Change Detection: Training and Transfer
Gaspar, John G.; Neider, Mark B.; Simons, Daniel J.; McCarley, Jason S.; Kramer, Arthur F.
2013-01-01
Observers often fail to notice even dramatic changes to their environment, a phenomenon known as change blindness. If training could enhance change detection performance in general, then it might help to remedy some real-world consequences of change blindness (e.g. failing to detect hazards while driving). We examined whether adaptive training on a simple change detection task could improve the ability to detect changes in untrained tasks for young and older adults. Consistent with an effective training procedure, both young and older adults were better able to detect changes to trained objects following training. However, neither group showed differential improvement on untrained change detection tasks when compared to active control groups. Change detection training led to improvements on the trained task but did not generalize to other change detection tasks. PMID:23840775
A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance.
von Trapp, Gardiner; Buran, Bradley N; Sen, Kamal; Semple, Malcolm N; Sanes, Dan H
2016-10-26
The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. Copyright © 2016 the authors 0270-6474/16/3611097-10$15.00/0.
A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance
Buran, Bradley N.; Sen, Kamal; Semple, Malcolm N.; Sanes, Dan H.
2016-01-01
The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. SIGNIFICANCE STATEMENT The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. PMID:27798189
Abich, Julian; Reinerman-Jones, Lauren; Matthews, Gerald
2017-06-01
The present study investigated how three task demand factors influenced performance, subjective workload and stress of novice intelligence, surveillance, and reconnaissance operators within a simulation of an unmanned ground vehicle. Manipulations were task type, dual-tasking and event rate. Participants were required to discriminate human targets within a street scene from a direct video feed (threat detection [TD] task) and detect changes in symbols presented in a map display (change detection [CD] task). Dual-tasking elevated workload and distress, and impaired performance for both tasks. However, with increasing event rate, CD task deteriorated, but TD improved. Thus, standard workload models provide a better guide to evaluating the demands of abstract symbols than to processing realistic human characters. Assessment of stress and workload may be especially important in the design and evaluation of systems in which human character critical signals must be detected in video images. Practitioner Summary: This experiment assessed subjective workload and stress during threat and CD tasks performed alone and in combination. Results indicated an increase in event rate led to significant improvements in performance during TD, but decrements during CD, yet both had associated increases in workload and engagement.
“Global” visual training and extent of transfer in amblyopic macaque monkeys
Kiorpes, Lynne; Mangal, Paul
2015-01-01
Perceptual learning is gaining acceptance as a potential treatment for amblyopia in adults and children beyond the critical period. Many perceptual learning paradigms result in very specific improvement that does not generalize beyond the training stimulus, closely related stimuli, or visual field location. To be of use in amblyopia, a less specific effect is needed. To address this problem, we designed a more general training paradigm intended to effect improvement in visual sensitivity across tasks and domains. We used a “global” visual stimulus, random dot motion direction discrimination with 6 training conditions, and tested for posttraining improvement on a motion detection task and 3 spatial domain tasks (contrast sensitivity, Vernier acuity, Glass pattern detection). Four amblyopic macaques practiced the motion discrimination with their amblyopic eye for at least 20,000 trials. All showed improvement, defined as a change of at least a factor of 2, on the trained task. In addition, all animals showed improvements in sensitivity on at least some of the transfer test conditions, mainly the motion detection task; transfer to the spatial domain was inconsistent but best at fine spatial scales. However, the improvement on the transfer tasks was largely not retained at long-term follow-up. Our generalized training approach is promising for amblyopia treatment, but sustaining improved performance may require additional intervention. PMID:26505868
Reconciling change blindness with long-term memory for objects.
Wood, Katherine; Simons, Daniel J
2017-02-01
How can we reconcile remarkably precise long-term memory for thousands of images with failures to detect changes to similar images? We explored whether people can use detailed, long-term memory to improve change detection performance. Subjects studied a set of images of objects and then performed recognition and change detection tasks with those images. Recognition memory performance exceeded change detection performance, even when a single familiar object in the postchange display consistently indicated the change location. In fact, participants were no better when a familiar object predicted the change location than when the displays consisted of unfamiliar objects. When given an explicit strategy to search for a familiar object as a way to improve performance on the change detection task, they performed no better than in a 6-alternative recognition memory task. Subjects only benefited from the presence of familiar objects in the change detection task when they had more time to view the prechange array before it switched. Once the cost to using the change detection information decreased, subjects made use of it in conjunction with memory to boost performance on the familiar-item change detection task. This suggests that even useful information will go unused if it is sufficiently difficult to extract.
No psychological effect of color context in a low level vision task
Pedley, Adam; Wade, Alex R
2013-01-01
Background: A remarkable series of recent papers have shown that colour can influence performance in cognitive tasks. In particular, they suggest that viewing a participant number printed in red ink or other red ancillary stimulus elements improves performance in tasks requiring local processing and impedes performance in tasks requiring global processing whilst the reverse is true for the colour blue. The tasks in these experiments require high level cognitive processing such as analogy solving or remote association tests and the chromatic effect on local vs. global processing is presumed to involve widespread activation of the autonomic nervous system. If this is the case, we might expect to see similar effects on all local vs. global task comparisons. To test this hypothesis, we asked whether chromatic cues also influence performance in tasks involving low level visual feature integration. Methods: Subjects performed either local (contrast detection) or global (form detection) tasks on achromatic dynamic Glass pattern stimuli. Coloured instructions, target frames and fixation points were used to attempt to bias performance to different task types. Based on previous literature, we hypothesised that red cues would improve performance in the (local) contrast detection task but would impede performance in the (global) form detection task. Results: A two-way, repeated measures, analysis of covariance (2×2 ANCOVA) with gender as a covariate, revealed no influence of colour on either task, F(1,29) = 0.289, p = 0.595, partial η 2 = 0.002. Additional analysis revealed no significant differences in only the first attempts of the tasks or in the improvement in performance between trials. Discussion: We conclude that motivational processes elicited by colour perception do not influence neuronal signal processing in the early visual system, in stark contrast to their putative effects on processing in higher areas. PMID:25075280
No psychological effect of color context in a low level vision task.
Pedley, Adam; Wade, Alex R
2013-01-01
A remarkable series of recent papers have shown that colour can influence performance in cognitive tasks. In particular, they suggest that viewing a participant number printed in red ink or other red ancillary stimulus elements improves performance in tasks requiring local processing and impedes performance in tasks requiring global processing whilst the reverse is true for the colour blue. The tasks in these experiments require high level cognitive processing such as analogy solving or remote association tests and the chromatic effect on local vs. global processing is presumed to involve widespread activation of the autonomic nervous system. If this is the case, we might expect to see similar effects on all local vs. global task comparisons. To test this hypothesis, we asked whether chromatic cues also influence performance in tasks involving low level visual feature integration. Subjects performed either local (contrast detection) or global (form detection) tasks on achromatic dynamic Glass pattern stimuli. Coloured instructions, target frames and fixation points were used to attempt to bias performance to different task types. Based on previous literature, we hypothesised that red cues would improve performance in the (local) contrast detection task but would impede performance in the (global) form detection task. A two-way, repeated measures, analysis of covariance (2×2 ANCOVA) with gender as a covariate, revealed no influence of colour on either task, F(1,29) = 0.289, p = 0.595, partial η (2) = 0.002. Additional analysis revealed no significant differences in only the first attempts of the tasks or in the improvement in performance between trials. We conclude that motivational processes elicited by colour perception do not influence neuronal signal processing in the early visual system, in stark contrast to their putative effects on processing in higher areas.
Daley, Kelly B; Wodrich, David L; Hasan, Khalid
2006-02-01
To determine whether stabilizing serum glucose, via introduction of an insulin pump, improves classroom attention among children with type-1 diabetes mellitus. Four boys having type-1 diabetes mellitus with unstable serum glucose were observed in their classroom for 10 baseline days. An insulin pump was placed and serum glucose stabilized, and they were then observed again for 10 days. A modified multiple baseline design was used to determine if improved on-task and off-task behavior was associated with better glycemic control. Rating scales and a laboratory measure of attention, measures of secondary interest, were also administered before and after pump introduction, and potential improvement in individuals' scores was evaluated. All boys had apparent improvement in on-task and off-task behavior as observed in their classrooms. Improvements were substantial, averaging 20% in on-task behavior and 34% in off-task behavior. However, no changes were detected on rating scales or laboratory measures. This study offers preliminary evidence that stabilizing serum glucose improves classroom attention, although the effect was detected only by observation of classroom behavior using highly structured techniques. Consequently, use of direct observation techniques may be important in studying the effects of chronic illness on classroom functioning.
Cue combination in a combined feature contrast detection and figure identification task.
Meinhardt, Günter; Persike, Malte; Mesenholl, Björn; Hagemann, Cordula
2006-11-01
Target figures defined by feature contrast in spatial frequency, orientation or both cues had to be detected in Gabor random fields and their shape had to be identified in a dual task paradigm. Performance improved with increasing feature contrast and was strongly correlated among both tasks. Subjects performed significantly better with combined cues than with single cues. The improvement due to cue summation was stronger than predicted by the assumption of independent feature specific mechanisms, and increased with the performance level achieved with single cues until it was limited by ceiling effects. Further, cue summation was also strongly correlated among tasks: when there was benefit due to the additional cue in feature contrast detection, there was also benefit in figure identification. For the same performance level achieved with single cues, cue summation was generally larger in figure identification than in feature contrast detection, indicating more benefit when processes of shape and surface formation are involved. Our results suggest that cue combination improves spatial form completion and figure-ground segregation in noisy environments, and therefore leads to more stable object vision.
Task-based statistical image reconstruction for high-quality cone-beam CT
NASA Astrophysics Data System (ADS)
Dang, Hao; Webster Stayman, J.; Xu, Jennifer; Zbijewski, Wojciech; Sisniega, Alejandro; Mow, Michael; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.
2017-11-01
Task-based analysis of medical imaging performance underlies many ongoing efforts in the development of new imaging systems. In statistical image reconstruction, regularization is often formulated in terms to encourage smoothness and/or sharpness (e.g. a linear, quadratic, or Huber penalty) but without explicit formulation of the task. We propose an alternative regularization approach in which a spatially varying penalty is determined that maximizes task-based imaging performance at every location in a 3D image. We apply the method to model-based image reconstruction (MBIR—viz., penalized weighted least-squares, PWLS) in cone-beam CT (CBCT) of the head, focusing on the task of detecting a small, low-contrast intracranial hemorrhage (ICH), and we test the performance of the algorithm in the context of a recently developed CBCT prototype for point-of-care imaging of brain injury. Theoretical predictions of local spatial resolution and noise are computed via an optimization by which regularization (specifically, the quadratic penalty strength) is allowed to vary throughout the image to maximize local task-based detectability index ({{d}\\prime} ). Simulation studies and test-bench experiments were performed using an anthropomorphic head phantom. Three PWLS implementations were tested: conventional (constant) penalty; a certainty-based penalty derived to enforce constant point-spread function, PSF; and the task-based penalty derived to maximize local detectability at each location. Conventional (constant) regularization exhibited a fairly strong degree of spatial variation in {{d}\\prime} , and the certainty-based method achieved uniform PSF, but each exhibited a reduction in detectability compared to the task-based method, which improved detectability up to ~15%. The improvement was strongest in areas of high attenuation (skull base), where the conventional and certainty-based methods tended to over-smooth the data. The task-driven reconstruction method presents a promising regularization method in MBIR by explicitly incorporating task-based imaging performance as the objective. The results demonstrate improved ICH conspicuity and support the development of high-quality CBCT systems.
Schaefer, Sydney Y; Lang, Catherine E
2012-01-01
Theories of motor learning predict that training a movement reduces the amount of attention needed for its performance (i.e., more automatic). If training one movement transfers, then the amount of attention needed for performing a second movement should also be reduced, as measured under dual task conditions. The authors' purpose was to test whether dual task paradigms are feasible for detecting transfer of training between two naturalistic movements. Immediately following motor training, subjects improved performance of a second untrained movement under single and dual task conditions. Subjects with no training did not. Improved performance in the untrained movement was likely due to transfer, and suggests that dual tasks may be feasible for detecting transfer between naturalistic actions.
Task-driven imaging in cone-beam computed tomography.
Gang, G J; Stayman, J W; Ouadah, S; Ehtiati, T; Siewerdsen, J H
Conventional workflow in interventional imaging often ignores a wealth of prior information of the patient anatomy and the imaging task. This work introduces a task-driven imaging framework that utilizes such information to prospectively design acquisition and reconstruction techniques for cone-beam CT (CBCT) in a manner that maximizes task-based performance in subsequent imaging procedures. The framework is employed in jointly optimizing tube current modulation, orbital tilt, and reconstruction parameters in filtered backprojection reconstruction for interventional imaging. Theoretical predictors of noise and resolution relates acquisition and reconstruction parameters to task-based detectability. Given a patient-specific prior image and specification of the imaging task, an optimization algorithm prospectively identifies the combination of imaging parameters that maximizes task-based detectability. Initial investigations were performed for a variety of imaging tasks in an elliptical phantom and an anthropomorphic head phantom. Optimization of tube current modulation and view-dependent reconstruction kernel was shown to have greatest benefits for a directional task (e.g., identification of device or tissue orientation). The task-driven approach yielded techniques in which the dose and sharp kernels were concentrated in views contributing the most to the signal power associated with the imaging task. For example, detectability of a line pair detection task was improved by at least three fold compared to conventional approaches. For radially symmetric tasks, the task-driven strategy yielded results similar to a minimum variance strategy in the absence of kernel modulation. Optimization of the orbital tilt successfully avoided highly attenuating structures that can confound the imaging task by introducing noise correlations masquerading at spatial frequencies of interest. This work demonstrated the potential of a task-driven imaging framework to improve image quality and reduce dose beyond that achievable with conventional imaging approaches.
Heimdall System for MSSS Sensor Tasking
NASA Astrophysics Data System (ADS)
Herz, A.; Jones, B.; Herz, E.; George, D.; Axelrad, P.; Gehly, S.
In Norse Mythology, Heimdall uses his foreknowledge and keen eyesight to keep watch for disaster from his home near the Rainbow Bridge. Orbit Logic and the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado (CU) have developed the Heimdall System to schedule observations of known and uncharacterized objects and search for new objects from the Maui Space Surveillance Site. Heimdall addresses the current need for automated and optimized SSA sensor tasking driven by factors associated with improved space object catalog maintenance. Orbit Logic and CU developed an initial baseline prototype SSA sensor tasking capability for select sensors at the Maui Space Surveillance Site (MSSS) using STK and STK Scheduler, and then added a new Track Prioritization Component for FiSST-inspired computations for predicted Information Gain and Probability of Detection, and a new SSA-specific Figure-of-Merit (FOM) for optimized SSA sensor tasking. While the baseline prototype addresses automation and some of the multi-sensor tasking optimization, the SSA-improved prototype addresses all of the key elements required for improved tasking leading to enhanced object catalog maintenance. The Heimdall proof-of-concept was demonstrated for MSSS SSA sensor tasking for a 24 hour period to attempt observations of all operational satellites in the unclassified NORAD catalog, observe a small set of high priority GEO targets every 30 minutes, make a sky survey of the GEO belt region accessible to MSSS sensors, and observe particular GEO regions that have a high probability of finding new objects with any excess sensor time. This Heimdall prototype software paves the way for further R&D that will integrate this technology into the MSSS systems for operational scheduling, improve the software's scalability, and further tune and enhance schedule optimization. The Heimdall software for SSA sensor tasking provides greatly improved performance over manual tasking, improved coordinated sensor usage, and tasking schedules driven by catalog improvement goals (reduced overall covariance, etc.). The improved performance also enables more responsive sensor tasking to address external events, newly detected objects, newly detected object activity, and sensor anomalies. Instead of having to wait until the next day's scheduling phase, events can be addressed with new tasking schedules immediately (within seconds or minutes). Perhaps the most important benefit is improved SSA based on an overall improvement to the quality of the space catalog. By driving sensor tasking and scheduling based on predicted Information Gain and other relevant factors, better decisions are made in the application of available sensor resources, leading to an improved catalog and better information about the objects of most interest. The Heimdall software solution provides a configurable, automated system to improve sensor tasking efficiency and responsiveness for SSA applications. The FISST algorithms for Track Prioritization, SSA specific task and resource attributes, Scheduler algorithms, and configurable SSA-specific Figure-of-Merit together provide optimized and tunable scheduling for the Maui Space Surveillance Site and possibly other sites and organizations across the U.S. military and for allies around the world.
Clark, Kait; Fleck, Mathias S; Mitroff, Stephen R
2011-01-01
Recent research has shown that avid action video game players (VGPs) outperform non-video game players (NVGPs) on a variety of attentional and perceptual tasks. However, it remains unknown exactly why and how such differences arise; while some prior research has demonstrated that VGPs' improvements stem from enhanced basic perceptual processes, other work indicates that they can stem from enhanced attentional control. The current experiment used a change-detection task to explore whether top-down strategies can contribute to VGPs' improved abilities. Participants viewed alternating presentations of an image and a modified version of the image and were tasked with detecting and localizing the changed element. Consistent with prior claims of enhanced perceptual abilities, VGPs were able to detect the changes while requiring less exposure to the change than NVGPs. Further analyses revealed this improved change detection performance may result from altered strategy use; VGPs employed broader search patterns when scanning scenes for potential changes. These results complement prior demonstrations of VGPs' enhanced bottom-up perceptual benefits by providing new evidence of VGPs' potentially enhanced top-down strategic benefits. Copyright © 2010 Elsevier B.V. All rights reserved.
Schaefer, Sydney Y.; Lang, Catherine E.
2012-01-01
Theories of motor learning predict that training a movement reduces the amount of attention needed for its performance (i.e. more automatic). If training one movement transfers, then the amount of attention needed for performing a second movement should also be reduced, as measured under dual task conditions. The purpose of this study was to test whether dual task paradigms are feasible for detecting transfer of training between two naturalistic movements. Immediately following motor training, subjects improved performance of a second untrained movement under both single and dual task conditions. Subjects with no training did not. Improved performance in the untrained movement was likely due to transfer, and suggests that dual tasks may be feasible for detecting transfer between naturalistic actions. PMID:22934682
Chromatic Perceptual Learning but No Category Effects without Linguistic Input.
Grandison, Alexandra; Sowden, Paul T; Drivonikou, Vicky G; Notman, Leslie A; Alexander, Iona; Davies, Ian R L
2016-01-01
Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest.
Observer efficiency in free-localization tasks with correlated noise.
Abbey, Craig K; Eckstein, Miguel P
2014-01-01
The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined search region and subjects respond by localizing the target. Since these tasks are representative of many real-world search tasks, it is of interest to evaluate the efficiency of observer performance in them. The central question of this work is whether humans are able to effectively use the information in a free-localization task relative to a similar task where target location is fixed. We use a yes-no detection task at a cued location as the reference for this comparison. Each of the tasks is evaluated using a Gaussian target profile embedded in four different Gaussian noise backgrounds having power-law noise power spectra with exponents ranging from 0 to 3. The free localization task had a square 6.7° search region. We report on two follow-up studies investigating efficiency in a detect-and-localize task, and the effect of processing the white-noise backgrounds. In the fixed-location detection task, we find average observer efficiency ranges from 35 to 59% for the different noise backgrounds. Observer efficiency improves dramatically in the tasks involving localization, ranging from 63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize tasks. Performance in white noise, the lowest efficiency condition, was improved by filtering to give them a power-law exponent of 2. Classification images, used to examine spatial frequency weights for the tasks, show better tuning to ideal weights in the free-localization tasks. The high absolute levels of efficiency suggest that observers are well-adapted to free-localization tasks.
Observer efficiency in free-localization tasks with correlated noise
Abbey, Craig K.; Eckstein, Miguel P.
2014-01-01
The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined search region and subjects respond by localizing the target. Since these tasks are representative of many real-world search tasks, it is of interest to evaluate the efficiency of observer performance in them. The central question of this work is whether humans are able to effectively use the information in a free-localization task relative to a similar task where target location is fixed. We use a yes-no detection task at a cued location as the reference for this comparison. Each of the tasks is evaluated using a Gaussian target profile embedded in four different Gaussian noise backgrounds having power-law noise power spectra with exponents ranging from 0 to 3. The free localization task had a square 6.7° search region. We report on two follow-up studies investigating efficiency in a detect-and-localize task, and the effect of processing the white-noise backgrounds. In the fixed-location detection task, we find average observer efficiency ranges from 35 to 59% for the different noise backgrounds. Observer efficiency improves dramatically in the tasks involving localization, ranging from 63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize tasks. Performance in white noise, the lowest efficiency condition, was improved by filtering to give them a power-law exponent of 2. Classification images, used to examine spatial frequency weights for the tasks, show better tuning to ideal weights in the free-localization tasks. The high absolute levels of efficiency suggest that observers are well-adapted to free-localization tasks. PMID:24817854
Improving resolution of dynamic communities in human brain networks through targeted node removal
Turner, Benjamin O.; Miller, Michael B.; Carlson, Jean M.
2017-01-01
Current approaches to dynamic community detection in complex networks can fail to identify multi-scale community structure, or to resolve key features of community dynamics. We propose a targeted node removal technique to improve the resolution of community detection. Using synthetic oscillator networks with well-defined “ground truth” communities, we quantify the community detection performance of a common modularity maximization algorithm. We show that the performance of the algorithm on communities of a given size deteriorates when these communities are embedded in multi-scale networks with communities of different sizes, compared to the performance in a single-scale network. We demonstrate that targeted node removal during community detection improves performance on multi-scale networks, particularly when removing the most functionally cohesive nodes. Applying this approach to network neuroscience, we compare dynamic functional brain networks derived from fMRI data taken during both repetitive single-task and varied multi-task experiments. After the removal of regions in visual cortex, the most coherent functional brain area during the tasks, community detection is better able to resolve known functional brain systems into communities. In addition, node removal enables the algorithm to distinguish clear differences in brain network dynamics between these experiments, revealing task-switching behavior that was not identified with the visual regions present in the network. These results indicate that targeted node removal can improve spatial and temporal resolution in community detection, and they demonstrate a promising approach for comparison of network dynamics between neuroscientific data sets with different resolution parameters. PMID:29261662
Swallow, Khena M; Jiang, Yuhong V
2010-04-01
Recent work on event perception suggests that perceptual processing increases when events change. An important question is how such changes influence the way other information is processed, particularly during dual-task performance. In this study, participants monitored a long series of distractor items for an occasional target as they simultaneously encoded unrelated background scenes. The appearance of an occasional target could have two opposite effects on the secondary task: It could draw attention away from the second task, or, as a change in the ongoing event, it could improve secondary task performance. Results were consistent with the second possibility. Memory for scenes presented simultaneously with the targets was better than memory for scenes that preceded or followed the targets. This effect was observed when the primary detection task involved visual feature oddball detection, auditory oddball detection, and visual color-shape conjunction detection. It was eliminated when the detection task was omitted, and when it required an arbitrary response mapping. The appearance of occasional, task-relevant events appears to trigger a temporal orienting response that facilitates processing of concurrently attended information (Attentional Boost Effect). Copyright 2009 Elsevier B.V. All rights reserved.
Swallow, Khena M.; Jiang, Yuhong V.
2009-01-01
Recent work on event perception suggests that perceptual processing increases when events change. An important question is how such changes influence the way other information is processed, particularly during dual-task performance. In this study, participants monitored a long series of distractor items for an occasional target as they simultaneously encoded unrelated background scenes. The appearance of an occasional target could have two opposite effects on the secondary task: It could draw attention away from the second task, or, as a change in the ongoing event, it could improve secondary task performance. Results were consistent with the second possibility. Memory for scenes presented simultaneously with the targets was better than memory for scenes that preceded or followed the targets. This effect was observed when the primary detection task involved visual feature oddball detection, auditory oddball detection, and visual color-shape conjunction detection. It was eliminated when the detection task was omitted, and when it required an arbitrary response mapping. The appearance of occasional, task-relevant events appears to trigger a temporal orienting response that facilitates processing of concurrently attended information (Attentional Boost Effect). PMID:20080232
Neuroimaging Evidence for 2 Types of Plasticity in Association with Visual Perceptual Learning.
Shibata, Kazuhisa; Sasaki, Yuka; Kawato, Mitsuo; Watanabe, Takeo
2016-09-01
Visual perceptual learning (VPL) is long-term performance improvement as a result of perceptual experience. It is unclear whether VPL is associated with refinement in representations of the trained feature (feature-based plasticity), improvement in processing of the trained task (task-based plasticity), or both. Here, we provide empirical evidence that VPL of motion detection is associated with both types of plasticity which occur predominantly in different brain areas. Before and after training on a motion detection task, subjects' neural responses to the trained motion stimuli were measured using functional magnetic resonance imaging. In V3A, significant response changes after training were observed specifically to the trained motion stimulus but independently of whether subjects performed the trained task. This suggests that the response changes in V3A represent feature-based plasticity in VPL of motion detection. In V1 and the intraparietal sulcus, significant response changes were found only when subjects performed the trained task on the trained motion stimulus. This suggests that the response changes in these areas reflect task-based plasticity. These results collectively suggest that VPL of motion detection is associated with the 2 types of plasticity, which occur in different areas and therefore have separate mechanisms at least to some degree. © The Author 2016. Published by Oxford University Press.
Boosting pitch encoding with audiovisual interactions in congenital amusia.
Albouy, Philippe; Lévêque, Yohana; Hyde, Krista L; Bouchet, Patrick; Tillmann, Barbara; Caclin, Anne
2015-01-01
The combination of information across senses can enhance perception, as revealed for example by decreased reaction times or improved stimulus detection. Interestingly, these facilitatory effects have been shown to be maximal when responses to unisensory modalities are weak. The present study investigated whether audiovisual facilitation can be observed in congenital amusia, a music-specific disorder primarily ascribed to impairments of pitch processing. Amusic individuals and their matched controls performed two tasks. In Task 1, they were required to detect auditory, visual, or audiovisual stimuli as rapidly as possible. In Task 2, they were required to detect as accurately and as rapidly as possible a pitch change within an otherwise monotonic 5-tone sequence that was presented either only auditorily (A condition), or simultaneously with a temporally congruent, but otherwise uninformative visual stimulus (AV condition). Results of Task 1 showed that amusics exhibit typical auditory and visual detection, and typical audiovisual integration capacities: both amusics and controls exhibited shorter response times for audiovisual stimuli than for either auditory stimuli or visual stimuli. Results of Task 2 revealed that both groups benefited from simultaneous uninformative visual stimuli to detect pitch changes: accuracy was higher and response times shorter in the AV condition than in the A condition. The audiovisual improvements of response times were observed for different pitch interval sizes depending on the group. These results suggest that both typical listeners and amusic individuals can benefit from multisensory integration to improve their pitch processing abilities and that this benefit varies as a function of task difficulty. These findings constitute the first step towards the perspective to exploit multisensory paradigms to reduce pitch-related deficits in congenital amusia, notably by suggesting that audiovisual paradigms are effective in an appropriate range of unimodal performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pailian, Hrag; Halberda, Justin
2015-04-01
We investigated the psychometric properties of the one-shot change detection task for estimating visual working memory (VWM) storage capacity-and also introduced and tested an alternative flicker change detection task for estimating these limits. In three experiments, we found that the one-shot whole-display task returns estimates of VWM storage capacity (K) that are unreliable across set sizes-suggesting that the whole-display task is measuring different things at different set sizes. In two additional experiments, we found that the one-shot single-probe variant shows improvements in the reliability and consistency of K estimates. In another additional experiment, we found that a one-shot whole-display-with-click task (requiring target localization) also showed improvements in reliability and consistency. The latter results suggest that the one-shot task can return reliable and consistent estimates of VWM storage capacity (K), and they highlight the possibility that the requirement to localize the changed target is what engenders this enhancement. Through a final series of four experiments, we introduced and tested an alternative flicker change detection method that also requires the observer to localize the changing target and that generates, from response times, an estimate of VWM storage capacity (K). We found that estimates of K from the flicker task correlated with estimates from the traditional one-shot task and also had high reliability and consistency. We highlight the flicker method's ability to estimate executive functions as well as VWM storage capacity, and discuss the potential for measuring multiple abilities with the one-shot and flicker tasks.
Improving Visual Threat Detection: Research to Validate the Threat Detection Skills Trainer
2013-08-01
potential threats present in this scene and explain the meaning and implications of these threats. You have two minutes to write a response...could be due to the nature of the tasks or to fatigue. Requiring Soldiers to write answers on multiple trials, and across similar tasks, might have...tasks will likely be significantly different from those experienced in the trainer. This would remove the writing requirement over multiple trials
Chromatic Perceptual Learning but No Category Effects without Linguistic Input
Grandison, Alexandra; Sowden, Paul T.; Drivonikou, Vicky G.; Notman, Leslie A.; Alexander, Iona; Davies, Ian R. L.
2016-01-01
Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest. PMID:27252669
Perceptual learning improves contrast sensitivity, visual acuity, and foveal crowding in amblyopia.
Barollo, Michele; Contemori, Giulio; Battaglini, Luca; Pavan, Andrea; Casco, Clara
2017-01-01
Amblyopic observers present abnormal spatial interactions between a low-contrast sinusoidal target and high-contrast collinear flankers. It has been demonstrated that perceptual learning (PL) can modulate these low-level lateral interactions, resulting in improved visual acuity and contrast sensitivity. We measured the extent and duration of generalization effects to various spatial tasks (i.e., visual acuity, Vernier acuity, and foveal crowding) through PL on the target's contrast detection. Amblyopic observers were trained on a contrast-detection task for a central target (i.e., a Gabor patch) flanked above and below by two high-contrast Gabor patches. The pre- and post-learning tasks included lateral interactions at different target-to-flankers separations (i.e., 2, 3, 4, 8λ) and included a range of spatial frequencies and stimulus durations as well as visual acuity, Vernier acuity, contrast-sensitivity function, and foveal crowding. The results showed that perceptual training reduced the target's contrast-detection thresholds more for the longest target-to-flanker separation (i.e., 8λ). We also found generalization of PL to different stimuli and tasks: contrast sensitivity for both trained and untrained spatial frequencies, visual acuity for Sloan letters, and foveal crowding, and partially for Vernier acuity. Follow-ups after 5-7 months showed not only complete maintenance of PL effects on visual acuity and contrast sensitivity function but also further improvement in these tasks. These results suggest that PL improves facilitatory lateral interactions in amblyopic observers, which usually extend over larger separations than in typical foveal vision. The improvement in these basic visual spatial operations leads to a more efficient capability of performing spatial tasks involving high levels of visual processing, possibly due to the refinement of bottom-up and top-down networks of visual areas.
Repeated Induction of Inattentional Blindness in a Simulated Aviation Environment
NASA Technical Reports Server (NTRS)
Kennedy, Kellie D.; Stephens, Chad L.; Williams, Ralph A.; Schutte, Paul C.
2017-01-01
The study reported herein is a subset of a larger investigation on the role of automation in the context of the flight deck and used a fixed-based, human-in-the-loop simulator. This paper explored the relationship between automation and inattentional blindness (IB) occurrences in a repeated induction paradigm using two types of runway incursions. The critical stimuli for both runway incursions were directly relevant to primary task performance. Sixty non-pilot participants performed the final five minutes of a landing scenario twice in one of three automation conditions: full automation (FA), partial automation (PA), and no automation (NA). The first induction resulted in a 70 percent (42 of 60) detection failure rate with those in the PA condition significantly more likely to detect the incursion compared to the FA condition or the NA condition. The second induction yielded a 50 percent detection failure rate. Although detection improved (detection failure rates declined) in all conditions, those in the FA condition demonstrated the greatest improvement with doubled detection rates. The detection behavior in the first trial did not preclude a failed detection in the second induction. Group membership (IB vs. Detection) in the FA condition showed a greater improvement than those in the NA condition and rated the Mental Demand and Effort subscales of the NASA-TLX (NASA Task Load Index) significantly higher for Time 2 compared Time 1. Participants in the FA condition used the experience of IB exposure to improve task performance whereas those in the NA condition did not, indicating the availability and reallocation of attentional resources in the FA condition. These findings support the role of engagement in operational attention detriment and the consideration of attentional failure causation to determine appropriate mitigation strategies.
Simmering, Vanessa R; Wood, Chelsey M
2017-08-01
Working memory is a basic cognitive process that predicts higher-level skills. A central question in theories of working memory development is the generality of the mechanisms proposed to explain improvements in performance. Prior theories have been closely tied to particular tasks and/or age groups, limiting their generalizability. The cognitive dynamics theory of visual working memory development has been proposed to overcome this limitation. From this perspective, developmental improvements arise through the coordination of cognitive processes to meet demands of different behavioral tasks. This notion is described as real-time stability, and can be probed through experiments that assess how changing task demands impact children's performance. The current studies test this account by probing visual working memory for colors and shapes in a change detection task that compares detection of changes to new features versus swaps in color-shape binding. In Experiment 1, 3- to 4-year-old children showed impairments specific to binding swaps, as predicted by decreased real-time stability early in development; 5- to 6-year-old children showed a slight advantage on binding swaps, but 7- to 8-year-old children and adults showed no difference across trial types. Experiment 2 tested the proposed explanation of young children's binding impairment through added perceptual structure, which supported the stability and precision of feature localization in memory-a process key to detecting binding swaps. This additional structure improved young children's binding swap detection, but not new-feature detection or adults' performance. These results provide further evidence for the cognitive dynamics and real-time stability explanation of visual working memory development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Behavioral training to improve collision detection
DeLoss, Denton J.; Bian, Zheng; Watanabe, Takeo; Andersen, George J.
2015-01-01
Young drivers are a high-risk group for vehicle crashes due to inexperience in detecting an impending collision and are one group that may benefit from perceptual learning (PL) training. The present study assessed whether PL could be used to improve performance in collision detection. Ten college-aged subjects participated in the first experiment, which consisted of seven 1-hr sessions conducted on separate days. Thresholds at three observer/object speeds were measured prior to training using a two-alternative forced choice procedure during which they indicated whether an approaching object would result in a collision or noncollision event. Participants were then trained near threshold at one of these speeds for 5 days. After training, participants showed a significant reduction in the time needed to detect a collision at the trained speed. This improvement was also found to transfer to the higher observer speed condition. A second experiment was conducted to determine whether this improvement was due to training near threshold or whether this improvement was merely due to practice with the task. Training with stimuli well above threshold showed no significant improvement in performance, indicating that the improvement seen in the first experiment was not solely due to task practice. PMID:26230917
Cameron, E Leslie; Tai, Joanna C; Eckstein, Miguel P; Carrasco, Marisa
2004-01-01
Adding distracters to a display impairs performance on visual tasks (i.e. the set-size effect). While keeping the display characteristics constant, we investigated this effect in three tasks: 2 target identification, yes-no detection with 2 targets, and 8-alternative localization. A Signal Detection Theory (SDT) model, tailored for each task, accounts for the set-size effects observed in identification and localization tasks, and slightly under-predicts the set-size effect in a detection task. Given that sensitivity varies as a function of spatial frequency (SF), we measured performance in each of these three tasks in neutral and peripheral precue conditions for each of six spatial frequencies (0.5-12 cpd). For all spatial frequencies tested, performance on the three tasks decreased as set size increased in the neutral precue condition, and the peripheral precue reduced the effect. Larger set-size effects were observed at low SFs in the identification and localization tasks. This effect can be described using the SDT model, but was not predicted by it. For each of these tasks we also established the extent to which covert attention modulates performance across a range of set sizes. A peripheral precue substantially diminished the set-size effect and improved performance, even at set size 1. These results provide support for distracter exclusion, and suggest that signal enhancement may also be a mechanism by which covert attention can impose its effect.
