and features, application and implementation. Some of the individual subjects considered are: the Firefly experiment on neural networks for distributed sensor data fusion, manifold traversing as a model for learning control of autonomous robots, choice of coordinate systems for multiple sensor fusion, continuous motion using task-directed stereo vision, interactive and cooperative sensing and control for advanced teleoperation, knowledge-based imaging for terrain analysis, physical and digital simulations for IVA robotics.

  15. Russian Earth Science Research Program on ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armand, N. A.; Tishchenko, Yu. G.

    1999-01-22

    Version of the Russian Earth Science Research Program on the Russian segment of ISS is proposed. The favorite tasks are selected, which may be solved with the use of space remote sensing methods and tools and which are worthwhile for realization. For solving these tasks the specialized device sets (submodules), corresponding to the specific of solved tasks, are working out. They would be specialized modules, transported to the ISS. Earth remote sensing research and ecological monitoring (high rates and large bodies transmitted from spaceborne information, comparatively stringent requirements to the period of its processing, etc.) cause rather high requirements tomore » the ground segment of receiving, processing, storing, and distribution of space information in the interests of the Earth natural resources investigation. Creation of the ground segment has required the development of the interdepartmental data receiving and processing center. Main directions of works within the framework of the ISS program are determined.« less

  16. Directional radiance measurements: Challenges in the sampling of landscapes

    NASA Technical Reports Server (NTRS)

    Deering, D. W.

    1994-01-01

    Most earth surfaces, particularly those supporting natural vegetation ecosystems, constitute structurally and spectrally complex surfaces that are distinctly non-Lambertian reflectors. Obtaining meaningful measurements of the directional radiances of landscapes and obtaining estimates of the complete bidirectional reflectance distribution functions of ground targets with complex and variable landscape and radiometric features are challenging tasks. Reasons for the increased interest in directional radiance measurements are presented, and the issues that must be addressed when trying to acquire directional radiances for vegetated land surfaces from different types of remote sensing platforms are discussed. Priority research emphases are suggested, concerning field measurements of directional surface radiances and reflectances for future research. Primarily, emphasis must be given to the acquisition of more complete and directly associated radiometric and biometric parameter data sets that will empower the exploitation of the 'angular dimension' in remote sensing of vegetation through enabling the further development and rigorous validation of state of the art plant canopy models.

  17. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.

    PubMed

    Cuppone, Anna Vera; Squeri, Valentina; Semprini, Marianna; Masia, Lorenzo; Konczak, Jürgen

    2016-01-01

    This study examined the trainability of the proprioceptive sense and explored the relationship between proprioception and motor learning. With vision blocked, human learners had to perform goal-directed wrist movements relying solely on proprioceptive/haptic cues to reach several haptically specified targets. One group received additional somatosensory movement error feedback in form of vibro-tactile cues applied to the skin of the forearm. We used a haptic robotic device for the wrist and implemented a 3-day training regimen that required learners to make spatially precise goal-directed wrist reaching movements without vision. We assessed whether training improved the acuity of the wrist joint position sense. In addition, we checked if sensory learning generalized to the motor domain and improved spatial precision of wrist tracking movements that were not trained. The main findings of the study are: First, proprioceptive acuity of the wrist joint position sense improved after training for the group that received the combined proprioceptive/haptic and vibro-tactile feedback (VTF). Second, training had no impact on the spatial accuracy of the untrained tracking task. However, learners who had received VTF significantly reduced their reliance on haptic guidance feedback when performing the untrained motor task. That is, concurrent VTF was highly salient movement feedback and obviated the need for haptic feedback. Third, VTF can be also provided by the limb not involved in the task. Learners who received VTF to the contralateral limb equally benefitted. In conclusion, somatosensory training can significantly enhance proprioceptive acuity within days when learning is coupled with vibro-tactile sensory cues that provide feedback about movement errors. The observable sensory improvements in proprioception facilitates motor learning and such learning may generalize to the sensorimotor control of the untrained motor tasks. The implications of these findings for neurorehabilitation are discussed.

  18. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications.

    PubMed

    Le, Duc V; Nguyen, Thuong; Scholten, Hans; Havinga, Paul J M

    2017-11-29

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  19. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    PubMed Central

    Scholten, Hans; Havinga, Paul J. M.

    2017-01-01

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring. PMID:29186037

  20. Nanoposition sensors with superior linear response to position and unlimited travel ranges

    NASA Astrophysics Data System (ADS)

    Lee, Sheng-Chiang; Peters, Randall D.

    2009-04-01

    With the advancement in nanotechnology, the ability of positioning/measuring at subnanometer scale has been one of the most critical issues for the nanofabrication industry and researchers using scanning probe microscopy. Commercial nanopositioners have achieved direct measurements at the scale of 0.01 nm with capacitive sensing metrology. However, the commercial sensors have small dynamic ranges (up to only a few hundred micrometers) and are relatively large in size (centimeters in the transverse directions to the motion), which is necessary for healthy signal detections but making it difficult to use on smaller devices. This limits applications in which large materials (on the scale of centimeters or greater) are handled with needs of subnanometer resolutions. What has been done in the past is to combine the fine and coarse translation stages with different dynamic ranges to simultaneously achieve long travel range and high spatial resolution. In this paper, we present a novel capacitive position sensing metrology with ultrawide dynamic range from subnanometer to literally any practically desired length for a translation stage. This sensor will greatly simplify the task and enhance the performance of direct metrology in a hybrid translational stage covering translation tasks from subnanometer to centimeters.

  1. Active Sensing System with In Situ Adjustable Sensor Morphology

    PubMed Central

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  2. Basic Remote Sensing Investigations for Beach Reconnaissance.

    DTIC Science & Technology

    Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in

  3. Action planning and position sense in children with Developmental Coordination Disorder.

    PubMed

    Adams, Imke L J; Ferguson, Gillian D; Lust, Jessica M; Steenbergen, Bert; Smits-Engelsman, Bouwien C M

    2016-04-01

    The present study examined action planning and position sense in children with Developmental Coordination Disorder (DCD). Participants performed two action planning tasks, the sword task and the bar grasping task, and an active elbow matching task to examine position sense. Thirty children were included in the DCD group (aged 6-10years) and age-matched to 90 controls. The DCD group had a MABC-2 total score ⩽5th percentile, the control group a total score ⩾25th percentile. Results from the sword-task showed that children with DCD planned less for end-state comfort. On the bar grasping task no significant differences in planning for end-state comfort between the DCD and control group were found. There was also no significant difference in the position sense error between the groups. The present study shows that children with DCD plan less for end-state comfort, but that this result is task-dependent and becomes apparent when more precision is needed at the end of the task. In that respect, the sword-task appeared to be a more sensitive task to assess action planning abilities, than the bar grasping task. The action planning deficit in children with DCD cannot be explained by an impaired position sense during active movements. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Three-axis force sensor with fiber Bragg grating.

    PubMed

    Hyundo Choi; Yoan Lim; Junhyung Kim

    2017-07-01

    Haptic feedback is critical for many surgical tasks, and it replicates force reflections at the surgical site. To meet the force reflection requirements, we propose a force sensor with an optical fiber Bragg grating (FBG) for robotic surgery. The force sensor can calculate three directional forces of an instrument from the strain of three FBGs, even under electromagnetic interference. A flexible ring-shape structure connects an instrument tip and fiber strain gages to sense three directional force. And a stopper mechanism is added in the structure to avoid plastic deformation under unexpected large force on the instrument tip. The proposed sensor is experimentally verified to have a sensing range from -12 N to 12 N, and its sensitivity was less than 0.06 N.

  5. User-centric incentive design for participatory mobile phone sensing

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Lu, Haoyang

    2014-05-01

    Mobile phone sensing is a critical underpinning of pervasive mobile computing, and is one of the key factors for improving people's quality of life in modern society via collective utilization of the on-board sensing capabilities of people's smartphones. The increasing demands for sensing services and ambient awareness in mobile environments highlight the necessity of active participation of individual mobile users in sensing tasks. User incentives for such participation have been continuously offered from an application-centric perspective, i.e., as payments from the sensing server, to compensate users' sensing costs. These payments, however, are manipulated to maximize the benefits of the sensing server, ignoring the runtime flexibility and benefits of participating users. This paper presents a novel framework of user-centric incentive design, and develops a universal sensing platform which translates heterogenous sensing tasks to a generic sensing plan specifying the task-independent requirements of sensing performance. We use this sensing plan as input to reduce three categories of sensing costs, which together cover the possible sources hindering users' participation in sensing.

  6. Investigation on sense of control parameters for joystick interface in remote operated container crane application

    NASA Astrophysics Data System (ADS)

    Abdullah, U. N. N.; Handroos, H.

    2017-09-01

    Introduction: This paper presents the study of sense of control parameters to improve the lack of direct motion feeling through remote operated container crane station (ROCCS) joystick interface. The investigations of the parameters in this study are important to develop the engineering parameters related to the sense of control goal in the next design process. Methodology: Structured interviews and observations were conducted to obtain the user experience data from thirteen remote container crane operators from two international terminals. Then, interview analysis, task analysis, activity analysis and time line analysis were conducted to compare and contrast the results from interviews and observations. Results: Four experience parameters were identified to support the sense of control goal in the later design improvement of the ROCC joystick interface. The significance of difficulties to control, unsynchronized movements, facilitate in control and decision making in unexpected situation as parameters to the sense of control goal were validated by' feedbacks from operators as well as analysis. Contribution: This study provides feedback directly from end users towards developing a sustainable control interface for ROCCS in specific and remote operated off-road vehicles in general.

  7. Two-D results on human operator perception

    NASA Technical Reports Server (NTRS)

    Siapkara, A. A.; Sheridan, T. B.

    1981-01-01

    The application of multidimensional scaling methodology in human factors engineering is presented. The nonorthogonality of internally perceived task variables is exhibited for first and second order plants with both dependent and independent task variables. Directions of operator preference are shown for actual performance, pilot opinion rating, and subjective measures of fatigue, adaptability, and system recognition. Improvement of performance in second order systems is exhibited by the use of bang-bang feedback information. Dissimilarity measures for system comparison are suggested in order to account for human operator rotations and subjective sense of time.

  8. No Proprioceptive Deficits in Autism despite Movement-Related Sensory and Execution Impairments

    ERIC Educational Resources Information Center

    Fuentes, Christina T.; Mostofsky, Stewart H.; Bastian, Amy J.

    2011-01-01

    Autism spectrum disorder (ASD) often involves sensory and motor problems, yet the proprioceptive sense of limb position has not been directly assessed. We used three tasks to assess proprioception in adolescents with ASD who had motor and sensory perceptual abnormalities, and compared them to age- and IQ-matched controls. Results showed no group…

  9. Fun While Showing, Not Telling: Crafting Vivid Detail in Writing

    ERIC Educational Resources Information Center

    Del Nero, Jennifer Renner

    2017-01-01

    This teaching tip highlights three writing minilessons that help students construct vivid sensory detail (textual detail related to the five senses) in their fiction and creative nonfiction writing. Learning to show, not tell, is a difficult task for novice writers. The author explores reasons why this is the case and provides directions for the…

  10. IEA Task 32: Wind Lidar Systems for Wind Energy Deployment (LIDAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, Martin; Trabucchi, Davide; Clifton, Andrew

    2016-05-25

    Under the International Energy Agency Wind Implementing Agreement (IEA Wind) Task 11, researchers started examining novel applications for remote sensing and the issues around them during the 51st topical expert meeting about remote sensing in January 2007. The 59th topical expert meeting organized by Task 11 in October 2009 was also dedicated to remote sensing, and the first draft of the Task's recommended practices on remote sensing was published in January 2013. The results of the Task 11 topical expert meetings provided solid groundwork for a new IEA Wind Task 32 on wind lidar technologies. Members of the wind communitymore » identified the need to consolidate the knowledge about wind lidar systems to facilitate their use, and to investigate how to exploit the advantages offered by this technology. This was the motivation that led to the start of IEA Wind Task 32 'Lidar Application for Wind Energy Deployment' in November 2011. The kick-off was meeting was held in May 2012.« less

  11. I believe I'm good at orienting myself… But is that true?

    PubMed

    Nori, Raffaella; Piccardi, Laura

    2015-08-01

    The present study aimed to analyse beliefs that men and women have with respect to their sense of direction (SOD) and whether they correlate with spatial environmental task performance. Eighty-four students filled in the short version of the Familiarity and Spatial Cognitive Style Scale to evaluate beliefs on their SOD, knowledge of the city (TK), spatial ability (SA) and wayfinding (WA) and performed three spatial environmental tasks. Results showed that gender did not predict the performance on the spatial environmental tasks, whereas it can be predicted by participants' beliefs related to their SOD and TK. The findings point out the need to identify specific training aimed at improving women's metacognitive skills in order to delete or reduce gender differences in SA.

  12. Validity of an ankle joint motion and position sense measurement system and its application in healthy subjects and patients with ankle sprain.

    PubMed

    Lin, Chueh-Ho; Chiang, Shang-Lin; Lu, Liang-Hsuan; Wei, Shun-Hwa; Sung, Wen-Hsu

    2016-07-01

    Ankle motion and proprioception in multiple axis movements are crucial for daily activities. However, few studies have developed and used a multiple axis system for measuring ankle motion and proprioception. This study was designed to validate a novel ankle haptic interface system that measures the ankle range of motion (ROM) and joint position sense in multiple plane movements, investigating the proprioception deficits during joint position sense tasks for patients with ankle instability. Eleven healthy adults (mean ± standard deviation; age, 24.7 ± 1.9 years) and thirteen patients with ankle instability were recruited in this study. All subjects were asked to perform tests to evaluate the validity of the ankle ROM measurements and underwent tests for validating the joint position sense measurements conducted during multiple axis movements of the ankle joint. Pearson correlation was used for validating the angular position measurements obtained using the developed system; the independent t test was used to investigate the differences in joint position sense task performance for people with or without ankle instability. The ROM measurements of the device were linearly correlated with the criterion standards (r = 0.99). The ankle instability and healthy groups were significantly different in direction, absolute, and variable errors of plantar flexion, dorsiflexion, inversion, and eversion (p < 0.05). The results demonstrate that the novel ankle joint motion and position sense measurement system is valid and can be used for measuring the ankle ROM and joint position sense in multiple planes and indicate proprioception deficits for people with ankle instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. NDSI products system based on Hadoop platform

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Jiang, He; Yang, Xiaoxia; Geng, Erhui

    2015-12-01

    Snow is solid state of water resources on earth, and plays an important role in human life. Satellite remote sensing is significant in snow extraction with the advantages of cyclical, macro, comprehensiveness, objectivity, timeliness. With the continuous development of remote sensing technology, remote sensing data access to the trend of multiple platforms, multiple sensors and multiple perspectives. At the same time, in view of the remote sensing data of compute-intensive applications demand increase gradually. However, current the producing system of remote sensing products is in a serial mode, and this kind of production system is used for professional remote sensing researchers mostly, and production systems achieving automatic or semi-automatic production are relatively less. Facing massive remote sensing data, the traditional serial mode producing system with its low efficiency has been difficult to meet the requirements of mass data timely and efficient processing. In order to effectively improve the production efficiency of NDSI products, meet the demand of large-scale remote sensing data processed timely and efficiently, this paper build NDSI products production system based on Hadoop platform, and the system mainly includes the remote sensing image management module, NDSI production module, and system service module. Main research contents and results including: (1)The remote sensing image management module: includes image import and image metadata management two parts. Import mass basis IRS images and NDSI product images (the system performing the production task output) into HDFS file system; At the same time, read the corresponding orbit ranks number, maximum/minimum longitude and latitude, product date, HDFS storage path, Hadoop task ID (NDSI products), and other metadata information, and then create thumbnails, and unique ID number for each record distribution, import it into base/product image metadata database. (2)NDSI production module: includes the index calculation, production tasks submission and monitoring two parts. Read HDF images related to production task in the form of a byte stream, and use Beam library to parse image byte stream to the form of Product; Use MapReduce distributed framework to perform production tasks, at the same time monitoring task status; When the production task complete, calls remote sensing image management module to store NDSI products. (3)System service module: includes both image search and DNSI products download. To image metadata attributes described in JSON format, return to the image sequence ID existing in the HDFS file system; For the given MapReduce task ID, package several task output NDSI products into ZIP format file, and return to the download link (4)System evaluation: download massive remote sensing data and use the system to process it to get the NDSI products testing the performance, and the result shows that the system has high extendibility, strong fault tolerance, fast production speed, and the image processing results with high accuracy.

  14. The sensing and perception subsystem of the NASA research telerobot

    NASA Technical Reports Server (NTRS)

    Wilcox, B.; Gennery, D. B.; Bon, B.; Litwin, T.

    1987-01-01

    A useful space telerobot for on-orbit assembly, maintenance, and repair tasks must have a sensing and perception subsystem which can provide the locations, orientations, and velocities of all relevant objects in the work environment. This function must be accomplished with sufficient speed and accuracy to permit effective grappling and manipulation. Appropriate symbolic names must be attached to each object for use by higher-level planning algorithms. Sensor data and inferences must be presented to the remote human operator in a way that is both comprehensible in ensuring safe autonomous operation and useful for direct teleoperation. Research at JPL toward these objectives is described.

  15. An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing

    NASA Astrophysics Data System (ADS)

    Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.

    2015-07-01

    Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write complex data processing code on the web directly, so they can design their own data processing algorithm.

  16. Tasking and sharing sensing assets using controlled natural language

    NASA Astrophysics Data System (ADS)

    Preece, Alun; Pizzocaro, Diego; Braines, David; Mott, David

    2012-06-01

    We introduce an approach to representing intelligence, surveillance, and reconnaissance (ISR) tasks at a relatively high level in controlled natural language. We demonstrate that this facilitates both human interpretation and machine processing of tasks. More specically, it allows the automatic assignment of sensing assets to tasks, and the informed sharing of tasks between collaborating users in a coalition environment. To enable automatic matching of sensor types to tasks, we created a machine-processable knowledge representation based on the Military Missions and Means Framework (MMF), and implemented a semantic reasoner to match task types to sensor types. We combined this mechanism with a sensor-task assignment procedure based on a well-known distributed protocol for resource allocation. In this paper, we re-formulate the MMF ontology in Controlled English (CE), a type of controlled natural language designed to be readable by a native English speaker whilst representing information in a structured, unambiguous form to facilitate machine processing. We show how CE can be used to describe both ISR tasks (for example, detection, localization, or identication of particular kinds of object) and sensing assets (for example, acoustic, visual, or seismic sensors, mounted on motes or unmanned vehicles). We show how these representations enable an automatic sensor-task assignment process. Where a group of users are cooperating in a coalition, we show how CE task summaries give users in the eld a high-level picture of ISR coverage of an area of interest. This allows them to make ecient use of sensing resources by sharing tasks.

  17. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav; Naik, Rajesh R.

    2013-07-01

    At present, monitoring of air at the workplace, in urban environments, and on battlefields; exhaled air from medical patients; air in packaged food containers; and so forth can be accomplished with different types of analytical instruments. Vapor sensors have their niche in these measurements when an unobtrusive, low-power, and cost-sensitive technical solution is required. Unfortunately, existing vapor sensors often degrade their vapor-quantitation accuracy in the presence of high levels of interferences and cannot quantitate several components in complex gas mixtures. Thus, new sensing approaches with improved sensor selectivity are required. This technological task can be accomplished by the careful design of sensing materials with new performance properties and by coupling these materials with the suitable physical transducers. This review is focused on the assessment of the capabilities of bionanomaterials and bioinspired nanostructures for selective vapor sensing. We demonstrate that these sensing materials can operate with diverse transducers based on electrical, mechanical, and optical readout principles and can provide vapor-response selectivity previously unattainable by using other sensing materials. This ability for selective vapor sensing provides opportunities to significantly impact the major directions in development and application scenarios of vapor sensors.

  18. Drift-Free Humanoid State Estimation fusing Kinematic, Inertial and LIDAR Sensing

    DTIC Science & Technology

    2014-08-01

    registration to this map and other objects in the robot’s vicinity while also contributing to direct low-level control of a Boston Dynamics Atlas robot ...requirements. I. INTRODUCTION Dynamic locomotion of legged robotic systems remains an open and challenging research problem whose solution will enable...humanoids to perform tasks and reach places inaccessible to wheeled or tracked robots . Several research institutions are developing walking and running

  19. Affirmative Action: A Course for the Future. Affirmative Action Task Force for the Study "New Directions: African Americans in a Diversifying Nation."

    ERIC Educational Resources Information Center

    Joint Center for Political and Economic Studies, Washington, DC.

    A primary social dilemma today is that current strategies have led to the perception that affirmative action favors some population groups at the expense of others, that in a sense it uses one form of discrimination to combat another. It is essential to reconsider affirmative action strategies to implement those that are most appropriate for today…

  20. Quantification of whispering gallery mode spectrum variability in application to sensing nanobiophotonics

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Anton; Skakun, Victor; Saetchnikov, Vladimir; Tcherniavskaia, Elina; Ostendorf, Andreas

    2017-10-01

    An approach for the automated whispering gallery mode (WGM) signal decomposition and its parameter estimation is discussed. The algorithm is based on the peak picking and can be applied for the preprocessing of the raw signal acquired from the multiplied WGM-based biosensing chips. Quantitative estimations representing physically meaningful parameters of the external disturbing factors on the WGM spectral shape are the output values. Derived parameters can be directly applied to the further deep qualitative and quantitative interpretations of the sensed disturbing factors. The algorithm is tested on both simulated and experimental data taken from the bovine serum albumin biosensing task. The proposed solution is expected to be a useful contribution to the preprocessing phase of the complete data analysis engine and is expected to push the WGM technology toward the real-live sensing nanobiophotonics.

  1. Control of a Supernumerary Robotic Hand by Foot: An Experimental Study in Virtual Reality

    PubMed Central

    Abdi, Elahe; Burdet, Etienne; Bouri, Mohamed; Bleuler, Hannes

    2015-01-01

    In the operational theater, the surgical team could highly benefit from a robotic supplementary hand under the surgeon’s full control. The surgeon may so become more autonomous; this may reduce communication errors with the assistants and take over difficult tasks such as holding tools without tremor. In this paper, we therefore examine the possibility to control a third robotic hand with one foot’s movements. Three experiments in virtual reality were designed to assess the feasibility of this control strategy, the learning curve of the subjects in different tasks and the coordination of foot movements with the two natural hands. Results show that the limbs are moved simultaneously, in parallel rather than serially. Participants’ performance improved within a few minutes of practice without any specific difficulty to complete the tasks. Subjective assessment by the subjects indicated that controlling a third hand by foot has been easy and required only negligible physical and mental efforts. The sense of ownership was reported to improve through the experiments. The mental burden was not directly related to the level of motion required by a task, but depended on the type of activity and practice. The most difficult task was moving two hands and foot in opposite directions. These results suggest that a combination of practice and appropriate tasks can enhance the learning process for controlling a robotic hand by foot. PMID:26225938

  2. Pacific CRYSTAL Project: Explicit Literacy Instruction Embedded in Middle School Science Classrooms

    NASA Astrophysics Data System (ADS)

    Anthony, Robert J.; Tippett, Christine D.; Yore, Larry D.

    2010-01-01

    Science literacy leading to fuller and informed participation in the public debate about science, technology, society, and environmental (STSE) issues that produce justified decisions and sustainable actions is the shared and central goal of the Pacific CRYSTAL Project. There is broad agreement by science education researchers that learners need to be able to construct and interpret specific scientific discourses and texts to be literate in science. We view these capabilities as components in the fundamental sense of science literacy and as interactive and synergetic to the derived sense of science literacy, which refers to having general knowledge about concepts, principles, and methods of science. This article reports on preliminary findings from Years 1, 2, and 3 of the 5-year Pacific CRYSTAL project that aims to identify, develop, and embed explicit literacy instruction in science programs to achieve both senses of science literacy. A community-based, opportunistic, engineering research and development approach has been utilized to identify problems and concerns and to design instructional solutions for teaching middle school (Grades 6, 7, and 8) science. Initial data indicate (a) opportunities in programs for embedding literacy instruction and tasks; (b) difficulties generalist teachers have with new science curricula; (c) difficulties specialist science teachers have with literacy activities, strategies, genre, and writing-to-learn science tasks; and (d) potential literacy activities (vocabulary, reading comprehension, visual literacy, genre, and writing tasks) for middle school science. Preinstruction student assessments indicate a range of challenges in achieving effective learning in science and the need for extensive teacher support to achieve the project’s goals. Postinstructional assessments indicate positive changes in students’ ability to perform target reading and writing tasks. Qualitative data indicate teachers’ desire for external direction and the need for researchers to expand the literacy framework to include oral discourse. A case study of teachers’ use of a specific literacy task and its influence on students revealed indications of robustness and effectiveness. Experiences revealed procedural difficulties and insights regarding community-based research and development approaches.

  3. Simulated thought insertion: Influencing the sense of agency using deception and magic.

    PubMed

    Olson, Jay A; Landry, Mathieu; Appourchaux, Krystèle; Raz, Amir

    2016-07-01

    In order to study the feeling of control over decisions, we told 60 participants that a neuroimaging machine could read and influence their thoughts. While inside a mock brain scanner, participants chose arbitrary numbers in two similar tasks. In the Mind-Reading Task, the scanner appeared to guess the participants' numbers; in the Mind-Influencing Task, it appeared to influence their choice of numbers. We predicted that participants would feel less voluntary control over their decisions when they believed that the scanner was influencing their choices. As predicted, participants felt less control and made slower decisions in the Mind-Influencing Task compared to the Mind-Reading Task. A second study replicated these findings. Participants' experience of the ostensible influence varied, with some reporting an unknown source directing them towards specific numbers. This simulated thought insertion paradigm can therefore influence feelings of voluntary control and may help model symptoms of mental disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Radar activities of the DFVLR Institute for Radio Frequency Technology

    NASA Technical Reports Server (NTRS)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  5. Relative effects of harassment, frustration, and task characteristics on cardiovascular reactivity.

    PubMed

    García-León, Ana; Reyes del Paso, Gustavo A; Robles, Humbelina; Vila, Jaime

    2003-02-01

    Effects of anger induction procedures such as frustration and harassment on cardiovascular reactivity have been demonstrated in a wide range of experimental situations. Similarly, heightened cardiovascular reactivity has been associated with a diverse range of tasks involving active coping, competition and interpersonal interaction. The present study sought to directly compare the relative effects of these two important ways of inducing cardiovascular changes. One hundred and five university students performed two tasks that differed in the degree of active coping and interpersonal competition: a competitive psychomotor task and a problem-solving task. States of anger were induced during both tasks by means of harassment, frustration or frustration+harassment. Task-related changes in heart rate, systolic blood pressure, diastolic blood pressure, pulse volume amplitude and respiratory sinus arrhythmia amplitude were monitored. The competitive psychomotor task produced greater cardiovascular reactivity than did the problem-solving task. Harassment and frustration+harassment provoked more cardiovascular reactivity than did frustration alone. However, harassment and frustration+harassment had the greatest cardiovascular effects in the competitive task, whereas frustration had the greatest cardiovascular effects in the problem-solving task. In this sense, the increases on cardiovascular reactivity seem to depend on the interaction between anger induction procedures and the context in which anger is provoked.

  6. Laterality, spatial abilities, and accident proneness.

    PubMed

    Voyer, Susan D; Voyer, Daniel

    2015-01-01

    Although handedness as a measure of cerebral specialization has been linked to accident proneness, more direct measures of laterality are rarely considered. The present study aimed to fill that gap in the existing research. In addition, individual difference factors in accident proneness were further examined with the inclusion of mental rotation and navigation abilities measures. One hundred and forty participants were asked to complete the Mental Rotations Test, the Santa Barbara Sense of Direction scale, the Greyscales task, the Fused Dichotic Word Test, the Waterloo Handedness Questionnaire, and a grip strength task before answering questions related to number of accidents in five areas. Results indicated that handedness scores, absolute visual laterality score, absolute response time on the auditory laterality index, and navigation ability were significant predictors of the total number of accidents. Results are discussed with respect to cerebral hemispheric specialization and risk-taking attitudes and behavior.

  7. A Framework for Mathematics Graphical Tasks: The Influence of the Graphic Element on Student Sense Making

    ERIC Educational Resources Information Center

    Lowrie, Tom; Diezmann, Carmel M.; Logan, Tracy

    2012-01-01

    Graphical tasks have become a prominent aspect of mathematics assessment. From a conceptual stance, the purpose of this study was to better understand the composition of graphical tasks commonly used to assess students' mathematics understandings. Through an iterative design, the investigation described the sense making of 11-12-year-olds as they…

  8. Research Institute for Autonomous Precision Guided Systems

    DTIC Science & Technology

    2007-03-08

    research on agile autonomous munitions, in direct support of the Air Force Research Laboratory Munitions Directorate (AFRL/MN). The grant was awarded with a...Flight had (5) research task areas: 1. Aeroforms and Actuation for Small and Micro Agile Air Vehicles 2. Sensing for Autonomous Control and...critical barriers in AAM, but are not covered in the scope of the AVCAAF (Vision-Based Control of Agile, Autonomous Micro Air Vehicles and Small UAVs

  9. Unified Behavior Framework for Discrete Event Simulation Systems

    DTIC Science & Technology

    2015-03-26

    I would like to thank Dr. Hodson for his guidance and direction throughout the AFIT program. I also would like to thank my thesis committee members...SPA Sense-Plan-Act SSL System Service Layer TCA Task Control Architecture TRP Teleo-Reactive Program UAV Unmanned Aerial Vehicle UBF Unified Behavior...a teleo-reactive architecture [11]. Teleo-Reactive Programs ( TRPs ) are composed of a list of rules, where each has a condition and an action. When the

  10. Digit ratio predicts sense of direction in women.

    PubMed

    Chai, Xiaoqian J; Jacobs, Lucia F

    2012-01-01

    The relative length of the second-to-fourth digits (2D:4D) has been linked with prenatal androgen in humans. The 2D:4D is sexually dimorphic, with lower values in males than females, and appears to correlate with diverse measures of behavior. However, the relationship between digit ratio and cognition, and spatial cognition in particular, has produced mixed results. In the present study, we hypothesized that spatial tasks separating cue conditions that either favored female or male strategies would examine this structure-function correlation with greater precision. Previous work suggests that males are better in the use of directional cues than females. In the present study, participants learned a target location in a virtual landscape environment, in conditions that contained either all directional (i.e., distant or compass bearing) cues, or all positional (i.e., local, small objects) cues. After a short delay, participants navigated back to the target location from a novel starting location. Males had higher accuracy in initial search direction than females in environments with all directional cues. Lower digit ratio was correlated with higher accuracy of initial search direction in females in environments with all directional cues. Mental rotation scores did not correlate with digit ratio in either males or females. These results demonstrate for the first time that a sex difference in the use of directional cues, i.e., the sense of direction, is associated with more male-like digit ratio.

  11. Vision sensing techniques in aeronautics and astronautics

    NASA Technical Reports Server (NTRS)

    Hall, E. L.

    1988-01-01

    The close relationship between sensing and other tasks in orbital space, and the integral role of vision sensing in practical aerospace applications, are illustrated. Typical space mission-vision tasks encompass the docking of space vehicles, the detection of unexpected objects, the diagnosis of spacecraft damage, and the inspection of critical spacecraft components. Attention is presently given to image functions, the 'windowing' of a view, the number of cameras required for inspection tasks, the choice of incoherent or coherent (laser) illumination, three-dimensional-to-two-dimensional model-matching, edge- and region-segmentation techniques, and motion analysis for tracking.

  12. Mobile robot sense net

    NASA Astrophysics Data System (ADS)

    Konolige, Kurt G.; Gutmann, Steffen; Guzzoni, Didier; Ficklin, Robert W.; Nicewarner, Keith E.

    1999-08-01

    Mobile robot hardware and software is developing to the point where interesting applications for groups of such robots can be contemplated. We envision a set of mobots acting to map and perform surveillance or other task within an indoor environment (the Sense Net). A typical application of the Sense Net would be to detect survivors in buildings damaged by earthquake or other disaster, where human searchers would be put a risk. As a team, the Sense Net could reconnoiter a set of buildings faster, more reliably, and more comprehensibly than an individual mobot. The team, for example, could dynamically form subteams to perform task that cannot be done by individual robots, such as measuring the range to a distant object by forming a long baseline stereo sensor form a pari of mobots. In addition, the team could automatically reconfigure itself to handle contingencies such as disabled mobots. This paper is a report of our current progress in developing the Sense Net, after the first year of a two-year project. In our approach, each mobot has sufficient autonomy to perform several tasks, such as mapping unknown areas, navigating to specific positions, and detecting, tracking, characterizing, and classifying human and vehicular activity. We detail how some of these tasks are accomplished, and how the mobot group is tasked.

  13. Laser-based sensors for oil spill remote sensing

    NASA Astrophysics Data System (ADS)

    Brown, Carl E.; Fingas, Mervin F.; Mullin, Joseph V.

    1997-07-01

    Remote sensing is becoming an increasingly important tool for the effective direction of oil spill countermeasures. Cleanup personnel have recognized that remote sensing can increase spill cleanup efficiency. It has long been recognized that there is no one sensor which is capable of detecting oil and related petroleum products in all environments and spill scenarios. There are sensors which possess a wide field-of- view and can therefore be used to map the overall extent of the spill. These sensors, however lack the capability to positively identify oil and related products, especially along complicated beach and shoreline environments where several substrates are present. The laser-based sensors under development by the Emergencies Science Division of Environment Canada are designed to fill specific roles in oil spill response. The scanning laser environmental airborne fluorosensor (SLEAF) is being developed to detect and map oil and related petroleum products in complex marine and shoreline environments where other non-specific sensors experience difficulty. The role of the SLEAF would be to confirm or reject suspected oil contamination sites that have been targeted by the non-specific sensors. This confirmation will release response crews from the time-consuming task of physically inspecting each site, and direct crews to sites that require remediation. The laser ultrasonic remote sensing of oil thickness (LURSOT) sensor will provide an absolute measurement of oil thickness from an airborne platform. There are presently no sensors available, either airborne or in the laboratory which can provide an absolute measurement of oil thickness. This information is necessary for the effective direction of spill countermeasures such as dispersant application and in-situ burning. This paper describes the development of laser-based airborne oil spill remote sensing instrumentation at Environment Canada and identifies the anticipated benefits of the use of this technology to the oil spill response community.

  14. The Large Area Crop Inventory Experiment (LACIE). Part 3: A systematic approach to the practical application of remote-sensing technology

    NASA Technical Reports Server (NTRS)

    Murphy, J. D.; Dideriksen, R. I.

    1975-01-01

    The application of remote sensing technology by the U.S. Department of Agriculture (USDA) is examined. The activities of the USDA Remote-Sensing User Requirement Task Force which include cataloging USDA requirements for earth resources data, determining those requirements that would return maximum benefits by using remote sensing technology and developing a plan for acquiring, processing, analyzing, and distributing data to satisfy those requirements are described. Emphasis is placed on the large area crop inventory experiment and its relationship to the task force.

  15. Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks

    PubMed Central

    Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang

    2016-01-01

    The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN. PMID:27916807

  16. Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks.

    PubMed

    Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang

    2016-11-28

    The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN.

  17. Rhythm Patterns Interaction - Synchronization Behavior for Human-Robot Joint Action

    PubMed Central

    Mörtl, Alexander; Lorenz, Tamara; Hirche, Sandra

    2014-01-01

    Interactive behavior among humans is governed by the dynamics of movement synchronization in a variety of repetitive tasks. This requires the interaction partners to perform for example rhythmic limb swinging or even goal-directed arm movements. Inspired by that essential feature of human interaction, we present a novel concept and design methodology to synthesize goal-directed synchronization behavior for robotic agents in repetitive joint action tasks. The agents’ tasks are described by closed movement trajectories and interpreted as limit cycles, for which instantaneous phase variables are derived based on oscillator theory. Events segmenting the trajectories into multiple primitives are introduced as anchoring points for enhanced synchronization modes. Utilizing both continuous phases and discrete events in a unifying view, we design a continuous dynamical process synchronizing the derived modes. Inverse to the derivation of phases, we also address the generation of goal-directed movements from the behavioral dynamics. The developed concept is implemented to an anthropomorphic robot. For evaluation of the concept an experiment is designed and conducted in which the robot performs a prototypical pick-and-place task jointly with human partners. The effectiveness of the designed behavior is successfully evidenced by objective measures of phase and event synchronization. Feedback gathered from the participants of our exploratory study suggests a subjectively pleasant sense of interaction created by the interactive behavior. The results highlight potential applications of the synchronization concept both in motor coordination among robotic agents and in enhanced social interaction between humanoid agents and humans. PMID:24752212

  18. Behind binge eating: A review of food-specific adaptations of neurocognitive and neuroimaging tasks.

    PubMed

    Berner, Laura A; Winter, Samantha R; Matheson, Brittany E; Benson, Leora; Lowe, Michael R

    2017-07-01

    Recurrent binge eating, or overeating accompanied by a sense of loss of control, is a major public health concern. Identifying similarities and differences among individuals with binge eating and those with other psychiatric symptoms and characterizing the deficits that uniquely predispose individuals to eating problems are essential to improving treatment. Research suggests that altered reward and control-related processes may contribute to dysregulated eating and other impulsive behaviors in binge-eating populations, but the best methods for reliably assessing the contributions of these processes to binge eating are unclear. In this review, we summarize standard neurocognitive and neuroimaging tasks that assess reward and control-related processes, describe adaptations of these tasks used to study eating and food-specific responsivity and deficits, and consider the advantages and limitations of these tasks. Future studies integrating both general and food-specific tasks with neuroimaging will improve understanding of the neurocognitive processes and neural circuits that contribute to binge eating and could inform novel interventions that more directly target or prevent this transdiagnostic behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Application of a laser scanner to three dimensional visual sensing tasks

    NASA Technical Reports Server (NTRS)

    Ryan, Arthur M.

    1992-01-01

    The issues are described which are associated with using a laser scanner for visual sensing and the methods developed by the author to address them. A laser scanner is a device that controls the direction of a laser beam by deflecting it through a pair of orthogonal mirrors, the orientations of which are specified by a computer. If a calibrated laser scanner is combined with a calibrated camera, it is possible to perform three dimensional sensing by directing the laser at objects within the field of view of the camera. There are several issues associated with using a laser scanner for three dimensional visual sensing that must be addressed in order to use the laser scanner effectively. First, methods are needed to calibrate the laser scanner and estimate three dimensional points. Second, methods to estimate three dimensional points using a calibrated camera and laser scanner are required. Third, methods are required for locating the laser spot in a cluttered image. Fourth, mathematical models that predict the laser scanner's performance and provide structure for three dimensional data points are necessary. Several methods were developed to address each of these and has evaluated them to determine how and when they should be applied. The theoretical development, implementation, and results when used in a dual arm eighteen degree of freedom robotic system for space assembly is described.

  20. A Web Service Protocol Realizing Interoperable Internet of Things Tasking Capability.

    PubMed

    Huang, Chih-Yuan; Wu, Cheng-Hung

    2016-08-31

    The Internet of Things (IoT) is an infrastructure that interconnects uniquely-identifiable devices using the Internet. By interconnecting everyday appliances, various monitoring, and physical mashup applications can be constructed to improve human's daily life. In general, IoT devices provide two main capabilities: sensing and tasking capabilities. While the sensing capability is similar to the World-Wide Sensor Web, this research focuses on the tasking capability. However, currently, IoT devices created by different manufacturers follow different proprietary protocols and are locked in many closed ecosystems. This heterogeneity issue impedes the interconnection between IoT devices and damages the potential of the IoT. To address this issue, this research aims at proposing an interoperable solution called tasking capability description that allows users to control different IoT devices using a uniform web service interface. This paper demonstrates the contribution of the proposed solution by interconnecting different IoT devices for different applications. In addition, the proposed solution is integrated with the OGC SensorThings API standard, which is a Web service standard defined for the IoT sensing capability. Consequently, the Extended SensorThings API can realize both IoT sensing and tasking capabilities in an integrated and interoperable manner.

  1. Brain correlates of subjective freedom of choice.

    PubMed

    Filevich, Elisa; Vanneste, Patricia; Brass, Marcel; Fias, Wim; Haggard, Patrick; Kühn, Simone

    2013-12-01

    The subjective feeling of free choice is an important feature of human experience. Experimental tasks have typically studied free choice by contrasting free and instructed selection of response alternatives. These tasks have been criticised, and it remains unclear how they relate to the subjective feeling of freely choosing. We replicated previous findings of the fMRI correlates of free choice, defined objectively. We introduced a novel task in which participants could experience and report a graded sense of free choice. BOLD responses for conditions subjectively experienced as free identified a postcentral area distinct from the areas typically considered to be involved in free action. Thus, the brain correlates of subjective feeling of free action were not directly related to any established brain correlates of objectively-defined free action. Our results call into question traditional assumptions about the relation between subjective experience of choosing and activity in the brain's so-called voluntary motor areas. Copyright © 2013. Published by Elsevier Inc.

  2. Brain correlates of subjective freedom of choice

    PubMed Central

    Filevich, Elisa; Vanneste, Patricia; Brass, Marcel; Fias, Wim; Haggard, Patrick; Kühn, Simone

    2013-01-01

    The subjective feeling of free choice is an important feature of human experience. Experimental tasks have typically studied free choice by contrasting free and instructed selection of response alternatives. These tasks have been criticised, and it remains unclear how they relate to the subjective feeling of freely choosing. We replicated previous findings of the fMRI correlates of free choice, defined objectively. We introduced a novel task in which participants could experience and report a graded sense of free choice. BOLD responses for conditions subjectively experienced as free identified a postcentral area distinct from the areas typically considered to be involved in free action. Thus, the brain correlates of subjective feeling of free action were not directly related to any established brain correlates of objectively-defined free action. Our results call into question traditional assumptions about the relation between subjective experience of choosing and activity in the brain’s so-called voluntary motor areas. PMID:24021855

  3. USGS remote sensing coordination for the 2010 Haiti earthquake

    USGS Publications Warehouse

    Duda, Kenneth A.; Jones, Brenda

    2011-01-01

    In response to the devastating 12 January 2010, earthquake in Haiti, the US Geological Survey (USGS) provided essential coordinating services for remote sensing activities. Communication was rapidly established between the widely distributed response teams and data providers to define imaging requirements and sensor tasking opportunities. Data acquired from a variety of sources were received and archived by the USGS, and these products were subsequently distributed using the Hazards Data Distribution System (HDDS) and other mechanisms. Within six weeks after the earthquake, over 600,000 files representing 54 terabytes of data were provided to the response community. The USGS directly supported a wide variety of groups in their use of these data to characterize post-earthquake conditions and to make comparisons with pre-event imagery. The rapid and continuing response achieved was enabled by existing imaging and ground systems, and skilled personnel adept in all aspects of satellite data acquisition, processing, distribution and analysis. The information derived from image interpretation assisted senior planners and on-site teams to direct assistance where it was most needed.

  4. Uncovering effects of self-control and stimulus-driven action selection on the sense of agency.

    PubMed

    Wang, Yuru; Damen, Tom G E; Aarts, Henk

    2017-10-01

    The sense of agency refers to feelings of causing one's own action and resulting effect. Previous research indicates that voluntary action selection is an important factor in shaping the sense of agency. Whereas the volitional nature of the sense of agency is well documented, the present study examined whether agency is modulated when action selection shifts from self-control to a more automatic stimulus-driven process. Seventy-two participants performed an auditory Simon task including congruent and incongruent trials to generate automatic stimulus-driven vs. more self-control driven action, respectively. Responses in the Simon task produced a tone and agency was assessed with the intentional binding task - an implicit measure of agency. Results showed a Simon effect and temporal binding effect. However, temporal binding was independent of congruency. These findings suggest that temporal binding, a window to the sense of agency, emerges for both automatic stimulus-driven actions and self-controlled actions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A Salutogenic Analysis of Developmental Tasks and Ego Integrity vs. Despair

    ERIC Educational Resources Information Center

    Wiesmann, Ulrich; Hannich, Hans-Joachim

    2011-01-01

    This study examines the hypothesis that the outcome of the Eriksonian crisis of integrity vs. despair is dependent on successful coping with four developmental tasks: maintenance of active involvement, reevaluation of life satisfaction, developing a sense of health maintenance, and reevaluation of the sense of coherence (SOC). A selective sample…

  6. Multitask SVM learning for remote sensing data classification

    NASA Astrophysics Data System (ADS)

    Leiva-Murillo, Jose M.; Gómez-Chova, Luis; Camps-Valls, Gustavo

    2010-10-01

    Many remote sensing data processing problems are inherently constituted by several tasks that can be solved either individually or jointly. For instance, each image in a multitemporal classification setting could be taken as an individual task but relation to previous acquisitions should be properly considered. In such problems, different modalities of the data (temporal, spatial, angular) gives rise to changes between the training and test distributions, which constitutes a difficult learning problem known as covariate shift. Multitask learning methods aim at jointly solving a set of prediction problems in an efficient way by sharing information across tasks. This paper presents a novel kernel method for multitask learning in remote sensing data classification. The proposed method alleviates the dataset shift problem by imposing cross-information in the classifiers through matrix regularization. We consider the support vector machine (SVM) as core learner and two regularization schemes are introduced: 1) the Euclidean distance of the predictors in the Hilbert space; and 2) the inclusion of relational operators between tasks. Experiments are conducted in the challenging remote sensing problems of cloud screening from multispectral MERIS images and for landmine detection.

  7. Neural correlates of endogenous attention, exogenous attention and inhibition of return in touch.

    PubMed

    Jones, Alexander; Forster, Bettina

    2014-07-01

    Selective attention helps process the myriad of information constantly touching our body. Both endogenous and exogenous mechanisms are relied upon to effectively process this information; however, it is unclear how they relate in the sense of touch. In three tasks we contrasted endogenous and exogenous event-related potential (ERP) and behavioural effects. Unilateral tactile cues were followed by a tactile target at the same or opposite hand. Clear behavioural effects showed facilitation of expected targets both when the cue predicted targets at the same (endogenous predictive task) and opposite hand (endogenous counter-predictive task), and these effects also correlated with ERP effects of endogenous attention. In an exogenous task, where the cue was non-informative, inhibition of return (IOR) was observed. The electrophysiological results demonstrated early effects of exogenous attention followed by later endogenous attention modulations. These effects were independent in both the endogenous predictive and exogenous tasks. However, voluntarily directing attention away from a cued body part influenced the early exogenous marker (N80). This suggests that the two mechanisms are interdependent, at least when the task requires more demanding shifts of attention. The early marker of exogenous tactile attention, the N80, was not directly related to IOR, which may suggest that exogenous attention and IOR are not necessarily two sides of the same coin. This study adds valuable new insight into how we process and select information presented to our body, showing both independent and interdependent effects of endogenous and exogenous attention in touch. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. A Reasoning Hardware Platform for Real-Time Common-Sense Inference

    PubMed Central

    Barba, Jesús; Santofimia, Maria J.; Dondo, Julio; Rincón, Fernando; Sánchez, Francisco; López, Juan Carlos

    2012-01-01

    Enabling Ambient Intelligence systems to understand the activities that are taking place in a supervised context is a rather complicated task. Moreover, this task cannot be successfully addressed while overlooking the mechanisms (common-sense knowledge and reasoning) that entitle us, as humans beings, to successfully undertake it. This work is based on the premise that Ambient Intelligence systems will be able to understand and react to context events if common-sense capabilities are embodied in them. However, there are some difficulties that need to be resolved before common-sense capabilities can be fully deployed to Ambient Intelligence. This work presents a hardware accelerated implementation of a common-sense knowledge-base system intended to improve response time and efficiency. PMID:23012540

  9. Liquid conservation in orangutans (Pongo pygmaeus) and humans (Homo sapiens): individual differences and perceptual strategies.

    PubMed

    Call, J; Rochat, P

    1996-09-01

    Four orangutans (1 juvenile, 2 subadults, and 1 adult) and ten 6-8-year-old children were tested in 4 liquid conservation tasks of increasing levels of difficulty. Task difficulty depended on the type of transformation (continuous vs. discontinuous quantities) and the relative contrast between the shapes of the containers. Results indicate that orangutans did not display conservation in the strict sense; instead they showed "partial" conservation (intermediate reactions according to J. Piaget & B. Inhelder, 1941). In contrast, some of the children provided evidence of conservation in all 4 tasks, showing "true" or logically necessary conservation in the original sense proposed by J. Piaget and B. Inhelder (1941). Although orangutans did not show conservation in the strict sense, as J. Piaget (1955) and others have generally agreed it should be defined, orangutans behaved as individual and creative problem solvers, adopting different perceptual strategies depending on the task.

  10. A Web Service Protocol Realizing Interoperable Internet of Things Tasking Capability

    PubMed Central

    Huang, Chih-Yuan; Wu, Cheng-Hung

    2016-01-01

    The Internet of Things (IoT) is an infrastructure that interconnects uniquely-identifiable devices using the Internet. By interconnecting everyday appliances, various monitoring, and physical mashup applications can be constructed to improve human’s daily life. In general, IoT devices provide two main capabilities: sensing and tasking capabilities. While the sensing capability is similar to the World-Wide Sensor Web, this research focuses on the tasking capability. However, currently, IoT devices created by different manufacturers follow different proprietary protocols and are locked in many closed ecosystems. This heterogeneity issue impedes the interconnection between IoT devices and damages the potential of the IoT. To address this issue, this research aims at proposing an interoperable solution called tasking capability description that allows users to control different IoT devices using a uniform web service interface. This paper demonstrates the contribution of the proposed solution by interconnecting different IoT devices for different applications. In addition, the proposed solution is integrated with the OGC SensorThings API standard, which is a Web service standard defined for the IoT sensing capability. Consequently, the Extended SensorThings API can realize both IoT sensing and tasking capabilities in an integrated and interoperable manner. PMID:27589759

  11. Making sense of the noise: Replication difficulties of Correll's (2008) modulation of 1/f noise in a racial bias task.

    PubMed

    Madurski, Christine; LeBel, Etienne P

    2015-08-01

    Correll (Journal of Personality and Social Psychology, 94, 48-59, 2008; Study 2) found that instructions to use or avoid race information decreased the emission of 1/f noise in a weapon identification task (WIT). These results suggested that 1/f noise in racial bias tasks reflected an effortful deliberative process, providing new insights regarding the mechanisms underlying implicit racial biases. Given the potential theoretical and applied importance of understanding the psychological processes underlying implicit racial biases - and in light of the growing demand for independent direct replications of findings to ensure the cumulative nature of our science - we attempted to replicate Correll's finding in two high-powered studies. Despite considerable effort to closely duplicate all procedural and methodological details of the original study (i.e., same cover story, experimental manipulation, implicit measure task, original stimuli, task instructions, sampling frame, population, and statistical analyses), both replication attempts were unsuccessful in replicating the original finding challenging the theoretical account that 1/f noise in racial bias tasks reflects a deliberative process. However, the emission of 1/f noise did consistently emerge across samples in each of our conditions. Hence, future research is needed to clarify the psychological significance of 1/f noise in racial bias tasks.

  12. Integrated Remote Sensing Modalities for Classification at a Legacy Test Site

    NASA Astrophysics Data System (ADS)

    Lee, D. J.; Anderson, D.; Craven, J.

    2016-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.

  13. SUPERFUND REMOTE SENSING SUPPORT

    EPA Science Inventory

    This task provides remote sensing technical support to the Superfund program. Support includes the collection, processing, and analysis of remote sensing data to characterize hazardous waste disposal sites and their history. Image analysis reports, aerial photographs, and assoc...

  14. Mapping and monitoring carbon stocks with satellite observations: a comparison of methods.

    PubMed

    Goetz, Scott J; Baccini, Alessandro; Laporte, Nadine T; Johns, Tracy; Walker, Wayne; Kellndorfer, Josef; Houghton, Richard A; Sun, Mindy

    2009-03-25

    Mapping and monitoring carbon stocks in forested regions of the world, particularly the tropics, has attracted a great deal of attention in recent years as deforestation and forest degradation account for up to 30% of anthropogenic carbon emissions, and are now included in climate change negotiations. We review the potential for satellites to measure carbon stocks, specifically aboveground biomass (AGB), and provide an overview of a range of approaches that have been developed and used to map AGB across a diverse set of conditions and geographic areas. We provide a summary of types of remote sensing measurements relevant to mapping AGB, and assess the relative merits and limitations of each. We then provide an overview of traditional techniques of mapping AGB based on ascribing field measurements to vegetation or land cover type classes, and describe the merits and limitations of those relative to recent data mining algorithms used in the context of an approach based on direct utilization of remote sensing measurements, whether optical or lidar reflectance, or radar backscatter. We conclude that while satellite remote sensing has often been discounted as inadequate for the task, attempts to map AGB without satellite imagery are insufficient. Moreover, the direct remote sensing approach provided more coherent maps of AGB relative to traditional approaches. We demonstrate this with a case study focused on continental Africa and discuss the work in the context of reducing uncertainty for carbon monitoring and markets.

  15. Finding Meaning: Sense Inventories for Improved Word Sense Disambiguation

    ERIC Educational Resources Information Center

    Brown, Susan Windisch

    2010-01-01

    The deep semantic understanding necessary for complex natural language processing tasks, such as automatic question-answering or text summarization, would benefit from highly accurate word sense disambiguation (WSD). This dissertation investigates what makes an appropriate and effective sense inventory for WSD. Drawing on theories and…

  16. Evolution and advanced technology. [of Flight Telerobotic Servicer

    NASA Technical Reports Server (NTRS)

    Ollendorf, Stanford; Pennington, Jack E.; Hansen, Bert, III

    1990-01-01

    The NASREM architecture with its standard interfaces permits development and evolution of the Flight Telerobotic Servicer to greater autonomy. Technologies in control strategies for an arm with seven DOF, including a safety system containing skin sensors for obstacle avoidance, are being developed. Planning and robotic execution software includes symbolic task planning, world model data bases, and path planning algorithms. Research over the last five years has led to the development of laser scanning and ranging systems, which use coherent semiconductor laser diodes for short range sensing. The possibility of using a robot to autonomously assemble space structures is being investigated. A control framework compatible with NASREM is being developed that allows direct global control of the manipulator. Researchers are developing systems that permit an operator to quickly reconfigure the telerobot to do new tasks safely.

  17. Proprioception Is Robust under External Forces

    PubMed Central

    Kuling, Irene A.; Brenner, Eli; Smeets, Jeroen B. J.

    2013-01-01

    Information from cutaneous, muscle and joint receptors is combined with efferent information to create a reliable percept of the configuration of our body (proprioception). We exposed the hand to several horizontal force fields to examine whether external forces influence this percept. In an end-point task subjects reached visually presented positions with their unseen hand. In a vector reproduction task, subjects had to judge a distance and direction visually and reproduce the corresponding vector by moving the unseen hand. We found systematic individual errors in the reproduction of the end-points and vectors, but these errors did not vary systematically with the force fields. This suggests that human proprioception accounts for external forces applied to the hand when sensing the position of the hand in the horizontal plane. PMID:24019959

  18. Integrating Remote Sensing Data with Directional Two- Dimensional Wavelet Analysis and Open Geospatial Techniques for Efficient Disaster Monitoring and Management.

    PubMed

    Lin, Yun-Bin; Lin, Yu-Pin; Deng, Dong-Po; Chen, Kuan-Wei

    2008-02-19

    In Taiwan, earthquakes have long been recognized as a major cause oflandslides that are wide spread by floods brought by typhoons followed. Distinguishingbetween landslide spatial patterns in different disturbance regimes is fundamental fordisaster monitoring, management, and land-cover restoration. To circumscribe landslides,this study adopts the normalized difference vegetation index (NDVI), which can bedetermined by simply applying mathematical operations of near-infrared and visible-redspectral data immediately after remotely sensed data is acquired. In real-time disastermonitoring, the NDVI is more effective than using land-cover classifications generatedfrom remotely sensed data as land-cover classification tasks are extremely time consuming.Directional two-dimensional (2D) wavelet analysis has an advantage over traditionalspectrum analysis in that it determines localized variations along a specific direction whenidentifying dominant modes of change, and where those modes are located in multi-temporal remotely sensed images. Open geospatial techniques comprise a series ofsolutions developed based on Open Geospatial Consortium specifications that can beapplied to encode data for interoperability and develop an open geospatial service for sharing data. This study presents a novel approach and framework that uses directional 2Dwavelet analysis of real-time NDVI images to effectively identify landslide patterns andshare resulting patterns via open geospatial techniques. As a case study, this study analyzedNDVI images derived from SPOT HRV images before and after the ChiChi earthquake(7.3 on the Richter scale) that hit the Chenyulan basin in Taiwan, as well as images aftertwo large typhoons (Xangsane and Toraji) to delineate the spatial patterns of landslidescaused by major disturbances. Disturbed spatial patterns of landslides that followed theseevents were successfully delineated using 2D wavelet analysis, and results of patternrecognitions of landslides were distributed simultaneously to other agents using geographymarkup language. Real-time information allows successive platforms (agents) to work withlocal geospatial data for disaster management. Furthermore, the proposed is suitable fordetecting landslides in various regions on continental, regional, and local scales usingremotely sensed data in various resolutions derived from SPOT HRV, IKONOS, andQuickBird multispectral images.

  19. Deficits in Upper Limb Position Sense of Children with Spastic Hemiparetic Cerebral Palsy Are Distance-Dependent

    ERIC Educational Resources Information Center

    Smorenburg, Ana R. P.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.

    2012-01-01

    This study examined the arm position sense in children with Spastic Hemiparetic Cerebral Palsy (SHCP) and typically developing children (TD) by means of a contralateral matching task. This task required participants to match the position of one arm with the position of the other arm for different target distances and from different starting…

  20. Making Sense of Iconic Symbols: A Study of Preschool Children Conducting a Refuse-Sorting Task

    ERIC Educational Resources Information Center

    Ljung-Djärf, Agneta; Åberg-Bengtsson, Lisbeth; Ottosson, Torgny; Beach, Dennis

    2015-01-01

    This article is part of a larger project focusing upon explanatory illustrations that children encounter in pre- and primary school education. The research questions concerned (a) how preschool children make sense of iconic symbols when placing items of refuse on illustrations of refuse bins in a sorting task and (b) what stumbling blocks they…

  1. Real-Time and Post-Processed Georeferencing for Hyperpspectral Drone Remote Sensing

    NASA Astrophysics Data System (ADS)

    Oliveira, R. A.; Khoramshahi, E.; Suomalainen, J.; Hakala, T.; Viljanen, N.; Honkavaara, E.

    2018-05-01

    The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.

  2. Sustainable Cooperative Robotic Technologies for Human and Robotic Outpost Infrastructure Construction and Maintenance

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley W.; Okon, Avi; Robinson, Matthew; Huntsberger, Terry; Aghazarian, Hrand; Baumgartner, Eric

    2004-01-01

    Robotic Construction Crew (RCC) is a heterogeneous multi-robot system for autonomous acquisition, transport, and precision mating of components in construction tasks. RCC minimizes resources constrained in a space environment such as computation, power, communication and, sensing. A behavior-based architecture provides adaptability and robustness despite low computational requirements. RCC successfully performs several construction related tasks in an emulated outdoor environment despite high levels of uncertainty in motions and sensing. Quantitative results are provided for formation keeping in component transport, precision instrument placement, and construction tasks.

  3. Ear Deformations Give Bats a Physical Mechanism for Fast Adaptation of Ultrasonic Beam Patterns

    NASA Astrophysics Data System (ADS)

    Gao, Li; Balakrishnan, Sreenath; He, Weikai; Yan, Zhen; Müller, Rolf

    2011-11-01

    A large number of mammals, including humans, have intricate outer ear shapes that diffract incoming sound in a direction- and frequency-specific manner. Through this physical process, the outer ear shapes encode sound-source information into the sensory signals from each ear. Our results show that horseshoe bats could dynamically control these diffraction processes through fast nonrigid ear deformations. The bats’ ear shapes can alter between extreme configurations in about 100 ms and thereby change their acoustic properties in ways that would suit different acoustic sensing tasks.

  4. Sensing of triacylglycerol in the gut: different mechanisms for fatty acids and 2-monoacylglycerol

    PubMed Central

    Kleberg, Karen; Jacobsen, Anne Katrine; Ferreira, Jozelia G; Windeløv, Johanne Agerlin; Rehfeld, Jens F; Holst, Jens Juul; de Araujo, Ivan E; Hansen, Harald S

    2015-01-01

    Sensing of dietary triacylglycerol in the proximal small intestine results in physiological, hormonal and behavioural responses. However, the exact physiological pathways linking intestinal fat sensing to food intake and the activation of brain circuits remain to be identified. In this study we examined the role of triacylglycerol digestion for intestinal fat sensing, and compared the effects of the triacylglycerol digestion products, fatty acids and 2-monoacylglycerol, on behavioural, hormonal and dopaminergic responses in behaving mice. Using an operant task in which mice are trained to self-administer lipid emulsions directly into the stomach, we show that inhibiting triacylglycerol digestion disrupts normal behaviour of self-administration in mice, indicating that fat sensing is conditional to digestion. When administered separately, both digestion products, 2-monoacylglycerol and fatty acids, were sensed by the mice, and self-administration patterns of fatty acids were affected by the fatty acid chain length. Peripheral plasma concentrations of the gut hormones GLP-1, GIP, PYY, CCK and insulin did not offer an explanation of the differing behavioural effects produced by 2-monoacylglycerol and fatty acids. However, combined with behavioural responses, striatal dopamine effluxes induced by gut infusions of oleic acid were significantly greater than those produced by equivalent infusions of 2-oleoylglycerol. Our data demonstrate recruitment of different signalling pathways by fatty acids and 2-monoacylglycerol, and suggest that the structural properties of fat rather than total caloric value determine intestinal sensing and the assignment of reward value to lipids. PMID:25639597

  5. Sense of agency is related to gamma band coupling in an inferior parietal-preSMA circuitry

    PubMed Central

    Ritterband-Rosenbaum, Anina; Nielsen, Jens B.; Christensen, Mark S.

    2014-01-01

    In the present study we tested whether sense of agency (SoA) is reflected by changes in coupling between right medio-frontal/supplementary motor area (SMA) and inferior parietal cortex (IPC). Twelve healthy adult volunteers participated in the study. They performed a variation of a line-drawing task (Nielsen, 1963; Fourneret and Jeannerod, 1998), in which they moved a cursor on a digital tablet with their right hand without seeing the hand. Visual feedback displayed on a computer monitor was either in correspondence with or deviated from the actual movement. This made participants uncertain as to the agent of the movement and they reported SoA in approximately 50% of trials when the movement was computer-generated. We tested whether IPC-preSMA coupling was associated with SoA, using dynamic causal modeling (DCM) for induced responses (Chen et al., 2008; Herz et al., 2012). Nine different DCMs were constructed for the early and late phases of the task, respectively. All models included two regions: a superior medial gyrus (preSMA) region and a right supramarginal gyrus (IPC) region. Bayesian models selection (Stephan et al., 2009) favored a model with input to IPC and modulation of the forward connection to SMA in the late task phase, and a model with input to preSMA and modulation of the backward connection was favored for the early task phase. The analysis shows that IPC source activity in the 50–60 Hz range modulated preSMA source activity in the 40–70 Hz range in the presence of SoA compared with no SoA in the late task phase, but the test of the early task phase did not reveal any differences between presence and absence of SoA. We show that SoA is associated with a directionally specific between frequencies coupling from IPC to preSMA in the higher gamma (ɣ) band in the late task phase. This suggests that SoA is a retrospective perception, which is highly dependent on interpretation of the outcome of the performed action. PMID:25076883

  6. Lateralization of magnetic compass orientation in a migratory bird

    NASA Astrophysics Data System (ADS)

    Wiltschko, Wolfgang; Traudt, Joachim; Güntürkün, Onur; Prior, Helmut; Wiltschko, Roswitha

    2002-10-01

    Lateralization of brain functions, once believed to be a human characteristic, has now been found to be widespread among vertebrates. In birds, asymmetries of visual functions are well studied, with each hemisphere being specialized for different tasks. Here we report lateralized functions of the birds' visual system associated with magnetoperception, resulting in an extreme asymmetry of sensing the direction of the magnetic field. We found that captive migrants tested in cages with the magnetic field as the only available orientation cue were well oriented in their appropriate migratory direction when using their right eye only, but failed to show a significant directional preference when using their left eye. This implies that magnetoreception for compass orientation, assumed to take place in the eyes alongside the visual processes, is strongly lateralized, with a marked dominance of the right eye/left brain hemisphere.

  7. Remote Sensing and Remote Control Activities in Europe and America: Part 2--Remote Sensing Ground Stations in Europe,

    DTIC Science & Technology

    1996-04-08

    Development tasks and products of remote sensing ground stations in Europe are represented by the In-Sec Corporation and the Schlumberger Industries Corporation. The article presents the main products of these two corporations.

  8. Specific sensors for special roles in oil spill remote sensing

    NASA Astrophysics Data System (ADS)

    Brown, Carl E.; Fingas, Mervin F.

    1997-01-01

    Remote sensing is becoming an increasingly important tool for the effective direction of oil spill countermeasures. Cleanup personnel have recognized that remote sensing can increase spill cleanup efficiency. The general public expects that the government and/or the spiller know the location and the extent of the contamination. The Emergencies Science Division (ESD) of Environment Canada, is responsible for remote sensing during oil spill emergencies along Canada's three coastlines, extensive inland waterways, as well as over the entire land mass. In addition to providing operational remote sensing, ESD conducts research into the development of airborne oil spill remote sensors, including the Scanning Laser Environmental Airborne Fluorosensor (SLEAF) and the Laser Ultrasonic Remote SEnsing of Oil Thickness (LURSOT) sensor. It has long been recognized that there is not one sensor or 'magic bullet' which is capable of detecting oil and related petroleum products in all environments and spill scenarios. There are sensors which possess a wide filed-of-view and can therefore be used to map the overall extent of the spill. These sensors, however lack the specificity required to positively identify oil and related products. This is even more of a problem along complicated beach and shoreline environments where several substrates are present. The specific laser- based sensors under development by Environment Canada are designed to respond to special roles in oil spill response. In particular, the SLEAF is being developed to unambiguously detect and map oil and related petroleum products in complicated marine and shoreline environments where other non-specific sensors experience difficulty. The role of the SLEAF would be to confirm or reject suspected oil contamination sites that have been targeted by the non- specific sensors. This confirmation will release response crews from the time consuming task of physically inspecting each site, and direct crews to sites that require remediation. The LURSOT sensor will provide an absolute measurement of oil thickness form an airborne platform. There are presently no sensors available, either airborne or in the laboratory which can provide an absolute measurement of oil thickness. This information is necessary for the effective direction of spill countermeasures such as dispersant application and in-situ burning. This paper will describe the development of laser-based airborne oil spill remote sensing instrumentation at Environment Canada and identify the anticipated benefits of the use of this technology to the oil spill response community.

  9. Sensorization of a surgical robotic instrument for force sensing

    NASA Astrophysics Data System (ADS)

    Shahzada, Kaspar S.; Yurkewich, Aaron; Xu, Ran; Patel, Rajni V.

    2016-03-01

    This paper presents the development and application of an approach for sensorizing a surgical robotic instrument for two degree-of-freedom (DOF) lateral force sensing. The sensorized instrument is compatible with the da Vinci® Surgical System and can be used for skills assessment and force control in specific surgical tasks. The sensing technology utilizes a novel layout of four fiber Bragg grating (FBG) sensors attached to the shaft of a da Vinci® surgical instrument. The two cross-section layout is insensitive to error caused by combined force and torque loads, and the orientation of the sensors minimizes the condition number of the instrument's compliance matrix. To evaluate the instrument's sensing capabilities, its performance was tested using a commercially available force-torque sensor, and showed a resolution of 0.05N at 1 kHz sampling rate. The performance of the sensorized instrument was evaluated by performing three surgical tasks on phantom tissue using the da Vinci® system with the da Vinci Research Kit (dVRK): tissue palpation, knot tightening during suturing and Hem-O-Lok® tightening during knotless suturing. The tasks were designed to demonstrate the robustness of the sensorized force measurement approach. The paper reports the results of further evaluation by a group of expert and novice surgeons performing the three tasks mentioned above.

  10. Factors related to the decision of men and women to continue taking science courses in college

    NASA Astrophysics Data System (ADS)

    Deboer, George E.

    The purpose of this study was to determine the importance of the transition between a student's initial collegiate science experience and the decision to continue in science, and whether the reasons students give to explain their success or failure in their first course are related to that decision. Attribution theory provided the framework for investigating these factors. The results showed that for unsuccessful students, the plan to continue in science was unrelated to gender, mathematical aptitude, performance in the first science course, or attributions to luck, effort, ability, or task difficulty. For successful students, the plan to continue in science was directly related to attributions to ability, and inversely related to task difficulty. The results demonstrate the importance of a sense of competence for students who continue in science.

  11. Limb position sense, proprioceptive drift and muscle thixotropy at the human elbow joint

    PubMed Central

    Tsay, A; Savage, G; Allen, T J; Proske, U

    2014-01-01

    These experiments on the human forearm are based on the hypothesis that drift in the perceived position of a limb over time can be explained by receptor adaptation. Limb position sense was measured in 39 blindfolded subjects using a forearm-matching task. A property of muscle, its thixotropy, a contraction history-dependent passive stiffness, was exploited to place muscle receptors of elbow muscles in a defined state. After the arm had been held flexed and elbow flexors contracted, we observed time-dependent changes in the perceived position of the reference arm by an average of 2.8° in the direction of elbow flexion over 30 s (Experiment 1). The direction of the drift reversed after the arm had been extended and elbow extensors contracted, with a mean shift of 3.5° over 30 s in the direction of elbow extension (Experiment 2). The time-dependent changes could be abolished by conditioning elbow flexors and extensors in the reference arm at the test angle, although this led to large position errors during matching (±10°), depending on how the indicator arm had been conditioned (Experiments 3 and 4). When slack was introduced in the elbow muscles of both arms, by shortening muscles after the conditioning contraction, matching errors became small and there was no drift in position sense (Experiments 5 and 6). These experiments argue for a receptor-based mechanism for proprioceptive drift and suggest that to align the two forearms, the brain monitors the difference between the afferent signals from the two arms. PMID:24665096

  12. Position Sense in Chronic Pain: Separating Peripheral and Central Mechanisms in Proprioception in Unilateral Limb Pain.

    PubMed

    Tsay, Anthony J; Giummarra, Melita J

    2016-07-01

    Awareness of limb position is derived primarily from muscle spindles and higher-order body representations. Although chronic pain appears to be associated with motor and proprioceptive disturbances, it is not clear if this is due to disturbances in position sense, muscle spindle function, or central representations of the body. This study examined position sense errors, as an indicator of spindle function, in participants with unilateral chronic limb pain. The sample included 15 individuals with upper limb pain, 15 with lower limb pain, and 15 sex- and age-matched pain-free control participants. A 2-limb forearm matching task in blindfolded participants, and a single-limb pointer task, with the reference limb hidden from view, was used to assess forearm position sense. Position sense was determined after muscle contraction or stretch, intended to induce a high or low spindle activity in the painful and nonpainful limbs, respectively. Unilateral upper and lower limb chronic pain groups produced position errors comparable with healthy control participants for position matching and pointer tasks. The results indicate that the painful and nonpainful limb are involved in limb-matching. Lateralized pain, whether in the arm or leg, does not influence forearm position sense. Painful and nonpainful limbs are involved in bilateral limb-matching. Muscle spindle function appears to be preserved in the presence of chronic pain. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  13. WaterSense Specification for Showerheads Supporting Statement

    EPA Pesticide Factsheets

    WaterSense collaborated with the American Society of Mechanical Engineers (ASME)/Canadian Standards Association (CSA) Joint Harmonization Task Force to develop the specification criteria for high-efficiency showerheads.

  14. The Hico Image Processing System: A Web-Accessible Hyperspectral Remote Sensing Toolbox

    NASA Astrophysics Data System (ADS)

    Harris, A. T., III; Goodman, J.; Justice, B.

    2014-12-01

    As the quantity of Earth-observation data increases, the use-case for hosting analytical tools in geospatial data centers becomes increasingly attractive. To address this need, HySpeed Computing and Exelis VIS have developed the HICO Image Processing System, a prototype cloud computing system that provides online, on-demand, scalable remote sensing image processing capabilities. The system provides a mechanism for delivering sophisticated image processing analytics and data visualization tools into the hands of a global user community, who will only need a browser and internet connection to perform analysis. Functionality of the HICO Image Processing System is demonstrated using imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), an imaging spectrometer located on the International Space Station (ISS) that is optimized for acquisition of aquatic targets. Example applications include a collection of coastal remote sensing algorithms that are directed at deriving critical information on water and habitat characteristics of our vulnerable coastal environment. The project leverages the ENVI Services Engine as the framework for all image processing tasks, and can readily accommodate the rapid integration of new algorithms, datasets and processing tools.

  15. A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor

    2004-01-01

    High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.

  16. Acting without being in control: Exploring volition in Parkinson's disease with impulsive compulsive behaviours.

    PubMed

    Ricciardi, Lucia; Haggard, Patrick; de Boer, Lieke; Sorbera, Chiara; Stenner, Max-Philipp; Morgante, Francesca; Edwards, Mark J

    2017-07-01

    Several aspects of volitional control of action may be relevant in the pathophysiology of impulsive-compulsive behaviours (ICB) in Parkinson's disease (PD). We aimed to explore multiple aspects of action control, assessing reward-related behaviour, inhibition (externally and internally triggered) and sense of agency in PD patients, with and without ICB compared to healthy subjects. Nineteen PD patients with ICB (PD-ICB), 19 PD without ICB (PD-no-ICB) and 19 healthy controls (HC) underwent a battery of tests including: Intentional Binding task which measures sense of agency; Stop Signal Reaction Time (SSRT) measuring capacity for reactive inhibition; the Marble task, assessing intentional inhibition; Balloon Analog Risk Task for reward sensitivity. One-way ANOVA showed significant main effect of group for action binding (p = 0.004, F = 6.27). Post hoc analysis revealed that PD-ICB had significantly stronger action binding than HC (p = 0.004), and PD-no-ICB (p = 0.04). There was no difference between PD-no-ICB and HC. SSRT did not differ between PD groups, whereas a significant difference between PD-no-ICB and HC was detected (p = 0.01). No other differences were found among groups in the other tasks. PD patients with ICB have abnormal performance on a psychophysical task assessing sense of agency, which might be related to a deficit in action representation at cognitive/experiential level. Yet, they have no deficit on tasks evaluating externally and internally triggered inhibitory control, or in reward-based decision-making. We conclude that impaired sense of agency may be a factor contributing to ICB in PD patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. On-board multispectral classification study. Volume 2: Supplementary tasks. [adaptive control

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The operational tasks of the onboard multispectral classification study were defined. These tasks include: sensing characteristics for future space applications; information adaptive systems architectural approaches; data set selection criteria; and onboard functional requirements for interfacing with global positioning satellites.

  18. Sensing Super-Position: Human Sensing Beyond the Visual Spectrum

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Schipper, John F.

    2007-01-01

    The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This paper addresses the technical feasibility of augmenting human vision through Sensing Super-position by mixing natural Human sensing. The current implementation of the device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of Lie human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system. The human brain is superior to most existing computer systems in rapidly extracting relevant information from blurred, noisy, and redundant images. From a theoretical viewpoint, this means that the available bandwidth is not exploited in an optimal way. While image-processing techniques can manipulate, condense and focus the information (e.g., Fourier Transforms), keeping the mapping as direct and simple as possible might also reduce the risk of accidentally filtering out important clues. After all, especially a perfect non-redundant sound representation is prone to loss of relevant information in the non-perfect human hearing system. Also, a complicated non-redundant image-to-sound mapping may well be far more difficult to learn and comprehend than a straightforward mapping, while the mapping system would increase in complexity and cost. This work will demonstrate some basic information processing for optimal information capture for headmounted systems.

  19. An Extended Passive Motion Paradigm for Human-Like Posture and Movement Planning in Redundant Manipulators

    PubMed Central

    Tommasino, Paolo; Campolo, Domenico

    2017-01-01

    A major challenge in robotics and computational neuroscience is relative to the posture/movement problem in presence of kinematic redundancy. We recently addressed this issue using a principled approach which, in conjunction with nonlinear inverse optimization, allowed capturing postural strategies such as Donders' law. In this work, after presenting this general model specifying it as an extension of the Passive Motion Paradigm, we show how, once fitted to capture experimental postural strategies, the model is actually able to also predict movements. More specifically, the passive motion paradigm embeds two main intrinsic components: joint damping and joint stiffness. In previous work we showed that joint stiffness is responsible for static postures and, in this sense, its parameters are regressed to fit to experimental postural strategies. Here, we show how joint damping, in particular its anisotropy, directly affects task-space movements. Rather than using damping parameters to fit a posteriori task-space motions, we make the a priori hypothesis that damping is proportional to stiffness. This remarkably allows a postural-fitted model to also capture dynamic performance such as curvature and hysteresis of task-space trajectories during wrist pointing tasks, confirming and extending previous findings in literature. PMID:29249954

  20. Sensing of triacylglycerol in the gut: different mechanisms for fatty acids and 2-monoacylglycerol.

    PubMed

    Kleberg, Karen; Jacobsen, Anne Katrine; Ferreira, Jozelia G; Windeløv, Johanne Agerlin; Rehfeld, Jens F; Holst, Jens Juul; de Araujo, Ivan E; Hansen, Harald S

    2015-04-15

    Sensing of dietary triacylglycerol in the proximal small intestine results in physiological, hormonal and behavioural responses. However, the exact physiological pathways linking intestinal fat sensing to food intake and the activation of brain circuits remain to be identified. In this study we examined the role of triacylglycerol digestion for intestinal fat sensing, and compared the effects of the triacylglycerol digestion products, fatty acids and 2-monoacylglycerol, on behavioural, hormonal and dopaminergic responses in behaving mice. Using an operant task in which mice are trained to self-administer lipid emulsions directly into the stomach, we show that inhibiting triacylglycerol digestion disrupts normal behaviour of self-administration in mice, indicating that fat sensing is conditional to digestion. When administered separately, both digestion products, 2-monoacylglycerol and fatty acids, were sensed by the mice, and self-administration patterns of fatty acids were affected by the fatty acid chain length. Peripheral plasma concentrations of the gut hormones GLP-1, GIP, PYY, CCK and insulin did not offer an explanation of the differing behavioural effects produced by 2-monoacylglycerol and fatty acids. However, combined with behavioural responses, striatal dopamine effluxes induced by gut infusions of oleic acid were significantly greater than those produced by equivalent infusions of 2-oleoylglycerol. Our data demonstrate recruitment of different signalling pathways by fatty acids and 2-monoacylglycerol, and suggest that the structural properties of fat rather than total caloric value determine intestinal sensing and the assignment of reward value to lipids. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  1. Self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal superior longitudinal fasciculus III network.

    PubMed

    Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru; Naito, Eiichi

    2017-04-21

    Proprioception is somatic sensation that allows us to sense and recognize position, posture, and their changes in our body parts. It pertains directly to oneself and may contribute to bodily awareness. Likewise, one's face is a symbol of oneself, so that visual self-face recognition directly contributes to the awareness of self as distinct from others. Recently, we showed that right-hemispheric dominant activity in the inferior fronto-parietal cortices, which are connected by the inferior branch of the superior longitudinal fasciculus (SLF III), is associated with proprioceptive illusion (awareness), in concert with sensorimotor activity. Herein, we tested the hypothesis that visual self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal SLF III network. We scanned brain activity using functional magnetic resonance imaging while twenty-two right-handed healthy adults performed two tasks. One was a proprioceptive illusion task, where blindfolded participants experienced a proprioceptive illusion of right hand movement. The other was a visual self-face recognition task, where the participants judged whether an observed face was their own. We examined whether the self-face recognition and the proprioceptive illusion commonly activated the inferior fronto-parietal cortices connected by the SLF III in a right-hemispheric dominant manner. Despite the difference in sensory modality and in the body parts involved in the two tasks, both tasks activated the right inferior fronto-parietal cortices, which are likely connected by the SLF III, in a right-side dominant manner. Here we discuss possible roles for right inferior fronto-parietal activity in bodily awareness and self-awareness. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Summary report: A preliminary investigation into the use of fuzzy logic for the control of redundant manipulators

    NASA Technical Reports Server (NTRS)

    Cheatham, John B., Jr.; Magee, Kevin N.

    1991-01-01

    The Rice University Department of Mechanical Engineering and Materials Sciences' Robotics Group designed and built an eight degree of freedom redundant manipulator. Fuzzy logic was proposed as a control scheme for tasks not directly controlled by a human operator. In preliminary work, fuzzy logic control was implemented for a camera tracking system and a six degree of freedom manipulator. Both preliminary systems use real time vision data as input to fuzzy controllers. Related projects include integration of tactile sensing and fuzzy control of a redundant snake-like arm that is under construction.

  3. Practice and Experience of Task Management of University Students: Case of University of Tsukuba, Japan

    ERIC Educational Resources Information Center

    Fukuzawa, Ryoko; Joho, Hideo; Maeshiro, Tetsuya

    2015-01-01

    This paper reports the results of a survey that investigated the practice and experience of task management of university students. A total of 202 tasks identified by 24 university students were analyzed. The results suggest that participants had a reasonable sense of priority of tasks, that they tend to perceive a task as a big chunk, not a…

  4. Characterization of a laboratory model of computer mouse use - applications for studying risk factors for musculoskeletal disorders.

    PubMed

    Flodgren, G; Heiden, M; Lyskov, E; Crenshaw, A G

    2007-03-01

    In the present study, we assessed the wrist kinetics (range of motion, mean position, velocity and mean power frequency in radial/ulnar deviation, flexion/extension, and pronation/supination) associated with performing a mouse-operated computerized task involving painting rectangles on a computer screen. Furthermore, we evaluated the effects of the painting task on subjective perception of fatigue and wrist position sense. The results showed that the painting task required constrained wrist movements, and repetitive movements of about the same magnitude as those performed in mouse-operated design tasks. In addition, the painting task induced a perception of muscle fatigue in the upper extremity (Borg CR-scale: 3.5, p<0.001) and caused a reduction in the position sense accuracy of the wrist (error before: 4.6 degrees , error after: 5.6 degrees , p<0.05). This standardized painting task appears suitable for studying relevant risk factors, and therefore it offers a potential for investigating the pathophysiological mechanisms behind musculoskeletal disorders related to computer mouse use.

  5. Approximate Number Sense, Symbolic Number Processing, or Number-Space Mappings: What Underlies Mathematics Achievement?

    ERIC Educational Resources Information Center

    Sasanguie, Delphine; Gobel, Silke M.; Moll, Kristina; Smets, Karolien; Reynvoet, Bert

    2013-01-01

    In this study, the performance of typically developing 6- to 8-year-old children on an approximate number discrimination task, a symbolic comparison task, and a symbolic and nonsymbolic number line estimation task was examined. For the first time, children's performances on these basic cognitive number processing tasks were explicitly contrasted…

  6. Precision Sensing by Two Opposing Gradient Sensors: How Does Escherichia coli Find its Preferred pH Level?

    PubMed Central

    Hu, Bo; Tu, Yuhai

    2013-01-01

    It is essential for bacteria to find optimal conditions for their growth and survival. The optimal levels of certain environmental factors (such as pH and temperature) often correspond to some intermediate points of the respective gradients. This requires the ability of bacteria to navigate from both directions toward the optimum location and is distinct from the conventional unidirectional chemotactic strategy. Remarkably, Escherichia coli cells can perform such a precision sensing task in pH taxis by using the same chemotaxis machinery, but with opposite pH responses from two different chemoreceptors (Tar and Tsr). To understand bacterial pH sensing, we developed an Ising-type model for a mixed cluster of opposing receptors based on the push-pull mechanism. Our model can quantitatively explain experimental observations in pH taxis for various mutants and wild-type cells. We show how the preferred pH level depends on the relative abundance of the competing sensors and how the sensory activity regulates the behavioral response. Our model allows us to make quantitative predictions on signal integration of pH and chemoattractant stimuli. Our study reveals two general conditions and a robust push-pull scheme for precision sensing, which should be applicable in other adaptive sensory systems with opposing gradient sensors. PMID:23823247

  7. Did I Do That? Expectancy Effects of Brain Stimulation on Error-related Negativity and Sense of Agency.

    PubMed

    Hoogeveen, Suzanne; Schjoedt, Uffe; van Elk, Michiel

    2018-06-19

    This study examines the effects of expected transcranial stimulation on the error(-related) negativity (Ne or ERN) and the sense of agency in participants who perform a cognitive control task. Placebo transcranial direct current stimulation was used to elicit expectations of transcranially induced cognitive improvement or impairment. The improvement/impairment manipulation affected both the Ne/ERN and the sense of agency (i.e., whether participants attributed errors to oneself or the brain stimulation device): Expected improvement increased the ERN in response to errors compared with both impairment and control conditions. Expected impairment made participants falsely attribute errors to the transcranial stimulation. This decrease in sense of agency was correlated with a reduced ERN amplitude. These results show that expectations about transcranial stimulation impact users' neural response to self-generated errors and the attribution of responsibility-especially when actions lead to negative outcomes. We discuss our findings in relation to predictive processing theory according to which the effect of prior expectations on the ERN reflects the brain's attempt to generate predictive models of incoming information. By demonstrating that induced expectations about transcranial stimulation can have effects at a neural level, that is, beyond mere demand characteristics, our findings highlight the potential for placebo brain stimulation as a promising tool for research.

  8. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    The purpose of Modification No. 5 of this contract is to expand the scope of work (Task C) of this research study effort to develop pressure instrumentation for the SSME. The objective of this contract (Task C) is to direct Honeywell's Solid State Electronics Division's (SSED) extensive experience and expertise in solid state sensor technology to develop prototype pressure transducers which are targeted to meet the SSME performance design goals and to fabricate, test and deliver a total of 10 prototype units. SSED's basic approach is to effectively utilize the many advantages of silicon piezoresistive strain sensing technology to achieve the objectives of advanced state-of-the-art pressure sensors in terms of reliability, accuracy and ease of manufacture. More specifically, integration of multiple functions on a single chip is the key attribute of this technology which will be exploited during this research study.

  9. Consciousness and abilities of dream characters observed during lucid dreaming.

    PubMed

    Tholey, P

    1989-04-01

    A description of several phenomenological experiments is given. These were done to investigate of which cognitive accomplishments dream characters are capable in lucid dreams. Nine male experienced lucid dreamers participated as subjects. They were directed to set different tasks to dream characters they met while lucid dreaming. Dream characters were asked to draw or write, to name unknown words, to find rhyme words, to make verses, and to solve arithmetic problems. Part of the dream characters actually agreed to perform the tasks and were successful, although the arithmetic accomplishments were poor. From the phenomenological findings, nothing contradicts the assumption that dream characters have consciousness in a specific sense. Herefrom the conclusion was drawn, that in lucid dream therapy communication with dream characters should be handled as if they were rational beings. Finally, several possibilities of assessing the question, whether dream characters possess consciousness, can be examined with the aid of psychophysiological experiments.

  10. Graph Matching for the Registration of Persistent Scatterers to Optical Oblique Imagery

    NASA Astrophysics Data System (ADS)

    Schack, L.; Soergel, U.; Heipke, C.

    2016-06-01

    Matching Persistent Scatterers (PS) to airborne optical imagery is one possibility to augment applications and deepen the understanding of SAR processing and products. While recently this data registration task was done with PS and optical nadir images the alternatively available optical oblique imagery is mostly neglected. Yet, the sensing geometry of oblique images is very similar in terms of viewing direction with respect to SAR.We exploit the additional information coming with these optical sensors to assign individual PS to single parts of buildings. The key idea is to incorporate topology information which is derived by grouping regularly aligned PS at facades and use it together with a geometry based measure in order to establish a consistent and meaningful matching result. We formulate this task as an optimization problem and derive a graph matching based algorithm with guaranteed convergence in order to solve it. Two exemplary case studies show the plausibility of the presented approach.

  11. Analysis on the application of background parameters on remote sensing classification

    NASA Astrophysics Data System (ADS)

    Qiao, Y.

    Drawing accurate crop cultivation acreage, dynamic monitoring of crops growing and yield forecast are some important applications of remote sensing to agriculture. During the 8th 5-Year Plan period, the task of yield estimation using remote sensing technology for the main crops in major production regions in China once was a subtopic to the national research task titled "Study on Application of Remote sensing Technology". In 21 century in a movement launched by Chinese Ministry of Agriculture to combine high technology to farming production, remote sensing has given full play to farm crops' growth monitoring and yield forecast. And later in 2001 Chinese Ministry of Agriculture entrusted the Northern China Center of Agricultural Remote Sensing to forecast yield of some main crops like wheat, maize and rice in rather short time to supply information for the government decision maker. Present paper is a report for this task. It describes the application of background parameters in image recognition, classification and mapping with focuses on plan of the geo-science's theory, ecological feature and its cartographical objects or scale, the study of phrenology for image optimal time for classification of the ground objects, the analysis of optimal waveband composition and the application of background data base to spatial information recognition ;The research based on the knowledge of background parameters is indispensable for improving the accuracy of image classification and mapping quality and won a secondary reward of tech-science achievement from Chinese Ministry of Agriculture. Keywords: Spatial image; Classification; Background parameter

  12. In a demanding task, three-handed manipulation is preferred to two-handed manipulation

    NASA Astrophysics Data System (ADS)

    Abdi, Elahe; Burdet, Etienne; Bouri, Mohamed; Himidan, Sharifa; Bleuler, Hannes

    2016-02-01

    Equipped with a third hand under their direct control, surgeons may be able to perform certain surgical interventions alone; this would reduce the need for a human assistant and related coordination difficulties. However, does human performance improve with three hands compared to two hands? To evaluate this possibility, we carried out a behavioural study on the performance of naive adults catching objects with three virtual hands controlled by their two hands and right foot. The subjects could successfully control the virtual hands in a few trials. With this control strategy, the workspace of the hands was inversely correlated with the task velocity. The comparison of performance between the three and two hands control revealed no significant difference of success in catching falling objects and in average effort during the tasks. Subjects preferred the three handed control strategy, found it easier, with less physical and mental burden. Although the coordination of the foot with the natural hands increased trial after trial, about two minutes of practice was not sufficient to develop a sense of ownership towards the third arm.

  13. In a demanding task, three-handed manipulation is preferred to two-handed manipulation.

    PubMed

    Abdi, Elahe; Burdet, Etienne; Bouri, Mohamed; Himidan, Sharifa; Bleuler, Hannes

    2016-02-25

    Equipped with a third hand under their direct control, surgeons may be able to perform certain surgical interventions alone; this would reduce the need for a human assistant and related coordination difficulties. However, does human performance improve with three hands compared to two hands? To evaluate this possibility, we carried out a behavioural study on the performance of naive adults catching objects with three virtual hands controlled by their two hands and right foot. The subjects could successfully control the virtual hands in a few trials. With this control strategy, the workspace of the hands was inversely correlated with the task velocity. The comparison of performance between the three and two hands control revealed no significant difference of success in catching falling objects and in average effort during the tasks. Subjects preferred the three handed control strategy, found it easier, with less physical and mental burden. Although the coordination of the foot with the natural hands increased trial after trial, about two minutes of practice was not sufficient to develop a sense of ownership towards the third arm.

  14. Efficient Ada multitasking on a RISC register window architecture

    NASA Technical Reports Server (NTRS)

    Kearns, J. P.; Quammen, D.

    1987-01-01

    This work addresses the problem of reducing context switch overhead on a processor which supports a large register file - a register file much like that which is part of the Berkeley RISC processors and several other emerging architectures (which are not necessarily reduced instruction set machines in the purest sense). Such a reduction in overhead is particularly desirable in a real-time embedded application, in which task-to-task context switch overhead may result in failure to meet crucial deadlines. A storage management technique by which a context switch may be implemented as cheaply as a procedure call is presented. The essence of this technique is the avoidance of the save/restore of registers on the context switch. This is achieved through analysis of the static source text of an Ada tasking program. Information gained during that analysis directs the optimized storage management strategy for that program at run time. A formal verification of the technique in terms of an operational control model and an evaluation of the technique's performance via simulations driven by synthetic Ada program traces are presented.

  15. Global models: Robot sensing, control, and sensory-motor skills

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S.

    1989-01-01

    Robotics research has begun to address the modeling and implementation of a wide variety of unstructured tasks. Examples include automated navigation, platform servicing, custom fabrication and repair, deployment and recovery, and science exploration. Such tasks are poorly described at onset; the workspace layout is partially unfamiliar, and the task control sequence is only qualitatively characterized. The robot must model the workspace, plan detailed physical actions from qualitative goals, and adapt its instantaneous control regimes to unpredicted events. Developing robust representations and computational approaches for these sensing, planning, and control functions is a major challenge. The underlying domain constraints are very general, and seem to offer little guidance for well-bounded approximation of object shape and motion, manipulation postures and trajectories, and the like. This generalized modeling problem is discussed, with an emphasis on the role of sensing. It is also discussed that unstructured tasks often have, in fact, a high degree of underlying physical symmetry, and such implicit knowledge should be drawn on to model task performance strategies in a methodological fashion. A group-theoretic decomposition of the workspace organization, task goals, and their admissible interactions are proposed. This group-mechanical approach to task representation helps to clarify the functional interplay of perception and control, in essence, describing what perception is specifically for, versus how it is generically modeled. One also gains insight how perception might logically evolve in response to needs of more complex motor skills. It is discussed why, of the many solutions that are often mathematically admissible to a given sensory motor-coordination problem, one may be preferred over others.

  16. Spontaneous Repetitive Thoughts Can Be Adaptive: Postscript on "Mind Wandering"

    ERIC Educational Resources Information Center

    Baars, Bernard J.

    2010-01-01

    When researchers use the term "mind wandering" for task-unrelated thoughts in signal detection tasks, we may fall into the trap of believing that spontaneous thoughts are task unrelated in a deeper sense. Similar negative connotations are attached to common terms like "cognitive failures", "resting state", "rumination", "distraction", "attentional…

  17. Re: Madsen et al. "Unnecessary work tasks and mental health: a prospective analysis of Danish human service workers".

    PubMed

    Durand-Moreau, Quentin; Loddé, Brice; Dewitte, Jean-Dominique

    2015-03-01

    Madsen et al (1) recently published a secondary analysis on data provided by the Project on Burnout, Motivation and Job Satisfaction (PUMA). The aim of their study, published in the Scandinavian Journal of Work, Environment & Health was to examine the associations between unnecessary work tasks and a decreased level of mental health. Though the topic was quite novel, reading this work proved disturbing and raised issues. Based on the results of this study, the authors stated that there is an association between unnecessary work tasks (assessed by a single question) and a decreased level of mental health, idem [assessed by the Mental Health Inventory (MHI-5)], in the specific population included in this PUMA survey. The authors point out a limitation of the study, namely that unnecessary work tasks were evaluated using one single question: "Do you sometimes have to do things in your job which appear to be unnecessary?". Semmer defines unnecessary work task as "tasks that should not be carried out at all because they do not make sense or because they could have been avoided, or could be carried out with less effort if things were organized more efficiently" (2). De facto, qualifying what an unnecessary task is requires stating or explaining whether the task makes sense. Making sense or not is not an objective notion. It is very difficult for either a manager or an employee to say if a task is necessary or not. Most important is that it makes sense from the worker's point of view. Making sense and being necessary are not synonyms. Some tasks do not make sense but are economically necessary (eg, when, as physicians, we are reporting our activity using ICD-10 on computers instead of being at patients' bedsides or reading this journal). Thus, there is a wide gap between Semmer's definition and the question used by the authors to evaluate his concept. A secondary analysis based on a single question is not adequate to evaluate unnecessary tasks. Nowadays, the general trend is to reduce the size of questionnaires because they are too long and cannot be used in a routine practice. But an analysis performed on a single question is quite risky: in psychometrics, redundancy is used to confirm a measurement. We lose precision on what exactly we are testing by asking a single question. Madsen et al's results show that among workers saying they are always or often performing unnecessary tasks, the MHI mean score was 74.00 versus 78.20 for people who never or almost never perform unnecessary tasks (P=0.0038). Even though it is a statistically significant result, its clinical relevance is never questioned. What is the impact of losing 4.20 points at MHI test instead of losing 20 points for instance? Statistical difference does not mean clinical relevance. These results show a statistical association, not a causality relationship. The authors did not show that performing unnecessary tasks lowers the level of mental health. It may be the exact opposite. Maybe having poorer mental health (eg, depression, with anhedonia) may make the workers think that what they're doing is useless. In their conclusion, Madsen et al suggest that the elimination of unnecessary work tasks may be beneficial for employees' mental health. To our mind, on the contrary, it may increase psychic suffering. If we suggest to fight unnecessary tasks in workplaces, this may encourage reduction of the margin of manoeuvre (3). The principle of removing unnecessary tasks is part of a Taylorized organization. Some tasks may seem unnecessary or bothersome, but may correspond to work periods that allow for temporary rest. Concretely, in the workplace, managers rather than the employee will be the ones to decide whether a task is useless or not. To improve well-being in the workplace, a global vision of work organization is required. From our point of view, the conclusion drawn from this study should not be that we must eliminate unnecessary tasks, but that we should focus on what makes sense for the worker, with a global view on his work and - as usual - the aim of carrying out further studies on this subject. Conflicts of interest The authors declare no conflict of interest. References 1. Madsen IEH, Tripathi M, Borritz M, Rugulies R, Unnecessary work tasks and mental health: a prospective analysis of Danish human service workers, Scand J Work Environ Health. 2014;40(6):631-8. http://dx.doi.org/10.5271/sjweh.3453.  2. Semmer NK, Tschan F, Meier LL, Facchin S, Jacobshagen N, Illegitimate tasks and counterproductive work behavior, Appl Psychol. 2010;59:70-96. http://dx.doi.org/10.1111/j.1464-0597.2009.00416.x.  3. Durand MJ, Vézina N, Baril R, Loisel P, Richard MC, Ngomo S, Margin of manoeuvre indicators in the workplace during the rehabilitation process: a qualitative analysis, J Occup Rehab. 2009;19:194-202. http://dx.doi.org/10.1007/s10926-009-9173-4.

  18. Settlement patterns and communication routes of the western Maya wetlands: An archaeological and remote-sensing survey, Chunchucmil, Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Hixson, David R.

    This dissertation investigates the role of the seasonal wetlands in the political economy and subsistence strategies of the ancient Maya of Chunchucmil, Yucatan, Mexico. A combination of pedestrian surveys and remote-sensing tasks were performed in order to better understand the settlement patterns and potential communication routes in and through the wetlands between Chunchucmil and the Gulf of Mexico. These western wetlands had been proposed as the principal avenue for interregional trade between coastal merchants and inland consumers, yet were thought to be uninhabited and uncultivable. Following the survey tasks outlined in this dissertation, these wetlands were found to contain an abundance of archaeological settlements and features indicating habitation, utilization, and trade throughout this diverse ecological zone. The remote-sensing platforms utilized in this study include both multispectral (Landsat) and synthetic aperture radar (AirSAR), combined with additional remotely sensed resources. One of the goals of this survey was to test the capabilities of these two sensors for the direct detection of archaeological features from air and space. The results indicate that Landsat can be highly successful at detecting site location and measuring site size under certain environmental conditions. The Airborne Synthetic Aperture Radar proved to be adept at detecting large mounded architecture within the Yucatecan karstic plain, but its further utility is hampered by limitations of resolution, scale, and land cover. One of the salient features of the landscape west of Chunchucmil is a network of stone pathways called andadores. These avenues through the wetlands outline a dendritic network of communication, trade, and extraction routes. The following dissertation places this network and its associated settlements (from suburban centers to diminutive camps) within their regional context, examining the roles they may have played in supporting a large mercantile economy centered at the site of Chunchucmil.

  19. Sense of agency and mentalizing: dissociation of subdomains of social cognition in patients with schizophrenia.

    PubMed

    Schimansky, Jenny; David, Nicole; Rössler, Wulf; Haker, Helene

    2010-06-30

    The sense of agency, i.e., the sense that "I am the one who is causing an action", and mentalizing, the ability to understand the mental states of other individuals, are key domains of social cognition. It has been hypothesized that an intact sense of agency is an important precondition for higher-level mentalizing abilities. A substantial body of evidence shows that both processes rely on similar brain areas and are severely impaired in schizophrenia, suggesting a close link between agency and mentalizing. Yet this relationship has not been explicitly tested. We investigated 40 individuals with schizophrenia and 40 healthy controls on an agency and mentalizing task. On the agency task, participants carried out simple mouse movements and judged the partially manipulated visual feedback as either self- or other-generated. On the mentalizing task, participants inferred mental states from pictures that depicted others' eyes ("Reading the mind in the eyes test"). Neuropsychological, psychopathological and social functioning levels were also evaluated. Both sense of agency and mentalizing were impaired in schizophrenia patients compared to healthy controls. However, testing for a relationship revealed no significant correlations between the two processes, either in the schizophrenia or the control group. The present findings demonstrate a dissociation of agency and mentalizing deficits in schizophrenia, suggesting that the multifaceted construct of social cognition consists of independent subdomains in healthy and psychiatrically ill individuals.

  20. "I have a connection!": The situated sense-making of an elementary student about the role of water in modeled vs. experienced ecosystems

    NASA Astrophysics Data System (ADS)

    Roberts, Lisa Elisabeth N.

    Current policy and research have led the field of science education towards a model of "science as practice." In the past decade, several research programs on model-based reasoning practices in education have articulated key dimensions of practice, including constructing and defending models, comparing models to empirical data, using representations to identify patterns in data and use those as inscriptions to buttress arguments. This study presents a detailed case of how the use of a physical microcosm and children's self-directed representations of an ecosystem constrained and afforded student sense-making in an urban elementary classroom. The case analyzed the experiences of a 10-year old fifth grade student, Jorge, and the variation in his expressed understanding of ecosystems as he interacted with academic tasks, along with models and representations, to design, observe and explain an ecological microcosm. The study used a conceptual framework that brings together theories of situated cognition and Doyle's work on academic task to explain how and why Jorge's perception and communication of dimensions of ecosystem structure, function, and behavior appear to "come in and out of focus," influenced by the affordances of the tools and resources available, the academic task as given by the teacher, and Jorge's own experiences and knowledge of phenomena related to ecosystems. Findings from this study suggest that elementary students' ability or inability to address particular ecological concepts in a given task relate less to gaps in their understanding and more to the structure of academic tasks and learning contexts. The process of a student interacting with curriculum follows a dynamic trajectory and leads to emergent outcomes. As a result of the complex interactions of task, tools, and his own interests and agency, Jorge's attunement to the role of water in ecosystems comes in and out of focus throughout the unit. The instructional constraint of needing to integrate the FOSS Water Cycle curriculum into the Bottle Biology Project became an affordance for Jorge to ask questions, observe, and theorize about the role of water and the water cycle in an ecosystem. The practice of modeling a closed ecosystem made salient to Jorge the boundaries of a system and the conservation of water within that system. The closed ecosystem model also presented constraints to students' sense making about the role of interactions when students lack domain knowledge in ecology. Relying on students' own talk, photographs and representations as explanations of phenomena in the Bio Bottle, without establishing norms of representational conventions and communication, resulted in missed opportunities for Jorge to reinforce his sense making during the activity and to develop conventions of scientific representation. Findings from this study can be used to inform the design and implementation of learning environments and curricular activities for elementary and middle school students that address all three dimensions of the Next Generation Science Standards: a) developing conceptual understanding of key concepts in the domain of ecology, b) the cross-cutting concept of systems, and c) multiple practices that ecologists use in developing and evaluating models that explain ecosystem structures, functions, and change over time.

  1. Planning perception and action for cognitive mobile manipulators

    NASA Astrophysics Data System (ADS)

    Gaschler, Andre; Nogina, Svetlana; Petrick, Ronald P. A.; Knoll, Alois

    2013-12-01

    We present a general approach to perception and manipulation planning for cognitive mobile manipulators. Rather than hard-coding single purpose robot applications, a robot should be able to reason about its basic skills in order to solve complex problems autonomously. Humans intuitively solve tasks in real-world scenarios by breaking down abstract problems into smaller sub-tasks and use heuristics based on their previous experience. We apply a similar idea for planning perception and manipulation to cognitive mobile robots. Our approach is based on contingent planning and run-time sensing, integrated in our knowledge of volumes" planning framework, called KVP. Using the general-purpose PKS planner, we model information-gathering actions at plan time that have multiple possible outcomes at run time. As a result, perception and sensing arise as necessary preconditions for manipulation, rather than being hard-coded as tasks themselves. We demonstrate the e ectiveness of our approach on two scenarios covering visual and force sensing on a real mobile manipulator.

  2. A scene-analysis approach to remote sensing. [San Francisco, California

    NASA Technical Reports Server (NTRS)

    Tenenbaum, J. M. (Principal Investigator); Fischler, M. A.; Wolf, H. C.

    1978-01-01

    The author has identified the following significant results. Geometric correspondance between a sensed image and a symbolic map is established in an initial stage of processing by adjusting parameters of a sensed model so that the image features predicted from the map optimally match corresponding features extracted from the sensed image. Information in the map is then used to constrain where to look in an image, what to look for, and how to interpret what is seen. For simple monitoring tasks involving multispectral classification, these constraints significantly reduce computation, simplify interpretation, and improve the utility of the resulting information. Previously intractable tasks requiring spatial and textural analysis may become straightforward in the context established by the map knowledge. The use of map-guided image analysis in monitoring the volume of water in a reservoir, the number of boxcars in a railyard, and the number of ships in a harbor is demonstrated.

  3. Calling for the Development of Children's Number Sense in Primary Schools in Malaysia

    ERIC Educational Resources Information Center

    Kuldas, Seffetullah; Sinnakaudan, Santi; Hashim, Shahabuddin; Ghazali, Munirah

    2017-01-01

    Although the early development of children's number sense is a strong predictor of their later mathematics achievements, it has been overlooked in primary schools in Malaysia. Mainly attributable to underdeveloped number sense of Malaysian primary and secondary school children, their inability to handle simple mathematics tasks, which require the…

  4. Self-Organized Air Tasking: Examining a Non-Hierarchical Model for Joint Air Operations

    DTIC Science & Technology

    2004-06-01

    refers to systems with this dynamic incoherence as “strong sense of agency ” systems, and uses “weak sense of agency ” to refer to more predictable...agent-based systems, such as robotics or state-determined automata. Increasing the level of dynamic incoherency indicates a stronger sense of agency . This

  5. An Exploratory Study of a Story Problem Assessment: Understanding Children's Number Sense

    ERIC Educational Resources Information Center

    Shumway, Jessica F.; Westenskow, Arla; Moyer-Packenham, Patricia S.

    2016-01-01

    The purpose of this study was to identify and describe students' use of number sense as they solved story problem tasks. Three 8- and 9-year-old students participated in clinical interviews. Through a process of holistic and qualitative coding, researchers used the number sense view as a theoretical framework for exploring how students' number…

  6. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    PubMed

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-07-15

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Reorienting with terrain slope and landmarks.

    PubMed

    Nardi, Daniele; Newcombe, Nora S; Shipley, Thomas F

    2013-02-01

    Orientation (or reorientation) is the first step in navigation, because establishing a spatial frame of reference is essential for a sense of location and heading direction. Recent research on nonhuman animals has revealed that the vertical component of an environment provides an important source of spatial information, in both terrestrial and aquatic settings. Nonetheless, humans show large individual and sex differences in the ability to use terrain slope for reorientation. To understand why some participants--mainly women--exhibit a difficulty with slope, we tested reorientation in a richer environment than had been used previously, including both a tilted floor and a set of distinct objects that could be used as landmarks. This environment allowed for the use of two different strategies for solving the task, one based on directional cues (slope gradient) and one based on positional cues (landmarks). Overall, rather than using both cues, participants tended to focus on just one. Although men and women did not differ significantly in their encoding of or reliance on the two strategies, men showed greater confidence in solving the reorientation task. These facts suggest that one possible cause of the female difficulty with slope might be a generally lower spatial confidence during reorientation.

  8. Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades.

    PubMed

    Orchard, Garrick; Jayawant, Ajinkya; Cohen, Gregory K; Thakor, Nitish

    2015-01-01

    Creating datasets for Neuromorphic Vision is a challenging task. A lack of available recordings from Neuromorphic Vision sensors means that data must typically be recorded specifically for dataset creation rather than collecting and labeling existing data. The task is further complicated by a desire to simultaneously provide traditional frame-based recordings to allow for direct comparison with traditional Computer Vision algorithms. Here we propose a method for converting existing Computer Vision static image datasets into Neuromorphic Vision datasets using an actuated pan-tilt camera platform. Moving the sensor rather than the scene or image is a more biologically realistic approach to sensing and eliminates timing artifacts introduced by monitor updates when simulating motion on a computer monitor. We present conversion of two popular image datasets (MNIST and Caltech101) which have played important roles in the development of Computer Vision, and we provide performance metrics on these datasets using spike-based recognition algorithms. This work contributes datasets for future use in the field, as well as results from spike-based algorithms against which future works can compare. Furthermore, by converting datasets already popular in Computer Vision, we enable more direct comparison with frame-based approaches.

  9. Weaving Geometry and Algebra Together

    ERIC Educational Resources Information Center

    Cetner, Michelle

    2015-01-01

    When thinking about student reasoning and sense making, teachers must consider the nature of tasks given to students along with how to plan to use the tasks in the classroom. Students should be presented with tasks in a way that encourages them to draw connections between algebraic and geometric concepts. This article focuses on the idea that it…

  10. The Case of Rosie: An Adlerian Response.

    ERIC Educational Resources Information Center

    Powers, Robert L.; Griffith, Jane

    1993-01-01

    Responds to case of Rosie, 35-year-old unmarried community college student struggling with decisions regarding career choice and desire to marry and become a homemaker. Employs Individual Psychology, especially in addressing Rosie's stated sense of failure in each of three life tasks identified by Adler: social task of friendship; tasks of love…

  11. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds †

    PubMed Central

    Frank, Jared A.; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  12. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    PubMed

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-08-20

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  13. User's Self-Prediction of Performance in Motor Imagery Brain-Computer Interface.