Kirchner, Elsa A; Kim, Su Kyoung
2018-01-01
Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent ( targets ), motor-task irrelevant infrequent ( deviants ), and motor-task irrelevant frequent ( standards ) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention.
Gang, Grace J; Siewerdsen, Jeffrey H; Stayman, J Webster
2017-12-01
This paper presents a joint optimization of dynamic fluence field modulation (FFM) and regularization in quadratic penalized-likelihood reconstruction that maximizes a task-based imaging performance metric. We adopted a task-driven imaging framework for prospective designs of the imaging parameters. A maxi-min objective function was adopted to maximize the minimum detectability index ( ) throughout the image. The optimization algorithm alternates between FFM (represented by low-dimensional basis functions) and local regularization (including the regularization strength and directional penalty weights). The task-driven approach was compared with three FFM strategies commonly proposed for FBP reconstruction (as well as a task-driven TCM strategy) for a discrimination task in an abdomen phantom. The task-driven FFM assigned more fluence to less attenuating anteroposterior views and yielded approximately constant fluence behind the object. The optimal regularization was almost uniform throughout image. Furthermore, the task-driven FFM strategy redistribute fluence across detector elements in order to prescribe more fluence to the more attenuating central region of the phantom. Compared with all strategies, the task-driven FFM strategy not only improved minimum by at least 17.8%, but yielded higher over a large area inside the object. The optimal FFM was highly dependent on the amount of regularization, indicating the importance of a joint optimization. Sample reconstructions of simulated data generally support the performance estimates based on computed . The improvements in detectability show the potential of the task-driven imaging framework to improve imaging performance at a fixed dose, or, equivalently, to provide a similar level of performance at reduced dose.
Masking release for words in amplitude-modulated noise as a function of modulation rate and task
Buss, Emily; Whittle, Lisa N.; Grose, John H.; Hall, Joseph W.
2009-01-01
For normal-hearing listeners, masked speech recognition can improve with the introduction of masker amplitude modulation. The present experiments tested the hypothesis that this masking release is due in part to an interaction between the temporal distribution of cues necessary to perform the task and the probability of those cues temporally coinciding with masker modulation minima. Stimuli were monosyllabic words masked by speech-shaped noise, and masker modulation was introduced via multiplication with a raised sinusoid of 2.5–40 Hz. Tasks included detection, three-alternative forced-choice identification, and open-set identification. Overall, there was more masking release associated with the closed than the open-set tasks. The best rate of modulation also differed as a function of task; whereas low modulation rates were associated with best performance for the detection and three-alternative identification tasks, performance improved with modulation rate in the open-set task. This task-by-rate interaction was also observed when amplitude-modulated speech was presented in a steady masker, and for low- and high-pass filtered speech presented in modulated noise. These results were interpreted as showing that the optimal rate of amplitude modulation depends on the temporal distribution of speech cues and the information required to perform a particular task. PMID:19603883
Prolonged maturation of auditory perception and learning in gerbils
Sarro, Emma C.; Sanes, Dan H.
2011-01-01
In humans, auditory perception reaches maturity over a broad age range, extending through adolescence. Despite this slow maturation, children are considered to be outstanding learners, suggesting that immature perceptual skills might actually be advantageous to improvement on an acoustic task as a result of training (perceptual learning). Previous non-human studies have not employed an identical task when comparing perceptual performance of young and mature subjects, making it difficult to assess learning. Here, we used an identical procedure on juvenile and adult gerbils to examine the perception of amplitude modulation (AM), a stimulus feature that is an important component of most natural sounds. On average, Adult animals could detect smaller fluctuations in amplitude (i.e. smaller modulation depths) than Juveniles, indicating immature perceptual skills in Juveniles. However, the population variance was much greater for Juveniles, a few animals displaying adult-like AM detection. To determine whether immature perceptual skills facilitated learning, we compared naïve performance on the AM detection task with the amount of improvement following additional training. The amount of improvement in Adults correlated with naïve performance: those with the poorest naïve performance improved the most. In contrast, the naïve performance of Juveniles did not predict the amount of learning. Those Juveniles with immature AM detection thresholds did not display greater learning than Adults. Furthermore, for several of the Juveniles with adult-like thresholds, AM detection deteriorated with repeated testing. Thus, immature perceptual skills in young animals were not associated with greater learning. PMID:20506133
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gang, G; Stayman, J; Ouadah, S
2015-06-15
Purpose: This work introduces a task-driven imaging framework that utilizes a patient-specific anatomical model, mathematical definition of the imaging task, and a model of the imaging system to prospectively design acquisition and reconstruction techniques that maximize task-based imaging performance. Utility of the framework is demonstrated in the joint optimization of tube current modulation and view-dependent reconstruction kernel in filtered-backprojection reconstruction and non-circular orbit design in model-based reconstruction. Methods: The system model is based on a cascaded systems analysis of cone-beam CT capable of predicting the spatially varying noise and resolution characteristics as a function of the anatomical model and amore » wide range of imaging parameters. Detectability index for a non-prewhitening observer model is used as the objective function in a task-driven optimization. The combination of tube current and reconstruction kernel modulation profiles were identified through an alternating optimization algorithm where tube current was updated analytically followed by a gradient-based optimization of reconstruction kernel. The non-circular orbit is first parameterized as a linear combination of bases functions and the coefficients were then optimized using an evolutionary algorithm. The task-driven strategy was compared with conventional acquisitions without modulation, using automatic exposure control, and in a circular orbit. Results: The task-driven strategy outperformed conventional techniques in all tasks investigated, improving the detectability of a spherical lesion detection task by an average of 50% in the interior of a pelvis phantom. The non-circular orbit design successfully mitigated photon starvation effects arising from a dense embolization coil in a head phantom, improving the conspicuity of an intracranial hemorrhage proximal to the coil. Conclusion: The task-driven imaging framework leverages a knowledge of the imaging task within a patient-specific anatomical model to optimize image acquisition and reconstruction techniques, thereby improving imaging performance beyond that achievable with conventional approaches. 2R01-CA-112163; R01-EB-017226; U01-EB-018758; Siemens Healthcare (Forcheim, Germany)« less
Improved Object Detection Using a Robotic Sensing Antenna with Vibration Damping Control
Feliu-Batlle, Vicente; Feliu-Talegon, Daniel; Castillo-Berrio, Claudia Fernanda
2017-01-01
Some insects or mammals use antennae or whiskers to detect by the sense of touch obstacles or recognize objects in environments in which other senses like vision cannot work. Artificial flexible antennae can be used in robotics to mimic this sense of touch in these recognition tasks. We have designed and built a two-degree of freedom (2DOF) flexible antenna sensor device to perform robot navigation tasks. This device is composed of a flexible beam, two servomotors that drive the beam and a load cell sensor that detects the contact of the beam with an object. It is found that the efficiency of such a device strongly depends on the speed and accuracy achieved by the antenna positioning system. These issues are severely impaired by the vibrations that appear in the antenna during its movement. However, these antennae are usually moved without taking care of these undesired vibrations. This article proposes a new closed-loop control schema that cancels vibrations and improves the free movements of the antenna. Moreover, algorithms to estimate the 3D beam position and the instant and point of contact with an object are proposed. Experiments are reported that illustrate the efficiency of these proposed algorithms and the improvements achieved in object detection tasks using a control system that cancels beam vibrations. PMID:28406449
Improved Object Detection Using a Robotic Sensing Antenna with Vibration Damping Control.
Feliu-Batlle, Vicente; Feliu-Talegon, Daniel; Castillo-Berrio, Claudia Fernanda
2017-04-13
Some insects or mammals use antennae or whiskers to detect by the sense of touch obstacles or recognize objects in environments in which other senses like vision cannot work. Artificial flexible antennae can be used in robotics to mimic this sense of touch in these recognition tasks. We have designed and built a two-degree of freedom (2DOF) flexible antenna sensor device to perform robot navigation tasks. This device is composed of a flexible beam, two servomotors that drive the beam and a load cell sensor that detects the contact of the beam with an object. It is found that the efficiency of such a device strongly depends on the speed and accuracy achieved by the antenna positioning system. These issues are severely impaired by the vibrations that appear in the antenna during its movement. However, these antennae are usually moved without taking care of these undesired vibrations. This article proposes a new closed-loop control schema that cancels vibrations and improves the free movements of the antenna. Moreover, algorithms to estimate the 3D beam position and the instant and point of contact with an object are proposed. Experiments are reported that illustrate the efficiency of these proposed algorithms and the improvements achieved in object detection tasks using a control system that cancels beam vibrations.
Gang, G J; Siewerdsen, J H; Stayman, J W
2016-02-01
This work applies task-driven optimization to design CT tube current modulation and directional regularization in penalized-likelihood (PL) reconstruction. The relative performance of modulation schemes commonly adopted for filtered-backprojection (FBP) reconstruction were also evaluated for PL in comparison. We adopt a task-driven imaging framework that utilizes a patient-specific anatomical model and information of the imaging task to optimize imaging performance in terms of detectability index ( d' ). This framework leverages a theoretical model based on implicit function theorem and Fourier approximations to predict local spatial resolution and noise characteristics of PL reconstruction as a function of the imaging parameters to be optimized. Tube current modulation was parameterized as a linear combination of Gaussian basis functions, and regularization was based on the design of (directional) pairwise penalty weights for the 8 in-plane neighboring voxels. Detectability was optimized using a covariance matrix adaptation evolutionary strategy algorithm. Task-driven designs were compared to conventional tube current modulation strategies for a Gaussian detection task in an abdomen phantom. The task-driven design yielded the best performance, improving d' by ~20% over an unmodulated acquisition. Contrary to FBP, PL reconstruction using automatic exposure control and modulation based on minimum variance (in FBP) performed worse than the unmodulated case, decreasing d' by 16% and 9%, respectively. This work shows that conventional tube current modulation schemes suitable for FBP can be suboptimal for PL reconstruction. Thus, the proposed task-driven optimization provides additional opportunities for improved imaging performance and dose reduction beyond that achievable with conventional acquisition and reconstruction.
Kirchner, Elsa A.; Kim, Su Kyoung
2018-01-01
Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent (targets), motor-task irrelevant infrequent (deviants), and motor-task irrelevant frequent (standards) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention. PMID:29636660
Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas
2018-06-01
This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.
Making perceptual learning practical to improve visual functions.
Polat, Uri
2009-10-01
Task-specific improvement in performance after training is well established. The finding that learning is stimulus-specific and does not transfer well between different stimuli, between stimulus locations in the visual field, or between the two eyes has been used to support the notion that neurons or assemblies of neurons are modified at the earliest stage of cortical processing. However, a debate regarding the proposed mechanism underlying perceptual learning is an ongoing issue. Nevertheless, generalization of a trained task to other functions is an important key, for both understanding the neural mechanisms and the practical value of the training. This manuscript describes a structured perceptual learning method that previously used (amblyopia, myopia) and a novel technique and results that were applied for presbyopia. In general, subjects were trained for contrast detection of Gabor targets under lateral masking conditions. Training improved contrast sensitivity and diminished the lateral suppression when it existed (amblyopia). The improvement was transferred to unrelated functions such as visual acuity. The new results of presbyopia show substantial improvement of the spatial and temporal contrast sensitivity, leading to improved processing speed of target detection as well as reaction time. Consequently, the subjects, who were able to eliminate the need for reading glasses, benefited. Thus, here we show that the transfer of functions indicates that the specificity of improvement in the trained task can be generalized by repetitive practice of target detection, covering a sufficient range of spatial frequencies and orientations, leading to an improvement in unrelated visual functions. Thus, perceptual learning can be a practical method to improve visual functions in people with impaired or blurred vision.
Vonder Haar, Cole; Maass, William R; Jacobs, Eric A; Hoane, Michael R
2014-10-15
One of the largest challenges in experimental neurotrauma work is the development of models relevant to the human condition. This includes both creating similar pathophysiology as well as the generation of relevant behavioral deficits. Recent studies have shown that there is a large potential for the use of discrimination tasks in rats to detect injury-induced deficits. The literature on discrimination and TBI is still limited, however. The current study investigated motivational and motor factors that could potentially contribute to deficits in discrimination. In addition, the efficacy of a neuroprotective agent, nicotinamide, was assessed. Rats were trained on a discrimination task and motivation task, given a bilateral frontal controlled cortical impact TBI (+3.0 AP, 0.0 ML from bregma), and then reassessed. They were also assessed on motor ability and Morris water maze (MWM) performance. Experiment 1 showed that TBI resulted in large deficits in discrimination and motivation. No deficits were observed on gross motor measures; however, the vehicle group showed impairments in fine motor control. Both injured groups were impaired on the reference memory MWM, but only nicotinamide-treated rats were impaired on the working memory MWM. Nicotinamide administration improved performance on discrimination and motivation measures. Experiment 2 evaluated retraining on the discrimination task and suggested that motivation may be a large factor underlying discrimination deficits. Retrained rats improved considerably on the discrimination task. The tasks evaluated in this study demonstrate robust deficits and may improve the detection of pharmaceutical effects by being very sensitive to pervasive cognitive deficits that occur after frontal TBI.
TBDQ: A Pragmatic Task-Based Method to Data Quality Assessment and Improvement
Vaziri, Reza; Mohsenzadeh, Mehran; Habibi, Jafar
2016-01-01
Organizations are increasingly accepting data quality (DQ) as a major key to their success. In order to assess and improve DQ, methods have been devised. Many of these methods attempt to raise DQ by directly manipulating low quality data. Such methods operate reactively and are suitable for organizations with highly developed integrated systems. However, there is a lack of a proactive DQ method for businesses with weak IT infrastructure where data quality is largely affected by tasks that are performed by human agents. This study aims to develop and evaluate a new method for structured data, which is simple and practical so that it can easily be applied to real world situations. The new method detects the potentially risky tasks within a process, and adds new improving tasks to counter them. To achieve continuous improvement, an award system is also developed to help with the better selection of the proposed improving tasks. The task-based DQ method (TBDQ) is most appropriate for small and medium organizations, and simplicity in implementation is one of its most prominent features. TBDQ is case studied in an international trade company. The case study shows that TBDQ is effective in selecting optimal activities for DQ improvement in terms of cost and improvement. PMID:27192547
Rudebeck, Sarah R.; Bor, Daniel; Ormond, Angharad; O’Reilly, Jill X.; Lee, Andy C. H.
2012-01-01
One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants’ episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary. PMID:23209740
Rudebeck, Sarah R; Bor, Daniel; Ormond, Angharad; O'Reilly, Jill X; Lee, Andy C H
2012-01-01
One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants' episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary.
Impact of task-related changes in heart rate on estimation of hemodynamic response and model fit.
Hillenbrand, Sarah F; Ivry, Richard B; Schlerf, John E
2016-05-15
The blood oxygen level dependent (BOLD) signal, as measured using functional magnetic resonance imaging (fMRI), is widely used as a proxy for changes in neural activity in the brain. Physiological variables such as heart rate (HR) and respiratory variation (RV) affect the BOLD signal in a way that may interfere with the estimation and detection of true task-related neural activity. This interference is of particular concern when these variables themselves show task-related modulations. We first establish that a simple movement task reliably induces a change in HR but not RV. In group data, the effect of HR on the BOLD response was larger and more widespread throughout the brain than were the effects of RV or phase regressors. The inclusion of HR regressors, but not RV or phase regressors, had a small but reliable effect on the estimated hemodynamic response function (HRF) in M1 and the cerebellum. We next asked whether the inclusion of a nested set of physiological regressors combining phase, RV, and HR significantly improved the model fit in individual participants' data sets. There was a significant improvement from HR correction in M1 for the greatest number of participants, followed by RV and phase correction. These improvements were more modest in the cerebellum. These results indicate that accounting for task-related modulation of physiological variables can improve the detection and estimation of true neural effects of interest. Copyright © 2016 Elsevier Inc. All rights reserved.
A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation.
Tkach, Itshak; Jevtić, Aleksandar; Nof, Shimon Y; Edan, Yael
2018-03-02
Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors' performance, tasks' priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems.
Training in Contrast Detection Improves Motion Perception of Sinewave Gratings in Amblyopia
Hou, Fang; Huang, Chang-bing; Tao, Liming; Feng, Lixia; Zhou, Yifeng; Lu, Zhong-Lin
2011-01-01
Purpose. One critical concern about using perceptual learning to treat amblyopia is whether training with one particular stimulus and task generalizes to other stimuli and tasks. In the spatial domain, it has been found that the bandwidth of contrast sensitivity improvement is much broader in amblyopes than in normals. Because previous studies suggested the local motion deficits in amblyopia are explained by the spatial vision deficits, the hypothesis for this study was that training in the spatial domain could benefit motion perception of sinewave gratings. Methods. Nine adult amblyopes (mean age, 22.1 ± 5.6 years) were trained in a contrast detection task in the amblyopic eye for 10 days. Visual acuity, spatial contrast sensitivity functions, and temporal modulation transfer functions (MTF) for sinewave motion detection and discrimination were measured for each eye before and after training. Eight adult amblyopes (mean age, 22.6 ± 6.7 years) served as control subjects. Results. In the amblyopic eye, training improved (1) contrast sensitivity by 6.6 dB (or 113.8%) across spatial frequencies, with a bandwidth of 4.4 octaves; (2) sensitivity of motion detection and discrimination by 3.2 dB (or 44.5%) and 3.7 dB (or 53.1%) across temporal frequencies, with bandwidths of 3.9 and 3.1 octaves, respectively; (3) visual acuity by 3.2 dB (or 44.5%). The fellow eye also showed a small amount of improvement in contrast sensitivities and no significant change in motion perception. Control subjects who received no training demonstrated no obvious improvement in any measure. Conclusions. The results demonstrate substantial plasticity in the amblyopic visual system, and provide additional empirical support for perceptual learning as a potential treatment for amblyopia. PMID:21693615
Time response for sensor sensed to actuator response for mobile robotic system
NASA Astrophysics Data System (ADS)
Amir, N. S.; Shafie, A. A.
2017-11-01
Time and performance of a mobile robot are very important in completing the tasks given to achieve its ultimate goal. Tasks may need to be done within a time constraint to ensure smooth operation of a mobile robot and can result in better performance. The main purpose of this research was to improve the performance of a mobile robot so that it can complete the tasks given within time constraint. The problem that is needed to be solved is to minimize the time interval between sensor detection and actuator response. The research objective is to analyse the real time operating system performance of sensors and actuators on one microcontroller and on two microcontroller for a mobile robot. The task for a mobile robot for this research is line following with an obstacle avoidance. Three runs will be carried out for the task and the time between the sensors senses to the actuator responses were recorded. Overall, the results show that two microcontroller system have better response time compared to the one microcontroller system. For this research, the average difference of response time is very important to improve the internal performance between the occurrence of a task, sensors detection, decision making and actuator response of a mobile robot. This research helped to develop a mobile robot with a better performance and can complete task within the time constraint.
Kirchner, Elsa A.; Kim, Su K.; Tabie, Marc; Wöhrle, Hendrik; Maurus, Michael; Kirchner, Frank
2016-01-01
Advanced man-machine interfaces (MMIs) are being developed for teleoperating robots at remote and hardly accessible places. Such MMIs make use of a virtual environment and can therefore make the operator immerse him-/herself into the environment of the robot. In this paper, we present our developed MMI for multi-robot control. Our MMI can adapt to changes in task load and task engagement online. Applying our approach of embedded Brain Reading we improve user support and efficiency of interaction. The level of task engagement was inferred from the single-trial detectability of P300-related brain activity that was naturally evoked during interaction. With our approach no secondary task is needed to measure task load. It is based on research results on the single-stimulus paradigm, distribution of brain resources and its effect on the P300 event-related component. It further considers effects of the modulation caused by a delayed reaction time on the P300 component evoked by complex responses to task-relevant messages. We prove our concept using single-trial based machine learning analysis, analysis of averaged event-related potentials and behavioral analysis. As main results we show (1) a significant improvement of runtime needed to perform the interaction tasks compared to a setting in which all subjects could easily perform the tasks. We show that (2) the single-trial detectability of the event-related potential P300 can be used to measure the changes in task load and task engagement during complex interaction while also being sensitive to the level of experience of the operator and (3) can be used to adapt the MMI individually to the different needs of users without increasing total workload. Our online adaptation of the proposed MMI is based on a continuous supervision of the operator's cognitive resources by means of embedded Brain Reading. Operators with different qualifications or capabilities receive only as many tasks as they can perform to avoid mental overload as well as mental underload. PMID:27445742
Estimated capacity of object files in visual short-term memory is not improved by retrieval cueing.
Saiki, Jun; Miyatsuji, Hirofumi
2009-03-23
Visual short-term memory (VSTM) has been claimed to maintain three to five feature-bound object representations. Some results showing smaller capacity estimates for feature binding memory have been interpreted as the effects of interference in memory retrieval. However, change-detection tasks may not properly evaluate complex feature-bound representations such as triple conjunctions in VSTM. To understand the general type of feature-bound object representation, evaluation of triple conjunctions is critical. To test whether interference occurs in memory retrieval for complete object file representations in a VSTM task, we cued retrieval in novel paradigms that directly evaluate the memory for triple conjunctions, in comparison with a simple change-detection task. In our multiple object permanence tracking displays, observers monitored for a switch in feature combination between objects during an occlusion period, and we found that a retrieval cue provided no benefit with the triple conjunction tasks, but significant facilitation with the change-detection task, suggesting that low capacity estimates of object file memory in VSTM reflect a limit on maintenance, not retrieval.
A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation †
Nof, Shimon Y.; Edan, Yael
2018-01-01
Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors’ performance, tasks’ priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems. PMID:29498683
Zhao, Nan; Chen, Wenfeng; Xuan, Yuming; Mehler, Bruce; Reimer, Bryan; Fu, Xiaolan
2014-01-01
The 'looked-but-failed-to-see' phenomenon is crucial to driving safety. Previous research utilising change detection tasks related to driving has reported inconsistent effects of driver experience on the ability to detect changes in static driving scenes. Reviewing these conflicting results, we suggest that drivers' increased ability to detect changes will only appear when the task requires a pattern of visual attention distribution typical of actual driving. By adding a distant fixation point on the road image, we developed a modified change blindness paradigm and measured detection performance of drivers and non-drivers. Drivers performed better than non-drivers only in scenes with a fixation point. Furthermore, experience effect interacted with the location of the change and the relevance of the change to driving. These results suggest that learning associated with driving experience reflects increased skill in the efficient distribution of visual attention across both the central focus area and peripheral objects. This article provides an explanation for the previously conflicting reports of driving experience effects in change detection tasks. We observed a measurable benefit of experience in static driving scenes, using a modified change blindness paradigm. These results have translational opportunities for picture-based training and testing tools to improve driver skill.
Levin, Edward D; Hao, Ian; Burke, Dennis A; Cauley, Marty; Hall, Brandon J; Rezvani, Amir H
2014-10-01
Nicotine has been well characterized to improve memory and attention. Nicotine is the primary, but not only neuroactive compound in tobacco. Other tobacco constituents such as anabasine and anatabine also have agonist actions on nicotinic receptors. The current study investigated the effects of anabasine and anatabine on memory and attention. Adult female Sprague-Dawley rats were trained on a win-shift spatial working and reference memory task in the 16-arm radial maze or a visual signal detection operant task to test attention. Acute dose-effect functions of anabasine and anatabine over two orders of magnitude were evaluated for both tasks. In the radial-arm maze memory test, anabasine but not anatabine significantly reduced the memory impairment caused by the NMDA antagonist dizocilpine (MK-801). In the signal detection attentional task, anatabine but not anabasine significantly attenuated the attentional impairment caused by dizocilpine. These studies show that non-nicotine nicotinic agonists in tobacco, similar to nicotine, can significantly improve memory and attentional function. Both anabasine and anatabine produced cognitive improvement, but their effectiveness differed with regard to memory and attention. Follow-up studies with anabasine and anatabine are called for to determine their efficacy as therapeutics for memory and attentional dysfunction. © The Author(s) 2014.
Integrated Remote Sensing Modalities for Classification at a Legacy Test Site
NASA Astrophysics Data System (ADS)
Lee, D. J.; Anderson, D.; Craven, J.
2016-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.
Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.
Kang, Dongyel; Kupinski, Matthew A
2011-06-20
We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.
Camilleri, Rebecca; Pavan, Andrea; Campana, Gianluca
2016-08-01
It has recently been demonstrated how perceptual learning, that is an improvement in a sensory/perceptual task upon practice, can be boosted by concurrent high-frequency transcranial random noise stimulation (tRNS). It has also been shown that perceptual learning can generalize and produce an improvement of visual functions in participants with mild refractive defects. By using three different groups of participants (single-blind study), we tested the efficacy of a short training (8 sessions) using a single Gabor contrast-detection task with concurrent hf-tRNS in comparison with the same training with sham stimulation or hf-tRNS with no concurrent training, in improving visual acuity (VA) and contrast sensitivity (CS) of individuals with uncorrected mild myopia. A short training with a contrast detection task is able to improve VA and CS only if coupled with hf-tRNS, whereas no effect on VA and marginal effects on CS are seen with the sole administration of hf-tRNS. Our results support the idea that, by boosting the rate of perceptual learning via the modulation of neuronal plasticity, hf-tRNS can be successfully used to reduce the duration of the perceptual training and/or to increase its efficacy in producing perceptual learning and generalization to improved VA and CS in individuals with uncorrected mild myopia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Parallel processing considerations for image recognition tasks
NASA Astrophysics Data System (ADS)
Simske, Steven J.
2011-01-01
Many image recognition tasks are well-suited to parallel processing. The most obvious example is that many imaging tasks require the analysis of multiple images. From this standpoint, then, parallel processing need be no more complicated than assigning individual images to individual processors. However, there are three less trivial categories of parallel processing that will be considered in this paper: parallel processing (1) by task; (2) by image region; and (3) by meta-algorithm. Parallel processing by task allows the assignment of multiple workflows-as diverse as optical character recognition [OCR], document classification and barcode reading-to parallel pipelines. This can substantially decrease time to completion for the document tasks. For this approach, each parallel pipeline is generally performing a different task. Parallel processing by image region allows a larger imaging task to be sub-divided into a set of parallel pipelines, each performing the same task but on a different data set. This type of image analysis is readily addressed by a map-reduce approach. Examples include document skew detection and multiple face detection and tracking. Finally, parallel processing by meta-algorithm allows different algorithms to be deployed on the same image simultaneously. This approach may result in improved accuracy.
de Fockert, Jan W; Bremner, Andrew J
2011-12-01
An unexpected stimulus often remains unnoticed if attention is focused elsewhere. This inattentional blindness has been shown to be increased under conditions of high memory load. Here we show that increasing working memory load can also have the opposite effect of reducing inattentional blindness (i.e., improving stimulus detection) if stimulus detection is competing for attention with a concurrent visual task. Participants were required to judge which of two lines was the longer while holding in working memory either one digit (low load) or six digits (high load). An unexpected visual stimulus was presented once alongside the line judgment task. Detection of the unexpected stimulus was significantly improved under conditions of higher working memory load. This improvement in performance prompts the striking conclusion that an effect of cognitive load is to increase attentional spread, thereby enhancing our ability to detect perceptual stimuli to which we would normally be inattentionally blind under less taxing cognitive conditions. We discuss the implications of these findings for our understanding of the relationship between working memory and selective attention. Copyright © 2011 Elsevier B.V. All rights reserved.
Benefits of Stimulus Exposure: Developmental Learning Independent of Task Performance
Green, David B.; Ohlemacher, Jocelyn; Rosen, Merri J.
2016-01-01
Perceptual learning (training-induced performance improvement) can be elicited by task-irrelevant stimulus exposure in humans. In contrast, task-irrelevant stimulus exposure in animals typically disrupts perception in juveniles while causing little to no effect in adults. This may be due to the extent of exposure, which is brief in humans while chronic in animals. Here we assessed the effects of short bouts of passive stimulus exposure on learning during development in gerbils, compared with non-passive stimulus exposure (i.e., during testing). We used prepulse inhibition of the acoustic startle response, a method that can be applied at any age, to measure gap detection thresholds across four age groups, spanning development. First, we showed that both gap detection thresholds and gap detection learning across sessions displayed a long developmental trajectory, improving throughout the juvenile period. Additionally, we demonstrated larger within- and across-animal performance variability in younger animals. These results are generally consistent with results in humans, where there are extended developmental trajectories for both the perception of temporally-varying signals, and the effects of perceptual training, as well as increased variability and poorer performance consistency in children. We then chose an age (mid-juveniles) that displayed clear learning over sessions in order to assess effects of brief passive stimulus exposure on this learning. We compared learning in mid-juveniles exposed to either gap detection testing (gaps paired with startles) or equivalent gap exposure without testing (gaps alone) for three sessions. Learning was equivalent in both these groups and better than both naïve age-matched animals and controls receiving no gap exposure but only startle testing. Thus, short bouts of exposure to gaps independent of task performance is sufficient to induce learning at this age, and is as effective as gap detection testing. PMID:27378837
Gajewski, Patrick D; Falkenstein, Michael
2012-01-01
Cognitive control functions decline with increasing age. The present study examines if different types of group-based and trainer-guided training effectively enhance performance of older adults in a task switching task, and how this expected enhancement is reflected in changes of cognitive functions, as measured in electrophysiological brain activity (event-related potentials). One hundred forty-one healthy participants aged 65 years and older were randomly assigned to one of four groups: physical training (combined aerobic and strength training), cognitive training (paper-pencil and computer-aided), relaxation and wellness (social control group), and a control group that did not receive any intervention. Training sessions took place twice a week for 90 min for a period of 4 months. The results showed a greater improvement of performance for attendants of the cognitive training group compared to the other groups. This improvement was evident in a reduction of mixing costs in accuracy and intraindividual variability of speed, indexing improved maintenance of multiple task sets in working memory, and an enhanced coherence of neuronal processing. These findings were supported by event-related brain potentials which showed higher amplitudes in a number of potentials associated with response selection (N2), allocation of cognitive resources (P3b), and error detection (Ne). Taken together, our findings suggest neurocognitive plasticity of aging brains which can be stimulated by broad and multilayered cognitive training and assessed in detail by electrophysiological methods.
Gajewski, Patrick D.; Falkenstein, Michael
2012-01-01
Cognitive control functions decline with increasing age. The present study examines if different types of group-based and trainer-guided training effectively enhance performance of older adults in a task switching task, and how this expected enhancement is reflected in changes of cognitive functions, as measured in electrophysiological brain activity (event-related potentials). One hundred forty-one healthy participants aged 65 years and older were randomly assigned to one of four groups: physical training (combined aerobic and strength training), cognitive training (paper–pencil and computer-aided), relaxation and wellness (social control group), and a control group that did not receive any intervention. Training sessions took place twice a week for 90 min for a period of 4 months. The results showed a greater improvement of performance for attendants of the cognitive training group compared to the other groups. This improvement was evident in a reduction of mixing costs in accuracy and intraindividual variability of speed, indexing improved maintenance of multiple task sets in working memory, and an enhanced coherence of neuronal processing. These findings were supported by event-related brain potentials which showed higher amplitudes in a number of potentials associated with response selection (N2), allocation of cognitive resources (P3b), and error detection (Ne). Taken together, our findings suggest neurocognitive plasticity of aging brains which can be stimulated by broad and multilayered cognitive training and assessed in detail by electrophysiological methods. PMID:22593740
Effects of spatial cues on color-change detection in humans
Herman, James P.; Bogadhi, Amarender R.; Krauzlis, Richard J.
2015-01-01
Studies of covert spatial attention have largely used motion, orientation, and contrast stimuli as these features are fundamental components of vision. The feature dimension of color is also fundamental to visual perception, particularly for catarrhine primates, and yet very little is known about the effects of spatial attention on color perception. Here we present results using novel dynamic color stimuli in both discrimination and color-change detection tasks. We find that our stimuli yield comparable discrimination thresholds to those obtained with static stimuli. Further, we find that an informative spatial cue improves performance and speeds response time in a color-change detection task compared with an uncued condition, similar to what has been demonstrated for motion, orientation, and contrast stimuli. Our results demonstrate the use of dynamic color stimuli for an established psychophysical task and show that color stimuli are well suited to the study of spatial attention. PMID:26047359
Eramudugolla, Ranmalee; Mattingley, Jason B
2008-01-01
Patients with unilateral spatial neglect following right hemisphere damage are impaired in detecting contralesional targets in both visual and haptic search tasks, and often show a graded improvement in detection performance for more ipsilesional spatial locations. In audition, multiple simultaneous sounds are most effectively perceived if they are distributed along the frequency dimension. Thus, attention to spectro-temporal features alone can allow detection of a target sound amongst multiple simultaneous distracter sounds, regardless of whether these sounds are spatially separated. Spatial bias in attention associated with neglect should not affect auditory search based on spectro-temporal features of a sound target. We report that a right brain damaged patient with neglect demonstrated a significant gradient favouring the ipsilesional side on a visual search task as well as an auditory search task in which the target was a frequency modulated tone amongst steady distractor tones. No such asymmetry was apparent in the auditory search performance of a control patient with a right hemisphere lesion but no neglect. The results suggest that the spatial bias in attention exhibited by neglect patients affects stimulus processing even when spatial information is irrelevant to the task.
Task-Driven Orbit Design and Implementation on a Robotic C-Arm System for Cone-Beam CT.
Ouadah, S; Jacobson, M; Stayman, J W; Ehtiati, T; Weiss, C; Siewerdsen, J H
2017-03-01
This work applies task-driven optimization to the design of non-circular orbits that maximize imaging performance for a particular imaging task. First implementation of task-driven imaging on a clinical robotic C-arm system is demonstrated, and a framework for orbit calculation is described and evaluated. We implemented a task-driven imaging framework to optimize orbit parameters that maximize detectability index d '. This framework utilizes a specified Fourier domain task function and an analytical model for system spatial resolution and noise. Two experiments were conducted to test the framework. First, a simple task was considered consisting of frequencies lying entirely on the f z -axis (e.g., discrimination of structures oriented parallel to the central axial plane), and a "circle + arc" orbit was incorporated into the framework as a means to improve sampling of these frequencies, and thereby increase task-based detectability. The orbit was implemented on a robotic C-arm (Artis Zeego, Siemens Healthcare). A second task considered visualization of a cochlear implant simulated within a head phantom, with spatial frequency response emphasizing high-frequency content in the ( f y , f z ) plane of the cochlea. An optimal orbit was computed using the task-driven framework, and the resulting image was compared to that for a circular orbit. For the f z -axis task, the circle + arc orbit was shown to increase d ' by a factor of 1.20, with an improvement of 0.71 mm in a 3D edge-spread measurement for edges located far from the central plane and a decrease in streak artifacts compared to a circular orbit. For the cochlear implant task, the resulting orbit favored complementary views of high tilt angles in a 360° orbit, and d ' was increased by a factor of 1.83. This work shows that a prospective definition of imaging task can be used to optimize source-detector orbit and improve imaging performance. The method was implemented for execution of non-circular, task-driven orbits on a clinical robotic C-arm system. The framework is sufficiently general to include both acquisition parameters (e.g., orbit, kV, and mA selection) and reconstruction parameters (e.g., a spatially varying regularizer).