    PubMed

    Ahn, Minkyu; Cho, Hohyun; Ahn, Sangtae; Jun, Sung C

    2018-01-01

    Performance variation is a critical issue in motor imagery brain-computer interface (MI-BCI), and various neurophysiological, psychological, and anatomical correlates have been reported in the literature. Although the main aim of such studies is to predict MI-BCI performance for the prescreening of poor performers, studies which focus on the user's sense of the motor imagery process and directly estimate MI-BCI performance through the user's self-prediction are lacking. In this study, we first test each user's self-prediction idea regarding motor imagery experimental datasets. Fifty-two subjects participated in a classical, two-class motor imagery experiment and were asked to evaluate their easiness with motor imagery and to predict their own MI-BCI performance. During the motor imagery experiment, an electroencephalogram (EEG) was recorded; however, no feedback on motor imagery was given to subjects. From EEG recordings, the offline classification accuracy was estimated and compared with several questionnaire scores of subjects, as well as with each subject's self-prediction of MI-BCI performance. The subjects' performance predictions during motor imagery task showed a high positive correlation ( r = 0.64, p < 0.01). Interestingly, it was observed that the self-prediction became more accurate as the subjects conducted more motor imagery tasks in the Correlation coefficient (pre-task to 2nd run: r = 0.02 to r = 0.54, p < 0.01) and root mean square error (pre-task to 3rd run: 17.7% to 10%, p < 0.01). We demonstrated that subjects may accurately predict their MI-BCI performance even without feedback information. This implies that the human brain is an active learning system and, by self-experiencing the endogenous motor imagery process, it can sense and adopt the quality of the process. Thus, it is believed that users may be able to predict MI-BCI performance and results may contribute to a better understanding of low performance and advancing BCI.

  14. Physical and mental effort disrupts the implicit sense of agency.

    PubMed

    Howard, Emma E; Edwards, S Gareth; Bayliss, Andrew P

    2016-12-01

    We investigated the effect of effort on implicit agency ascription for actions performed under varying levels of physical effort or cognitive load. People are able to estimate the interval between two events accurately, but they underestimate the interval between their own actions and their outcomes. This effect is known as 'intentional binding', and may provide feedback regarding the consequences of our actions. Concurrently with the interval reproduction task, our participants pulled sports resistance bands at high and low resistance levels (Experiments 1 and 2), or performed a working memory task with high and low set-sizes (Experiment 3). Intentional binding was greater under low than high effort. When the effort was task-related (Experiment 1), this effect depended on the individual's explicit appraisal of exertion, while the effect of effort was evident at the group level when the effort was task-unrelated (physical, Experiment 2; mental, Experiment 3). These findings imply that the process of intentional binding is compromised when cognitive resources are depleted, either through physical or mental strain. We discuss this notion in relation to the integration of direct sensorimotor feedback with signals of agency and other instances of cognitive resource depletion and action control during strain. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Summary of Tactile User Interfaces Techniques and Systems

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    2005-01-01

    Mental workload can be de.ned as the ratio of demand to allocated resources. Multiple-resource theory stresses the importance of distribution of tasks and information across various human sensory channels to reduce mental workload. One sensory channel that has been of interest since the late 1800s is touch. Unlike the more typical displays that target vision or hearing, tactile displays present information to the user s sense of touch. We present a summary of different methods for tactile display, historic and more recent systems that incorporate tactile display for information presentation, advantages and disadvantages of targeting the tactile channel, and future directions in tactile display research.

  16. Summary of Tactile User Interfaces Techniques and Systems

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    2004-01-01

    Mental workload can be defined as the ratio of demand to allocated resources. Multiple- resource theory stresses the importance of distribution of tasks and information across various sensory channels of the human to reduce mental workload. One sensory channel that has been of interest since the late 1800s is touch. Unlike the more typical displays that target vision or hearing, tactile displays present information to the user s sense of touch. We present a summary of different methods for tactile display; historic and more recent systems that incorporate tactile display for information presentation; advantages and disadvantages of targeting the tactile channel; and future directions in tactile display research.

  17. Report on New Methods for Representing and Interacting with Qualitative Geographic Information, Stage 2: Task Group 4 Message-Focused Use Case

    DTIC Science & Technology

    2014-12-17

    less dependent on each other. Replay of existing events became necessary with the introduction of new SensePlace2 components that appear in pop -up...Report, P a g e | 15 SensePlace2 architecture that synchronizes pop -up windows with the main application in a transparent fashion that does not...a number of other trending retweets that look unfamiliar. Contract #: W912HZ-12-P-0334, Task 4 Report, P a g e | 19 Figure 13. Co-occurrence

  18. LWIR Microgrid Polarimeter for Remote Sensing Studies

    DTIC Science & Technology

    2010-02-28

    Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo

  19. Improved Object Detection Using a Robotic Sensing Antenna with Vibration Damping Control

    PubMed Central

    Feliu-Batlle, Vicente; Feliu-Talegon, Daniel; Castillo-Berrio, Claudia Fernanda

    2017-01-01

    Some insects or mammals use antennae or whiskers to detect by the sense of touch obstacles or recognize objects in environments in which other senses like vision cannot work. Artificial flexible antennae can be used in robotics to mimic this sense of touch in these recognition tasks. We have designed and built a two-degree of freedom (2DOF) flexible antenna sensor device to perform robot navigation tasks. This device is composed of a flexible beam, two servomotors that drive the beam and a load cell sensor that detects the contact of the beam with an object. It is found that the efficiency of such a device strongly depends on the speed and accuracy achieved by the antenna positioning system. These issues are severely impaired by the vibrations that appear in the antenna during its movement. However, these antennae are usually moved without taking care of these undesired vibrations. This article proposes a new closed-loop control schema that cancels vibrations and improves the free movements of the antenna. Moreover, algorithms to estimate the 3D beam position and the instant and point of contact with an object are proposed. Experiments are reported that illustrate the efficiency of these proposed algorithms and the improvements achieved in object detection tasks using a control system that cancels beam vibrations. PMID:28406449

  20. Improved Object Detection Using a Robotic Sensing Antenna with Vibration Damping Control.

    PubMed

    Feliu-Batlle, Vicente; Feliu-Talegon, Daniel; Castillo-Berrio, Claudia Fernanda

    2017-04-13

    Some insects or mammals use antennae or whiskers to detect by the sense of touch obstacles or recognize objects in environments in which other senses like vision cannot work. Artificial flexible antennae can be used in robotics to mimic this sense of touch in these recognition tasks. We have designed and built a two-degree of freedom (2DOF) flexible antenna sensor device to perform robot navigation tasks. This device is composed of a flexible beam, two servomotors that drive the beam and a load cell sensor that detects the contact of the beam with an object. It is found that the efficiency of such a device strongly depends on the speed and accuracy achieved by the antenna positioning system. These issues are severely impaired by the vibrations that appear in the antenna during its movement. However, these antennae are usually moved without taking care of these undesired vibrations. This article proposes a new closed-loop control schema that cancels vibrations and improves the free movements of the antenna. Moreover, algorithms to estimate the 3D beam position and the instant and point of contact with an object are proposed. Experiments are reported that illustrate the efficiency of these proposed algorithms and the improvements achieved in object detection tasks using a control system that cancels beam vibrations.

  1. Abnormal Sense of Agency in Patients with Schizophrenia: Evidence from Bimanual Coupling Paradigm

    PubMed Central

    Garbarini, Francesca; Mastropasqua, Angela; Sigaudo, Monica; Rabuffetti, Marco; Piedimonte, Alessandro; Pia, Lorenzo; Rocca, Paola

    2016-01-01

    A fruitful approach to the understanding the human awareness of action is the study of those pathologies in which some aspects of it are altered. Previous evidences showed that patients with schizophrenia tend to attribute someone else’ actions to their own, as internally, rather than externally, generated. Here, we asked whether schizophrenics have an “excessive” sense of agency, while observing others’ movements. We took advantage from the circles-lines task, known to show bimanual interferences. Twenty schizophrenics and 20 age-matched healthy controls were administered: (a) the bimanual version of the task: drawing lines with one hand and circles with the other; and (b) a modified version: drawing lines while observing the examiner drawing circles. In the bimanual version, patients and controls showed a comparable interference effect. In the observation version, schizophrenics, compared to controls, showed a significantly greater interference effect of the examiners’ hand drawing circles on the own hand drawing lines. This effect was significantly correlated to the strength of the positive symptoms (hallucinations and delusions) and to the alteration of the sense of agency, reported during the task. These findings suggest that an altered sense of agency, as shown by schizophrenics, can induce objective consequences on the motor system. PMID:27014005

  2. Bats adjust their mouth gape to zoom their biosonar field of view.

    PubMed

    Kounitsky, Pavel; Rydell, Jens; Amichai, Eran; Boonman, Arjan; Eitan, Ofri; Weiss, Anthony J; Yovel, Yossi

    2015-05-26

    Active sensing, where sensory acquisition is actively modulated, is an inherent component of almost all sensory systems. Echolocating bats are a prime example of active sensing. They can rapidly adjust many of their biosonar parameters to optimize sensory acquisition. They dynamically adjust pulse design, pulse duration, and pulse rate within dozens of milliseconds according to the sensory information that is required for the task that they are performing. The least studied and least understood degree of freedom in echolocation is emission beamforming--the ability to change the shape of the sonar sound beam in a functional way. Such an ability could have a great impact on the bat's control over its sensory perception. On the one hand, the bat could direct more energy into a narrow sector to zoom its biosonar field of view, and on the other hand, it could widen the beam to increase the space that it senses. We show that freely behaving bats constantly control their biosonar field of view in natural situations by rapidly adjusting their emitter aperture--the mouth gape. The bats dramatically narrowed the beam when entering a confined space, and they dramatically widened it within dozens of milliseconds when flying toward open space. Hence, mouth-emitting bats dynamically adjust their mouth gape to optimize the area that they sense with their echolocation system.

  3. Bats adjust their mouth gape to zoom their biosonar field of view

    PubMed Central

    Rydell, Jens; Amichai, Eran; Boonman, Arjan; Eitan, Ofri; Weiss, Anthony J.; Yovel, Yossi

    2015-01-01

    Active sensing, where sensory acquisition is actively modulated, is an inherent component of almost all sensory systems. Echolocating bats are a prime example of active sensing. They can rapidly adjust many of their biosonar parameters to optimize sensory acquisition. They dynamically adjust pulse design, pulse duration, and pulse rate within dozens of milliseconds according to the sensory information that is required for the task that they are performing. The least studied and least understood degree of freedom in echolocation is emission beamforming—the ability to change the shape of the sonar sound beam in a functional way. Such an ability could have a great impact on the bat’s control over its sensory perception. On the one hand, the bat could direct more energy into a narrow sector to zoom its biosonar field of view, and on the other hand, it could widen the beam to increase the space that it senses. We show that freely behaving bats constantly control their biosonar field of view in natural situations by rapidly adjusting their emitter aperture—the mouth gape. The bats dramatically narrowed the beam when entering a confined space, and they dramatically widened it within dozens of milliseconds when flying toward open space. Hence, mouth-emitting bats dynamically adjust their mouth gape to optimize the area that they sense with their echolocation system. PMID:25941395

  4. Adaptive Sampling-Based Information Collection for Wireless Body Area Networks.

    PubMed

    Xu, Xiaobin; Zhao, Fang; Wang, Wendong; Tian, Hui

    2016-08-31

    To collect important health information, WBAN applications typically sense data at a high frequency. However, limited by the quality of wireless link, the uploading of sensed data has an upper frequency. To reduce upload frequency, most of the existing WBAN data collection approaches collect data with a tolerable error. These approaches can guarantee precision of the collected data, but they are not able to ensure that the upload frequency is within the upper frequency. Some traditional sampling based approaches can control upload frequency directly, however, they usually have a high loss of information. Since the core task of WBAN applications is to collect health information, this paper aims to collect optimized information under the limitation of upload frequency. The importance of sensed data is defined according to information theory for the first time. Information-aware adaptive sampling is proposed to collect uniformly distributed data. Then we propose Adaptive Sampling-based Information Collection (ASIC) which consists of two algorithms. An adaptive sampling probability algorithm is proposed to compute sampling probabilities of different sensed values. A multiple uniform sampling algorithm provides uniform samplings for values in different intervals. Experiments based on a real dataset show that the proposed approach has higher performance in terms of data coverage and information quantity. The parameter analysis shows the optimized parameter settings and the discussion shows the underlying reason of high performance in the proposed approach.

  5. Precision sensing by two opposing gradient sensors: how does Escherichia coli find its preferred pH level?

    PubMed

    Hu, Bo; Tu, Yuhai

    2013-07-02

    It is essential for bacteria to find optimal conditions for their growth and survival. The optimal levels of certain environmental factors (such as pH and temperature) often correspond to some intermediate points of the respective gradients. This requires the ability of bacteria to navigate from both directions toward the optimum location and is distinct from the conventional unidirectional chemotactic strategy. Remarkably, Escherichia coli cells can perform such a precision sensing task in pH taxis by using the same chemotaxis machinery, but with opposite pH responses from two different chemoreceptors (Tar and Tsr). To understand bacterial pH sensing, we developed an Ising-type model for a mixed cluster of opposing receptors based on the push-pull mechanism. Our model can quantitatively explain experimental observations in pH taxis for various mutants and wild-type cells. We show how the preferred pH level depends on the relative abundance of the competing sensors and how the sensory activity regulates the behavioral response. Our model allows us to make quantitative predictions on signal integration of pH and chemoattractant stimuli. Our study reveals two general conditions and a robust push-pull scheme for precision sensing, which should be applicable in other adaptive sensory systems with opposing gradient sensors. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Adaptive Sampling-Based Information Collection for Wireless Body Area Networks

    PubMed Central

    Xu, Xiaobin; Zhao, Fang; Wang, Wendong; Tian, Hui

    2016-01-01

    To collect important health information, WBAN applications typically sense data at a high frequency. However, limited by the quality of wireless link, the uploading of sensed data has an upper frequency. To reduce upload frequency, most of the existing WBAN data collection approaches collect data with a tolerable error. These approaches can guarantee precision of the collected data, but they are not able to ensure that the upload frequency is within the upper frequency. Some traditional sampling based approaches can control upload frequency directly, however, they usually have a high loss of information. Since the core task of WBAN applications is to collect health information, this paper aims to collect optimized information under the limitation of upload frequency. The importance of sensed data is defined according to information theory for the first time. Information-aware adaptive sampling is proposed to collect uniformly distributed data. Then we propose Adaptive Sampling-based Information Collection (ASIC) which consists of two algorithms. An adaptive sampling probability algorithm is proposed to compute sampling probabilities of different sensed values. A multiple uniform sampling algorithm provides uniform samplings for values in different intervals. Experiments based on a real dataset show that the proposed approach has higher performance in terms of data coverage and information quantity. The parameter analysis shows the optimized parameter settings and the discussion shows the underlying reason of high performance in the proposed approach. PMID:27589758

  7. Workshop on The Rio Grande Rift: Crustal Modeling and Applications of Remote Sensing

    NASA Technical Reports Server (NTRS)

    Blanchard, D. P. (Editor)

    1980-01-01

    The elements of a program that could address significant earth science problems by combining remote sensing and traditional geological, geophysical, and geochemical approaches were addressed. Specific areas and tasks related to the Rio Grande Rift are discussed.

  8. Relationship between Joint Position Sense, Force Sense, and Muscle Strength and the Impact of Gymnastic Training on Proprioception

    PubMed Central

    Kochanowicz, Andrzej

    2018-01-01

    The aims of this study were (1) to assess the relationship between joint position (JPS) and force sense (FS) and muscle strength (MS) and (2) to evaluate the impact of long-term gymnastic training on particular proprioception aspects and their correlations. 17 elite adult gymnasts and 24 untrained, matched controls performed an active reproduction (AR) and passive reproduction (PR) task and a force reproduction (FR) task at the elbow joint. Intergroup differences and the relationship between JPS, FS, and MS were evaluated. While there was no difference in AR or PR between groups, absolute error in the control group was higher during the PR task (7.15 ± 2.72°) than during the AR task (3.1 ± 1.93°). Mean relative error in the control group was 61% higher in the elbow extensors than in the elbow flexors during 50% FR, while the gymnast group had similar results in both reciprocal muscles. There was no linear correlation between JPS and FS in either group; however, FR was negatively correlated with antagonist MS. In conclusion, this study found no evidence for a relationship between the accuracy of FS and JPS at the elbow joint. Long-term gymnastic training improves the JPS and FS of the elbow extensors. PMID:29670901

  9. Remote sensing applications in water resources - An opportunity for research in developing countries

    NASA Technical Reports Server (NTRS)

    Menenti, M.

    1992-01-01

    A review is presented of first-hand experience with remote sensing research in developing countries to illustrate the inherent semiempirical basis of remote sensing applications. This task is accomplished by means of examples drawn from actual research work. Results of case studies in different farming systems and countries are summarized to exemplify the relative, application-dependent, weight of satellite versus ground information.

  10. Coastal Remote Sensing Investigations. Volume 2. Beach Environment

    DTIC Science & Technology

    1980-12-01

    1 ’ "■"’.."■•■.» ■ a .1 "llpll CO Ifi o Q- O CO I y Final Report COASTAL REMOTE SENSING INVESTIGATIONS VOLUME 2: BEACH... Remote Sensing Grain Size Soil Moisture Soil Mineralogy Multispectral Scanner iO AUTNACT fCHtfÜBB on merit nJt ij ntinwin and idmlify In hloti...The work reported herein summarizes the final research activity in the Beach Environment Task of a program at ERIM entitled "Coastal Remote Sensing Investigations

  11. Virtual-reality-Based 3D navigation training for emergency egress from spacecraft.

    PubMed

    Aoki, Hirofumi; Oman, Charles M; Natapoff, Alan

    2007-08-01

    Astronauts have reported spatial disorientation and navigation problems inside spacecraft whose interior visual vertical direction varies from module to module. If they had relevant preflight practice they might orient better. This experiment examined the influence of relative body orientation and individual spatial skills during VR training on a simulated emergency egress task. During training, 36 subjects were each led on 12 tours through a space station by a virtual tour guide. Subjects wore a head-mounted display and controlled their motion with a game-pad. Each tour traversed multiple modules and involved up to three changes in visual vertical direction. Each subject was assigned to one of three groups that maintained different postures: visually upright relative to the "local" module; constant orientation relative to the "station" irrespective of local visual vertical; and "mixed" (local, followed by station orientation). Groups were balanced on the basis of mental rotation and perspective-taking test scores. Subjects then performed 24 emergency egress testing trials without the tour guide. Smoke reduced visibility during the last 12 trials. Egress time, sense of direction (by pointing to origin and destination) and configuration knowledge were measured. Both individual 3D spatial abilities and orientation during training influence emergency egress performance, pointing, and configuration knowledge. Local training facilitates landmark and route learning, but station training enhances sense of direction relative to station, and, therefore, performance in low visibility. We recommend a sequence of local, followed by station, and then randomized orientation training, preferably customized to a trainee's 3D spatial ability.

  12. Remote sensing frequency sharing studies, tasks 1, 2, 5, and 6

    NASA Technical Reports Server (NTRS)

    Boyd, Douglas; Tillotson, Tom

    1986-01-01

    The following tasks are discussed: adjacent and harmonic band analysis; analysis of impact of sensor resolution on interference; development of performance criteria, interference criteria, sharing criteria, and coordination criteria; and spectrum engineering for NASA microwave sensor projects.

  13. Semi-quantum Secure Direct Communication Scheme Based on Bell States

    NASA Astrophysics Data System (ADS)

    Xie, Chen; Li, Lvzhou; Situ, Haozhen; He, Jianhao

    2018-06-01

    Recently, the idea of semi-quantumness has been often used in designing quantum cryptographic schemes, which allows some of the participants of a quantum cryptographic scheme to remain classical. One of the reasons why this idea is popular is that it allows a quantum information processing task to be accomplished by using quantum resources as few as possible. In this paper, we extend the idea to quantum secure direct communication(QSDC) by proposing a semi-quantum secure direct communication scheme. In the scheme, the message sender, Alice, encodes each bit into a Bell state |φ+> = 1/{√2}(|00> +|11> ) or |{Ψ }+> = 1/{√ 2}(|01> +|10> ), and the message receiver, Bob, who is classical in the sense that he can either let the qubit he received reflect undisturbed, or measure the qubit in the computational basis |0>, |1> and then resend it in the state he found. Moreover, the security analysis of our scheme is also given.

  14. Robotic assessment of sensorimotor deficits after traumatic brain injury.

    PubMed

    Debert, Chantel T; Herter, Troy M; Scott, Stephen H; Dukelow, Sean

    2012-06-01

    Robotic technology is commonly used to quantify aspects of typical sensorimotor function. We evaluated the feasibility of using robotic technology to assess visuomotor and position sense impairments following traumatic brain injury (TBI). We present results of robotic sensorimotor function testing in 12 subjects with TBI, who had a range of initial severities (9 severe, 2 moderate, 1 mild), and contrast these results with those of clinical tests. We also compared these with robotic test outcomes in persons without disability. For each subject with TBI, a review of the initial injury and neuroradiologic findings was conducted. Following this, each subject completed a number of standardized clinical measures (Fugl-Meyer Assessment, Purdue Peg Board, Montreal Cognitive Assessment, Rancho Los Amigos Scale), followed by two robotic tasks. A visually guided reaching task was performed to assess visuomotor control of the upper limb. An arm position-matching task was used to assess position sense. Robotic task performance in the subjects with TBI was compared with findings in a cohort of 170 person without disabilities. Subjects with TBI demonstrated a broad range of sensory and motor deficits on robotic testing. Notably, several subjects with TBI displayed significant deficits in one or both of the robotic tasks, despite normal scores on traditional clinical motor and cognitive assessment measures. The findings demonstrate the potential of robotic assessments for identifying deficits in visuomotor control and position sense following TBI. Improved identification of neurologic impairments following TBI may ultimately enhance rehabilitation.

  15. Scalable and Cost-Effective Assignment of Mobile Crowdsensing Tasks Based on Profiling Trends and Prediction: The ParticipAct Living Lab Experience

    PubMed Central

    Bellavista, Paolo; Corradi, Antonio; Foschini, Luca; Ianniello, Raffaele

    2015-01-01

    Nowadays, sensor-rich smartphones potentially enable the harvesting of huge amounts of valuable sensing data in urban environments, by opportunistically involving citizens to play the role of mobile virtual sensors to cover Smart City areas of interest. This paper proposes an in-depth study of the challenging technical issues related to the efficient assignment of Mobile Crowd Sensing (MCS) data collection tasks to volunteers in a crowdsensing campaign. In particular, the paper originally describes how to increase the effectiveness of the proposed sensing campaigns through the inclusion of several new facilities, including accurate participant selection algorithms able to profile and predict user mobility patterns, gaming techniques, and timely geo-notification. The reported results show the feasibility of exploiting profiling trends/prediction techniques from volunteers’ behavior; moreover, they quantitatively compare different MCS task assignment strategies based on large-scale and real MCS data campaigns run in the ParticipAct living lab, an ongoing MCS real-world experiment that involved more than 170 students of the University of Bologna for more than one year. PMID:26263985

  16. Vision technology/algorithms for space robotics applications

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar; Defigueiredo, Rui J. P.

    1987-01-01

    The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed.

  17. Octopus vulgaris uses visual information to determine the location of its arm.

    PubMed

    Gutnick, Tamar; Byrne, Ruth A; Hochner, Binyamin; Kuba, Michael

    2011-03-22

    Octopuses are intelligent, soft-bodied animals with keen senses that perform reliably in a variety of visual and tactile learning tasks. However, researchers have found them disappointing in that they consistently fail in operant tasks that require them to combine central nervous system reward information with visual and peripheral knowledge of the location of their arms. Wells claimed that in order to filter and integrate an abundance of multisensory inputs that might inform the animal of the position of a single arm, octopuses would need an exceptional computing mechanism, and "There is no evidence that such a system exists in Octopus, or in any other soft bodied animal." Recent electrophysiological experiments, which found no clear somatotopic organization in the higher motor centers, support this claim. We developed a three-choice maze that required an octopus to use a single arm to reach a visually marked goal compartment. Using this operant task, we show for the first time that Octopus vulgaris is capable of guiding a single arm in a complex movement to a location. Thus, we claim that octopuses can combine peripheral arm location information with visual input to control goal-directed complex movements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Cooperative satellite-based flood detection, mapping, and river monitoring in near real time

    NASA Technical Reports Server (NTRS)

    Brakenridge, Robert G.; Nghiem, Son V.

    2004-01-01

    The North Atlantic Oscillation (NAO), the Pacific-North American (PNA) teleconnection pattern, and the El Nino-Southern Oscillation (ENSO) combine to influence the planetary wave structure over the northern hemisphere. Floods and droughts are associated around the world with ENSO through such teleconnections, and improved flood prediction relies on understanding them better. The scientific study of floods, and consistent measurements thereof, are needed in order to allow 'Greenhouse warming' predictions about flooding to be tested, and the hydrologic effects of other phenomena such as ENSO to be evaluated. The needed tasks are: 1) detection/warning of flooding, 2) flood magnitude assessment, 3) flood inundation mapping, and 4) preservation of the record of flooding. Accomplishing these same tasks provides direct local societal benefits as well: they can save lives and reduce economic loss. We emphasize that the basic science observations need not be divorced from the immediate practical applications: both can occur together, and just as is the case for meteorological remote sensing.

  19. Sensing Strategies for Disambiguating among Multiple Objects in Known Poses.

    DTIC Science & Technology

    1985-08-01

    ELEMENT. PROIECT. TASK Artificial Inteligence Laboratory AE OKUI UBR 545 Technology Square Cambridge, MA 021.39 11. CONTROLLING OFFICE NAME AND ADDRESS 12...AD-Ali65 912 SENSING STRATEGIES FOR DISAMBIGURTING MONG MULTIPLE 1/1 OBJECTS IN KNOWN POSES(U) MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL ...or Dist Special 1 ’ MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A. I. Memo 855 August, 1985 Sensing Strategies for

  20. Task-related enhancement in corticomotor excitability during haptic sensing with the contra- or ipsilateral hand in young and senior adults.

    PubMed

    Master, Sabah; Tremblay, François

    2012-03-14

    Haptic sensing with the fingers represents a unique class of manipulative actions, engaging motor, somatosensory and associative areas of the cortex while requiring only minimal forces and relatively simple movement patterns. Using transcranial magnetic stimulation (TMS), we investigated task-related changes in motor evoked potential (MEP) amplitude associated with unimanual haptic sensing in two related experiments. In Experiment I, we contrasted changes in the excitability of the hemisphere controlling the task hand in young and old adults under two trial conditions, i.e. when participants either touched a fine grating (smooth trials) or touched a coarse grating to detect its groove orientation (grating trials). In Experiment II, the same contrast between tasks was performed but with TMS applied over the hemisphere controlling the resting hand, while also addressing hemispheric (right vs. left) and age differences. In Experiment I, a main effect of trial type on MEP amplitude was detected (p = 0.001), MEPs in the task hand being ~50% larger during grating than smooth trials. No interaction with age was detected. Similar results were found for Experiment II, trial type having a large effect on MEP amplitude in the resting hand (p < 0.001) owing to selective increase in MEP size (~2.6 times greater) for grating trials. No interactions with age or side (right vs. left) were detected. Collectively, these results indicate that adding a haptic component to a simple unilateral finger action can elicit robust corticomotor facilitation not only in the working hemisphere but also in the opposite hemisphere. The fact that this facilitation seems well preserved with age, when task difficulty is adjusted, has some potential clinical implications.

  1. Individual differences in using geometric and featural cues to maintain spatial orientation: cue quantity and cue ambiguity are more important than cue type.

    PubMed

    Kelly, Jonathan W; McNamara, Timothy P; Bodenheimer, Bobby; Carr, Thomas H; Rieser, John J

    2009-02-01

    Two experiments explored the role of environmental cues in maintaining spatial orientation (sense of self-location and direction) during locomotion. Of particular interest was the importance of geometric cues (provided by environmental surfaces) and featural cues (nongeometric properties provided by striped walls) in maintaining spatial orientation. Participants performed a spatial updating task within virtual environments containing geometric or featural cues that were ambiguous or unambiguous indicators of self-location and direction. Cue type (geometric or featural) did not affect performance, but the number and ambiguity of environmental cues did. Gender differences, interpreted as a proxy for individual differences in spatial ability and/or experience, highlight the interaction between cue quantity and ambiguity. When environmental cues were ambiguous, men stayed oriented with either one or two cues, whereas women stayed oriented only with two. When environmental cues were unambiguous, women stayed oriented with one cue.

  2. Visual working memory and number sense: Testing the double deficit hypothesis in mathematics.

    PubMed

    Toll, Sylke W M; Kroesbergen, Evelyn H; Van Luit, Johannes E H

    2016-09-01

    Evidence exists that there are two main underlying cognitive factors in mathematical difficulties: working memory and number sense. It is suggested that real math difficulties appear when both working memory and number sense are weak, here referred to as the double deficit (DD) hypothesis. The aim of this study was to test the DD hypothesis within a longitudinal time span of 2 years. A total of 670 children participated. The mean age was 4.96 years at the start of the study and 7.02 years at the end of the study. At the end of the first year of kindergarten, both visual-spatial working memory and number sense were measured by two different tasks. At the end of first grade, mathematical performance was measured with two tasks, one for math facts and one for math problems. Multiple regressions revealed that both visual working memory and symbolic number sense are predictors of mathematical performance in first grade. Symbolic number sense appears to be the strongest predictor for both math areas (math facts and math problems). Non-symbolic number sense only predicts performance in math problems. Multivariate analyses of variance showed that a combination of visual working memory and number sense deficits (NSDs) leads to the lowest performance on mathematics. Our DD hypothesis was confirmed. Both visual working memory and symbolic number sense in kindergarten are related to mathematical performance 2 years later, and a combination of visual working memory and NSDs leads to low performance in mathematical performance. © 2016 The British Psychological Society.

  3. Directional gravity sensing in gravitropism.

    PubMed

    Morita, Miyo Terao

    2010-01-01

    Plants can reorient their growth direction by sensing organ tilt relative to the direction of gravity. With respect to gravity sensing in gravitropism, the classic starch statolith hypothesis, i.e., that starch-accumulating amyloplast movement along the gravity vector within gravity-sensing cells (statocytes) is the probable trigger of subsequent intracellular signaling, is widely accepted. Several lines of experimental evidence have demonstrated that starch is important but not essential for gravity sensing and have suggested that it is reasonable to regard plastids (containers of starch) as statoliths. Although the word statolith means sedimented stone, actual amyloplasts are not static but instead possess dynamic movement. Recent studies combining genetic and cell biological approaches, using Arabidopsis thaliana, have demonstrated that amyloplast movement is an intricate process involving vacuolar membrane structures and the actin cytoskeleton. This review covers current knowledge regarding gravity sensing, particularly gravity susception, and the factors modulating the function of amyloplasts for sensing the directional change of gravity. Specific emphasis is made on the remarkable differences in the cytological properties, developmental origins, tissue locations, and response of statocytes between root and shoot systems. Such an approach reveals a common theme in directional gravity-sensing mechanisms in these two disparate organs.

  4. Inter-rater reliability of kinesthetic measurements with the KINARM robotic exoskeleton.

    PubMed

    Semrau, Jennifer A; Herter, Troy M; Scott, Stephen H; Dukelow, Sean P

    2017-05-22

    Kinesthesia (sense of limb movement) has been extremely difficult to measure objectively, especially in individuals who have survived a stroke. The development of valid and reliable measurements for proprioception is important to developing a better understanding of proprioceptive impairments after stroke and their impact on the ability to perform daily activities. We recently developed a robotic task to evaluate kinesthetic deficits after stroke and found that the majority (~60%) of stroke survivors exhibit significant deficits in kinesthesia within the first 10 days post-stroke. Here we aim to determine the inter-rater reliability of this robotic kinesthetic matching task. Twenty-five neurologically intact control subjects and 15 individuals with first-time stroke were evaluated on a robotic kinesthetic matching task (KIN). Subjects sat in a robotic exoskeleton with their arms supported against gravity. In the KIN task, the robot moved the subjects' stroke-affected arm at a preset speed, direction and distance. As soon as subjects felt the robot begin to move their affected arm, they matched the robot movement with the unaffected arm. Subjects were tested in two sessions on the KIN task: initial session and then a second session (within an average of 18.2 ± 13.8 h of the initial session for stroke subjects), which were supervised by different technicians. The task was performed both with and without the use of vision in both sessions. We evaluated intra-class correlations of spatial and temporal parameters derived from the KIN task to determine the reliability of the robotic task. We evaluated 8 spatial and temporal parameters that quantify kinesthetic behavior. We found that the parameters exhibited moderate to high intra-class correlations between the initial and retest conditions (Range, r-value = [0.53-0.97]). The robotic KIN task exhibited good inter-rater reliability. This validates the KIN task as a reliable, objective method for quantifying kinesthesia after stroke.

  5. Directional learning, but no spatial mapping by rats performing a navigational task in an inverted orientation

    PubMed Central

    Valerio, Stephane; Clark, Benjamin J.; Chan, Jeremy H. M.; Frost, Carlton P.; Harris, Mark J.; Taube, Jeffrey S.

    2010-01-01

    Previous studies have identified neurons throughout the rat limbic system that fire as a function of the animal's head direction (HD). This HD signal is particularly robust when rats locomote in the horizontal and vertical planes, but is severely attenuated when locomoting upside-down (Calton & Taube, 2005). Given the hypothesis that the HD signal represents an animal's sense of its directional heading, we evaluated whether rats could accurately navigate in an inverted (upside-down) orientation. The task required the animals to find an escape hole while locomoting inverted on a circular platform suspended from the ceiling. In experiment 1, Long-Evans rats were trained to navigate to the escape hole by locomoting from either one or four start points. Interestingly, no animals from the 4-start point group reached criterion, even after 30 days of training. Animals in the 1-start point group reached criterion after about 6 training sessions. In Experiment 2, probe tests revealed that animals navigating from either 1- or 2-start points utilized distal visual landmarks for accurate orientation. However, subsequent probe tests revealed that their performance was markedly attenuated when required to navigate to the escape hole from a novel starting point. This absence of flexibility while navigating upside-down was confirmed in experiment 3 where we show that the rats do not learn to reach a place, but instead learn separate trajectories to the target hole(s). Based on these results we argue that inverted navigation primarily involves a simple directional strategy based on visual landmarks. PMID:20109566

  6. Human-directed social behaviour in dogs shows significant heritability.

    PubMed

    Persson, M E; Roth, L S V; Johnsson, M; Wright, D; Jensen, P

    2015-04-01

    Through domestication and co-evolution with humans, dogs have developed abilities to attract human attention, e.g. in a manner of seeking assistance when faced with a problem solving task. The aims of this study were to investigate within breed variation in human-directed contact seeking in dogs and to estimate its genetic basis. To do this, 498 research beagles, bred and kept under standardized conditions, were tested in an unsolvable problem task. Contact seeking behaviours recorded included both eye contact and physical interactions. Behavioural data was summarized through a principal component analysis, resulting in four components: test interactions, social interactions, eye contact and physical contact. Females scored significantly higher on social interactions and physical contact and age had an effect on eye contact scores. Narrow sense heritabilities (h(2) ) of the two largest components were estimated at 0.32 and 0.23 but were not significant for the last two components. These results show that within the studied dog population, behavioural variation in human-directed social behaviours was sex dependent and that the utilization of eye contact seeking increased with age and experience. Hence, heritability estimates indicate a significant genetic contribution to the variation found in human-directed social interactions, suggesting that social skills in dogs have a genetic basis, but can also be shaped and enhanced through individual experiences. This research gives the opportunity to further investigate the genetics behind dogs' social skills, which could also play a significant part into research on human social disorders such as autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  7. Human behavioral complexity peaks at age 25

    PubMed Central

    Brugger, Peter

    2017-01-01

    Random Item Generation tasks (RIG) are commonly used to assess high cognitive abilities such as inhibition or sustained attention. They also draw upon our approximate sense of complexity. A detrimental effect of aging on pseudo-random productions has been demonstrated for some tasks, but little is as yet known about the developmental curve of cognitive complexity over the lifespan. We investigate the complexity trajectory across the lifespan of human responses to five common RIG tasks, using a large sample (n = 3429). Our main finding is that the developmental curve of the estimated algorithmic complexity of responses is similar to what may be expected of a measure of higher cognitive abilities, with a performance peak around 25 and a decline starting around 60, suggesting that RIG tasks yield good estimates of such cognitive abilities. Our study illustrates that very short strings of, i.e., 10 items, are sufficient to have their complexity reliably estimated and to allow the documentation of an age-dependent decline in the approximate sense of complexity. PMID:28406953

  8. Supervised Machine Learning for Population Genetics: A New Paradigm

    PubMed Central

    Schrider, Daniel R.; Kern, Andrew D.

    2018-01-01

    As population genomic datasets grow in size, researchers are faced with the daunting task of making sense of a flood of information. To keep pace with this explosion of data, computational methodologies for population genetic inference are rapidly being developed to best utilize genomic sequence data. In this review we discuss a new paradigm that has emerged in computational population genomics: that of supervised machine learning (ML). We review the fundamentals of ML, discuss recent applications of supervised ML to population genetics that outperform competing methods, and describe promising future directions in this area. Ultimately, we argue that supervised ML is an important and underutilized tool that has considerable potential for the world of evolutionary genomics. PMID:29331490

  9. Joint Rhythmic Movement Increases 4-Year-Old Children's Prosocial Sharing and Fairness Toward Peers.

    PubMed

    Rabinowitch, Tal-Chen; Meltzoff, Andrew N

    2017-01-01

    The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children's prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds' sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior) and cooperation (a goal-directed collaborative endeavor). Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers.

  10. Joint Rhythmic Movement Increases 4-Year-Old Children’s Prosocial Sharing and Fairness Toward Peers

    PubMed Central

    Rabinowitch, Tal-Chen; Meltzoff, Andrew N.

    2017-01-01

    The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children’s prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds’ sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior) and cooperation (a goal-directed collaborative endeavor). Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers. PMID:28694786

  11. Funds for the Future. Report of the Twentieth Century Fund Task Force on College and University Endowment Policy.

    ERIC Educational Resources Information Center

    Williamson, J. Peter

    The Task Force on College and University Endowment Policy examines endowment policy in a broad context. They feel that it is important to preserve private colleges and universities and develop a sense of mission about how best to pursue this objective. The Task Force reviews policy issues faced by managers of endowment funds for institutions of…

  12. Remote sensing utility in a disaster struck urban environment

    NASA Technical Reports Server (NTRS)

    Rush, M.; Holguin, A.

    1976-01-01

    Six major public health areas which might be affected by a natural disaster were identified. The functions and tasks associated with each area following a disaster, potential ways remote sensing could aid these functions, and the baseline data which would expedite problem solving associated with these functions are discussed.

  13. Force-Sensing Enhanced Simulation Environment (ForSense) for laparoscopic surgery training and assessment.

    PubMed

    Cundy, Thomas P; Thangaraj, Evelyn; Rafii-Tari, Hedyeh; Payne, Christopher J; Azzie, Georges; Sodergren, Mikael H; Yang, Guang-Zhong; Darzi, Ara

    2015-04-01

    Excessive or inappropriate tissue interaction force during laparoscopic surgery is a recognized contributor to surgical error, especially for robotic surgery. Measurement of force at the tool-tissue interface is, therefore, a clinically relevant skill assessment variable that may improve effectiveness of surgical simulation. Popular box trainer simulators lack the necessary technology to measure force. The aim of this study was to develop a force sensing unit that may be integrated easily with existing box trainer simulators and to (1) validate multiple force variables as objective measurements of laparoscopic skill, and (2) determine concurrent validity of a revised scoring metric. A base plate unit sensitized to a force transducer was retrofitted to a box trainer. Participants of 3 different levels of operative experience performed 5 repetitions of a peg transfer and suture task. Multiple outcome variables of force were assessed as well as a revised scoring metric that incorporated a penalty for force error. Mean, maximum, and overall magnitudes of force were significantly different among the 3 levels of experience, as well as force error. Experts were found to exert the least force and fastest task completion times, and vice versa for novices. Overall magnitude of force was the variable most correlated with experience level and task completion time. The revised scoring metric had similar predictive strength for experience level compared with the standard scoring metric. Current box trainer simulators can be adapted for enhanced objective measurements of skill involving force sensing. These outcomes are significantly influenced by level of expertise and are relevant to operative safety in laparoscopic surgery. Conventional proficiency standards that focus predominantly on task completion time may be integrated with force-based outcomes to be more accurately reflective of skill quality. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A miniaturized glucose biosensor for in vitro and in vivo studies.

    PubMed

    Yang, Yang-Li; Huang, Jian-Feng; Tseng, Ta-Feng; Lin, Chia-Ching; Lou, Shyh-Liang

    2008-01-01

    A miniaturized wireless glucose biosensor has been developed to perform in vitro and in vivo studies. It consists of an external control subsystem and an implant sensing subsystem. The implant subsystem consists of a micro-processor, which coordinates circuitries of radio frequency, power regulator, command demodulator, glucose sensing trigger and signal read-out. Except for a set of sensing electrodes, the micro-processor, the circuitries and a receiving coil were hermetically sealed with polydimethylsiloxane. The electrode set is a substrate of silicon oxide coated with platinum, which includes a working electrode and a reference electrode. Glucose oxidase was immobilized on the surface of the working electrode. The implant subsystem bi-directionally communicates with the external subsystem via radio frequency technologies. The external subsystem wirelessly supplies electricity to power the implant, issues commands to the implant to perform tasks, receives the glucose responses detected by the electrode, and relays the response signals to a computer through a RS-232 connection. Studies of in vitro and in vivo were performed to evaluate the biosensor. The linear response of the biosensor is up to 15 mM of glucose in vitro. The results of in vivo study show significant glucose variations measured from the interstitial tissue fluid of a diabetes rat in fasting and non-fasting periods.

  15. Designing a Bio-responsive Robot from DNA Origami

    PubMed Central

    Ben-Ishay, Eldad; Abu-Horowitz, Almogit; Bachelet, Ido

    2013-01-01

    Nucleic acids are astonishingly versatile. In addition to their natural role as storage medium for biological information1, they can be utilized in parallel computing2,3 , recognize and bind molecular or cellular targets4,5 , catalyze chemical reactions6,7 , and generate calculated responses in a biological system8,9. Importantly, nucleic acids can be programmed to self-assemble into 2D and 3D structures10-12, enabling the integration of all these remarkable features in a single robot linking the sensing of biological cues to a preset response in order to exert a desired effect. Creating shapes from nucleic acids was first proposed by Seeman13, and several variations on this theme have since been realized using various techniques11,12,14,15 . However, the most significant is perhaps the one proposed by Rothemund, termed scaffolded DNA origami16. In this technique, the folding of a long (>7,000 bases) single-stranded DNA 'scaffold' is directed to a desired shape by hundreds of short complementary strands termed 'staples'. Folding is carried out by temperature annealing ramp. This technique was successfully demonstrated in the creation of a diverse array of 2D shapes with remarkable precision and robustness. DNA origami was later extended to 3D as well17,18 . The current paper will focus on the caDNAno 2.0 software19 developed by Douglas and colleagues. caDNAno is a robust, user-friendly CAD tool enabling the design of 2D and 3D DNA origami shapes with versatile features. The design process relies on a systematic and accurate abstraction scheme for DNA structures, making it relatively straightforward and efficient. In this paper we demonstrate the design of a DNA origami nanorobot that has been recently described20. This robot is 'robotic' in the sense that it links sensing to actuation, in order to perform a task. We explain how various sensing schemes can be integrated into the structure, and how this can be relayed to a desired effect. Finally we use Cando21 to simulate the mechanical properties of the designed shape. The concept we discuss can be adapted to multiple tasks and settings. PMID:23893007

  16. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    NASA Astrophysics Data System (ADS)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early Warning system, to determine the state and danger of a slope or structure. In this paper, the technical principles of the instrument are described and case studies of different monitoring tasks are presented.

  17. Task analysis of autonomous on-road driving

    NASA Astrophysics Data System (ADS)

    Barbera, Anthony J.; Horst, John A.; Schlenoff, Craig I.; Aha, David W.

    2004-12-01

    The Real-time Control System (RCS) Methodology has evolved over a number of years as a technique to capture task knowledge and organize it into a framework conducive to implementation in computer control systems. The fundamental premise of this methodology is that the present state of the task activities sets the context that identifies the requirements for all of the support processing. In particular, the task context at any time determines what is to be sensed in the world, what world model states are to be evaluated, which situations are to be analyzed, what plans should be invoked, and which behavior generation knowledge is to be accessed. This methodology concentrates on the task behaviors explored through scenario examples to define a task decomposition tree that clearly represents the branching of tasks into layers of simpler and simpler subtask activities. There is a named branching condition/situation identified for every fork of this task tree. These become the input conditions of the if-then rules of the knowledge set that define how the task is to respond to input state changes. Detailed analysis of each branching condition/situation is used to identify antecedent world states and these, in turn, are further analyzed to identify all of the entities, objects, and attributes that have to be sensed to determine if any of these world states exist. This paper explores the use of this 4D/RCS methodology in some detail for the particular task of autonomous on-road driving, which work was funded under the Defense Advanced Research Project Agency (DARPA) Mobile Autonomous Robot Software (MARS) effort (Doug Gage, Program Manager).

  18. Neural representations of the sense of self

    PubMed Central

    Klemm, William R.

    2011-01-01

    The brain constructs representations of what is sensed and thought about in the form of nerve impulses that propagate in circuits and network assemblies (Circuit Impulse Patterns, CIPs). CIP representations of which humans are consciously aware occur in the context of a sense of self. Thus, research on mechanisms of consciousness might benefit from a focus on how a conscious sense of self is represented in brain. Like all senses, the sense of self must be contained in patterns of nerve impulses. Unlike the traditional senses that are registered by impulse flow in relatively simple, pauci-synaptic projection pathways, the sense of self is a system- level phenomenon that may be generated by impulse patterns in widely distributed complex and interacting circuits. The problem for researchers then is to identify the CIPs that are unique to conscious experience. Also likely to be of great relevance to constructing the representation of self are the coherence shifts in activity timing relations among the circuits. Consider that an embodied sense of self is generated and contained as unique combinatorial temporal patterns across multiple neurons in each circuit that contributes to constructing the sense of self. As with other kinds of CIPs, those representing the sense of self can be learned from experience, stored in memory, modified by subsequent experiences, and expressed in the form of decisions, choices, and commands. These CIPs are proposed here to be the actual physical basis for conscious thought and the sense of self. When active in wakefulness or dream states, the CIP representations of self act as an agent of the brain, metaphorically as an avatar. Because the selfhood CIP patterns may only have to represent the self and not directly represent the inner and outer worlds of embodied brain, the self representation should have more degrees of freedom than subconscious mind and may therefore have some capacity for a free-will mind of its own. S everal lines of evidence for this theory are reviewed. Suggested new research includes identifying distinct combinatorially coded impulse patterns and their temporal coherence shifts in defined circuitry, such as neocortical microcolumns. This task might be facilitated by identifying the micro-topography of field-potential oscillatory coherences among various regions and between different frequencies associated with specific conscious mentation. Other approaches can include identifying the changes in discrete conscious operations produced by focal trans-cranial magnetic stimulation. PMID:21826192

  19. Crop Identification Technolgy Assessment for Remote Sensing (CITARS). Volume 1: Task design plan

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Bizzell, R. M.

    1975-01-01

    A plan for quantifying the crop identification performances resulting from the remote identification of corn, soybeans, and wheat is described. Steps for the conversion of multispectral data tapes to classification results are specified. The crop identification performances resulting from the use of several basic types of automatic data processing techniques are compared and examined for significant differences. The techniques are evaluated also for changes in geographic location, time of the year, management practices, and other physical factors. The results of the Crop Identification Technology Assessment for Remote Sensing task will be applied extensively in the Large Area Crop Inventory Experiment.

  20. Collaborative damage mapping for emergency response: the role of Cognitive Systems Engineering

    NASA Astrophysics Data System (ADS)

    Kerle, N.; Hoffman, R. R.

    2013-01-01

    Remote sensing is increasingly used to assess disaster damage, traditionally by professional image analysts. A recent alternative is crowdsourcing by volunteers experienced in remote sensing, using internet-based mapping portals. We identify a range of problems in current approaches, including how volunteers can best be instructed for the task, ensuring that instructions are accurately understood and translate into valid results, or how the mapping scheme must be adapted for different map user needs. The volunteers, the mapping organizers, and the map users all perform complex cognitive tasks, yet little is known about the actual information needs of the users. We also identify problematic assumptions about the capabilities of the volunteers, principally related to the ability to perform the mapping, and to understand mapping instructions unambiguously. We propose that any robust scheme for collaborative damage mapping must rely on Cognitive Systems Engineering and its principal method, Cognitive Task Analysis (CTA), to understand the information and decision requirements of the map and image users, and how the volunteers can be optimally instructed and their mapping contributions merged into suitable map products. We recommend an iterative approach involving map users, remote sensing specialists, cognitive systems engineers and instructional designers, as well as experimental psychologists.

  1. Influences on Group Productivity 1: Factors Inherent in the Task. A bibliographic Synopsis

    DTIC Science & Technology

    1983-04-15

    organization structure and job attitudes and job behavior . Variables: Structure defined as the positions and parts of k-ganizations and their systematic and...relatively enduring relationship to each other. Attitudes defined in the broadest sense of "opinion concerning some object." Job behavior is...theory specifying the relations among task structure, leadership behavior and group performance. Indeoendent variables: Degree of structure of task (ac

  2. Time response for sensor sensed to actuator response for mobile robotic system

    NASA Astrophysics Data System (ADS)

    Amir, N. S.; Shafie, A. A.

    2017-11-01

    Time and performance of a mobile robot are very important in completing the tasks given to achieve its ultimate goal. Tasks may need to be done within a time constraint to ensure smooth operation of a mobile robot and can result in better performance. The main purpose of this research was to improve the performance of a mobile robot so that it can complete the tasks given within time constraint. The problem that is needed to be solved is to minimize the time interval between sensor detection and actuator response. The research objective is to analyse the real time operating system performance of sensors and actuators on one microcontroller and on two microcontroller for a mobile robot. The task for a mobile robot for this research is line following with an obstacle avoidance. Three runs will be carried out for the task and the time between the sensors senses to the actuator responses were recorded. Overall, the results show that two microcontroller system have better response time compared to the one microcontroller system. For this research, the average difference of response time is very important to improve the internal performance between the occurrence of a task, sensors detection, decision making and actuator response of a mobile robot. This research helped to develop a mobile robot with a better performance and can complete task within the time constraint.

  3. The Role of Island Constraints in Second Language Sentence Processing

    ERIC Educational Resources Information Center

    Kim, Eunah; Baek, Soondo; Tremblay, Annie

    2015-01-01

    This study investigates whether adult second language learners' online processing of "wh"-dependencies is constrained by island constraints on movement. Proficiency-matched Spanish and Korean learners of English completed a grammaticality judgment task and a stop-making-sense task designed to examine their knowledge of the relative…

  4. Managerial Behaviors of Elementary School Teachers and Student On-Task Behavior.

    ERIC Educational Resources Information Center

    Goldstein, Jane McCarthy

    The classroom management techniques of elementary school teachers were observed to determine their effectiveness in promoting desirable on-task behavior on the part of pupils. Seven approaches to class management were used as a framework for observation--authoritarian, behavior modification, common sense, group process, instructional emphasis,…

  5. Teachers, Tasks, and Tensions: Lessons from a Research-Practice Partnership

    ERIC Educational Resources Information Center

    Johnson, Raymond; Severance, Samuel; Penuel, William R.; Leary, Heather

    2016-01-01

    How teachers make sense of new academic standards significantly shapes the implementation of those standards. Professional development organized around the analysis of mathematical tasks has potential to prepare teachers for standards implementation by helping them develop common understandings of standards and how to help students meet ambitious…

  6. Bidirectional QoS support for novelty detection applications based on hierarchical wireless sensor network model

    NASA Astrophysics Data System (ADS)

    Edwards, Mark; Hu, Fei; Kumar, Sunil

    2004-10-01

    The research on the Novelty Detection System (NDS) (called as VENUS) at the authors' universities has generated exciting results. For example, we can detect an abnormal behavior (such as cars thefts from the parking lot) from a series of video frames based on the cognitively motivated theory of habituation. In this paper, we would like to describe the implementation strategies of lower layer protocols for using large-scale Wireless Sensor Networks (WSN) to NDS with Quality-of-Service (QoS) support. Wireless data collection framework, consisting of small and low-power sensor nodes, provides an alternative mechanism to observe the physical world, by using various types of sensing capabilities that include images (and even videos using Panoptos), sound and basic physical measurements such as temperature. We do not want to lose any 'data query command' packets (in the downstream direction: sink-to-sensors) or have any bit-errors in them since they are so important to the whole sensor network. In the upstream direction (sensors-to-sink), we may tolerate the loss of some sensing data packets. But the 'interested' sensing flow should be assigned a higher priority in terms of multi-hop path choice, network bandwidth allocation, and sensing data packet generation frequency (we hope to generate more sensing data packet for that novel event in the specified network area). The focus of this paper is to investigate MAC-level Quality of Service (QoS) issue in Wireless Sensor Networks (WSN) for Novelty Detection applications. Although QoS has been widely studied in other types of networks including wired Internet, general ad hoc networks and mobile cellular networks, we argue that QoS in WSN has its own characteristics. In wired Internet, the main QoS parameters include delay, jitter and bandwidth. In mobile cellular networks, two most common QoS metrics are: handoff call dropping probability and new call blocking probability. Since the main task of WSN is to detect and report events, the most important QoS parameters should include sensing data packet transmission reliability, lifetime extension degree from sensor sleeping control, event detection latency, congestion reduction level through removal of redundant sensing data. In this paper, we will focus on the following bi-directional QoS topics: (1) Downstream (sink-to-sensor) QoS: Reliable data query command forwarding to particular sensor(s). In other words, we do not want to lose the query command packets; (2) Upstream (sensor-to-sink) QoS: transmission of sensed data with priority control. The more interested data that can help in novelty detection should be transmitted on an optimal path with higher reliability. We propose the use of Differentiated Data Collection. Due to the large-scale nature and resource constraints of typical wireless sensor networks, such as limited energy, small memory (typically RAM < 4K bytes) and short communication range, the above problems become even more challenging. Besides QoS support issue, we will also describe our low-energy Sensing Data Transmission network Architecture. Our research results show the scalability and energy-efficiency of our proposed WSN QoS schemes.

  7. Sensing Super-position: Visual Instrument Sensor Replacement

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Schipper, John F.

    2006-01-01

    The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This project addresses the technical feasibility of augmenting human vision through Sensing Super-position using a Visual Instrument Sensory Organ Replacement (VISOR). The current implementation of the VISOR device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of the human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system.