Task-driven orbit design and implementation on a robotic C-arm system for cone-beam CT
NASA Astrophysics Data System (ADS)
Ouadah, S.; Jacobson, M.; Stayman, J. W.; Ehtiati, T.; Weiss, C.; Siewerdsen, J. H.
2017-03-01
Purpose: This work applies task-driven optimization to the design of non-circular orbits that maximize imaging performance for a particular imaging task. First implementation of task-driven imaging on a clinical robotic C-arm system is demonstrated, and a framework for orbit calculation is described and evaluated. Methods: We implemented a task-driven imaging framework to optimize orbit parameters that maximize detectability index d'. This framework utilizes a specified Fourier domain task function and an analytical model for system spatial resolution and noise. Two experiments were conducted to test the framework. First, a simple task was considered consisting of frequencies lying entirely on the fz-axis (e.g., discrimination of structures oriented parallel to the central axial plane), and a "circle + arc" orbit was incorporated into the framework as a means to improve sampling of these frequencies, and thereby increase task-based detectability. The orbit was implemented on a robotic C-arm (Artis Zeego, Siemens Healthcare). A second task considered visualization of a cochlear implant simulated within a head phantom, with spatial frequency response emphasizing high-frequency content in the (fy, fz) plane of the cochlea. An optimal orbit was computed using the task-driven framework, and the resulting image was compared to that for a circular orbit. Results: For the fz-axis task, the circle + arc orbit was shown to increase d' by a factor of 1.20, with an improvement of 0.71 mm in a 3D edge-spread measurement for edges located far from the central plane and a decrease in streak artifacts compared to a circular orbit. For the cochlear implant task, the resulting orbit favored complementary views of high tilt angles in a 360° orbit, and d' was increased by a factor of 1.83. Conclusions: This work shows that a prospective definition of imaging task can be used to optimize source-detector orbit and improve imaging performance. The method was implemented for execution of non-circular, task-driven orbits on a clinical robotic C-arm system. The framework is sufficiently general to include both acquisition parameters (e.g., orbit, kV, and mA selection) and reconstruction parameters (e.g., a spatially varying regularizer).
A portable fetal heart monitor and its adaption to the detection of certain prenatal abnormalities
NASA Technical Reports Server (NTRS)
Zahorian, Stephen A.
1994-01-01
There were three primary objectives for this task: (1) The investigation of the feasibility of making the fetal heart rate monitor portable, using a laptop computer; (2) Improvements in the signal processing for the monitor; and (3) Implementation of a real-time hardware software system. These tasks have been completed as discussed in the following section.
An Automated, Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI
Churchill, Nathan W.; Spring, Robyn; Afshin-Pour, Babak; Dong, Fan; Strother, Stephen C.
2015-01-01
BOLD fMRI is sensitive to blood-oxygenation changes correlated with brain function; however, it is limited by relatively weak signal and significant noise confounds. Many preprocessing algorithms have been developed to control noise and improve signal detection in fMRI. Although the chosen set of preprocessing and analysis steps (the “pipeline”) significantly affects signal detection, pipelines are rarely quantitatively validated in the neuroimaging literature, due to complex preprocessing interactions. This paper outlines and validates an adaptive resampling framework for evaluating and optimizing preprocessing choices by optimizing data-driven metrics of task prediction and spatial reproducibility. Compared to standard “fixed” preprocessing pipelines, this optimization approach significantly improves independent validation measures of within-subject test-retest, and between-subject activation overlap, and behavioural prediction accuracy. We demonstrate that preprocessing choices function as implicit model regularizers, and that improvements due to pipeline optimization generalize across a range of simple to complex experimental tasks and analysis models. Results are shown for brief scanning sessions (<3 minutes each), demonstrating that with pipeline optimization, it is possible to obtain reliable results and brain-behaviour correlations in relatively small datasets. PMID:26161667
NASA Astrophysics Data System (ADS)
Nightingale, James; Wang, Qi; Grecos, Christos
2015-02-01
In recent years video traffic has become the dominant application on the Internet with global year-on-year increases in video-oriented consumer services. Driven by improved bandwidth in both mobile and fixed networks, steadily reducing hardware costs and the development of new technologies, many existing and new classes of commercial and industrial video applications are now being upgraded or emerging. Some of the use cases for these applications include areas such as public and private security monitoring for loss prevention or intruder detection, industrial process monitoring and critical infrastructure monitoring. The use of video is becoming commonplace in defence, security, commercial, industrial, educational and health contexts. Towards optimal performances, the design or optimisation in each of these applications should be context aware and task oriented with the characteristics of the video stream (frame rate, spatial resolution, bandwidth etc.) chosen to match the use case requirements. For example, in the security domain, a task-oriented consideration may be that higher resolution video would be required to identify an intruder than to simply detect his presence. Whilst in the same case, contextual factors such as the requirement to transmit over a resource-limited wireless link, may impose constraints on the selection of optimum task-oriented parameters. This paper presents a novel, conceptually simple and easily implemented method of assessing video quality relative to its suitability for a particular task and dynamically adapting videos streams during transmission to ensure that the task can be successfully completed. Firstly we defined two principle classes of tasks: recognition tasks and event detection tasks. These task classes are further subdivided into a set of task-related profiles, each of which is associated with a set of taskoriented attributes (minimum spatial resolution, minimum frame rate etc.). For example, in the detection class, profiles for intruder detection will require different temporal characteristics (frame rate) from those used for detection of high motion objects such as vehicles or aircrafts. We also define a set of contextual attributes that are associated with each instance of a running application that include resource constraints imposed by the transmission system employed and the hardware platforms used as source and destination of the video stream. Empirical results are presented and analysed to demonstrate the advantages of the proposed schemes.
Abbey, Craig K.; Zemp, Roger J.; Liu, Jie; Lindfors, Karen K.; Insana, Michael F.
2009-01-01
We investigate and extend the ideal observer methodology developed by Smith and Wagner to detection and discrimination tasks related to breast sonography. We provide a numerical approach for evaluating the ideal observer acting on radio-frequency (RF) frame data, which involves inversion of large nonstationary covariance matrices, and we describe a power-series approach to computing this inverse. Considering a truncated power series suggests that the RF data be Wiener-filtered before forming the final envelope image. We have compared human performance for Wiener-filtered and conventional B-mode envelope images using psychophysical studies for 5 tasks related to breast cancer classification. We find significant improvements in visual detection and discrimination efficiency in four of these five tasks. We also use the Smith-Wagner approach to distinguish between human and processing inefficiencies, and find that generally the principle limitation comes from the information lost in computing the final envelope image. PMID:16468454
Boyacioğlu, Rasim; Schulz, Jenni; Koopmans, Peter J; Barth, Markus; Norris, David G
2015-10-01
A multiband multi-echo (MBME) sequence is implemented and compared to a matched standard multi-echo (ME) protocol to investigate the potential improvement in sensitivity and spatial specificity at 7 T for resting state and task fMRI. ME acquisition is attractive because BOLD sensitivity is less affected by variation in T2*, and because of the potential for separating BOLD and non-BOLD signal components. MBME further reduces TR thus increasing the potential reduction in physiological noise. In this study we used FSL-FIX to clean ME and MBME resting state and task fMRI data (both 3.5mm isotropic). After noise correction, the detection of resting state networks improves with more non-artifactual independent components being observed. Additional activation clusters for task data are discovered for MBME data (increased sensitivity) whereas existing clusters become more localized for resting state (improved spatial specificity). The results obtained indicate that MBME is superior to ME at high field strengths. Copyright © 2015 Elsevier Inc. All rights reserved.
Attention Modifies Spatial Resolution According to Task Demands.
Barbot, Antoine; Carrasco, Marisa
2017-03-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands.
Attention Modifies Spatial Resolution According to Task Demands
Barbot, Antoine; Carrasco, Marisa
2017-01-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands. PMID:28118103
Characterizing Perceptual Learning with External Noise
ERIC Educational Resources Information Center
Gold, Jason M.; Sekuler, Allison B.; Bennett, Partrick J.
2004-01-01
Performance in perceptual tasks often improves with practice. This effect is known as "perceptual learning," and it has been the source of a great deal of interest and debate over the course of the last century. Here, we consider the effects of perceptual learning within the context of signal detection theory. According to signal detection theory,…
Zhao, Henan; Bryant, Garnett W.; Griffin, Wesley; Terrill, Judith E.; Chen, Jian
2017-01-01
We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks. PMID:28113469
Henan Zhao; Bryant, Garnett W; Griffin, Wesley; Terrill, Judith E; Jian Chen
2017-06-01
We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks.
Rate change detection of frequency modulated signals: developmental trends.
Cohen-Mimran, Ravit; Sapir, Shimon
2011-08-26
The aim of this study was to examine developmental trends in rate change detection of auditory rhythmic signals (repetitive sinusoidally frequency modulated tones). Two groups of children (9-10 years old and 11-12 years old) and one group of young adults performed a rate change detection (RCD) task using three types of stimuli. The rate of stimulus modulation was either constant (CR), raised by 1 Hz in the middle of the stimulus (RR1) or raised by 2 Hz in the middle of the stimulus (RR2). Performance on the RCD task significantly improved with age. Also, the different stimuli showed different developmental trajectories. When the RR2 stimulus was used, results showed adult-like performance by the age of 10 years but when the RR1 stimulus was used performance continued to improve beyond 12 years of age. Rate change detection of repetitive sinusoidally frequency modulated tones show protracted development beyond the age of 12 years. Given evidence for abnormal processing of auditory rhythmic signals in neurodevelopmental conditions, such as dyslexia, the present methodology might help delineate the nature of these conditions.
Beck, Melissa R; Martin, Benjamin A; Smitherman, Emily; Gaschen, Lorrie
2013-08-01
Our aim was to examine the specificity of the effects of acquiring expertise on visual working memory (VWM) and the degree to which higher levels of experience within the domain of expertise are associated with more efficient use of VWM. Previous research is inconsistent on whether expertise effects are specific to the area of expertise or generalize to other tasks that also involve the same cognitive processes. It is also unclear whether more training and/or experience will lead to continued improvement on domain-relevant tasks or whether a plateau could be reached. In Experiment I, veterinary medicine students completed a one-shot visual change detection task. In Experiment 2, veterinarians completed a flicker change detection task. Both experiments involved stimuli specific to the domain of radiology and general stimuli. In Experiment I, veterinary medicine students who had completed an "eyes-on" radiological training demonstrated a domain-specific effect in which performance was better on the domain-specific stimuli than on the domain-general stimuli. In Experiment 2, veterinarians again showed a domain-specific effect, but performance was unrelated to the amount of experience veterinarians had accumulated. The effect of experience is domain specific and occurs during the first few years of training, after which a plateau is reached. VWM training in one domain may not lead to improved performance on other VWM tasks. In acquiring expertise, eyes-on training is important initially, but continued experience may not be associated with further improvements in the efficiency of VWM.
Trzcinski, Natalie K; Gomez-Ramirez, Manuel; Hsiao, Steven S
2016-09-01
Continuous training enhances perceptual discrimination and promotes neural changes in areas encoding the experienced stimuli. This type of experience-dependent plasticity has been demonstrated in several sensory and motor systems. Particularly, non-human primates trained to detect consecutive tactile bar indentations across multiple digits showed expanded excitatory receptive fields (RFs) in somatosensory cortex. However, the perceptual implications of these anatomical changes remain undetermined. Here, we trained human participants for 9 days on a tactile task that promoted expansion of multi-digit RFs. Participants were required to detect consecutive indentations of bar stimuli spanning multiple digits. Throughout the training regime we tracked participants' discrimination thresholds on spatial (grating orientation) and temporal tasks on the trained and untrained hands in separate sessions. We hypothesized that training on the multi-digit task would decrease perceptual thresholds on tasks that require stimulus processing across multiple digits, while also increasing thresholds on tasks requiring discrimination on single digits. We observed an increase in orientation thresholds on a single digit. Importantly, this effect was selective for the stimulus orientation and hand used during multi-digit training. We also found that temporal acuity between digits improved across trained digits, suggesting that discriminating the temporal order of multi-digit stimuli can transfer to temporal discrimination of other tactile stimuli. These results suggest that experience-dependent plasticity following perceptual learning improves and interferes with tactile abilities in manners predictive of the task and stimulus features used during training. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Trzcinski, Natalie K; Gomez-Ramirez, Manuel; Hsiao, Steven S.
2016-01-01
Continuous training enhances perceptual discrimination and promotes neural changes in areas encoding the experienced stimuli. This type of experience-dependent plasticity has been demonstrated in several sensory and motor systems. Particularly, non-human primates trained to detect consecutive tactile bar indentations across multiple digits showed expanded excitatory receptive fields (RFs) in somatosensory cortex. However, the perceptual implications of these anatomical changes remain undetermined. Here, we trained human participants for nine days on a tactile task that promoted expansion of multi-digit RFs. Participants were required to detect consecutive indentations of bar stimuli spanning multiple digits. Throughout the training regime we tracked participants’ discrimination thresholds on spatial (grating orientation) and temporal tasks on the trained and untrained hands in separate sessions. We hypothesized that training on the multi-digit task would decrease perceptual thresholds on tasks that require stimulus processing across multiple digits, while also increasing thresholds on tasks requiring discrimination on single digits. We observed an increase in orientation thresholds on a single-digit. Importantly, this effect was selective for the stimulus orientation and hand used during multi-digit training. We also found that temporal acuity between digits improved across trained digits, suggesting that discriminating the temporal order of multi-digit stimuli can transfer to temporal discrimination of other tactile stimuli. These results suggest that experience-dependent plasticity following perceptual learning improves and interferes with tactile abilities in manners predictive of the task and stimulus features used during training. PMID:27422224
Gentle Masking of Low-Complexity Sequences Improves Homology Search
Frith, Martin C.
2011-01-01
Detection of sequences that are homologous, i.e. descended from a common ancestor, is a fundamental task in computational biology. This task is confounded by low-complexity tracts (such as atatatatatat), which arise frequently and independently, causing strong similarities that are not homologies. There has been much research on identifying low-complexity tracts, but little research on how to treat them during homology search. We propose to find homologies by aligning sequences with “gentle” masking of low-complexity tracts. Gentle masking means that the match score involving a masked letter is , where is the unmasked score. Gentle masking slightly but noticeably improves the sensitivity of homology search (compared to “harsh” masking), without harming specificity. We show examples in three useful homology search problems: detection of NUMTs (nuclear copies of mitochondrial DNA), recruitment of metagenomic DNA reads to reference genomes, and pseudogene detection. Gentle masking is currently the best way to treat low-complexity tracts during homology search. PMID:22205972
Horowitz-Kraus, Tzipi
2016-05-01
The error-detection mechanism aids in preventing error repetition during a given task. Electroencephalography demonstrates that error detection involves two event-related potential components: error-related and correct-response negativities (ERN and CRN, respectively). Dyslexia is characterized by slow, inaccurate reading. In particular, individuals with dyslexia have a less active error-detection mechanism during reading than typical readers. In the current study, we examined whether a reading training programme could improve the ability to recognize words automatically (lexical representations) in adults with dyslexia, thereby resulting in more efficient error detection during reading. Behavioural and electrophysiological measures were obtained using a lexical decision task before and after participants trained with the reading acceleration programme. ERN amplitudes were smaller in individuals with dyslexia than in typical readers before training but increased following training, as did behavioural reading scores. Differences between the pre-training and post-training ERN and CRN components were larger in individuals with dyslexia than in typical readers. Also, the error-detection mechanism as represented by the ERN/CRN complex might serve as a biomarker for dyslexia and be used to evaluate the effectiveness of reading intervention programmes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Detection of vehicle parts based on Faster R-CNN and relative position information
NASA Astrophysics Data System (ADS)
Zhang, Mingwen; Sang, Nong; Chen, Youbin; Gao, Changxin; Wang, Yongzhong
2018-03-01
Detection and recognition of vehicles are two essential tasks in intelligent transportation system (ITS). Currently, a prevalent method is to detect vehicle body, logo or license plate at first, and then recognize them. So the detection task is the most basic, but also the most important work. Besides the logo and license plate, some other parts, such as vehicle face, lamp, windshield and rearview mirror, are also key parts which can reflect the characteristics of vehicle and be used to improve the accuracy of recognition task. In this paper, the detection of vehicle parts is studied, and the work is novel. We choose Faster R-CNN as the basic algorithm, and take the local area of an image where vehicle body locates as input, then can get multiple bounding boxes with their own scores. If the box with maximum score is chosen as final result directly, it is often not the best one, especially for small objects. This paper presents a method which corrects original score with relative position information between two parts. Then we choose the box with maximum comprehensive score as the final result. Compared with original output strategy, the proposed method performs better.
NASA Astrophysics Data System (ADS)
Herz, A.; Herz, E.; Center, K.; George, P.; Axelrad, P.; Mutschler, S.; Jones, B.
2016-09-01
The Space Surveillance Network (SSN) is tasked with the increasingly difficult mission of detecting, tracking, cataloging and identifying artificial objects orbiting the Earth, including active and inactive satellites, spent rocket bodies, and fragmented debris. Much of the architecture and operations of the SSN are limited and outdated. Efforts are underway to modernize some elements of the systems. Even so, the ability to maintain the best current Space Situational Awareness (SSA) picture and identify emerging events in a timely fashion could be significantly improved by leveraging non-traditional sensor sites. Orbit Logic, the University of Colorado and the University of Texas at Austin are developing an innovative architecture and operations concept to coordinate the tasking and observation information processing of non - traditional assets based on information-theoretic approaches. These confirmed tasking schedules and the resulting data can then be used to "inform" the SSN tasking process. The 'Heimdall Web' system is comprised of core tasking optimization components and accompanying Web interfaces within a secure, split architecture that will for the first time allow non-traditional sensors to support SSA and improve SSN tasking. Heimdall Web application components appropriately score/prioritize space catalog objects based on covariance, priority, observability, expected information gain, and probability of detect - then coordinate an efficient sensor observation schedule for non-SSN sensors contributing to the overall SSA picture maintained by the Joint Space Operations Center (JSpOC). The Heimdall Web Ops concept supports sensor participation levels of "Scheduled", "Tasked" and "Contributing". Scheduled and Tasked sensors are provided optimized observation schedules or object tracking lists from central algorithms, while Contributing sensors review and select from a list of "desired track objects". All sensors are "Web Enabled" for tasking and feedback, supplying observation schedules, confirmed observations and related data back to Heimdall Web to complete the feedback loop for the next scheduling iteration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smitherman, C; Chen, B; Samei, E
2014-06-15
Purpose: This work involved a comprehensive modeling of task-based performance of CT across a wide range of protocols. The approach was used for optimization and consistency of dose and image quality within a large multi-vendor clinical facility. Methods: 150 adult protocols from the Duke University Medical Center were grouped into sub-protocols with similar acquisition characteristics. A size based image quality phantom (Duke Mercury Phantom) was imaged using these sub-protocols for a range of clinically relevant doses on two CT manufacturer platforms (Siemens, GE). The images were analyzed to extract task-based image quality metrics such as the Task Transfer Function (TTF),more » Noise Power Spectrum, and Az based on designer nodule task functions. The data were analyzed in terms of the detectability of a lesion size/contrast as a function of dose, patient size, and protocol. A graphical user interface (GUI) was developed to predict image quality and dose to achieve a minimum level of detectability. Results: Image quality trends with variations in dose, patient size, and lesion contrast/size were evaluated and calculated data behaved as predicted. The GUI proved effective to predict the Az values representing radiologist confidence for a targeted lesion, patient size, and dose. As an example, an abdomen pelvis exam for the GE scanner, with a task size/contrast of 5-mm/50-HU, and an Az of 0.9 requires a dose of 4.0, 8.9, and 16.9 mGy for patient diameters of 25, 30, and 35 cm, respectively. For a constant patient diameter of 30 cm, the minimum detected lesion size at those dose levels would be 8.4, 5, and 3.9 mm, respectively. Conclusion: The designed CT protocol optimization platform can be used to evaluate minimum detectability across dose levels and patient diameters. The method can be used to improve individual protocols as well as to improve protocol consistency across CT scanners.« less
System for Anomaly and Failure Detection (SAFD) system development
NASA Technical Reports Server (NTRS)
Oreilly, D.
1992-01-01
This task specified developing the hardware and software necessary to implement the System for Anomaly and Failure Detection (SAFD) algorithm, developed under Technology Test Bed (TTB) Task 21, on the TTB engine stand. This effort involved building two units; one unit to be installed in the Block II Space Shuttle Main Engine (SSME) Hardware Simulation Lab (HSL) at Marshall Space Flight Center (MSFC), and one unit to be installed at the TTB engine stand. Rocketdyne personnel from the HSL performed the task. The SAFD algorithm was developed as an improvement over the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Simulation tests and execution against previous hot fire tests demonstrated that the SAFD algorithm can detect engine failure as much as tens of seconds before the redline system recognized the failure. Although the current algorithm only operates during steady state conditions (engine not throttling), work is underway to expand the algorithm to work during transient condition.
NASA Astrophysics Data System (ADS)
Shaw, Darren; Stone, Kevin; Ho, K. C.; Keller, James M.; Luke, Robert H.; Burns, Brian P.
2016-05-01
Forward looking ground penetrating radar (FLGPR) has the benefit of detecting objects at a significant standoff distance. The FLGPR signal is radiated over a large surface area and the radar signal return is often weak. Improving detection, especially for buried in road targets, while maintaining an acceptable false alarm rate remains to be a challenging task. Various kinds of features have been developed over the years to increase the FLGPR detection performance. This paper focuses on investigating the use of as many features as possible for detecting buried targets and uses the sequential feature selection technique to automatically choose the features that contribute most for improving performance. Experimental results using data collected at a government test site are presented.
NASA Technical Reports Server (NTRS)
Steinmetz, G. G.
1980-01-01
Using simulation, an improved longitudinal velocity vector control wheel steering mode and an improved electronic display format for an advanced flight system were developed and tested. Guidelines for the development phase were provided by test pilot critique summaries of the previous system. The results include performances from computer generated step column inputs across the full airplane speed and configuration envelope, as well as piloted performance results taken from a reference line tracking task and an approach to landing task conducted under various environmental conditions. The analysis of the results for the reference line tracking and approach to landing tasks indicates clearly detectable improvement in pilot tracking accuracy with a reduction in physical workload. The original objectives of upgrading the longitudinal axis of the velocity vector control wheel steering mode were successfully met when measured against the test pilot critique summaries and the original purpose outlined for this type of augment control mode.
Measures and Interpretations of Vigilance Performance: Evidence Against the Detection Criterion
NASA Technical Reports Server (NTRS)
Balakrishnan, J. D.
1998-01-01
Operators' performance in a vigilance task is often assumed to depend on their choice of a detection criterion. When the signal rate is low this criterion is set high, causing the hit and false alarm rates to be low. With increasing time on task the criterion presumably tends to increase even further, thereby further decreasing the hit and false alarm rates. Virtually all of the empirical evidence for this simple interpretation is based on estimates of the bias measure Beta from signal detection theory. In this article, I describe a new approach to studying decision making that does not require the technical assumptions of signal detection theory. The results of this new analysis suggest that the detection criterion is never biased toward either response, even when the signal rate is low and the time on task is long. Two modifications of the signal detection theory framework are considered to account for this seemingly paradoxical result. The first assumes that the signal rate affects the relative sizes of the variances of the information distributions; the second assumes that the signal rate affects the logic of the operator's stopping rule. Actual or potential applications of this research include the improved training and performance assessment of operators in areas such as product quality control, air traffic control, and medical and clinical diagnosis.
Action video games do not improve the speed of information processing in simple perceptual tasks.
van Ravenzwaaij, Don; Boekel, Wouter; Forstmann, Birte U; Ratcliff, Roger; Wagenmakers, Eric-Jan
2014-10-01
Previous research suggests that playing action video games improves performance on sensory, perceptual, and attentional tasks. For instance, Green, Pouget, and Bavelier (2010) used the diffusion model to decompose data from a motion detection task and estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster information processing, reduced response caution, and no difference in motor responding. Because perceptual learning is generally thought to be highly context-specific, this transfer from gaming is surprising and warrants corroborative evidence from a large-scale training study. We conducted 2 experiments in which participants practiced either an action video game or a cognitive game in 5 separate, supervised sessions. Prior to each session and following the last session, participants performed a perceptual discrimination task. In the second experiment, we included a third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the action gamers, the cognitive gamers, and the nongamers and suggest that, in contrast to earlier reports, playing action video games does not improve the speed of information processing in simple perceptual tasks.
Action Video Games Do Not Improve the Speed of Information Processing in Simple Perceptual Tasks
van Ravenzwaaij, Don; Boekel, Wouter; Forstmann, Birte U.; Ratcliff, Roger; Wagenmakers, Eric-Jan
2015-01-01
Previous research suggests that playing action video games improves performance on sensory, perceptual, and attentional tasks. For instance, Green, Pouget, and Bavelier (2010) used the diffusion model to decompose data from a motion detection task and estimate the contribution of several underlying psychological processes. Their analysis indicated that playing action video games leads to faster information processing, reduced response caution, and no difference in motor responding. Because perceptual learning is generally thought to be highly context-specific, this transfer from gaming is surprising and warrants corroborative evidence from a large-scale training study. We conducted 2 experiments in which participants practiced either an action video game or a cognitive game in 5 separate, supervised sessions. Prior to each session and following the last session, participants performed a perceptual discrimination task. In the second experiment, we included a third condition in which no video games were played at all. Behavioral data and diffusion model parameters showed similar practice effects for the action gamers, the cognitive gamers, and the nongamers and suggest that, in contrast to earlier reports, playing action video games does not improve the speed of information processing in simple perceptual tasks. PMID:24933517
Soar, K; Chapman, E; Lavan, N; Jansari, A S; Turner, J J D
2016-10-01
Caffeine has been shown to have effects on certain areas of cognition, but in executive functioning the research is limited and also inconsistent. One reason could be the need for a more sensitive measure to detect the effects of caffeine on executive function. This study used a new non-immersive virtual reality assessment of executive functions known as JEF(©) (the Jansari Assessment of Executive Function) alongside the 'classic' Stroop Colour-Word task to assess the effects of a normal dose of caffeinated coffee on executive function. Using a double-blind, counterbalanced within participants procedure 43 participants were administered either a caffeinated or decaffeinated coffee and completed the 'JEF(©)' and Stroop tasks, as well as a subjective mood scale and blood pressure pre- and post condition on two separate occasions a week apart. JEF(©) yields measures for eight separate aspects of executive functions, in addition to a total average score. Findings indicate that performance was significantly improved on the planning, creative thinking, event-, time- and action-based prospective memory, as well as total JEF(©) score following caffeinated coffee relative to the decaffeinated coffee. The caffeinated beverage significantly decreased reaction times on the Stroop task, but there was no effect on Stroop interference. The results provide further support for the effects of a caffeinated beverage on cognitive functioning. In particular, it has demonstrated the ability of JEF(©) to detect the effects of caffeine across a number of executive functioning constructs, which weren't shown in the Stroop task, suggesting executive functioning improvements as a result of a 'typical' dose of caffeine may only be detected by the use of more real-world, ecologically valid tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Koffarnus, Mikhail N; Katz, Jonathan L
2011-02-01
Increased signal-detection accuracy on the 5-choice serial reaction time (5-CSRT) task has been shown with drugs that are useful clinically in treating attention deficit hyperactivity disorder (ADHD), but these increases are often small and/or unreliable. By reducing the reinforcer frequency, it may be possible to increase the sensitivity of this task to pharmacologically induced improvements in accuracy. Rats were trained to respond on the 5-CSRT task on a fixed ratio (FR) 1, FR 3, or FR 10 schedule of reinforcement. Drugs that were and were not expected to enhance performance were then administered before experimental sessions. Significant increases in accuracy of signal detection were not typically obtained under the FR 1 schedule with any drug. However, d-amphetamine, methylphenidate, and nicotine typically increased accuracy under the FR 3 and FR 10 schedules. Increasing the FR requirement in the 5-CSRT task increases the likelihood of a positive result with clinically effective drugs, and may more closely resemble conditions in children with attention deficits.
Ergonomics for enhancing detection of machine abnormalities.
Illankoon, Prasanna; Abeysekera, John; Singh, Sarbjeet
2016-10-17
Detecting abnormal machine conditions is of great importance in an autonomous maintenance environment. Ergonomic aspects can be invaluable when detection of machine abnormalities using human senses is examined. This research outlines the ergonomic issues involved in detecting machine abnormalities and suggests how ergonomics would improve such detections. Cognitive Task Analysis was performed in a plant in Sri Lanka where Total Productive Maintenance is being implemented to identify sensory types that would be used to detect machine abnormalities and relevant Ergonomic characteristics. As the outcome of this research, a methodology comprising of an Ergonomic Gap Analysis Matrix for machine abnormality detection is presented.
From trees to forest: relational complexity network and workload of air traffic controllers.
Zhang, Jingyu; Yang, Jiazhong; Wu, Changxu
2015-01-01
In this paper, we propose a relational complexity (RC) network framework based on RC metric and network theory to model controllers' workload in conflict detection and resolution. We suggest that, at the sector level, air traffic showing a centralised network pattern can provide cognitive benefits in visual search and resolution decision which will in turn result in lower workload. We found that the network centralisation index can account for more variance in predicting perceived workload and task completion time in both a static conflict detection task (Study 1) and a dynamic one (Study 2) in addition to other aircraft-level and pair-level factors. This finding suggests that linear combination of aircraft-level or dyad-level information may not be adequate and the global-pattern-based index is necessary. Theoretical and practical implications of using this framework to improve future workload modelling and management are discussed. We propose a RC network framework to model the workload of air traffic controllers. The effect of network centralisation was examined in both a static conflict detection task and a dynamic one. Network centralisation was predictive of perceived workload and task completion time over and above other control variables.
Grouin, Cyril; Moriceau, Véronique; Zweigenbaum, Pierre
2015-12-01
The determination of risk factors and their temporal relations in natural language patient records is a complex task which has been addressed in the i2b2/UTHealth 2014 shared task. In this context, in most systems it was broadly decomposed into two sub-tasks implemented by two components: entity detection, and temporal relation determination. Task-level ("black box") evaluation is relevant for the final clinical application, whereas component-level evaluation ("glass box") is important for system development and progress monitoring. Unfortunately, because of the interaction between entity representation and temporal relation representation, glass box and black box evaluation cannot be managed straightforwardly at the same time in the setting of the i2b2/UTHealth 2014 task, making it difficult to assess reliably the relative performance and contribution of the individual components to the overall task. To identify obstacles and propose methods to cope with this difficulty, and illustrate them through experiments on the i2b2/UTHealth 2014 dataset. We outline several solutions to this problem and examine their requirements in terms of adequacy for component-level and task-level evaluation and of changes to the task framework. We select the solution which requires the least modifications to the i2b2 evaluation framework and illustrate it with our system. This system identifies risk factor mentions with a CRF system complemented by hand-designed patterns, identifies and normalizes temporal expressions through a tailored version of the Heideltime tool, and determines temporal relations of each risk factor with a One Rule classifier. Giving a fixed value to the temporal attribute in risk factor identification proved to be the simplest way to evaluate the risk factor detection component independently. This evaluation method enabled us to identify the risk factor detection component as most contributing to the false negatives and false positives of the global system. This led us to redirect further effort to this component, focusing on medication detection, with gains of 7 to 20 recall points and of 3 to 6 F-measure points depending on the corpus and evaluation. We proposed a method to achieve a clearer glass box evaluation of risk factor detection and temporal relation detection in clinical texts, which can provide an example to help system development in similar tasks. This glass box evaluation was instrumental in refocusing our efforts and obtaining substantial improvements in risk factor detection. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Jones, B. M.
2011-01-01
The detection and subsequent removal of land mines and unexploded ordnance (UXO) from many developing countries are slow, expensive, and dangerous tasks, but have the potential to improve the well-being of millions of people. Consequently, those involved with humanitarian mine and UXO clearance are actively searching for new and more efficient…
Turner, Karly M.; Peak, James; Burne, Thomas H. J.
2016-01-01
Neuropsychiatric research has utilized cognitive testing in rodents to improve our understanding of cognitive deficits and for preclinical drug development. However, more sophisticated cognitive tasks have not been as widely exploited due to low throughput and the extensive training time required. We developed a modified signal detection task (SDT) based on the growing body of literature aimed at improving cognitive testing in rodents. This study directly compares performance on the modified SDT with a traditional test for measuring attention, the 5-choice serial reaction time task (5CSRTT). Adult male Sprague-Dawley rats were trained on either the 5CSRTT or the SDT. Briefly, the 5CSRTT required rodents to pay attention to a spatial array of five apertures and respond with a nose poke when an aperture was illuminated. The SDT required the rat to attend to a light panel and respond either left or right to indicate the presence of a signal. In addition, modifications were made to the reward delivery, timing, control of body positioning, and the self-initiation of trials. It was found that less training time was required for the SDT, with both sessions to criteria and daily session duration significantly reduced. Rats performed with a high level of accuracy (>87%) on both tasks, however omissions were far more frequent on the 5CSRTT. The signal duration was reduced on both tasks as a manipulation of task difficulty relevant to attention and a similar pattern of decreasing accuracy was observed on both tasks. These results demonstrate some of the advantages of the SDT over the traditional 5CSRTT as being higher throughput with reduced training time, fewer omission responses and their body position was controlled at stimulus onset. In addition, rats performing the SDT had comparable high levels of accuracy. These results highlight the differences and similarities between the 5CSRTT and a modified SDT as tools for assessing attention in preclinical animal models. PMID:26834597
Response-Guided Community Detection: Application to Climate Index Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bello, Gonzalo; Angus, Michael; Pedemane, Navya
Discovering climate indices-time series that summarize spatiotemporal climate patterns-is a key task in the climate science domain. In this work, we approach this task as a problem of response-guided community detection; that is, identifying communities in a graph associated with a response variable of interest. To this end, we propose a general strategy for response-guided community detection that explicitly incorporates information of the response variable during the community detection process, and introduce a graph representation of spatiotemporal data that leverages information from multiple variables. We apply our proposed methodology to the discovery of climate indices associated with seasonal rainfall variability.more » Our results suggest that our methodology is able to capture the underlying patterns known to be associated with the response variable of interest and to improve its predictability compared to existing methodologies for data-driven climate index discovery and official forecasts.« less
Morlet, Dominique; Ruby, Perrine; André-Obadia, Nathalie; Fischer, Catherine
2017-11-01
Active paradigms requiring subjects to engage in a mental task on request have been developed to detect consciousness in behaviorally unresponsive patients. Using auditory ERPs, the active condition consists in orienting patient's attention toward oddball stimuli. In comparison with passive listening, larger P300 in the active condition identifies voluntary processes. However, contrast between these two conditions is usually too weak to be detected at the individual level. To improve test sensitivity, we propose as a control condition to actively divert the subject's attention from the auditory stimuli with a mental imagery task that has been demonstrated to be within the grasp of the targeted patients: navigate in one's home. Twenty healthy subjects were presented with a two-tone oddball paradigm in the three following condition: (a) passive listening, (b) mental imagery, (c) silent counting of deviant stimuli. Mental imagery proved to be more efficient than passive listening to lessen P300 response to deviant tones as compared with the active counting condition. An effect of attention manipulation (oriented vs. diverted) was observed in 19/20 subjects, of whom 18 showed the expected P300 effect and 1 showed an effect restricted to the N2 component. The only subject showing no effect also proved insufficient engagement in the tasks. Our study demonstrated the efficiency of diverting attention using mental imagery to improve the sensitivity of the active oddball paradigm. Using recorded instructions and requiring a small number of electrodes, the test was designed to be conveniently and economically used at the patient's bedside. © 2017 Society for Psychophysiological Research.
NASA Astrophysics Data System (ADS)
Hafner, J.; Uckert, G.; Graef, F.; Hoffmann, H.; Kimaro, A. A.; Sererya, O.; Sieber, S.
2018-02-01
In Tanzania, a majority of rural residents cook using firewood-based three-stone-fire stoves. In this study, quantitative performance differences between technologically advanced improved cooking stoves and three-stone-fire stoves are analysed. We test the performance of improved cooking stoves and three-stone-fire stoves using local cooks, foods, and fuels, in the semi-arid region of Dodoma in Tanzania. We used the cooking protocol of the Controlled Cooking Test following a two-pot test design. The findings of the study suggest that improved cooking stoves use less firewood and less time than three-stone-fire stoves to conduct a predefined cooking task. In total, 40 households were assessed and ask to complete two different cooking tasks: (1) a fast cooking meal (rice and vegetables) and (2) a slow cooking meal (beans and rice). For cooking task 1, the results show a significant reduction in firewood consumption of 37.1% by improved cooking stoves compared to traditional three-stone-fire stoves; for cooking task 2 a reduction of 15.6% is found. In addition, it was found that the time needed to conduct cooking tasks 1 and 2 was significantly reduced by 26.8% and 22.8% respectively, when improved cooking stoves were used instead of three-stone-fire-stoves. We observed that the villagers altered the initial improved cooking stove design, resulting in the so-called modified improved cooking stove. In an additional Controlled Cooking Test, we conducted cooking task 3: a very fast cooking meal (maize flour and vegetables) within 32 households. Significant changes between the initial and modified improved cooking stoves regarding firewood and time consumption were not detected. However, analyses show that both firewood and time consumption during cooking was reduced when large amounts (for 6-7 household members) of food were prepared instead of small amounts (for 2-3 household members).
Effects of task-irrelevant grouping on visual selection in partial report.
Lunau, Rasmus; Habekost, Thomas
2017-07-01
Perceptual grouping modulates performance in attention tasks such as partial report and change detection. Specifically, grouping of search items according to a task-relevant feature improves the efficiency of visual selection. However, the role of task-irrelevant feature grouping is not clearly understood. In the present study, we investigated whether grouping of targets by a task-irrelevant feature influences performance in a partial-report task. In this task, participants must report as many target letters as possible from a briefly presented circular display. The crucial manipulation concerned the color of the elements in these trials. In the sorted-color condition, the color of the display elements was arranged according to the selection criterion, and in the unsorted-color condition, colors were randomly assigned. The distractor cost was inferred by subtracting performance in partial-report trials from performance in a control condition that had no distractors in the display. Across five experiments, we manipulated trial order, selection criterion, and exposure duration, and found that attentional selectivity was improved in sorted-color trials when the exposure duration was 200 ms and the selection criterion was luminance. This effect was accompanied by impaired selectivity in unsorted-color trials. Overall, the results suggest that the benefit of task-irrelevant color grouping of targets is contingent on the processing locus of the selection criterion.
Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data
Treutler, Hendrik; Neumann, Steffen
2016-01-01
Mass spectrometry is a key analytical platform for metabolomics. The precise quantification and identification of small molecules is a prerequisite for elucidating the metabolism and the detection, validation, and evaluation of isotope clusters in LC-MS data is important for this task. Here, we present an approach for the improved detection of isotope clusters using chemical prior knowledge and the validation of detected isotope clusters depending on the substance mass using database statistics. We find remarkable improvements regarding the number of detected isotope clusters and are able to predict the correct molecular formula in the top three ranks in 92% of the cases. We make our methodology freely available as part of the Bioconductor packages xcms version 1.50.0 and CAMERA version 1.30.0. PMID:27775610
DQE and system optimization for indirect-detection flat-panel imagers in diagnostic radiology
NASA Astrophysics Data System (ADS)
Siewerdsen, Jeffrey H.; Antonuk, Larry E.
1998-07-01
The performance of indirect-detection flat-panel imagers incorporating CsI:Tl x-ray converters is examined through calculation of the detective quantum efficiency (DQE) under conditions of chest radiography, fluoroscopy, and mammography. Calculations are based upon a cascaded systems model which has demonstrated excellent agreement with empirical signal, noise- power spectra, and DQE results. For each application, the DQE is calculated as a function of spatial-frequency and CsI:Tl thickness. A preliminary investigation into the optimization of flat-panel imaging systems is described, wherein the x-ray converter thickness which provides optimal DQE for a given imaging task is estimated. For each application, a number of example tasks involving detection of an object of variable size and contrast against a noisy background are considered. The method described is fairly general and can be extended to account for a variety of imaging tasks. For the specific examples considered, the preliminary results estimate optimal CsI:Tl thicknesses of approximately 450 micrometer (approximately 200 mg/cm2), approximately 320 micrometer (approximately 140 mg/cm2), and approximately 200 micrometer (approximately 90 mg/cm2) for chest radiography, fluoroscopy, and mammography, respectively. These results are expected to depend upon the imaging task as well as upon the quality of available CsI:Tl, and future improvements in scintillator fabrication could result in increased optimal thickness and DQE.
A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection.
Jin, Hongsheng; Li, Zongyao; Tong, Ruofeng; Lin, Lanfen
2018-05-01
The automatic detection of pulmonary nodules using CT scans improves the efficiency of lung cancer diagnosis, and false-positive reduction plays a significant role in the detection. In this paper, we focus on the false-positive reduction task and propose an effective method for this task. We construct a deep 3D residual CNN (convolution neural network) to reduce false-positive nodules from candidate nodules. The proposed network is much deeper than the traditional 3D CNNs used in medical image processing. Specifically, in the network, we design a spatial pooling and cropping (SPC) layer to extract multilevel contextual information of CT data. Moreover, we employ an online hard sample selection strategy in the training process to make the network better fit hard samples (e.g., nodules with irregular shapes). Our method is evaluated on 888 CT scans from the dataset of the LUNA16 Challenge. The free-response receiver operating characteristic (FROC) curve shows that the proposed method achieves a high detection performance. Our experiments confirm that our method is robust and that the SPC layer helps increase the prediction accuracy. Additionally, the proposed method can easily be extended to other 3D object detection tasks in medical image processing. © 2018 American Association of Physicists in Medicine.
Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G
2017-03-01
We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.
King, Andy J; Gehl, Robert W; Grossman, Douglas; Jensen, Jakob D
2013-12-01
Skin self-examination (SSE) is one method for identifying atypical nevi among members of the general public. Unfortunately, past research has shown that SSE has low sensitivity in detecting atypical nevi. The current study investigates whether crowdsourcing (collective effort) can improve SSE identification accuracy. Collective effort is potentially useful for improving people's visual identification of atypical nevi during SSE because, even when a single person has low reliability at a task, the pattern of the group can overcome the limitations of each individual. Adults (N=500) were recruited from a shopping mall in the Midwest. Participants viewed educational pamphlets about SSE and then completed a mole identification task. For the task, participants were asked to circle mole images that appeared atypical. Forty nevi images were provided; nine of the images were of nevi that were later diagnosed as melanoma. Consistent with past research, individual effort exhibited modest sensitivity (.58) for identifying atypical nevi in the mole identification task. As predicted, collective effort overcame the limitations of individual effort. Specifically, a 19% collective effort identification threshold exhibited superior sensitivity (.90). The results of the current study suggest that limitations of SSE can be countered by collective effort, a finding that supports the pursuit of interventions promoting early melanoma detection that contain crowdsourced visual identification components. Copyright © 2013 Elsevier Ltd. All rights reserved.
Task-dependent enhancement of facial expression and identity representations in human cortex.
Dobs, Katharina; Schultz, Johannes; Bülthoff, Isabelle; Gardner, Justin L
2018-05-15
What cortical mechanisms allow humans to easily discern the expression or identity of a face? Subjects detected changes in expression or identity of a stream of dynamic faces while we measured BOLD responses from topographically and functionally defined areas throughout the visual hierarchy. Responses in dorsal areas increased during the expression task, whereas responses in ventral areas increased during the identity task, consistent with previous studies. Similar to ventral areas, early visual areas showed increased activity during the identity task. If visual responses are weighted by perceptual mechanisms according to their magnitude, these increased responses would lead to improved attentional selection of the task-appropriate facial aspect. Alternatively, increased responses could be a signature of a sensitivity enhancement mechanism that improves representations of the attended facial aspect. Consistent with the latter sensitivity enhancement mechanism, attending to expression led to enhanced decoding of exemplars of expression both in early visual and dorsal areas relative to attending identity. Similarly, decoding identity exemplars when attending to identity was improved in dorsal and ventral areas. We conclude that attending to expression or identity of dynamic faces is associated with increased selectivity in representations consistent with sensitivity enhancement. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
McLaren, Donald G.; Ries, Michele L.; Xu, Guofan; Johnson, Sterling C.
2012-01-01
Functional MRI (fMRI) allows one to study task-related regional responses and task-dependent connectivity analysis using psychophysiological interaction (PPI) methods. The latter affords the additional opportunity to understand how brain regions interact in a task-dependent manner. The current implementation of PPI in Statistical Parametric Mapping (SPM8) is configured primarily to assess connectivity differences between two task conditions, when in practice fMRI tasks frequently employ more than two conditions. Here we evaluate how a generalized form of context-dependent PPI (gPPI; http://www.nitrc.org/projects/gppi), which is configured to automatically accommodate more than two task conditions in the same PPI model by spanning the entire experimental space, compares to the standard implementation in SPM8. These comparisons are made using both simulations and an empirical dataset. In the simulated dataset, we compare the interaction beta estimates to their expected values and model fit using the Akaike Information Criterion (AIC). We found that interaction beta estimates in gPPI were robust to different simulated data models, were not different from the expected beta value, and had better model fits than when using standard PPI (sPPI) methods. In the empirical dataset, we compare the model fit of the gPPI approach to sPPI. We found that the gPPI approach improved model fit compared to sPPI. There were several regions that became non-significant with gPPI. These regions all showed significantly better model fits with gPPI. Also, there were several regions where task-dependent connectivity was only detected using gPPI methods, also with improved model fit. Regions that were detected with all methods had more similar model fits. These results suggest that gPPI may have greater sensitivity and specificity than standard implementation in SPM. This notion is tempered slightly as there is no gold standard; however, data simulations with a known outcome support our conclusions about gPPI. In sum, the generalized form of context-dependent PPI approach has increased flexibility of statistical modeling, and potentially improves model fit, specificity to true negative findings, and sensitivity to true positive findings. PMID:22484411
Effect of shaping sensor data on pilot response
NASA Technical Reports Server (NTRS)
Bailey, Roger M.
1990-01-01
The pilot of a modern jet aircraft is subjected to varying workloads while being responsible for multiple, ongoing tasks. The ability to associate the pilot's responses with the task/situation, by modifying the way information is presented relative to the task, could provide a means of reducing workload. To examine the feasibility of this concept, a real time simulation study was undertaken to determine whether preprocessing of sensor data would affect pilot response. Results indicated that preprocessing could be an effective way to tailor the pilot's response to displayed data. The effects of three transformations or shaping functions were evaluated with respect to the pilot's ability to predict and detect out-of-tolerance conditions while monitoring an electronic engine display. Two nonlinear transformations, on being the inverse of the other, were compared to a linear transformation. Results indicate that a nonlinear transformation that increases the rate-or-change of output relative to input tends to advance the prediction response and improve the detection response, while a nonlinear transformation that decreases the rate-of-change of output relative to input tends to lengthen the prediction response and make detection more difficult.
Vargas, Maria V; Moawad, Gaby; Denny, Kathryn; Happ, Lindsey; Misa, Nana Yaa; Margulies, Samantha; Opoku-Anane, Jessica; Abi Khalil, Elias; Marfori, Cherie
To assess whether a robotic simulation curriculum for novice surgeons can improve performance of a suturing task in a live porcine model. Randomized controlled trial (Canadian Task Force classification I). Academic medical center. Thirty-five medical students without robotic surgical experience. Participants were enrolled in an online session of training modules followed by an in-person orientation. Baseline performance testing on the Mimic Technologies da Vinci Surgical Simulator (dVSS) was also performed. Participants were then randomly assigned to the completion of 4 dVSS training tasks (camera clutching 1, suture sponge 1 and 2, and tubes) versus no further training. The intervention group performed each dVSS task until proficiency or up to 10 times. A final suturing task was performed on a live porcine model, which was video recorded and blindly assessed by experienced surgeons. The primary outcomes were Global Evaluative Assessment of Robotic Skills (GEARS) scores and task time. The study had 90% power to detect a mean difference of 3 points on the GEARS scale, assuming a standard deviation (SD) of 2.65, and 80% power to detect a mean difference of 3 minutes, assuming an SD of 3 minutes. There were no differences in demographics and baseline skills between the 2 groups. No significant differences in task time in minutes or GEARS scores were seen for the final suturing task between the intervention and control groups, respectively (9.2 [2.65] vs 9.9 [2.07] minutes, p = .406; and 15.37 [2.51] vs 15.25 [3.38], p = .603). The 95% confidence interval for the difference in mean task times was -2.36 to .96 minutes and for mean GEARS scores -1.91 to 2.15 points. Live suturing task performance was not improved with a proficiency-based virtual reality simulation suturing curriculum compared with standard orientation to the da Vinci robotic console in a group of novice surgeons. Published by Elsevier Inc.
Valls-Serrano, Carlos; Caracuel, Alfonso; Verdejo-Garcia, Antonio
2016-08-01
We have previously shown that Goal Management Training+Mindfulness Meditation (GMT+MM) improves executive functions in polysubstance users enrolled in outpatient treatment. The aim of this study was to establish if GMT+MM has similar positive effects on executive functions in polysubstance users in residential treatment, and if executive functions' gains transfer to more ecologically valid goal-oriented tasks. Thirty-two polysbustance users were randomly allocated to eight weeks of GMT+MM (n=16) or control, i.e., no-intervention (n=16); both groups received treatment as usual. Outcome measures included performance in laboratory tasks of basic and complex executive functions (i.e., basic: working memory and inhibition; complex: planning and self-regulation) and in an ecological task of goal-directed behavior (the Multiple Errands Test - contextualized version, MET-CV) measured post-interventions. Results showed that GMT+MM was superior to control in improving basic measures of working memory (Letter-number sequencing; F=4.516, p=0.049) and reflection impulsivity (Information Sampling Test; F=6.217, p=0.018), along with initial thinking times during planning (Zoo Map Test; F=8.143, p=0.008). In addition, GMT+MM was superior to control in improving performance in the MET-CV (task failures; F=8.485, p=0.007). Our findings demonstrate that GMT+MM increases reflective processes and the achievement of goals in daily activities, furthermore ecological test can detects changes easily than laboratory tasks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
MacAulay, Rebecca K; Wagner, Mark T; Szeles, Dana; Milano, Nicholas J
2017-07-01
Longitudinal research indicates that cognitive load dual-task gait assessment is predictive of cognitive decline and thus might provide a sensitive measure to screen for mild cognitive impairment (MCI). However, research among older adults being clinically evaluated for cognitive concerns, a defining feature of MCI, is lacking. The present study investigated the effect of performing a cognitive task on normal walking speed in patients presenting to a memory clinic with cognitive complaints. Sixty-one patients with a mean age of 68 years underwent comprehensive neuropsychological testing, clinical interview, and gait speed (simple- and dual-task conditions) assessments. Thirty-four of the 61 patients met criteria for MCI. Repeated measure analyses of covariance revealed that greater age and MCI both significantly associated with slower gait speed, ps<.05. Follow-up analysis indicated that the MCI group had significantly slower dual-task gait speed but did not differ in simple-gait speed. Multivariate linear regression across groups found that executive attention performance accounted for 27.4% of the variance in dual-task gait speed beyond relevant demographic and health risk factors. The present study increases the external validity of dual-task gait assessment of MCI. Differences in dual-task gait speed appears to be largely attributable to executive attention processes. These findings have clinical implications as they demonstrate expected patterns of gait-brain behavior relationships in response to a cognitive dual task within a clinically representative population. Cognitive load dual-task gait assessment may provide a cost efficient and sensitive measure to detect older adults at high risk of a dementia disorder. (JINS, 2017, 23, 493-501).
Supervised detection of exoplanets in high-contrast imaging sequences
NASA Astrophysics Data System (ADS)
Gomez Gonzalez, C. A.; Absil, O.; Van Droogenbroeck, M.
2018-06-01
Context. Post-processing algorithms play a key role in pushing the detection limits of high-contrast imaging (HCI) instruments. State-of-the-art image processing approaches for HCI enable the production of science-ready images relying on unsupervised learning techniques, such as low-rank approximations, for generating a model point spread function (PSF) and subtracting the residual starlight and speckle noise. Aims: In order to maximize the detection rate of HCI instruments and survey campaigns, advanced algorithms with higher sensitivities to faint companions are needed, especially for the speckle-dominated innermost region of the images. Methods: We propose a reformulation of the exoplanet detection task (for ADI sequences) that builds on well-established machine learning techniques to take HCI post-processing from an unsupervised to a supervised learning context. In this new framework, we present algorithmic solutions using two different discriminative models: SODIRF (random forests) and SODINN (neural networks). We test these algorithms on real ADI datasets from VLT/NACO and VLT/SPHERE HCI instruments. We then assess their performances by injecting fake companions and using receiver operating characteristic analysis. This is done in comparison with state-of-the-art ADI algorithms, such as ADI principal component analysis (ADI-PCA). Results: This study shows the improved sensitivity versus specificity trade-off of the proposed supervised detection approach. At the diffraction limit, SODINN improves the true positive rate by a factor ranging from 2 to 10 (depending on the dataset and angular separation) with respect to ADI-PCA when working at the same false-positive level. Conclusions: The proposed supervised detection framework outperforms state-of-the-art techniques in the task of discriminating planet signal from speckles. In addition, it offers the possibility of re-processing existing HCI databases to maximize their scientific return and potentially improve the demographics of directly imaged exoplanets.
Gang, G J; Siewerdsen, J H; Stayman, J W
2017-02-11
This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index ( d' ) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength ( β ) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.
Ward, Jamie; Jonas, Clare; Dienes, Zoltan; Seth, Anil
2010-04-07
For people with synaesthesia letters and numbers may evoke experiences of colour. It has been previously demonstrated that these synaesthetes may be better at detecting a triangle made of 2s among a background of 5s if they perceive 5 and 2 as having different synaesthetic colours. However, other studies using this task (or tasks based on the same principle) have failed to replicate the effect or have suggested alternative explanations of the effect. In this study, we repeat the original study on a larger group of synaesthetes (n = 36) and include, for the first time, an assessment of their self-reported colour experiences. We show that synaesthetes do have a general advantage over controls on this task. However, many synaesthetes report no colour experiences at all during the task. Synaesthetes who do report colour typically experience around one third of the graphemes in the display as coloured. This is more consistent with theories of synaesthesia in which spatial attention needs to be deployed to graphemes for conscious colour experiences to emerge than the interpretation based on 'pop-out'.
How do we watch images? A case of change detection and quality estimation
NASA Astrophysics Data System (ADS)
Radun, Jenni; Leisti, Tuomas; Virtanen, Toni; Nyman, Göte
2012-01-01
The most common tasks in subjective image estimation are change detection (a detection task) and image quality estimation (a preference task). We examined how the task influences the gaze behavior when comparing detection and preference tasks. The eye movements of 16 naïve observers were recorded with 8 observers in both tasks. The setting was a flicker paradigm, where the observers see a non-manipulated image, a manipulated version of the image and again the non-manipulated image and estimate the difference they perceived in them. The material was photographic material with different image distortions and contents. To examine the spatial distribution of fixations, we defined the regions of interest using a memory task and calculated information entropy to estimate how concentrated the fixations were on the image plane. The quality task was faster and needed fewer fixations and the first eight fixations were more concentrated on certain image areas than the change detection task. The bottom-up influences of the image also caused more variation to the gaze behavior in the quality estimation task than in the change detection task The results show that the quality estimation is faster and the regions of interest are emphasized more on certain images compared with the change detection task that is a scan task where the whole image is always thoroughly examined. In conclusion, in subjective image estimation studies it is important to think about the task.
Are Letter Detection and Proofreading Tasks Equivalent?
ERIC Educational Resources Information Center
Saint-Aubin, Jean; Losier, Marie-Claire; Roy, Macha; Lawrence, Mike
2015-01-01
When readers search for misspellings in a proofreading task or for a letter in a letter detection task, they are more likely to omit function words than content words. However, with misspelled words, previous findings for the letter detection task were mixed. In two experiments, the authors tested the functional equivalence of both tasks. Results…
Classification of change detection and change blindness from near-infrared spectroscopy signals
NASA Astrophysics Data System (ADS)
Tanaka, Hirokazu; Katura, Takusige
2011-08-01
Using a machine-learning classification algorithm applied to near-infrared spectroscopy (NIRS) signals, we classify a success (change detection) or a failure (change blindness) in detecting visual changes for a change-detection task. Five subjects perform a change-detection task, and their brain activities are continuously monitored. A support-vector-machine algorithm is applied to classify the change-detection and change-blindness trials, and correct classification probability of 70-90% is obtained for four subjects. Two types of temporal shapes in classification probabilities are found: one exhibiting a maximum value after the task is completed (postdictive type), and another exhibiting a maximum value during the task (predictive type). As for the postdictive type, the classification probability begins to increase immediately after the task completion and reaches its maximum in about the time scale of neuronal hemodynamic response, reflecting a subjective report of change detection. As for the predictive type, the classification probability shows an increase at the task initiation and is maximal while subjects are performing the task, predicting the task performance in detecting a change. We conclude that decoding change detection and change blindness from NIRS signal is possible and argue some future applications toward brain-machine interfaces.
Dichotic listening in patients with splenial and nonsplenial callosal lesions.
Pollmann, Stefan; Maertens, Marianne; von Cramon, D Yves; Lepsien, Joeran; Hugdahl, Kenneth
2002-01-01
The authors found splenial lesions to be associated with left ear suppression in dichotic listening of consonant-vowel syllables. This was found in both a rapid presentation dichotic monitoring task and a standard dichotic listening task, ruling out attentional limitations in the processing of high stimulus loads as a confounding factor. Moreover, directed attention to the left ear did not improve left ear target detection in the patients, independent of callosal lesion location. The authors' data may indicate that auditory callosal fibers pass through the splenium more posterior than previously thought. However, further studies should investigate whether callosal fibers between primary and secondary auditory cortices, or between higher level multimodal cortices, are vital for the detection of left ear targets in dichotic listening.
High-Performance Signal Detection for Adverse Drug Events using MapReduce Paradigm.
Fan, Kai; Sun, Xingzhi; Tao, Ying; Xu, Linhao; Wang, Chen; Mao, Xianling; Peng, Bo; Pan, Yue
2010-11-13
Post-marketing pharmacovigilance is important for public health, as many Adverse Drug Events (ADEs) are unknown when those drugs were approved for marketing. However, due to the large number of reported drugs and drug combinations, detecting ADE signals by mining these reports is becoming a challenging task in terms of computational complexity. Recently, a parallel programming model, MapReduce has been introduced by Google to support large-scale data intensive applications. In this study, we proposed a MapReduce-based algorithm, for common ADE detection approach, Proportional Reporting Ratio (PRR), and tested it in mining spontaneous ADE reports from FDA. The purpose is to investigate the possibility of using MapReduce principle to speed up biomedical data mining tasks using this pharmacovigilance case as one specific example. The results demonstrated that MapReduce programming model could improve the performance of common signal detection algorithm for pharmacovigilance in a distributed computation environment at approximately liner speedup rates.
4D numerical observer for lesion detection in respiratory-gated PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorsakul, Auranuch; Li, Quanzheng; Ouyang, Jinsong
2014-10-15
Purpose: Respiratory-gated positron emission tomography (PET)/computed tomography protocols reduce lesion smearing and improve lesion detection through a synchronized acquisition of emission data. However, an objective assessment of image quality of the improvement gained from respiratory-gated PET is mainly limited to a three-dimensional (3D) approach. This work proposes a 4D numerical observer that incorporates both spatial and temporal informations for detection tasks in pulmonary oncology. Methods: The authors propose a 4D numerical observer constructed with a 3D channelized Hotelling observer for the spatial domain followed by a Hotelling observer for the temporal domain. Realistic {sup 18}F-fluorodeoxyglucose activity distributions were simulated usingmore » a 4D extended cardiac torso anthropomorphic phantom including 12 spherical lesions at different anatomical locations (lower, upper, anterior, and posterior) within the lungs. Simulated data based on Monte Carlo simulation were obtained using GEANT4 application for tomographic emission (GATE). Fifty noise realizations of six respiratory-gated PET frames were simulated by GATE using a model of the Siemens Biograph mMR scanner geometry. PET sinograms of the thorax background and pulmonary lesions that were simulated separately were merged to generate different conditions of the lesions to the background (e.g., lesion contrast and motion). A conventional ordered subset expectation maximization (OSEM) reconstruction (5 iterations and 6 subsets) was used to obtain: (1) gated, (2) nongated, and (3) motion-corrected image volumes (a total of 3200 subimage volumes: 2400 gated, 400 nongated, and 400 motion-corrected). Lesion-detection signal-to-noise ratios (SNRs) were measured in different lesion-to-background contrast levels (3.5, 8.0, 9.0, and 20.0), lesion diameters (10.0, 13.0, and 16.0 mm), and respiratory motion displacements (17.6–31.3 mm). The proposed 4D numerical observer applied on multiple-gated images was compared to the conventional 3D approach applied on the nongated and motion-corrected images. Results: On average, the proposed 4D numerical observer improved the detection SNR by 48.6% (p < 0.005), whereas the 3D methods on motion-corrected images improved by 31.0% (p < 0.005) as compared to the nongated method. For all different conditions of the lesions, the relative SNR measurement (Gain = SNR{sub Observed}/SNR{sub Nongated}) of the 4D method was significantly higher than one from the motion-corrected 3D method by 13.8% (p < 0.02), where Gain{sub 4D} was 1.49 ± 0.21 and Gain{sub 3D} was 1.31 ± 0.15. For the lesion with the highest amplitude of motion, the 4D numerical observer yielded the highest observer-performance improvement (176%). For the lesion undergoing the smallest motion amplitude, the 4D method provided superior lesion detectability compared with the 3D method, which provided a detection SNR close to the nongated method. The investigation on a structure of the 4D numerical observer showed that a Laguerre–Gaussian channel matrix with a volumetric 3D function yielded higher lesion-detection performance than one with a 2D-stack-channelized function, whereas a different kind of channels that have the ability to mimic the human visual system, i.e., difference-of-Gaussian, showed similar performance in detecting uniform and spherical lesions. The investigation of the detection performance when increasing noise levels yielded decreasing detection SNR by 27.6% and 41.5% for the nongated and gated methods, respectively. The investigation of lesion contrast and diameter showed that the proposed 4D observer preserved the linearity property of an optimal-linear observer while the motion was present. Furthermore, the investigation of the iteration and subset numbers of the OSEM algorithm demonstrated that these parameters had impact on the lesion detectability and the selection of the optimal parameters could provide the maximum lesion-detection performance. The proposed 4D numerical observer outperformed the other observers for the lesion-detection task in various lesion conditions and motions. Conclusions: The 4D numerical observer shows substantial improvement in lesion detectability over the 3D observer method. The proposed 4D approach could potentially provide a more reliable objective assessment of the impact of respiratory-gated PET improvement for lesion-detection tasks. On the other hand, the 4D approach may be used as an upper bound to investigate the performance of the motion correction method. In future work, the authors will validate the proposed 4D approach on clinical data for detection tasks in pulmonary oncology.« less
NASA Astrophysics Data System (ADS)
Xu, Jingyan; Fuld, Matthew K.; Fung, George S. K.; Tsui, Benjamin M. W.
2015-04-01
Iterative reconstruction (IR) methods for x-ray CT is a promising approach to improve image quality or reduce radiation dose to patients. The goal of this work was to use task based image quality measures and the channelized Hotelling observer (CHO) to evaluate both analytic and IR methods for clinical x-ray CT applications. We performed realistic computer simulations at five radiation dose levels, from a clinical reference low dose D0 to 25% D0. A fixed size and contrast lesion was inserted at different locations into the liver of the XCAT phantom to simulate a weak signal. The simulated data were reconstructed on a commercial CT scanner (SOMATOM Definition Flash; Siemens, Forchheim, Germany) using the vendor-provided analytic (WFBP) and IR (SAFIRE) methods. The reconstructed images were analyzed by CHOs with both rotationally symmetric (RS) and rotationally oriented (RO) channels, and with different numbers of lesion locations (5, 10, and 20) in a signal known exactly (SKE), background known exactly but variable (BKEV) detection task. The area under the receiver operating characteristic curve (AUC) was used as a summary measure to compare the IR and analytic methods; the AUC was also used as the equal performance criterion to derive the potential dose reduction factor of IR. In general, there was a good agreement in the relative AUC values of different reconstruction methods using CHOs with RS and RO channels, although the CHO with RO channels achieved higher AUCs than RS channels. The improvement of IR over analytic methods depends on the dose level. The reference dose level D0 was based on a clinical low dose protocol, lower than the standard dose due to the use of IR methods. At 75% D0, the performance improvement was statistically significant (p < 0.05). The potential dose reduction factor also depended on the detection task. For the SKE/BKEV task involving 10 lesion locations, a dose reduction of at least 25% from D0 was achieved.
Cell nuclei and cytoplasm joint segmentation using the sliding band filter.
Quelhas, Pedro; Marcuzzo, Monica; Mendonça, Ana Maria; Campilho, Aurélio
2010-08-01
Microscopy cell image analysis is a fundamental tool for biological research. In particular, multivariate fluorescence microscopy is used to observe different aspects of cells in cultures. It is still common practice to perform analysis tasks by visual inspection of individual cells which is time consuming, exhausting and prone to induce subjective bias. This makes automatic cell image analysis essential for large scale, objective studies of cell cultures. Traditionally the task of automatic cell analysis is approached through the use of image segmentation methods for extraction of cells' locations and shapes. Image segmentation, although fundamental, is neither an easy task in computer vision nor is it robust to image quality changes. This makes image segmentation for cell detection semi-automated requiring frequent tuning of parameters. We introduce a new approach for cell detection and shape estimation in multivariate images based on the sliding band filter (SBF). This filter's design makes it adequate to detect overall convex shapes and as such it performs well for cell detection. Furthermore, the parameters involved are intuitive as they are directly related to the expected cell size. Using the SBF filter we detect cells' nucleus and cytoplasm location and shapes. Based on the assumption that each cell has the same approximate shape center in both nuclei and cytoplasm fluorescence channels, we guide cytoplasm shape estimation by the nuclear detections improving performance and reducing errors. Then we validate cell detection by gathering evidence from nuclei and cytoplasm channels. Additionally, we include overlap correction and shape regularization steps which further improve the estimated cell shapes. The approach is evaluated using two datasets with different types of data: a 20 images benchmark set of simulated cell culture images, containing 1000 simulated cells; a 16 images Drosophila melanogaster Kc167 dataset containing 1255 cells, stained for DNA and actin. Both image datasets present a difficult problem due to the high variability of cell shapes and frequent cluster overlap between cells. On the Drosophila dataset our approach achieved a precision/recall of 95%/69% and 82%/90% for nuclei and cytoplasm detection respectively and an overall accuracy of 76%.
Sensory dominance and multisensory integration as screening tools in aging.
Murray, Micah M; Eardley, Alison F; Edginton, Trudi; Oyekan, Rebecca; Smyth, Emily; Matusz, Pawel J
2018-06-11
Multisensory information typically confers neural and behavioural advantages over unisensory information. We used a simple audio-visual detection task to compare healthy young (HY), healthy older (HO) and mild-cognitive impairment (MCI) individuals. Neuropsychological tests assessed individuals' learning and memory impairments. First, we provide much-needed clarification regarding the presence of enhanced multisensory benefits in both healthily and abnormally aging individuals. The pattern of sensory dominance shifted with healthy and abnormal aging to favour a propensity of auditory-dominant behaviour (i.e., detecting sounds faster than flashes). Notably, multisensory benefits were larger only in healthy older than younger individuals who were also visually-dominant. Second, we demonstrate that the multisensory detection task offers benefits as a time- and resource-economic MCI screening tool. Receiver operating characteristic (ROC) analysis demonstrated that MCI diagnosis could be reliably achieved based on the combination of indices of multisensory integration together with indices of sensory dominance. Our findings showcase the importance of sensory profiles in determining multisensory benefits in healthy and abnormal aging. Crucially, our findings open an exciting possibility for multisensory detection tasks to be used as a cost-effective screening tool. These findings clarify relationships between multisensory and memory functions in aging, while offering new avenues for improved dementia diagnostics.
Kalal, Zdenek; Mikolajczyk, Krystian; Matas, Jiri
2012-07-01
This paper investigates long-term tracking of unknown objects in a video stream. The object is defined by its location and extent in a single frame. In every frame that follows, the task is to determine the object's location and extent or indicate that the object is not present. We propose a novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so far and corrects the tracker if necessary. The learning estimates the detector's errors and updates it to avoid these errors in the future. We study how to identify the detector's errors and learn from them. We develop a novel learning method (P-N learning) which estimates the errors by a pair of "experts": (1) P-expert estimates missed detections, and (2) N-expert estimates false alarms. The learning process is modeled as a discrete dynamical system and the conditions under which the learning guarantees improvement are found. We describe our real-time implementation of the TLD framework and the P-N learning. We carry out an extensive quantitative evaluation which shows a significant improvement over state-of-the-art approaches.
Machine Reading for Extraction of Bacteria and Habitat Taxonomies
Kordjamshidi, Parisa; Massa, Wouter; Provoost, Thomas; Moens, Marie-Francine
2015-01-01
There is a vast amount of scientific literature available from various resources such as the internet. Automating the extraction of knowledge from these resources is very helpful for biologists to easily access this information. This paper presents a system to extract the bacteria and their habitats, as well as the relations between them. We investigate to what extent current techniques are suited for this task and test a variety of models in this regard. We detect entities in a biological text and map the habitats into a given taxonomy. Our model uses a linear chain Conditional Random Field (CRF). For the prediction of relations between the entities, a model based on logistic regression is built. Designing a system upon these techniques, we explore several improvements for both the generation and selection of good candidates. One contribution to this lies in the extended exibility of our ontology mapper that uses an advanced boundary detection and assigns the taxonomy elements to the detected habitats. Furthermore, we discover value in the combination of several distinct candidate generation rules. Using these techniques, we show results that are significantly improving upon the state of art for the BioNLP Bacteria Biotopes task. PMID:27077141
2014-10-01
Imaging (EP-JRESI); Citrate, Choline, Creatine , Spermine, 3Tesla MRI scanner, Endo-rectal MR coil, WET Water Suppression, prostate cancer (PCa...spectroscopic imaging are due to the overlap of metabolite resonances, quantifying few metabolites only (citrate (Cit), choline (Ch), creatine (Cr...concentrations of citrate (Cit), creatine (Cr), choline (Ch) and polyamines that are used to detect and diagnose PCa (2). The challenging task in 1D MRS
Cancer and treatment effects on job task performance for gynecological cancer survivors.