  8. Systematic changes in position sense accompany normal aging across adulthood.

    PubMed

    Herter, Troy M; Scott, Stephen H; Dukelow, Sean P

    2014-03-25

    Development of clinical neurological assessments aimed at separating normal from abnormal capabilities requires a comprehensive understanding of how basic neurological functions change (or do not change) with increasing age across adulthood. In the case of proprioception, the research literature has failed to conclusively determine whether or not position sense in the upper limb deteriorates in elderly individuals. The present study was conducted a) to quantify whether upper limb position sense deteriorates with increasing age, and b) to generate a set of normative data that can be used for future comparisons with clinical populations. We examined position sense in 209 healthy males and females between the ages of 18 and 90 using a robotic arm position-matching task that is both objective and reliable. In this task, the robot moved an arm to one of nine positions and subjects attempted to mirror-match that position with the opposite limb. Measures of position sense were recorded by the robotic apparatus in hand-and joint-based coordinates, and linear regressions were used to quantify age-related changes and percentile boundaries of normal behaviour. For clinical comparisons, we also examined influences of sex (male versus female) and test-hand (dominant versus non-dominant) on all measures of position sense. Analyses of hand-based parameters identified several measures of position sense (Variability, Shift, Spatial Contraction, Absolute Error) with significant effects of age, sex, and test-hand. Joint-based parameters at the shoulder (Absolute Error) and elbow (Variability, Shift, Absolute Error) also exhibited significant effects of age and test-hand. The present study provides strong evidence that several measures of upper extremity position sense exhibit declines with age. Furthermore, this data provides a basis for quantifying when changes in position sense are related to normal aging or alternatively, pathology.

  9. Recursion and the Competence/Performance Distinction in AGL Tasks

    ERIC Educational Resources Information Center

    Lobina, David J.

    2011-01-01

    The term "recursion" is used in at least four distinct theoretical senses within cognitive science. Some of these senses in turn relate to the different levels of analysis described by David Marr some 20 years ago; namely, the underlying competence capacity (the "computational" level), the performance operations used in real-time processing (the…

  10. Students' Development of Structure Sense for the Distributive Law

    ERIC Educational Resources Information Center

    Schüler-Meyer, Alexander

    2017-01-01

    After being introduced to the distributive law in meaningful contexts, students need to extend its scope of application to unfamiliar expressions. In this article, a process model for the development of structure sense is developed. Building on this model, this article reports on a design research project in which exercise tasks support students…

  11. Making Sense of Education: Sensory Ethnography and Visual Impairment

    ERIC Educational Resources Information Center

    Morris, Ceri

    2017-01-01

    Education involves the engagement of the full range of the senses in the accomplishment of tasks and the learning of knowledge and skills. However both in pedagogical practices and in the process of educational research, there has been a tendency to privilege the visual. To explore these issues, detailed sensory ethnographic fieldwork was…

  12. What's Love Got to Do with It? Rethinking Common Sense Assumptions

    ERIC Educational Resources Information Center

    Trachman, Matthew; Bluestone, Cheryl

    2005-01-01

    One of the most basic tasks in introductory social science classes is to get students to reexamine their common sense assumptions concerning human behavior. This article introduces a shared assignment developed for a learning community that paired an introductory sociology and psychology class. The assignment challenges students to rethink the…

  13. A sense of embodiment is reflected in people's signature size.

    PubMed

    Rawal, Adhip; Harmer, Catherine J; Park, Rebecca J; O'Sullivan, Ursula D; Williams, J Mark G

    2014-01-01

    The size of a person's signature may reveal implicit information about how the self is perceived although this has not been closely examined. We conducted three experiments to test whether increases in signature size can be induced. Specifically, the aim of these experiments was to test whether changes in signature size reflect a person's current implicit sense of embodiment. Experiment 1 showed that an implicit affect task (positive subliminal evaluative conditioning) led to increases in signature size relative to an affectively neutral task, showing that implicit affective cues alter signature size. Experiments 2 and 3 demonstrated increases in signature size following experiential self-focus on sensory and affective stimuli relative to both conceptual self-focus and external (non-self-focus) in both healthy participants and patients with anorexia nervosa, a disorder associated with self-evaluation and a sense of disembodiment. In all three experiments, increases in signature size were unrelated to changes in self-reported mood and larger than manipulation unrelated variations. Together, these findings suggest that a person's sense of embodiment is reflected in their signature size.

  14. A Sense of Embodiment Is Reflected in People's Signature Size

    PubMed Central

    Rawal, Adhip; Harmer, Catherine J.; Park, Rebecca J.; O'Sullivan, Ursula D.; Williams, J. Mark G.

    2014-01-01

    Background The size of a person's signature may reveal implicit information about how the self is perceived although this has not been closely examined. Methods/Results We conducted three experiments to test whether increases in signature size can be induced. Specifically, the aim of these experiments was to test whether changes in signature size reflect a person's current implicit sense of embodiment. Experiment 1 showed that an implicit affect task (positive subliminal evaluative conditioning) led to increases in signature size relative to an affectively neutral task, showing that implicit affective cues alter signature size. Experiments 2 and 3 demonstrated increases in signature size following experiential self-focus on sensory and affective stimuli relative to both conceptual self-focus and external (non-self-focus) in both healthy participants and patients with anorexia nervosa, a disorder associated with self-evaluation and a sense of disembodiment. In all three experiments, increases in signature size were unrelated to changes in self-reported mood and larger than manipulation unrelated variations. Conclusions Together, these findings suggest that a person's sense of embodiment is reflected in their signature size. PMID:24533088

  15. A Low Cost Device for Monitoring the Urine Output of Critical Care Patients

    PubMed Central

    Otero, Abraham; Palacios, Francisco; Akinfiev, Teodor; Apalkov, Andrey

    2010-01-01

    In critical care units most of the patients’ physiological parameters are sensed by commercial monitoring devices. These devices can also supervise whether the values of the parameters lie within a pre-established range set by the clinician. The automation of the sensing and supervision tasks has discharged the healthcare staff of a considerable workload and avoids human errors, which are common in repetitive and monotonous tasks. Urine output is very likely the most relevant physiological parameter that has yet to be sensed or supervised automatically. This paper presents a low cost patent-pending device capable of sensing and supervising urine output. The device uses reed switches activated by a magnetic float in order to measure the amount of urine collected in two containers which are arranged in cascade. When either of the containers fills, it is emptied automatically using a siphon mechanism and urine begins to collect again. An electronic unit sends the state of the reed switches via Bluetooth to a PC that calculates the urine output from this information and supervises the achievement of therapeutic goals. PMID:22163495

  16. A low cost device for monitoring the urine output of critical care patients.

    PubMed

    Otero, Abraham; Palacios, Francisco; Akinfiev, Teodor; Apalkov, Andrey

    2010-01-01

    In critical care units most of the patients' physiological parameters are sensed by commercial monitoring devices. These devices can also supervise whether the values of the parameters lie within a pre-established range set by the clinician. The automation of the sensing and supervision tasks has discharged the healthcare staff of a considerable workload and avoids human errors, which are common in repetitive and monotonous tasks. Urine output is very likely the most relevant physiological parameter that has yet to be sensed or supervised automatically. This paper presents a low cost patent-pending device capable of sensing and supervising urine output. The device uses reed switches activated by a magnetic float in order to measure the amount of urine collected in two containers which are arranged in cascade. When either of the containers fills, it is emptied automatically using a siphon mechanism and urine begins to collect again. An electronic unit sends the state of the reed switches via Bluetooth to a PC that calculates the urine output from this information and supervises the achievement of therapeutic goals.

  17. Driving performance in a power wheelchair simulator.

    PubMed

    Archambault, Philippe S; Tremblay, Stéphanie; Cachecho, Sarah; Routhier, François; Boissy, Patrick

    2012-05-01

    A power wheelchair simulator can allow users to safely experience various driving tasks. For such training to be efficient, it is important that driving performance be equivalent to that in a real wheelchair. This study aimed at comparing driving performance in a real and in a simulated environment. Two groups of healthy young adults performed different driving tasks, either in a real power wheelchair or in a simulator. Smoothness of joystick control as well as the time necessary to complete each task were recorded and compared between the two groups. Driving strategies were analysed from video recordings. The sense of presence, of really being in the virtual environment, was assessed through a questionnaire. Smoothness of joystick control was the same in the real and virtual groups. Task completion time was higher in the simulator for the more difficult tasks. Both groups showed similar strategies and difficulties. The simulator generated a good sense of presence, which is important for motivation. Performance was very similar for power wheelchair driving in the simulator or in real life. Thus, the simulator could potentially be used to complement training of individuals who require a power wheelchair and use a regular joystick. [Box: see text].

  18. The Relationship between the Introvert and Extravert Dichotomy and Small Unit Recruiting Volume Production within the Watertown Recruiting Company

    DTIC Science & Technology

    2016-05-22

    by adding the Judging-Perceiving dichotomy in addition to a questionnaire that would identify personal preferences based on their answers.11 The...perception. Sensing types prefer to use their five senses. Some identifiable traits among sensing types are clear focus on the task at hand, prefer ...The findings of the study revealed that there was a correlation between personality type and sales effectiveness. However this study also

  19. NOx Sensor for Direct Injection Emission Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betteridge, William J

    2006-02-28

    The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness andmore » durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the sensor.« less

  20. A Decentralized Eigenvalue Computation Method for Spectrum Sensing Based on Average Consensus

    NASA Astrophysics Data System (ADS)

    Mohammadi, Jafar; Limmer, Steffen; Stańczak, Sławomir

    2016-07-01

    This paper considers eigenvalue estimation for the decentralized inference problem for spectrum sensing. We propose a decentralized eigenvalue computation algorithm based on the power method, which is referred to as generalized power method GPM; it is capable of estimating the eigenvalues of a given covariance matrix under certain conditions. Furthermore, we have developed a decentralized implementation of GPM by splitting the iterative operations into local and global computation tasks. The global tasks require data exchange to be performed among the nodes. For this task, we apply an average consensus algorithm to efficiently perform the global computations. As a special case, we consider a structured graph that is a tree with clusters of nodes at its leaves. For an accelerated distributed implementation, we propose to use computation over multiple access channel (CoMAC) as a building block of the algorithm. Numerical simulations are provided to illustrate the performance of the two algorithms.

  1. Impaired force control in writer's cramp showing a bilateral deficit in sensorimotor integration.

    PubMed

    Bleton, Jean-Pierre; Teremetz, Maxime; Vidailhet, Marie; Mesure, Serge; Maier, Marc A; Lindberg, Påvel G

    2014-01-01

    Abnormal cortical processing of sensory inputs has been found bilaterally in writer's cramp (WC). This study tested the hypothesis that patients with WC have an impaired ability to adjust grip forces according to visual and somatosensory cues in both hands. A unimanual visuomotor force-tracking task and a bimanual sense of effort force-matching task were performed by WC patients and healthy controls. In visuomotor tracking, WC patients showed increased error, greater variability, and longer release duration than controls. In the force-matching task, patients underestimated, whereas controls overestimated, the force applied in the other hand. Visuomotor tracking and force matching were equally impaired in both the symptomatic and nonsymptomatic hand in WC patients. This study provides evidence of bilaterally impaired grip-force control in WC, when using visual or sense of effort cues. This suggests a generalized subclinical deficit in sensorimotor integration in WC. Copyright © 2013 Movement Disorder Society.

  2. NASA/ESTO investments in remote sensing technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Babu, Sachidananda R.

    2017-02-01

    For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.

  3. ESTO Investments in Innovative Sensor Technologies for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Babu, Sachidananda R.

    2017-01-01

    For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.

  4. SENSOR++: Simulation of Remote Sensing Systems from Visible to Thermal Infrared

    NASA Astrophysics Data System (ADS)

    Paproth, C.; Schlüßler, E.; Scherbaum, P.; Börner, A.

    2012-07-01

    During the development process of a remote sensing system, the optimization and the verification of the sensor system are important tasks. To support these tasks, the simulation of the sensor and its output is valuable. This enables the developers to test algorithms, estimate errors, and evaluate the capabilities of the whole sensor system before the final remote sensing system is available and produces real data. The presented simulation concept, SENSOR++, consists of three parts. The first part is the geometric simulation which calculates where the sensor looks at by using a ray tracing algorithm. This also determines whether the observed part of the scene is shadowed or not. The second part describes the radiometry and results in the spectral at-sensor radiance from the visible spectrum to the thermal infrared according to the simulated sensor type. In the case of earth remote sensing, it also includes a model of the radiative transfer through the atmosphere. The final part uses the at-sensor radiance to generate digital images by using an optical and an electronic sensor model. Using SENSOR++ for an optimization requires the additional application of task-specific data processing algorithms. The principle of the simulation approach is explained, all relevant concepts of SENSOR++ are discussed, and first examples of its use are given, for example a camera simulation for a moon lander. Finally, the verification of SENSOR++ is demonstrated.

  5. Perceiver as polar planimeter: Direct perception of jumping, reaching, and jump-reaching affordances for the self and others.

    PubMed

    Thomas, Brandon J; Hawkins, Matthew M; Nalepka, Patrick

    2017-03-30

    Runeson (Scandanavian Journal of Psychology 18:172-179, 1977) suggested that the polar planimeter might serve as an informative model system of perceptual mechanism. The key aspect of the polar planimeter is that it registers a higher order property of the environment without computational mediation on the basis of lower order properties, detecting task-specific information only. This aspect was posited as a hypothesis for the perception of jumping and reaching affordances for the self and another person. The findings supported this hypothesis. The perception of reaching while jumping significantly differed from an additive combination of jump-without-reaching and reach-without-jumping perception. The results are consistent with Gibson's (The senses considered as perceptual systems, Houghton Mifflin, Boston, MA; Gibson, The senses considered as perceptual systems, Houghton Mifflin, Boston, MA, 1966; The ecological approach to visual perception, Houghton Mifflin, Boston, MA; Gibson, The ecological approach to visual perception, Houghton Mifflin, Boston, MA, 1979) theory of information-that aspects of the environment are specified by patterns in energetic media.

  6. Multisensory constraints on awareness

    PubMed Central

    Deroy, Ophelia; Chen, Yi-Chuan; Spence, Charles

    2014-01-01

    Given that multiple senses are often stimulated at the same time, perceptual awareness is most likely to take place in multisensory situations. However, theories of awareness are based on studies and models established for a single sense (mostly vision). Here, we consider the methodological and theoretical challenges raised by taking a multisensory perspective on perceptual awareness. First, we consider how well tasks designed to study unisensory awareness perform when used in multisensory settings, stressing that studies using binocular rivalry, bistable figure perception, continuous flash suppression, the attentional blink, repetition blindness and backward masking can demonstrate multisensory influences on unisensory awareness, but fall short of tackling multisensory awareness directly. Studies interested in the latter phenomenon rely on a method of subjective contrast and can, at best, delineate conditions under which individuals report experiencing a multisensory object or two unisensory objects. As there is not a perfect match between these conditions and those in which multisensory integration and binding occur, the link between awareness and binding advocated for visual information processing needs to be revised for multisensory cases. These challenges point at the need to question the very idea of multisensory awareness. PMID:24639579

  7. Integrated solution for the complete remote sensing process - Earth Observation Mission Control Centre (EOMC2)

    NASA Astrophysics Data System (ADS)

    Czapski, Paweł

    2016-07-01

    We are going to show the latest achievements of the Remote Sensing Division of the Institute of Aviation in the area of remote sensing, i.e. the project of the integrated solution for the whole remote sensing process ranging from acquiring to providing the end user with required information. Currently, these tasks are partially performed by several centers in Poland, however there is no leader providing an integrated solution. Motivated by this fact, the Earth Observation Mission Control Centre (EOMC2) was established in the Remote Sensing Division of the Institute of Aviation that will provide such a comprehensive approach. Establishing of EOMC2 can be compared with creating Data Center Aerial and Satellite Data Centre (OPOLIS) in the Institute of Geodesy and Cartography in the mid-70s in Poland. OPOLIS was responsible for broadly defined data processing, it was a breakthrough innovation that initiated the use of aerial image analysis in Poland. Operation center is a part of the project that will be created, which in comparison with the competitors will provide better solutions, i.e.: • Centralization of the acquiring, processing, publishing and archiving of data, • Implementing elements of the INSPIRE directive recommendations on spatial data management, • Providing the end-user with information in the near real-time, • Ability of supplying the system with images of various origin (aerial, satellite, e.g. EUMETCast, Sentinel, Landsat) and diversity of telemetry data, data aggregation and using the same algorithms to images obtained from different sources, • System reconfiguration and batch processing of large data sets at any time, • A wide range of potential applications: precision agriculture, environmental protection, crisis management and national security, aerial, small satellite and sounding rocket missions monitoring.

  8. Making Sense of Sensemaking: Requirements of a Cognitive Analysis to Support C2 Decision Support System Design

    DTIC Science & Technology

    2006-06-01

    heart of a distinction within the CSE community with respect to the differences between Cognitive Task Analysis (CTA) and Cognitive Work Analysis...Wesley. Pirolli, P. and Card, S. (2005). The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis . In...D. D., and Elm, W. C. (2000). Cognitive task analysis as bootstrapping multiple converging techniques. In Schraagen, Chipman, and Shalin (Eds

  9. Quality Evaluation of Land-Cover Classification Using Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Dang, Y.; Zhang, J.; Zhao, Y.; Luo, F.; Ma, W.; Yu, F.

    2018-04-01

    Land-cover classification is one of the most important products of earth observation, which focuses mainly on profiling the physical characters of the land surface with temporal and distribution attributes and contains the information of both natural and man-made coverage elements, such as vegetation, soil, glaciers, rivers, lakes, marsh wetlands and various man-made structures. In recent years, the amount of high-resolution remote sensing data has increased sharply. Accordingly, the volume of land-cover classification products increases, as well as the need to evaluate such frequently updated products that is a big challenge. Conventionally, the automatic quality evaluation of land-cover classification is made through pixel-based classifying algorithms, which lead to a much trickier task and consequently hard to keep peace with the required updating frequency. In this paper, we propose a novel quality evaluation approach for evaluating the land-cover classification by a scene classification method Convolutional Neural Network (CNN) model. By learning from remote sensing data, those randomly generated kernels that serve as filter matrixes evolved to some operators that has similar functions to man-crafted operators, like Sobel operator or Canny operator, and there are other kernels learned by the CNN model that are much more complex and can't be understood as existing filters. The method using CNN approach as the core algorithm serves quality-evaluation tasks well since it calculates a bunch of outputs which directly represent the image's membership grade to certain classes. An automatic quality evaluation approach for the land-cover DLG-DOM coupling data (DLG for Digital Line Graphic, DOM for Digital Orthophoto Map) will be introduced in this paper. The CNN model as an robustness method for image evaluation, then brought out the idea of an automatic quality evaluation approach for land-cover classification. Based on this experiment, new ideas of quality evaluation of DLG-DOM coupling land-cover classification or other kinds of labelled remote sensing data can be further studied.

  10. Where is your arm? Variations in proprioception across space and tasks.

    PubMed

    Fuentes, Christina T; Bastian, Amy J

    2010-01-01

    The sense of limb position is crucial for movement control and environmental interactions. Our understanding of this fundamental proprioceptive process, however, is limited. For example, little is known about the accuracy of arm proprioception: Does it vary with changes in arm configuration, since some peripheral receptors are engaged only when joints move toward extreme angles? Are these variations consistent across different tasks? Does proprioceptive ability change depending on what we try to localize (e.g., fingertip position vs. elbow angle)? We used a robot exoskeleton to study proprioception in 14 arm configurations across three tasks, asking healthy subjects to 1) match a pointer to elbow angles after passive movements, 2) match a pointer to fingertip positions after passive movements, and 3) actively match their elbow angle to a pointer. Across all three tasks, subjects overestimated more extreme joint positions; this may be due to peripheral sensory signals biasing estimates as a safety mechanism to prevent injury. We also found that elbow angle estimates were more precise when used to judge fingertip position versus directly reported, suggesting that the brain has better access to limb endpoint position than joint angles. Finally, precision of elbow angle estimates improved in active versus passive movements, corroborating work showing that efference copies of motor commands and alpha-gamma motor neuron coactivation contribute to proprioceptive estimates. In sum, we have uncovered fundamental aspects of normal proprioceptive processing, demonstrating not only predictable biases that are dependent on joint configuration and independent of task but also improved precision when integrating information across joints.

  11. Transfer in motion perceptual learning depends on the difficulty of the training task.

    PubMed

    Wang, Xiaoxiao; Zhou, Yifeng; Liu, Zili

    2013-06-07

    One hypothesis in visual perceptual learning is that the amount of transfer depends on the difficulty of the training and transfer tasks (Ahissar & Hochstein, 1997; Liu, 1995, 1999). Jeter, Dosher, Petrov, and Lu (2009), using an orientation discrimination task, challenged this hypothesis by arguing that the amount of transfer depends only on the transfer task but not on the training task. Here we show in a motion direction discrimination task that the amount of transfer indeed depends on the difficulty of the training task. Specifically, participants were first trained with either 4° or 8° direction discrimination along one average direction. Their transfer performance was then tested along an average direction 90° away from the trained direction. A variety of transfer measures consistently demonstrated that transfer performance depended on whether the participants were trained on 4° or 8° directional difference. The results contradicted the prediction that transfer was independent of the training task difficulty.

  12. Research on optimal path planning algorithm of task-oriented optical remote sensing satellites

    NASA Astrophysics Data System (ADS)

    Liu, Yunhe; Xu, Shengli; Liu, Fengjing; Yuan, Jingpeng

    2015-08-01

    GEO task-oriented optical remote sensing satellite, is very suitable for long-term continuous monitoring and quick access to imaging. With the development of high resolution optical payload technology and satellite attitude control technology, GEO optical remote sensing satellites will become an important developing trend for aerospace remote sensing satellite in the near future. In the paper, we focused on GEO optical remote sensing satellite plane array stare imaging characteristics and real-time leading mission of earth observation mode, targeted on satisfying needs of the user with the minimum cost of maneuver, and put forward the optimal path planning algorithm centered on transformation from geographic coordinate space to Field of plane, and finally reduced the burden of the control system. In this algorithm, bounded irregular closed area on the ground would be transformed based on coordinate transformation relations in to the reference plane for field of the satellite payload, and then using the branch and bound method to search for feasible solutions, cutting off the non-feasible solution in the solution space based on pruning strategy; and finally trimming some suboptimal feasible solutions based on the optimization index until a feasible solution for the global optimum. Simulation and visualization presentation software testing results verified the feasibility and effectiveness of the strategy.

  13. Diverse Planning for UAV Control and Remote Sensing

    PubMed Central

    Tožička, Jan; Komenda, Antonín

    2016-01-01

    Unmanned aerial vehicles (UAVs) are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands) to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well) together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs. PMID:28009831

  14. Reliable fusion of control and sensing in intelligent machines. Thesis

    NASA Technical Reports Server (NTRS)

    Mcinroy, John E.

    1991-01-01

    Although robotics research has produced a wealth of sophisticated control and sensing algorithms, very little research has been aimed at reliably combining these control and sensing strategies so that a specific task can be executed. To improve the reliability of robotic systems, analytic techniques are developed for calculating the probability that a particular combination of control and sensing algorithms will satisfy the required specifications. The probability can then be used to assess the reliability of the design. An entropy formulation is first used to quickly eliminate designs not capable of meeting the specifications. Next, a framework for analyzing reliability based on the first order second moment methods of structural engineering is proposed. To ensure performance over an interval of time, lower bounds on the reliability of meeting a set of quadratic specifications with a Gaussian discrete time invariant control system are derived. A case study analyzing visual positioning in robotic system is considered. The reliability of meeting timing and positioning specifications in the presence of camera pixel truncation, forward and inverse kinematic errors, and Gaussian joint measurement noise is determined. This information is used to select a visual sensing strategy, a kinematic algorithm, and a discrete compensator capable of accomplishing the desired task. Simulation results using PUMA 560 kinematic and dynamic characteristics are presented.

  15. Simulating optoelectronic systems for remote sensing with SENSOR

    NASA Astrophysics Data System (ADS)

    Boerner, Anko

    2003-04-01

    The consistent end-to-end simulation of airborne and spaceborne remote sensing systems is an important task and sometimes the only way for the adaptation and optimization of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software ENvironment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. It allows the simulation of a wide range of optoelectronic systems for remote sensing. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. Part three consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimization requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and examples of its use are given. The verification of SENSOR is demonstrated.

  16. Diverse Planning for UAV Control and Remote Sensing.

    PubMed

    Tožička, Jan; Komenda, Antonín

    2016-12-21

    Unmanned aerial vehicles (UAVs) are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands) to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well) together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs.

  17. An open trial assessment of "The Number Race", an adaptive computer game for remediation of dyscalculia

    PubMed Central

    Wilson, Anna J; Revkin, Susannah K; Cohen, David; Cohen, Laurent; Dehaene, Stanislas

    2006-01-01

    Background In a companion article [1], we described the development and evaluation of software designed to remediate dyscalculia. This software is based on the hypothesis that dyscalculia is due to a "core deficit" in number sense or in its access via symbolic information. Here we review the evidence for this hypothesis, and present results from an initial open-trial test of the software in a sample of nine 7–9 year old children with mathematical difficulties. Methods Children completed adaptive training on numerical comparison for half an hour a day, four days a week over a period of five-weeks. They were tested before and after intervention on their performance in core numerical tasks: counting, transcoding, base-10 comprehension, enumeration, addition, subtraction, and symbolic and non-symbolic numerical comparison. Results Children showed specific increases in performance on core number sense tasks. Speed of subitizing and numerical comparison increased by several hundred msec. Subtraction accuracy increased by an average of 23%. Performance on addition and base-10 comprehension tasks did not improve over the period of the study. Conclusion Initial open-trial testing showed promising results, and suggested that the software was successful in increasing number sense over the short period of the study. However these results need to be followed up with larger, controlled studies. The issues of transfer to higher-level tasks, and of the best developmental time window for intervention also need to be addressed. PMID:16734906

  18. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  19. Modeling Collaborative Interaction Patterns in a Simulation-Based Task

    ERIC Educational Resources Information Center

    Andrews, Jessica J.; Kerr, Deirdre; Mislevy, Robert J.; von Davier, Alina; Hao, Jiangang; Liu, Lei

    2017-01-01

    Simulations and games offer interactive tasks that can elicit rich data, providing evidence of complex skills that are difficult to measure with more conventional items and tests. However, one notable challenge in using such technologies is making sense of the data generated in order to make claims about individuals or groups. This article…

  20. Tuning Out the World with Noise-Canceling Headphones

    ERIC Educational Resources Information Center

    McCulloch, Allison W.; Whitehead, Ashley; Lovett, Jennifer N.; Whitley, Blake

    2017-01-01

    Context is what makes mathematical modeling tasks different from more traditional textbook word problems. Math problems are sometimes stripped of context as they are worked on. For modeling problems, however, context is important for making sense of the mathematics. The task should be brought back to its real-world context as often as possible. In…

  1. Self-Evaluative Reactions: The Role of Personal Valuation of the Activity.

    ERIC Educational Resources Information Center

    Simon, Karen M.

    The differential activation of self-evaluative reactions to performance attainments on tasks varying on their relevance for subjects' sense of personal adequacy was investigated. All subjects (N=97) spoke extemporaneously on prescribed topics and received the same random sequence of performance scores. The same task was designated as assessing…

  2. MotorSense: Using Motion Tracking Technology to Support the Identification and Treatment of Gross-Motor Dysfunction.

    PubMed

    Arnedillo-Sánchez, Inmaculada; Boyle, Bryan; Bossavit, Benoît

    2017-01-01

    MotorSense is a motion detection and tracking technology that can be implemented across a range of environments to assist in detecting delays in gross-motor skills development. The system utilises the motion tracking functionality of Microsoft's Kinect™. It features games that require children to perform graded gross-motor tasks matched with their chronological and developmental ages. This paper describes the rationale for MotorSense, provides an overview of the functionality of the system and illustrates sample activities.

  3. Tool actuation and force feedback on robot-assisted microsurgery system

    NASA Technical Reports Server (NTRS)

    Das, Hari (Inventor); Ohm, Tim R. (Inventor); Boswell, Curtis D. (Inventor); Steele, Robert D. (Inventor)

    2002-01-01

    An input control device with force sensors is configured to sense hand movements of a surgeon performing a robot-assisted microsurgery. The sensed hand movements actuate a mechanically decoupled robot manipulator. A microsurgical manipulator, attached to the robot manipulator, is activated to move small objects and perform microsurgical tasks. A force-feedback element coupled to the robot manipulator and the input control device provides the input control device with an amplified sense of touch in the microsurgical manipulator.

  4. A direct comparison of short-term audiomotor and visuomotor memory.

    PubMed

    Ward, Amanda M; Loucks, Torrey M; Ofori, Edward; Sosnoff, Jacob J

    2014-04-01

    Audiomotor and visuomotor short-term memory are required for an important variety of skilled movements but have not been compared in a direct manner previously. Audiomotor memory capacity might be greater to accommodate auditory goals that are less directly related to movement outcome than for visually guided tasks. Subjects produced continuous isometric force with the right index finger under auditory and visual feedback. During the first 10 s of each trial, subjects received continuous auditory or visual feedback. For the following 15 s, feedback was removed but the force had to be maintained accurately. An internal effort condition was included to test memory capacity in the same manner but without external feedback. Similar decay times of ~5-6 s were found for vision and audition but the decay time for internal effort was ~4 s. External feedback thus provides an advantage in maintaining a force level after feedback removal, but may not exclude some contribution from a sense of effort. Short-term memory capacity appears longer than certain previous reports but there may not be strong distinctions in capacity across different sensory modalities, at least for isometric force.

  5. University Students' Sense of Belonging to the Home Town: The Role of Residential Mobility

    ERIC Educational Resources Information Center

    Cicognani, Elvira; Menezes, Isabel; Nata, Gil

    2011-01-01

    In the study of young people's relationships with residential contexts, it is important to consider the role of developmental tasks (e.g. identity construction, academic and professional choices, etc.) in influencing Place Identity and Sense of Community. Residential mobility may represent an adaptive strategy for modifying some aspects of one's…

  6. The Influence of an Internet-Based Formative Assessment Tool on Primary Grades Students' Number Sense Achievement

    ERIC Educational Resources Information Center

    Polly, Drew; Wang, Chuang; Martin, Christie; Lambert, Richard G.; Pugalee, David K.; Middleton, Catharina Win

    2017-01-01

    This study examined primary grades students' achievement on number sense tasks administered through an Internet-based formative assessment tool, Assessing Math Concepts Anywhere. Data were analyzed from 2,357 students in teachers' classrooms who had participated in a year-long professional development program on mathematics formative assessment,…

  7. Development of an Electronic Nose Sensing Platform for Undergraduate Education in Nanotechnology

    ERIC Educational Resources Information Center

    Russo, Daniel V.; Burek, Michael J.; Iutzi, Ryan M.; Mracek, James A.; Hesjedal, Thorsten

    2011-01-01

    The teaching of the different aspects of a sensor system, with a focus on the involved nanotechnology, is a challenging, yet important task. We present the development of an electronic nose system that utilizes a nanoscale amperometric sensing mechanism for gas mixtures. The fabrication of the system makes use of a basic microfabrication facility,…

  8. Use of high resolution remotely sensed evapotranspiration retrievals for calibration of a process-based hydrologic model in data-poor basins

    USDA-ARS?s Scientific Manuscript database

    Calibration of process-based hydrologic models is a challenging task in data-poor basins, where monitored hydrologic data are scarce. In this study, we present a novel approach that benefits from remotely sensed evapotranspiration (ET) data to calibrate a complex watershed model, namely the Soil and...

  9. Making Connections among Multiple Graphical Representations of Fractions: Sense-Making Competencies Enhance Perceptual Fluency, but Not Vice Versa

    ERIC Educational Resources Information Center

    Rau, Martina A.; Aleven, Vincent; Rummel, Nikol

    2017-01-01

    Prior research shows that representational competencies that enable students to use graphical representations to reason and solve tasks is key to learning in many science, technology, engineering, and mathematics domains. We focus on two types of representational competencies: (1) "sense making" of connections by verbally explaining how…

  10. Self-reflection Orients Visual Attention Downward

    PubMed Central

    Liu, Yi; Tong, Yu; Li, Hong

    2017-01-01

    Previous research has demonstrated abstract concepts associated with spatial location (e.g., God in the Heavens) could direct visual attention upward or downward, because thinking about the abstract concepts activates the corresponding vertical perceptual symbols. For self-concept, there are similar metaphors (e.g., “I am above others”). However, whether thinking about the self can induce visual attention orientation is still unknown. Therefore, the current study tested whether self-reflection can direct visual attention. Individuals often display the tendency of self-enhancement in social comparison, which reminds the individual of the higher position one possesses relative to others within the social environment. As the individual is the agent of the attention orientation, and high status tends to make an individual look down upon others to obtain a sense of pride, it was hypothesized that thinking about the self would lead to a downward attention orientation. Using reflection of personality traits and a target discrimination task, Study 1 found that, after self-reflection, visual attention was directed downward. Similar effects were also found after friend-reflection, with the level of downward attention being correlated with the likability rating scores of the friend. Thus, in Study 2, a disliked other was used as a control and the positive self-view was measured with above-average judgment task. We found downward attention orientation after self-reflection, but not after reflection upon the disliked other. Moreover, the attentional bias after self-reflection was correlated with above-average self-view. The current findings provide the first evidence that thinking about the self could direct visual-spatial attention downward, and suggest that this effect is probably derived from a positive self-view within the social context. PMID:28928694

  11. Self-reflection Orients Visual Attention Downward.

    PubMed

    Liu, Yi; Tong, Yu; Li, Hong

    2017-01-01

    Previous research has demonstrated abstract concepts associated with spatial location (e.g., God in the Heavens) could direct visual attention upward or downward, because thinking about the abstract concepts activates the corresponding vertical perceptual symbols. For self-concept, there are similar metaphors (e.g., "I am above others"). However, whether thinking about the self can induce visual attention orientation is still unknown. Therefore, the current study tested whether self-reflection can direct visual attention. Individuals often display the tendency of self-enhancement in social comparison, which reminds the individual of the higher position one possesses relative to others within the social environment. As the individual is the agent of the attention orientation, and high status tends to make an individual look down upon others to obtain a sense of pride, it was hypothesized that thinking about the self would lead to a downward attention orientation. Using reflection of personality traits and a target discrimination task, Study 1 found that, after self-reflection, visual attention was directed downward. Similar effects were also found after friend-reflection, with the level of downward attention being correlated with the likability rating scores of the friend. Thus, in Study 2, a disliked other was used as a control and the positive self-view was measured with above-average judgment task. We found downward attention orientation after self-reflection, but not after reflection upon the disliked other. Moreover, the attentional bias after self-reflection was correlated with above-average self-view. The current findings provide the first evidence that thinking about the self could direct visual-spatial attention downward, and suggest that this effect is probably derived from a positive self-view within the social context.

  12. Eukaryotic Chemotaxis: A Network of Signaling Pathways Controls Motility, Directional Sensing, and Polarity

    PubMed Central

    Swaney, Kristen F.; Huang, Chuan-Hsiang; Devreotes, Peter N.

    2015-01-01

    Chemotaxis, the directed migration of cells in chemical gradients, is a vital process in normal physiology and in the pathogenesis of many diseases. Chemotactic cells display motility, directional sensing, and polarity. Motility refers to the random extension of pseudopodia, which may be driven by spontaneous actin waves that propagate through the cytoskeleton. Directional sensing is mediated by a system that detects temporal and spatial stimuli and biases motility toward the gradient. Polarity gives cells morphologically and functionally distinct leading and lagging edges by relocating proteins or their activities selectively to the poles. By exploiting the genetic advantages of Dictyostelium, investigators are working out the complex network of interactions between the proteins that have been implicated in the chemotactic processes of motility, directional sensing, and polarity. PMID:20192768

  13. Exploring Models and Data for Remote Sensing Image Caption Generation

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoqiang; Wang, Binqiang; Zheng, Xiangtao; Li, Xuelong

    2018-04-01

    Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at https://github.com/201528014227051/RSICD_optimal

  14. A compressive sensing-based computational method for the inversion of wide-band ground penetrating radar data

    NASA Astrophysics Data System (ADS)

    Gelmini, A.; Gottardi, G.; Moriyama, T.

    2017-10-01

    This work presents an innovative computational approach for the inversion of wideband ground penetrating radar (GPR) data. The retrieval of the dielectric characteristics of sparse scatterers buried in a lossy soil is performed by combining a multi-task Bayesian compressive sensing (MT-BCS) solver and a frequency hopping (FH) strategy. The developed methodology is able to benefit from the regularization capabilities of the MT-BCS as well as to exploit the multi-chromatic informative content of GPR measurements. A set of numerical results is reported in order to assess the effectiveness of the proposed GPR inverse scattering technique, as well as to compare it to a simpler single-task implementation.

  15. Semantic Drift in Espresso-style Bootstrapping: Graph-theoretic Analysis and Evaluation in Word Sense Disambiguation

    NASA Astrophysics Data System (ADS)

    Komachi, Mamoru; Kudo, Taku; Shimbo, Masashi; Matsumoto, Yuji

    Bootstrapping has a tendency, called semantic drift, to select instances unrelated to the seed instances as the iteration proceeds. We demonstrate the semantic drift of Espresso-style bootstrapping has the same root as the topic drift of Kleinberg's HITS, using a simplified graph-based reformulation of bootstrapping. We confirm that two graph-based algorithms, the von Neumann kernels and the regularized Laplacian, can reduce the effect of semantic drift in the task of word sense disambiguation (WSD) on Senseval-3 English Lexical Sample Task. Proposed algorithms achieve superior performance to Espresso and previous graph-based WSD methods, even though the proposed algorithms have less parameters and are easy to calibrate.

  16. Challenges and practical approaches with word sense disambiguation of acronyms and abbreviations in the clinical domain.

    PubMed

    Moon, Sungrim; McInnes, Bridget; Melton, Genevieve B

    2015-01-01

    Although acronyms and abbreviations in clinical text are used widely on a daily basis, relatively little research has focused upon word sense disambiguation (WSD) of acronyms and abbreviations in the healthcare domain. Since clinical notes have distinctive characteristics, it is unclear whether techniques effective for acronym and abbreviation WSD from biomedical literature are sufficient. The authors discuss feature selection for automated techniques and challenges with WSD of acronyms and abbreviations in the clinical domain. There are significant challenges associated with the informal nature of clinical text, such as typographical errors and incomplete sentences; difficulty with insufficient clinical resources, such as clinical sense inventories; and obstacles with privacy and security for conducting research with clinical text. Although we anticipated that using sophisticated techniques, such as biomedical terminologies, semantic types, part-of-speech, and language modeling, would be needed for feature selection with automated machine learning approaches, we found instead that simple techniques, such as bag-of-words, were quite effective in many cases. Factors, such as majority sense prevalence and the degree of separateness between sense meanings, were also important considerations. The first lesson is that a comprehensive understanding of the unique characteristics of clinical text is important for automatic acronym and abbreviation WSD. The second lesson learned is that investigators may find that using simple approaches is an effective starting point for these tasks. Finally, similar to other WSD tasks, an understanding of baseline majority sense rates and separateness between senses is important. Further studies and practical solutions are needed to better address these issues.

  17. Evidence for the involvement of ASIC3 in sensory mechanotransduction in proprioceptors

    PubMed Central

    Lin, Shing-Hong; Cheng, Yuan-Ren; Banks, Robert W.; Min, Ming-Yuan; Bewick, Guy S.; Chen, Chih-Cheng

    2016-01-01

    Acid-sensing ion channel 3 (ASIC3) is involved in acid nociception, but its possible role in neurosensory mechanotransduction is disputed. We report here the generation of Asic3-knockout/eGFPf-knockin mice and subsequent characterization of heterogeneous expression of ASIC3 in the dorsal root ganglion (DRG). ASIC3 is expressed in parvalbumin (Pv+) proprioceptor axons innervating muscle spindles. We further generate a floxed allele of Asic3 (Asic3f/f) and probe the role of ASIC3 in mechanotransduction in neurite-bearing Pv+ DRG neurons through localized elastic matrix movements and electrophysiology. Targeted knockout of Asic3 disrupts spindle afferent sensitivity to dynamic stimuli and impairs mechanotransduction in Pv+ DRG neurons because of substrate deformation-induced neurite stretching, but not to direct neurite indentation. In behavioural tasks, global knockout (Asic3−/−) and Pv-Cre::Asic3f/f mice produce similar deficits in grid and balance beam walking tasks. We conclude that, at least in mouse, ASIC3 is a molecular determinant contributing to dynamic mechanosensitivity in proprioceptors. PMID:27161260

  18. Quantum technologies with hybrid systems

    PubMed Central

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  19. Quantum technologies with hybrid systems.

    PubMed

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  20. Quantum technologies with hybrid systems

    NASA Astrophysics Data System (ADS)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  1. Cerebellar damage impairs the self-rating of regret feeling in a gambling task

    PubMed Central

    Clausi, Silvia; Coricelli, Giorgio; Pisotta, Iolanda; Pavone, Enea Francesco; Lauriola, Marco; Molinari, Marco; Leggio, Maria

    2015-01-01

    Anatomical, clinical, and neuroimaging evidence implicates the cerebellum in processing emotions and feelings. Moreover recent studies showed a cerebellar involvement in pathologies such as autism, schizophrenia and alexithymia, in which emotional processing have been found altered. However, cerebellar function in the modulation of emotional responses remains debated. In this study, emotions that are involved directly in decision-making were examined in 15 patients (six males; age range 17–60 years) affected by cerebellar damage and 15 well matched healthy controls. We used a gambling task, in which subjects’ choices and evaluation of outcomes with regard to their anticipated and actual emotional impact were analyzed. Emotions, such as regret and relief, were elicited, based on the outcome of the unselected gamble. Interestingly, despite their ability to avoid regret in subsequent choices, patients affected by cerebellar lesions were significantly impaired in evaluating the feeling of regret subjectively. These results demonstrate that the cerebellum is involved in conscious recognizing of negative feelings caused by the sense of self-responsibility for an incorrect decision. PMID:25999829

  2. Investigation of Ionospheric Spatial Gradients for Gagan Error Correction

    NASA Astrophysics Data System (ADS)

    Chandra, K. Ravi

    In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. The national tasks include, establishment of major space systems such as Indian National Satellites (INSAT) for communication, television broadcasting and meteorological services, Indian Remote Sensing Satellites (IRS), etc. Apart from these, to cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross-sectional area in the line of site direction between the satellite and the user on the earth, i.e. Total Electron Content (TEC). In the equatorial and low latitude regions such as India, TEC is often quite high with large spatial gradients. Carrier phase data from the GAGAN network of Indian TEC Stations is used for estimating and identifying ionospheric spatial gradients inmultiple viewing directions. In this paper amongst the satellite signals arriving in multipledirections,Vertical ionospheric gradients (σVIG) are calculated, inturn spatial ionospheric gradients are identified. In addition, estimated temporal gradients, i.e. rate of TEC Index is also compared. These aspects which contribute to errors can be treated for improved GAGAN system performance.

  3. A self-sensing active magnetic bearing based on a direct current measurement approach.

    PubMed

    Niemann, Andries C; van Schoor, George; du Rand, Carel P

    2013-09-11

    Active magnetic bearings (AMBs) have become a key technology in various industrial applications. Self-sensing AMBs provide an integrated sensorless solution for position estimation, consolidating the sensing and actuating functions into a single electromagnetic transducer. The approach aims to reduce possible hardware failure points, production costs, and system complexity. Despite these advantages, self-sensing methods must address various technical challenges to maximize the performance thereof. This paper presents the direct current measurement (DCM) approach for self-sensing AMBs, denoting the direct measurement of the current ripple component. In AMB systems, switching power amplifiers (PAs) modulate the rotor position information onto the current waveform. Demodulation self-sensing techniques then use bandpass and lowpass filters to estimate the rotor position from the voltage and current signals. However, the additional phase-shift introduced by these filters results in lower stability margins. The DCM approach utilizes a novel PA switching method that directly measures the current ripple to obtain duty-cycle invariant position estimates. Demodulation filters are largely excluded to minimize additional phase-shift in the position estimates. Basic functionality and performance of the proposed self-sensing approach are demonstrated via a transient simulation model as well as a high current (10 A) experimental system. A digital implementation of amplitude modulation self-sensing serves as a comparative estimator.

  4. The efficacy of elastic therapeutic tape variations on measures of ankle function and performance.

    PubMed

    Brogden, Christopher Michael; Marrin, Kelly; Page, Richard Michael; Greig, Matt

    2018-04-23

    To investigate the effects of different variations of elastic therapeutic taping (ETT) on tests used to screen for ankle injury risk and function. Randomized crossover. Laboratory. Twelve professional male soccer players completed three experimental trials: No tape (NT), RockTape™ (RT), and Kinesio™ Tape (KT) applied to the ankle complex. Clinical and functional ankle screening tests were used to assess the effects of ETT on measures of joint position sense, postural stability and ground reaction forces. KT (P = 0.04) and RT (P = 0.01) demonstrated significant improvements in end range joint position sense. When compared to NT, RT significantly (P = 0.02) improved mid-range joint position sense at 15°, and time to complete a drop landing task. No significant differences were observed for measures of postural stability (P ≥ 0.12) nor ground reaction force variables (P ≥ 0.33). Results advocate the use of ETT for proprioceptive and functional tasks when applied to the ankles of healthy male soccer players. However, a greater number of practical and significant differences were observed when RT only was applied, indicating that practitioners may potentially advocate the use of RT for tasks requiring proprioception and functional performance. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  5. Collaborative autonomous sensing with Bayesians in the loop

    NASA Astrophysics Data System (ADS)

    Ahmed, Nisar

    2016-10-01

    There is a strong push to develop intelligent unmanned autonomy that complements human reasoning for applications as diverse as wilderness search and rescue, military surveillance, and robotic space exploration. More than just replacing humans for `dull, dirty and dangerous' work, autonomous agents are expected to cope with a whole host of uncertainties while working closely together with humans in new situations. The robotics revolution firmly established the primacy of Bayesian algorithms for tackling challenging perception, learning and decision-making problems. Since the next frontier of autonomy demands the ability to gather information across stretches of time and space that are beyond the reach of a single autonomous agent, the next generation of Bayesian algorithms must capitalize on opportunities to draw upon the sensing and perception abilities of humans-in/on-the-loop. This work summarizes our recent research toward harnessing `human sensors' for information gathering tasks. The basic idea behind is to allow human end users (i.e. non-experts in robotics, statistics, machine learning, etc.) to directly `talk to' the information fusion engine and perceptual processes aboard any autonomous agent. Our approach is grounded in rigorous Bayesian modeling and fusion of flexible semantic information derived from user-friendly interfaces, such as natural language chat and locative hand-drawn sketches. This naturally enables `plug and play' human sensing with existing probabilistic algorithms for planning and perception, and has been successfully demonstrated with human-robot teams in target localization applications.

  6. Qualitative assessment of the medieval fortifications condition with the use of remote sensing data (Republic of Tatarstan)

    NASA Astrophysics Data System (ADS)

    Gainullin, Iskander I.; Khomyakov, Petr V.; Sitdikov, Airat G.; Usmanov, Bulat M.

    2017-09-01

    Archaeological monuments are an essential part of the cultural landscape. According to UNESCO directive, the "cultural landscape" is understood not simply as a result of joint creativity of man and nature, but as a purposefully formed natural and cultural territorial complex, which has structural, functional integrity, developing in specific physical and geographical, cultural and historical conditions. This article discusses the modern condition of the archaeological monuments of the Republic of Tatarstan, as a manmade part of the cultural landscape. Fortified settlements, with the system of defensive fortifications, were selected as the objects of study, as they are easily identified by remote sensing data. Identification and evaluation of monuments destruction risks is a priority in the study of medieval settlements. Due to the fact, that most of monuments is located on the small rivers banks, the first task of our study was to assess the risk of their destruction by natural processes. The second objective was to evaluate the role of the human factor in archaeological sites destruction. One of the main used methods is archival and modern remote sensing data analysis that also made able to correct the form of study settlements in comparison with existing plans, as well their size and location in the landscape. The results of research will help to identify trends in the monuments state and quantify the risks of their destruction.

  7. Maritime Domain Awareness: C4I for the 1000 Ship Navy

    DTIC Science & Technology

    2009-12-04

    unit action, provide unit sensed contacts, coordinate unit operations, process unit information, release image , and release contact report, Figure 33...Intelligence Tasking Request Intelligence Summary Release Unit Person Incident Release Unit Vessel Incident Process Intelligence Tasking Release Image ...xi LIST OF FIGURES Figure 1. Functional Problem Sequence Process Flow. ....................................................4 Figure 2. United

  8. In Search of the Freedom to Grow: Report of the Physical Education/Athletics Task Force.

    ERIC Educational Resources Information Center

    Atkinson, Karla

    Many physical educators, administrators, and parents argue that it makes little sense to spend time and money building athletic programs for young women when they are not interested in pursuing sports activities. Such an attitude is explored in this Task Force report questioning what roles, if any, physical education teachers have predetermined…

  9. Young Filipino Students Making Sense of Arithmetic Word Problems in English

    ERIC Educational Resources Information Center

    Bautista, Debbie; Mulligan, Joanne; Mitchelmore, Michael

    2009-01-01

    Young Filipino children are expected to solve mathematical word problems in English, a task which they typically encounter only in schools. In this exploratory study, task-based interviews were conducted with seven Filipino children from a public school. The children were asked to read and solve addition and subtraction word problems in English or…

  10. A World in the Classroom: Making Sense of Seasonal Change through Talk and Technology. Technical Report No. 11.

    ERIC Educational Resources Information Center

    Newman, Denis; Torzs, Frederic

    Arguing that the development of a notion of sense-making is of critical importance to improving science learning, this paper examines science teaching in four Boston (Massachusetts)-area classrooms that participated in an experiment on ways of integrating technology into a sixth-grade science curriculum on the earth's seasons. The task of the…

  11. Sports and Community on Campus: Constructing a Sports Experience that Matters

    ERIC Educational Resources Information Center

    Warner, Stacy; Dixon, Marlene A.

    2013-01-01

    Student affairs personnel are often charged with the task of creating a sense of community on campuses. Sports is among the many activities that historically have been used to meet this need for community among students. Yet, how and when a sense of community is created within a sports context has not been appropriately addressed in literature.…

  12. Exploring Sense of Belonging and Perceived Heritage Community Language Proficiency as Predictors of Bicultural Identity Integration in U.S

    ERIC Educational Resources Information Center

    Nour, Mona Dina

    2016-01-01

    The recent influx of immigration to the United States has naturally led to a population increase of U.S. born children with immigrant parents. These bicultural individuals undertake the complex task of constructing identities drawn from dual, and sometimes multiple, cultural foundations. This study examined sense of belonging and perceived…

  13. Geometric-Optical Modeling of Directional Thermal Radiance for Improvement of Land Surface Temperature Retrievals from MODIS, ASTER, and Landsat-7 Instruments

    NASA Technical Reports Server (NTRS)

    Li, Xiaowen; Friedl, Mark; Strahler, Alan

    2002-01-01

    The general objectives of this project were to improve understanding of the directional emittance properties of land surfaces in the thermal infrared (TIR) region of the electro-magnetic spectrum. To accomplish these objectives our research emphasized a combination of theoretical model development and empirical studies designed to improve land surface temperature (LST) retrievals from space-borne remote sensing instruments. Following the proposal, the main tasks for this project were to: (1) Participate in field campaigns; (2) Acquire and process field, aircraft, and ancillary data; (3) Develop and refine models of LST emission; (4) Develop algorithms for LST retrieval; and (5) Explore LST retrieval methods for use in energy balance models. In general all of these objectives were addressed, and for the most part achieved. The main results from this project are described in the publications arising from this effort. We summarize our efforts related to each of the objectives.

  14. A Model for Direction Sensing in Dictyostelium discoideum: Ras Activity and Symmetry Breaking Driven by a Gβγ-Mediated, Gα2-Ric8 -- Dependent Signal Transduction Network

    PubMed Central

    Cheng, Yougan; Othmer, Hans

    2016-01-01

    Chemotaxis is a dynamic cellular process, comprised of direction sensing, polarization and locomotion, that leads to the directed movement of eukaryotic cells along extracellular gradients. As a primary step in the response of an individual cell to a spatial stimulus, direction sensing has attracted numerous theoretical treatments aimed at explaining experimental observations in a variety of cell types. Here we propose a new model of direction sensing based on experiments using Dictyostelium discoideum (Dicty). The model is built around a reaction-diffusion-translocation system that involves three main component processes: a signal detection step based on G-protein-coupled receptors (GPCR) for cyclic AMP (cAMP), a transduction step based on a heterotrimetic G protein Gα2βγ, and an activation step of a monomeric G-protein Ras. The model can predict the experimentally-observed response of cells treated with latrunculin A, which removes feedback from downstream processes, under a variety of stimulus protocols. We show that Gα2βγ cycling modulated by Ric8, a nonreceptor guanine exchange factor for Gα2 in Dicty, drives multiple phases of Ras activation and leads to direction sensing and signal amplification in cAMP gradients. The model predicts that both Gα2 and Gβγ are essential for direction sensing, in that membrane-localized Gα2*, the activated GTP-bearing form of Gα2, leads to asymmetrical recruitment of RasGEF and Ric8, while globally-diffusing Gβγ mediates their activation. We show that the predicted response at the level of Ras activation encodes sufficient ‘memory’ to eliminate the ‘back-of-the wave’ problem, and the effects of diffusion and cell shape on direction sensing are also investigated. In contrast with existing LEGI models of chemotaxis, the results do not require a disparity between the diffusion coefficients of the Ras activator GEF and the Ras inhibitor GAP. Since the signal pathways we study are highly conserved between Dicty and mammalian leukocytes, the model can serve as a generic one for direction sensing. PMID:27152956

  15. The Neural Substrates for Letter String Readings in The Normal and Reverse Directions: An fMRI Study

    NASA Astrophysics Data System (ADS)

    Ge, Sheng; Saito, Takashi; Wu, Jing-Long; Ogasawara, Jun-Ichi; Yamauchi, Shuichi; Matsunaga, Naofumi; Iramina, Keiji

    In order to investigate the difference in cortical activations between reading letter strings in the normal direction and the reverse direction, an fMRI study was conducted. In this study, the cortical activations elicited by Japanese letter string reading and Chinese letter string reading were investigated. The subjects performed the normal direction reading task (read letter strings from left to right), and the reverse direction reading task (read letter strings from right to left). According to the experimental results, the activated brain regions during the normal and the reverse direction reading tasks were compared. It was found that visuospatial transformation was involved in the reverse direction reading task, while this function was not significant during the normal direction reading task. Furthermore, we found that there was no significant difference in cortical activation between Japanese and Chinese letter string readings.

  16. Study to design and develop remote manipulator system

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Sword, A. J.

    1973-01-01

    Human performance measurement techniques for remote manipulation tasks and remote sensing techniques for manipulators are described for common manipulation tasks, performance is monitored by means of an on-line computer capable of measuring the joint angles of both master and slave arms as a function of time. The computer programs allow measurements of the operator's strategy and physical quantities such as task time and power consumed. The results are printed out after a test run to compare different experimental conditions. For tracking tasks, we describe a method of displaying errors in three dimensions and measuring the end-effector position in three dimensions.

  17. Behavior-based multi-robot collaboration for autonomous construction tasks

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley; Huntsberger, Terry; Okon, Avi; Aghazarian, Hrand; Robinson, Matthew

    2005-01-01

    The Robot Construction Crew (RCC) is a heterogeneous multi-robot system for autonomous construction of a structure through assembly of Long components. The two robot team demonstrates component placement into an existing structure in a realistic environment. The task requires component acquisition, cooperative transport, and cooperative precision manipulation. A behavior-based architecture provides adaptability. The RCC approach minimizes computation, power, communication, and sensing for applicability to space-related construction efforts, but the techniques are applicable to terrestrial construction tasks.

  18. Behavior-Based Multi-Robot Collaboration for Autonomous Construction Tasks

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley; Huntsberger, Terry; Okon, Avi; Aghazarian, Hrand; Robinson, Matthew

    2005-01-01

    We present a heterogeneous multi-robot system for autonomous construction of a structure through assembly of long components. Placement of a component within an existing structure in a realistic environment is demonstrated on a two-robot team. The task requires component acquisition, cooperative transport, and cooperative precision manipulation. Far adaptability, the system is designed as a behavior-based architecture. Far applicability to space-related construction efforts, computation, power, communication, and sensing are minimized, though the techniques developed are also applicable to terrestrial construction tasks.

  19. Distributed Knowledge Base Systems for Diagnosis and Information Retrieval.

    DTIC Science & Technology

    1985-09-01

    thinks of the idiagnostic task, while it may be generic in the sense that the task may be quite similar across domains, it is not a unitary task...solving in our approach,’, outgrowth of ou group’s experience with MDX, a meaning that a special kind of organization and Q medical diagnostic program...5.4. Determining the Findings of a Knowledge U). It is important that the meaning of the Group knowledge group’s result be clear. In this knowledge

  20. Sensing land pollution.

    NASA Technical Reports Server (NTRS)

    Bowden, L. W.

    1971-01-01

    Land pollution is described in numerous ways by various societies. Pollutants of land are material by-products of human activity and range from environmentally ineffective to positively toxic. The pollution of land by man is centuries old and correlates directly with economy, technology and population. In order to remotely sense land pollution, standards or thresholds must be established. Examples of the potential for sensing land pollution and quality are presented. The technological capabilities for remotely sensed land quality is far advanced over the judgment on how to use the sensed data. Until authoritative and directive decisions on land pollution policy are made, sensing of pollutants will be a random, local and academic affair.

  1. Exploring implicit and explicit aspects of sense of agency

    PubMed Central

    Moore, J.W.; Middleton, D.; Haggard, P.; Fletcher, P.C.

    2012-01-01

    Sense of agency refers to the sense of initiating and controlling actions in order to influence events in the outside world. Recently, a distinction between implicit and explicit aspects of sense of agency has been proposed, analogous to distinctions found in other areas of cognition, notably learning. However, there is yet no strong evidence supporting separable implicit and explicit components of sense of agency. The so-called ‘Perruchet paradigm’ offers one of the few convincing demonstrations of separable implicit and explicit learning systems. We adopted this approach to evaluate the implicit–explicit distinction in the context of a simple task in which outcomes were probabilistically caused by actions. In line with our initial predictions, we found evidence of a dissociation. We discuss the implications of this result for theories of sense of agency. PMID:23143153

  2. Experiments in autonomous robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamel, W.R.

    1987-01-01

    The Center for Engineering Systems Advanced Research (CESAR) is performing basic research in autonomous robotics for energy-related applications in hazardous environments. The CESAR research agenda includes a strong experimental component to assure practical evaluation of new concepts and theories. An evolutionary sequence of mobile research robots has been planned to support research in robot navigation, world sensing, and object manipulation. A number of experiments have been performed in studying robot navigation and path planning with planar sonar sensing. Future experiments will address more complex tasks involving three-dimensional sensing, dexterous manipulation, and human-scale operations.

  3. Studies related to ocean dynamics. Task 3.2: Aircraft Field Test Program to investigate the ability of remote sensing methods to measure current/wind-wave interactions

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Flood, W. A.; Brown, G. S.

    1975-01-01

    The feasibility of remote sensing of current flows in the ocean and the remote sensing of ocean currents by backscattering cross section techniques was studied. It was established that for capillary waves, small scale currents could be accurately measured through observation of wave kinematics. Drastic modifications of waves by changing currents were noted. The development of new methods for the measurement of capillary waves are discussed. Improvement methods to resolve data processing problems are suggested.

  4. Multimodal representation contributes to the complex development of science literacy in a college biology class

    NASA Astrophysics Data System (ADS)

    Bennett, William Drew

    This study is an investigation into the science literacy of college genetics students who were given a modified curriculum to address specific teaching and learning problems from a previous class. This study arose out of an interest by the professor and researcher to determine how well students in the class Human Genetics in the 21st Century responded to a reorganized curriculum to address misconceptions that were prevalent after direct instruction in the previous year's class. One of the components to the revised curriculum was the addition of a multimodal representation requirement as part of their normal writing assignments. How well students performed in these writing assignments and the relationship they had to student learning the rest of the class formed the principle research interest of this study. Improving science literacy has been a consistent goal of science educators and policy makers for over 50 years (DeBoer, 2000). This study uses the conceptualization of Norris and Phillips (2003) in which science literacy can be organized into both the fundamental sense (reading and writing) and the derived sense (experience and knowledge) of science literacy. The fundamental sense of science literacy was investigated in the students' ability to understand and use multimodal representations as part of their homework writing assignments. The derived sense of science literacy was investigated in how well students were able to apply their previous learning to class assessments found in quizzes and exams. This study uses a mixed-methods correlational design to investigate the relationship that existed between students' writing assignment experiences connected to multimodal representations and their academic performance in classroom assessments. Multimodal representations are pervasive in science literature and communication. These are the figures, diagrams, tables, pictures, mathematical equations, and any other form of content in which scientists and science educators are communicating ideas and concepts to their audience with more than simple text. A focused holistic rubric was designed in this study to score how well students in this class were able to incorporate aspects of multimodality into their writing assignments. Using these scores and factors within the rubric (ex. Number of original modes created) they were correlated with classroom performance scores to determine the strength and direction of the relationship. Classroom observations of lectures and discussion sections along with personal interviews with students and teaching assistants aided the interpretation of the results. The results from the study were surprisingly complex to interpret given the background of literature which suggested a strong relationship between multimodal representations and science learning (Lemke, 2000). There were significant positive correlations between student multimodal representations and quiz scores but not exam scores. This study was also confounded by significant differences between sections at the beginning of the study which may have led to learning effects later. The dissimilarity between the tasks of writing during their homework and working on exams may be the reason for no significant correlations with exams. The power to interpret these results was limited by the number of the participants, the number of modal experiences by the students, and the operationalization of multimodal knowledge through the holistic rubric. These results do show that a relationship does exist between the similar tasks within science writing and quizzes. Students may also gain derived science literacy benefits from modal experiences on distal tasks in exams as well. This study shows that there is still much more research to be known about the interconnectedness of multimodal representational knowledge and use to the development of science literacy.

  5. A Three-Dimensional Microdisplacement Sensing System Based on MEMS Bulk-Silicon Technology

    PubMed Central

    Wu, Junjie; Lei, Lihua; Chen, Xin; Cai, Xiaoyu; Li, Yuan; Han, Tao

    2014-01-01

    For the dimensional measurement and characterization of microsized and nanosized components, a three-dimensional microdisplacement sensing system was developed using the piezoresistive effect in silicon. The sensor was fabricated using microelectromechanical system bulk-silicon technology, and it was validated using the finite element method. A precise data acquisition circuit with an accuracy of 20 μV was designed to obtain weak voltage signals. By calibration, the sensing system was shown to have a sensitivity of 17.29 mV/μm and 4.59 mV/μm in the axial and lateral directions, respectively; the nonlinearity in these directions was 0.8% and 1.0% full scale, respectively. A full range of 4.6 μm was achieved in the axial direction. Results of a resolution test indicated that the sensing system had a resolution of 5 nm in the axial direction and 10 nm in the lateral direction. PMID:25360581

  6. Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area.

    PubMed

    Li, Chunlin; Liu, Miao; Hu, Yuanman; Shi, Tuo; Zong, Min; Walter, M Todd

    2018-04-17

    Urbanization is one of the most widespread anthropogenic activities, which brings a range of physical and biochemical changes to hydrological system and processes. Increasing direct runoff caused by land use change has become a major challenge for urban ecological security. Reliable prediction of the quantity and rate of surface runoff is an inherently difficult and time-consuming task for large ungauged urban areas. In this study, we combined Geographic Information System and remote sensing technology with an improved Soil Conservation Service curve number model to evaluate the effects of land use change on direct runoff volume of the four-ring area in Shenyang, China, and analyzed trends of direct runoff at different scales. Through analyzing trends of direct runoff from 1984 to 2015 at different scales, we explored how urbanization and other potential factors affect direct runoff changes. Total direct runoff volume increased over time, and trends varied from the inner urban area to suburban area. Zones 1 and 2 had a tendency toward decreasing direct runoff volume and risks, while Zones 3 and 4 showed gradual increases at both regional and pixel scales. The most important influence on direct runoff change was urban surface change caused by urbanization. This study presents a framework for identifying hotspots of runoff increase, which can provide important guidance to urban managers in future green infrastructure planning, in the hopes of improving the security of urban water ecological patterns.

  7. Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area

    PubMed Central

    Li, Chunlin; Liu, Miao; Hu, Yuanman; Shi, Tuo; Zong, Min; Walter, M. Todd

    2018-01-01

    Urbanization is one of the most widespread anthropogenic activities, which brings a range of physical and biochemical changes to hydrological system and processes. Increasing direct runoff caused by land use change has become a major challenge for urban ecological security. Reliable prediction of the quantity and rate of surface runoff is an inherently difficult and time-consuming task for large ungauged urban areas. In this study, we combined Geographic Information System and remote sensing technology with an improved Soil Conservation Service curve number model to evaluate the effects of land use change on direct runoff volume of the four-ring area in Shenyang, China, and analyzed trends of direct runoff at different scales. Through analyzing trends of direct runoff from 1984 to 2015 at different scales, we explored how urbanization and other potential factors affect direct runoff changes. Total direct runoff volume increased over time, and trends varied from the inner urban area to suburban area. Zones 1 and 2 had a tendency toward decreasing direct runoff volume and risks, while Zones 3 and 4 showed gradual increases at both regional and pixel scales. The most important influence on direct runoff change was urban surface change caused by urbanization. This study presents a framework for identifying hotspots of runoff increase, which can provide important guidance to urban managers in future green infrastructure planning, in the hopes of improving the security of urban water ecological patterns. PMID:29673182

  8. First, Get Your Feet Wet: The Effects of Learning from Direct and Indirect Experience on Team Creativity

    ERIC Educational Resources Information Center

    Gino, Francesca; Argote, Linda; Miron-Spektor, Ella; Todorova, Gergana

    2010-01-01

    How does prior experience influence team creativity? We address this question by examining the effects of task experience acquired directly and task experience acquired vicariously from others on team creativity in a product-development task. Across three laboratory studies, we find that direct task experience leads to higher levels of team…

  9. A wirelessly programmable actuation and sensing system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Long, James; Büyüköztürk, Oral

    2016-04-01

    Wireless sensor networks promise to deliver low cost, low power and massively distributed systems for structural health monitoring. A key component of these systems, particularly when sampling rates are high, is the capability to process data within the network. Although progress has been made towards this vision, it remains a difficult task to develop and program 'smart' wireless sensing applications. In this paper we present a system which allows data acquisition and computational tasks to be specified in Python, a high level programming language, and executed within the sensor network. Key features of this system include the ability to execute custom application code without firmware updates, to run multiple users' requests concurrently and to conserve power through adjustable sleep settings. Specific examples of sensor node tasks are given to demonstrate the features of this system in the context of structural health monitoring. The system comprises of individual firmware for nodes in the wireless sensor network, and a gateway server and web application through which users can remotely submit their requests.

  10. A dual-loop model of the human controller in single-axis tracking tasks

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1977-01-01

    A dual loop model of the human controller in single axis compensatory tracking tasks is introduced. This model possesses an inner-loop closure which involves feeding back that portion of the controlled element output rate which is due to control activity. The sensory inputs to the human controller are assumed to be system error and control force. The former is assumed to be sensed via visual, aural, or tactile displays while the latter is assumed to be sensed in kinesthetic fashion. A nonlinear form of the model is briefly discussed. This model is then linearized and parameterized. A set of general adaptive characteristics for the parameterized model is hypothesized. These characteristics describe the manner in which the parameters in the linearized model will vary with such things as display quality. It is demonstrated that the parameterized model can produce controller describing functions which closely approximate those measured in laboratory tracking tasks for a wide variety of controlled elements.

  11. A novel 3D Cartesian random sampling strategy for Compressive Sensing Magnetic Resonance Imaging.

    PubMed

    Valvano, Giuseppe; Martini, Nicola; Santarelli, Maria Filomena; Chiappino, Dante; Landini, Luigi

    2015-01-01

    In this work we propose a novel acquisition strategy for accelerated 3D Compressive Sensing Magnetic Resonance Imaging (CS-MRI). This strategy is based on a 3D cartesian sampling with random switching of the frequency encoding direction with other K-space directions. Two 3D sampling strategies are presented. In the first strategy, the frequency encoding direction is randomly switched with one of the two phase encoding directions. In the second strategy, the frequency encoding direction is randomly chosen between all the directions of the K-Space. These strategies can lower the coherence of the acquisition, in order to produce reduced aliasing artifacts and to achieve a better image quality after Compressive Sensing (CS) reconstruction. Furthermore, the proposed strategies can reduce the typical smoothing of CS due to the limited sampling of high frequency locations. We demonstrated by means of simulations that the proposed acquisition strategies outperformed the standard Compressive Sensing acquisition. This results in a better quality of the reconstructed images and in a greater achievable acceleration.

  12. Teachers' Roles in Designing Meaningful Tasks for Mediating Language Learning through the Use of ICT: A Reflection on Authentic Learning for Young ELLs

    ERIC Educational Resources Information Center

    Roessingh, Hetty

    2014-01-01

    Task based learning (TBL) continues to evolve as information and communication technology (ICT) inspired tools and teaching approaches afford the possibilities of transforming students' learning experiences by heightening their motivation and sense of autonomy, and in turn, their vocabulary development. To capture this synergy, teachers will need…

  13. Making Sense of Abstract Algebra: Exploring Secondary Teachers' Understandings of Inverse Functions in Relation to Its Group Structure

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2017-01-01

    This article draws on semi-structured, task-based interviews to explore secondary teachers' (N = 7) understandings of inverse functions in relation to abstract algebra. In particular, a concept map task is used to understand the degree to which participants, having recently taken an abstract algebra course, situated inverse functions within its…

  14. Using Assessment Tasks to Develop a Greater Sense of Values Literacy in Pre-Service Teachers

    ERIC Educational Resources Information Center

    Christian, Beverly J.

    2014-01-01

    Although much emphasis is given to teaching values in schools, there appears to be less evidence that teacher education courses are explicitly preparing pre-service teachers for this responsibility. In this study, the Values for Australian Schools were integrated into two assessment tasks in the second year of a Bachelor of Education (Primary)…

  15. Learning to merge: a new tool for interactive mapping

    NASA Astrophysics Data System (ADS)

    Porter, Reid B.; Lundquist, Sheng; Ruggiero, Christy

    2013-05-01

    The task of turning raw imagery into semantically meaningful maps and overlays is a key area of remote sensing activity. Image analysts, in applications ranging from environmental monitoring to intelligence, use imagery to generate and update maps of terrain, vegetation, road networks, buildings and other relevant features. Often these tasks can be cast as a pixel labeling problem, and several interactive pixel labeling tools have been developed. These tools exploit training data, which is generated by analysts using simple and intuitive paint-program annotation tools, in order to tailor the labeling algorithm for the particular dataset and task. In other cases, the task is best cast as a pixel segmentation problem. Interactive pixel segmentation tools have also been developed, but these tools typically do not learn from training data like the pixel labeling tools do. In this paper we investigate tools for interactive pixel segmentation that also learn from user input. The input has the form of segment merging (or grouping). Merging examples are 1) easily obtained from analysts using vector annotation tools, and 2) more challenging to exploit than traditional labels. We outline the key issues in developing these interactive merging tools, and describe their application to remote sensing.

  16. Obstacle-avoiding robot with IR and PIR motion sensors

    NASA Astrophysics Data System (ADS)

    Ismail, R.; Omar, Z.; Suaibun, S.

    2016-10-01

    Obstacle avoiding robot was designed, constructed and programmed which may be potentially used for educational and research purposes. The developed robot will move in a particular direction once the infrared (IR) and the PIR passive infrared (PIR) sensors sense a signal while avoiding the obstacles in its path. The robot can also perform desired tasks in unstructured environments without continuous human guidance. The hardware was integrated in one application board as embedded system design. The software was developed using C++ and compiled by Arduino IDE 1.6.5. The main objective of this project is to provide simple guidelines to the polytechnic students and beginners who are interested in this type of research. It is hoped that this robot could benefit students who wish to carry out research on IR and PIR sensors.

  17. Polysemy in Sentence Comprehension: Effects of Meaning Dominance

    PubMed Central

    Foraker, Stephani; Murphy, Gregory L.

    2012-01-01

    Words like church are polysemous, having two related senses (a building and an organization). Three experiments investigated how polysemous senses are represented and processed during sentence comprehension. On one view, readers retrieve an underspecified, core meaning, which is later specified more fully with contextual information. On another view, readers retrieve one or more specific senses. In a reading task, context that was neutral or biased towards a particular sense preceded a polysemous word. Disambiguating material consistent with only one sense followed, in a second sentence (Experiment 1) or the same sentence (Experiments 2 & 3). Reading the disambiguating material was faster when it was consistent with that context, and dominant senses were committed to more strongly than subordinate senses. Critically, following neutral context, the continuation was read more quickly when it selected the dominant sense, and the degree of sense dominance partially explained the reading time advantage. Similarity of the senses also affected reading times. Across experiments, we found that sense selection may not be completed immediately following a polysemous word but is completed at a sentence boundary. Overall, the results suggest that readers select an individual sense when reading a polysemous word, rather than a core meaning. PMID:23185103

  18. Memory for staged events: Supporting older and younger adults' memory with SenseCam.

    PubMed

    Mair, Ali; Poirier, Marie; Conway, Martin A

    2018-03-01

    Two experiments measured the effect of retrieval support provided by a wearable camera, SenseCam, on older and younger adults' memory for a recently experienced complex staged event. In each experiment, participants completed a series of tasks in groups, and the events were recalled 2 weeks later, after viewing SenseCam images (experimental condition) or thinking about the event (control condition). When IQ and education were matched, young adults recalled more event details than older adults, demonstrating an age-related deficit for novel autobiographical material. Reviewing SenseCam images increased the number of details recalled by older and younger adults, and the effect was similar for both groups. These results suggest that memory can be supported by the use of SenseCam, but the age-related deficit is not eliminated.

  19. Tunnel-Site Selection by Remote Sensing Techniques

    DTIC Science & Technology

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  20. An experimental study of graph connectivity for unsupervised word sense disambiguation.

    PubMed

    Navigli, Roberto; Lapata, Mirella

    2010-04-01

    Word sense disambiguation (WSD), the task of identifying the intended meanings (senses) of words in context, has been a long-standing research objective for natural language processing. In this paper, we are concerned with graph-based algorithms for large-scale WSD. Under this framework, finding the right sense for a given word amounts to identifying the most "important" node among the set of graph nodes representing its senses. We introduce a graph-based WSD algorithm which has few parameters and does not require sense-annotated data for training. Using this algorithm, we investigate several measures of graph connectivity with the aim of identifying those best suited for WSD. We also examine how the chosen lexicon and its connectivity influences WSD performance. We report results on standard data sets and show that our graph-based approach performs comparably to the state of the art.

  1. Compressed sensing with gradient total variation for low-dose CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Seongchae; Huh, Young; Park, Justin C.; Lee, Byeonghun; Baek, Junghee; Kim, Eunyoung

    2015-06-01

    This paper describes the improvement of convergence speed with gradient total variation (GTV) in compressed sensing (CS) for low-dose cone-beam computed tomography (CBCT) reconstruction. We derive a fast algorithm for the constrained total variation (TV)-based a minimum number of noisy projections. To achieve this task we combine the GTV with a TV-norm regularization term to promote an accelerated sparsity in the X-ray attenuation characteristics of the human body. The GTV is derived from a TV and enforces more efficient computationally and faster in convergence until a desired solution is achieved. The numerical algorithm is simple and derives relatively fast convergence. We apply a gradient projection algorithm that seeks a solution iteratively in the direction of the projected gradient while enforcing a non-negatively of the found solution. In comparison with the Feldkamp, Davis, and Kress (FDK) and conventional TV algorithms, the proposed GTV algorithm showed convergence in ≤18 iterations, whereas the original TV algorithm needs at least 34 iterations in reducing 50% of the projections compared with the FDK algorithm in order to reconstruct the chest phantom images. Future investigation includes improving imaging quality, particularly regarding X-ray cone-beam scatter, and motion artifacts of CBCT reconstruction.

  2. Polarization maintaining fiber magnetic sensor based on the digital phase generated carrier technology

    NASA Astrophysics Data System (ADS)

    Zhang, Xueliang; Meng, Zhou; Hu, Zhengliang; Yang, Huayong; Song, Zhangqi; Hu, Yongming

    2008-12-01

    A polarization maintaining fiber (PMF) magnetic field sensor based on a digital phase generated carrier (PGC) technology is presented. A magnetic sensor constructed with two magnetostrictive strips attached on the sensing fiber is joined in the sensing arm of a fiber Michelson interferometer. The fiber optic interferometric system is made of all PMF, which inhibits the polarization-induced signal fading. The light source is a fiber laser which can be modulated directly. The PGC metnod is used to demodulate magnetic field signal avoiding phase induced interferometric signal fading, and ensure the sensing partto be all fiber structure. A fiber optic magnetic field sensor with appreciate size for the fiber optic hydrophone towed array is obtained, which can be used to sense the enviromental magnetic field along the sensing direction.This sensor is a good choice for the directional angle measurement through sensing the Earth magnetic field in the array shape measurement of a fiber optic hydrophone towed array.

  3. Effects of mindfulness meditation on three individuals with aphasia.

    PubMed

    Orenstein, Ellen; Basilakos, Alexandra; Marshall, Rebecca Shisler

    2012-01-01

    There is evidence to suggest that people with aphasia (PWA) may have deficits in attention stemming from the inefficient allocation of resources. The inaccurate perception of task demand, or sense of effort, may underlie the misallocation of the available attention resources. Given the lack of treatment options for improving attention in aphasia, Mindfulness Meditation, shown to improve attention in neurologically intact individuals, may prove effective in increasing attention in PWA. The purpose of the present study was to determine if Mindfulness Meditation improves divided attention or language in PWA and if it affects the overall sense of effort. A multiple baseline single-subject design was used to determine the effects of Mindfulness Meditation on divided attention for three PWA. Divided attention was measured using a non-linguistic divided attention task. Visual inspection of the data was used to determine changes in performance (sense of effort, reaction time and accuracy, language) over time. High performance observed on the attention measures suggests that PWA have varying degrees of attentional impairment that may surface when certain demands are presented. There were no observable changes in the performance on the sense of effort or language measures; however, measures of reaction time may indicate Mindfulness Meditation improved efficiency of task completion. All three participants reported that Mindfulness Meditation was easy to learn and carry out on a daily basis, and reported feeling more 'relaxed' and 'peaceful' after Mindfulness Meditation training than before. With the knowledge that PWA can learn meditative practices, and with such successful findings in neurologically intact individuals, it is important to continue evaluating the benefits of Mindfulness Meditation in PWA. © 2012 Royal College of Speech and Language Therapists.

  4. TripSense: A Trust-Based Vehicular Platoon Crowdsensing Scheme with Privacy Preservation in VANETs

    PubMed Central

    Hu, Hao; Lu, Rongxing; Huang, Cheng; Zhang, Zonghua

    2016-01-01

    In this paper, we propose a trust-based vehicular platoon crowdsensing scheme, named TripSense, in VANET. The proposed TripSense scheme introduces a trust-based system to evaluate vehicles’ sensing abilities and then selects the more capable vehicles in order to improve sensing results accuracy. In addition, the sensing tasks are accomplished by platoon member vehicles and preprocessed by platoon head vehicles before the data are uploaded to server. Hence, it is less time-consuming and more efficient compared with the way where the data are submitted by individual platoon member vehicles. Hence it is more suitable in ephemeral networks like VANET. Moreover, our proposed TripSense scheme integrates unlinkable pseudo-ID techniques to achieve PM vehicle identity privacy, and employs a privacy-preserving sensing vehicle selection scheme without involving the PM vehicle’s trust score to keep its location privacy. Detailed security analysis shows that our proposed TripSense scheme not only achieves desirable privacy requirements but also resists against attacks launched by adversaries. In addition, extensive simulations are conducted to show the correctness and effectiveness of our proposed scheme. PMID:27258287

  5. Geo-information processing service composition for concurrent tasks: A QoS-aware game theory approach

    NASA Astrophysics Data System (ADS)

    Li, Haifeng; Zhu, Qing; Yang, Xiaoxia; Xu, Linrong

    2012-10-01

    Typical characteristics of remote sensing applications are concurrent tasks, such as those found in disaster rapid response. The existing composition approach to geographical information processing service chain, searches for an optimisation solution and is what can be deemed a "selfish" way. This way leads to problems of conflict amongst concurrent tasks and decreases the performance of all service chains. In this study, a non-cooperative game-based mathematical model to analyse the competitive relationships between tasks, is proposed. A best response function is used, to assure each task maintains utility optimisation by considering composition strategies of other tasks and quantifying conflicts between tasks. Based on this, an iterative algorithm that converges to Nash equilibrium is presented, the aim being to provide good convergence and maximise the utilisation of all tasks under concurrent task conditions. Theoretical analyses and experiments showed that the newly proposed method, when compared to existing service composition methods, has better practical utility in all tasks.

  6. The Effects of Audio-Visual Recorded and Audio Recorded Listening Tasks on the Accuracy of Iranian EFL Learners' Oral Production

    ERIC Educational Resources Information Center

    Drood, Pooya; Asl, Hanieh Davatgari

    2016-01-01

    The ways in which task in classrooms has developed and proceeded have receive great attention in the field of language teaching and learning in the sense that they draw attention of learners to the competing features such as accuracy, fluency, and complexity. English audiovisual and audio recorded materials have been widely used by teachers and…

  7. Renewal of the Attentive Sensing Project

    DTIC Science & Technology

    2006-02-07

    decisions about target presence or absence, is denoted track before detect . We have investigated joint tracking and detection in the context of the foveal...computationally tractable bounds. 4 Task 2: Sensor Configuration for Tracking and Track Before Detect Task 2 consisted of investigation of attentive...strategy to multiple targets and to track before detect sensors. To apply principles developed in the context of foveal sensors to more immediately

  8. Induced Stress, Artificial Environment, Simulated Tactical Operations Center Model

    DTIC Science & Technology

    1973-06-01

    oriented 4 activities or, at best , tre application of dor:trinal i. 14 concepts to command post exercises. Unlike mechanical skills, weapon’s...training model identified as APSTRAT, an acronym indicating aptitude and strategies , be considered as a point of reference. Several instructional...post providing visual and aural sensing tasks and training objective oriented performance tasks. Vintilly, ho concludes that failure should be

  9. Coordinating Procedural and Conceptual Knowledge to Make Sense of Word Equations: Understanding the Complexity of a "Simple" Completion Task at the Learner's Resolution

    ERIC Educational Resources Information Center

    Taber, Keith S.; Bricheno, Pat

    2009-01-01

    The present paper discusses the conceptual demands of an apparently straightforward task set to secondary-level students--completing chemical word equations with a single omitted term. Chemical equations are of considerable importance in chemistry, and school students are expected to learn to be able to write and interpret them. However, it is…

  10. Enhancement of Human Effectiveness in System Design, Training, and Operation. Annual Progress Report; 1 July 1972-30 June 1973.

    ERIC Educational Resources Information Center

    Hopkins, Charles O.

    The research reported consists of eight tasks, four concerned with manned systems research and four with human resources research. Although each task is basic in the sense that it seeks results of a broadly generalizable nature, each is specifically relevant to one or more well-known and long-standing Air Force problems. (Author)

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, K; Huang, T; Buttler, D

    We present the C-Cat Wordnet package, an open source library for using and modifying Wordnet. The package includes four key features: an API for modifying Synsets; implementations of standard similarity metrics, implementations of well known Word Sense Disambiguation algorithms, and an implementation of the Castanet algorithm. The library is easily extendible and usable in many runtime environments. We demonstrate it's use on two standard Word Sense Disambiguation tasks and apply the Castanet algorithm to a corpus.

  12. New Methods for Representing and Interacting with Qualitative Geographic Information

    DTIC Science & Technology

    2012-10-31

    Penn State University Report on Component 3: SensePlace2 Evaluation Anthony C. Robinson, Scott Pezanowski, Alexander Savelyev , and Alan M...NUMBER 6. AUTHOR(S) Alexander Savelyev , Scott Pezanowski, Anthony C. Robinson, and Alan M. MacEachren 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...2012. SensePlace2 Interface Mini-Guide Alan M. MacEachren, Alexander Savelyev , and Scott Pezanowski GeoVISTA Center, Pennsylvania State University

  13. Quantum Tomography Protocols with Positivity are Compressed Sensing Protocols (Open Access)

    DTIC Science & Technology

    2015-12-08

    ARTICLE OPEN Quantum tomography protocols with positivity are compressed sensing protocols Amir Kalev1, Robert L Kosut2 and Ivan H Deutsch1...Characterising complex quantum systems is a vital task in quantum information science. Quantum tomography, the standard tool used for this purpose, uses a well...designed measurement record to reconstruct quantum states and processes. It is, however, notoriously inefficient. Recently, the classical signal

  14. Safe Operations of Unmanned Systems for Reconnaissance in Complex Environments Army Technology Objective (SOURCE ATO)

    DTIC Science & Technology

    2011-04-25

    must adapt its planning to vehicle size, shape, wheelbase, wheel and axle configuration, the specific obstacle-crossing capabilities of the vehicle...scalability of the ANS is a consequence of making each sensing modality capable of performing reasonable perception tasks while allowing a wider...autonomous system design achieves flexibility by exploiting redundant sensing modalities where possible, and by a decision-making process that

  15. Eddy-Current Non-Inertial Displacement Sensing for Underwater Infrasound Measurements

    DTIC Science & Technology

    2011-05-01

    Eddy-current non-inertial displacement sensing for underwater infrasound measurements Dimitri M. Donskoy Stevens Institute of Technology, 711 Hudson...geophysicists have an ongoing interest in exploring underwater acous- tic processes at infrasound frequencies, for example, for monitoring natural events...underwater infrasound measurements 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f

  16. The CC chemokine receptor 5 regulates olfactory and social recognition in mice.

    PubMed

    Kalkonde, Y V; Shelton, R; Villarreal, M; Sigala, J; Mishra, P K; Ahuja, S S; Barea-Rodriguez, E; Moretti, P; Ahuja, S K

    2011-12-01

    Chemokines are chemotactic cytokines that regulate cell migration and are thought to play an important role in a broad range of inflammatory diseases. The availability of chemokine receptor blockers makes them an important therapeutic target. In vitro, chemokines are shown to modulate neurotransmission. However, it is not very clear if chemokines play a role in behavior and cognition. Here we evaluated the role of CC chemokine receptor 5 (CCR5) in various behavioral tasks in mice using Wt (Ccr5⁺/⁺) and Ccr5-null (Ccr5⁻/⁻)mice. Ccr5⁻/⁻ mice showed enhanced social recognition. Administration of CC chemokine ligand 3 (CCL3), one of the CCR5-ligands, impaired social recognition. Since the social recognition task is dependent on the sense of olfaction, we tested olfactory recognition for social and non-social scents in these mice. Ccr5⁻/⁻ mice had enhanced olfactory recognition for both these scents indicating that enhanced performance in social recognition task could be due to enhanced olfactory recognition in these mice. Spatial memory and aversive memory were comparable in Wt and Ccr5⁻/⁻ mice. Collectively, these results suggest that chemokines/chemokine receptors might play an important role in olfactory recognition tasks in mice and to our knowledge represents the first direct demonstration of an in vivo role of CCR5 in modulating social behavior in mice. These studies are important as CCR5 blockers are undergoing clinical trials and can potentially modulate behavior. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. System design and implementation of digital-image processing using computational grids

    NASA Astrophysics Data System (ADS)

    Shen, Zhanfeng; Luo, Jiancheng; Zhou, Chenghu; Huang, Guangyu; Ma, Weifeng; Ming, Dongping

    2005-06-01

    As a special type of digital image, remotely sensed images are playing increasingly important roles in our daily lives. Because of the enormous amounts of data involved, and the difficulties of data processing and transfer, an important issue for current computer and geo-science experts is developing internet technology to implement rapid remotely sensed image processing. Computational grids are able to solve this problem effectively. These networks of computer workstations enable the sharing of data and resources, and are used by computer experts to solve imbalances of network resources and lopsided usage. In China, computational grids combined with spatial-information-processing technology have formed a new technology: namely, spatial-information grids. In the field of remotely sensed images, spatial-information grids work more effectively for network computing, data processing, resource sharing, task cooperation and so on. This paper focuses mainly on the application of computational grids to digital-image processing. Firstly, we describe the architecture of digital-image processing on the basis of computational grids, its implementation is then discussed in detail with respect to the technology of middleware. The whole network-based intelligent image-processing system is evaluated on the basis of the experimental analysis of remotely sensed image-processing tasks; the results confirm the feasibility of the application of computational grids to digital-image processing.

  18. Direct process estimation from tomographic data using artificial neural systems

    NASA Astrophysics Data System (ADS)

    Mohamad-Saleh, Junita; Hoyle, Brian S.; Podd, Frank J.; Spink, D. M.

    2001-07-01

    The paper deals with the goal of component fraction estimation in multicomponent flows, a critical measurement in many processes. Electrical capacitance tomography (ECT) is a well-researched sensing technique for this task, due to its low-cost, non-intrusion, and fast response. However, typical systems, which include practicable real-time reconstruction algorithms, give inaccurate results, and existing approaches to direct component fraction measurement are flow-regime dependent. In the investigation described, an artificial neural network approach is used to directly estimate the component fractions in gas-oil, gas-water, and gas-oil-water flows from ECT measurements. A 2D finite- element electric field model of a 12-electrode ECT sensor is used to simulate ECT measurements of various flow conditions. The raw measurements are reduced to a mutually independent set using principal components analysis and used with their corresponding component fractions to train multilayer feed-forward neural networks (MLFFNNs). The trained MLFFNNs are tested with patterns consisting of unlearned ECT simulated and plant measurements. Results included in the paper have a mean absolute error of less than 1% for the estimation of various multicomponent fractions of the permittivity distribution. They are also shown to give improved component fraction estimation compared to a well known direct ECT method.

  19. How Pressure Became a Scalar, Not a Vector

    NASA Astrophysics Data System (ADS)

    Chalmers, Alan

    2018-06-01

    The gradual emergence of a science of hydrostatics during the course of the seventeenth century is testament to the fact that a technical concept of pressure that was up to the task was far from obvious. The first published version of a theory of hydrostatics containing the essentials of the modern theory appeared in book 2 of Isaac Newton's Principia. Newton derived the propositions of hydrostatics from a definition of a fluid as a medium unable to withstand a distorting force. Newton's reasoning required that pressure be understood as a force per unit area acting on either side of imaginary planes within the body of a fluid. For a fluid in equilibrium, the forces at some location within a fluid are independent of the orientation of such planes. As Newton came to realize, within the body of a liquid, pressure acts equally in all directions so that there is no resultant pressing in any direction. Pressure has an intensity but not a direction. In modern terms, it is a scalar, not a vector. Although earlier scholars such as Simon Stevin, Blaise Pascal, and Robert Boyle helped set the scene for Newton's innovations, they were unable to transcend the common sense of pressure as a directed force acting on the solid surfaces bounding a fluid.

  20. How Pressure Became a Scalar, Not a Vector

    NASA Astrophysics Data System (ADS)

    Chalmers, Alan

    2018-04-01

    The gradual emergence of a science of hydrostatics during the course of the seventeenth century is testament to the fact that a technical concept of pressure that was up to the task was far from obvious. The first published version of a theory of hydrostatics containing the essentials of the modern theory appeared in book 2 of Isaac Newton's Principia. Newton derived the propositions of hydrostatics from a definition of a fluid as a medium unable to withstand a distorting force. Newton's reasoning required that pressure be understood as a force per unit area acting on either side of imaginary planes within the body of a fluid. For a fluid in equilibrium, the forces at some location within a fluid are independent of the orientation of such planes. As Newton came to realize, within the body of a liquid, pressure acts equally in all directions so that there is no resultant pressing in any direction. Pressure has an intensity but not a direction. In modern terms, it is a scalar, not a vector. Although earlier scholars such as Simon Stevin, Blaise Pascal, and Robert Boyle helped set the scene for Newton's innovations, they were unable to transcend the common sense of pressure as a directed force acting on the solid surfaces bounding a fluid.

  1. A Polygon Model for Wireless Sensor Network Deployment with Directional Sensing Areas

    PubMed Central

    Wu, Chun-Hsien; Chung, Yeh-Ching

    2009-01-01

    The modeling of the sensing area of a sensor node is essential for the deployment algorithm of wireless sensor networks (WSNs). In this paper, a polygon model is proposed for the sensor node with directional sensing area. In addition, a WSN deployment algorithm is presented with topology control and scoring mechanisms to maintain network connectivity and improve sensing coverage rate. To evaluate the proposed polygon model and WSN deployment algorithm, a simulation is conducted. The simulation results show that the proposed polygon model outperforms the existed disk model and circular sector model in terms of the maximum sensing coverage rate. PMID:22303159

  2. Motion analysis report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.

    1985-01-01

    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.

  3. Place recognition and heading retrieval are mediated by dissociable cognitive systems in mice.

    PubMed

    Julian, Joshua B; Keinath, Alexander T; Muzzio, Isabel A; Epstein, Russell A

    2015-05-19

    A lost navigator must identify its current location and recover its facing direction to restore its bearings. We tested the idea that these two tasks--place recognition and heading retrieval--might be mediated by distinct cognitive systems in mice. Previous work has shown that numerous species, including young children and rodents, use the geometric shape of local space to regain their sense of direction after disorientation, often ignoring nongeometric cues even when they are informative. Notably, these experiments have almost always been performed in single-chamber environments in which there is no ambiguity about place identity. We examined the navigational behavior of mice in a two-chamber paradigm in which animals had to both recognize the chamber in which they were located (place recognition) and recover their facing direction within that chamber (heading retrieval). In two experiments, we found that mice used nongeometric features for place recognition, but simultaneously failed to use these same features for heading retrieval, instead relying exclusively on spatial geometry. These results suggest the existence of separate systems for place recognition and heading retrieval in mice that are differentially sensitive to geometric and nongeometric cues. We speculate that a similar cognitive architecture may underlie human navigational behavior.

  4. Methodological considerations in conducting an olfactory fMRI study.

    PubMed

    Vedaei, Faezeh; Fakhri, Mohammad; Harirchian, Mohammad Hossein; Firouznia, Kavous; Lotfi, Yones; Ali Oghabian, Mohammad

    2013-01-01

    The sense of smell is a complex chemosensory processing in human and animals that allows them to connect with the environment as one of their chief sensory systems. In the field of functional brain imaging, many studies have focused on locating brain regions that are involved during olfactory processing. Despite wealth of literature about brain network in different olfactory tasks, there is a paucity of data regarding task design. Moreover, considering importance of olfactory tasks for patients with variety of neurological diseases, special contemplations should be addressed for patients. In this article, we review current olfaction tasks for behavioral studies and functional neuroimaging assessments, as well as technical principles regarding utilization of these tasks in functional magnetic resonance imaging studies.

  5. Separate mechanisms for magnitude and order processing in the spatial-numerical association of response codes (SNARC) effect: The strange case of musical note values.

    PubMed

    Prpic, Valter; Fumarola, Antonia; De Tommaso, Matteo; Luccio, Riccardo; Murgia, Mauro; Agostini, Tiziano

    2016-08-01

    The spatial-numerical association of response codes (SNARC) effect is considered an evidence of the association between numbers and space, with faster left key-press responses to small numbers and faster right key-press responses to large numbers. We examined whether visually presented note values produce a SNARC-like effect. Differently from numbers, note values are represented as a decreasing left-to-right progression, allowing us to disambiguate the contribution of order and magnitude in determining the direction of the effect. Musicians with formal education performed a note value comparison in Experiment 1 (direct task), a line orientation judgment in Experiment 2 (indirect task), and a detection task in Experiment 3 (indirect task). When note values were task relevant (direct task), participants responded faster to large note values with the left key-press, and vice versa. Conversely, when note values were task irrelevant (indirect tasks), the direction of this association was reversed. This evidence suggests the existence of separate mechanisms underlying the SNARC effect. Namely, an Order-Related Mechanism (ORM) and a Magnitude-Related Mechanism (MRM) that are revealed by different task demands. Indeed, according to a new model we proposed, ordinal and magnitude related information appears to be preferentially involved in direct and indirect tasks, respectively. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Higher similarity in beta topography between tasks than subjects.

    PubMed

    Basile, Luis F H; Sato, João R; Pasquini, Henrique A; Velasques, Bruna; Ribeiro, Pedro; Anghinah, Renato

    2018-05-01

    We have recently provided evidence for highly idiosyncratic topographic distributions of beta oscillations (as well as slow potentials) across individuals. More recently, by emphasizing the analysis of similarity instead of differences across tasks, we concluded that differences between an attention task and quiet resting may be negligible or at least unsystematic across subjects. Due to the possibility that individual differences could be due to noise in a wide sense or some inherent instability of beta activity, we designed a replication study to explicitly test whether pairs of individuals matched for head size and shape would still present less similar beta topography than each individual between sessions or tasks. We used independent component analysis (ICA) for an exhaustive decomposition of beta activity in a visual attention task and in quiet resting, recorded by 256-channel EEG in 20 subjects, on two separate days. We evaluated whether each ICA component obtained in one task and in one given individual could be explained by a linear regression model based on the topographic patterns of the complementary task (correlation between one component with a linear combination of components from complementary conditions), of the same task in a second session and of a matched individual. Results again showed a high topographic similarity between conditions, as previously seen between reasoning and simple visual attention beta correlates. From an overall number of 16 components representing brain activity obtained for the tasks (out of 60 originally computed where the remaining were considered noise), over 92% could satisfactorily be explained by the complementary task. Although the similarity between sessions was significantly smaller than between tasks on each day, the similarity between sessions was statistically higher than that between subjects in a highly significant way. We discuss the possible biases of group spatial averaging and the emphasis on differences as opposed to similarities, and noise in a wide sense, as the main causes of hardly replicable findings on task-related forms of activity and the inconclusive state of a universal functional mapping of cortical association areas.

  7. The neural basis of visual dominance in the context of audio-visual object processing.

    PubMed

    Schmid, Carmen; Büchel, Christian; Rose, Michael

    2011-03-01

    Visual dominance refers to the observation that in bimodal environments vision often has an advantage over other senses in human. Therefore, a better memory performance for visual compared to, e.g., auditory material is assumed. However, the reason for this preferential processing and the relation to the memory formation is largely unknown. In this fMRI experiment, we manipulated cross-modal competition and attention, two factors that both modulate bimodal stimulus processing and can affect memory formation. Pictures and sounds of objects were presented simultaneously in two levels of recognisability, thus manipulating the amount of cross-modal competition. Attention was manipulated via task instruction and directed either to the visual or the auditory modality. The factorial design allowed a direct comparison of the effects between both modalities. The resulting memory performance showed that visual dominance was limited to a distinct task setting. Visual was superior to auditory object memory only when allocating attention towards the competing modality. During encoding, cross-modal competition and attention towards the opponent domain reduced fMRI signals in both neural systems, but cross-modal competition was more pronounced in the auditory system and only in auditory cortex this competition was further modulated by attention. Furthermore, neural activity reduction in auditory cortex during encoding was closely related to the behavioural auditory memory impairment. These results indicate that visual dominance emerges from a less pronounced vulnerability of the visual system against competition from the auditory domain. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force

    PubMed Central

    Yuan, Wenzhen; Dong, Siyuan; Adelson, Edward H.

    2017-01-01

    Tactile sensing is an important perception mode for robots, but the existing tactile technologies have multiple limitations. What kind of tactile information robots need, and how to use the information, remain open questions. We believe a soft sensor surface and high-resolution sensing of geometry should be important components of a competent tactile sensor. In this paper, we discuss the development of a vision-based optical tactile sensor, GelSight. Unlike the traditional tactile sensors which measure contact force, GelSight basically measures geometry, with very high spatial resolution. The sensor has a contact surface of soft elastomer, and it directly measures its deformation, both vertical and lateral, which corresponds to the exact object shape and the tension on the contact surface. The contact force, and slip can be inferred from the sensor’s deformation as well. Particularly, we focus on the hardware and software that support GelSight’s application on robot hands. This paper reviews the development of GelSight, with the emphasis in the sensing principle and sensor design. We introduce the design of the sensor’s optical system, the algorithm for shape, force and slip measurement, and the hardware designs and fabrication of different sensor versions. We also show the experimental evaluation on the GelSight’s performance on geometry and force measurement. With the high-resolution measurement of shape and contact force, the sensor has successfully assisted multiple robotic tasks, including material perception or recognition and in-hand localization for robot manipulation. PMID:29186053

  9. A motion sensing-based framework for robotic manipulation.

    PubMed

    Deng, Hao; Xia, Zeyang; Weng, Shaokui; Gan, Yangzhou; Fang, Peng; Xiong, Jing

    2016-01-01

    To data, outside of the controlled environments, robots normally perform manipulation tasks operating with human. This pattern requires the robot operators with high technical skills training for varied teach-pendant operating system. Motion sensing technology, which enables human-machine interaction in a novel and natural interface using gestures, has crucially inspired us to adopt this user-friendly and straightforward operation mode on robotic manipulation. Thus, in this paper, we presented a motion sensing-based framework for robotic manipulation, which recognizes gesture commands captured from motion sensing input device and drives the action of robots. For compatibility, a general hardware interface layer was also developed in the framework. Simulation and physical experiments have been conducted for preliminary validation. The results have shown that the proposed framework is an effective approach for general robotic manipulation with motion sensing control.

  10. Action Recognition and Movement Direction Discrimination Tasks Are Associated with Different Adaptation Patterns

    PubMed Central

    de la Rosa, Stephan; Ekramnia, Mina; Bülthoff, Heinrich H.

    2016-01-01

    The ability to discriminate between different actions is essential for action recognition and social interactions. Surprisingly previous research has often probed action recognition mechanisms with tasks that did not require participants to discriminate between actions, e.g., left-right direction discrimination tasks. It is not known to what degree visual processes in direction discrimination tasks are also involved in the discrimination of actions, e.g., when telling apart a handshake from a high-five. Here, we examined whether action discrimination is influenced by movement direction and whether direction discrimination depends on the type of action. We used an action adaptation paradigm to target action and direction discrimination specific visual processes. In separate conditions participants visually adapted to forward and backward moving handshake and high-five actions. Participants subsequently categorized either the action or the movement direction of an ambiguous action. The results showed that direction discrimination adaptation effects were modulated by the type of action but action discrimination adaptation effects were unaffected by movement direction. These results suggest that action discrimination and direction categorization rely on partly different visual information. We propose that action discrimination tasks should be considered for the exploration of visual action recognition mechanisms. PMID:26941633

  11. Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.

    PubMed

    Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan

    2016-01-01

    Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.

  12. Feedback about action performed can alter the sense of self-agency

    PubMed Central

    Kumar, Neeraj; Manjaly, Jaison A.; Miyapuram, Krishna P.

    2014-01-01

    Sense of agency refers to the sense of authorship of an action and its outcome. Sense of agency is often explained through computational models of motor control (e.g., the comparator model). Previous studies using the comparator model have manipulated action-outcome contingency to understand its effect on the sense of agency. More recent studies have shown that cues related to outcome, priming outcome and priming action have an effect on agency attribution. However, relatively few studies have focused on the effect of recalibrating internal predictions on the sense of agency. This study aims to investigate how feedback about action can recalibrate prediction and modulates the sense of agency. While participants performed a Flanker task, we manipulated the feedback about the validity of the action performed, independent of their responses. When true feedback is given, the sense of agency would reflect congruency between the sensory outcome and the action performed. The results show an opposite effect on the sense of agency when false feedback was given. We propose that feedback about action performed can recalibrate the prediction of sensory outcome and thus alter the sense of agency. PMID:24611059

  13. Distributed Sensing and Processing for Multi-Camera Networks

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Aswin C.; Chellappa, Rama; Baraniuk, Richard G.

    Sensor networks with large numbers of cameras are becoming increasingly prevalent in a wide range of applications, including video conferencing, motion capture, surveillance, and clinical diagnostics. In this chapter, we identify some of the fundamental challenges in designing such systems: robust statistical inference, computationally efficiency, and opportunistic and parsimonious sensing. We show that the geometric constraints induced by the imaging process are extremely useful for identifying and designing optimal estimators for object detection and tracking tasks. We also derive pipelined and parallelized implementations of popular tools used for statistical inference in non-linear systems, of which multi-camera systems are examples. Finally, we highlight the use of the emerging theory of compressive sensing in reducing the amount of data sensed and communicated by a camera network.

  14. Attracting Dynamics of Frontal Cortex Ensembles during Memory-Guided Decision-Making

    PubMed Central

    Seamans, Jeremy K.; Durstewitz, Daniel

    2011-01-01

    A common theoretical view is that attractor-like properties of neuronal dynamics underlie cognitive processing. However, although often proposed theoretically, direct experimental support for the convergence of neural activity to stable population patterns as a signature of attracting states has been sparse so far, especially in higher cortical areas. Combining state space reconstruction theorems and statistical learning techniques, we were able to resolve details of anterior cingulate cortex (ACC) multiple single-unit activity (MSUA) ensemble dynamics during a higher cognitive task which were not accessible previously. The approach worked by constructing high-dimensional state spaces from delays of the original single-unit firing rate variables and the interactions among them, which were then statistically analyzed using kernel methods. We observed cognitive-epoch-specific neural ensemble states in ACC which were stable across many trials (in the sense of being predictive) and depended on behavioral performance. More interestingly, attracting properties of these cognitively defined ensemble states became apparent in high-dimensional expansions of the MSUA spaces due to a proper unfolding of the neural activity flow, with properties common across different animals. These results therefore suggest that ACC networks may process different subcomponents of higher cognitive tasks by transiting among different attracting states. PMID:21625577

  15. An Effective and Robust Decentralized Target Tracking Scheme in Wireless Camera Sensor Networks.

    PubMed

    Fu, Pengcheng; Cheng, Yongbo; Tang, Hongying; Li, Baoqing; Pei, Jun; Yuan, Xiaobing

    2017-03-20

    In this paper, we propose an effective and robust decentralized tracking scheme based on the square root cubature information filter (SRCIF) to balance the energy consumption and tracking accuracy in wireless camera sensor networks (WCNs). More specifically, regarding the characteristics and constraints of camera nodes in WCNs, some special mechanisms are put forward and integrated in this tracking scheme. First, a decentralized tracking approach is adopted so that the tracking can be implemented energy-efficiently and steadily. Subsequently, task cluster nodes are dynamically selected by adopting a greedy on-line decision approach based on the defined contribution decision (CD) considering the limited energy of camera nodes. Additionally, we design an efficient cluster head (CH) selection mechanism that casts such selection problem as an optimization problem based on the remaining energy and distance-to-target. Finally, we also perform analysis on the target detection probability when selecting the task cluster nodes and their CH, owing to the directional sensing and observation limitations in field of view (FOV) of camera nodes in WCNs. From simulation results, the proposed tracking scheme shows an obvious improvement in balancing the energy consumption and tracking accuracy over the existing methods.

  16. An Effective and Robust Decentralized Target Tracking Scheme in Wireless Camera Sensor Networks

    PubMed Central

    Fu, Pengcheng; Cheng, Yongbo; Tang, Hongying; Li, Baoqing; Pei, Jun; Yuan, Xiaobing

    2017-01-01

    In this paper, we propose an effective and robust decentralized tracking scheme based on the square root cubature information filter (SRCIF) to balance the energy consumption and tracking accuracy in wireless camera sensor networks (WCNs). More specifically, regarding the characteristics and constraints of camera nodes in WCNs, some special mechanisms are put forward and integrated in this tracking scheme. First, a decentralized tracking approach is adopted so that the tracking can be implemented energy-efficiently and steadily. Subsequently, task cluster nodes are dynamically selected by adopting a greedy on-line decision approach based on the defined contribution decision (CD) considering the limited energy of camera nodes. Additionally, we design an efficient cluster head (CH) selection mechanism that casts such selection problem as an optimization problem based on the remaining energy and distance-to-target. Finally, we also perform analysis on the target detection probability when selecting the task cluster nodes and their CH, owing to the directional sensing and observation limitations in field of view (FOV) of camera nodes in WCNs. From simulation results, the proposed tracking scheme shows an obvious improvement in balancing the energy consumption and tracking accuracy over the existing methods. PMID:28335537

  17. ERP evidence for rapid hedonic evaluation of logos.

    PubMed

    Handy, Todd C; Smilek, Daniel; Geiger, Lena; Liu, Cindy; Schooler, Jonathan W

    2010-01-01

    We know that human neurocognitive systems rapidly and implicitly evaluate emotionally charged stimuli. But what about more everyday, frequently encountered kinds of objects, such as computer desktop icons and business logos? Do we rapidly and implicitly evaluate these more prosaic visual images, attitude objects that might only engender a mild sense of liking or disliking, if at all? To address this question, we asked participants to view a set of unfamiliar commercial logos in the context of a target identification task as brain electrical responses to these objects were recorded via event-related potentials (ERPs). Following this task, participants individually identified those logos that were most liked or disliked, allowing us to then compare how ERP responses to logos varied as a function of hedonic evaluation-a procedure decoupling evaluative responses from any normative classification of the logos themselves. In Experiment 1, we found that visuocortical processing manifest a specific bias for disliked logos that emerged within the first 200 msec of stimulus onset. In Experiment 2, we replicated this effect while dissociating normative- and novelty-related influences. Taken together, our results provide direct electrophysiological evidence suggesting that we rapidly and implicitly evaluate commercial branding images at a hedonic level.

  18. A functional model of sensemaking in a neurocognitive architecture.

    PubMed

    Lebiere, Christian; Pirolli, Peter; Thomson, Robert; Paik, Jaehyon; Rutledge-Taylor, Matthew; Staszewski, James; Anderson, John R

    2013-01-01

    Sensemaking is the active process of constructing a meaningful representation (i.e., making sense) of some complex aspect of the world. In relation to intelligence analysis, sensemaking is the act of finding and interpreting relevant facts amongst the sea of incoming reports, images, and intelligence. We present a cognitive model of core information-foraging and hypothesis-updating sensemaking processes applied to complex spatial probability estimation and decision-making tasks. While the model was developed in a hybrid symbolic-statistical cognitive architecture, its correspondence to neural frameworks in terms of both structure and mechanisms provided a direct bridge between rational and neural levels of description. Compared against data from two participant groups, the model correctly predicted both the presence and degree of four biases: confirmation, anchoring and adjustment, representativeness, and probability matching. It also favorably predicted human performance in generating probability distributions across categories, assigning resources based on these distributions, and selecting relevant features given a prior probability distribution. This model provides a constrained theoretical framework describing cognitive biases as arising from three interacting factors: the structure of the task environment, the mechanisms and limitations of the cognitive architecture, and the use of strategies to adapt to the dual constraints of cognition and the environment.

  19. Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K+ channel

    PubMed Central

    Niemeyer, María Isabel; González-Nilo, Fernando D.; Zúñiga, Leandro; González, Wendy; Cid, L. Pablo; Sepúlveda, Francisco V.