Nachreiner, Nancy M; Shanley, Ryan; Ghebre, Rahel G
2013-01-01
Over 91,000 new cases of gynecological cancers are expected to be diagnosed in 2013 in the US alone. As cancer detection technology and treatment options improve, the number of working-age cancer survivors continues to grow. To describe US gynecological cancer survivors' perceptions of the effects of cancer and treatment on their job tasks. 104 adult gynecological cancer survivors who were working at the time of their cancer diagnosis, treated at a University-based women's health clinic, diagnosed in the previous 24 months, and spoke English. Women completed written surveys to describe their work experiences following diagnosis. Clinical characteristics were obtained through medical record review. Descriptive statistics and cross tabulations were performed to describe characteristics and associations. Fifteen percent of women had chemotherapy and radiation treatment; 48% had only chemotherapy, 9% only radiation therapy, and 28% had neither. Survivors described the frequency of performing seven job tasks, such as 'intense concentration', 'analyzing data', and 'lifting heavy loads.' Women who had undergone radiation treatment were more likely to indicate limitations for physical tasks; women undergoing chemotherapy were more likely to report limitations in more analytic tasks. Only 29% of women noted an employer-based policy facilitated their return-to-work process. Cancer and treatment have important effects on job performance and may vary by type of treatment. Employer-based policies focusing on improved communication and work accommodations may improve the return to work process.
“No level up!”: no effects of video game specialization and expertise on cognitive performance
Gobet, Fernand; Johnston, Stephen J.; Ferrufino, Gabriella; Johnston, Matthew; Jones, Michael B.; Molyneux, Antonia; Terzis, Argyrios; Weeden, Luke
2014-01-01
Previous research into the effects of action video gaming on cognition has suggested that long term exposure to this type of game might lead to an enhancement of cognitive skills that transfer to non-gaming cognitive tasks. However, these results have been controversial. The aim of the current study was to test the presence of positive cognitive transfer from action video games to two cognitive tasks. More specifically, this study investigated the effects that participants' expertise and genre specialization have on cognitive improvements in one task unrelated to video gaming (a flanker task) and one related task (change detection task with both control and genre-specific images). This study was unique in three ways. Firstly, it analyzed a continuum of expertise levels, which has yet to be investigated in research into the cognitive benefits of video gaming. Secondly, it explored genre-specific skill developments on these tasks by comparing Action and Strategy video game players (VGPs). Thirdly, it used a very tight experiment design, including the experimenter being blind to expertise level and genre specialization of the participant. Ninety-two university students aged between 18 and 30 (M = 21.25) were recruited through opportunistic sampling and were grouped by video game specialization and expertise level. While the results of the flanker task were consistent with previous research (i.e., effect of congruence), there was no effect of expertise, and the action gamers failed to outperform the strategy gamers. Additionally, contrary to expectation, there was no interaction between genre specialization and image type in the change detection task, again demonstrating no expertise effect. The lack of effects for game specialization and expertise goes against previous research on the positive effects of action video gaming on other cognitive tasks. PMID:25506330
"No level up!": no effects of video game specialization and expertise on cognitive performance.
Gobet, Fernand; Johnston, Stephen J; Ferrufino, Gabriella; Johnston, Matthew; Jones, Michael B; Molyneux, Antonia; Terzis, Argyrios; Weeden, Luke
2014-01-01
Previous research into the effects of action video gaming on cognition has suggested that long term exposure to this type of game might lead to an enhancement of cognitive skills that transfer to non-gaming cognitive tasks. However, these results have been controversial. The aim of the current study was to test the presence of positive cognitive transfer from action video games to two cognitive tasks. More specifically, this study investigated the effects that participants' expertise and genre specialization have on cognitive improvements in one task unrelated to video gaming (a flanker task) and one related task (change detection task with both control and genre-specific images). This study was unique in three ways. Firstly, it analyzed a continuum of expertise levels, which has yet to be investigated in research into the cognitive benefits of video gaming. Secondly, it explored genre-specific skill developments on these tasks by comparing Action and Strategy video game players (VGPs). Thirdly, it used a very tight experiment design, including the experimenter being blind to expertise level and genre specialization of the participant. Ninety-two university students aged between 18 and 30 (M = 21.25) were recruited through opportunistic sampling and were grouped by video game specialization and expertise level. While the results of the flanker task were consistent with previous research (i.e., effect of congruence), there was no effect of expertise, and the action gamers failed to outperform the strategy gamers. Additionally, contrary to expectation, there was no interaction between genre specialization and image type in the change detection task, again demonstrating no expertise effect. The lack of effects for game specialization and expertise goes against previous research on the positive effects of action video gaming on other cognitive tasks.
Zeleznikow-Johnston, Ariel; Burrows, Emma L; Renoir, Thibault; Hannan, Anthony J
2017-05-01
Environmental enrichment (EE) is any positive modification of the 'standard housing' (SH) conditions in which laboratory animals are typically held, usually involving increased opportunity for cognitive stimulation and physical activity. EE has been reported to enhance baseline performance of wild-type animals on traditional cognitive behavioural tasks. Recently, touchscreen operant testing chambers have emerged as a way of performing rodent cognitive assays, providing greater reproducibility, translatability and automatability. Cognitive tests in touchscreen chambers are performed over numerous trials and thus experimenters have the power to detect subtle enhancements in performance. We used touchscreens to analyse the effects of EE on reversal learning, visual discrimination and hippocampal-dependent spatial pattern separation and working memory. We hypothesized that EE would enhance the performance of mice on cognitive touchscreen tasks. Our hypothesis was partially supported in that EE induced enhancements in cognitive flexibility as observed in visual discrimination and reversal learning improvements. However, no other significant effects of EE on cognitive performance were observed. EE decreased the activity level of mice in the touchscreen chambers, which may influence the enrichment level of the animals. Although we did not see enhancements on all hypothesized parameters, our testing paradigm is capable of detecting EE-induced improved cognitive flexibility in mice, which has implications for both understanding the mechanisms of EE and improving screening of putative cognitive-enhancing therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Task analysis of information technology-mediated medication management in outpatient care.
van Stiphout, F; Zwart-van Rijkom, J E F; Maggio, L A; Aarts, J E C M; Bates, D W; van Gelder, T; Jansen, P A F; Schraagen, J M C; Egberts, A C G; ter Braak, E W M T
2015-09-01
Educating physicians in the procedural as well as cognitive skills of information technology (IT)-mediated medication management could be one of the missing links for the improvement of patient safety. We aimed to compose a framework of tasks that need to be addressed to optimize medication management in outpatient care. Formal task analysis: decomposition of a complex task into a set of subtasks. First, we obtained a general description of the medication management process from exploratory interviews. Secondly, we interviewed experts in-depth to further define tasks and subtasks. Outpatient care in different fields of medicine in six teaching and academic medical centres in the Netherlands and the United States. 20 experts. Tasks were divided up into procedural, cognitive and macrocognitive tasks and categorized into the three components of dynamic decision making. The medication management process consists of three components: (i) reviewing the medication situation; (ii) composing a treatment plan; and (iii) accomplishing and communicating a treatment and surveillance plan. Subtasks include multiple cognitive tasks such as composing a list of current medications and evaluating the reliability of sources, and procedural tasks such as documenting current medication. The identified macrocognitive tasks were: planning, integration of IT in workflow, managing uncertainties and responsibilities, and problem detection. All identified procedural, cognitive and macrocognitive skills should be included when designing education for IT-mediated medication management. The resulting framework supports the design of educational interventions to improve IT-mediated medication management in outpatient care. © 2015 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
Simmering, Vanessa R.; Miller, Hilary E.
2016-01-01
The nature of visual working memory (VWM) representations is currently a source of debate between characterizations as slot-like versus a flexibly-divided pool of resources. Recently, a dynamic neural field model has been proposed as an alternative account that focuses more on the processes by which VWM representations are formed, maintained, and used in service of behavior. This dynamic model has explained developmental increases in VWM capacity and resolution through strengthening excitatory and inhibitory connections. Simulations of developmental improvements in VWM resolution suggest that one important change is the accuracy of comparisons between items held in memory and new inputs. Thus, the ability to detect changes is a critical component of developmental improvements in VWM performance across tasks, leading to the prediction that capacity and resolution should correlate during childhood. Comparing 5- to 8-year-old children’s performance across color discrimination and change detection tasks revealed the predicted correlation between estimates of VWM capacity and resolution, supporting the hypothesis that increasing connectivity underlies improvements in VWM during childhood. These results demonstrate the importance of formalizing the processes that support the use of VWM, rather than focusing solely on the nature of representations. We conclude by considering our results in the broader context of VWM development. PMID:27329264
Chavaillaz, Alain; Schwaninger, Adrian; Michel, Stefan; Sauer, Juergen
2018-05-25
The present study evaluated three automation modes for improving performance in an X-ray luggage screening task. 140 participants were asked to detect the presence of prohibited items in X-ray images of cabin luggage. Twenty participants conducted this task without automatic support (control group), whereas the others worked with either indirect cues (system indicated the target presence without specifying its location), or direct cues (system pointed out the exact target location) or adaptable automation (participants could freely choose between no cue, direct and indirect cues). Furthermore, automatic support reliability was manipulated (low vs. high). The results showed a clear advantage for direct cues regarding detection performance and response time. No benefits were observed for adaptable automation. Finally, high automation reliability led to better performance and higher operator trust. The findings overall confirmed that automatic support systems for luggage screening should be designed such that they provide direct, highly reliable cues.
Joint Optimization of Fluence Field Modulation and Regularization in Task-Driven Computed Tomography
Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.
2017-01-01
Purpose This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d′) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM. PMID:28626290
Joint optimization of fluence field modulation and regularization in task-driven computed tomography
NASA Astrophysics Data System (ADS)
Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.
2017-03-01
Purpose: This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods: We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d') across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results: The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions: The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.
Exploiting ensemble learning for automatic cataract detection and grading.
Yang, Ji-Jiang; Li, Jianqiang; Shen, Ruifang; Zeng, Yang; He, Jian; Bi, Jing; Li, Yong; Zhang, Qinyan; Peng, Lihui; Wang, Qing
2016-02-01
Cataract is defined as a lenticular opacity presenting usually with poor visual acuity. It is one of the most common causes of visual impairment worldwide. Early diagnosis demands the expertise of trained healthcare professionals, which may present a barrier to early intervention due to underlying costs. To date, studies reported in the literature utilize a single learning model for retinal image classification in grading cataract severity. We present an ensemble learning based approach as a means to improving diagnostic accuracy. Three independent feature sets, i.e., wavelet-, sketch-, and texture-based features, are extracted from each fundus image. For each feature set, two base learning models, i.e., Support Vector Machine and Back Propagation Neural Network, are built. Then, the ensemble methods, majority voting and stacking, are investigated to combine the multiple base learning models for final fundus image classification. Empirical experiments are conducted for cataract detection (two-class task, i.e., cataract or non-cataractous) and cataract grading (four-class task, i.e., non-cataractous, mild, moderate or severe) tasks. The best performance of the ensemble classifier is 93.2% and 84.5% in terms of the correct classification rates for cataract detection and grading tasks, respectively. The results demonstrate that the ensemble classifier outperforms the single learning model significantly, which also illustrates the effectiveness of the proposed approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Age and automation interact to influence performance of a simulated luggage screening task.
Wiegmann, Douglas; McCarley, Jason S; Kramer, Arthur F; Wickens, Christopher D
2006-08-01
An experiment examined the impact of automation on young and old adults' abilities to detect threat objects in a simulated baggage-screening task. Younger and older adult participants viewed X-ray images of cluttered baggage, 20% of which contained a hidden knife. Some participants were provided an automated aid with a hit rate of 0.90 and a false alarm rate of 0.25. The aid provided assistance to participants in one of three forms: a text message that appeared before the stimulus image; a text message that appeared following the stimulus image; or a spatial cue concurrent with the stimulus image. Control participants performed the task with no assistance from an aid. Spatial cuing improved performance for both age groups. Text cuing improved young adults' performance, but had no benefit for older participants. Effects were similar whether the text cue preceded or followed the search stimulus itself. Results indicate that spatial cuing rather than text alerts may be more effective in aiding performance during a baggage screening task and such benefits are likely to occur regardless of operator age.
Heikoop, Daniël D; de Winter, Joost C F; van Arem, Bart; Stanton, Neville A
2017-04-01
Platooning, whereby automated vehicles travel closely together in a group, is attractive in terms of safety and efficiency. However, concerns exist about the psychological state of the platooning driver, who is exempted from direct control, yet remains responsible for monitoring the outside environment to detect potential threats. By means of a driving simulator experiment, we investigated the effects on recorded and self-reported measures of workload and stress for three task-instruction conditions: (1) No Task, in which participants had to monitor the road, (2) Voluntary Task, in which participants could do whatever they wanted, and (3) Detection Task, in which participants had to detect red cars. Twenty-two participants performed three 40-min runs in a constant-speed platoon, one condition per run in counterbalanced order. Contrary to some classic literature suggesting that humans are poor monitors, in the Detection Task condition participants attained a high mean detection rate (94.7%) and a low mean false alarm rate (0.8%). Results of the Dundee Stress State Questionnaire indicated that automated platooning was less distressing in the Voluntary Task than in the Detection Task and No Task conditions. In terms of heart rate variability, the Voluntary Task condition yielded a lower power in the low-frequency range relative to the high-frequency range (LF/HF ratio) than the Detection Task condition. Moreover, a strong time-on-task effect was found, whereby the mean heart rate dropped from the first to the third run. In conclusion, participants are able to remain attentive for a prolonged platooning drive, and the type of monitoring task has effects on the driver's psychological state. Copyright © 2016 Elsevier Ltd. All rights reserved.
Beck, Cornelia; Ognibeni, Thilo; Neumann, Heiko
2008-01-01
Background Optic flow is an important cue for object detection. Humans are able to perceive objects in a scene using only kinetic boundaries, and can perform the task even when other shape cues are not provided. These kinetic boundaries are characterized by the presence of motion discontinuities in a local neighbourhood. In addition, temporal occlusions appear along the boundaries as the object in front covers the background and the objects that are spatially behind it. Methodology/Principal Findings From a technical point of view, the detection of motion boundaries for segmentation based on optic flow is a difficult task. This is due to the problem that flow detected along such boundaries is generally not reliable. We propose a model derived from mechanisms found in visual areas V1, MT, and MSTl of human and primate cortex that achieves robust detection along motion boundaries. It includes two separate mechanisms for both the detection of motion discontinuities and of occlusion regions based on how neurons respond to spatial and temporal contrast, respectively. The mechanisms are embedded in a biologically inspired architecture that integrates information of different model components of the visual processing due to feedback connections. In particular, mutual interactions between the detection of motion discontinuities and temporal occlusions allow a considerable improvement of the kinetic boundary detection. Conclusions/Significance A new model is proposed that uses optic flow cues to detect motion discontinuities and object occlusion. We suggest that by combining these results for motion discontinuities and object occlusion, object segmentation within the model can be improved. This idea could also be applied in other models for object segmentation. In addition, we discuss how this model is related to neurophysiological findings. The model was successfully tested both with artificial and real sequences including self and object motion. PMID:19043613
A Window of Opportunity for Cognitive Training in Adolescence
Knoll, Lisa J.; Fuhrmann, Delia; Sakhardande, Ashok L.; Stamp, Fabian; Speekenbrink, Maarten; Blakemore, Sarah-Jayne
2016-01-01
In the current study, we investigated windows for enhanced learning of cognitive skills during adolescence. Six hundred thirty-three participants (11–33 years old) were divided into four age groups, and each participant was randomly allocated to one of three training groups. Each training group completed up to 20 days of online training in numerosity discrimination (i.e., discriminating small from large numbers of objects), relational reasoning (i.e., detecting abstract relationships between groups of items), or face perception (i.e., identifying differences in faces). Training yielded some improvement in performance on the numerosity-discrimination task, but only in older adolescents or adults. In contrast, training in relational reasoning improved performance on that task in all age groups, but training benefits were greater for people in late adolescence and adulthood than for people earlier in adolescence. Training did not increase performance on the face-perception task for any age group. Our findings suggest that for certain cognitive skills, training during late adolescence and adulthood yields greater improvement than training earlier in adolescence, which highlights the relevance of this late developmental stage for education. PMID:27815519
Stimulus information contaminates summation tests of independent neural representations of features
NASA Technical Reports Server (NTRS)
Shimozaki, Steven S.; Eckstein, Miguel P.; Abbey, Craig K.
2002-01-01
Many models of visual processing assume that visual information is analyzed into separable and independent neural codes, or features. A common psychophysical test of independent features is known as a summation study, which measures performance in a detection, discrimination, or visual search task as the number of proposed features increases. Improvement in human performance with increasing number of available features is typically attributed to the summation, or combination, of information across independent neural coding of the features. In many instances, however, increasing the number of available features also increases the stimulus information in the task, as assessed by an optimal observer that does not include the independent neural codes. In a visual search task with spatial frequency and orientation as the component features, a particular set of stimuli were chosen so that all searches had equivalent stimulus information, regardless of the number of features. In this case, human performance did not improve with increasing number of features, implying that the improvement observed with additional features may be due to stimulus information and not the combination across independent features.
The Chronic Detrimental Impact of Interruptions in a Simulated Submarine Track Management Task.
Loft, Shayne; Sadler, Andreas; Braithwaite, Janelle; Huf, Samuel
2015-12-01
The objective of this article is to examine the extent to which interruptions negatively impact situation awareness and long-term performance in a submarine track management task where pre- and postinterruption display scenes remained essentially identical. Interruptions in command and control task environments can degrade performance well beyond the first postinterruption action typically measured for sequential static tasks, because individuals need to recover their situation awareness for multiple unfolding display events. Participants in the current study returned to an unchanged display scene following interruption and therefore could be more immune to such long-term performance deficits. The task required participants to monitor a display to detect contact heading changes and to make enemy engagement decisions. Situation awareness (Situation Present Assessment Method) and subjective workload (NASA-Task Load Index) were measured. The interruption replaced the display for 20 s with a blank screen, during which participants completed a classification task. Situation awareness after returning from interruption was degraded. Participants were slower to make correct engagement decisions and slower and less accurate in detecting heading changes, despite these task decisions being made at least 40 s following the interruption. Interruptions negatively impacted situation awareness and long-term performance because participants needed to redetermine the location and spatial relationship between the displayed contacts when returning from interruption, either because their situation awareness for the preinterruption scene decayed or because they did not encode the preinterruption scene. Interruption in work contexts such as submarines is unavoidable, and further understanding of how operators are affected is required to improve work design and training. © 2015, Human Factors and Ergonomics Society.
Alegro, Maryana; Theofilas, Panagiotis; Nguy, Austin; Castruita, Patricia A; Seeley, William; Heinsen, Helmut; Ushizima, Daniela M; Grinberg, Lea T
2017-04-15
Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility. Dictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set. Our method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings. We compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples. The proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks. Copyright © 2017 Elsevier B.V. All rights reserved.
Powered Descent Trajectory Guidance and Some Considerations for Human Lunar Landing
NASA Technical Reports Server (NTRS)
Sostaric, Ronald R.
2007-01-01
The Autonomous Precision Landing and Hazard Detection and Avoidance Technology development (ALHAT) will enable an accurate (better than 100m) landing on the lunar surface. This technology will also permit autonomous (independent from ground) avoidance of hazards detected in real time. A preliminary trajectory guidance algorithm capable of supporting these tasks has been developed and demonstrated in simulations. Early results suggest that with expected improvements in sensor technology and lunar mapping, mission objectives are achievable.
Long, Zhiying; Chen, Kewei; Wu, Xia; Reiman, Eric; Peng, Danling; Yao, Li
2009-02-01
Spatial Independent component analysis (sICA) has been widely used to analyze functional magnetic resonance imaging (fMRI) data. The well accepted implicit assumption is the spatially statistical independency of intrinsic sources identified by sICA, making the sICA applications difficult for data in which there exist interdependent sources and confounding factors. This interdependency can arise, for instance, from fMRI studies investigating two tasks in a single session. In this study, we introduced a linear projection approach and considered its utilization as a tool to separate task-related components from two-task fMRI data. The robustness and feasibility of the method are substantiated through simulation on computer data and fMRI real rest data. Both simulated and real two-task fMRI experiments demonstrated that sICA in combination with the projection method succeeded in separating spatially dependent components and had better detection power than pure model-based method when estimating activation induced by each task as well as both tasks.
Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online
NASA Astrophysics Data System (ADS)
Romano, C.; Graff, P. V.; Runco, S.
2017-12-01
Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online?Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image.Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project:• Concise explanation of the project, its context, and its purpose;• Including a mention of the funding agency (in this case, NASA);• A preview of the specific tasks required of participants;• A dedicated user interface for the actual citizen science interaction.In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.
Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online
NASA Technical Reports Server (NTRS)
Romano, Cia; Graff, Paige V.; Runco, Susan
2017-01-01
Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online? Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image. Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project: (1) Concise explanation of the project, its context, and its purpose; (2) Including a mention of the funding agency (in this case, NASA); (3) A preview of the specific tasks required of participants; (4) A dedicated user interface for the actual citizen science interaction. In addition, testing revealed that users may require additional context when a task is complex, difficult, or unusual (locating a specific image and its center point on a map of Earth). Video evidence will be made available with this presentation.
Ji, Qingchun; Wang, Yingying; Guo, Wei; Zhou, Chenglin
2017-01-01
Working memory is critical for various cognitive processes and can be separated into two stages: short-term memory storage and manipulation processing. Although previous studies have demonstrated that increased physical activity (PA) improves working memory and that males outperform females on visuospatial working memory tasks, few studies have determined the contribution of the two underlying stages to the visuospatial working memory improvement associated with PA. Thus, the aims of the present study were to verify the relationship between physical activity and visuospatial working memory, determine whether one or both stages were affected by PA, and investigate any sex differences. A total of 56 undergraduate students were recruited for this study. Their scores on the International Physical Activity Questionnaire (IPAQ) were used to separate them into either a lower PA ( n = 26; IPAQ score ≤3,000 metabolic equivalent [MET]-min/week) or higher PA ( n = 30; IPAQ score >3,000 MET-min/week) group. Participants were required to complete three tasks: a visuospatial working memory task, a task that examines the short-term memory storage stage, and a mental rotation task that examines the active manipulation stage. Participants in the higher PA group maintained similar accuracy but displayed significantly faster reaction times (RT) than those in the lower PA group on the visuospatial working memory and manipulation tasks. By contrast, no difference was observed between groups on the short-term memory storage task. In addition, no effects of sex were detected. Our results confirm that PA was positively to visuospatial working memory and that this positive relationship was associated with more rapid cognitive processing during the manipulation stage, with little or no relationship between PA and the memory storage stage of visuospatial working memory.
Traffic Light Detection Using Conic Section Geometry
NASA Astrophysics Data System (ADS)
Hosseinyalmdary, S.; Yilmaz, A.
2016-06-01
Traffic lights detection and their state recognition is a crucial task that autonomous vehicles must reliably fulfill. Despite scientific endeavors, it still is an open problem due to the variations of traffic lights and their perception in image form. Unlike previous studies, this paper investigates the use of inaccurate and publicly available GIS databases such as OpenStreetMap. In addition, we are the first to exploit conic section geometry to improve the shape cue of the traffic lights in images. Conic section also enables us to estimate the pose of the traffic lights with respect to the camera. Our approach can detect multiple traffic lights in the scene, it also is able to detect the traffic lights in the absence of prior knowledge, and detect the traffics lights as far as 70 meters. The proposed approach has been evaluated for different scenarios and the results show that the use of stereo cameras significantly improves the accuracy of the traffic lights detection and pose estimation.
An efficient semi-supervised community detection framework in social networks.
Li, Zhen; Gong, Yong; Pan, Zhisong; Hu, Guyu
2017-01-01
Community detection is an important tasks across a number of research fields including social science, biology, and physics. In the real world, topology information alone is often inadequate to accurately find out community structure due to its sparsity and noise. The potential useful prior information such as pairwise constraints which contain must-link and cannot-link constraints can be obtained from domain knowledge in many applications. Thus, combining network topology with prior information to improve the community detection accuracy is promising. Previous methods mainly utilize the must-link constraints while cannot make full use of cannot-link constraints. In this paper, we propose a semi-supervised community detection framework which can effectively incorporate two types of pairwise constraints into the detection process. Particularly, must-link and cannot-link constraints are represented as positive and negative links, and we encode them by adding different graph regularization terms to penalize closeness of the nodes. Experiments on multiple real-world datasets show that the proposed framework significantly improves the accuracy of community detection.
Dopamine, paranormal belief, and the detection of meaningful stimuli.
Krummenacher, Peter; Mohr, Christine; Haker, Helene; Brugger, Peter
2010-08-01
Dopamine (DA) is suggested to improve perceptual and cognitive decisions by increasing the signal-to-noise ratio. Somewhat paradoxically, a hyperdopaminergia (arguably more accentuated in the right hemisphere) has also been implied in the genesis of unusual experiences such as hallucinations and paranormal thought. To test these opposing assumptions, we used two lateralized decision tasks, one with lexical (tapping left-hemisphere functions), the other with facial stimuli (tapping right-hemisphere functions). Participants were 40 healthy right-handed men, of whom 20 reported unusual, "paranormal" experiences and beliefs ("believers"), whereas the remaining participants were unexperienced and critical ("skeptics"). In a between-subject design, levodopa (200 mg) or placebo administration was balanced between belief groups (double-blind procedure). For each task and visual field, we calculated sensitivity (d') and response tendency (criterion) derived from signal detection theory. Results showed the typical right visual field advantage for the lexical decision task and a higher d' for verbal than facial stimuli. For the skeptics, d' was lower in the levodopa than in the placebo group. Criterion analyses revealed that believers favored false alarms over misses, whereas skeptics displayed the opposite preference. Unexpectedly, under levodopa, these decision preferences were lower in both groups. We thus infer that levodopa (1) decreases sensitivity in perceptual-cognitive decisions, but only in skeptics, and (2) makes skeptics less and believers slightly more conservative. These results stand at odd to the common view that DA generally improves signal-to-noise ratios. Paranormal ideation seems an important personality dimension and should be assessed in investigations on the detection of signals in noise.
Baniqued, Pauline L.; Ward, Nathan; Geyer, Alexandra; Kramer, Arthur F.
2015-01-01
Although some studies have shown that cognitive training can produce improvements to untrained cognitive domains (far transfer), many others fail to show these effects, especially when it comes to improving fluid intelligence. The current study was designed to overcome several limitations of previous training studies by incorporating training expectancy assessments, an active control group, and “Mind Frontiers,” a video game-based mobile program comprised of six adaptive, cognitively demanding training tasks that have been found to lead to increased scores in fluid intelligence (Gf) tests. We hypothesize that such integrated training may lead to broad improvements in cognitive abilities by targeting aspects of working memory, executive function, reasoning, and problem solving. Ninety participants completed 20 hour-and-a-half long training sessions over four to five weeks, 45 of whom played Mind Frontiers and 45 of whom completed visual search and change detection tasks (active control). After training, the Mind Frontiers group improved in working memory n-back tests, a composite measure of perceptual speed, and a composite measure of reaction time in reasoning tests. No training-related improvements were found in reasoning accuracy or other working memory tests, nor in composite measures of episodic memory, selective attention, divided attention, and multi-tasking. Perceived self-improvement in the tested abilities did not differ between groups. A general expectancy difference in problem-solving was observed between groups, but this perceived benefit did not correlate with training-related improvement. In summary, although these findings provide modest evidence regarding the efficacy of an integrated cognitive training program, more research is needed to determine the utility of Mind Frontiers as a cognitive training tool. PMID:26555341
Pomplun, M; Reingold, E M; Shen, J
2001-09-01
In three experiments, participants' visual span was measured in a comparative visual search task in which they had to detect a local match or mismatch between two displays presented side by side. Experiment 1 manipulated the difficulty of the comparative visual search task by contrasting a mismatch detection task with a substantially more difficult match detection task. In Experiment 2, participants were tested in a single-task condition involving only the visual task and a dual-task condition in which they concurrently performed an auditory task. Finally, in Experiment 3, participants performed two dual-task conditions, which differed in the difficulty of the concurrent auditory task. Both the comparative search task difficulty (Experiment 1) and the divided attention manipulation (Experiments 2 and 3) produced strong effects on visual span size.
Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?
Wenzel, Markus A; Almeida, Inês; Blankertz, Benjamin
2016-01-01
Brain-computer interfaces (BCIs) that are based on event-related potentials (ERPs) can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli) in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG). Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI), because it would allow software to adapt to the user's interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli. Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions. Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG). The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI.
Lindheimer, Jacob B; Loy, Bryan D; O'Connor, Patrick J
2013-08-01
The purpose was to test whether a single dose of black pepper or rosemary produced short-term enhancements in sustained attention, motivation to perform cognitive tasks, or feelings of mental energy and fatigue. Outcomes were measured in 40 young adults with below average feelings of energy before and twice after they orally consumed capsules containing either black pepper (2.0 g), rosemary (1.7 g), or a placebo (3.1 g rice flour). Sustained attention was measured using a 16-min dual task, in which, single-digit numbers were presented every second on a screen and the participant performed both a primary task [detection of three successive, different odd digits] and a secondary task [detection of the number 6]. Feelings of energy and fatigue were measured using the vigor and fatigue subscales of the Profile of Mood States and visual analog scales (VAS). Analysis of variance showed nonsignificant condition (spice versus placebo)×time (T1, T2, & T3) effects for motivation, measured with a VAS, and the intensity of energy and fatigue feelings. Unadjusted effect sizes revealed that rosemary induced small, transient reductions in false alarm errors (d=0.21) and mental fatigue (d=0.40) at isolated time periods. Time-varying analysis of covariance, controlling for motivation to perform cognitive tasks, showed no significant effects on the primary or secondary task outcomes of correct responses (hits), errors (false alarms, misses), speed of response (reaction time), and signal detection sensitivity. It is concluded that black pepper and rosemary, consumed in a capsule form, in the doses used and while wearing a nose clip to block olfactory effects, do not induce consistent short-term improvements in sustained attention, motivation to perform cognitive tasks, or feelings of mental energy and fatigue in young adults with low energy.
A novel underwater dam crack detection and classification approach based on sonar images
Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min
2017-01-01
Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments. PMID:28640925
A novel underwater dam crack detection and classification approach based on sonar images.
Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min
2017-01-01
Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments.
Chen, Junjie; Guo, Mingyue; Li, Shumin; Liu, Bin
2017-11-01
As one of the most important tasks in protein sequence analysis, protein remote homology detection is critical for both basic research and practical applications. Here, we present an effective web server for protein remote homology detection called ProtDec-LTR2.0 by combining ProtDec-Learning to Rank (LTR) and pseudo protein representation. Experimental results showed that the detection performance is obviously improved. The web server provides a user-friendly interface to explore the sequence and structure information of candidate proteins and find their conserved domains by launching a multiple sequence alignment tool. The web server is free and open to all users with no login requirement at http://bioinformatics.hitsz.edu.cn/ProtDec-LTR2.0/. bliu@hit.edu.cn. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, J; McNitt-Gray, M; Noo, F
Purpose: Recent work has shown that current TCM profile designs boost detection of low-contrast lung lesions in the lung apices, but yield reduced detection performance in the mid and lower lung regions relative to fixed tube current cases. This observed imbalance suggests that the TCM scheme might be tailored in new ways to maximize nodule detection throughout the entire lung. In this work, we begin a preliminary investigation into custom TCM profiles in an attempt to achieve uniform lesion detection throughout the extent of the lung. Methods: Low-contrast (25HU), 6mm nodules representing ground glass opacities were simulated at 1mm intervalsmore » over the length the lungs in a voxelized model of the XCAT phantom, one nodule per lung, per simulated scan. Voxel values represented attenuation values at 80keV. CT projection data was created by simulating a finite focal spot and using Joseph’s method for forward projection; scanner geometry was that of the Siemens Sensation 64 and the X-ray source was simulated as an 80keV monochromatic beam. Noise realizations were created using Poisson statistics, a realistic bowtie filter and varying tube current. 500 noise realizations were created for the custom TCM designs. All reconstruction was done with FreeCT-wFBP. An SKE/BKE task was used in conjunction with a 2D Hotelling Observer to calculate area-under-the-curve (AUC) as a proxy for “detectability.” AUC was plotted as a function of nodule Z-location to create a “detectability map.” The detectability map for the custom TCM curve was qualitatively assessed relative to previous results for the fixed TC and clinical TCM cases for uniformity. Results: Detection uniformity was improved throughout the mid and lower lungs, however detection remained disproportionately high in the upper lung region. Conclusion: Detection uniformity was improved with a custom TC profile. Future work will incorporate an analytic, task-specific approach to optimize the TC scheme for nodule detection. J. Hoffman: Part-time intern, Toshiba Medical Research Institute; M. McNitt-Gray: Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics; F. Noo: Institutional research agreement, Siemens Healthcare; Receives research funding from Siemens Healthcare.« less
Bergamin, M; Gobbo, S; Bullo, V; Zanotto, T; Vendramin, B; Duregon, F; Cugusi, L; Camozzi, V; Zaccaria, M; Neunhaeuserer, D; Ermolao, A
2015-12-01
Participation in exercise programs is heartily recommended for older adults since the level of physical fitness directly influences functional independence. The aim of this present study was to investigate the effects of supervised Pilates exercise training on the physical function, hypothesizing that a period of Pilates exercise training (PET) can increase overall muscle strength, body composition, and balance, during single and dual-task conditions, in a group of post-menopausal women. Twenty-five subjects, aged 59 to 66 years old, were recruited. Eligible participants were assessed prior and after 3 months of PET performed twice per week. Muscular strength was evaluated with handgrip strength (HGS) test, 30-s chair sit-to-stand test (30CST), and abdominal strength (AST) test. Postural control and dual-task performance were measured through a stabilometric platform while dynamic balance with 8 ft up and go test. Finally, body composition was assessed by means of dual-energy X-ray absorptiometry. Statistically significant improvements were detected on HGS (+8.22%), 30CST (+23.41%), 8 ft up and go test (-5.95%), AST (+30.81%), medio-lateral oscillations in open eyes and dual-task condition (-22.03% and -10.37%). Pilates was effective in increasing upper body, lower body, and abdominal muscle strength. No changes on body composition were detected. Results on this investigation indicated also that 12-week of mat Pilates is not sufficient to determine a clinical meaningful improvement on static balance in single and dual-task conditions.
Hotton, Matthew; Derakshan, Nazanin; Fox, Elaine
2018-01-01
The process of worry has been associated with reductions in working memory capacity and availability of resources necessary for efficient attentional control. This, in turn, can lead to escalating worry. Recent investigations into working memory training have shown improvements in attentional control and cognitive performance in high trait-anxious individuals and individuals with sub-clinical depression. The current randomised controlled trial investigated the effects of 15 days of adaptive n-back working memory training, or an active control task, on working memory capacity, attentional control and worry in a sample of high worriers. Pre-training, post-training and one-month follow-up measures of working memory capacity were assessed using a Change Detection task, while a Flanker task was used to assess attentional control. A breathing focus task was used as a behavioural measure of worry in addition to a number of self-report assessments of worry and anxiety. Overall there was no difference between the active training and the active control condition with both groups demonstrating similar improvements in working memory capacity and worry, post-training and at follow-up. However, training-related improvements on the n-back task were associated with gains in working memory capacity and reductions in worry symptoms in the active training condition. These results highlight the need for further research investigating the role of individual differences in working memory training. Copyright © 2017. Published by Elsevier Ltd.