    2007-01-01

    Potassium channels share a common selectivity filter that determines the conduction characteristics of the pore. Diversity in K+ channels is given by how they are gated open. TASK-2, TALK-1, and TALK-2 are two-pore region (2P) KCNK K+ channels gated open by extracellular alkalinization. We have explored the mechanism for this alkalinization-dependent gating using molecular simulation and site-directed mutagenesis followed by functional assay. We show that the side chain of a single arginine residue (R224) near the pore senses pH in TASK-2 with an unusual pKa of 8.0, a shift likely due to its hydrophobic environment. R224 would block the channel through an electrostatic effect on the pore, a situation relieved by its deprotonation by alkalinization. A lysine residue in TALK-2 fulfills the same role but with a largely unchanged pKa, which correlates with an environment that stabilizes its positive charge. In addition to suggesting unified alkaline pH-gating mechanisms within the TALK subfamily of channels, our results illustrate in a physiological context the principle that hydrophobic environment can drastically modulate the pKa of charged amino acids within a protein. PMID:17197424

  20. A Functional Model of Sensemaking in a Neurocognitive Architecture

    PubMed Central

    Lebiere, Christian; Paik, Jaehyon; Rutledge-Taylor, Matthew; Staszewski, James; Anderson, John R.

    2013-01-01

    Sensemaking is the active process of constructing a meaningful representation (i.e., making sense) of some complex aspect of the world. In relation to intelligence analysis, sensemaking is the act of finding and interpreting relevant facts amongst the sea of incoming reports, images, and intelligence. We present a cognitive model of core information-foraging and hypothesis-updating sensemaking processes applied to complex spatial probability estimation and decision-making tasks. While the model was developed in a hybrid symbolic-statistical cognitive architecture, its correspondence to neural frameworks in terms of both structure and mechanisms provided a direct bridge between rational and neural levels of description. Compared against data from two participant groups, the model correctly predicted both the presence and degree of four biases: confirmation, anchoring and adjustment, representativeness, and probability matching. It also favorably predicted human performance in generating probability distributions across categories, assigning resources based on these distributions, and selecting relevant features given a prior probability distribution. This model provides a constrained theoretical framework describing cognitive biases as arising from three interacting factors: the structure of the task environment, the mechanisms and limitations of the cognitive architecture, and the use of strategies to adapt to the dual constraints of cognition and the environment. PMID:24302930

  1. Looking back to inform the future: The role of cognition in forest disturbance characterization from remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Bianchetti, Raechel Anne

    Remotely sensed images have become a ubiquitous part of our daily lives. From novice users, aiding in search and rescue missions using tools such as TomNod, to trained analysts, synthesizing disparate data to address complex problems like climate change, imagery has become central to geospatial problem solving. Expert image analysts are continually faced with rapidly developing sensor technologies and software systems. In response to these cognitively demanding environments, expert analysts develop specialized knowledge and analytic skills to address increasingly complex problems. This study identifies the knowledge, skills, and analytic goals of expert image analysts tasked with identification of land cover and land use change. Analysts participating in this research are currently working as part of a national level analysis of land use change, and are well versed with the use of TimeSync, forest science, and image analysis. The results of this study benefit current analysts as it improves their awareness of their mental processes used during the image interpretation process. The study also can be generalized to understand the types of knowledge and visual cues that analysts use when reasoning with imagery for purposes beyond land use change studies. Here a Cognitive Task Analysis framework is used to organize evidence from qualitative knowledge elicitation methods for characterizing the cognitive aspects of the TimeSync image analysis process. Using a combination of content analysis, diagramming, semi-structured interviews, and observation, the study highlights the perceptual and cognitive elements of expert remote sensing interpretation. Results show that image analysts perform several standard cognitive processes, but flexibly employ these processes in response to various contextual cues. Expert image analysts' ability to think flexibly during their analysis process was directly related to their amount of image analysis experience. Additionally, results show that the basic Image Interpretation Elements continue to be important despite technological augmentation of the interpretation process. These results are used to derive a set of design guidelines for developing geovisual analytic tools and training to support image analysis.

  2. Self-sensing in Bacillus subtilis quorum-sensing systems

    PubMed Central

    Bareia, Tasneem; Pollak, Shaul; Eldar, Avigdor

    2017-01-01

    Bacterial cell-cell signaling, or quorum sensing, is characterized by the secretion and group-wide detection of small diffusible signal molecules called autoinducers. This mechanism allows cells to coordinate their behavior in a density-dependent manner. A quorum-sensing cell may directly respond to the autoinducers it produces in a cell-autonomous and quorum-independent manner, but the strength of such self-sensing effect and its impact on bacterial physiology are unclear. Here, we explored the existence and impact of self-sensing in the Bacillus subtilis ComQXP and Rap-Phr quorum-sensing systems. By comparing the quorum-sensing response of autoinducer-secreting and non-secreting cells in co-culture, we found that secreting cells consistently showed a stronger response than non-secreting cells. Combining genetic and quantitative analyses, we demonstrated this effect to be a direct result of self-sensing and ruled out an indirect regulatory effect of the autoinducer production genes on response sensitivity. In addition, self-sensing in the ComQXP system affected persistence to antibiotic treatment. Together, these findings indicate the existence of self-sensing in the two most common designs of quorum-sensing systems of Gram-positive bacteria. PMID:29038467

  3. Difet: Distributed Feature Extraction Tool for High Spatial Resolution Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Eken, S.; Aydın, E.; Sayar, A.

    2017-11-01

    In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi) algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB) are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  4. The Flash-Preview Moving Window Paradigm: Unpacking Visual Expertise One Glimpse at a Time

    ERIC Educational Resources Information Center

    Litchfield, Damien; Donovan, Tim

    2017-01-01

    How we make sense of what we see and where best to look is shaped by our experience, our current task goals and how we first perceive our environment. An established way of demonstrating these factors work together is to study how eye movement patterns change as a function of expertise and to observe how experts can solve complex tasks after only…

  5. Number sense in the transition from natural to rational numbers.

    PubMed

    Van Hoof, Jo; Verschaffel, Lieven; Van Dooren, Wim

    2017-03-01

    Rational numbers are of critical importance both in mathematics and in other fields of science. However, they form a stumbling block for learners. One widely known source of the difficulty learners have with rational numbers is the natural number bias, that is the tendency to (inappropriately) apply natural number properties in rational number tasks. Still, it has been shown that a good understanding of natural numbers is highly predictive for mathematics achievement in general, and for performance on rational number tasks in particular. In this study, we further investigated the relation between learners' natural and rational number knowledge, specifically in cases where a natural number bias may lead to errors. Participants were 140 sixth graders from six different primary schools. Participants completed a symbolic and a non-symbolic natural number comparison task, a number line estimation task, and a rational number sense test. Learners' natural number knowledge was found to be a good predictor of their rational number knowledge. However, after first controlling for learners' general mathematics achievement, their natural number knowledge only predicted the subaspect of operations with rational numbers. The results of this study suggest that the relation between learners' natural and rational number knowledge can largely be explained by their relation with learners' general mathematics achievement. © 2016 The British Psychological Society.

  6. Let me take the wheel: Illusory control and sense of agency

    PubMed Central

    Tobias-Webb, Juliette; Limbrick-Oldfield, Eve H.; Gillan, Claire M.; Moore, James W.; Aitken, Michael R. F.; Clark, Luke

    2017-01-01

    ABSTRACT Illusory control refers to an effect in games of chance where features associated with skilful situations increase expectancies of success. Past work has operationalized illusory control in terms of subjective ratings or behaviour, with limited consideration of the relationship between these definitions, or the broader construct of agency. This study used a novel card-guessing task in 78 participants to investigate the relationship between subjective and behavioural illusory control. We compared trials in which participants (a) had no opportunity to exercise illusory control, (b) could exercise illusory control for free, or (c) could pay to exercise illusory control. Contingency Judgment and Intentional Binding tasks assessed explicit and implicit sense of agency, respectively. On the card-guessing task, confidence was higher when participants exerted control than in the baseline condition. In a complementary model, participants were more likely to exercise control when their confidence was high, and this effect was accentuated in the pay condition relative to the free condition. Decisions to pay were positively correlated with control ratings on the Contingency Judgment task, but were not significantly related to Intentional Binding. These results establish an association between subjective and behavioural illusory control and locate the construct within the cognitive literature on agency. PMID:27376771

  7. System and method for seamless task-directed autonomy for robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Curtis; Bruemmer, David; Few, Douglas

    Systems, methods, and user interfaces are used for controlling a robot. An environment map and a robot designator are presented to a user. The user may place, move, and modify task designators on the environment map. The task designators indicate a position in the environment map and indicate a task for the robot to achieve. A control intermediary links task designators with robot instructions issued to the robot. The control intermediary analyzes a relative position between the task designators and the robot. The control intermediary uses the analysis to determine a task-oriented autonomy level for the robot and communicates targetmore » achievement information to the robot. The target achievement information may include instructions for directly guiding the robot if the task-oriented autonomy level indicates low robot initiative and may include instructions for directing the robot to determine a robot plan for achieving the task if the task-oriented autonomy level indicates high robot initiative.« less

  8. Advancing Scientific Reasoning in Upper Elementary Classrooms: Direct Instruction Versus Task Structuring

    NASA Astrophysics Data System (ADS)

    Lazonder, Ard W.; Wiskerke-Drost, Sjanou

    2015-02-01

    Several studies found that direct instruction and task structuring can effectively promote children's ability to design unconfounded experiments. The present study examined whether the impact of these interventions extends to other scientific reasoning skills by comparing the inquiry activities of 55 fifth-graders randomly assigned to one of three conditions. Children in the control condition investigated a four-variable inquiry task without additional support. Performance of this task in the direct instruction condition was preceded by a short training in experimental design, whereas children in the task structuring condition, who did not receive the introductory training, were given a version of the task that addressed the four variables one at a time. Analysis of children's experimentation behavior confirmed that direct instruction and task structuring are equally effective and superior to unguided inquiry. Both interventions also evoked more determinate predictions and valid inferences. These findings demonstrate that the effect of short-term interventions designed to promote unconfounded experimentation extends beyond the control of variables.

  9. The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.

    1994-01-01

    Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.

  10. The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety

    NASA Astrophysics Data System (ADS)

    Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.

    1994-02-01

    Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.

  11. Sensing qualitative events to control manipulation

    NASA Astrophysics Data System (ADS)

    Pook, Polly K.; Ballard, Dana H.

    1992-11-01

    Dexterous robotic hands have numerous sensors distributed over a flexible high-degree-of- freedom framework. Control of these hands often relies on a detailed task description that is either specified a priori or computed on-line from sensory feedback. Such controllers are complex and may use unnecessary precision. In contrast, one can incorporate plan cues that provide a contextual backdrop in order to simplify the control task. To demonstrate, a Utah/MIT dexterous hand mounted on a Puma 760 arm flips a plastic egg, using the finger tendon tensions as the sole control signal. The completion of each subtask, such as picking up the spatula, finding the pan, and sliding the spatula under the egg, is detected by sensing tension states. The strategy depends on the task context but does not require precise positioning knowledge. We term this qualitative manipulation to draw a parallel with qualitative vision strategies. The approach is to design closed-loop programs that detect significant events to control manipulation but ignore inessential details. The strategy is generalized by analyzing the robot state dynamics during teleoperated hand actions to reveal the essential features that control each action.

  12. Can multilinguality improve Biomedical Word Sense Disambiguation?

    PubMed

    Duque, Andres; Martinez-Romo, Juan; Araujo, Lourdes

    2016-12-01

    Ambiguity in the biomedical domain represents a major issue when performing Natural Language Processing tasks over the huge amount of available information in the field. For this reason, Word Sense Disambiguation is critical for achieving accurate systems able to tackle complex tasks such as information extraction, summarization or document classification. In this work we explore whether multilinguality can help to solve the problem of ambiguity, and the conditions required for a system to improve the results obtained by monolingual approaches. Also, we analyze the best ways to generate those useful multilingual resources, and study different languages and sources of knowledge. The proposed system, based on co-occurrence graphs containing biomedical concepts and textual information, is evaluated on a test dataset frequently used in biomedicine. We can conclude that multilingual resources are able to provide a clear improvement of more than 7% compared to monolingual approaches, for graphs built from a small number of documents. Also, empirical results show that automatically translated resources are a useful source of information for this particular task. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Accelerating progress in Artificial General Intelligence: Choosing a benchmark for natural world interaction

    NASA Astrophysics Data System (ADS)

    Rohrer, Brandon

    2010-12-01

    Measuring progress in the field of Artificial General Intelligence (AGI) can be difficult without commonly accepted methods of evaluation. An AGI benchmark would allow evaluation and comparison of the many computational intelligence algorithms that have been developed. In this paper I propose that a benchmark for natural world interaction would possess seven key characteristics: fitness, breadth, specificity, low cost, simplicity, range, and task focus. I also outline two benchmark examples that meet most of these criteria. In the first, the direction task, a human coach directs a machine to perform a novel task in an unfamiliar environment. The direction task is extremely broad, but may be idealistic. In the second, the AGI battery, AGI candidates are evaluated based on their performance on a collection of more specific tasks. The AGI battery is designed to be appropriate to the capabilities of currently existing systems. Both the direction task and the AGI battery would require further definition before implementing. The paper concludes with a description of a task that might be included in the AGI battery: the search and retrieve task.

  14. Ultrasoft Electronics for Hyperelastic Strain, Pressure, and Direct Curvature Sensing

    NASA Astrophysics Data System (ADS)

    Majidi, Carmel; Kramer, Rebecca; Wood, Robert

    2011-03-01

    Progress in soft robotics, wearable computing, and programmable matter demands a new class of ultrasoft electronics for tactile control, contact detection, and deformation mapping. This next generation of sensors will remain electrically functional under extreme deformation without influencing the natural mechanics of the host system. Ultrasoft strain and pressure sensing has previously been demonstrated with elastomer sheets (eg. PDMS, silicone rubber) embedded with microchannels of conductive liquid (mercury, eGaIn). Building on these efforts, we introduce a novel method for direct curvature sensing that registers the location and intensity of surface curvature. An elastomer sheet is embedded with micropatterned cavities and microchannels of conductive liquid. Bending the elastomer or placing it on a curved surface leads to a change in channel cross-section and a corresponding change in its electrical resistance. In contrast to conventional methods of curvature sensing, this approach does not depend on semi-rigid components or differential strain measurement. Direct curvature sensing completes the portfolio of sensing elements required to completely map hyperelastic deformation for future soft robotics and computing. NSF MRSEC DMR-0820484.

  15. Cloud-based crowd sensing: a framework for location-based crowd analyzer and advisor

    NASA Astrophysics Data System (ADS)

    Aishwarya, K. C.; Nambi, A.; Hudson, S.; Nadesh, R. K.

    2017-11-01

    Cloud computing is an emerging field of computer science to integrate and explore large and powerful computing systems and storages for personal and also for enterprise requirements. Mobile Cloud Computing is the inheritance of this concept towards mobile hand-held devices. Crowdsensing, or to be precise, Mobile Crowdsensing is the process of sharing resources from an available group of mobile handheld devices that support sharing of different resources such as data, memory and bandwidth to perform a single task for collective reasons. In this paper, we propose a framework to use Crowdsensing and perform a crowd analyzer and advisor whether the user can go to the place or not. This is an ongoing research and is a new concept to which the direction of cloud computing has shifted and is viable for more expansion in the near future.

  16. Autonomous exploration and mapping of unknown environments

    NASA Astrophysics Data System (ADS)

    Owens, Jason; Osteen, Phil; Fields, MaryAnne

    2012-06-01

    Autonomous exploration and mapping is a vital capability for future robotic systems expected to function in arbitrary complex environments. In this paper, we describe an end-to-end robotic solution for remotely mapping buildings. For a typical mapping system, an unmanned system is directed to enter an unknown building at a distance, sense the internal structure, and, barring additional tasks, while in situ, create a 2-D map of the building. This map provides a useful and intuitive representation of the environment for the remote operator. We have integrated a robust mapping and exploration system utilizing laser range scanners and RGB-D cameras, and we demonstrate an exploration and metacognition algorithm on a robotic platform. The algorithm allows the robot to safely navigate the building, explore the interior, report significant features to the operator, and generate a consistent map - all while maintaining localization.

  17. In-database processing of a large collection of remote sensing data: applications and implementation

    NASA Astrophysics Data System (ADS)

    Kikhtenko, Vladimir; Mamash, Elena; Chubarov, Dmitri; Voronina, Polina

    2016-04-01

    Large archives of remote sensing data are now available to scientists, yet the need to work with individual satellite scenes or product files constrains studies that span a wide temporal range or spatial extent. The resources (storage capacity, computing power and network bandwidth) required for such studies are often beyond the capabilities of individual geoscientists. This problem has been tackled before in remote sensing research and inspired several information systems. Some of them such as NASA Giovanni [1] and Google Earth Engine have already proved their utility for science. Analysis tasks involving large volumes of numerical data are not unique to Earth Sciences. Recent advances in data science are enabled by the development of in-database processing engines that bring processing closer to storage, use declarative query languages to facilitate parallel scalability and provide high-level abstraction of the whole dataset. We build on the idea of bridging the gap between file archives containing remote sensing data and databases by integrating files into relational database as foreign data sources and performing analytical processing inside the database engine. Thereby higher level query language can efficiently address problems of arbitrary size: from accessing the data associated with a specific pixel or a grid cell to complex aggregation over spatial or temporal extents over a large number of individual data files. This approach was implemented using PostgreSQL for a Siberian regional archive of satellite data products holding hundreds of terabytes of measurements from multiple sensors and missions taken over a decade-long span. While preserving the original storage layout and therefore compatibility with existing applications the in-database processing engine provides a toolkit for provisioning remote sensing data in scientific workflows and applications. The use of SQL - a widely used higher level declarative query language - simplifies interoperability between desktop GIS, web applications and geographic web services and interactive scientific applications (MATLAB, IPython). The system is also automatically ingesting direct readout data from meteorological and research satellites in near-real time with distributed acquisition workflows managed by Taverna workflow engine [2]. The system has demonstrated its utility in performing non-trivial analytic processing such as the computation of the Robust Satellite Technique (RST) indices [3]. It had been useful in different tasks such as studying urban heat islands, analyzing patterns in the distribution of wildfire occurrences, detecting phenomena related to seismic and earthquake activity. Initial experience has highlighted several limitations of the proposed approach yet it has demonstrated ability to facilitate the use of large archives of remote sensing data by geoscientists. 1. J.G. Acker, G. Leptoukh, Online analysis enhances use of NASA Earth science data. EOS Trans. AGU, 2007, 88(2), P. 14-17. 2. D. Hull, K. Wolsfencroft, R. Stevens, C. Goble, M.R. Pocock, P. Li and T. Oinn, Taverna: a tool for building and running workflows of services. Nucleic Acids Research. 2006. V. 34. P. W729-W732. 3. V. Tramutoli, G. Di Bello, N. Pergola, S. Piscitelli, Robust satellite techniques for remote sensing of seismically active areas // Annals of Geophysics. 2001. no. 44(2). P. 295-312.

  18. Wind Sensing, Analysis, and Modeling

    NASA Technical Reports Server (NTRS)

    Corvin, Michael A.

    1995-01-01

    The purpose of this task was to begin development of a unified approach to the sensing, analysis, and modeling of the wind environments in which launch system operate. The initial activity was to examine the current usage and requirements for wind modeling for the Titan 4 vehicle. This was to be followed by joint technical efforts with NASA Langley Research Center to develop applicable analysis methods. This work was to be performed in and demonstrate the use of prototype tools implementing an environment in which to realize a unified system. At the convenience of the customer, due to resource limitations, the task was descoped. The survey of Titan 4 processes was accomplished and is reported in this document. A summary of general requirements is provided. Current versions of prototype Process Management Environment tools are being provided to the customer.

  19. Wind sensing, analysis, and modeling

    NASA Technical Reports Server (NTRS)

    Corvin, Michael A.

    1995-01-01

    The purpose of this task was to begin development of a unified approach to the sensing, analysis, and modeling of the wind environments in which launch systems operate. The initial activity was to examine the current usage and requirements for wind modeling for the Titan 4 vehicle. This was to be followed by joint technical efforts with NASA Langley Research Center to develop applicable analysis methods. This work was to be performed in and demonstrate the use of prototype tools implementing an environment in which to realize a unified system. At the convenience of the customer, due to resource limitations, the task was descoped. The survey of Titan 4 processes was accomplished and is reported in this document. A summary of general requirements is provided . Current versions of prototype Process Management Environment tools are being provided to the customer.

  20. Neural correlates of lower limbs proprioception: An fMRI study of foot position matching.

    PubMed

    Iandolo, Riccardo; Bellini, Alessandro; Saiote, Catarina; Marre, Ilaria; Bommarito, Giulia; Oesingmann, Niels; Fleysher, Lazar; Mancardi, Giovanni Luigi; Casadio, Maura; Inglese, Matilde

    2018-05-01

    Little is known about the neural correlates of lower limbs position sense, despite the impact that proprioceptive deficits have on everyday life activities, such as posture and gait control. We used fMRI to investigate in 30 healthy right-handed and right-footed subjects the regional distribution of brain activity during position matching tasks performed with the right dominant and the left nondominant foot. Along with the brain activation, we assessed the performance during both ipsilateral and contralateral matching tasks. Subjects had lower errors when matching was performed by the left nondominant foot. The fMRI analysis suggested that the significant regions responsible for position sense are in the right parietal and frontal cortex, providing a first characterization of the neural correlates of foot position matching. © 2018 Wiley Periodicals, Inc.

  1. Designing manufacturable filters for a 16-band plenoptic camera using differential evolution

    NASA Astrophysics Data System (ADS)

    Doster, Timothy; Olson, Colin C.; Fleet, Erin; Yetzbacher, Michael; Kanaev, Andrey; Lebow, Paul; Leathers, Robert

    2017-05-01

    A 16-band plenoptic camera allows for the rapid exchange of filter sets via a 4x4 filter array on the lens's front aperture. This ability to change out filters allows for an operator to quickly adapt to different locales or threat intelligence. Typically, such a system incorporates a default set of 16 equally spaced at-topped filters. Knowing the operating theater or the likely targets of interest it becomes advantageous to tune the filters. We propose using a modified beta distribution to parameterize the different possible filters and differential evolution (DE) to search over the space of possible filter designs. The modified beta distribution allows us to jointly optimize the width, taper and wavelength center of each single- or multi-pass filter in the set over a number of evolutionary steps. Further, by constraining the function parameters we can develop solutions which are not just theoretical but manufacturable. We examine two independent tasks: general spectral sensing and target detection. In the general spectral sensing task we utilize the theory of compressive sensing (CS) and find filters that generate codings which minimize the CS reconstruction error based on a fixed spectral dictionary of endmembers. For the target detection task and a set of known targets, we train the filters to optimize the separation of the background and target signature. We compare our results to the default 16 at-topped non-overlapping filter set which comes with the plenoptic camera and full hyperspectral resolution data which was previously acquired.

  2. Striving for group agency: threat to personal control increases the attractiveness of agentic groups.

    PubMed

    Stollberg, Janine; Fritsche, Immo; Bäcker, Anna

    2015-01-01

    When their sense of personal control is threatened people try to restore perceived control through the social self. We propose that it is the perceived agency of ingroups that provides the self with a sense of control. In three experiments, we for the first time tested the hypothesis that threat to personal control increases the attractiveness of being part or joining those groups that are perceived as coherent entities engaging in coordinated group goal pursuit (agentic groups) but not of those groups whose agency is perceived to be low. Consistent with this hypothesis we found in Study 1 (N = 93) that threat to personal control increased ingroup identification only with task groups, but not with less agentic types of ingroups that were made salient simultaneously. Furthermore, personal control threat increased a sense of collective control and support within the task group, mediated through task-group identification (indirect effects). Turning to groups people are not (yet) part of, Study 2 (N = 47) showed that personal control threat increased relative attractiveness ratings of small groups as possible future ingroups only when the relative agency of small groups was perceived to be high. Perceived group homogeneity or social power did not moderate the effect. Study 3 (N = 78) replicated the moderating role of perceived group agency for attractiveness ratings of entitative groups, whereas perceived group status did not moderate the effect. These findings extend previous research on group-based control, showing that perceived agency accounts for group-based responses to threatened control.

  3. Bioinspired active whisker sensor for robotic vibrissal tactile sensing

    NASA Astrophysics Data System (ADS)

    Ju, Feng; Ling, Shih-Fu

    2014-12-01

    A whisker transducer (WT) inspired by rat’s vibrissal tactile perception is proposed based on a transduction matrix model characterizing the electro-mechanical transduction process in both forward and backward directions. It is capable of acting as an actuator to sweep the whisker and simultaneously as a sensor to sense the force, motion, and mechanical impedance at whisker tip. Its validity is confirmed by numerical simulation using a finite element model. A prototype is then fabricated and its transduction matrix is determined by parameter identification. The calibrated WT can accurately sense mechanical impedance which is directly related to stiffness, mass and damping. Subsequent vibrissal tactile sensing of sandpaper texture reveals that the real part of mechanical impedance sensed by WT is correlated with sandpaper roughness. Texture discrimination is successfully achieved by inputting the real part to a k-means clustering algorithm. The mechanical impedance sensing ability as well as other features of the WT such as simultaneous-actuation-and-sensing makes it a good solution to robotic tactile sensing.

  4. Temperature sensing by primary roots of maize

    NASA Technical Reports Server (NTRS)

    Poff, K. L.

    1990-01-01

    Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  5. Development of Fuzzy Logic and Soft Computing Methodologies

    NASA Technical Reports Server (NTRS)

    Zadeh, L. A.; Yager, R.

    1999-01-01

    Our earlier research on computing with words (CW) has led to a new direction in fuzzy logic which points to a major enlargement of the role of natural languages in information processing, decision analysis and control. This direction is based on the methodology of computing with words and embodies a new theory which is referred to as the computational theory of perceptions (CTP). An important feature of this theory is that it can be added to any existing theory - especially to probability theory, decision analysis, and control - and enhance the ability of the theory to deal with real-world problems in which the decision-relevant information is a mixture of measurements and perceptions. The new direction is centered on an old concept - the concept of a perception - a concept which plays a central role in human cognition. The ability to reason with perceptions perceptions of time, distance, force, direction, shape, intent, likelihood, truth and other attributes of physical and mental objects - underlies the remarkable human capability to perform a wide variety of physical and mental tasks without any measurements and any computations. Everyday examples of such tasks are parking a car, driving in city traffic, cooking a meal, playing golf and summarizing a story. Perceptions are intrinsically imprecise. Imprecision of perceptions reflects the finite ability of sensory organs and ultimately, the brain, to resolve detail and store information. More concretely, perceptions are both fuzzy and granular, or, for short, f-granular. Perceptions are f-granular in the sense that: (a) the boundaries of perceived classes are not sharply defined; and (b) the elements of classes are grouped into granules, with a granule being a clump of elements drawn together by indistinguishability, similarity. proximity or functionality. F-granularity of perceptions may be viewed as a human way of achieving data compression. In large measure, scientific progress has been, and continues to be, driven by a quest to progress from perceptions to measurements. Pursuit of this aim has led to brilliant successes. But alongside the successes stand problems whose solutions are not in sight. Representative of such problems is the problem of automation of driving in city traffic. In this case, as in many others, what can be done with ease by humans - without any measurements and a computations - is an intractable task for machines.

  6. Enhanced timing abilities in percussionists generalize to rhythms without a musical beat.

    PubMed

    Cameron, Daniel J; Grahn, Jessica A

    2014-01-01

    The ability to entrain movements to music is arguably universal, but it is unclear how specialized training may influence this. Previous research suggests that percussionists have superior temporal precision in perception and production tasks. Such superiority may be limited to temporal sequences that resemble real music or, alternatively, may generalize to musically implausible sequences. To test this, percussionists and nonpercussionists completed two tasks that used rhythmic sequences varying in musical plausibility. In the beat tapping task, participants tapped with the beat of a rhythmic sequence over 3 stages: finding the beat (as an initial sequence played), continuation of the beat (as a second sequence was introduced and played simultaneously), and switching to a second beat (the initial sequence finished, leaving only the second). The meters of the two sequences were either congruent or incongruent, as were their tempi (minimum inter-onset intervals). In the rhythm reproduction task, participants reproduced rhythms of four types, ranging from high to low musical plausibility: Metric simple rhythms induced a strong sense of the beat, metric complex rhythms induced a weaker sense of the beat, nonmetric rhythms had no beat, and jittered nonmetric rhythms also had no beat as well as low temporal predictability. For both tasks, percussionists performed more accurately than nonpercussionists. In addition, both groups were better with musically plausible than implausible conditions. Overall, the percussionists' superior abilities to entrain to, and reproduce, rhythms generalized to musically implausible sequences.

  7. Motion direction discrimination training reduces perceived motion repulsion.

    PubMed

    Jia, Ke; Li, Sheng

    2017-04-01

    Participants often exaggerate the perceived angular separation between two simultaneously presented motion stimuli, which is referred to as motion repulsion. The overestimation helps participants differentiate between the two superimposed motion directions, yet it causes the impairment of direction perception. Since direction perception can be refined through perceptual training, we here attempted to investigate whether the training of a direction discrimination task changes the amount of motion repulsion. Our results showed a direction-specific learning effect, which was accompanied by a reduced amount of motion repulsion both for the trained and the untrained directions. The reduction of the motion repulsion disappeared when the participants were trained on a luminance discrimination task (control experiment 1) or a speed discrimination task (control experiment 2), ruling out any possible interpretation in terms of adaptation or training-induced attentional bias. Furthermore, training with a direction discrimination task along a direction 150° away from both directions in the transparent stimulus (control experiment 3) also had little effect on the amount of motion repulsion, ruling out the contribution of task learning. The changed motion repulsion observed in the main experiment was consistent with the prediction of the recurrent model of perceptual learning. Therefore, our findings demonstrate that training in direction discrimination can benefit the precise direction perception of the transparent stimulus and provide new evidence for the recurrent model of perceptual learning.

  8. Tiltmeter Indicates Sense of Slope

    NASA Technical Reports Server (NTRS)

    Lonborg, J. O.

    1985-01-01

    Tiltmeter indicates sense and magnitude of slope used in locations where incline not visible to operator. Use of direct rather than alternating current greatly simplifies design of instrument capable of indicating sense of slope.

  9. VLSI Technology for Cognitive Radio

    NASA Astrophysics Data System (ADS)

    VIJAYALAKSHMI, B.; SIDDAIAH, P.

    2017-08-01

    One of the most challenging tasks of cognitive radio is the efficiency in the spectrum sensing scheme to overcome the spectrum scarcity problem. The popular and widely used spectrum sensing technique is the energy detection scheme as it is very simple and doesn’t require any previous information related to the signal. We propose one such approach which is an optimised spectrum sensing scheme with reduced filter structure. The optimisation is done in terms of area and power performance of the spectrum. The simulations of the VLSI structure of the optimised flexible spectrum is done using verilog coding by using the XILINX ISE software. Our method produces performance with 13% reduction in area and 66% reduction in power consumption in comparison to the flexible spectrum sensing scheme. All the results are tabulated and comparisons are made. A new scheme for optimised and effective spectrum sensing opens up with our model.

  10. Contact sensing from force measurements

    NASA Technical Reports Server (NTRS)

    Bicchi, Antonio; Salisbury, J. K.; Brock, David L.

    1993-01-01

    This article addresses contact sensing (i.e., the problem of resolving the location of a contact, the force at the interface, and the moment about the contact normals). Called 'intrinsic' contact sensing for the use of internal force and torque measurements, this method allows for practical devices that provide simple, relevant contact information in practical robotic applications. Such sensors have been used in conjunction with robot hands to identify objects, determine surface friction, detect slip, augment grasp stability, measure object mass, probe surfaces, and control collision and for a variety of other useful tasks. This article describes the theoretical basis for their operation and provides a framework for future device design.

  11. Polarimetric Glucose Sensing Using Brewster Reflection off of Eye Lens: Theoretical Analysis

    NASA Technical Reports Server (NTRS)

    Boeckle, Stefan; Rovati, Luigi; Ansari, Rafat R.

    2002-01-01

    An important task of in vivo polarimetric glucose sensing is to find an appropriate way to optically access the aqueous humor of the human eye. In this paper two different approaches are analyzed theoretically and applied to the eye model of Le Grand. First approach is the tangential path of Cote, et al. (G.L. Cot6, M.D. Fox, and R.B. Northrop: Noninvasive Optical Polarimetric Glucose Sensing Using a True Phase Measurement Technique. IEEE Transactions on Biomedical Engineering, vol. 39, no. 7, pp. 752-756, 1992.) and the second is a new scheme of this paper of applying Brewster reflection off the eye lens.

  12. Impairment in judgement of the moral emotion guilt following orbitofrontal cortex damage.

    PubMed

    Funayama, Michitaka; Koreki, Akihiro; Muramatsu, Taro; Mimura, Masaru; Kato, Motoichiro; Abe, Takayuki

    2018-04-19

    Although neuroimaging studies have provided evidence for an association between moral emotions and the orbitofrontal cortex, studies on patients with focal lesions using experimental probes of moral emotions are scarce. Here, we addressed this topic by presenting a moral emotion judgement task to patients with focal brain damage. Four judgement tasks in a simple pairwise choice paradigm were given to 72 patients with cerebrovascular disease. These tasks consisted of a perceptual line judgement task as a control task; the objects' preference task as a basic preference judgement task; and two types of moral emotion judgement task, an anger task and a guilt task. A multiple linear regression analysis was performed on each set of task performance scores to take into account potential confounders. Performance on the guilt emotion judgement task negatively correlated with the orbitofrontal cortex damage, but not with the other variables. Results for the other judgement tasks did not reach statistical significance. The close association between orbitofrontal cortex damage and a decrease in guilt emotion judgement consistency might suggest that the orbitofrontal cortex plays a key role in the sense of guilt, a hallmark of morality. © 2018 The British Psychological Society.

  13. Reputation and Reward: Two Sides of the Same Bitcoin

    PubMed Central

    Delgado-Segura, Sergi; Tanas, Cristian; Herrera-Joancomartí, Jordi

    2016-01-01

    In Mobile Crowd Sensing (MCS), the power of the crowd, jointly with the sensing capabilities of the smartphones they wear, provides a new paradigm for data sensing. Scenarios involving user behavior or those that rely on user mobility are examples where standard sensor networks may not be suitable, and MCS provides an interesting solution. However, including human participation in sensing tasks presents numerous and unique research challenges. In this paper, we analyze three of the most important: user participation, data sensing quality and user anonymity. We tackle the three as a whole, since all of them are strongly correlated. As a result, we present PaySense, a general framework that incentivizes user participation and provides a mechanism to validate the quality of collected data based on the users’ reputation. All such features are performed in a privacy-preserving way by using the Bitcoin cryptocurrency. Rather than a theoretical one, our framework has been implemented, and it is ready to be deployed and complement any existing MCS system. PMID:27240373

  14. Reputation and Reward: Two Sides of the Same Bitcoin.

    PubMed

    Delgado-Segura, Sergi; Tanas, Cristian; Herrera-Joancomartí, Jordi

    2016-05-27

    In Mobile Crowd Sensing (MCS), the power of the crowd, jointly with the sensing capabilities of the smartphones they wear, provides a new paradigm for data sensing. Scenarios involving user behavior or those that rely on user mobility are examples where standard sensor networks may not be suitable, and MCS provides an interesting solution. However, including human participation in sensing tasks presents numerous and unique research challenges. In this paper, we analyze three of the most important: user participation, data sensing quality and user anonymity. We tackle the three as a whole, since all of them are strongly correlated. As a result, we present PaySense, a general framework that incentivizes user participation and provides a mechanism to validate the quality of collected data based on the users' reputation. All such features are performed in a privacy-preserving way by using the Bitcoin cryptocurrency. Rather than a theoretical one, our framework has been implemented, and it is ready to be deployed and complement any existing MCS system.

  15. What keeps family physicians busy in Portugal? A multicentre observational study of work other than direct patient contacts

    PubMed Central

    Granja, Mónica; Ponte, Carla; Cavadas, Luís Filipe

    2014-01-01

    Objectives To quantify the time spent by family physicians (FP) on tasks other than direct patient contact, to evaluate job satisfaction, to analyse the association between time spent on tasks and physician characteristics, the association between the number of tasks performed and physician characteristics and the association between time spent on tasks and job satisfaction. Design Cross-sectional, using time-and-motion techniques. Two workdays were documented by direct observation. A significance level of 0.05 was adopted. Setting Multicentric in 104 Portuguese family practices. Participants A convenience sample of FP, with lists of over 1000 patients, teaching senior medical students and first-year family medicine residents in 2012, was obtained. Of the 217 FP invited to participate, 155 completed the study. Main outcomes measured Time spent on tasks other than direct patient contact and on the performance of more than one task simultaneously, the number of direct patient contacts in the office, the number of indirect patient contacts, job satisfaction, demographic and professional characteristics associated with time spent on tasks and the number of different tasks performed, and the association between time spent on tasks and job satisfaction. Results FP (n=155) spent a mean of 143.6 min/day (95% CI 135.2 to 152.0) performing tasks such as prescription refills, teaching, meetings, management and communication with other professionals (33.4% of their workload). FP with larger patient lists spent less time on these tasks (p=0.002). Older FP (p=0.021) and those with larger lists (p=0.011) performed fewer tasks. The mean job satisfaction score was 3.5 (out of 5). No association was found between job satisfaction and time spent on tasks. Conclusions FP spent one-third of their workday in coordinating care, teaching and managing. Time devoted to these tasks decreases with increasing list size and physician age. PMID:24934208

  16. Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform.

    PubMed

    Lee, Zhongping; Ahn, Yu-Hwan; Mobley, Curtis; Arnone, Robert

    2010-12-06

    Using hyperspectral measurements made in the field, we show that the effective sea-surface reflectance ρ (defined as the ratio of the surface-reflected radiance at the specular direction corresponding to the downwelling sky radiance from one direction) varies not only for different measurement scans, but also can differ by a factor of 8 between 400 nm and 800 nm for the same scan. This means that the derived water-leaving radiance (or remote-sensing reflectance) can be highly inaccurate if a spectrally constant ρ value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote-sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear blue water to turbid brown water are obtainable from above-surface measurements, even under conditions of high waves.

  17. Inertial sensing microelectromechanical (MEM) safe-arm device

    DOEpatents

    Roesler, Alexander W [Tijeras, NM; Wooden, Susan M [Sandia Park, NM

    2009-05-12

    Microelectromechanical (MEM) safe-arm devices comprise a substrate upon which a sense mass, that can contain an energetic material, is constrained to move along a pathway defined by a track disposed on the surface of the substrate. The pathway has a first end comprising a "safe" position and a second end comprising an "armed" position, whereat the second end the sense mass can be aligned proximal to energetic materials comprising the explosive train, within an explosive component. The sense mass can be confined in the safe position by a first latch, operable to release the sense mass by an acceleration acting in a direction substantially normal to the surface of the substrate. A second acceleration, acting in a direction substantially parallel to the surface of the substrate, can cause the sense mass to traverse the pathway from the safe position to the armed position.

  18. Direction discrimination learning in normal and visually deprived cats and the effects of lateral suprasylvian lesions.

    PubMed

    Burnat, K; Zernicki, B

    1997-01-01

    We used 5 binocularly deprived cats (BD cats), 4 control cats reared also in the laboratory (C cats) and 4 cats reared in a normal environment (N cats). The cats were trained to discriminate an upward or downward-moving light spot versus a stationary spot (detection task) and then an upward versus a downward spot (direction task). The N and C cats learned slowly. The learning was slower than in previously studied discriminations of stationary stimuli. However, all N and C cats mastered the detection task and except one C cat the direction task. In contrast, 4 BD cats failed in the detection task and all in the direction task. This result is consistent with single-cell recording data showing impairment of direction analysis in the visual system in BD cats. After completing the training the upper part of the middle suprasylvian sulcus was removed unilaterally in 7 cats and bilaterally in 6 cats. Surprisingly, the unilateral lesions were more effective: the clear-cut retention deficits were found in 5 cats lesioned unilaterally, whereas only in one cat lesioned bilaterally.

  19. A visiting scientist program in atmospheric sciences for the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1989-01-01

    A visiting scientist program was conducted in the atmospheric sciences and related areas at the Goddard Laboratory for Atmospheres. Research was performed in mathematical analysis as applied to computer modeling of the atmospheres; development of atmospheric modeling programs; analysis of remotely sensed atmospheric, surface, and oceanic data and its incorporation into atmospheric models; development of advanced remote sensing instrumentation; and related research areas. The specific research efforts are detailed by tasks.

  20. SENSOR: a tool for the simulation of hyperspectral remote sensing systems

    NASA Astrophysics Data System (ADS)

    Börner, Anko; Wiest, Lorenz; Keller, Peter; Reulke, Ralf; Richter, Rolf; Schaepman, Michael; Schläpfer, Daniel

    The consistent end-to-end simulation of airborne and spaceborne earth remote sensing systems is an important task, and sometimes the only way for the adaptation and optimisation of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software Environment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray-tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. The third part consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimisation requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and first examples of its use are given. The verification of SENSOR is demonstrated. This work is closely related to the Airborne PRISM Experiment (APEX), an airborne imaging spectrometer funded by the European Space Agency.

  1. Sensing of substratum rigidity and directional migration by fast-crawling cells

    NASA Astrophysics Data System (ADS)

    Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki

    2018-05-01

    Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ˜10 μ m and migration velocity is ˜10 μ m /min . In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.

  2. Sensing of substratum rigidity and directional migration by fast-crawling cells.

    PubMed

    Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki

    2018-05-01

    Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ∼10 μm and migration velocity is ∼10 μm/min. In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.

  3. Active and Passive Remote Sensing of Ice

    DTIC Science & Technology

    1991-11-15

    direct scattering problem. These ideas are applied to study polarimetric pasive remote sensing of periodic surfaces. The solution of the direct...different location). As a result, the correlation between HH and VV decreases. As a matter of fact, for completely randomly oriented dipoles both the

  4. Longitudinal associations between mothers' and fathers' sense of competence and children's externalizing problems: the mediating role of parenting.

    PubMed

    Slagt, Meike; Deković, Maja; de Haan, Amaranta D; van den Akker, Alithe L; Prinzie, Peter

    2012-11-01

    This longitudinal study examined the bidirectional associations between parents' sense of competence and children's externalizing problems, mediation of these associations by parenting behaviors, and differences between mothers and fathers concerning these associations. A sample of 551 families with children (49.9% girls; mean age = 7.83 years, SD = 1.08) participated. We found children's externalizing problems to predict parents' sense of competence 6 years later, both directly and, for mothers but not for fathers, indirectly through inept discipline. Parents' sense of competence did not predict children's externalizing problems, either directly or indirectly via parenting behaviors. Some differences were found between mothers and fathers in the associations between parenting behaviors and sense of competence.

  5. Role of remote sensing in documenting living resources

    NASA Technical Reports Server (NTRS)

    Wagner, P. E.; Anderson, R. R.; Brun, B.; Eisenberg, M.; Genys, J. B.; Lear, D. W., Jr.; Miller, M. H.

    1978-01-01

    Specific cases of known or potentially useful applications of remote sensing in assessing biological resources are discussed. It is concluded that the more usable remote sensing techniques relate to the measurement of population fluctuations in aquatic systems. Sensing of the flora and the fauna of the Bay is considered with emphasis on direct sensing of aquatic plant populations and of water quality. Recommendations for remote sensing projects are given.

  6. Haptic subjective vertical shows context dependence: task and vision play a role during dynamic tilt stimulation.

    PubMed

    Wright, William Geoffrey; Glasauer, Stefan

    2003-10-01

    Perceiving one's vertical is an integral part of efficiently functioning in an environment physically polarized along that dimension. How one determines the direction of gravity is not a task left only to inertial sensors, such as the vestibular organs, rather as numerous studies have shown, this task is influenced visually and somatosensorily. In addition, there is evidence that higher order cognitive effects such as expectancies and context are critical in perception of the vertical. One's ability to integrate these various inputs during normal activity is not generally questioned, one's doubts being satisfied by observing a waiter navigating a crowded restaurant with a tray balanced on one hand, neither tripping or dropping an entree. But how these various sources are integrated is still debated. Most research focuses on subjective vertical perception used visual matching/alignment tasks, verbal reports, or saccadic eye movements as a dependent measure. Although a motor task involving a joystick or indicator to be aligned with gravity without visual feedback is used much less frequently, there is good evidence that individuals easily orient limbs to an external gravity-aligned coordinate axis while being statically tilted. By exposure to a dynamic situation, the central nervous system should be no more challenged by the task of determining the subjective vertical than during static conditions, because our spatial orientation systems were likely selected for just that. In addition, the sensitive calibration between visual and other sensory input also must have been key to its selection. This sensory interaction can be tested by changing the relation between the various sources. With the advent of virtual reality technology, a complex and "natural" visual stimulus is achievable and is easily manipulable. How one tests perception of verticality is also a pertinent question when researching spatial orientation systems. The system's performance may be better indicated by a task of higher relevance to its normal function. In other words, the dependent measure can be made more or less relevant to real-world tasks. With an experimental design that attempts to mimic natural conditions, the current study focuses on two main topics. First, how does manipulation of the visual inputs during passive roll-tilt affect one's sense of body orientation? And second, how does changing the task used to measure subjective vertical affect one's performance?

  7. Displacement sensor containing magnetic field sensing element between a pair of biased magnets movable as a unit

    NASA Technical Reports Server (NTRS)

    Bahr, Joseph K. (Inventor); Johnson, Mont A. (Inventor)

    2003-01-01

    A displacement sensor for providing an indication of the position of a first body relative to a second body, the first body being displaceable relative to the second body in a displacement direction. The sensor is composed of: two magnets that are spaced from one another in the displacement direction to define therebetween a region containing a magnetic field; a magnetic field sensing element mounted in the region; and components for coupling at least one of the magnets to one of the bodies and the magnetic field sensing element to the other of the bodies to produce a relative displacement between the at least one magnet and the magnetic field sensing element in the displacement direction in response to displacement of the first body relative to the second body.

  8. Redundancy, Self-Motion, and Motor Control

    PubMed Central

    Martin, V.; Scholz, J. P.; Schöner, G.

    2011-01-01

    Outside the laboratory, human movement typically involves redundant effector systems. How the nervous system selects among the task-equivalent solutions may provide insights into how movement is controlled. We propose a process model of movement generation that accounts for the kinematics of goal-directed pointing movements performed with a redundant arm. The key element is a neuronal dynamics that generates a virtual joint trajectory. This dynamics receives input from a neuronal timer that paces end-effector motion along its path. Within this dynamics, virtual joint velocity vectors that move the end effector are dynamically decoupled from velocity vectors that do not. Moreover, the sensed real joint configuration is coupled back into this neuronal dynamics, updating the virtual trajectory so that it yields to task-equivalent deviations from the dynamic movement plan. Experimental data from participants who perform in the same task setting as the model are compared in detail to the model predictions. We discover that joint velocities contain a substantial amount of self-motion that does not move the end effector. This is caused by the low impedance of muscle joint systems and by coupling among muscle joint systems due to multiarticulatory muscles. Back-coupling amplifies the induced control errors. We establish a link between the amount of self-motion and how curved the end-effector path is. We show that models in which an inverse dynamics cancels interaction torques predict too little self-motion and too straight end-effector paths. PMID:19718817

  9. Primary or secondary tasks? Dual-task interference between cyclist hazard perception and cadence control using cross-modal sensory aids with rider assistance bike computers.

    PubMed

    Yang, Chao-Yang; Wu, Cheng-Tse

    2017-03-01

    This research investigated the risks involved in bicycle riding while using various sensory modalities to deliver training information. To understand the risks associated with using bike computers, this study evaluated hazard perception performance through lab-based simulations of authentic riding conditions. Analysing hazard sensitivity (d') of signal detection theory, the rider's response time, and eye glances provided insights into the risks of using bike computers. In this study, 30 participants were tested with eight hazard perception tasks while they maintained a cadence of 60 ± 5 RPM and used bike computers with different sensory displays, namely visual, auditory, and tactile feedback signals. The results indicated that synchronously using different sense organs to receive cadence feedback significantly affects hazard perception performance; direct visual information leads to the worst rider distraction, with a mean sensitivity to hazards (d') of -1.03. For systems with multiple interacting sensory aids, auditory aids were found to result in the greatest reduction in sensitivity to hazards (d' mean = -0.57), whereas tactile sensory aids reduced the degree of rider distraction (d' mean = -0.23). Our work complements existing work in this domain by advancing the understanding of how to design devices that deliver information subtly, thereby preventing disruption of a rider's perception of road hazards. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Laterality and Directional Preferences in Preschool Children.

    ERIC Educational Resources Information Center

    Tan, Lesley E.

    1982-01-01

    Directional preference for horizontal hand movements was investigated in 49 right- and 49 left-handed four-year-olds using three drawing tests. Directionality for more complex perceptual-motor tasks has a different basis than directionality for simple tasks; such directionality is established at a later age but only for the right hand. (Author/CM)

  11. Role of spatial averaging in multicellular gradient sensing.

    PubMed

    Smith, Tyler; Fancher, Sean; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew

    2016-05-20

    Gradient sensing underlies important biological processes including morphogenesis, polarization, and cell migration. The precision of gradient sensing increases with the length of a detector (a cell or group of cells) in the gradient direction, since a longer detector spans a larger range of concentration values. Intuition from studies of concentration sensing suggests that precision should also increase with detector length in the direction transverse to the gradient, since then spatial averaging should reduce the noise. However, here we show that, unlike for concentration sensing, the precision of gradient sensing decreases with transverse length for the simplest gradient sensing model, local excitation-global inhibition. The reason is that gradient sensing ultimately relies on a subtraction of measured concentration values. While spatial averaging indeed reduces the noise in these measurements, which increases precision, it also reduces the covariance between the measurements, which results in the net decrease in precision. We demonstrate how a recently introduced gradient sensing mechanism, regional excitation-global inhibition (REGI), overcomes this effect and recovers the benefit of transverse averaging. Using a REGI-based model, we compute the optimal two- and three-dimensional detector shapes, and argue that they are consistent with the shapes of naturally occurring gradient-sensing cell populations.

  12. Role of spatial averaging in multicellular gradient sensing

    NASA Astrophysics Data System (ADS)

    Smith, Tyler; Fancher, Sean; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew

    2016-06-01

    Gradient sensing underlies important biological processes including morphogenesis, polarization, and cell migration. The precision of gradient sensing increases with the length of a detector (a cell or group of cells) in the gradient direction, since a longer detector spans a larger range of concentration values. Intuition from studies of concentration sensing suggests that precision should also increase with detector length in the direction transverse to the gradient, since then spatial averaging should reduce the noise. However, here we show that, unlike for concentration sensing, the precision of gradient sensing decreases with transverse length for the simplest gradient sensing model, local excitation-global inhibition. The reason is that gradient sensing ultimately relies on a subtraction of measured concentration values. While spatial averaging indeed reduces the noise in these measurements, which increases precision, it also reduces the covariance between the measurements, which results in the net decrease in precision. We demonstrate how a recently introduced gradient sensing mechanism, regional excitation-global inhibition (REGI), overcomes this effect and recovers the benefit of transverse averaging. Using a REGI-based model, we compute the optimal two- and three-dimensional detector shapes, and argue that they are consistent with the shapes of naturally occurring gradient-sensing cell populations.

  13. A Cognitive Framework for Understanding and Improving Interference Resolution in the Brain

    PubMed Central

    Mishra, Jyoti; Anguera, Joaquin A.; Ziegler, David A.; Gazzaley, Adam

    2014-01-01

    All of us are familiar with the negative impact of interference on achieving our task goals. We are referring to interference by information, which either impinges on our senses from an external environmental source or is internally generated by our thoughts. Informed by more than a decade of research on the cognitive and neural processing of interference, we have developed a framework for understanding how interference impacts our neural systems and especially how it is regulated and suppressed during efficient on-task performance. Importantly, externally and internally generated interferences have distinct neural signatures, and further, distinct neural processing emerges depending on whether individuals must ignore and suppress the interference, as for distractions, or engage with them in a secondary task, as during multitasking. Here, we elaborate on this cognitive framework and how it changes throughout the human lifespan, focusing mostly on research evidence from younger adults and comparing these findings to data from older adults, children, and cognitively impaired populations. With insights gleaned from our growing understanding, we then describe three novel translational efforts in our lab directed at improving distinct aspects of interference resolution using cognitive training. Critically, these training approaches were specifically developed to target improved interference resolution based on neuroplasticity principles and have shown much success in randomized controlled first version evaluations in healthy aging. Our results show not only on-task training improvements but also robust generalization of benefit to other cognitive control abilities. This research showcases how an in-depth understanding of neural mechanisms can then inform the development of effective deficit-targeted interventions, which can in turn benefit both healthy and cognitively impaired populations. PMID:24309262

  14. Baking together-the coordination of actions in activities involving people with dementia.

    PubMed

    Majlesi, Ali Reza; Ekström, Anna

    2016-08-01

    This study explores interaction and collaboration between people with dementia and their spouses in relation to the performance of household chores with the focus on instruction as an interactional context to engage the person with dementia in collaboration to accomplish joint activities. Dementia is generally associated with pathological changes in people's cognitive functions such as diminishing memory functions, communicative abilities and also diminishing abilities to take initiative as well as to plan and execute tasks. Using video recordings of everyday naturally occurring activities, we analyze the sequential organization of actions (see Schegloff, 2007) oriented toward the accomplishment of a joint multi-task activity of baking. The analysis shows the specific ways of collaboration through instructional activities in which the person with dementia exhibits his competence and skills in accomplishing the given tasks through negotiating the instructions with his partner and carrying out instructed actions. Although the driving force of the collaboration seems to be a series of directive sequences only initiated by the partner throughout the baking activity, our analyses highlight how the person with dementia can actively use the material environment-including collaborating partners-to compensate for challenges and difficulties encountered in achieving everyday tasks. The sequential organization of instructions and instructed actions are in this sense argued to provide an interactional environment wherein the person with dementia can make contributions to the joint activity in an efficient way. While a collaborator has been described as necessary for a person with dementia to be able to partake in activities, this study shows that people with dementia are not only guided by their collaborators in joint activities but they can also actively use their collaborators in intricate compensatory ways. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The system neurophysiological basis of non-adaptive cognitive control: Inhibition of implicit learning mediated by right prefrontal regions.

    PubMed

    Stock, Ann-Kathrin; Steenbergen, Laura; Colzato, Lorenza; Beste, Christian

    2016-12-01

    Cognitive control is adaptive in the sense that it inhibits automatic processes to optimize goal-directed behavior, but high levels of control may also have detrimental effects in case they suppress beneficial automatisms. Until now, the system neurophysiological mechanisms and functional neuroanatomy underlying these adverse effects of cognitive control have remained elusive. This question was examined by analyzing the automatic exploitation of a beneficial implicit predictive feature under conditions of high versus low cognitive control demands, combining event-related potentials (ERPs) and source localization. It was found that cognitive control prohibits the beneficial automatic exploitation of additional implicit information when task demands are high. Bottom-up perceptual and attentional selection processes (P1 and N1 ERPs) are not modulated by this, but the automatic exploitation of beneficial predictive information in case of low cognitive control demands was associated with larger response-locked P3 amplitudes and stronger activation of the right inferior frontal gyrus (rIFG, BA47). This suggests that the rIFG plays a key role in the detection of relevant task cues, the exploitation of alternative task sets, and the automatic (bottom-up) implementation and reprogramming of action plans. Moreover, N450 amplitudes were larger under high cognitive control demands, which was associated with activity differences in the right medial frontal gyrus (BA9). This most likely reflects a stronger exploitation of explicit task sets which hinders the exploration of the implicit beneficial information in case of high cognitive control demands. Hum Brain Mapp 37:4511-4522, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Early processing variations in selective attention to the color and direction of moving stimuli during 30 days head-down bed rest

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Jie; He, Si-Yang; Niu, Dong-Bin; Guo, Jian-Ping; Xu, Yun-Long; Wang, De-Sheng; Cao, Yi; Zhao, Qi; Tan, Cheng; Li, Zhi-Li; Tang, Guo-Hua; Li, Yin-Hui; Bai, Yan-Qiang

    2013-11-01

    Dynamic variations in early selective attention to the color and direction of moving stimuli were explored during a 30 days period of head-down bed rest. Event-related potentials (ERPs) were recorded at F5, F6, P5, P6 scalp locations in seven male subjects who attended to pairs of bicolored light emitting diodes that flashed sequentially to produce a perception of movement. Subjects were required to attend selectively to a critical feature of the moving target, e.g., color or direction. The tasks included: a no response task, a color selective response task, a moving direction selective response task, and a combined color-direction selective response task. Subjects were asked to perform these four tasks on: the 3rd day before bed rest; the 3rd, 15th and 30th day during the bed rest; and the 5th day after bed rest. Subjects responded quickly to the color than moving direction and combined color-direction response. And they had a longer reaction time during bed rest on the 15th and 30th day during bed rest after a relatively quicker response on the 3rd day. Using brain event-related potentials technique, we found that in the color selective response task, the mean amplitudes of P1 and N1 for target ERPs decreased in the 3rd day during bed rest and 5th day after bed rest in comparison with pre-bed rest, 15th day and 30th day during bed rest. In the combined color-direction selective response task, the P1 latencies for target ERPs on the 3rd and 30th day during bed rest were longer than on the 15th day during bed rest. As 3rd day during bed rest was in the acute adaptation period and 30th day during bed rest was in the relatively adaptation stage of head-down bed rest, the results help to clarify the effects of bed rest on different task loads and patterns of attention. It was suggested that subjects expended more time to give correct decision in the head-down tilt bed rest state. A difficulty in the recruitment of brain resources was found in feature selection task, but no variations were detected in the no response and direction selective response tasks. It is suggested that the negative shift in color selective response task on the 3rd day of bed rest are a result of fluid redistribution. And feature selection was more affected than motion selection in the head down bed rest. The variations in cognitive processing speed observed for the combined color-direction selective response task are suggested to reflect the interaction between top-down mechanisms and hierarchical physiological characteristics during 30 days head-down bed rest.

  17. What Makes Patient Navigation Most Effective: Defining Useful Tasks and Networks.

    PubMed

    Gunn, Christine; Battaglia, Tracy A; Parker, Victoria A; Clark, Jack A; Paskett, Electra D; Calhoun, Elizabeth; Snyder, Frederick R; Bergling, Emily; Freund, Karen M

    2017-01-01

    Given the momentum in adopting patient navigation into cancer care, there is a need to understand the contribution of specific navigator activities to improved clinical outcomes. A mixed-methods study combined direct observations of patient navigators within the Patient Navigation Research Program and outcome data from the trial. We correlated the frequency of navigator tasks with the outcome of rate of diagnostic resolution within 365 days among patients who received the intervention relative to controls. A focused content analysis examined those tasks with the strongest correlations between navigator tasks and patient outcomes. Navigating directly with specific patients (r = 0.679), working with clinical providers to facilitate patient care (r = 0.643), and performing tasks not directly related to their diagnostic evaluation for patients were positively associated with more timely diagnosis (r = 0.714). Using medical records for non-navigation tasks had a negative association (r = -0.643). Content analysis revealed service provision directed at specific patients improved care while systems-focused activities did not.

  18. Privacy and social implications of distinct sensing approaches to implementing smart homes for older adults.

    PubMed

    Demiris, George

    2009-01-01

    Two distinct approaches to smart home design, namely Distributed Direct Sensing (DDS) and Infrastructure Mediated Sensing (IMS), have distinguishing features and implications resulting from their implementation. These two distinct smart home approaches have not been directly compared pertaining to their technical performance or their acceptance by the end users. It is also unclear what the perceived privacy and obtrusiveness concerns are when it comes to the implementation of these two different approaches in homes. The study presented here aimed to evaluate acceptance of these two sensing approaches by older adults and assess the perceived privacy and obtrusiveness concerns and ultimately define their social implications.

  19. Distance and direction, but not light cues, support response reversal learning.

    PubMed

    Wright, S L; Martin, G M; Thorpe, C M; Haley, K; Skinner, D M

    2018-03-05

    Across three experiments, we examined the cuing properties of metric (distance and direction) and nonmetric (lighting) cues in different tasks. In Experiment 1, rats were trained on a response problem in a T-maze, followed by four reversals. Rats that experienced a change in maze orientation (Direction group) or a change in the length of the start arm (Distance group) across reversals showed facilitation of reversal learning relative to a group that experienced changes in room lighting across reversals. In Experiment 2, rats learned a discrimination task more readily when distance or direction cues were used than when light cues were used as the discriminative stimuli. In Experiment 3, performance on a go/no-go task was equivalent using both direction and lighting cues. The successful use of both metric and nonmetric cues in the go/no-go task indicates that rats are sensitive to both types of cues and that the usefulness of different cues is dependent on the nature of the task.

  20. Active touch sensing

    PubMed Central

    Prescott, Tony J.; Diamond, Mathew E.; Wing, Alan M.

    2011-01-01

    Active sensing systems are purposive and information-seeking sensory systems. Active sensing usually entails sensor movement, but more fundamentally, it involves control of the sensor apparatus, in whatever manner best suits the task, so as to maximize information gain. In animals, active sensing is perhaps most evident in the modality of touch. In this theme issue, we look at active touch across a broad range of species from insects, terrestrial and marine mammals, through to humans. In addition to analysing natural touch, we also consider how engineering is beginning to exploit physical analogues of these biological systems so as to endow robots with rich tactile sensing capabilities. The different contributions show not only the varieties of active touch—antennae, whiskers and fingertips—but also their commonalities. They explore how active touch sensing has evolved in different animal lineages, how it serves to provide rapid and reliable cues for controlling ongoing behaviour, and even how it can disintegrate when our brains begin to fail. They demonstrate that research on active touch offers a means both to understand this essential and primary sensory modality, and to investigate how animals, including man, combine movement with sensing so as to make sense of, and act effectively in, the world. PMID:21969680

  1. Tales of biographical disintegration: how parents make sense of their sons' suicides.

    PubMed

    Owens, Christabel; Lambert, Helen; Lloyd, Keith; Donovan, Jenny

    2008-03-01

    Suicide research relies heavily on accounts provided by bereaved relatives, using a method known as the psychological autopsy. Psychological autopsy studies are invariably quantitative in design and their findings reinforce the medical model of suicide, emphasising the role of mental illness. They largely ignore the meanings that narrators attach to events, the nature of the sense-making task and the influences bearing upon it. This study drew on psychological autopsy data but used qualitative analytic methods. Fourteen semi-structured interviews with the parents of young men aged 18-30 who had taken their own lives form the basis for this paper. Some parents represent their sons as victims who were cruelly destroyed by external forces, while others portray them as agents of their own destruction. Either way, their narratives are dominated by moral rather than medical categories and by questions of personal accountability. We show how the parents use the interview to perform a complex reconstructive task, striving to piece together both their son's and their own shattered biographies and repair damage to their moral identities. We argue that their stories represent survival tools, enabling them not only to make sense of the past but also to face their own future.

  2. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing.

    PubMed

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A Ping; Lu, Chao

    2016-12-16

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes.

  3. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish.

    PubMed

    Oteiza, Pablo; Odstrcil, Iris; Lauder, George; Portugues, Ruben; Engert, Florian

    2017-07-27

    When flying or swimming, animals must adjust their own movement to compensate for displacements induced by the flow of the surrounding air or water. These flow-induced displacements can most easily be detected as visual whole-field motion with respect to the animal's frame of reference. Despite this, many aquatic animals consistently orient and swim against oncoming flows (a behaviour known as rheotaxis) even in the absence of visual cues. How animals achieve this task, and its underlying sensory basis, is still unknown. Here we show that, in the absence of visual information, larval zebrafish (Danio rerio) perform rheotaxis by using flow velocity gradients as navigational cues. We present behavioural data that support a novel algorithm based on such local velocity gradients that fish use to avoid getting dragged by flowing water. Specifically, we show that fish use their mechanosensory lateral line to first sense the curl (or vorticity) of the local velocity vector field to detect the presence of flow and, second, to measure its temporal change after swim bouts to deduce flow direction. These results reveal an elegant navigational strategy based on the sensing of flow velocity gradients and provide a comprehensive behavioural algorithm, also applicable for robotic design, that generalizes to a wide range of animal behaviours in moving fluids.

  4. Fusing Social Media and Mobile Analytics for Urban Sense-Making

    DTIC Science & Technology

    2017-05-09

    AFRL-AFOSR-JP-TR-2017-0037 Fusing Social Media and Mobile Analytics for Urban Sense-Making Archan Misra SINGAPORE MANAGEMENT UNIVERSITY Final Report...CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-0002 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Archan Misra 5d.   PROJECT NUMBER 5e.  TASK...NUMBER 5f.  WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) SINGAPORE MANAGEMENT UNIVERSITY 81 VICTORIA STREET SINGAPORE, 188065 SG 8

  5. Remote Sensing of Complex Flows by Doppler Wind Lidar: Issues and Preliminary Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Boquet, Matthieu; Burin Des Roziers, Edward

    Remote sensing of winds using lidar has become popular and useful in the wind energy industry. Extensive experience has been gained with using lidar for applications including land-based and offshore resource assessment, plant operations, and turbine control. Prepared by members of International Energy Agency Task 32, this report describes the state of the art in the use of Doppler wind lidar for resource assessment in complex flows. The report will be used as input for future recommended practices on this topic.

  6. Making sense of early false-belief understanding.

    PubMed

    Helming, Katharina A; Strickland, Brent; Jacob, Pierre

    2014-04-01

    We address the puzzle about early belief ascription: young children fail elicited-response false-belief tasks, but they demonstrate spontaneous false-belief understanding. Based on recent converging evidence, we articulate a pragmatic framework to solve this puzzle. Young children do understand the contents of others' false belief, but they are overwhelmed when they must simultaneously make sense of two distinct actions: the instrumental action of a mistaken agent and the experimenter's communicative action. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Rectified directional sensing in long-range cell migration

    PubMed Central

    Nakajima, Akihiko; Ishihara, Shuji; Imoto, Daisuke; Sawai, Satoshi

    2014-01-01

    How spatial and temporal information are integrated to determine the direction of cell migration remains poorly understood. Here, by precise microfluidics emulation of dynamic chemoattractant waves, we demonstrate that, in Dictyostelium, directional movement as well as activation of small guanosine triphosphatase Ras at the leading edge is suppressed when the chemoattractant concentration is decreasing over time. This ‘rectification’ of directional sensing occurs only at an intermediate range of wave speed and does not require phosphoinositide-3-kinase or F-actin. From modelling analysis, we show that rectification arises naturally in a single-layered incoherent feedforward circuit with zero-order ultrasensitivity. The required stimulus time-window predicts ~5 s transient for directional sensing response close to Ras activation and inhibitor diffusion typical for protein in the cytosol. We suggest that the ability of Dictyostelium cells to move only in the wavefront is closely associated with rectification of adaptive response combined with local activation and global inhibition. PMID:25373620

  8. Bayesian Tracking within a Feedback Sensing Environment: Estimating Interacting, Spatially Constrained Complex Dynamical Systems from Multiple Sources of Controllable Devices

    DTIC Science & Technology

    2014-07-25

    composition of simple temporal structures to a speaker diarization task with the goal of segmenting conference audio in the presence of an unknown number of...application domains including neuroimaging, diverse document selection, speaker diarization , stock modeling, and target tracking. We detail each of...recall performance than competing methods in a task of discovering articles preferred by the user • a gold-standard speaker diarization method, as

  9. Acquiring Information from Wider Scope to Improve Event Extraction

    DTIC Science & Technology

    2012-05-01

    solve all the problems might be hard or even impossible: Word sense disambiguation is already a hard NLP task, and normalizing different expressions...blindfolded woman seen being shot in the head by a hooded militant on a video obtained but not aired by the Arab television station Al-Jazeera. She...imbalance Why are we interested in unsupervised topic features? There is a problem that arises in the evaluation of almost all the tasks in NLP , concerning

  10. Polarimetric passive remote sensing of periodic surfaces

    NASA Technical Reports Server (NTRS)

    Veysoglu, Murat E.; Yueh, H. A.; Shin, R. T.; Kong, J. A.

    1991-01-01

    The concept of polarimetry in active remote sensing is extended to passive remote sensing. The potential use of the third and fourth Stokes parameters U and V, which play an important role in polarimetric active remote sensing, is demonstrated for passive remote sensing. It is shown that, by the use of the reciprocity principle, the polarimetric parameters of passive remote sensing can be obtained through the solution of the associated direct scattering problem. These ideas are applied to study polarimetric passive remote sensing of periodic surfaces. The solution of the direct scattering problem is obtained by an integral equation formulation which involves evaluation of periodic Green's functions and normal derivative of those on the surface. Rapid evaluation of the slowly convergent series associated with these functions is observed to be critical for the feasibility of the method. New formulas, which are rapidly convergent, are derived for the calculation of these series. The study has shown that the brightness temperature of the Stokes parameter U can be significant in passive remote sensing. Values as high as 50 K are observed for certain configurations.

  11. Shape memory alloy wire for self-sensing servo actuation

    NASA Astrophysics Data System (ADS)

    Josephine Selvarani Ruth, D.; Dhanalakshmi, K.

    2017-01-01

    This paper reports on the development of a straightforward approach to realise self-sensing shape memory alloy (SMA) wire actuated control. A differential electrical resistance measurement circuit (the sensorless signal conditioning (SSC) circuit) is designed; this sensing signal is directly used as the feedback for control. Antagonistic SMA wire actuators designed for servo actuation is realized in self-sensing actuation (SSA) mode for direct control with the differential electrical resistance feedback. The self-sensing scheme is established on a 1-DOF manipulator with the discrete time sliding mode controls which demonstrates good control performance, whatever be the disturbance and loading conditions. The uniqueness of this work is the design of the generic electronic SSC circuit for SMA actuated system, for measurement and control. With a concern to the implementation of self-sensing technique in SMA, this scheme retains the systematic control architecture by using the sensing signal (self-sensed, electrical resistance corresponding to the system position) for feedback, without requiring any processing as that of the methods adopted and reported previously for SSA techniques of SMA.

  12. Exploring the Cosmic Frontier, Task A - Direct Detection of Dark Matter, Task B - Experimental Particle Astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, John A.J.; Gold, Michael S.

    This report summarizes the work of Task A and B for the period 2013-2016. For Task A the work is for direct detection of dark matter with the single-phase liquid argon experiment Mini-CLEAN. For Task B the work is for the search for new physics in the analysis of fluorescence events with the Auger experiment and for the search for the indirect detection of dark matter with the HAWC experiment.

  13. The significance of sense of coherence for the perceptions of task characteristics and stress during interruptions amongst a sample of public health nurses in Hong Kong: implications for nursing management.

    PubMed

    Shiu, A T

    1998-08-01

    The study aimed to investigate the significance of sense of coherence (SOC) for the perceptions of task characteristics and for stress perceptions during interruptions of public health nurses (PHNs) with children in Hong Kong. The research design employed the experience sampling method. Convenience sampling was used to recruit 20 subjects. During stage one of the study a watch was worn that gave a signal at six random times each day for seven days to complete an experience sampling diary. PHNs on average responded to 34 signals (80%) to complete the diaries which collected data on work and family juggling, task characteristics, and their effects on mood states. At stage two respondents completed the SOC scale which measured confidence in life as comprehensible, manageable, and meaningful. Two major findings provide the focus for this paper. First, results indicate that there was positive correlation between SOC and perceived task characteristics. Second, results reveal that when interruptions occurred, PHNs with high SOC had higher positive affect and lower negative affect than PHNs with low SOC. These results suggest that SOC as a salutogenic model helps PHNs to cope with the family and work juggling as well as the occupational stress. Implications for nursing management on strengthening SOC of PHNs are discussed.

  14. Attachment anxiety benefits from security priming: Evidence from working memory performance

    PubMed Central

    2018-01-01

    The present study investigates the relationship between the attachment dimensions (anxious vs. avoidance) and the cognitive performance of individuals, specifically whether the attachment dimensions would predict the working memory (WM) performance. In the n-back task, reflecting the WM capacity, both attachment related and non-attachment related words were used. Participants were randomly assigned into two groups that received either the secure or the neutral subliminal priming. In the secure priming condition, the aim was to induce sense of security by presenting secure attachment words prior to the n-back task performance. In neutral priming condition, neutral words that did not elicit sense of security were presented. Structural equation modeling revealed divergent patterns for attachment anxiety and avoidance dimensions under the different priming conditions. In neutral priming condition, WM performance declined in terms of capacity in the n-back task for individuals who rated higher levels of attachment anxiety. However in the secure priming condition, WM performance was boosted in the n-back task for individuals who rated higher levels of attachment anxiety. In other words, the subliminal priming of the security led to increased WM capacity of individuals who rated higher levels of attachment anxiety. This effect, however, was not observed for higher levels of attachment avoidance. Results are discussed along the lines of hyperactivation and deactivation strategies of the attachment system. PMID:29522549

  15. Sense of coherence, self-regulated learning and academic performance in first year nursing students: A cluster analysis approach.

    PubMed

    Salamonson, Yenna; Ramjan, Lucie M; van den Nieuwenhuizen, Simon; Metcalfe, Lauren; Chang, Sungwon; Everett, Bronwyn

    2016-03-01

    This paper examines the relationship between nursing students' sense of coherence, self-regulated learning and academic performance in bioscience. While there is increasing recognition of a need to foster students' self-regulated learning, little is known about the relationship of psychological strengths, particularly sense of coherence and academic performance. Using a prospective, correlational design, 563 first year nursing students completed the three dimensions of sense of coherence scale - comprehensibility, manageability and meaningfulness, and five components of self-regulated learning strategy - elaboration, organisation, rehearsal, self-efficacy and task value. Cluster analysis was used to group respondents into three clusters, based on their sense of coherence subscale scores. Although there were no sociodemographic differences in sense of coherence subscale scores, those with higher sense of coherence were more likely to adopt self-regulated learning strategies. Furthermore, academic grades collected at the end of semester revealed that higher sense of coherence was consistently related to achieving higher academic grades across all four units of study. Students with higher sense of coherence were more self-regulated in their learning approach. More importantly, the study suggests that sense of coherence may be an explanatory factor for students' successful adaptation and transition in higher education, as indicated by the positive relationship of sense of coherence to academic performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Application of Geographic Information System and Remotesensing in effective solid waste disposal sites selection in Wukro town, Tigray, Ethiopia

    NASA Astrophysics Data System (ADS)

    Mohammedshum, A. A.; Gebresilassie, M. A.; Rulinda, C. M.; Kahsay, G. H.; Tesfay, M. S.

    2014-11-01

    Identifying solid waste disposal sites and appropriately managing them is a challenging task to many developing countries. This is a critical problem too in Ethiopia in general and in Wukro town in particular. The existing site for Wukro town is not sufficient in its capacity and it is damaging the environment due to its location, and the type of waste dumped, while the surrounding area is being irrigated. Due to the swift expansion and urbanization developments in Wukro town, it badly needs to develop controlled solid waste dumping site to prevent several contamination problems. This study was conducted first, to assess the existing waste management strategies in Wukro town; and second, to find out the potential waste disposal sites for the town, using GIS and Remote Sensing techniques. The study exploited the Multi-Criteria Evaluation (MCE) methods to combine necessary factors considered for dumping site selection. The selected method also uses various geographical data including remote sensing data, with GIS spatial analysis tools. Accordingly, site suitability maps for each of the factors were developed in a GIS environment. Results indicate that 12 dumping sites were appropriate and they were further ranked against their suitability in terms of wind direction, proximity to settlement area and distance from the center of the town. Finally, two sites are the best suitable for dumping site. This study indicated that the application of Geographic Information System and Remote Sensing techniques are efficient and low cost tools to study and select appropriate dumping site so as to facilitate decision making processes.

  17. 3-D-Gaze-Based Robotic Grasping Through Mimicking Human Visuomotor Function for People With Motion Impairments.

    PubMed

    Li, Songpo; Zhang, Xiaoli; Webb, Jeremy D

    2017-12-01

    The goal of this paper is to achieve a novel 3-D-gaze-based human-robot-interaction modality, with which a user with motion impairment can intuitively express what tasks he/she wants the robot to do by directly looking at the object of interest in the real world. Toward this goal, we investigate 1) the technology to accurately sense where a person is looking in real environments and 2) the method to interpret the human gaze and convert it into an effective interaction modality. Looking at a specific object reflects what a person is thinking related to that object, and the gaze location contains essential information for object manipulation. A novel gaze vector method is developed to accurately estimate the 3-D coordinates of the object being looked at in real environments, and a novel interpretation framework that mimics human visuomotor functions is designed to increase the control capability of gaze in object grasping tasks. High tracking accuracy was achieved using the gaze vector method. Participants successfully controlled a robotic arm for object grasping by directly looking at the target object. Human 3-D gaze can be effectively employed as an intuitive interaction modality for robotic object manipulation. It is the first time that 3-D gaze is utilized in a real environment to command a robot for a practical application. Three-dimensional gaze tracking is promising as an intuitive alternative for human-robot interaction especially for disabled and elderly people who cannot handle the conventional interaction modalities.

  18. Credit Assignment in a Motor Decision Making Task Is Influenced by Agency and Not Sensory Prediction Errors.

    PubMed

    Parvin, Darius E; McDougle, Samuel D; Taylor, Jordan A; Ivry, Richard B

    2018-05-09

    Failures to obtain reward can occur from errors in action selection or action execution. Recently, we observed marked differences in choice behavior when the failure to obtain a reward was attributed to errors in action execution compared with errors in action selection (McDougle et al., 2016). Specifically, participants appeared to solve this credit assignment problem by discounting outcomes in which the absence of reward was attributed to errors in action execution. Building on recent evidence indicating relatively direct communication between the cerebellum and basal ganglia, we hypothesized that cerebellar-dependent sensory prediction errors (SPEs), a signal indicating execution failure, could attenuate value updating within a basal ganglia-dependent reinforcement learning system. Here we compared the SPE hypothesis to an alternative, "top-down" hypothesis in which changes in choice behavior reflect participants' sense of agency. In two experiments with male and female human participants, we manipulated the strength of SPEs, along with the participants' sense of agency in the second experiment. The results showed that, whereas the strength of SPE had no effect on choice behavior, participants were much more likely to discount the absence of rewards under conditions in which they believed the reward outcome depended on their ability to produce accurate movements. These results provide strong evidence that SPEs do not directly influence reinforcement learning. Instead, a participant's sense of agency appears to play a significant role in modulating choice behavior when unexpected outcomes can arise from errors in action execution. SIGNIFICANCE STATEMENT When learning from the outcome of actions, the brain faces a credit assignment problem: Failures of reward can be attributed to poor choice selection or poor action execution. Here, we test a specific hypothesis that execution errors are implicitly signaled by cerebellar-based sensory prediction errors. We evaluate this hypothesis and compare it with a more "top-down" hypothesis in which the modulation of choice behavior from execution errors reflects participants' sense of agency. We find that sensory prediction errors have no significant effect on reinforcement learning. Instead, instructions influencing participants' belief of causal outcomes appear to be the main factor influencing their choice behavior. Copyright © 2018 the authors 0270-6474/18/384521-10$15.00/0.

  19. Visual force feedback in laparoscopic training.

    PubMed

    Horeman, Tim; Rodrigues, Sharon P; van den Dobbelsteen, John J; Jansen, Frank-Willem; Dankelman, Jenny

    2012-01-01

    To improve endoscopic surgical skills, an increasing number of surgical residents practice on box or virtual reality (VR) trainers. Current training is focused mainly on hand-eye coordination. Training methods that focus on applying the right amount of force are not yet available. The aim of this project is to develop a low-cost training system that measures the interaction force between tissue and instruments and displays a visual representation of the applied forces inside the camera image. This visual representation continuously informs the subject about the magnitude and the direction of applied forces. To show the potential of the developed training system, a pilot study was conducted in which six novices performed a needle-driving task in a box trainer with visual feedback of the force, and six novices performed the same task without visual feedback of the force. All subjects performed the training task five times and were subsequently tested in a post-test without visual feedback. The subjects who received visual feedback during training exerted on average 1.3 N (STD 0.6 N) to drive the needle through the tissue during the post-test. This value was considerably higher for the group that received no feedback (2.6 N, STD 0.9 N). The maximum interaction force during the post-test was noticeably lower for the feedback group (4.1 N, STD 1.1 N) compared with that of the control group (8.0 N, STD 3.3 N). The force-sensing training system provides us with the unique possibility to objectively assess tissue-handling skills in a laboratory setting. The real-time visualization of applied forces during training may facilitate acquisition of tissue-handling skills in complex laparoscopic tasks and could stimulate proficiency gain curves of trainees. However, larger randomized trials that also include other tasks are necessary to determine whether training with visual feedback about forces reduces the interaction force during laparoscopic surgery.

  20. Effects of Grip-Force, Contact, and Acceleration Feedback on a Teleoperated Pick-and-Place Task.

    PubMed

    Khurshid, Rebecca P; Fitter, Naomi T; Fedalei, Elizabeth A; Kuchenbecker, Katherine J

    2017-01-01

    The multifaceted human sense of touch is fundamental to direct manipulation, but technical challenges prevent most teleoperation systems from providing even a single modality of haptic feedback, such as force feedback. This paper postulates that ungrounded grip-force, fingertip-contact-and-pressure, and high-frequency acceleration haptic feedback will improve human performance of a teleoperated pick-and-place task. Thirty subjects used a teleoperation system consisting of a haptic device worn on the subject's right hand, a remote PR2 humanoid robot, and a Vicon motion capture system to move an object to a target location. Each subject completed the pick-and-place task 10 times under each of the eight haptic conditions obtained by turning on and off grip-force feedback, contact feedback, and acceleration feedback. To understand how object stiffness affects the utility of the feedback, half of the subjects completed the task with a flexible plastic cup, and the others used a rigid plastic block. The results indicate that the addition of grip-force feedback with gain switching enables subjects to hold both the flexible and rigid objects more stably, and it also allowed subjects who manipulated the rigid block to hold the object more delicately and to better control the motion of the remote robot's hand. Contact feedback improved the ability of subjects who manipulated the flexible cup to move the robot's arm in space, but it deteriorated this ability for subjects who manipulated the rigid block. Contact feedback also caused subjects to hold the flexible cup less stably, but the rigid block more securely. Finally, adding acceleration feedback slightly improved the subject's performance when setting the object down, as originally hypothesized; interestingly, it also allowed subjects to feel vibrations produced by the robot's motion, causing them to be more careful when completing the task. This study supports the utility of grip-force and high-frequency acceleration feedback in teleoperation systems and motivates further improvements to fingertip-contact-and-pressure feedback.

  1. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing.

    PubMed

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs.

  2. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing

    PubMed Central

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs. PMID:22399990

  3. Using machine learning to emulate human hearing for predictive maintenance of equipment

    NASA Astrophysics Data System (ADS)

    Verma, Dinesh; Bent, Graham

    2017-05-01

    At the current time, interfaces between humans and machines use only a limited subset of senses that humans are capable of. The interaction among humans and computers can become much more intuitive and effective if we are able to use more senses, and create other modes of communicating between them. New machine learning technologies can make this type of interaction become a reality. In this paper, we present a framework for a holistic communication between humans and machines that uses all of the senses, and discuss how a subset of this capability can allow machines to talk to humans to indicate their health for various tasks such as predictive maintenance.

  4. Integrated control and health monitoring capacitive displacement sensor development task. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Collamore, Frank N.

    1989-01-01

    The development of a miniature multifunction turbomachinery shaft displacement sensor using state-of-the-art non-contract capacitive sensing technology is described. Axial displacement, radial displacement, and speed are sensed using a single probe within the envelope normally required for a single function. A survey of displacement sensing technology is summarized including inductive, capacitive, optical and ultrasonic techniques. The design and operation of an experimental triple function sensor is described. Test results are included showing calibration tests and simultaneous dynamic testing of multiple functions. Recommendations for design changes are made to improve low temperature performance, reliability, and for design of a flight type signal conditioning unit.

  5. Earth resources data analysis program, phase 3

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Tasks were performed in two areas: (1) systems analysis and (2) algorithmic development. The major effort in the systems analysis task was the development of a recommended approach to the monitoring of resource utilization data for the Large Area Crop Inventory Experiment (LACIE). Other efforts included participation in various studies concerning the LACIE Project Plan, the utility of the GE Image 100, and the specifications for a special purpose processor to be used in the LACIE. In the second task, the major effort was the development of improved algorithms for estimating proportions of unclassified remotely sensed data. Also, work was performed on optimal feature extraction and optimal feature extraction for proportion estimation.

  6. The application of remote sensing to resource management and environmental quality programs in Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.; Martinko, E. A. (Principal Investigator)

    1983-01-01

    The activities of the Kansas Applied Remote Sensing (KARS) Program during the period April 1, 1982 through Marsh 31, 1983 are described. The most important work revolved around the Kansas Interagency Task Force on Applied Remote Sensing and its efforts to establish an operational service oriented remote sensing program in Kansas state government. Concomitant with this work was the upgrading of KARS capabilities to process data for state agencies through the vehicle of a low cost digital data processing system. The KARS Program continued to take an active role in irrigation mapping. KARS is now integrating data acquired through analysis of LANDSAT into geographic information systems designed for evaluating groundwater resources. KARS also continues to work at the national level on the national inventory of state natural resources information systems.

  7. Remote sensing for urban planning

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Schmidt, Nicholas; Jensen, John R.; Cowen, Dave J.; Halls, Joanne; Narumalani, Sunil; Burgess, Bryan

    1994-01-01

    Utility companies are challenged to provide services to a highly dynamic customer base. With factory closures and shifts in employment becoming a routine occurrence, the utility industry must develop new techniques to maintain records and plan for expected growth. BellSouth Telecommunications, the largest of the Bell telephone companies, currently serves over 13 million residences and 2 million commercial customers. Tracking the movement of customers and scheduling the delivery of service are major tasks for BellSouth that require intensive manpower and sophisticated information management techniques. Through NASA's Commercial Remote Sensing Program Office, BellSouth is investigating the utility of remote sensing and geographic information system techniques to forecast residential development. This paper highlights the initial results of this project, which indicate a high correlation between the U.S. Bureau of Census block group statistics and statistics derived from remote sensing data.

  8. Striving for group agency: threat to personal control increases the attractiveness of agentic groups

    PubMed Central

    Stollberg, Janine; Fritsche, Immo; Bäcker, Anna

    2015-01-01

    When their sense of personal control is threatened people try to restore perceived control through the social self. We propose that it is the perceived agency of ingroups that provides the self with a sense of control. In three experiments, we for the first time tested the hypothesis that threat to personal control increases the attractiveness of being part or joining those groups that are perceived as coherent entities engaging in coordinated group goal pursuit (agentic groups) but not of those groups whose agency is perceived to be low. Consistent with this hypothesis we found in Study 1 (N = 93) that threat to personal control increased ingroup identification only with task groups, but not with less agentic types of ingroups that were made salient simultaneously. Furthermore, personal control threat increased a sense of collective control and support within the task group, mediated through task-group identification (indirect effects). Turning to groups people are not (yet) part of, Study 2 (N = 47) showed that personal control threat increased relative attractiveness ratings of small groups as possible future ingroups only when the relative agency of small groups was perceived to be high. Perceived group homogeneity or social power did not moderate the effect. Study 3 (N = 78) replicated the moderating role of perceived group agency for attractiveness ratings of entitative groups, whereas perceived group status did not moderate the effect. These findings extend previous research on group-based control, showing that perceived agency accounts for group-based responses to threatened control. PMID:26074832

  9. Strategies for fostering basic psychological needs support in high quality youth leadership programs.

    PubMed

    Bean, Corliss; Harlow, Meghan; Kendellen, Kelsey

    2017-04-01

    Youth leadership programming has become an increasingly common context to foster basic psychological needs and promote youth development. The purpose of this qualitative study was to explore strategies involved in fostering youth needs support within six leadership programs. Two leaders and 30 youth participated in semi-structured interviews to better understand the strategies used to foster needs support. Findings revealed that leaders were able to foster a sense of relatedness among youth through building trusting adult-youth relationships and nurturing an inclusive environment. Maximizing choice and negotiating youth voice helped to foster youth's autonomy. Finally, creating a task-oriented climate and providing intentional opportunities for skill-building helped to foster youth's competence. Findings suggest that training for leaders is critical in understanding what, and how strategies should be employed to help foster youth needs support in leadership programming. Limitations and future directions are outlined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nanorobots: Future in dentistry

    PubMed Central

    Shetty, Neetha J.; Swati, P.; David, K.

    2013-01-01

    The purpose of this paper is to review the phenomenon of nanotechnology as it might apply to dentistry as a new field called nanodentistry. Treatment possibilities might include the application of nanotechnology to local anesthesia, dentition renaturalization, the permanent cure for hypersensitivity, complete orthodontic realignment in a single visit, covalently bonded diamondized enamel, and continuous oral health maintenance using mechanical dentifrobots. Dental nanorobots could be constructed to destroy caries-causing bacteria or to repair tooth blemishes where decay has set in, by using a computer to direct these tiny workers in their tasks. Dental nanorobots might be programed to use specific motility mechanisms to crawl or swim through human tissue with navigational precision, to acquire energy, to sense and manipulate their surroundings, to achieve safe cytopenetration, and to use any of a multitude of techniques to monitor, interrupt, or alter nerve-impulse traffic in individual nerve cells in real time. PMID:23960556

  11. The Die Is Cast: Precision Electrophilic Modifications Contribute to Cellular Decision Making

    PubMed Central

    2016-01-01

    This perspective sets out to critically evaluate the scope of reactive electrophilic small molecules as unique chemical signal carriers in biological information transfer cascades. We consider these electrophilic cues as a new volatile cellular currency and compare them to canonical signaling circulation such as phosphate in terms of chemical properties, biological specificity, sufficiency, and necessity. The fact that nonenzymatic redox sensing properties are found in proteins undertaking varied cellular tasks suggests that electrophile signaling is a moonlighting phenomenon manifested within a privileged set of sensor proteins. The latest interrogations into these on-target electrophilic responses set forth a new horizon in the molecular mechanism of redox signal propagation wherein direct low-occupancy electrophilic modifications on a single sensor target are biologically sufficient to drive functional redox responses with precision timing. We detail how the various mechanisms through which redox signals function could contribute to their interesting phenotypic responses, including hormesis. PMID:27617777

  12. Remote sensing of land use changes in US metropolitan regions: Techniques of analysis and opportunities for application

    NASA Technical Reports Server (NTRS)

    Wray, J. R.

    1974-01-01

    A graphic description is given of the Census Cities ERTS experiment in urban change detection using remote sensors. The relationship or model between land use data from sensors and socio-demographic data from the census is partly demonstrated. The example suggests how knowledge of land use changes acquired by sensors can be used to make estimates of population, and other attributes. The feasibility of nationwide mapping of land use, and land use changes, by direct computer classification of ERTS-1 multispectral digital data is also demonstrated. Potential applications in state and regional planning are many, and some are named. But the longer-range gains are likely to be improved understanding by legislators, managers and voters as to what it is that makes the country tick. One of the specific tasks could be the allocation of revenues to be shared.

  13. The Die Is Cast: Precision Electrophilic Modifications Contribute to Cellular Decision Making.

    PubMed

    Long, Marcus J C; Aye, Yimon

    2016-10-02

    This perspective sets out to critically evaluate the scope of reactive electrophilic small molecules as unique chemical signal carriers in biological information transfer cascades. We consider these electrophilic cues as a new volatile cellular currency and compare them to canonical signaling circulation such as phosphate in terms of chemical properties, biological specificity, sufficiency, and necessity. The fact that nonenzymatic redox sensing properties are found in proteins undertaking varied cellular tasks suggests that electrophile signaling is a moonlighting phenomenon manifested within a privileged set of sensor proteins. The latest interrogations into these on-target electrophilic responses set forth a new horizon in the molecular mechanism of redox signal propagation wherein direct low-occupancy electrophilic modifications on a single sensor target are biologically sufficient to drive functional redox responses with precision timing. We detail how the various mechanisms through which redox signals function could contribute to their interesting phenotypic responses, including hormesis.

  14. An Active Approach to Colloidal Self-Assembly

    NASA Astrophysics Data System (ADS)

    Mallory, Stewart A.; Valeriani, Chantal; Cacciuto, Angelo

    2018-04-01

    In this review, we discuss recent advances in the self-assembly of self-propelled colloidal particles and highlight some of the most exciting results in this field, with a specific focus on dry active matter. We explore this phenomenology through the lens of the complexity of the colloidal building blocks. We begin by considering the behavior of isotropic spherical particles. We then discuss the case of amphiphilic and dipolar Janus particles. Finally, we show how the geometry of the colloids and/or the directionality of their interactions can be used to control the physical properties of the assembled active aggregates, and we suggest possible strategies for how to exploit activity as a tunable driving force for self-assembly. The unique properties of active colloids lend promise to the design of the next generation of functional, environment-sensing microstructures able to perform specific tasks in an autonomous and targeted manner.

  15. Toward a cultural consciousness of self in relationship: from "us and them" to "we".

    PubMed

    Ventres, William; Haq, Cynthia

    2014-10-01

    While skills and techniques can help family physicians and other health professionals achieve basic competence in working across cultural and social boundaries, perhaps their most important tasks are those directed inward toward attitudes, beliefs, and capacities for self-exploration. This essay links the practice and teaching of cross-cultural medicine to clinicians' and educators' exploration of their own self- consciousness. The more they are willing to explore the unfamiliar within themselves, the more emotionally and psychologically comfortable they can become in dealing with the joys and challenges inherent in cross-cultural medicine. Several practices can foster this development of a sense of self in relationship with others. As health professionals and medical educators recognize and promote an awareness of self in relationship, they can enhance their personal and professional roles to become more effective advocates of equity and social justice in every clinical encounter.

  16. 'I Got it off my Chest': An Examination of how Research Participation Improved the Mental Health of Women Engaging in Transactional Sex.

    PubMed

    Felsher, Marisa; Wiehe, Sarah E; Gunn, Jayleen K L; Roth, Alexis M

    2018-02-01

    Ecologic momentary assessment (EMA) is a form of close-ended diary writing. While it has been shown that participating in a study that incorporates EMA improves mental health of participants, no study to date has examined the pathways through which benefits may occur. For 4-weeks, twice-daily EMAs and weekly interviews captured mood, daily activities and HIV risk behavior of 25 women who engage in transactional sex. Qualitative analysis of exit interviews was performed to examine how participation impacted women's mental health. The majority of participants felt that EMAs heightened awareness of emotions and behavior. Most reported experiencing catharsis from the interviews; specifically, from having a non-judgmental, trusting listener. Participants felt responsible for completing tasks, a sense of accomplishment for completing the study, and altruism. This study demonstrates there are direct benefits associated with participation in an EMA and interview study.

  17. Deep Direct Reinforcement Learning for Financial Signal Representation and Trading.

    PubMed

    Deng, Yue; Bao, Feng; Kong, Youyong; Ren, Zhiquan; Dai, Qionghai

    2017-03-01

    Can we train the computer to beat experienced traders for financial assert trading? In this paper, we try to address this challenge by introducing a recurrent deep neural network (NN) for real-time financial signal representation and trading. Our model is inspired by two biological-related learning concepts of deep learning (DL) and reinforcement learning (RL). In the framework, the DL part automatically senses the dynamic market condition for informative feature learning. Then, the RL module interacts with deep representations and makes trading decisions to accumulate the ultimate rewards in an unknown environment. The learning system is implemented in a complex NN that exhibits both the deep and recurrent structures. Hence, we propose a task-aware backpropagation through time method to cope with the gradient vanishing issue in deep training. The robustness of the neural system is verified on both the stock and the commodity future markets under broad testing conditions.

  18. Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives.

    PubMed

    Chen, Ying; Xu, Pengcheng; Li, Xinxin

    2010-07-02

    This paper presents a novel sensing layer modification technique for static micro-cantilever sensors that detect trace explosives by measuring specific adsorption-induced surface stress. For the first time, a method of directly modifying a siloxane sensing bilayer on an SiO(2) surface is proposed to replace the conventional self-assembled monolayers (SAMs) of thiols on Au to avoid the trouble from long-term unstable Au-S bonds. For modifying the long-term reliable sensing bilayer on the piezoresistor-integrated micro-cantilevers, a siloxane-head bottom layer is self-assembled directly on the SiO(2) cantilever surface, which is followed by grafting another explosive-sensing-group functionalized molecule layer on top of the siloxane layer. The siloxane-modified sensor has experimentally exhibited a highly resoluble response to 0.1 ppb TNT vapor. More importantly, the repeated detection results after 140 days show no obvious attenuation in sensing signal. Also observed experimentally, the specific adsorption of the siloxane sensing bilayer to TNT molecules causes a tensile surface stress on the cantilever. Herein the measured tensile surface stress is in contrast to the compressive surface stress normally measured from conventional cantilever sensors where the sensitive thiol-SAMs are modified on an Au surface. The reason for this newly observed phenomenon is discussed and preliminarily analyzed.

  19. The role of vision, speed, and attention in overcoming directional biases during arm movements.

    PubMed

    Dounskaia, Natalia; Goble, Jacob A

    2011-03-01

    Previous research has revealed directional biases (preferences to select movements in specific directions) during horizontal arm movements with the use of a free-stroke drawing task. The biases were interpreted as a result of a tendency to generate motion at either the shoulder or elbow (leading joint) and move the other (subordinate) joint predominantly passively to avoid neural effort for control of interaction torque. Here, we examined influence of vision, movement speed, and attention on the directional biases. Participants performed the free-stroke drawing task, producing center-out strokes in randomly selected directions. Movements were performed with and without vision and at comfortable and fast pace. A secondary, cognitive task was used to distract attention. Preferred directions remained the same in all conditions. Bias strength mildly increased without vision, especially during fast movements. Striking increases in bias strength were caused by the secondary task, pointing to additional cognitive load associated with selection of movements in the non-preferred directions. Further analyses demonstrated that the tendency to minimize active interference with interaction torque at the subordinate joint matched directional biases in all conditions. This match supports the explanation of directional biases as a result of a tendency to minimize neural effort for interaction torque control. The cognitive load may enhance this tendency in two ways, directly, by reducing neural capacity for interaction torque control, and indirectly, by decreasing capacity of working memory that stores visited directions. The obtained results suggest strong directional biases during daily activities because natural arm movements usually subserve cognitive tasks.

  20. Navigation: Whence Our Sense of Direction?

    PubMed

    Gallistel, C R

    2017-02-06

    Behavioral data have long implied our sense of direction derives from global environmental shape; electrophysiological evidence, however, has seemed to imply it derives from salient non-geometric landmarks. Experiments on the re-establishment of place fields in disoriented mice now align the electrophysiological data with the behavioral data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot.

    PubMed

    Shen, Yajing; Wan, Wenfeng; Zhang, Lijun; Yong, Li; Lu, Haojian; Ding, Weili

    2015-12-15

    Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV) of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.

  2. Nanopore Device for Reversible Ion and Molecule Sensing or Migration

    NASA Technical Reports Server (NTRS)

    Seger, R. Adam (Inventor); Pourmand, Nader (Inventor); Actis, Paolo (Inventor); Singaram, Bakthan (Inventor); Vilozny, Boaz (Inventor)

    2015-01-01

    Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore.

  3. A Two-Dimensional Flow Sensor with Integrated Micro Thermal Sensing Elements and a Back Propagation Neural Network

    PubMed Central

    Que, Ruiyi; Zhu, Rong

    2014-01-01

    This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s–30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°. PMID:24385032

  4. A two-dimensional flow sensor with integrated micro thermal sensing elements and a back propagation neural network.

    PubMed

    Que, Ruiyi; Zhu, Rong

    2013-12-31

    This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s-30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°.

  5. Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity

    PubMed Central

    Diwadkar, Vaibhav A.; Asemi, Avisa; Burgess, Ashley; Chowdury, Asadur; Bressler, Steven L.

    2017-01-01

    The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition. PMID:28278267

  6. Visual Image Sensor Organ Replacement

    NASA Technical Reports Server (NTRS)

    Maluf, David A.

    2014-01-01

    This innovation is a system that augments human vision through a technique called "Sensing Super-position" using a Visual Instrument Sensory Organ Replacement (VISOR) device. The VISOR device translates visual and other sensors (i.e., thermal) into sounds to enable very difficult sensing tasks. Three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. Because the human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns, the translation of images into sounds reduces the risk of accidentally filtering out important clues. The VISOR device was developed to augment the current state-of-the-art head-mounted (helmet) display systems. It provides the ability to sense beyond the human visible light range, to increase human sensing resolution, to use wider angle visual perception, and to improve the ability to sense distances. It also allows compensation for movement by the human or changes in the scene being viewed.

  7. Number Sense and Mathematics: Which, When and How?

    PubMed Central

    2017-01-01

    Individual differences in number sense correlate with mathematical ability and performance, although the presence and strength of this relationship differs across studies. Inconsistencies in the literature may stem from heterogeneity of number sense and mathematical ability constructs. Sample characteristics may also play a role as changes in the relationship between number sense and mathematics may differ across development and cultural contexts. In this study, 4,984 16-year-old students were assessed on estimation ability, one aspect of number sense. Estimation was measured using 2 different tasks: number line and dot-comparison. Using cognitive and achievement data previously collected from these students at ages 7, 9, 10, 12, and 14, the study explored for which of the measures and when in development these links are observed, and how strong these links are and how much these links are moderated by other cognitive abilities. The 2 number sense measures correlated modestly with each other (r = .22), but moderately with mathematics at age 16. Both measures were also associated with earlier mathematics; but this association was uneven across development and was moderated by other cognitive abilities. PMID:28758784

  8. Forces and moments generated by the human arm: Variability and control

    PubMed Central

    Xu, Y; Terekhov, AV; Latash, ML; Zatsiorsky, VM

    2012-01-01

    This is an exploratory study of the accurate endpoint force vector production by the human arm in isometric conditions. We formulated three common-sense hypotheses and falsified them in the experiment. The subjects (n=10) exerted static forces on the handle in eight directions in a horizontal plane for 25 seconds. The forces were of 4 magnitude levels (10 %, 20%, 30% and 40% of individual MVC). The torsion moment on the handle (grasp moment) was not specified in the instruction. The two force components and the grasp moment were recorded, and the shoulder, elbow, and wrist joint torques were computed. The following main facts were observed: (a) While the grasp moment was not prescribed by the instruction, it was always produced. The moment magnitude and direction depended on the instructed force magnitude and direction. (b) The within-trial angular variability of the exerted force vector (angular precision) did not depend on the target force magnitude (a small negative correlation was observed). (c) Across the target force directions, the variability of the exerted force magnitude and directional variability exhibited opposite trends: In the directions where the variability of force magnitude was maximal, the directional variability was minimal and vice versa. (d) The time profiles of joint torques in the trials were always positively correlated, even for the force directions where flexion torque was produced at one joint and extension torque was produced at the other joint. (e) The correlations between the grasp moment and the wrist torque were negative across the tasks and positive within the individual trials. (f) In static serial kinematic chains, the pattern of the joint torques distribution could not be explained by an optimization cost function additive with respect to the torques. Plans for several future experiments have been suggested. PMID:23080084

  9. Bayesian network analysis revealed the connectivity difference of the default mode network from the resting-state to task-state

    PubMed Central

    Wu, Xia; Yu, Xinyu; Yao, Li; Li, Rui

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have converged to reveal the default mode network (DMN), a constellation of regions that display co-activation during resting-state but co-deactivation during attention-demanding tasks in the brain. Here, we employed a Bayesian network (BN) analysis method to construct a directed effective connectivity model of the DMN and compared the organizational architecture and interregional directed connections under both resting-state and task-state. The analysis results indicated that the DMN was consistently organized into two closely interacting subsystems in both resting-state and task-state. The directed connections between DMN regions, however, changed significantly from the resting-state to task-state condition. The results suggest that the DMN intrinsically maintains a relatively stable structure whether at rest or performing tasks but has different information processing mechanisms under varied states. PMID:25309414

  10. Biomedical imaging and sensing using flatbed scanners.

    PubMed

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-09-07

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600-700 cm(2)) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings.

  11. Local Learning Strategies for Wake Identification

    NASA Astrophysics Data System (ADS)

    Colvert, Brendan; Alsalman, Mohamad; Kanso, Eva

    2017-11-01

    Swimming agents, biological and engineered alike, must navigate the underwater environment to survive. Tasks such as autonomous navigation, foraging, mating, and predation require the ability to extract critical cues from the hydrodynamic environment. A substantial body of evidence supports the hypothesis that biological systems leverage local sensing modalities, including flow sensing, to gain knowledge of their global surroundings. The nonlinear nature and high degree of complexity of fluid dynamics makes the development of algorithms for implementing localized sensing in bioinspired engineering systems essentially intractable for many systems of practical interest. In this work, we use techniques from machine learning for training a bioinspired swimmer to learn from its environment. We demonstrate the efficacy of this strategy by learning how to sense global characteristics of the wakes of other swimmers measured only from local sensory information. We conclude by commenting on the advantages and limitations of this data-driven, machine learning approach and its potential impact on broader applications in underwater sensing and navigation.

  12. Hydrological Relevant Parameters from Remote Sensing - Spatial Modelling Input and Validation Basis

    NASA Astrophysics Data System (ADS)

    Hochschild, V.

    2012-12-01

    This keynote paper will demonstrate how multisensoral remote sensing data is used as spatial input for mesoscale hydrological modeling as well as for sophisticated validation purposes. The tasks of Water Resources Management are subject as well as the role of remote sensing in regional catchment modeling. Parameters derived from remote sensing discussed in this presentation will be land cover, topographical information from digital elevation models, biophysical vegetation parameters, surface soil moisture, evapotranspiration estimations, lake level measurements, determination of snow covered area, lake ice cycles, soil erosion type, mass wasting monitoring, sealed area, flash flood estimation. The actual possibilities of recent satellite and airborne systems are discussed, as well as the data integration into GIS and hydrological modeling, scaling issues and quality assessment will be mentioned. The presentation will provide an overview of own research examples from Germany, Tibet and Africa (Ethiopia, South Africa) as well as other international research activities. Finally the paper gives an outlook on upcoming sensors and concludes the possibilities of remote sensing in hydrology.

  13. Biomedical Imaging and Sensing using Flatbed Scanners

    PubMed Central

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-01-01

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600–700 cm2) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings. PMID:24965011

  14. The role of satellite remote sensing in structured ecosystem risk assessments.

    PubMed

    Murray, Nicholas J; Keith, David A; Bland, Lucie M; Ferrari, Renata; Lyons, Mitchell B; Lucas, Richard; Pettorelli, Nathalie; Nicholson, Emily

    2018-04-01

    The current set of global conservation targets requires methods for monitoring the changing status of ecosystems. Protocols for ecosystem risk assessment are uniquely suited to this task, providing objective syntheses of a wide range of data to estimate the likelihood of ecosystem collapse. Satellite remote sensing can deliver ecologically relevant, long-term datasets suitable for analysing changes in ecosystem area, structure and function at temporal and spatial scales relevant to risk assessment protocols. However, there is considerable uncertainty about how to select and effectively utilise remotely sensed variables for risk assessment. Here, we review the use of satellite remote sensing for assessing spatial and functional changes of ecosystems, with the aim of providing guidance on the use of these data in ecosystem risk assessment. We suggest that decisions on the use of satellite remote sensing should be made a priori and deductively with the assistance of conceptual ecosystem models that identify the primary indicators representing the dynamics of a focal ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Working principle and application of magnetic separation for biomedical diagnostic at high- and low-field gradients.

    PubMed

    Leong, Sim Siong; Yeap, Swee Pin; Lim, JitKang

    2016-12-06

    Magnetic separation is a versatile technique used in sample preparation for diagnostic purpose. For such application, an external magnetic field is applied to drive the separation of target entity (e.g. bacteria, viruses, parasites and cancer cells) from a complex raw sample in order to ease the subsequent task(s) for disease diagnosis. This separation process not only can be achieved via the utilization of high magnetic field gradient, but also, in most cases, low magnetic field gradient with magnitude less than 100 T m -1 is equally feasible. It is the aim of this review paper to summarize the usage of both high gradient magnetic separation and low gradient magnetic separation (LGMS) techniques in this area of research. It is noteworthy that effectiveness of the magnetic separation process not only determines the outcome of a diagnosis but also directly influences its accuracy as well as sensing time involved. Therefore, understanding the factors that simultaneously influence the efficiency of both magnetic separation process and target detection is necessary. Moreover, for LGMS, there are several important considerations that should be taken into account in order to ensure its successful implementation. Hence, this review paper aims to provide an overview to relate all this crucial information by linking the magnetic separation theory to biomedical diagnostic applications.

  16. Using our hands to change our minds

    PubMed Central

    Goldin-Meadow, Susan

    2015-01-01

    Jean Piaget was a master at observing the routine behaviors children produce as they go from knowing less to knowing more about at a task, and making inferences not only about how children understand the task at each point, but also about how they progress from one point to the next. This paper examines a routine behavior that Piaget overlooked–the spontaneous gestures speakers produce as they explain their solutions to a problem. These gestures are not mere hand waving. They reflect ideas that the speaker has about the problem, often ideas that are not found in that speaker's talk. Gesture can do more than reflect ideas–it can also change them. Observing the gestures that others produce can change a learner's ideas, as can producing one's own gestures. In this sense, gesture behaves like any other action. But gesture differs from many other actions in that it also promotes generalization of new ideas. Gesture represents the world rather than directly manipulating the world (gesture does not move objects around) and is thus a special kind of action. As a result, the mechanisms by which gesture and action promote learning may differ. Because it is both an action and a representation, gesture can serve as a bridge between the two and thus be a powerful tool for learning abstract ideas. PMID:27906502

  17. Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface

    NASA Astrophysics Data System (ADS)

    Widge, Alik S.; Moritz, Chet T.

    2014-04-01

    Objective. There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). Approach. We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. Main results. All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. Significance. Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.