Surgical motion characterization in simulated needle insertion procedures
NASA Astrophysics Data System (ADS)
Holden, Matthew S.; Ungi, Tamas; Sargent, Derek; McGraw, Robert C.; Fichtinger, Gabor
2012-02-01
PURPOSE: Evaluation of surgical performance in image-guided needle insertions is of emerging interest, to both promote patient safety and improve the efficiency and effectiveness of training. The purpose of this study was to determine if a Markov model-based algorithm can more accurately segment a needle-based surgical procedure into its five constituent tasks than a simple threshold-based algorithm. METHODS: Simulated needle trajectories were generated with known ground truth segmentation by a synthetic procedural data generator, with random noise added to each degree of freedom of motion. The respective learning algorithms were trained, and then tested on different procedures to determine task segmentation accuracy. In the threshold-based algorithm, a change in tasks was detected when the needle crossed a position/velocity threshold. In the Markov model-based algorithm, task segmentation was performed by identifying the sequence of Markov models most likely to have produced the series of observations. RESULTS: For amplitudes of translational noise greater than 0.01mm, the Markov model-based algorithm was significantly more accurate in task segmentation than the threshold-based algorithm (82.3% vs. 49.9%, p<0.001 for amplitude 10.0mm). For amplitudes less than 0.01mm, the two algorithms produced insignificantly different results. CONCLUSION: Task segmentation of simulated needle insertion procedures was improved by using a Markov model-based algorithm as opposed to a threshold-based algorithm for procedures involving translational noise.
Sweeney, Siobhan; Kersel, Denyse; Morris, Robin G; Manly, Tom; Evans, Jonathan J
2010-04-01
Executive functions have been argued to be the most vulnerable to brain injury. In providing an analogue of everyday situations amenable to control and management virtual reality (VR) may offer better insights into planning deficits consequent upon brain injury. Here 17 participants with a non-progressive brain injury and reported executive difficulties in everyday life were asked to perform a VR task (working in a furniture storage unit) that emphasised planning, rule following and prospective memory tasks. When compared with an age and IQ-matched control group, the patients were significantly poorer in terms of their strategy, their time-based prospective memory, the overall time required and their propensity to break rules. An examination of sensitivity and specificity of the VR task to group membership (brain-injured or control) showed that, with specificity set at maximum, sensitivity was only modest (at just over 50%). A second component to the study investigated whether the patients' performance could be improved by periodic auditory alerts. Previous studies have demonstrated that such cues can improve performance on laboratory tests, executive tests and everyday prospective memory tasks. Here, no significant changes in performance were detected. Potential reasons for this finding are discussed, including symptom severity and differences in the tasks employed in previous studies.
ERIC Educational Resources Information Center
Desta, Menelik; Deyessa, Negussie; Fish, Irving; Maxwell, Benjamin; Zerihun, Tigist; Levine, Saul; Fox, Claire; Giedd, Jay; Zelleke, Tesfaye G.; Alem, Atalay; Garland, Ann F.
2017-01-01
In Ethiopia there is a severe shortage of child mental health professionals. Identification and intervention for young children's mental health problems is crucial to improve developmental trajectories and reduce the severity of emotional and behavioral disorders. Teachers can play an important role in early problem detection. This role is…
Mazerolle, Erin L; D'Arcy, Ryan CN; Beyea, Steven D
2008-01-01
Background It is generally believed that activation in functional magnetic resonance imaging (fMRI) is restricted to gray matter. Despite this, a number of studies have reported white matter activation, particularly when the corpus callosum is targeted using interhemispheric transfer tasks. These findings suggest that fMRI signals may not be neatly confined to gray matter tissue. In the current experiment, 4 T fMRI was employed to evaluate whether it is possible to detect white matter activation. We used an interhemispheric transfer task modelled after neurological studies of callosal disconnection. It was hypothesized that white matter activation could be detected using fMRI. Results Both group and individual data were considered. At liberal statistical thresholds (p < 0.005, uncorrected), group level activation was detected in the isthmus of the corpus callosum. This region connects the superior parietal cortices, which have been implicated previously in interhemispheric transfer. At the individual level, five of the 24 subjects (21%) had activation clusters that were located primarily within the corpus callosum. Consistent with the group results, the clusters of all five subjects were located in posterior callosal regions. The signal time courses for these clusters were comparable to those observed for task related gray matter activation. Conclusion The findings support the idea that, despite the inherent challenges, fMRI activation can be detected in the corpus callosum at the individual level. Future work is needed to determine whether the detection of this activation can be improved by utilizing higher spatial resolution, optimizing acquisition parameters, and analyzing the data with tissue specific models of the hemodynamic response. The ability to detect white matter fMRI activation expands the scope of basic and clinical brain mapping research, and provides a new approach for understanding brain connectivity. PMID:18789154
Object and event recognition for stroke rehabilitation
NASA Astrophysics Data System (ADS)
Ghali, Ahmed; Cunningham, Andrew S.; Pridmore, Tony P.
2003-06-01
Stroke is a major cause of disability and health care expenditure around the world. Existing stroke rehabilitation methods can be effective but are costly and need to be improved. Even modest improvements in the effectiveness of rehabilitation techniques could produce large benefits in terms of quality of life. The work reported here is part of an ongoing effort to integrate virtual reality and machine vision technologies to produce innovative stroke rehabilitation methods. We describe a combined object recognition and event detection system that provides real time feedback to stroke patients performing everyday kitchen tasks necessary for independent living, e.g. making a cup of coffee. The image plane position of each object, including the patient"s hand, is monitored using histogram-based recognition methods. The relative positions of hand and objects are then reported to a task monitor that compares the patient"s actions against a model of the target task. A prototype system has been constructed and is currently undergoing technical and clinical evaluation.
Mills, Travis; Lalancette, Marc; Moses, Sandra N; Taylor, Margot J; Quraan, Maher A
2012-07-01
Magnetoencephalography provides precise information about the temporal dynamics of brain activation and is an ideal tool for investigating rapid cognitive processing. However, in many cognitive paradigms visual stimuli are used, which evoke strong brain responses (typically 40-100 nAm in V1) that may impede the detection of weaker activations of interest. This is particularly a concern when beamformer algorithms are used for source analysis, due to artefacts such as "leakage" of activation from the primary visual sources into other regions. We have previously shown (Quraan et al. 2011) that we can effectively reduce leakage patterns and detect weak hippocampal sources by subtracting the functional images derived from the experimental task and a control task with similar stimulus parameters. In this study we assess the performance of three different subtraction techniques. In the first technique we follow the same post-localization subtraction procedures as in our previous work. In the second and third techniques, we subtract the sensor data obtained from the experimental and control paradigms prior to source localization. Using simulated signals embedded in real data, we show that when beamformers are used, subtraction prior to source localization allows for the detection of weaker sources and higher localization accuracy. The improvement in localization accuracy exceeded 10 mm at low signal-to-noise ratios, and sources down to below 5 nAm were detected. We applied our techniques to empirical data acquired with two different paradigms designed to evoke hippocampal and frontal activations, and demonstrated our ability to detect robust activations in both regions with substantial improvements over image subtraction. We conclude that removal of the common-mode dominant sources through data subtraction prior to localization further improves the beamformer's ability to project the n-channel sensor-space data to reveal weak sources of interest and allows more accurate localization.
Komori, Mie
2016-01-01
Monitoring is an executive function of working memory that serves to update novel information, focusing attention on task-relevant targets, and eliminating task-irrelevant noise. The present research used a verbal working memory task to examine how working memory capacity limits affect monitoring. Participants performed a Japanese listening span test that included maintenance of target words and listening comprehension. On each trial, participants responded to the target word and then immediately estimated confidence in recall performance for that word (metacognitive judgment). The results confirmed significant differences in monitoring accuracy between high and low capacity groups in a multi-task situation. That is, confidence judgments were superior in high vs. low capacity participants in terms of absolute accuracy and discrimination. The present research further investigated how memory load and interference affect underestimation of successful recall. The results indicated that the level of memory load that reduced word recall performance and led to an underconfidence bias varied according to participants' memory capacity. In addition, irrelevant information associated with incorrect true/ false decisions (secondary task) and word recall within the current trial impaired monitoring accuracy in both participant groups. These findings suggest that interference from unsuccessful decisions only influences low, but not high, capacity participants. Therefore, monitoring accuracy, which requires high working memory capacity, improves metacognitive abilities by inhibiting task-irrelevant noise and focusing attention on detecting task-relevant targets or useful retrieval cues, which could improve actual cognitive performance.
Repeated cognitive stimulation alleviates memory impairments in an Alzheimer's disease mouse model.
Martinez-Coria, Hilda; Yeung, Stephen T; Ager, Rahasson R; Rodriguez-Ortiz, Carlos J; Baglietto-Vargas, David; LaFerla, Frank M
2015-08-01
Alzheimer's disease is a neurodegenerative disease associated with progressive memory and cognitive decline. Previous studies have identified the benefits of cognitive enrichment on reducing disease pathology. Additionally, epidemiological and clinical data suggest that repeated exercise, and cognitive and social enrichment, can improve and/or delay the cognitive deficiencies associated with aging and neurodegenerative diseases. In the present study, 3xTg-AD mice were exposed to a rigorous training routine beginning at 3 months of age, which consisted of repeated training in the Morris water maze spatial recognition task every 3 months, ending at 18 months of age. At the conclusion of the final Morris water maze training session, animals subsequently underwent testing in another hippocampus-dependent spatial task, the Barnes maze task, and on the more cortical-dependent novel object recognition memory task. Our data show that periodic cognitive enrichment throughout aging, via multiple learning episodes in the Morris water maze task, can improve the memory performance of aged 3xTg-AD mice in a separate spatial recognition task, and in a preference memory task, when compared to naïve aged matched 3xTg-AD mice. Furthermore, we observed that the cognitive enrichment properties of Morris water maze exposer, was detectable in repeatedly trained animals as early as 6 months of age. These findings suggest early repeated cognitive enrichment can mitigate the diverse cognitive deficits observed in Alzheimer's disease. Published by Elsevier Inc.
2001-03-01
detection or use by special forces in air-sea rescue operations. It is not the case that colour vision is improved and the use of the devices should be...situation. The tests were developed by clinicians for detecting pathologies. Only rarely do they bear any close relation to the tasks actually...examination procedures will certainly emerge, helped by microcomputing, the use of databases and, why not, Internet? iii la Vision des couleurs dans
Alvarez-Meza, Andres M.; Orozco-Gutierrez, Alvaro; Castellanos-Dominguez, German
2017-01-01
We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i) feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii) enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand. PMID:29056897
Gygi, Brian; Shafiro, Valeriy
2014-04-01
Speech perception in multitalker environments often requires listeners to divide attention among several concurrent talkers before focusing on one talker with pertinent information. Such attentionally demanding tasks are particularly difficult for older adults due both to age-related hearing loss (presbacusis) and general declines in attentional processing and associated cognitive abilities. This study investigated two signal-processing techniques that have been suggested as a means of improving speech perception accuracy of older adults: time stretching and spatial separation of target talkers. Stimuli in each experiment comprised 2-4 fixed-form utterances in which listeners were asked to consecutively 1) detect concurrently spoken keywords in the beginning of the utterance (divided attention); and, 2) identify additional keywords from only one talker at the end of the utterance (selective attention). In Experiment 1, the overall tempo of each utterance was unaltered or slowed down by 25%; in Experiment 2 the concurrent utterances were spatially coincident or separated across a 180-degree hemifield. Both manipulations improved performance for elderly adults with age-appropriate hearing on both tasks. Increasing the divided attention load by attending to more concurrent keywords had a marked negative effect on performance of the selective attention task only when the target talker was identified by a keyword, but not by spatial location. These findings suggest that the temporal and spatial modifications of multitalker speech improved perception of multitalker speech primarily by reducing competition among cognitive resources required to perform attentionally demanding tasks. Published by Elsevier B.V.
Chen, Zidong; Li, Jinrong; Liu, Jing; Cai, Xiaoxiao; Yuan, Junpeng; Deng, Daming; Yu, Minbin
2016-02-01
Perceptual learning in contrast detection improves monocular visual function in adults with anisometropic amblyopia; however, its effect on binocular combination remains unknown. Given that the amblyopic visual system suffers from pronounced binocular functional loss, it is important to address how the amblyopic visual system responds to such training strategies under binocular viewing conditions. Anisometropic amblyopes (n = 13) were asked to complete two psychophysical supra-threshold binocular summation tasks: (1) binocular phase combination and (2) dichoptic global motion coherence before and after monocular training to investigate this question. We showed that these participants benefited from monocular training in terms of binocular combination. More importantly, the improvements observed with the area under log CSF (AULCSF) were found to be correlated with the improvements in binocular phase combination.
Chen, Zidong; Li, Jinrong; Liu, Jing; Cai, Xiaoxiao; Yuan, Junpeng; Deng, Daming; Yu, Minbin
2016-01-01
Perceptual learning in contrast detection improves monocular visual function in adults with anisometropic amblyopia; however, its effect on binocular combination remains unknown. Given that the amblyopic visual system suffers from pronounced binocular functional loss, it is important to address how the amblyopic visual system responds to such training strategies under binocular viewing conditions. Anisometropic amblyopes (n = 13) were asked to complete two psychophysical supra-threshold binocular summation tasks: (1) binocular phase combination and (2) dichoptic global motion coherence before and after monocular training to investigate this question. We showed that these participants benefited from monocular training in terms of binocular combination. More importantly, the improvements observed with the area under log CSF (AULCSF) were found to be correlated with the improvements in binocular phase combination. PMID:26829898
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, John A.J.; Gold, Michael S.
This report summarizes the work of Task A and B for the period 2013-2016. For Task A the work is for direct detection of dark matter with the single-phase liquid argon experiment Mini-CLEAN. For Task B the work is for the search for new physics in the analysis of fluorescence events with the Auger experiment and for the search for the indirect detection of dark matter with the HAWC experiment.
Covariance descriptor fusion for target detection
NASA Astrophysics Data System (ADS)
Cukur, Huseyin; Binol, Hamidullah; Bal, Abdullah; Yavuz, Fatih
2016-05-01
Target detection is one of the most important topics for military or civilian applications. In order to address such detection tasks, hyperspectral imaging sensors provide useful images data containing both spatial and spectral information. Target detection has various challenging scenarios for hyperspectral images. To overcome these challenges, covariance descriptor presents many advantages. Detection capability of the conventional covariance descriptor technique can be improved by fusion methods. In this paper, hyperspectral bands are clustered according to inter-bands correlation. Target detection is then realized by fusion of covariance descriptor results based on the band clusters. The proposed combination technique is denoted Covariance Descriptor Fusion (CDF). The efficiency of the CDF is evaluated by applying to hyperspectral imagery to detect man-made objects. The obtained results show that the CDF presents better performance than the conventional covariance descriptor.
Motivation alters response bias and neural activation patterns in a perceptual decision-making task.
Reckless, G E; Bolstad, I; Nakstad, P H; Andreassen, O A; Jensen, J
2013-05-15
Motivation has been demonstrated to affect individuals' response strategies in economic decision-making, however, little is known about how motivation influences perceptual decision-making behavior or its related neural activity. Given the important role motivation plays in shaping our behavior, a better understanding of this relationship is needed. A block-design, continuous performance, perceptual decision-making task where participants were asked to detect a picture of an animal among distractors was used during functional magnetic resonance imaging (fMRI). The effect of positive and negative motivation on sustained activity within regions of the brain thought to underlie decision-making was examined by altering the monetary contingency associated with the task. In addition, signal detection theory was used to investigate the effect of motivation on detection sensitivity, response bias and response time. While both positive and negative motivation resulted in increased sustained activation in the ventral striatum, fusiform gyrus, left dorsolateral prefrontal cortex (DLPFC) and ventromedial prefrontal cortex, only negative motivation resulted in the adoption of a more liberal, closer to optimal response bias. This shift toward a liberal response bias correlated with increased activation in the left DLPFC, but did not result in improved task performance. The present findings suggest that motivation alters aspects of the way perceptual decisions are made. Further, this altered response behavior is reflected in a change in left DLPFC activation, a region involved in the computation of perceptual decisions. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection.
Ouyang, Wanli; Zeng, Xingyu; Wang, Xiaogang; Qiu, Shi; Luo, Ping; Tian, Yonglong; Li, Hongsheng; Yang, Shuo; Wang, Zhe; Li, Hongyang; Loy, Chen Change; Wang, Kun; Yan, Junjie; Tang, Xiaoou
2016-07-07
In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach improves the mean averaged precision obtained by RCNN [16], which was the state-of-the-art, from 31% to 50.3% on the ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1%. Detailed component-wise analysis is also provided through extensive experimental evaluation, which provides a global view for people to understand the deep learning object detection pipeline.
Woodman, Geoffrey F.; Vogel, Edward K.; Luck, Steven J.
2012-01-01
Many recent studies of visual working memory have used change-detection tasks in which subjects view sequential displays and are asked to report whether they are identical or if one object has changed. A key question is whether the memory system used to perform this task is sufficiently flexible to detect changes in object identity independent of spatial transformations, but previous research has yielded contradictory results. To address this issue, the present study compared standard change-detection tasks with tasks in which the objects varied in size or position between successive arrays. Performance was nearly identical across the standard and transformed tasks unless the task implicitly encouraged spatial encoding. These results resolve the discrepancies in prior studies and demonstrate that the visual working memory system can detect changes in object identity across spatial transformations. PMID:22287933
Community detection enhancement using non-negative matrix factorization with graph regularization
NASA Astrophysics Data System (ADS)
Liu, Xiao; Wei, Yi-Ming; Wang, Jian; Wang, Wen-Jun; He, Dong-Xiao; Song, Zhan-Jie
2016-06-01
Community detection is a meaningful task in the analysis of complex networks, which has received great concern in various domains. A plethora of exhaustive studies has made great effort and proposed many methods on community detection. Particularly, a kind of attractive one is the two-step method which first makes a preprocessing for the network and then identifies its communities. However, not all types of methods can achieve satisfactory results by using such preprocessing strategy, such as the non-negative matrix factorization (NMF) methods. In this paper, rather than using the above two-step method as most works did, we propose a graph regularized-based model to improve, specialized, the NMF-based methods for the detection of communities, namely NMFGR. In NMFGR, we introduce the similarity metric which contains both the global and local information of networks, to reflect the relationships between two nodes, so as to improve the accuracy of community detection. Experimental results on both artificial and real-world networks demonstrate the superior performance of NMFGR to some competing methods.
Cancer screening and early detection in the 21st century
Murphy, Jeanne
2017-01-01
Objective To review the trends in and principles of cancer screening and early detection. Data Sources Journal articles, United States Preventive Services Task Force (U SPSTF) publications, professional organization position statements, evidence-based summaries Conclusion Cancer screening has contributed to decreasing the morbidity and mortality of cancer. Efforts to improve the selection of candidates for cancer screening, to understand the biological basis of carcinogenesis, and the development of new technologies for cancer screening will allow for improvements in the cancer screening over time. Implications for Nursing Practice Nurses are well-positioned to lead the implementation of cancer screening recommendations in the 21st Century through their practice, research, educational efforts and advocacy. PMID:28343835
Leveraging Paraphrase Labels to Extract Synonyms from Twitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniak, Maria A.; Bell, Eric B.; Xia, Fei
2015-05-18
We present an approach for automatically learning synonyms from a paraphrase corpus of tweets. This work shows improvement on the task of paraphrase detection when we substitute our extracted synonyms into the training set. The synonyms are learned by using chunks from a shallow parse to create candidate synonyms and their context windows, and the synonyms are incorporated into a paraphrase detection system that uses machine translation metrics as features for a classifier. We demonstrate a 2.29% improvement in F1 when we train and test on the paraphrase training set, providing better coverage than previous systems, which shows the potentialmore » power of synonyms that are representative of a specific topic.« less
Toledo, Diana R; Barela, José A; Kohn, André F
2017-09-01
The application of subsensory noise stimulation over the lower limbs has been shown to improve proprioception and postural control under certain conditions. Whereas the effect specificity seems to depend on several factors, studies are still needed to determine the appropriate method for training and rehabilitation purposes. In the current study, we investigated whether the application of subsensory electrical noise over the legs improves proprioceptive function in young and older adults. We aimed to provide evidence that stronger and age-related differential effects occur in more demanding tasks. Proprioceptive function was initially assessed by testing the detection of passive ankle movement (kinesthetic perception) in twenty-eight subjects (14 young and 14 older adults). Thereafter, postural control was assessed during tasks with different sensory challenges: i) by removing visual information (eyes closed) and; ii) by moving the visual scene (moving room paradigm). Tests performed with the application of electrical noise stimulation were compared to those performed without noise. The results showed that electrical noise applied over the legs led to a reduction in the response time to kinesthetic perception in both young and older adults. On the other hand, the magnitude of postural sway was reduced by noise stimulation only during a more challenging task, namely, when the optical flow was changing in an unpredictable (nonperiodic) manner. No differential effects of stimulation between groups were observed. These findings suggest that the relevance of proprioceptive inputs in tasks with different challenges, but not the subjects' age, is a determining factor for sensorimotor improvements due to electrical noise stimulation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gang, G; Siewerdsen, J; Stayman, J
Purpose: There has been increasing interest in integrating fluence field modulation (FFM) devices with diagnostic CT scanners for dose reduction purposes. Conventional FFM strategies, however, are often either based on heuristics or the analysis of filtered-backprojection (FBP) performance. This work investigates a prospective task-driven optimization of FFM for model-based iterative reconstruction (MBIR) in order to improve imaging performance at the same total dose as conventional strategies. Methods: The task-driven optimization framework utilizes an ultra-low dose 3D scout as a patient-specific anatomical model and a mathematical formation of the imaging task. The MBIR method investigated is quadratically penalized-likelihood reconstruction. The FFMmore » objective function uses detectability index, d’, computed as a function of the predicted spatial resolution and noise in the image. To optimize performance throughout the object, a maxi-min objective was adopted where the minimum d’ over multiple locations is maximized. To reduce the dimensionality of the problem, FFM is parameterized as a linear combination of 2D Gaussian basis functions over horizontal detector pixels and projection angles. The coefficients of these bases are found using the covariance matrix adaptation evolution strategy (CMA-ES) algorithm. The task-driven design was compared with three other strategies proposed for FBP reconstruction for a calcification cluster discrimination task in an abdomen phantom. Results: The task-driven optimization yielded FFM that was significantly different from those designed for FBP. Comparing all four strategies, the task-based design achieved the highest minimum d’ with an 8–48% improvement, consistent with the maxi-min objective. In addition, d’ was improved to a greater extent over a larger area within the entire phantom. Conclusion: Results from this investigation suggests the need to re-evaluate conventional FFM strategies for MBIR. The task-based optimization framework provides a promising approach that maximizes imaging performance under the same total dose constraint.« less
Performance of a scanning laser line striper in outdoor lighting
NASA Astrophysics Data System (ADS)
Mertz, Christoph
2013-05-01
For search and rescue robots and reconnaissance robots it is important to detect objects in their vicinity. We have developed a scanning laser line striper that can produce dense 3D images using active illumination. The scanner consists of a camera and a MEMS-micro mirror based projector. It can also detect the presence of optically difficult material like glass and metal. The sensor can be used for autonomous operation or it can help a human operator to better remotely control the robot. In this paper we will evaluate the performance of the scanner under outdoor illumination, i.e. from operating in the shade to operating in full sunlight. We report the range, resolution and accuracy of the sensor and its ability to reconstruct objects like grass, wooden blocks, wires, metal objects, electronic devices like cell phones, blank RPG, and other inert explosive devices. Furthermore we evaluate its ability to detect the presence of glass and polished metal objects. Lastly we report on a user study that shows a significant improvement in a grasping task. The user is tasked with grasping a wire with the remotely controlled hand of a robot. We compare the time it takes to complete the task using the 3D scanner with using a traditional video camera.
NASA Astrophysics Data System (ADS)
Wang, Chia-Yu
2015-08-01
The purpose of this study was to use multiple assessments to investigate the general versus task-specific characteristics of metacognition in dissimilar chemistry topics. This mixed-method approach investigated the nature of undergraduate general chemistry students' metacognition using four assessments: a self-report questionnaire, assessment of concurrent metacognitive skills, confidence judgment, and calibration accuracy. Data were analyzed using a multitrait-multimethod correlation matrix, supplemented with regression analyses, and qualitative interpretation. Significant correlations among task performance, calibration accuracy, and concurrent metacognition within a task suggest a converging relationship. Confidence judgment, however, was not associated with task performance or the other metacognitive measurements. The results partially support hypotheses of both general and task-specific metacognition. However, general and task-specific properties of metacognition were detected using different assessments. Case studies were constructed for two participants to illustrate how concurrent metacognition varied within different task demands. Considerations of how each assessment may appropriate different metacognitive constructs and the importance of the alignment of analytical constructs when using multiple assessments are discussed. These results may help lead to improvements in metacognition assessment and may provide insights into designs of effective metacognitive instruction.
Alegro, Maryana; Theofilas, Panagiotis; Nguy, Austin; Castruita, Patricia A.; Seeley, William; Heinsen, Helmut; Ushizima, Daniela M.
2017-01-01
Background Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility. New method Dictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set. Results Our method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings. Comparison with existing methods We compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples. Conclusion The proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks. PMID:28267565
Salehi, Leila; Azmi, Reza
2014-07-01
Breast cancer continues to be a significant public health problem in the world. Early detection is the key for improving breast cancer prognosis. In this way, magnetic resonance imaging (MRI) is emerging as a powerful tool for the detection of breast cancer. Breast MRI presently has two major challenges. First, its specificity is relatively poor, and it detects many false positives (FPs). Second, the method involves acquiring several high-resolution image volumes before, during, and after the injection of a contrast agent. The large volume of data makes the task of interpretation by the radiologist both complex and time-consuming. These challenges have led to the development of the computer-aided detection systems to improve the efficiency and accuracy of the interpretation process. Detection of suspicious regions of interests (ROIs) is a critical preprocessing step in dynamic contrast-enhanced (DCE)-MRI data evaluation. In this regard, this paper introduces a new automatic method to detect the suspicious ROIs for breast DCE-MRI based on region growing. The results indicate that the proposed method is thoroughly able to identify suspicious regions (accuracy of 75.39 ± 3.37 on PIDER breast MRI dataset). Furthermore, the FP per image in this method is averagely 7.92, which shows considerable improvement comparing to other methods like ROI hunter.
Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller.
Cruz, Aniana; Pires, Gabriel; Nunes, Urbano J
2018-01-01
Brain-computer interface (BCI) is a useful device for people with severe motor disabilities. However, due to its low speed and low reliability, BCI still has a very limited application in daily real-world tasks. This paper proposes a P300-based BCI speller combined with a double error-related potential (ErrP) detection to automatically correct erroneous decisions. This novel approach introduces a second error detection to infer whether wrong automatic correction also elicits a second ErrP. Thus, two single-trial responses, instead of one, contribute to the final selection, improving the reliability of error detection. Moreover, to increase error detection, the evoked potential detected as target by the P300 classifier is combined with the evoked error potential at a feature-level. Discriminable error and positive potentials (response to correct feedback) were clearly identified. The proposed approach was tested on nine healthy participants and one tetraplegic participant. The online average accuracy for the first and second ErrPs were 88.4% and 84.8%, respectively. With automatic correction, we achieved an improvement around 5% achieving 89.9% in spelling accuracy for an effective 2.92 symbols/min. The proposed approach revealed that double ErrP detection can improve the reliability and speed of BCI systems.
Simultaneous wood and metal particle detection on dark-field radiography.
Braig, Eva-Maria; Birnbacher, Lorenz; Schaff, Florian; Gromann, Lukas; Fingerle, Alexander; Herzen, Julia; Rummeny, Ernst; Noël, Peter; Pfeiffer, Franz; Muenzel, Daniela
2018-01-01
Currently, the detection of retained wood is a frequent but challenging task in emergency care. The purpose of this study is to demonstrate improved foreign-body detection with the novel approach of preclinical X-ray dark-field radiography. At a preclinical dark-field x-ray radiography, setup resolution and sensitivity for simultaneous detection of wooden and metallic particles have been evaluated in a phantom study. A clinical setting has been simulated with a formalin fixated human hand where different typical foreign-body materials have been inserted. Signal-to-noise ratios (SNR) have been determined for all test objects. On the phantom, the SNR value for wood in the dark-field channel was strongly improved by a factor 6 compared to conventional radiography and even compared to the SNR of an aluminium structure of the same size in conventional radiography. Splinters of wood < 300 μm in diameter were clearly detected on the dark-field radiography. Dark-field radiography of the formalin-fixated human hand showed a clear signal for wooden particles that could not be identified on conventional radiography. x-ray dark-field radiography enables the simultaneous detection of wooden and metallic particles in the extremities. It has the potential to improve and simplify the current state-of-the-art foreign-body detection.
Divided attention can enhance memory encoding: the attentional boost effect in implicit memory.
Spataro, Pietro; Mulligan, Neil W; Rossi-Arnaud, Clelia
2013-07-01
Distraction during encoding has long been known to disrupt later memory performance. Contrary to this long-standing result, we show that detecting an infrequent target in a dual-task paradigm actually improves memory encoding for a concurrently presented word, above and beyond the performance reached in the full-attention condition. This absolute facilitation was obtained in 2 perceptual implicit tasks (lexical decision and word fragment completion) but not in a conceptual implicit task (semantic classification). In the case of recognition memory, the facilitation was relative, bringing accuracy in the divided attention condition up to the level of accuracy in the full attention condition. The findings follow from the hypothesis that the attentional boost effect reflects enhanced visual encoding of the study stimulus consequent to the transient orienting response to the dual-task target. PsycINFO Database Record (c) 2013 APA, all rights reserved.
FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection.
Noto, Keith; Brodley, Carla; Slonim, Donna
2012-01-01
Anomaly detection involves identifying rare data instances (anomalies) that come from a different class or distribution than the majority (which are simply called "normal" instances). Given a training set of only normal data, the semi-supervised anomaly detection task is to identify anomalies in the future. Good solutions to this task have applications in fraud and intrusion detection. The unsupervised anomaly detection task is different: Given unlabeled, mostly-normal data, identify the anomalies among them. Many real-world machine learning tasks, including many fraud and intrusion detection tasks, are unsupervised because it is impractical (or impossible) to verify all of the training data. We recently presented FRaC, a new approach for semi-supervised anomaly detection. FRaC is based on using normal instances to build an ensemble of feature models, and then identifying instances that disagree with those models as anomalous. In this paper, we investigate the behavior of FRaC experimentally and explain why FRaC is so successful. We also show that FRaC is a superior approach for the unsupervised as well as the semi-supervised anomaly detection task, compared to well-known state-of-the-art anomaly detection methods, LOF and one-class support vector machines, and to an existing feature-modeling approach.
FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection
Brodley, Carla; Slonim, Donna
2011-01-01
Anomaly detection involves identifying rare data instances (anomalies) that come from a different class or distribution than the majority (which are simply called “normal” instances). Given a training set of only normal data, the semi-supervised anomaly detection task is to identify anomalies in the future. Good solutions to this task have applications in fraud and intrusion detection. The unsupervised anomaly detection task is different: Given unlabeled, mostly-normal data, identify the anomalies among them. Many real-world machine learning tasks, including many fraud and intrusion detection tasks, are unsupervised because it is impractical (or impossible) to verify all of the training data. We recently presented FRaC, a new approach for semi-supervised anomaly detection. FRaC is based on using normal instances to build an ensemble of feature models, and then identifying instances that disagree with those models as anomalous. In this paper, we investigate the behavior of FRaC experimentally and explain why FRaC is so successful. We also show that FRaC is a superior approach for the unsupervised as well as the semi-supervised anomaly detection task, compared to well-known state-of-the-art anomaly detection methods, LOF and one-class support vector machines, and to an existing feature-modeling approach. PMID:22639542
Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems
NASA Astrophysics Data System (ADS)
Lee, Changwoo; Han, Minah; Baek, Jongduk
2017-03-01
Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.
Alacid, Beatriz
2018-01-01
This work presents a method for oil-spill detection on Spanish coasts using aerial Side-Looking Airborne Radar (SLAR) images, which are captured using a Terma sensor. The proposed method uses grayscale image processing techniques to identify the dark spots that represent oil slicks on the sea. The approach is based on two steps. First, the noise regions caused by aircraft movements are detected and labeled in order to avoid the detection of false-positives. Second, a segmentation process guided by a map saliency technique is used to detect image regions that represent oil slicks. The results show that the proposed method is an improvement on the previous approaches for this task when employing SLAR images. PMID:29316716
Investigation of statistical iterative reconstruction for dedicated breast CT
Makeev, Andrey; Glick, Stephen J.
2013-01-01
Purpose: Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. Statistical iterative reconstruction (SIR) in dedicated breast CT is a promising alternative to traditional filtered backprojection (FBP). One of the difficulties in using SIR is the presence of free parameters in the algorithm that control the appearance of the resulting image. These parameters require tuning in order to achieve high quality reconstructions. In this study, the authors investigated the penalized maximum likelihood (PML) method with two commonly used types of roughness penalty functions: hyperbolic potential and anisotropic total variation (TV) norm. Reconstructed images were compared with images obtained using standard FBP. Optimal parameters for PML with the hyperbolic prior are reported for the task of detecting microcalcifications embedded in breast tissue. Methods: Computer simulations were used to acquire projections in a half-cone beam geometry. The modeled setup describes a realistic breast CT benchtop system, with an x-ray spectra produced by a point source and an a-Si, CsI:Tl flat-panel detector. A voxelized anthropomorphic breast phantom with 280 μm microcalcification spheres embedded in it was used to model attenuation properties of the uncompressed woman's breast in a pendant position. The reconstruction of 3D images was performed using the separable paraboloidal surrogates algorithm with ordered subsets. Task performance was assessed with the ideal observer detectability index to determine optimal PML parameters. Results: The authors' findings suggest that there is a preferred range of values of the roughness penalty weight and the edge preservation threshold in the penalized objective function with the hyperbolic potential, which resulted in low noise images with high contrast microcalcifications preserved. In terms of numerical observer detectability index, the PML method with optimal parameters yielded substantially improved performance (by a factor of greater than 10) compared to FBP. The hyperbolic prior was also observed to be superior to the TV norm. A few of the best-performing parameter pairs for the PML method also demonstrated superior performance for various radiation doses. In fact, using PML with certain parameter values results in better images, acquired using 2 mGy dose, than FBP-reconstructed images acquired using 6 mGy dose. Conclusions: A range of optimal free parameters for the PML algorithm with hyperbolic and TV norm-based potentials is presented for the microcalcification detection task, in dedicated breast CT. The reported values can be used as starting values of the free parameters, when SIR techniques are used for image reconstruction. Significant improvement in image quality can be achieved by using PML with optimal combination of parameters, as compared to FBP. Importantly, these results suggest improved detection of microcalcifications can be obtained by using PML with lower radiation dose to the patient, than using FBP with higher dose. PMID:23927318
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Q; Brehler, M; Sisniega, A
Purpose: Extremity cone-beam CT (CBCT) with an amorphous silicon (aSi) flat-panel detector (FPD) provides low-dose volumetric imaging with high spatial resolution. We investigate the performance of the newer complementary metal-oxide semiconductor (CMOS) detectors to enhance resolution of extremities CBCT to ∼0.1 mm, enabling morphological analysis of trabecular bone. Quantitative in-vivo imaging of bone microarchitecture could present an important advance for osteoporosis and osteoarthritis diagnosis and therapy assessment. Methods: Cascaded systems models of CMOS- and FPD-based extremities CBCT were implemented. Performance was compared for a range of pixel sizes (0.05–0.4 mm), focal spot sizes (0.3–0.6 FS), and x-ray techniques (0.05–0.8 mAs/projection)more » using detectability of high-, low-, and all-frequency tasks for a nonprewhitening observer. Test-bench implementation of CMOS-based extremity CBCT involved a Teledyne DALSA Xineos3030HR detector with 0.099 mm pixels and a compact rotating anode x-ray source with 0.3 FS (IMD RTM37). Metrics of bone morphology obtained using CMOS-based CBCT were compared in cadaveric specimens to FPD-based system using a Varian PaxScan4030 (0.194 mm pixels). Results: Finer pixel size and reduced electronic noise for CMOS (136 e compared to 2000 e for FPD) resulted in ∼1.9× increase in detectability for high-frequency tasks and ∼1.1× increase for all-frequency tasks. Incorporation of the new x-ray source with reduced focal spot size (0.3 FS vs. 0.5 FS used on current extremities CBCT) improved detectability for CMOS-based CBCT by ∼1.7× for high-frequency tasks. Compared to FPD CBCT, the CMOS detector yielded improved agreement with micro-CT in measurements of trabecular thickness (∼1.7× reduction in relative error), bone volume (∼1.5× reduction), and trabecular spacing (∼3.5× reduction). Conclusion: Imaging performance modelling and experimentation indicate substantial improvements for high-frequency imaging tasks through adoption of the CMOS detector and small FS x-ray source, motivating the use of these components in a new system for quantitative in-vivo imaging of trabecular bone. Financial Support: US NIH grant R01EB018896. Qian Cao is a Howard Hughes Medical Institute International Student Research Fellow. Disclosures: W Zbijewski, J Siewerdsen and A Sisniega receive research funding from Carestream Health.« less
Spatial Probability Dynamically Modulates Visual Target Detection in Chickens
Sridharan, Devarajan; Ramamurthy, Deepa L.; Knudsen, Eric I.
2013-01-01
The natural world contains a rich and ever-changing landscape of sensory information. To survive, an organism must be able to flexibly and rapidly locate the most relevant sources of information at any time. Humans and non-human primates exploit regularities in the spatial distribution of relevant stimuli (targets) to improve detection at locations of high target probability. Is the ability to flexibly modify behavior based on visual experience unique to primates? Chickens (Gallus domesticus) were trained on a multiple alternative Go/NoGo task to detect a small, briefly-flashed dot (target) in each of the quadrants of the visual field. When targets were presented with equal probability (25%) in each quadrant, chickens exhibited a distinct advantage for detecting targets at lower, relative to upper, hemifield locations. Increasing the probability of presentation in the upper hemifield locations (to 80%) dramatically improved detection performance at these locations to be on par with lower hemifield performance. Finally, detection performance in the upper hemifield changed on a rapid timescale, improving with successive target detections, and declining with successive detections at the diagonally opposite location in the lower hemifield. These data indicate the action of a process that in chickens, as in primates, flexibly and dynamically modulates detection performance based on the spatial probabilities of sensory stimuli as well as on recent performance history. PMID:23734188
Divided Attention Can Enhance Memory Encoding: The Attentional Boost Effect in Implicit Memory
ERIC Educational Resources Information Center
Spataro, Pietro; Mulligan, Neil W.; Rossi-Arnaud, Clelia
2013-01-01
Distraction during encoding has long been known to disrupt later memory performance. Contrary to this long-standing result, we show that detecting an infrequent target in a dual-task paradigm actually improves memory encoding for a concurrently presented word, above and beyond the performance reached in the full-attention condition. This absolute…
Perceptual Units Training for Improving Word Analysis Skills. Technical Report No. 1.
ERIC Educational Resources Information Center
Weaver, Phyllis A.; And Others
A training program was devised to develop automaticity of one subcomponent of reading--locating and disembedding multiletter units within words. The system involved the use of a training task that was implemented in a microcomputer-based game that required students to detect whether a target unit was presented within words that were shown in rapid…
USDA-ARS?s Scientific Manuscript database
Locating buried drainage pipes is a difficult task confronting farmers and land improvement contractors, especially in the Midwest U.S., where the removal of excess soil water using subsurface drainage systems is a common farm practice. Enhancing the efficiency of soil water removal on land containi...
Efficiency of the human observer detecting random signals in random backgrounds
Park, Subok; Clarkson, Eric; Kupinski, Matthew A.; Barrett, Harrison H.
2008-01-01
The efficiencies of the human observer and the channelized-Hotelling observer relative to the ideal observer for signal-detection tasks are discussed. Both signal-known-exactly (SKE) tasks and signal-known-statistically (SKS) tasks are considered. Signal location is uncertain for the SKS tasks, and lumpy backgrounds are used for background uncertainty in both cases. Markov chain Monte Carlo methods are employed to determine ideal-observer performance on the detection tasks. Psychophysical studies are conducted to compute human-observer performance on the same tasks. Efficiency is computed as the squared ratio of the detectabilities of the observer of interest to the ideal observer. Human efficiencies are approximately 2.1% and 24%, respectively, for the SKE and SKS tasks. The results imply that human observers are not affected as much as the ideal observer by signal-location uncertainty even though the ideal observer outperforms the human observer for both tasks. Three different simplified pinhole imaging systems are simulated, and the humans and the model observers rank the systems in the same order for both the SKE and the SKS tasks. PMID:15669610
Cascaded systems analysis of noise and detectability in dual-energy cone-beam CT
Gang, Grace J.; Zbijewski, Wojciech; Webster Stayman, J.; Siewerdsen, Jeffrey H.
2012-01-01
Purpose: Dual-energy computed tomography and dual-energy cone-beam computed tomography (DE-CBCT) are promising modalities for applications ranging from vascular to breast, renal, hepatic, and musculoskeletal imaging. Accordingly, the optimization of imaging techniques for such applications would benefit significantly from a general theoretical description of image quality that properly incorporates factors of acquisition, reconstruction, and tissue decomposition in DE tomography. This work reports a cascaded systems analysis model that includes the Poisson statistics of x rays (quantum noise), detector model (flat-panel detectors), anatomical background, image reconstruction (filtered backprojection), DE decomposition (weighted subtraction), and simple observer models to yield a task-based framework for DE technique optimization. Methods: The theoretical framework extends previous modeling of DE projection radiography and CBCT. Signal and noise transfer characteristics are propagated through physical and mathematical stages of image formation and reconstruction. Dual-energy decomposition was modeled according to weighted subtraction of low- and high-energy images to yield the 3D DE noise-power spectrum (NPS) and noise-equivalent quanta (NEQ), which, in combination with observer models and the imaging task, yields the dual-energy detectability index (d′). Model calculations were validated with NPS and NEQ measurements from an experimental imaging bench simulating the geometry of a dedicated musculoskeletal extremities scanner. Imaging techniques, including kVp pair and dose allocation, were optimized using d′ as an objective function for three example imaging tasks: (1) kidney stone discrimination; (2) iodine vs bone in a uniform, soft-tissue background; and (3) soft tissue tumor detection on power-law anatomical background. Results: Theoretical calculations of DE NPS and NEQ demonstrated good agreement with experimental measurements over a broad range of imaging conditions. Optimization results suggest a lower fraction of total dose imparted by the low-energy acquisition, a finding consistent with previous literature. The selection of optimal kVp pair reveals the combined effect of both quantum noise and contrast in the kidney stone discrimination and soft-tissue tumor detection tasks, whereas the K-edge effect of iodine was the dominant factor in determining kVp pairs in the iodine vs bone task. The soft-tissue tumor task illustrated the benefit of dual-energy imaging in eliminating anatomical background noise and improving detectability beyond that achievable by single-energy scans. Conclusions: This work established a task-based theoretical framework that is predictive of DE image quality. The model can be utilized in optimizing a broad range of parameters in image acquisition, reconstruction, and decomposition, providing a useful tool for maximizing DE-CBCT image quality and reducing dose. PMID:22894440
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, George L.; Eichenberger, Alexandre E.; O'Brien, John K. P.
The present disclosure relates generally to a dedicated memory structure (that is, hardware device) holding data for detecting available worker thread(s) and informing available worker thread(s) of task(s) to execute.
Improved cancer diagnostics by different image processing techniques on OCT images
NASA Astrophysics Data System (ADS)
Kanawade, Rajesh; Lengenfelder, Benjamin; Marini Menezes, Tassiana; Hohmann, Martin; Kopfinger, Stefan; Hohmann, Tim; Grabiec, Urszula; Klämpfl, Florian; Gonzales Menezes, Jean; Waldner, Maximilian; Schmidt, Michael
2015-07-01
Optical-coherence tomography (OCT) is a promising non-invasive, high-resolution imaging modality which can be used for cancer diagnosis and its therapeutic assessment. However, speckle noise makes detection of cancer boundaries and image segmentation problematic and unreliable. Therefore, to improve the image analysis for a precise cancer border detection, the performance of different image processing algorithms such as mean, median, hybrid median filter and rotational kernel transformation (RKT) for this task is investigated. This is done on OCT images acquired from an ex-vivo human cancerous mucosa and in vitro by using cultivated tumour applied on organotypical hippocampal slice cultures. The preliminary results confirm that the border between the healthy and the cancer lesions can be identified precisely. The obtained results are verified with fluorescence microscopy. This research can improve cancer diagnosis and the detection of borders between healthy and cancerous tissue. Thus, it could also reduce the number of biopsies required during screening endoscopy by providing better guidance to the physician.
Rofes, A; Spena, G; Miozzo, A; Fontanella, M M; Miceli, G
2015-12-01
Multidisciplinary efforts are being made to provide surgical teams with sensitive and specific tasks for language mapping in awake surgery. Researchers and clinicians have elaborated different tasks over time. A fair amount of work has been directed to study the neurofunctional correlates of some of these tasks, and there is recent interest in their standardization. However, little discussion exists on the advantages and disadvantages that each task poses from the perspective of the cognitive neuroscience of language. Such an approach may be a relevant step to assess task validity, to avoid using tasks that tap onto similar processes, and to provide patients with a surgical treatment that ensures maximal tumor resection while avoiding postoperative language deficits. An understanding of the language components that each task entails may also be relevant to improve the current assessments and the ways in which tasks are administered, and to disentangle neurofunctional questions. We reviewed 17 language mapping tasks that have been used in awake surgery. Overt production tasks have been a preferred choice over comprehension tasks. Tasks tapping lexico-semantic processes, particularly object-naming, maintain their role as gold standards. Automated speech tasks are used to detect speech errors and to set the amplitude of the stimulator. Comprehension tasks, reading and writing tasks, and tasks that assess grammatical aspects of language may be regularly administered in the near future. We provide examples of a three-task approach we are administering to patients with prefrontal lesions. We believe that future advances in this area are contingent upon reviewing gold standards and introducing new assessment tools.
Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus
2012-01-01
Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption contrast. Talbot interferometry with a plane wave increased detectability for 0.1-mm tumor and glandular structures by a factor of 3–4 at equal dose, whereas absorption contrast was the preferred method for structures larger than ∼0.5 mm. Microcalcifications are small, but differ from soft tissue in atomic number more than density, which is favored by absorption contrast, and Talbot interferometry was barely beneficial at all within the resolution limit of the system. Further, Talbot interferometry favored detection of “sharp” as opposed to “smooth” structures, and discrimination tasks by about 50% compared to detection tasks. The technique was relatively insensitive to spectrum bandwidth, whereas the projected source size was more important. If equal photon economy was added as a restriction, phase-contrast efficiency was reduced so that the benefit for detection tasks almost vanished compared to absorption contrast, but discrimination tasks were still improved close to a factor of 2 at the resolution limit. Conclusions: Cascaded-systems analysis enables comprehensive and intuitive evaluation of phase-contrast efficiency in relation to absorption contrast under requirements of equal dose, equal geometry, and equal photon economy. The benefit of Talbot interferometry was highly dependent on task, in particular detection versus discrimination tasks, and target size, shape, and material. Requiring equal photon economy weakened the benefit of Talbot interferometry in mammography. PMID:22957600
An incremental knowledge assimilation system (IKAS) for mine detection
NASA Astrophysics Data System (ADS)
Porway, Jake; Raju, Chaitanya; Varadarajan, Karthik Mahesh; Nguyen, Hieu; Yadegar, Joseph
2010-04-01
In this paper we present an adaptive incremental learning system for underwater mine detection and classification that utilizes statistical models of seabed texture and an adaptive nearest-neighbor classifier to identify varied underwater targets in many different environments. The first stage of processing uses our Background Adaptive ANomaly detector (BAAN), which identifies statistically likely target regions using Gabor filter responses over the image. Using this information, BAAN classifies the background type and updates its detection using background-specific parameters. To perform classification, a Fully Adaptive Nearest Neighbor (FAAN) determines the best label for each detection. FAAN uses an extremely fast version of Nearest Neighbor to find the most likely label for the target. The classifier perpetually assimilates new and relevant information into its existing knowledge database in an incremental fashion, allowing improved classification accuracy and capturing concept drift in the target classes. Experiments show that the system achieves >90% classification accuracy on underwater mine detection tasks performed on synthesized datasets provided by the Office of Naval Research. We have also demonstrated that the system can incrementally improve its detection accuracy by constantly learning from new samples.
N, Sadhasivam; R, Balamurugan; M, Pandi
2018-01-27
Objective: Epigenetic modifications involving DNA methylation and histone statud are responsible for the stable maintenance of cellular phenotypes. Abnormalities may be causally involved in cancer development and therefore could have diagnostic potential. The field of epigenomics refers to all epigenetic modifications implicated in control of gene expression, with a focus on better understanding of human biology in both normal and pathological states. Epigenomics scientific workflow is essentially a data processing pipeline to automate the execution of various genome sequencing operations or tasks. Cloud platform is a popular computing platform for deploying large scale epigenomics scientific workflow. Its dynamic environment provides various resources to scientific users on a pay-per-use billing model. Scheduling epigenomics scientific workflow tasks is a complicated problem in cloud platform. We here focused on application of an improved particle swam optimization (IPSO) algorithm for this purpose. Methods: The IPSO algorithm was applied to find suitable resources and allocate epigenomics tasks so that the total cost was minimized for detection of epigenetic abnormalities of potential application for cancer diagnosis. Result: The results showed that IPSO based task to resource mapping reduced total cost by 6.83 percent as compared to the traditional PSO algorithm. Conclusion: The results for various cancer diagnosis tasks showed that IPSO based task to resource mapping can achieve better costs when compared to PSO based mapping for epigenomics scientific application workflow. Creative Commons Attribution License
Lithium treatment alleviates impaired cognition in a mouse model of Fragile X Syndrome
King, Margaret K.; Jope, Richard S.
2013-01-01
Fragile X Syndrome (FXS) is caused by suppressed expression of fragile X mental retardation protein (FMRP), which results in intellectual disability accompanied by many variably manifested characteristics, such as hyperactivity, seizures, and autistic-like behaviors. Treatment of mice that lack FMRP, Fmr1 knockout (KO) mice, with lithium has been reported to ameliorate locomotor hyperactivity, prevent hypersensitivity to audiogenic seizures, improve passive avoidance behavior, and attenuate sociability deficits. To focus on the defining characteristic of FXS, which is cognitive impairment, we tested if lithium treatment ameliorated impairments in four cognitive tasks in Fmr1 KO mice, tested if the response to lithium differed in adolescent and adult mice, and tested if therapeutic effects persisted after discontinuation of lithium administration. Fmr1 KO mice displayed impaired cognition in the novel object detection task, temporal ordering for objects task, and coordinate and categorical spatial processing tasks. Chronic lithium treatment of adolescent (from 4–8 weeks of age) and adult (from 8–12 weeks of age) mice abolished cognitive impairments in all four cognitive tasks. Cognitive deficits returned after lithium treatment was discontinued for 4 weeks. These results demonstrate that Fmr1 KO mice exhibit severe impairments in these cognitive tasks, that lithium is equally effective in normalizing cognition in these tasks whether it is administered to young or adult mice, and that lithium administration must be continued for the cognitive improvements to be sustained. These findings provide further evidence that lithium administration may be beneficial for individuals with FXS. PMID:23941202
Slowing down after a mild traumatic brain injury: a strategy to improve cognitive task performance?
Ozen, Lana J; Fernandes, Myra A
2012-01-01
Long-term persistent attention and memory difficulties following a mild traumatic brain injury (TBI) often go undetected on standard neuropsychological tests, despite complaints by mild TBI individuals. We conducted a visual Repetition Detection working memory task to digits, in which we manipulated task difficulty by increasing cognitive load, to identify subtle deficits long after a mild TBI. Twenty-six undergraduate students with a self-report of one mild TBI, which occurred at least 6 months prior, and 31 non-head-injured controls took part in the study. Participants were not informed until study completion that the study's purpose was to examine cognitive changes following a mild TBI, to reduce the influence of "diagnosis threat" on performance. Neuropsychological tasks did not differentiate the groups, though mild TBI participants reported higher state anxiety levels. On our working memory task, the mild TBI group took significantly longer to accurately detect repeated targets on our task, suggesting that slowed information processing is a long-term consequence of mild TBI. Accuracy was comparable in the low-load condition and, unexpectedly, mild TBI performance surpassed that of controls in the high-load condition. Temporal analysis of target identification suggested a strategy difference between groups: mild TBI participants made a significantly greater number of accurate responses following the target's offset, and significantly fewer erroneous distracter responses prior to target onset, compared with controls. Results suggest that long after a mild TBI, high-functioning young adults invoke a strategy of delaying their identification of targets in order to maintain, and facilitate, accuracy on cognitively demanding tasks. © The Author 2011. Published by Oxford University Press. All rights reserved.
Probabilistic double guarantee kidnapping detection in SLAM.
Tian, Yang; Ma, Shugen
2016-01-01
For determining whether kidnapping has happened and which type of kidnapping it is while a robot performs autonomous tasks in an unknown environment, a double guarantee kidnapping detection (DGKD) method has been proposed. The good performance of DGKD in a relative small environment is shown. However, a limitation of DGKD is found in a large-scale environment by our recent work. In order to increase the adaptability of DGKD in a large-scale environment, an improved method called probabilistic double guarantee kidnapping detection is proposed in this paper to combine probability of features' positions and the robot's posture. Simulation results demonstrate the validity and accuracy of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samei, Ehsan, E-mail: samei@duke.edu; Richard, Samuel
2015-01-15
Purpose: Different computed tomography (CT) reconstruction techniques offer different image quality attributes of resolution and noise, challenging the ability to compare their dose reduction potential against each other. The purpose of this study was to evaluate and compare the task-based imaging performance of CT systems to enable the assessment of the dose performance of a model-based iterative reconstruction (MBIR) to that of an adaptive statistical iterative reconstruction (ASIR) and a filtered back projection (FBP) technique. Methods: The ACR CT phantom (model 464) was imaged across a wide range of mA setting on a 64-slice CT scanner (GE Discovery CT750 HD,more » Waukesha, WI). Based on previous work, the resolution was evaluated in terms of a task-based modulation transfer function (MTF) using a circular-edge technique and images from the contrast inserts located in the ACR phantom. Noise performance was assessed in terms of the noise-power spectrum (NPS) measured from the uniform section of the phantom. The task-based MTF and NPS were combined with a task function to yield a task-based estimate of imaging performance, the detectability index (d′). The detectability index was computed as a function of dose for two imaging tasks corresponding to the detection of a relatively small and a relatively large feature (1.5 and 25 mm, respectively). The performance of MBIR in terms of the d′ was compared with that of ASIR and FBP to assess its dose reduction potential. Results: Results indicated that MBIR exhibits a variability spatial resolution with respect to object contrast and noise while significantly reducing image noise. The NPS measurements for MBIR indicated a noise texture with a low-pass quality compared to the typical midpass noise found in FBP-based CT images. At comparable dose, the d′ for MBIR was higher than those of FBP and ASIR by at least 61% and 19% for the small feature and the large feature tasks, respectively. Compared to FBP and ASIR, MBIR indicated a 46%–84% dose reduction potential, depending on task, without compromising the modeled detection performance. Conclusions: The presented methodology based on ACR phantom measurements extends current possibilities for the assessment of CT image quality under the complex resolution and noise characteristics exhibited with statistical and iterative reconstruction algorithms. The findings further suggest that MBIR can potentially make better use of the projections data to reduce CT dose by approximately a factor of 2. Alternatively, if the dose held unchanged, it can improve image quality by different levels for different tasks.« less
NASA Astrophysics Data System (ADS)
Nabelek, Daniel P.; Ho, K. C.
2013-06-01
The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.
Nieuwenhuis, Sander; Stins, John F; Posthuma, Danielle; Polderman, Tinca J C; Boomsma, Dorret I; de Geus, Eco J
2006-09-01
The conflict-control loop theory proposes that the detection of conflict in information processing triggers an increase in cognitive control, resulting in improved performance on the subsequent trial. This theory seems consistent with the robust finding that conflict susceptibility is reduced following correct trials associated with high conflict: the conflict adaptation effect. However, despite providing favorable conditions for eliciting and detecting conflict-triggered performance adjustments, none of the five experiments reported here provide unequivocal evidence of such adjustments. Instead, the results corroborate and extend earlier findings by demonstrating that the conflict adaptation effect, at least in the flanker task, is only present for a specific subset of trial sequences that is characterized by a response repetition. This pattern of results provides strong evidence that the conflict adaptation effect reflects associative stimulus-response priming instead of conflict-driven adaptations in cognitive control.
Fisher, Derek J; Knobelsdorf, Amy; Jaworska, Natalia; Daniels, Richelle; Knott, Verner J
2013-01-01
Research in smokers has shown that nicotine may have the ability to improve certain aspects of cognitive performance, including working memory and attention, processes which implicate frontal and frontal-parietal brain networks. There is limited research on the cognitive effects of nicotine and their associated neural underpinnings in non-smokers. This study examined the effects of acute nicotine on a working memory task alone or combined with a visual detection task (single- and dual-task conditions) using electroencephalographic (EEG) recordings and behavioural performance measures. Twenty non-smokers (13 females; 7 males) received nicotine gum (6 mg) in a double-blind, randomized, placebo-controlled, repeated measures design. Spectral EEG, together with response speed and accuracy measures, were obtained while participants completed a series of N-Back tasks under single- and dual-task conditions. Nicotine failed to exert any significant effects on performance measures, however, EEG changes were observed, primarily in frontal recordings, which varied with memory load, task condition and hemisphere. These findings, discussed in relation to previous studies in smokers, support the notion that nicotine may modulate central executive systems and contribute to smoking behaviour. Copyright © 2012 Elsevier Inc. All rights reserved.
Market Assessment of Forward-Looking Turbulence Sensing Systems
NASA Technical Reports Server (NTRS)
Kauffmann, Paul; Sousa-Poza, Andres
2001-01-01
In recognition of the importance of turbulence mitigation as a tool to improve aviation safety, NASA's Aviation Safety Program developed a Turbulence Detection and Mitigation Sub-element. The objective of this effort is to develop highly reliable turbulence detection technologies for commercial transport aircraft to sense dangerous turbulence with sufficient time warning so that defensive measures can be implemented and prevent passenger and crew injuries. Current research involves three forward sensing products to improve the cockpit awareness of possible turbulence hazards. X-band radar enhancements will improve the capabilities of current weather radar to detect turbulence associated with convective activity. LIDAR (Light Detection and Ranging) is a laser-based technology that is capable of detecting turbulence in clear air. Finally, a possible Radar-LIDAR hybrid sensor is envisioned to detect the full range of convective and clear air turbulence. To support decisions relating to the development of these three forward-looking turbulence sensor technologies, the objective of this study was defined as examination of cost and implementation metrics. Tasks performed included the identification of cost factors and certification issues, the development and application of an implementation model, and the development of cost budget/targets for installing the turbulence sensor and associated software devices into the commercial transport fleet.
NASA Astrophysics Data System (ADS)
Huber, Samuel; Dunau, Patrick; Wellig, Peter; Stein, Karin
2017-10-01
Background: In target detection, the success rates depend strongly on human observer performances. Two prior studies tested the contributions of target detection algorithms and prior training sessions. The aim of this Swiss-German cooperation study was to evaluate the dependency of human observer performance on the quality of supporting image analysis algorithms. Methods: The participants were presented 15 different video sequences. Their task was to detect all targets in the shortest possible time. Each video sequence showed a heavily cluttered simulated public area from a different viewing angle. In each video sequence, the number of avatars in the area was altered to 100, 150 and 200 subjects. The number of targets appearing was kept at 10%. The number of marked targets varied from 0, 5, 10, 20 up to 40 marked subjects while keeping the positive predictive value of the detection algorithm at 20%. During the task, workload level was assessed by applying an acoustic secondary task. Detection rates and detection times for the targets were analyzed using inferential statistics. Results: The study found Target Detection Time to increase and Target Detection Rates to decrease with increasing numbers of avatars. The same is true for the Secondary Task Reaction Time while there was no effect on Secondary Task Hit Rate. Furthermore, we found a trend for a u-shaped correlation between the numbers of markings and RTST indicating increased workload. Conclusion: The trial results may indicate useful criteria for the design of training and support of observers in observational tasks.
Late maturation of visual spatial integration in humans
Kovács, Ilona; Kozma, Petra; Fehér, Ákos; Benedek, György
1999-01-01
Visual development is thought to be completed at an early age. We suggest that the maturation of the visual brain is not homogeneous: functions with greater need for early availability, such as visuomotor control, mature earlier, and the development of other visual functions may extend well into childhood. We found significant improvement in children between 5 and 14 years in visual spatial integration by using a contour-detection task. The data show that long-range spatial interactions—subserving the integration of orientational information across the visual field—span a shorter spatial range in children than in adults. Performance in the task improves in a cue-specific manner with practice, which indicates the participation of fairly low-level perceptual mechanisms. We interpret our findings in terms of a protracted development of ventral visual-stream function in humans. PMID:10518600
ERIC Educational Resources Information Center
Cardoso-Martins, Claudia; Michalick, Mirelle Franca; Pollo, Tatiana Cury
2002-01-01
Investigates sensitivity to rhyme and phoneme among readers and nonreaders with Down Syndrome (DS) and normally developing children. Evaluates a rhyme detection task and initial and middle phoneme detection tasks. Concludes the rhyme detection task was the easiest for nonreaders without DS and most difficult for readers with DS. (PM)
NASA Astrophysics Data System (ADS)
Patton, J.; Yeck, W.; Benz, H.
2017-12-01
The U.S. Geological Survey National Earthquake Information Center (USGS NEIC) is implementing and integrating new signal detection methods such as subspace correlation, continuous beamforming, multi-band picking and automatic phase identification into near-real-time monitoring operations. Leveraging the additional information from these techniques help the NEIC utilize a large and varied network on local to global scales. The NEIC is developing an ordered, rapid, robust, and decentralized framework for distributing seismic detection data as well as a set of formalized formatting standards. These frameworks and standards enable the NEIC to implement a seismic event detection framework that supports basic tasks, including automatic arrival time picking, social media based event detections, and automatic association of different seismic detection data into seismic earthquake events. In addition, this framework enables retrospective detection processing such as automated S-wave arrival time picking given a detected event, discrimination and classification of detected events by type, back-azimuth and slowness calculations, and ensuring aftershock and induced sequence detection completeness. These processes and infrastructure improve the NEIC's capabilities, accuracy, and speed of response. In addition, this same infrastructure provides an improved and convenient structure to support access to automatic detection data for both research and algorithmic development.
Hong, Keum-Shik; Khan, Muhammad Jawad
2017-01-01
In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain-computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.
Hong, Keum-Shik; Khan, Muhammad Jawad
2017-01-01
In this article, non-invasive hybrid brain–computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain–computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided. PMID:28790910
Augmenting intracortical brain-machine interface with neurally driven error detectors
NASA Astrophysics Data System (ADS)
Even-Chen, Nir; Stavisky, Sergey D.; Kao, Jonathan C.; Ryu, Stephen I.; Shenoy, Krishna V.
2017-12-01
Objective. Making mistakes is inevitable, but identifying them allows us to correct or adapt our behavior to improve future performance. Current brain-machine interfaces (BMIs) make errors that need to be explicitly corrected by the user, thereby consuming time and thus hindering performance. We hypothesized that neural correlates of the user perceiving the mistake could be used by the BMI to automatically correct errors. However, it was unknown whether intracortical outcome error signals were present in the premotor and primary motor cortices, brain regions successfully used for intracortical BMIs. Approach. We report here for the first time a putative outcome error signal in spiking activity within these cortices when rhesus macaques performed an intracortical BMI computer cursor task. Main results. We decoded BMI trial outcomes shortly after and even before a trial ended with 96% and 84% accuracy, respectively. This led us to develop and implement in real-time a first-of-its-kind intracortical BMI error ‘detect-and-act’ system that attempts to automatically ‘undo’ or ‘prevent’ mistakes. The detect-and-act system works independently and in parallel to a kinematic BMI decoder. In a challenging task that resulted in substantial errors, this approach improved the performance of a BMI employing two variants of the ubiquitous Kalman velocity filter, including a state-of-the-art decoder (ReFIT-KF). Significance. Detecting errors in real-time from the same brain regions that are commonly used to control BMIs should improve the clinical viability of BMIs aimed at restoring motor function to people with paralysis.
Wu, Stephen; Miller, Timothy; Masanz, James; Coarr, Matt; Halgrim, Scott; Carrell, David; Clark, Cheryl
2014-01-01
A review of published work in clinical natural language processing (NLP) may suggest that the negation detection task has been “solved.” This work proposes that an optimizable solution does not equal a generalizable solution. We introduce a new machine learning-based Polarity Module for detecting negation in clinical text, and extensively compare its performance across domains. Using four manually annotated corpora of clinical text, we show that negation detection performance suffers when there is no in-domain development (for manual methods) or training data (for machine learning-based methods). Various factors (e.g., annotation guidelines, named entity characteristics, the amount of data, and lexical and syntactic context) play a role in making generalizability difficult, but none completely explains the phenomenon. Furthermore, generalizability remains challenging because it is unclear whether to use a single source for accurate data, combine all sources into a single model, or apply domain adaptation methods. The most reliable means to improve negation detection is to manually annotate in-domain training data (or, perhaps, manually modify rules); this is a strategy for optimizing performance, rather than generalizing it. These results suggest a direction for future work in domain-adaptive and task-adaptive methods for clinical NLP. PMID:25393544
Incidental orthographic learning during a color detection task.
Protopapas, Athanassios; Mitsi, Anna; Koustoumbardis, Miltiadis; Tsitsopoulou, Sofia M; Leventi, Marianna; Seitz, Aaron R
2017-09-01
Orthographic learning refers to the acquisition of knowledge about specific spelling patterns forming words and about general biases and constraints on letter sequences. It is thought to occur by strengthening simultaneously activated visual and phonological representations during reading. Here we demonstrate that a visual perceptual learning procedure that leaves no time for articulation can result in orthographic learning evidenced in improved reading and spelling performance. We employed task-irrelevant perceptual learning (TIPL), in which the stimuli to be learned are paired with an easy task target. Assorted line drawings and difficult-to-spell words were presented in red color among sequences of other black-colored words and images presented in rapid succession, constituting a fast-TIPL procedure with color detection being the explicit task. In five experiments, Greek children in Grades 4-5 showed increased recognition of words and images that had appeared in red, both during and after the training procedure, regardless of within-training testing, and also when targets appeared in blue instead of red. Significant transfer to reading and spelling emerged only after increased training intensity. In a sixth experiment, children in Grades 2-3 showed generalization to words not presented during training that carried the same derivational affixes as in the training set. We suggest that reinforcement signals related to detection of the target stimuli contribute to the strengthening of orthography-phonology connections beyond earlier levels of visually-based orthographic representation learning. These results highlight the potential of perceptual learning procedures for the reinforcement of higher-level orthographic representations. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Manger, Daniel; Metzler, Jürgen
2014-03-01
Military Operations in Urban Terrain (MOUT) require the capability to perceive and to analyze the situation around a patrol in order to recognize potential threats. A permanent monitoring of the surrounding area is essential in order to appropriately react to the given situation, where one relevant task is the detection of objects that can pose a threat. Especially the robust detection of persons is important, as in MOUT scenarios threats usually arise from persons. This task can be supported by image processing systems. However, depending on the scenario, person detection in MOUT can be challenging, e.g. persons are often occluded in complex outdoor scenes and the person detection also suffers from low image resolution. Furthermore, there are several requirements on person detection systems for MOUT such as the detection of non-moving persons, as they can be a part of an ambush. Existing detectors therefore have to operate on single images with low thresholds for detection in order to not miss any person. This, in turn, leads to a comparatively high number of false positive detections which renders an automatic vision-based threat detection system ineffective. In this paper, a hybrid detection approach is presented. A combination of a discriminative and a generative model is examined. The objective is to increase the accuracy of existing detectors by integrating a separate hypotheses confirmation and rejection step which is built by a discriminative and generative model. This enables the overall detection system to make use of both the discriminative power and the capability to detect partly hidden objects with the models. The approach is evaluated on benchmark data sets generated from real-world image sequences captured during MOUT exercises. The extension shows a significant improvement of the false positive detection rate.
NASA Astrophysics Data System (ADS)
Wunderlich, Adam; Goossens, Bart
2014-03-01
The majority of the literature on task-based image quality assessment has focused on lesion detection tasks, using the receiver operating characteristic (ROC) curve, or related variants, to measure performance. However, since many clinical image evaluation tasks involve both detection and estimation (e.g., estimation of kidney stone composition, estimation of tumor size), there is a growing interest in performance evaluation for joint detection and estimation tasks. To evaluate observer performance on such tasks, Clarkson introduced the estimation ROC (EROC) curve, and the area under the EROC curve as a summary figure of merit. In the present work, we propose nonparametric estimators for practical EROC analysis from experimental data, including estimators for the area under the EROC curve and its variance. The estimators are illustrated with a practical example comparing MRI images reconstructed from different k-space sampling trajectories.
Fast tomosynthesis for lung cancer detection using the SBDX geometry
NASA Astrophysics Data System (ADS)
Fahrig, Rebecca; Pineda, Angel R.; Solomon, Edward G.; Leung, Ann N.; Pelc, Norbert J.
2003-06-01
Radiology-based lung-cancer detection is a high-contrast imaging task, consisting of the detection of a small mass of tissue within much lower density lung parenchyma. This imaging task requires removal of confounding image details, fast image acquisition (< 0.1 s for pericardial region), low dose (comparable to a chest x-ray), high resolution (< 0.25 mm in-plane) and patient positioning flexibility. We present an investigation of tomosynthesis, implemented using the Scanning-Beam Digital X-ray System (SBDX), to achieve these goals. We designed an image-based computer model of tomosynthesis using a high-resolution (0.15-mm isotropic voxels), low-noise CT volume image of a lung phantom, numerically added spherical lesions and convolution-based tomographic blurring. Lesion visibility was examined as a function of half-tomographic angle for 2.5 and 4.0 mm diameter lesions. Gaussian distributed noise was added to the projected images. For lesions 2.5 mm and 4.0 mm in diameter, half-tomographic angles of at least 6° and 9° respectively were necessary before visualization of the lesions improved. The addition of noise for a dose equivalent to 1/10 that used for a standard chest radiograph did not significantly impair lesion detection. The results are promising, indicating that lung-cancer detection using a modified SBDX system is possible.