  18. Neural networks for satellite remote sensing and robotic sensor interpretation

    NASA Astrophysics Data System (ADS)

    Martens, Siegfried

    Remote sensing of forests and robotic sensor fusion can be viewed, in part, as supervised learning problems, mapping from sensory input to perceptual output. This dissertation develops ARTMAP neural networks for real-time category learning, pattern recognition, and prediction tailored to remote sensing and robotics applications. Three studies are presented. The first two use ARTMAP to create maps from remotely sensed data, while the third uses an ARTMAP system for sensor fusion on a mobile robot. The first study uses ARTMAP to predict vegetation mixtures in the Plumas National Forest based on spectral data from the Landsat Thematic Mapper satellite. While most previous ARTMAP systems have predicted discrete output classes, this project develops new capabilities for multi-valued prediction. On the mixture prediction task, the new network is shown to perform better than maximum likelihood and linear mixture models. The second remote sensing study uses an ARTMAP classification system to evaluate the relative importance of spectral and terrain data for map-making. This project has produced a large-scale map of remotely sensed vegetation in the Sierra National Forest. Network predictions are validated with ground truth data, and maps produced using the ARTMAP system are compared to a map produced by human experts. The ARTMAP Sierra map was generated in an afternoon, while the labor intensive expert method required nearly a year to perform the same task. The robotics research uses an ARTMAP system to integrate visual information and ultrasonic sensory information on a B14 mobile robot. The goal is to produce a more accurate measure of distance than is provided by the raw sensors. ARTMAP effectively combines sensory sources both within and between modalities. The improved distance percept is used to produce occupancy grid visualizations of the robot's environment. The maps produced point to specific problems of raw sensory information processing and demonstrate the benefits of using a neural network system for sensor fusion.

  19. Remote sensing education in NASA's technology transfer program

    NASA Technical Reports Server (NTRS)

    Weinstein, R. H.

    1981-01-01

    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  20. Continuous and difficult discrete cognitive tasks promote improved stability in older adults.

    PubMed

    Lajoie, Yves; Jehu, Deborah A; Richer, Natalie; Chan, Alan

    2017-06-01

    Directing attention away from postural control and onto a cognitive task affords the emergence of automatic control processes. Perhaps the continuous withdrawal of attention from the postural task facilitates an automatization of posture as opposed to only intermittent withdrawal; however this is unknown in the aging population. Twenty older adults (69.9±3.5years) stood with feet together on a force platform for 60s while performing randomly assigned discrete and continuous cognitive tasks. Participants were instructed to stand comfortably with their arms by their sides while verbally responding to the auditory stimuli as fast as possible during the discrete tasks, or mentally performing the continuous cognitive tasks. Participants also performed single-task standing. Results demonstrate significant reductions in sway amplitude and sway variability for the difficult discrete task as well as the continuous tasks relative to single-task standing. The continuous cognitive tasks also prompted greater frequency of sway in the anterior-posterior direction compared to single-standing and discrete tasks, and greater velocity in both directions compared to single-task standing, which could suggest ankle stiffening. No differences in the simple discrete condition were shown compared to single-task standing, perhaps due to the simplicity of the task. Therefore, we propose that the level of difficulty of the task, the specific neuropsychological process engaged during the cognitive task, and the type of task (discrete vs. continuous) influence postural control in older adults. Dual-tasking is a common activity of daily living; this work provides insight into the age-related changes in postural stability and attention demand. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Optical electric field sensor sensitivity direction rerouting and enhancement using a passive integrated dipole antenna.

    PubMed

    Seng, Frederick; Yang, Zhenchao; King, Rex; Shumway, LeGrand; Stan, Nikola; Hammond, Alec; Warnick, Karl F; Schultz, Stephen

    2017-06-10

    This work introduces a passive dipole antenna integrated into the packaging of a slab-coupled optical sensor to enhance the directional sensitivity of electro-optic electric field measurements parallel to the fiber axis. Using the passive integrated dipole antenna described in this work, a sensor that can typically only sense fields transverse to the fiber direction is able to sense a 1.25 kV/m field along the fiber direction with a gain of 17.5. This is verified through simulation and experiment.

  2. Direct real-time neural evidence for task-set inertia.

    PubMed

    Evans, Lisa H; Herron, Jane E; Wilding, Edward L

    2015-03-01

    One influential explanation for the costs incurred when switching between tasks is that they reflect interference arising from completing the previous task-known as task-set inertia. We report a novel approach for assessing task-set inertia in a memory experiment using event-related potentials (ERPs). After a study phase, participants completed a test block in which they switched between a memory task (retrieving information from the study phase) and a perceptual task. These tasks alternated every two trials. An ERP index of the retrieval of study information was evident in the memory task. It was also present on the first trial of the perceptual task but was markedly attenuated on the second. Moreover, this task-irrelevant ERP activity was positively correlated with a behavioral cost associated with switching between tasks. This real-time measure of neural activity thus provides direct evidence of task-set inertia, its duration, and the functional role it plays in switch costs. © The Author(s) 2015.

  3. Automatic Imitation

    ERIC Educational Resources Information Center

    Heyes, Cecilia

    2011-01-01

    "Automatic imitation" is a type of stimulus-response compatibility effect in which the topographical features of task-irrelevant action stimuli facilitate similar, and interfere with dissimilar, responses. This article reviews behavioral, neurophysiological, and neuroimaging research on automatic imitation, asking in what sense it is "automatic"…

  4. Making Sense of the Data from Complex Assessments.

    ERIC Educational Resources Information Center

    Mislevy, Robert J.; Steinberg, Linda S.; Breyer, F. Jay; Almond, Russell G.; Johnson, Lynn

    2002-01-01

    Presents a design framework that incorporates integrated structures for modeling knowledge and skills, designing tasks, and extracting and synthesizing evidence. Illustrates these ideas in the context of a project that assesses problem solving in dental hygiene through computer-based simulations. (SLD)

  5. Asymmetrical Macromolecular Complex Formation of Lysophosphatidic Acid Receptor 2 (LPA2) Mediates Gradient Sensing in Fibroblasts*

    PubMed Central

    Ren, Aixia; Moon, Changsuk; Zhang, Weiqiang; Sinha, Chandrima; Yarlagadda, Sunitha; Arora, Kavisha; Wang, Xusheng; Yue, Junming; Parthasarathi, Kaushik; Heil-Chapdelaine, Rick; Tigyi, Gabor; Naren, Anjaparavanda P.

    2014-01-01

    Chemotactic migration of fibroblasts toward growth factors relies on their capacity to sense minute extracellular gradients and respond to spatially confined receptor-mediated signals. Currently, mechanisms underlying the gradient sensing of fibroblasts remain poorly understood. Using single-particle tracking methodology, we determined that a lysophosphatidic acid (LPA) gradient induces a spatiotemporally restricted decrease in the mobility of LPA receptor 2 (LPA2) on chemotactic fibroblasts. The onset of decreased LPA2 mobility correlates to the spatial recruitment and coupling to LPA2-interacting proteins that anchor the complex to the cytoskeleton. These localized PDZ motif-mediated macromolecular complexes of LPA2 trigger a Ca2+ puff gradient that governs gradient sensing and directional migration in response to LPA. Disruption of the PDZ motif-mediated assembly of the macromolecular complex of LPA2 disorganizes the gradient of Ca2+ puffs, disrupts gradient sensing, and reduces the directional migration of fibroblasts toward LPA. Our findings illustrate that the asymmetric macromolecular complex formation of chemoattractant receptors mediates gradient sensing and provides a new mechanistic basis for models to describe gradient sensing of fibroblasts. PMID:25542932

  6. Public recreation and neighborhood sense of community: an exploration of a hypothesized relationship

    Treesearch

    Svetoslav D. Gueorguiev; Edwin Gomez; Eddie Hill

    2008-01-01

    This study explores the relationship between park attributes (perceived safety and perceived benefits) and their relationship to sense of community in urban neighborhoods. The study finds that the perception of benefits derived from park use has a direct relationship with sense of community, and that park safety is indirectly related to sense of community, with the...

  7. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing

    PubMed Central

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A. Ping; Lu, Chao

    2016-01-01

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes. PMID:27999250

  8. a Hadoop-Based Distributed Framework for Efficient Managing and Processing Big Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Wang, C.; Hu, F.; Hu, X.; Zhao, S.; Wen, W.; Yang, C.

    2015-07-01

    Various sensors from airborne and satellite platforms are producing large volumes of remote sensing images for mapping, environmental monitoring, disaster management, military intelligence, and others. However, it is challenging to efficiently storage, query and process such big data due to the data- and computing- intensive issues. In this paper, a Hadoop-based framework is proposed to manage and process the big remote sensing data in a distributed and parallel manner. Especially, remote sensing data can be directly fetched from other data platforms into the Hadoop Distributed File System (HDFS). The Orfeo toolbox, a ready-to-use tool for large image processing, is integrated into MapReduce to provide affluent image processing operations. With the integration of HDFS, Orfeo toolbox and MapReduce, these remote sensing images can be directly processed in parallel in a scalable computing environment. The experiment results show that the proposed framework can efficiently manage and process such big remote sensing data.

  9. Hard Fusion Based Spectrum Sensing over Mobile Fading Channels in Cognitive Vehicular Networks

    PubMed Central

    Hao, Li; Ni, Dadong; Tran, Quang Thanh

    2018-01-01

    An explosive growth in vehicular wireless applications gives rise to spectrum resource starvation. Cognitive radio has been used in vehicular networks to mitigate the impending spectrum starvation problem by allowing vehicles to fully exploit spectrum opportunities unoccupied by licensed users. Efficient and effective detection of licensed user is a critical issue to realize cognitive radio applications. However, spectrum sensing in vehicular environments is a very challenging task due to vehicle mobility. For instance, vehicle mobility has a large effect on the wireless channel, thereby impacting the detection performance of spectrum sensing. Thus, gargantuan efforts have been made in order to analyze the fading properties of mobile radio channel in vehicular environments. Indeed, numerous studies have demonstrated that the wireless channel in vehicular environments can be characterized by a temporally correlated Rayleigh fading. In this paper, we focus on energy detection for spectrum sensing and a counting rule for cooperative sensing based on Neyman-Pearson criteria. Further, we go into the effect of the sensing and reporting channel conditions on the sensing performance under the temporally correlated Rayleigh channel. For local and cooperative sensing, we derive some alternative expressions for the average probability of misdetection. The pertinent numerical and simulating results are provided to further validate our theoretical analyses under a variety of scenarios. PMID:29415452

  10. The Thirty-Eighth Amy Morris Homans Commemorative Lecture 2004: A Sense of Connection and Direction

    ERIC Educational Resources Information Center

    Kovar, Susan K.

    2004-01-01

    In this article, the author discusses the importance of physical education teachers' link to their past and to their sense of connection with their professional family, National Association for Physical Education in Higher Education (NAPEHE). She relates how she traces her physical lineage directly back to Amy Morris Homans through her…

  11. Virtual hospital--a computer-aided platform to evaluate the sense of direction.

    PubMed

    Jiang, Ching-Fen; Li, Yuan-Shyi

    2007-01-01

    This paper presents a computer-aided platform, named Virtual Hospital (VH), to evaluate the wayfinding ability that is found impaired in senile people with early dementia. The development of the VH takes the advantage of virtual reality technology to make the evaluation of the sense of direction more convenient and accurate then the conventional way. A pilot study was carried out to test its feasibility in differentiating the sense of direction between different genders. The results with significant differences in the response time (p<0.05) and the pointing error (p<0.01) between genders suggest the potential of the VH for clinical uses. Further improvement on the human-machine interface is necessary to make it easy for geriatric people to use.

  12. Low-Resolution Vision-at the Hub of Eye Evolution.

    PubMed

    Nilsson, Dan-E; Bok, Michael J

    2017-11-01

    Simple roles for photoreception are likely to have preceded more demanding ones such as vision. The driving force behind this evolution is the improvement and elaboration of animal behaviors using photoreceptor input. Because the basic role for all senses aimed at the external world is to guide behavior, we argue here that understanding this "behavioral drive" is essential for unraveling the evolutionary past of the senses. Photoreception serves many different types of behavior, from simple shadow responses to visual communication. Based on minimum performance requirements for different types of tasks, photoreceptors have been argued to have evolved from non-directional receptors, via directional receptors, to low-resolution vision, and finally to high-resolution vision. Through this sequence, the performance requirements on the photoreceptors have gradually changed from broad to narrow angular sensitivity, from slow to fast response, and from low to high contrast sensitivity during the evolution from simple to more advanced and demanding behaviors. New behaviors would only evolve if their sensory performance requirements to some degree overlap with the requirements of already existing behaviors. This need for sensory "performance continuity" must have determined the order by which behaviors have evolved and thus been an important factor guiding animal evolution. Naturally, new behaviors are most likely to evolve from already existing behaviors with similar neural processing needs and similar motor responses, pointing to "neural continuity" as another guiding factor in sensory evolution. Here we use these principles to derive an evolutionary tree for behaviors driven by photoreceptor input. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  13. [A Surface Plasmon Micro-Ring Sensor Suitable for Humidity Sensing].

    PubMed

    Li, Zhi-quan; An, Dong-yang; Zhang, Xin; Zhao, Ling-ling; Sha, Xiao-peng; Guo, Shi-liang; Li, Wen-chao

    2015-09-01

    Temperature is a very important parameter in scientific research, production and life. Almost all the properties of materials are related to temperature. The precise measurement of the temperature is a very important task, so the temperature sensor is widely used as a core part in the temperature measuring instrument. A novel surface plasmon micro-ring sensor suitable for humidity sensing is presented in this paper. The sensor uses a multi-layered surface plasmon waveguide structure and choosing Polyimide (Polyimide, PI) as the moisture material. We get the transfer function of surface plasmon micro-ring sensor by using transfer matrix method. Refractive indexes of Polyimide and the multilayer waveguide structure change as environment relative humidity changes, thus leading to an obvious peak drift of output spectrum. The paper mainly discusses the influence of the changes of the refractive index of humidity-sensing parts on the output spectrum, and the transmission characteristics of multilayer waveguide structure. Through the finite element method and the theoretical simulation of Matlab, We can draw: When the length between the two coupling points of the U-shaped waveguide is an integer multiple of circumference of the micro-ring, an obvious drift in the horizontal direction appears, the free spectral range (FSR) doubled and the sensitivity is 0.0005 μm/%RH; When the external environment relative humidity RH changes from 10% to 100% RH, scatter is change between including (including 0.005 m to 0.005 m, compared to other humidity sensor, the Sensitivity of sensor improves 10~50 times and the transmission is very stable. Results show that the design of surface plasma micro ring sensors has better sensitivity, stable performance and can be used in the humidity measurement, achieving a high sensitivity in the sense of humidity when the wide range of filter frequency selection is taken into account, and providing a theoretical basis for the preparation of micro-optics.

  14. Geophysics, Remote Sensing, and the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Macleod, G.; Labak, P.; Malich, G.; Rowlands, A. P.; Craven, J.; Sweeney, J. J.; Chiappini, M.; Tuckwell, G.; Sankey, P.

    2015-12-01

    The Integrated Field Exercise of 2014 (IFE14) was an event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of an on-site inspection (OSI) within the CTBT verification regime. During an OSI, up to 40 international inspectors will search an area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of a real OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams (which executed the scenario in which the exercise was played) and those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test and integrate Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, suites of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, in addition to other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection using other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials, and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of the goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  15. Use of Geophysical and Remote Sensing Techniques During the Comprehensive Test Ban Treaty Organization's Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Labak, Peter; Sussman, Aviva; Rowlands, Aled; Chiappini, Massimo; Malich, Gregor; MacLeod, Gordon; Sankey, Peter; Sweeney, Jerry; Tuckwell, George

    2016-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI). During an OSI, up to 40 inspectors search a 1000km2 inspection area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of an OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams to execute the scenario in which the exercise was played, to those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, a number of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force Group (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, as well as other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection by other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  16. Scaffolding Advice on Task Selection: A Safe Path toward Self-Directed Learning in On-Demand Education

    ERIC Educational Resources Information Center

    Kicken, Wendy; Brand-Gruwel, Saskia; van Merrienboer, Jeroen J. G.

    2008-01-01

    An intuitively appealing approach to increasing the flexibility of vocational education and training is to delegate choices on instruction, such as the selection of learning tasks, to students. However, empirical evidence shows that students often do not have sufficiently developed self-directed learning skills to select suitable tasks. This…

  17. Performance of target detection algorithm in compressive sensing miniature ultraspectral imaging compressed sensing system

    NASA Astrophysics Data System (ADS)

    Gedalin, Daniel; Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Rotman, Stanley R.; Stern, Adrian

    2017-04-01

    Compressive sensing theory was proposed to deal with the high quantity of measurements demanded by traditional hyperspectral systems. Recently, a compressive spectral imaging technique dubbed compressive sensing miniature ultraspectral imaging (CS-MUSI) was presented. This system uses a voltage controlled liquid crystal device to create multiplexed hyperspectral cubes. We evaluate the utility of the data captured using the CS-MUSI system for the task of target detection. Specifically, we compare the performance of the matched filter target detection algorithm in traditional hyperspectral systems and in CS-MUSI multiplexed hyperspectral cubes. We found that the target detection algorithm performs similarly in both cases, despite the fact that the CS-MUSI data is up to an order of magnitude less than that in conventional hyperspectral cubes. Moreover, the target detection is approximately an order of magnitude faster in CS-MUSI data.

  18. Compressed Sensing in On-Grid MIMO Radar.

    PubMed

    Minner, Michael F

    2015-01-01

    The accurate detection of targets is a significant problem in multiple-input multiple-output (MIMO) radar. Recent advances of Compressive Sensing offer a means of efficiently accomplishing this task. The sparsity constraints needed to apply the techniques of Compressive Sensing to problems in radar systems have led to discretizations of the target scene in various domains, such as azimuth, time delay, and Doppler. Building upon recent work, we investigate the feasibility of on-grid Compressive Sensing-based MIMO radar via a threefold azimuth-delay-Doppler discretization for target detection and parameter estimation. We utilize a colocated random sensor array and transmit distinct linear chirps to a small scene with few, slowly moving targets. Relying upon standard far-field and narrowband assumptions, we analyze the efficacy of various recovery algorithms in determining the parameters of the scene through numerical simulations, with particular focus on the ℓ 1-squared Nonnegative Regularization method.

  19. Hand digit control in children: motor overflow in multi-finger pressing force vector space during maximum voluntary force production.

    PubMed

    Shim, Jae Kun; Karol, Sohit; Hsu, Jeffrey; de Oliveira, Marcio Alves

    2008-04-01

    The aim of this study was to investigate the contralateral motor overflow in children during single-finger and multi-finger maximum force production tasks. Forty-five right handed children, 5-11 years of age produced maximum isometric pressing force in flexion or extension with single fingers or all four fingers of their right hand. The forces produced by individual fingers of the right and left hands were recorded and analyzed in four-dimensional finger force vector space. The results showed that increases in task (right) hand finger forces were linearly associated with non-task (left) hand finger forces. The ratio of the non-task hand finger force magnitude to the corresponding task hand finger force magnitude, termed motor overflow magnitude (MOM), was greater in extension than flexion. The index finger flexion task showed the smallest MOM values. The similarity between the directions of task hand and non-task hand finger force vectors in four-dimensional finger force vector space, termed motor overflow direction (MOD), was the greatest for index and smallest for little finger tasks. MOM of a four-finger task was greater than the sum of MOMs of single-finger tasks, and this phenomenon was termed motor overflow surplus. Contrary to previous studies, no single-finger or four-finger tasks showed significant changes of MOM or MOD with the age of children. We conclude that the contralateral motor overflow in children during finger maximum force production tasks is dependent upon the task fingers and the magnitude and direction of task finger forces.

  20. A Theoretical Analysis of a New Polarimetric Optical Scheme for Glucose Sensing in the Human Eye

    NASA Technical Reports Server (NTRS)

    Rovati, Luigi L.; Boeckle, Stefan; Ansari, Rafat R.; Salzman, Jack A. (Technical Monitor)

    2002-01-01

    The challenging task of in vivo polarimetric glucose sensing is the identification and selection of a scheme to optically access the aqueous humor of the human eye. In this short communication an earlier approach of Cote et al. is theoretically compared with our new optical scheme. Simulations of the new scheme using the eye model of Navarro, suggest that the new optical geometry can overcome the limitations of the previous approach for in vivo measurements of glucose in a human eye.

  1. Brain mechanisms associated with internally directed attention and self-generated thought.

    PubMed

    Benedek, Mathias; Jauk, Emanuel; Beaty, Roger E; Fink, Andreas; Koschutnig, Karl; Neubauer, Aljoscha C

    2016-03-10

    Internal cognition like imagination and prospection require sustained internally directed attention and involve self-generated thought. This fMRI study aimed to disentangle the brain mechanisms associated with attention-specific and task-specific processes during internally directed cognition. The direction of attention was manipulated by either keeping a relevant stimulus visible throughout the task, or by masking it, so that the task had to be performed "in the mind's eye". The level of self-directed thought was additionally varied between a convergent and a divergent thinking task. Internally directed attention was associated with increased activation in the right anterior inferior parietal lobe (aIPL), bilateral lingual gyrus and the cuneus, as well as with extended deactivations of superior parietal and occipital regions representing parts of the dorsal attention network. The right aIPL further showed increased connectivity with occipital regions suggesting an active top-down mechanism for shielding ongoing internal processes from potentially distracting sensory stimulation in terms of perceptual decoupling. Activation of the default network was not related to internally directed attention per se, but rather to a higher level of self-generated thought. The findings hence shed further light on the roles of inferior and superior parietal cortex for internally directed cognition.

  2. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  3. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  4. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  5. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  6. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  7. Familiarity Vs Trust: A Comparative Study of Domain Scientists' Trust in Visual Analytics and Conventional Analysis Methods.

    PubMed

    Dasgupta, Aritra; Lee, Joon-Yong; Wilson, Ryan; Lafrance, Robert A; Cramer, Nick; Cook, Kristin; Payne, Samuel

    2017-01-01

    Combining interactive visualization with automated analytical methods like statistics and data mining facilitates data-driven discovery. These visual analytic methods are beginning to be instantiated within mixed-initiative systems, where humans and machines collaboratively influence evidence-gathering and decision-making. But an open research question is that, when domain experts analyze their data, can they completely trust the outputs and operations on the machine-side? Visualization potentially leads to a transparent analysis process, but do domain experts always trust what they see? To address these questions, we present results from the design and evaluation of a mixed-initiative, visual analytics system for biologists, focusing on analyzing the relationships between familiarity of an analysis medium and domain experts' trust. We propose a trust-augmented design of the visual analytics system, that explicitly takes into account domain-specific tasks, conventions, and preferences. For evaluating the system, we present the results of a controlled user study with 34 biologists where we compare the variation of the level of trust across conventional and visual analytic mediums and explore the influence of familiarity and task complexity on trust. We find that despite being unfamiliar with a visual analytic medium, scientists seem to have an average level of trust that is comparable with the same in conventional analysis medium. In fact, for complex sense-making tasks, we find that the visual analytic system is able to inspire greater trust than other mediums. We summarize the implications of our findings with directions for future research on trustworthiness of visual analytic systems.

  8. Adaptive decision making in a dynamic environment: a test of a sequential sampling model of relative judgment.

    PubMed

    Vuckovic, Anita; Kwantes, Peter J; Neal, Andrew

    2013-09-01

    Research has identified a wide range of factors that influence performance in relative judgment tasks. However, the findings from this research have been inconsistent. Studies have varied with respect to the identification of causal variables and the perceptual and decision-making mechanisms underlying performance. Drawing on the ecological rationality approach, we present a theory of the judgment and decision-making processes involved in a relative judgment task that explains how people judge a stimulus and adapt their decision process to accommodate their own uncertainty associated with those judgments. Undergraduate participants performed a simulated air traffic control conflict detection task. Across two experiments, we systematically manipulated variables known to affect performance. In the first experiment, we manipulated the relative distances of aircraft to a common destination while holding aircraft speeds constant. In a follow-up experiment, we introduced a direct manipulation of relative speed. We then fit a sequential sampling model to the data, and used the best fitting parameters to infer the decision-making processes responsible for performance. Findings were consistent with the theory that people adapt to their own uncertainty by adjusting their criterion and the amount of time they take to collect evidence in order to make a more accurate decision. From a practical perspective, the paper demonstrates that one can use a sequential sampling model to understand performance in a dynamic environment, allowing one to make sense of and interpret complex patterns of empirical findings that would otherwise be difficult to interpret using standard statistical analyses. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  9. Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Davies, Ashley G.; Doubleday, Joshua R.; Tran, Daniel Q.

    2014-01-01

    The study of volcanoes is important for both purely scientific and human survival reasons. From a scientific standpoint, volcanic gas and ash emissions contribute significantly to the terrestrial atmosphere. Ash depositions and lava flows can also greatly affect local environments. From a human survival standpoint, many people live within the reach of active volcanoes, and therefore can be endangered by both atmospheric (ash, debris) toxicity and lava flow. There are many potential information sources that can be used to determine how to best monitor volcanic activity worldwide. These are of varying temporal frequency, spatial regard, method of access, and reliability. The problem is how to incorporate all of these inputs in a general framework to assign/task/reconfigure assets to monitor events in a timely fashion. In situ sensing can provide a valuable range of complementary information such as seismographic, discharge, acoustic, and other data. However, many volcanoes are not instrumented with in situ sensors, and those that have sensor networks are restricted to a relatively small numbers of point sensors. Consequently, ideal volcanic study synergistically combines space and in situ measurements. This work demonstrates an effort to integrate spaceborne sensing from MODIS (Terra and Aqua), ALI (EO-1), Worldview-2, and in situ sensing in an automated scheme to improve global volcano monitoring. Specifically, it is a "sensor web" concept in which a number of volcano monitoring systems are linked together to monitor volcanic activity more accurately, and this activity measurement automatically tasks space assets to acquire further satellite imagery of ongoing volcanic activity. A general framework was developed for evidence combination that accounts for multiple information sources in a scientist-directed fashion to weigh inputs and allocate observations based on the confidence of an events occurrence, rarity of the event at that location, and other scientists' inputs. The software framework uses multiple source languages and is a general framework for combining inputs and incrementally submitting observation requests/reconfigurations, accounting for prior requests. The autonomous aspect of operations is unique, especially in the context of the wide range of inputs that includes manually inputted electronic reports (such as the Air Force Weather Advisories), automated satellite-based detection methods (such as MODVOLC and GOESVOLC), and in situ sensor networks.

  10. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Smith, Carl H. (Inventor); Nordman, Catherine A. (Inventor); Jander, Albrecht (Inventor); Qian, Zhenghong (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  11. The Categorisation of Non-Categorical Colours: A Novel Paradigm in Colour Perception

    PubMed Central

    Cropper, Simon J.; Kvansakul, Jessica G. S.; Little, Daniel R.

    2013-01-01

    In this paper, we investigate a new paradigm for studying the development of the colour ‘signal’ by having observers discriminate and categorize the same set of controlled and calibrated cardinal coloured stimuli. Notably, in both tasks, each observer was free to decide whether two pairs of colors were the same or belonged to the same category. The use of the same stimulus set for both tasks provides, we argue, an incremental behavioural measure of colour processing from detection through discrimination to categorisation. The measured data spaces are different for the two tasks, and furthermore the categorisation data is unique to each observer. In addition, we develop a model which assumes that the principal difference between the tasks is the degree of similarity between the stimuli which has different constraints for the categorisation task compared to the discrimination task. This approach not only makes sense of the current (and associated) data but links the processes of discrimination and categorisation in a novel way and, by implication, expands upon the previous research linking categorisation to other tasks not limited to colour perception. PMID:23536899

  12. The categorisation of non-categorical colours: a novel paradigm in colour perception.

    PubMed

    Cropper, Simon J; Kvansakul, Jessica G S; Little, Daniel R

    2013-01-01

    In this paper, we investigate a new paradigm for studying the development of the colour 'signal' by having observers discriminate and categorize the same set of controlled and calibrated cardinal coloured stimuli. Notably, in both tasks, each observer was free to decide whether two pairs of colors were the same or belonged to the same category. The use of the same stimulus set for both tasks provides, we argue, an incremental behavioural measure of colour processing from detection through discrimination to categorisation. The measured data spaces are different for the two tasks, and furthermore the categorisation data is unique to each observer. In addition, we develop a model which assumes that the principal difference between the tasks is the degree of similarity between the stimuli which has different constraints for the categorisation task compared to the discrimination task. This approach not only makes sense of the current (and associated) data but links the processes of discrimination and categorisation in a novel way and, by implication, expands upon the previous research linking categorisation to other tasks not limited to colour perception.

  13. Remote sensing of agricultural crops and soils

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator)

    1982-01-01

    Research results and accomplishments of sixteen tasks in the following areas are described: (1) corn and soybean scene radiation research; (2) soil moisture research; (3) sampling and aggregation research; (4) pattern recognition and image registration research; and (5) computer and data base services.

  14. Proceedings of the NASA Workshop on Registration and Rectification

    NASA Technical Reports Server (NTRS)

    Bryant, N. A. (Editor)

    1982-01-01

    Issues associated with the registration and rectification of remotely sensed data. Near and long range applications research tasks and some medium range technology augmentation research areas are recommended. Image sharpness, feature extraction, inter-image mapping, error analysis, and verification methods are addressed.

  15. Validating commercial remote sensing and spatial information (CRS&SI) technologies for streamlining environmental and planning processes in transportation projects.

    DOT National Transportation Integrated Search

    2010-03-01

    Transportation corridor-planning processes are well understood, and consensus exists among practitioners : about common practices for stages and tasks included in traditional EIS approaches. However, traditional approaches do : not typically employ f...

  16. From Community to Conformity.

    ERIC Educational Resources Information Center

    Schwartzman, Roy

    Before unconditionally supporting the development of closer community or the restoration of a public realm, communication scholars should further reflect on the historical uses and potential threats attendant to this task. A sense of nostalgia sometimes romanticizes the Greek "polis" while sidestepping the changes wrought by population…

  17. The auto-tuned land data assimilation system (ATLAS)

    USDA-ARS?s Scientific Manuscript database

    Land data assimilation systems are tasked with the merging remotely-sensed soil moisture retrievals with information derived from a soil water balance model driven (principally) by observed rainfall. The performance of such systems is frequently degraded by the imprecise specification of parameters ...

  18. Goal orientation and well-being in college athletes: The importance of athletic social connectedness.

    PubMed

    Wayment, Heidi A; Walters, Andrew Schrack

    2017-11-01

    The present study examined the ability of an interpersonal construct called athletic connectedness to mediate the relationship between task and ego goal orientations and well-being. We operationalised athletic social connectedness as a sense of social belonging and sense of connection with teammates. We hypothesised that athletic social connectedness would be positively associated with task goals, negatively associated with ego goals, and would at least partially mediate the relationship between achievement goals and well-being. We administered questionnaires to female (N = 106; mean age = 20.47, SD = 1.12) and male (N = 100; mean age = 20.95, SD = 1.21) NCAA Division III college athletes. We tested our hypothesised model using structural equation modelling, which included testing a measurement model that specified four latent variables and then comparing the estimates generated by our hypothesised model with our data. We also tested three alternative models and found our hypothesised model to fit best. As predicted, there were significant indirect effects of task and ego motivation on well-being through athletic connectedness, demonstrating formal evidence of mediation. The r 2 coefficient indicated that the model explained 30% of the variance in well-being, a moderate effect size (Cohen, 1988). Discussion focuses on the importance of considering interpersonal constructs as a way to improve our understanding of relationship between task and ego goal orientations to well-being in athletes.

  19. Method and apparatus for sensing a desired component of an incident magnetic field using magneto resistive elements biased in different directions

    NASA Technical Reports Server (NTRS)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    1999-01-01

    A method and apparatus for sensing a desired component of a magnetic field using an isotropic magnetoresistive material. This is preferably accomplished by providing a bias field that is parallel to the desired component of the applied magnetic field. The bias field is applied in a first direction relative to a first set of magnetoresistive sensor elements, and in an opposite direction relative to a second set of magnetoresistive sensor elements. In this configuration, the desired component of the incident magnetic field adds to the bias field incident on the first set of magnetoresistive sensor elements, and subtracts from the bias field incident on the second set of magnetoresistive sensor elements. The magnetic field sensor may then sense the desired component of the incident magnetic field by simply sensing the difference in resistance of the first set of magnetoresistive sensor elements and the second set of magnetoresistive sensor elements.

  20. Practical considerations in experimental computational sensing

    NASA Astrophysics Data System (ADS)

    Poon, Phillip K.

    Computational sensing has demonstrated the ability to ameliorate or eliminate many trade-offs in traditional sensors. Rather than attempting to form a perfect image, then sampling at the Nyquist rate, and reconstructing the signal of interest prior to post-processing, the computational sensor attempts to utilize a priori knowledge, active or passive coding of the signal-of-interest combined with a variety of algorithms to overcome the trade-offs or to improve various task-specific metrics. While it is a powerful approach to radically new sensor architectures, published research tends to focus on architecture concepts and positive results. Little attention is given towards the practical issues when faced with implementing computational sensing prototypes. I will discuss the various practical challenges that I encountered while developing three separate applications of computational sensors. The first is a compressive sensing based object tracking camera, the SCOUT, which exploits the sparsity of motion between consecutive frames while using no moving parts to create a psuedo-random shift variant point-spread function. The second is a spectral imaging camera, the AFSSI-C, which uses a modified version of Principal Component Analysis with a Bayesian strategy to adaptively design spectral filters for direct spectral classification using a digital micro-mirror device (DMD) based architecture. The third demonstrates two separate architectures to perform spectral unmixing by using an adaptive algorithm or a hybrid techniques of using Maximum Noise Fraction and random filter selection from a liquid crystal on silicon based computational spectral imager, the LCSI. All of these applications demonstrate a variety of challenges that have been addressed or continue to challenge the computational sensing community. One issue is calibration, since many computational sensors require an inversion step and in the case of compressive sensing, lack of redundancy in the measurement data. Another issue is over multiplexing, as more light is collected per sample, the finite amount of dynamic range and quantization resolution can begin to degrade the recovery of the relevant information. A priori knowledge of the sparsity and or other statistics of the signal or noise is often used by computational sensors to outperform their isomorphic counterparts. This is demonstrated in all three of the sensors I have developed. These challenges and others will be discussed using a case-study approach through these three applications.

  1. Unsold is unseen … or is it? Examining the role of peripheral vision in the consumer choice process using eye-tracking methodology.

    PubMed

    Wästlund, Erik; Shams, Poja; Otterbring, Tobias

    2018-01-01

    In visual marketing, the truism that "unseen is unsold" means that products that are not noticed will not be sold. This truism rests on the idea that the consumer choice process is heavily influenced by visual search. However, given that the majority of available products are not seen by consumers, this article examines the role of peripheral vision in guiding attention during the consumer choice process. In two eye-tracking studies, one conducted in a lab facility and the other conducted in a supermarket, the authors investigate the role and limitations of peripheral vision. The results show that peripheral vision is used to direct visual attention when discriminating between target and non-target objects in an eye-tracking laboratory. Target and non-target similarity, as well as visual saliency of non-targets, constitute the boundary conditions for this effect, which generalizes from instruction-based laboratory tasks to preference-based choice tasks in a real supermarket setting. Thus, peripheral vision helps customers to devote a larger share of attention to relevant products during the consumer choice process. Taken together, the results show how the creation of consideration set (sets of possible choice options) relies on both goal-directed attention and peripheral vision. These results could explain how visually similar packaging positively influences market leaders, while making novel brands almost invisible on supermarket shelves. The findings show that even though unsold products might be unseen, in the sense that they have not been directly observed, they might still have been evaluated and excluded by means of peripheral vision. This article is based on controlled lab experiments as well as a field study conducted in a complex retail environment. Thus, the findings are valid both under controlled and ecologically valid conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Satellite and Aerial Remote Sensing in Support of Disaster Response Operations Conducted by the Texas Division of Emergency Management

    NASA Astrophysics Data System (ADS)

    Wells, G. L.; Tapley, B. D.; Bettadpur, S. V.; Howard, T.; Porter, B.; Smith, S.; Teng, L.; Tapley, C.

    2014-12-01

    The effective use of remote sensing products as guidance to emergency managers and first responders during field operations requires close coordination and communication with state-level decision makers, incident commanders and the leaders of individual strike teams. Information must be tailored to meet the needs of different emergency support functions and must contain current (ideally near real-time) data delivered in standard formats in time to influence decisions made under rapidly changing conditions. Since 2003, a representative of the University of Texas Center for Space Research (CSR) has served as a member of the Governor's Emergency Management Council and has directed the flow of information from remote sensing observations and high performance computing modeling and simulations to the Texas Division of Emergency Management in the State Operations Center. The CSR team has supported response and recovery missions resulting from hurricanes, tornadoes, flash floods, wildfires, oil spills and other natural and man-made disasters in Texas and surrounding states. Through web mapping services, state emergency managers and field teams have received threat model forecasts, real-time vehicle tracking displays and imagery to support search-and-clear operations before hurricane landfall, search-and-rescue missions following floods, tactical wildfire suppression, pollution monitoring and hazardous materials detection. Data servers provide near real-time satellite imagery collected by CSR's direct broadcast receiving system and post data products delivered during activations of the United Nations International Charter on Space and Major Disasters. In the aftermath of large-scale events, CSR is charged with tasking state aviation resources, including the Air National Guard and Texas Civil Air Patrol, to acquire geolocated aerial photography of the affected region for wide area damage assessment. A data archive for each disaster is available online for years following the event to assist forensic studies and local plans for recovery. The use of portable devices, including commodity smartphones and tablets, will soon permit even more responsive data delivery during future disasters through the expansion of wireless Public Safety Broadband (FirstNet) targeted to serve first responders.

  3. Use of Unmanned Aerial Vehicles for Improving Farm Scale Agricultural Water Management in Agriculture at a Farm Scale. A case study for field crops in the California's Central Valley

    NASA Astrophysics Data System (ADS)

    Medellin-Azuara, J.; Morande, J. A.; Jin, Y.; Chen, Y.; Paw U, K. T.; Viers, J. H.

    2016-12-01

    Traditional methods for estimating consumptive water use as evapotranspiration (ET) for agriculture in areas with water limitations such as California have always been a challenge for farmers, water managers, researchers and government agencies. Direct measurement of evapotranspiration (ET) and crop water stress in agriculture can be a cumbersome and costly task. Furthermore, spatial variability of applied water and irrigation and stress level in crops, due to inherent heterogeneity in soil conditions, topography, management practices, and lack of uniformity in water applications may affect estimates water use efficiency and water balances. This situation difficult long-term management of agroecosystems. This paper presents a case study for various areas in California's Central Valley using Unmanned Aerial Vehicles (UAVs) for a late portion of the 2016 irrigation season These estimates are compared those obtained by direct measurement (from previously deployed stations), and energy balance approaches with remotely sensed data in a selection of field crop parcels. This research improves information on water use and site conditions in agriculture by enhancing remote sensing-based estimations through the use of higher resolution multi-spectral and thermal imagery captured by UAV. We assess whether more frequent information at higher spatial resolution from UAVs can improve estimations of overall ET through energy balance and imagery. Stress levels and ET are characterized spatially to examine irrigation practices and their performance to improve water use in the agroecosystem. Ground based data such as air and crop temperature and stem water potential is collected to validate UAV aerial measurements. Preliminary results show the potential of UAV technology to improve timing, resolution and accuracy in the ET estimation and assessment of crop stress at a farm scales. Side to side comparison with ground level stations employing surface renewal, eddy covariance and energy balance provides a testbed to improve understanding of consumptive use and crop water management in water scarce irrigated agriculture regions. Keywords. California Central Valley, Agricultural Water Use, Remote Sensing, Energy Balance, Evapotranspiration, Water management,

  4. Vibration-Induced Errors in MEMS Tuning Fork Gyroscopes with Imbalance.

    PubMed

    Fang, Xiang; Dong, Linxi; Zhao, Wen-Sheng; Yan, Haixia; Teh, Kwok Siong; Wang, Gaofeng

    2018-05-29

    This paper discusses the vibration-induced error in non-ideal MEMS tuning fork gyroscopes (TFGs). Ideal TFGs which are thought to be immune to vibrations do not exist, and imbalance between two gyros of TFGs is an inevitable phenomenon. Three types of fabrication imperfections (i.e., stiffness imbalance, mass imbalance, and damping imbalance) are studied, considering different imbalance radios. We focus on the coupling types of two gyros of TFGs in both drive and sense directions, and the vibration sensitivities of four TFG designs with imbalance are simulated and compared. It is found that non-ideal TFGs with two gyros coupled both in drive and sense directions (type CC TFGs) are the most insensitive to vibrations with frequencies close to the TFG operating frequencies. However, sense-axis vibrations with in-phase resonant frequencies of a coupled gyros system result in severe error outputs to TFGs with two gyros coupled in the sense direction, which is mainly attributed to the sense capacitance nonlinearity. With increasing stiffness coupled ratio of the coupled gyros system, the sensitivity to vibrations with operating frequencies is cut down, yet sensitivity to vibrations with in-phase frequencies is amplified.

  5. Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.

    PubMed

    Stone, Scott A; Tata, Matthew S

    2017-01-01

    Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.

  6. Rendering visual events as sounds: Spatial attention capture by auditory augmented reality

    PubMed Central

    Tata, Matthew S.

    2017-01-01

    Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible. PMID:28792518

  7. The self-reference effect on episodic memory recollection in young and older adults and Alzheimer's disease.

    PubMed

    Lalanne, Jennifer; Rozenberg, Johanna; Grolleau, Pauline; Piolino, Pascale

    2013-12-01

    The Self-reference effect (SRE) on long-term episodic memory and autonoetic consciousness has been investigated in young adults, scarcely in older adults, but never in Alzheimer's patients. Is the functional influence of Selfreference still present when the individual's memory and identity are impaired? We investigated this issue in 60 young subjects, 41 elderly subjects, and 28 patients with Alzheimer's disease, by using 1) an incidental learning task of personality traits in three encoding conditions, inducing variable degrees of depth of processing and personal involvement, 2) a 2- minute retention interval free recall task, and 3) a 20-minute delayed recognition task, combined with a remember-know paradigm. Each recorded score was corrected for errors (intrusions in free recall, false alarms in recognition, and false source memory in remember responses). Compared with alternative encodings, the Self-reference significantly enhanced performance on the free recall task in the young group, and on the recognition task both in the young and older groups but not in the Alzheimer group. The most important finding in the Alzheimer group is that the Self-reference led the most often to a subjective sense of remembering (especially for the positive words) with the retrieval of the correct encoding source. This Self-reference recollection effect in patients was related to independent subjective measures of a positive and definite sense of Self (measured by the Tennessee Self Concept Scale), and to memory complaints in daily life. In conclusion, these results demonstrated the power and robustness of the Self-reference effect on recollection in long-term episodic memory in Alzheimer's disease, albeit the retrieval is considerably reduced. These results should open new perspectives for the development of rehabilitation programs for memory deficits.

  8. Recalling academic tasks

    NASA Astrophysics Data System (ADS)

    Draper, Franklin Gno

    This study was focused on what students remembered about five middle school science tasks when they were juniors and seniors in high school. Descriptions of the five tasks were reconstructed from available artifacts and teachers' records, notes and recollections. Three of the five tasks were "authentic" in the sense that students were asked to duplicate the decisions practitioners make in the adult world. The other two tasks were more typical school tasks involving note taking and preparation for a quiz. All five tasks, however, involved use of computers. Students were interviewed to examine what and how well they recalled the tasks and what forms or patterns of recall existed. Analysis of their responses indicated that different kinds of tasks produced different levels of recall. Authentically situated tasks were remembered much better than routine school tasks. Further, authentic tasks centered on design elements were recalled better than those for which design was not as pivotal. Patterns of recall indicated that participants most often recalled the decisions they made, the scenarios of the authentically situated tasks, the consequences of their tasks and the social contexts of the classroom. Task events, in other words, appeared to form a framework upon which students constructed stories of the tasks. The more salient the events, the richer the story, the deeper and more detailed the recall of the task. Thus, authentic tasks appeared to lend themselves to creating stories better than regular school tasks and therefore such tasks were recalled better. Implications of these patterns of recall are discussed with respect to issues of school learning and assessment.

  9. A Multi-Robot Sense-Act Approach to Lead to a Proper Acting in Environmental Incidents

    PubMed Central

    Conesa-Muñoz, Jesús; Valente, João; del Cerro, Jaime; Barrientos, Antonio; Ribeiro, Angela

    2016-01-01

    Many environmental incidents affect large areas, often in rough terrain constrained by natural obstacles, which makes intervention difficult. New technologies, such as unmanned aerial vehicles, may help address this issue due to their suitability to reach and easily cover large areas. Thus, unmanned aerial vehicles may be used to inspect the terrain and make a first assessment of the affected areas; however, nowadays they do not have the capability to act. On the other hand, ground vehicles rely on enough power to perform the intervention but exhibit more mobility constraints. This paper proposes a multi-robot sense-act system, composed of aerial and ground vehicles. This combination allows performing autonomous tasks in large outdoor areas by integrating both types of platforms in a fully automated manner. Aerial units are used to easily obtain relevant data from the environment and ground units use this information to carry out interventions more efficiently. This paper describes the platforms and sensors required by this multi-robot sense-act system as well as proposes a software system to automatically handle the workflow for any generic environmental task. The proposed system has proved to be suitable to reduce the amount of herbicide applied in agricultural treatments. Although herbicides are very polluting, they are massively deployed on complete agricultural fields to remove weeds. Nevertheless, the amount of herbicide required for treatment is radically reduced when it is accurately applied on patches by the proposed multi-robot system. Thus, the aerial units were employed to scout the crop and build an accurate weed distribution map which was subsequently used to plan the task of the ground units. The whole workflow was executed in a fully autonomous way, without human intervention except when required by Spanish law due to safety reasons. PMID:27517934

  10. Residential Stability and Academic Sense of Control

    ERIC Educational Resources Information Center

    Gigliotti, Richard J.

    1976-01-01

    Suggests that stability level of an individual and the community in which he operates is directly related to a child's sense of control and consequently his achievement in school. Findings indicate that for whites, community stability is positively and significantly related to sense of control, with the inverse for blacks. (Author/AM)

  11. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOEpatents

    Prince, J.M.; Dodson, M.G.; Lechelt, W.M.

    1989-07-18

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis. 14 figs.

  12. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOEpatents

    Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.

    1989-01-01

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.

  13. Effects of load position and force direction on back muscle loading in one-wheeled wheelbarrow tasks.

    PubMed

    Chen, Su-Huang; Lee, Yung-Hui; Lin, Chiuhsiang Joe

    2015-01-01

    Various parameters related to pushing/pulling tasks have been examined yet the effects of changing the load position in one-wheeled wheelbarrow task has not been examined. To explore the effects of load position and force direction on muscle activity during wheelbarrow tasks. Nine participants were recruited to take part in the experiment. Each participant performed 18 trials consisting of 2 force directions (push and pull) and 9 load positions. The dependent variables were EMG of erector spinae and gripping force. ANOVA was used to identify significant differences between force direction and load position in EMG and gripping force data. Results showed that peak EMG was lowest for the left and right erector spinae when the load was positioned farther from the participant. Peak EMG of the bilateral erector spinae increased when the weight was near the participant and on the ipsilateral hand. Based on the EMG results, we suggest that loads be arranged in the anterior part of the bin in order to reduce muscle activity on the spine during the wheelbarrow task. This finding also provides some directions in the improvement and ergonomic redesign of the one-wheeled wheelbarrow.

  14. Shifting senses in lexical semantic development

    PubMed Central

    Rabagliati, Hugh; Marcus, Gary F.; Pylkkänen, Liina

    2010-01-01

    Most words are associated with multiple senses. A DVD can be round (when describing a disc), and a DVD can be an hour long (when describing a movie), and in each case DVD means something different. The possible senses of a word are often predictable, and also constrained, as words cannot take just any meaning: for example, although a movie can be an hour long, it cannot sensibly be described as round (unlike a DVD). Learning the scope and limits of word meaning is vital for the comprehension of natural language, but poses a potentially difficult learnability problem for children. By testing what senses children are willing to assign to a variety of words, we demonstrate that, in comprehension, the problem is solved using a productive learning strategy. Children are perfectly capable of assigning different senses to a word; indeed they are essentially adult-like at assigning licensed meanings. But difficulties arise in determining which senses are assignable: children systematically overestimate the possible senses of a word, allowing meanings that adults rule unlicensed (e.g., taking round movie to refer to a disc). By contrast, this strategy does not extend to production, in which children use licensed, but not unlicensed, senses. Children’s productive comprehension strategy suggests an early emerging facility for using context in sense resolution (a difficult task for natural language processing algorithms), but leaves an intriguing question as to the mechanisms children use to learn a restricted, adult-like set of senses. PMID:20638655

  15. Removal of Surface-Reflected Light for the Measurement of Remote-Sensing Reflectance from an Above-Surface Platform

    DTIC Science & Technology

    2010-12-01

    remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear

  16. Removal of Surface-Reflected Light for the Measurement of Remote-Sensing Reflectance from an Above-Surface Platform

    DTIC Science & Technology

    2010-12-06

    remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear

  17. Task-dependent and distinct roles of the temporoparietal junction and inferior frontal cortex in the control of imitation

    PubMed Central

    Obhi, Sukhvinder S.; Banissy, Michael J.; Santiesteban, Idalmis; Press, Clare; Catmur, Caroline; Bird, Geoffrey

    2015-01-01

    The control of neurological networks supporting social cognition is crucially important for social interaction. In particular, the control of imitation is directly linked to interaction quality, with impairments associated with disorders characterized by social difficulties. Previous work suggests inferior frontal cortex (IFC) and the temporoparietal junction (TPJ) are involved in controlling imitation, but the functional roles of these areas remain unclear. Here, transcranial direct current stimulation (tDCS) was used to enhance cortical excitability at IFC and the TPJ prior to the completion of three tasks: (i) a naturalistic social interaction during which increased imitation is known to improve rapport, (ii) a choice reaction time task in which imitation needs to be inhibited for successful performance and (iii) a non-imitative control task. Relative to sham stimulation, stimulating IFC improved the context-dependent control of imitation—participants imitated more during the social interaction and less during the imitation inhibition task. In contrast, stimulating the TPJ reduced imitation in the inhibition task without affecting imitation during social interaction. Neither stimulation site affected the non-imitative control task. These data support a model in which IFC modulates imitation directly according to task demands, whereas TPJ controls task-appropriate shifts in attention toward representation of the self or the other, indirectly impacting upon imitation. PMID:25481003

  18. Developing Predictive Models for Algal Bloom Occurrence and Identifying Factors Controlling their Occurrence in the Charlotte County and Surroundings

    NASA Astrophysics Data System (ADS)

    Karki, S.; Sultan, M.; Elkadiri, R.; Chouinard, K.

    2017-12-01

    Numerous occurrences of harmful algal blooms (Karenia Brevis) were reported from Southwest Florida along the coast of Charlotte County, Florida. We are developing data-driven (remote sensing, field, and meteorological data) models to accomplish the following: (1) identify the factors controlling bloom development, (2) forecast bloom occurrences, and (3) make recommendations for monitoring variables that are found to be most indicative of algal bloom occurrences and for identifying optimum locations for monitoring stations. To accomplish these three tasks we completed/are working on the following steps. Firstly, we developed an automatic system for downloading and processing of ocean color data acquired through MODIS Terra and MODIS Aqua products using SeaDAS ocean color processing software. Examples of extracted variables include: chlorophyll a (OC3M), chlorophyll a Generalized Inherent Optical Property (GIOP), chlorophyll a Garver-Siegel- Maritorena (GSM), sea surface temperature (SST), Secchi disk depth, euphotic depth, turbidity index, wind direction and speed, colored dissolved organic material (CDOM). Secondly we are developing a GIS database and a web-based GIS to host the generated remote sensing-based products in addition to relevant meteorological and field data. Examples of the meteorological and field inputs include: precipitation amount and rates, concentrations of nitrogen, phosphorous, fecal coliform and Dissolved Oxygen (DO). Thirdly, we are constructing and validating a multivariate regression model and an artificial neural network model to simulate past algal bloom occurrences using the compiled archival remote sensing, meteorological, and field data. The validated model will then be used to predict the timing and location of algal bloom occurrences. The developed system, upon completion, could enhance the decision making process, improve the citizen's quality of life, and strengthen the local economy.

  19. Offshore Radiation Observations for Climate Research at the CERES Ocean Validation Experiment

    NASA Technical Reports Server (NTRS)

    Rutledge, Charles K.; Schuster, Gregory L.; Charlock, Thomas P.; Denn, Frederick M.; Smith, William L., Jr.; Fabbri, Bryan E.; Madigan, James J., Jr.; Knapp, Robert J.

    2006-01-01

    When radiometers on a satellite are pointed towards the planet with the goal of understanding a phenomenon quantitatively, rather than just creating a pleasing image, the task at hand is often problematic. The signal at the detector can be affected by scattering, absorption, and emission; and these can be due to atmospheric constituents (gases, clouds, and aerosols), the earth's surface, and subsurface features. When targeting surface phenomena, the remote sensing algorithm needs to account for the radiation associated with the atmospheric constituents. Likewise, one needs to correct for the radiation leaving the surface, when atmospheric phenomena are of interest. Rigorous validation of such remote sensing products is a real challenge. In visible and near infrared wavelengths, the jumble of effects on atmospheric radiation are best accomplished over dark surfaces with fairly uniform reflective properties (spatial homogeneity) in the satellite instrument's field of view (FOV). The ocean's surface meets this criteria; land surfaces - which are brighter, more spatially inhomogeneous, and more changeable with time - generally do not. NASA's Clouds and the Earth's Radiant Energy System (CERES) project has used this backdrop to establish a radiation monitoring site in Virginia's coastal Atlantic Ocean. The project, called the CERES Ocean Validation Experiment (COVE), is located on a rigid ocean platform allowing the accurate measurement of radiation parameters that require precise leveling and pointing unavailable from ships or buoys. The COVE site is an optimal location for verifying radiative transfer models and remote sensing algorithms used in climate research; because of the platform's small size, there are no island wake effects; and suites of sensors can be simultaneously trained both on the sky and directly on ocean itself. This paper describes the site, the types of measurements made, multiple years of atmospheric and ocean surface radiation observations, and satellite validation results.

  20. Parent-Driven Campaign Videos: An Analysis of the Motivation and Affect of Videos Created by Parents of Children With Complex Healthcare Needs.

    PubMed

    Carter, Bernie; Bray, Lucy; Keating, Paula; Wilkinson, Catherine

    2017-09-15

    Caring for a child with complex health care needs places additional stress and time demands on parents. Parents often turn to their peers to share their experiences, gain support, and lobby for change; increasingly this is done through social media. The WellChild #notanurse_but is a parent-driven campaign that states its aim is to "shine a light" on the care parents, who are not nurses, have to undertake for their child with complex health care needs and to raise decision-makers' awareness of the gaps in service provision and support. This article reports on a study that analyzed the #notanurse_but parent-driven campaign videos. The purpose of the study was to consider the videos in terms of the range, content, context, perspectivity (motivation), and affect (sense of being there) in order to inform the future direction of the campaign. Analysis involved repeated viewing of a subset of 30 purposively selected videos and documenting our analysis on a specifically designed data extraction sheet. Each video was analyzed by a minimum of 2 researchers. All but 2 of the 30 videos were filmed inside the home. A variety of filming techniques were used. Mothers were the main narrators in all but 1 set of videos. The sense of perspectivity was clearly linked to the campaign with the narration pressing home the reality, complexity, and need for vigilance in caring for a child with complex health care needs. Different clinical tasks and routines undertaken as part of the child's care were depicted. Videos also reported on a sense of feeling different than "normal families"; the affect varied among the researchers, ranging from strong to weaker emotional responses.

Top