Siems, Ashley; Cartron, Alexander; Watson, Anne; McCarter, Robert; Levin, Amanda
2017-02-01
Rapid response teams (RRTs) improve the detection of and response to deteriorating patients. Professional hierarchies and the multidisciplinary nature of RRTs hinder team performance. This study assessed whether an intervention involving crew resource management training of team leaders could improve team performance. In situ observations of RRT activations were performed pre- and post-training intervention. Team performance and dynamics were measured by observed adherence to an ideal task list and by the Team Emergency Assessment Measure tool, respectively. Multiple quartile (median) and logistic regression models were developed to evaluate change in performance scores or completion of specific tasks. Team leader and team introductions (40% to 90%, P = .004; 7% to 45%, P = .03), floor team presentations in Situation Background Assessment Recommendation format (20% to 65%, P = .01), and confirmation of the plan (7% to 70%, P = .002) improved after training in patients transferred to the ICU (n = 35). The Team Emergency Assessment Measure metric was improved in all 4 categories: leadership (2.5 to 3.5, P < .001), teamwork (2.7 to 3.7, P < .001), task management (2.9 to 3.8, P < .001), and global scores (6.0 to 9.0, P < .001) for teams caring for patients who required transfer to the ICU. Targeted crew resource management training of the team leader resulted in improved team performance and dynamics for patients requiring transfer to the ICU. The intervention demonstrated that training the team leader improved behavior in RRT members who were not trained. Copyright © 2017 by the American Academy of Pediatrics.
NASA Astrophysics Data System (ADS)
Ikejimba, Lynda; Kiarashi, Nooshin; Lin, Yuan; Chen, Baiyu; Ghate, Sujata V.; Zerhouni, Moustafa; Samei, Ehsan; Lo, Joseph Y.
2012-03-01
Digital breast tomosynthesis (DBT) is a novel x-ray imaging technique that provides 3D structural information of the breast. In contrast to 2D mammography, DBT minimizes tissue overlap potentially improving cancer detection and reducing number of unnecessary recalls. The addition of a contrast agent to DBT and mammography for lesion enhancement has the benefit of providing functional information of a lesion, as lesion contrast uptake and washout patterns may help differentiate between benign and malignant tumors. This study used a task-based method to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: contrast enhanced mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Imaging performance was characterized using a detectability index d', derived from the system task transfer function (TTF), an imaging task, iodine contrast, and the noise power spectrum (NPS). The task modeled a 5 mm lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d' was generated as a function of dose and iodine concentration. In general, higher dose gave higher d', but for the lowest iodine concentration and lowest dose, dual energy subtraction tomosynthesis and temporal subtraction tomosynthesis demonstrated the highest performance.
Automated Detection of Diabetic Retinopathy using Deep Learning.
Lam, Carson; Yi, Darvin; Guo, Margaret; Lindsey, Tony
2018-01-01
Diabetic retinopathy is a leading cause of blindness among working-age adults. Early detection of this condition is critical for good prognosis. In this paper, we demonstrate the use of convolutional neural networks (CNNs) on color fundus images for the recognition task of diabetic retinopathy staging. Our network models achieved test metric performance comparable to baseline literature results, with validation sensitivity of 95%. We additionally explored multinomial classification models, and demonstrate that errors primarily occur in the misclassification of mild disease as normal due to the CNNs inability to detect subtle disease features. We discovered that preprocessing with contrast limited adaptive histogram equalization and ensuring dataset fidelity by expert verification of class labels improves recognition of subtle features. Transfer learning on pretrained GoogLeNet and AlexNet models from ImageNet improved peak test set accuracies to 74.5%, 68.8%, and 57.2% on 2-ary, 3-ary, and 4-ary classification models, respectively.
Hakkarainen, Elina; Pirilä, Silja; Kaartinen, Jukka; van der Meere, Jaap J
2013-06-01
This study evaluated the brain activation state during error making in youth with mild spastic cerebral palsy and a peer control group while carrying out a stimulus recognition task. The key question was whether patients were detecting their own errors and subsequently improving their performance in a future trial. Findings indicated that error responses of the group with cerebral palsy were associated with weak motor preparation, as indexed by the amplitude of the late contingent negative variation. However, patients were detecting their errors as indexed by the amplitude of the response-locked negativity and thus improved their performance in a future trial. Findings suggest that the consequence of error making on future performance is intact in a sample of youth with mild spastic cerebral palsy. Because the study group is small, the present findings need replication using a larger sample.
Visual Distractors Disrupt Audiovisual Integration Regardless of Stimulus Complexity
Gibney, Kyla D.; Aligbe, Enimielen; Eggleston, Brady A.; Nunes, Sarah R.; Kerkhoff, Willa G.; Dean, Cassandra L.; Kwakye, Leslie D.
2017-01-01
The intricate relationship between multisensory integration and attention has been extensively researched in the multisensory field; however, the necessity of attention for the binding of multisensory stimuli remains contested. In the current study, we investigated whether diverting attention from well-known multisensory tasks would disrupt integration and whether the complexity of the stimulus and task modulated this interaction. A secondary objective of this study was to investigate individual differences in the interaction of attention and multisensory integration. Participants completed a simple audiovisual speeded detection task and McGurk task under various perceptual load conditions: no load (multisensory task while visual distractors present), low load (multisensory task while detecting the presence of a yellow letter in the visual distractors), and high load (multisensory task while detecting the presence of a number in the visual distractors). Consistent with prior studies, we found that increased perceptual load led to decreased reports of the McGurk illusion, thus confirming the necessity of attention for the integration of speech stimuli. Although increased perceptual load led to longer response times for all stimuli in the speeded detection task, participants responded faster on multisensory trials than unisensory trials. However, the increase in multisensory response times violated the race model for no and low perceptual load conditions only. Additionally, a geometric measure of Miller’s inequality showed a decrease in multisensory integration for the speeded detection task with increasing perceptual load. Surprisingly, we found diverging changes in multisensory integration with increasing load for participants who did not show integration for the no load condition: no changes in integration for the McGurk task with increasing load but increases in integration for the detection task. The results of this study indicate that attention plays a crucial role in multisensory integration for both highly complex and simple multisensory tasks and that attention may interact differently with multisensory processing in individuals who do not strongly integrate multisensory information. PMID:28163675
Visual Distractors Disrupt Audiovisual Integration Regardless of Stimulus Complexity.
Gibney, Kyla D; Aligbe, Enimielen; Eggleston, Brady A; Nunes, Sarah R; Kerkhoff, Willa G; Dean, Cassandra L; Kwakye, Leslie D
2017-01-01
The intricate relationship between multisensory integration and attention has been extensively researched in the multisensory field; however, the necessity of attention for the binding of multisensory stimuli remains contested. In the current study, we investigated whether diverting attention from well-known multisensory tasks would disrupt integration and whether the complexity of the stimulus and task modulated this interaction. A secondary objective of this study was to investigate individual differences in the interaction of attention and multisensory integration. Participants completed a simple audiovisual speeded detection task and McGurk task under various perceptual load conditions: no load (multisensory task while visual distractors present), low load (multisensory task while detecting the presence of a yellow letter in the visual distractors), and high load (multisensory task while detecting the presence of a number in the visual distractors). Consistent with prior studies, we found that increased perceptual load led to decreased reports of the McGurk illusion, thus confirming the necessity of attention for the integration of speech stimuli. Although increased perceptual load led to longer response times for all stimuli in the speeded detection task, participants responded faster on multisensory trials than unisensory trials. However, the increase in multisensory response times violated the race model for no and low perceptual load conditions only. Additionally, a geometric measure of Miller's inequality showed a decrease in multisensory integration for the speeded detection task with increasing perceptual load. Surprisingly, we found diverging changes in multisensory integration with increasing load for participants who did not show integration for the no load condition: no changes in integration for the McGurk task with increasing load but increases in integration for the detection task. The results of this study indicate that attention plays a crucial role in multisensory integration for both highly complex and simple multisensory tasks and that attention may interact differently with multisensory processing in individuals who do not strongly integrate multisensory information.
Discrete False-Discovery Rate Improves Identification of Differentially Abundant Microbes.
Jiang, Lingjing; Amir, Amnon; Morton, James T; Heller, Ruth; Arias-Castro, Ery; Knight, Rob
2017-01-01
Differential abundance testing is a critical task in microbiome studies that is complicated by the sparsity of data matrices. Here we adapt for microbiome studies a solution from the field of gene expression analysis to produce a new method, discrete false-discovery rate (DS-FDR), that greatly improves the power to detect differential taxa by exploiting the discreteness of the data. Additionally, DS-FDR is relatively robust to the number of noninformative features, and thus removes the problem of filtering taxonomy tables by an arbitrary abundance threshold. We show by using a combination of simulations and reanalysis of nine real-world microbiome data sets that this new method outperforms existing methods at the differential abundance testing task, producing a false-discovery rate that is up to threefold more accurate, and halves the number of samples required to find a given difference (thus increasing the efficiency of microbiome experiments considerably). We therefore expect DS-FDR to be widely applied in microbiome studies. IMPORTANCE DS-FDR can achieve higher statistical power to detect significant findings in sparse and noisy microbiome data compared to the commonly used Benjamini-Hochberg procedure and other FDR-controlling procedures.
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Karmali, M. S.
1983-01-01
This study was devoted to an investigation of the feasibility of applying advanced image processing techniques to enhance radar image characteristics that are pertinent to the pilot's navigation and guidance task. Millimeter (95 GHz) wave radar images for the overwater (i.e., offshore oil rigs) and overland (Heliport) scenario were used as a data base. The purpose of the study was to determine the applicability of image enhancement and scene analysis algorithms to detect and improve target characteristics (i.e., manmade objects such as buildings, parking lots, cars, roads, helicopters, towers, landing pads, etc.) that would be helpful to the pilot in determining his own position/orientation with respect to the outside world and assist him in the navigation task. Results of this study show that significant improvements in the raw radar image may be obtained using two dimensional image processing algorithms. In the overwater case, it is possible to remove the ocean clutter by thresholding the image data, and furthermore to extract the target boundary as well as the tower and catwalk locations using noise cleaning (e.g., median filter) and edge detection (e.g., Sobel operator) algorithms.
Psychophysical Models for Signal Detection with Time Varying Uncertainty. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Gai, E.
1975-01-01
Psychophysical models for the behavior of the human operator in detection tasks which include change in detectability, correlation between observations and deferred decisions are developed. Classical Signal Detection Theory (SDT) is discussed and its emphasis on the sensory processes is contrasted to decision strategies. The analysis of decision strategies utilizes detection tasks with time varying signal strength. The classical theory is modified to include such tasks and several optimal decision strategies are explored. Two methods of classifying strategies are suggested. The first method is similar to the analysis of ROC curves, while the second is based on the relation between the criterion level (CL) and the detectability. Experiments to verify the analysis of tasks with changes of signal strength are designed. The results show that subjects are aware of changes in detectability and tend to use strategies that involve changes in the CL's.
The Effect of Citicoline Supplementation on Motor Speed and Attention in Adolescent Males.
McGlade, Erin; Agoston, Anna Monica; DiMuzio, Jennifer; Kizaki, Miho; Nakazaki, Eri; Kamiya, Toshikazu; Yurgelun-Todd, Deborah
2015-07-15
This study assessed the effects of citicoline, a nutraceutical, on attention, psychomotor function, and impulsivity in healthy adolescent males. Seventy-five healthy adolescent males were randomly assigned to either the citicoline group (n = 51 with 250 or 500 mg citicoline) or placebo (n = 24). Participants completed the Ruff 2&7 Selective Attention Test, Finger Tap Test, and the Computerized Performance Test, Second Edition (CPT-II) at baseline and after 28 days of supplementation. Individuals receiving citicoline exhibited improved attention (p = 0.02) and increased psychomotor speed (p = 0.03) compared with those receiving placebo. Higher weight-adjusted dose significantly predicted increased accuracy on an attention task (p = 0.01), improved signal detectability on a computerized attention task (p = 0.03), and decreased impulsivity (p = 0.01). Adolescent males receiving 28 days of Cognizin® citicoline showed improved attention and psychomotor speed and reduced impulsivity compared to adolescent males who received placebo. © 2015 SAGE Publications.
in silico Surveillance: evaluating outbreak detection with simulation models
2013-01-01
Background Detecting outbreaks is a crucial task for public health officials, yet gaps remain in the systematic evaluation of outbreak detection protocols. The authors’ objectives were to design, implement, and test a flexible methodology for generating detailed synthetic surveillance data that provides realistic geographical and temporal clustering of cases and use to evaluate outbreak detection protocols. Methods A detailed representation of the Boston area was constructed, based on data about individuals, locations, and activity patterns. Influenza-like illness (ILI) transmission was simulated, producing 100 years of in silico ILI data. Six different surveillance systems were designed and developed using gathered cases from the simulated disease data. Performance was measured by inserting test outbreaks into the surveillance streams and analyzing the likelihood and timeliness of detection. Results Detection of outbreaks varied from 21% to 95%. Increased coverage did not linearly improve detection probability for all surveillance systems. Relaxing the decision threshold for signaling outbreaks greatly increased false-positives, improved outbreak detection slightly, and led to earlier outbreak detection. Conclusions Geographical distribution can be more important than coverage level. Detailed simulations of infectious disease transmission can be configured to represent nearly any conceivable scenario. They are a powerful tool for evaluating the performance of surveillance systems and methods used for outbreak detection. PMID:23343523
NASA Astrophysics Data System (ADS)
Bhutta, M. Raheel; Hong, Keum-Shik; Kim, Beop-Min; Hong, Melissa Jiyoun; Kim, Yun-Hee; Lee, Se-Ho
2014-02-01
Given that approximately 80% of blood is water, we develop a wireless functional near-infrared spectroscopy system that detects not only the concentration changes of oxy- and deoxy-hemoglobin (HbO and HbR) during mental activity but also that of water (H2O). Additionally, it implements a water-absorption correction algorithm that improves the HbO and HbR signal strengths during an arithmetic task. The system comprises a microcontroller, an optical probe, tri-wavelength light emitting diodes, photodiodes, a WiFi communication module, and a battery. System functionality was tested by means of arithmetic-task experiments performed by healthy male subjects.
Bhutta, M Raheel; Hong, Keum-Shik; Kim, Beop-Min; Hong, Melissa Jiyoun; Kim, Yun-Hee; Lee, Se-Ho
2014-02-01
Given that approximately 80% of blood is water, we develop a wireless functional near-infrared spectroscopy system that detects not only the concentration changes of oxy- and deoxy-hemoglobin (HbO and HbR) during mental activity but also that of water (H2O). Additionally, it implements a water-absorption correction algorithm that improves the HbO and HbR signal strengths during an arithmetic task. The system comprises a microcontroller, an optical probe, tri-wavelength light emitting diodes, photodiodes, a WiFi communication module, and a battery. System functionality was tested by means of arithmetic-task experiments performed by healthy male subjects.
Auditory perception modulated by word reading.
Cao, Liyu; Klepp, Anne; Schnitzler, Alfons; Gross, Joachim; Biermann-Ruben, Katja
2016-10-01
Theories of embodied cognition positing that sensorimotor areas are indispensable during language comprehension are supported by neuroimaging and behavioural studies. Among others, the auditory system has been suggested to be important for understanding sound-related words (visually presented) and the motor system for action-related words. In this behavioural study, using a sound detection task embedded in a lexical decision task, we show that in participants with high lexical decision performance sound verbs improve auditory perception. The amount of modulation was correlated with lexical decision performance. Our study provides convergent behavioural evidence of auditory cortex involvement in word processing, supporting the view of embodied language comprehension concerning the auditory domain.
The Watchdog Task: Concurrent error detection using assertions
NASA Technical Reports Server (NTRS)
Ersoz, A.; Andrews, D. M.; Mccluskey, E. J.
1985-01-01
The Watchdog Task, a software abstraction of the Watchdog-processor, is shown to be a powerful error detection tool with a great deal of flexibility and the advantages of watchdog techniques. A Watchdog Task system in Ada is presented; issues of recovery, latency, efficiency (communication) and preprocessing are discussed. Different applications, one of which is error detection on a single processor, are examined.
Different Neuroplasticity for Task Targets and Distractors
Spingath, Elsie Y.; Kang, Hyun Sug; Plummer, Thane; Blake, David T.
2011-01-01
Adult learning-induced sensory cortex plasticity results in enhanced action potential rates in neurons that have the most relevant information for the task, or those that respond strongly to one sensory stimulus but weakly to its comparison stimulus. Current theories suggest this plasticity is caused when target stimulus evoked activity is enhanced by reward signals from neuromodulatory nuclei. Prior work has found evidence suggestive of nonselective enhancement of neural responses, and suppression of responses to task distractors, but the differences in these effects between detection and discrimination have not been directly tested. Using cortical implants, we defined physiological responses in macaque somatosensory cortex during serial, matched, detection and discrimination tasks. Nonselective increases in neural responsiveness were observed during detection learning. Suppression of responses to task distractors was observed during discrimination learning, and this suppression was specific to cortical locations that sampled responses to the task distractor before learning. Changes in receptive field size were measured as the area of skin that had a significant response to a constant magnitude stimulus, and these areal changes paralleled changes in responsiveness. From before detection learning until after discrimination learning, the enduring changes were selective suppression of cortical locations responsive to task distractors, and nonselective enhancement of responsiveness at cortical locations selective for target and control skin sites. A comparison of observations in prior studies with the observed plasticity effects suggests that the non-selective response enhancement and selective suppression suffice to explain known plasticity phenomena in simple spatial tasks. This work suggests that differential responsiveness to task targets and distractors in primary sensory cortex for a simple spatial detection and discrimination task arise from nonselective increases in response over a broad cortical locus that includes the representation of the task target, and selective suppression of responses to the task distractor within this locus. PMID:21297962
Cultural Artifact Detection in Long Wave Infrared Imagery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Dylan Zachary; Craven, Julia M.; Ramon, Eric
2017-01-01
Detection of cultural artifacts from airborne remotely sensed data is an important task in the context of on-site inspections. Airborne artifact detection can reduce the size of the search area the ground based inspection team must visit, thereby improving the efficiency of the inspection process. This report details two algorithms for detection of cultural artifacts in aerial long wave infrared imagery. The first algorithm creates an explicit model for cultural artifacts, and finds data that fits the model. The second algorithm creates a model of the background and finds data that does not fit the model. Both algorithms are appliedmore » to orthomosaic imagery generated as part of the MSFE13 data collection campaign under the spectral technology evaluation project.« less
Stabilized display of coronary x-ray image sequences
NASA Astrophysics Data System (ADS)
Close, Robert A.; Whiting, James S.; Da, Xiaolin; Eigler, Neal L.
2004-05-01
Display stabilization is a technique by which a feature of interest in a cine image sequence is tracked and then shifted to remain approximately stationary on the display device. Prior simulations indicate that display stabilization with high playback rates ( 30 f/s) can significantly improve detectability of low-contrast features in coronary angiograms. Display stabilization may also help to improve the accuracy of intra-coronary device placement. We validated our automated tracking algorithm by comparing the inter-frame difference (jitter) between manual and automated tracking of 150 coronary x-ray image sequences acquired on a digital cardiovascular X-ray imaging system with CsI/a-Si flat panel detector. We find that the median (50%) inter-frame jitter between manual and automatic tracking is 1.41 pixels or less, indicating a jump no further than an adjacent pixel. This small jitter implies that automated tracking and manual tracking should yield similar improvements in the performance of most visual tasks. We hypothesize that cardiologists would perceive a benefit in viewing the stabilized display as an addition to the standard playback of cine recordings. A benefit of display stabilization was identified in 87 of 101 sequences (86%). The most common tasks cited were evaluation of stenosis and determination of stent and balloon positions. We conclude that display stabilization offers perceptible improvements in the performance of visual tasks by cardiologists.
Hippocampus duality: Memory and novelty detection are subserved by distinct mechanisms.
Barbeau, Emmanuel J; Chauvel, Patrick; Moulin, Christopher J A; Regis, Jean; Liégeois-Chauvel, Catherine
2017-04-01
The hippocampus plays a pivotal role both in novelty detection and in long-term memory. The physiological mechanisms underlying these behaviors have yet to be understood in humans. We recorded intracerebral evoked potentials within the hippocampus of epileptic patients (n = 10) during both memory and novelty detection tasks (targets in oddball tasks). We found that memory and detection tasks elicited late local field potentials in the hippocampus during the same period, but of opposite polarity (negative during novelty detection tasks, positive during memory tasks, ∼260-600 ms poststimulus onset, P < 0.05). Critically, these potentials had maximal amplitude on the same contact in the hippocampus for each patient. This pattern did not depend on the task as different types of memory and novelty detection tasks were used. It did not depend on the novelty of the stimulus or the difficulty of the task either. Two different hypotheses are discussed to account for this result: it is either due to the activation of CA1 pyramidal neurons by two different pathways such as the monosynaptic and trisynaptic entorhinal-hippocampus pathways, or to the activation of different neuronal populations, that is, differing either functionally (e.g., novelty/familiarity neurons) or located in different regions of the hippocampus (e.g., CA1/subiculum). In either case, these activities may integrate the activity of two distinct large-scale networks implementing externally or internally oriented, mutually exclusive, brain states. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Real-time portable system for fabric defect detection using an ARM processor
NASA Astrophysics Data System (ADS)
Fernandez-Gallego, J. A.; Yañez-Puentes, J. P.; Ortiz-Jaramillo, B.; Alvarez, J.; Orjuela-Vargas, S. A.; Philips, W.
2012-06-01
Modern textile industry seeks to produce textiles as little defective as possible since the presence of defects can decrease the final price of products from 45% to 65%. Automated visual inspection (AVI) systems, based on image analysis, have become an important alternative for replacing traditional inspections methods that involve human tasks. An AVI system gives the advantage of repeatability when implemented within defined constrains, offering more objective and reliable results for particular tasks than human inspection. Costs of automated inspection systems development can be reduced using modular solutions with embedded systems, in which an important advantage is the low energy consumption. Among the possibilities for developing embedded systems, the ARM processor has been explored for acquisition, monitoring and simple signal processing tasks. In a recent approach we have explored the use of the ARM processor for defects detection by implementing the wavelet transform. However, the computation speed of the preprocessing was not yet sufficient for real time applications. In this approach we significantly improve the preprocessing speed of the algorithm, by optimizing matrix operations, such that it is adequate for a real time application. The system was tested for defect detection using different defect types. The paper is focused in giving a detailed description of the basis of the algorithm implementation, such that other algorithms may use of the ARM operations for fast implementations.
Sustained attention ability in schizophrenia: Investigation of conflict monitoring mechanisms.
Hoonakker, Marc; Doignon-Camus, Nadège; Marques-Carneiro, José Eduardo; Bonnefond, Anne
2017-09-01
The main goal of the current study was to assess, with a time-on-task approach, sustained attention ability in schizophrenia, and to investigate conflict monitoring underlying this ability. Behavioral and event-related potentials data (N2 and P3a amplitudes) were recorded in a long-lasting sustained attention Go/NoGo task (sustained attention to response task, SART), over a period of 30min, in 29 patients with schizophrenia and 29 pair-matched healthy subjects. Our results revealed spared sustained attention ability in patients throughout the task. Impairment of conflict detection (N2) in patients was particularly significant at the end of the task. Furthermore, both schizophrenia and healthy subjects exhibited a decline in conflict detection from the beginning to the middle of the task. Whereas controls' conflict detection recovered in the last part of the task, patients' did not, suggesting a deficit in recovery processes reflecting a lack of additional resources sustained attention Go/NoGo task. Conflict resolution (P3a) was preserved throughout the task in both groups. Conflict monitoring processes are increasingly impaired in schizophrenia during a long-lasting sustained attention Go/NoGo task. This impairment at the end of the task may rely on deficit in recovery processes, rather than a deficit in conflict detection per se in schizophrenia. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Classification with an edge: Improving semantic image segmentation with boundary detection
NASA Astrophysics Data System (ADS)
Marmanis, D.; Schindler, K.; Wegner, J. D.; Galliani, S.; Datcu, M.; Stilla, U.
2018-01-01
We present an end-to-end trainable deep convolutional neural network (DCNN) for semantic segmentation with built-in awareness of semantically meaningful boundaries. Semantic segmentation is a fundamental remote sensing task, and most state-of-the-art methods rely on DCNNs as their workhorse. A major reason for their success is that deep networks learn to accumulate contextual information over very large receptive fields. However, this success comes at a cost, since the associated loss of effective spatial resolution washes out high-frequency details and leads to blurry object boundaries. Here, we propose to counter this effect by combining semantic segmentation with semantically informed edge detection, thus making class boundaries explicit in the model. First, we construct a comparatively simple, memory-efficient model by adding boundary detection to the SEGNET encoder-decoder architecture. Second, we also include boundary detection in FCN-type models and set up a high-end classifier ensemble. We show that boundary detection significantly improves semantic segmentation with CNNs in an end-to-end training scheme. Our best model achieves >90% overall accuracy on the ISPRS Vaihingen benchmark.
OGUPSA sensor scheduling architecture and algorithm
NASA Astrophysics Data System (ADS)
Zhang, Zhixiong; Hintz, Kenneth J.
1996-06-01
This paper introduces a new architecture for a sensor measurement scheduler as well as a dynamic sensor scheduling algorithm called the on-line, greedy, urgency-driven, preemptive scheduling algorithm (OGUPSA). OGUPSA incorporates a preemptive mechanism which uses three policies, (1) most-urgent-first (MUF), (2) earliest- completed-first (ECF), and (3) least-versatile-first (LVF). The three policies are used successively to dynamically allocate and schedule and distribute a set of arriving tasks among a set of sensors. OGUPSA also can detect the failure of a task to meet a deadline as well as generate an optimal schedule in the sense of minimum makespan for a group of tasks with the same priorities. A side benefit is OGUPSA's ability to improve dynamic load balance among all sensors while being a polynomial time algorithm. Results of a simulation are presented for a simple sensor system.
Altitude deviations: Breakdowns of an error-tolerant system
NASA Technical Reports Server (NTRS)
Palmer, Everett A.; Hutchins, Edwin L.; Ritter, Richard D.; Vancleemput, Inge
1993-01-01
Pilot reports of aviation incidents to the Aviation Safety Reporting System (ASRS) provide a window on the problems occurring in today's airline cockpits. The narratives of 10 pilot reports of errors made in the automation-assisted altitude-change task are used to illustrate some of the issues of pilots interacting with automatic systems. These narratives are then used to construct a description of the cockpit as an information processing system. The analysis concentrates on the error-tolerant properties of the system and on how breakdowns can occasionally occur. An error-tolerant system can detect and correct its internal processing errors. The cockpit system consists of two or three pilots supported by autoflight, flight-management, and alerting systems. These humans and machines have distributed access to clearance information and perform redundant processing of information. Errors can be detected as deviations from either expected behavior or as deviations from expected information. Breakdowns in this system can occur when the checking and cross-checking tasks that give the system its error-tolerant properties are not performed because of distractions or other task demands. Recommendations based on the analysis for improving the error tolerance of the cockpit system are given.
Modeling and design of a cone-beam CT head scanner using task-based imaging performance optimization
NASA Astrophysics Data System (ADS)
Xu, J.; Sisniega, A.; Zbijewski, W.; Dang, H.; Stayman, J. W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.
2016-04-01
Detection of acute intracranial hemorrhage (ICH) is important for diagnosis and treatment of traumatic brain injury, stroke, postoperative bleeding, and other head and neck injuries. This paper details the design and development of a cone-beam CT (CBCT) system developed specifically for the detection of low-contrast ICH in a form suitable for application at the point of care. Recognizing such a low-contrast imaging task to be a major challenge in CBCT, the system design began with a rigorous analysis of task-based detectability including critical aspects of system geometry, hardware configuration, and artifact correction. The imaging performance model described the three-dimensional (3D) noise-equivalent quanta using a cascaded systems model that included the effects of scatter, scatter correction, hardware considerations of complementary metal-oxide semiconductor (CMOS) and flat-panel detectors (FPDs), and digitization bit depth. The performance was analyzed with respect to a low-contrast (40-80 HU), medium-frequency task representing acute ICH detection. The task-based detectability index was computed using a non-prewhitening observer model. The optimization was performed with respect to four major design considerations: (1) system geometry (including source-to-detector distance (SDD) and source-to-axis distance (SAD)); (2) factors related to the x-ray source (including focal spot size, kVp, dose, and tube power); (3) scatter correction and selection of an antiscatter grid; and (4) x-ray detector configuration (including pixel size, additive electronics noise, field of view (FOV), and frame rate, including both CMOS and a-Si:H FPDs). Optimal design choices were also considered with respect to practical constraints and available hardware components. The model was verified in comparison to measurements on a CBCT imaging bench as a function of the numerous design parameters mentioned above. An extended geometry (SAD = 750 mm, SDD = 1100 mm) was found to be advantageous in terms of patient dose (20 mGy) and scatter reduction, while a more isocentric configuration (SAD = 550 mm, SDD = 1000 mm) was found to give a more compact and mechanically favorable configuration with minor tradeoff in detectability. An x-ray source with a 0.6 mm focal spot size provided the best compromise between spatial resolution requirements and x-ray tube power. Use of a modest anti-scatter grid (8:1 GR) at a 20 mGy dose provided slight improvement (~5-10%) in the detectability index, but the benefit was lost at reduced dose. The potential advantages of CMOS detectors over FPDs were quantified, showing that both detectors provided sufficient spatial resolution for ICH detection, while the former provided a potentially superior low-dose performance, and the latter provided the requisite FOV for volumetric imaging in a centered-detector geometry. Task-based imaging performance modeling provides an important starting point for CBCT system design, especially for the challenging task of ICH detection, which is somewhat beyond the capabilities of existing CBCT platforms. The model identifies important tradeoffs in system geometry and hardware configuration, and it supports the development of a dedicated CBCT system for point-of-care application. A prototype suitable for clinical studies is in development based on this analysis.
Detection and categorization of bacteria habitats using shallow linguistic analysis
2015-01-01
Background Information regarding bacteria biotopes is important for several research areas including health sciences, microbiology, and food processing and preservation. One of the challenges for scientists in these domains is the huge amount of information buried in the text of electronic resources. Developing methods to automatically extract bacteria habitat relations from the text of these electronic resources is crucial for facilitating research in these areas. Methods We introduce a linguistically motivated rule-based approach for recognizing and normalizing names of bacteria habitats in biomedical text by using an ontology. Our approach is based on the shallow syntactic analysis of the text that include sentence segmentation, part-of-speech (POS) tagging, partial parsing, and lemmatization. In addition, we propose two methods for identifying bacteria habitat localization relations. The underlying assumption for the first method is that discourse changes with a new paragraph. Therefore, it operates on a paragraph-basis. The second method performs a more fine-grained analysis of the text and operates on a sentence-basis. We also develop a novel anaphora resolution method for bacteria coreferences and incorporate it with the sentence-based relation extraction approach. Results We participated in the Bacteria Biotope (BB) Task of the BioNLP Shared Task 2013. Our system (Boun) achieved the second best performance with 68% Slot Error Rate (SER) in Sub-task 1 (Entity Detection and Categorization), and ranked third with an F-score of 27% in Sub-task 2 (Localization Event Extraction). This paper reports the system that is implemented for the shared task, including the novel methods developed and the improvements obtained after the official evaluation. The extensions include the expansion of the OntoBiotope ontology using the training set for Sub-task 1, and the novel sentence-based relation extraction method incorporated with anaphora resolution for Sub-task 2. These extensions resulted in promising results for Sub-task 1 with a SER of 68%, and state-of-the-art performance for Sub-task 2 with an F-score of 53%. Conclusions Our results show that a linguistically-oriented approach based on the shallow syntactic analysis of the text is as effective as machine learning approaches for the detection and ontology-based normalization of habitat entities. Furthermore, the newly developed sentence-based relation extraction system with the anaphora resolution module significantly outperforms the paragraph-based one, as well as the other systems that participated in the BB Shared Task 2013. PMID:26201262
ERIC Educational Resources Information Center
Hazelwood, R. Jordan; Armeson, Kent E.; Hill, Elizabeth G.; Bonilha, Heather Shaw; Martin-Harris, Bonnie
2017-01-01
Purpose: The purpose of this study was to identify which swallowing task(s) yielded the worst performance during a standardized modified barium swallow study (MBSS) in order to optimize the detection of swallowing impairment. Method: This secondary data analysis of adult MBSSs estimated the probability of each swallowing task yielding the derived…
Investigation of statistical iterative reconstruction for dedicated breast CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makeev, Andrey; Glick, Stephen J.
2013-08-15
Purpose: Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. Statistical iterative reconstruction (SIR) in dedicated breast CT is a promising alternative to traditional filtered backprojection (FBP). One of the difficulties in using SIR is the presence of free parameters in the algorithm that control the appearance of the resulting image. These parameters require tuning in order to achieve high quality reconstructions. In this study, the authors investigated the penalized maximum likelihood (PML) method with two commonly used types of roughness penalty functions: hyperbolic potential and anisotropic total variation (TV) norm. Reconstructed images weremore » compared with images obtained using standard FBP. Optimal parameters for PML with the hyperbolic prior are reported for the task of detecting microcalcifications embedded in breast tissue.Methods: Computer simulations were used to acquire projections in a half-cone beam geometry. The modeled setup describes a realistic breast CT benchtop system, with an x-ray spectra produced by a point source and an a-Si, CsI:Tl flat-panel detector. A voxelized anthropomorphic breast phantom with 280 μm microcalcification spheres embedded in it was used to model attenuation properties of the uncompressed woman's breast in a pendant position. The reconstruction of 3D images was performed using the separable paraboloidal surrogates algorithm with ordered subsets. Task performance was assessed with the ideal observer detectability index to determine optimal PML parameters.Results: The authors' findings suggest that there is a preferred range of values of the roughness penalty weight and the edge preservation threshold in the penalized objective function with the hyperbolic potential, which resulted in low noise images with high contrast microcalcifications preserved. In terms of numerical observer detectability index, the PML method with optimal parameters yielded substantially improved performance (by a factor of greater than 10) compared to FBP. The hyperbolic prior was also observed to be superior to the TV norm. A few of the best-performing parameter pairs for the PML method also demonstrated superior performance for various radiation doses. In fact, using PML with certain parameter values results in better images, acquired using 2 mGy dose, than FBP-reconstructed images acquired using 6 mGy dose.Conclusions: A range of optimal free parameters for the PML algorithm with hyperbolic and TV norm-based potentials is presented for the microcalcification detection task, in dedicated breast CT. The reported values can be used as starting values of the free parameters, when SIR techniques are used for image reconstruction. Significant improvement in image quality can be achieved by using PML with optimal combination of parameters, as compared to FBP. Importantly, these results suggest improved detection of microcalcifications can be obtained by using PML with lower radiation dose to the patient, than using FBP with higher dose.« less
Improving accuracy and power with transfer learning using a meta-analytic database.
Schwartz, Yannick; Varoquaux, Gaël; Pallier, Christophe; Pinel, Philippe; Poline, Jean-Baptiste; Thirion, Bertrand
2012-01-01
Typical cohorts in brain imaging studies are not large enough for systematic testing of all the information contained in the images. To build testable working hypotheses, investigators thus rely on analysis of previous work, sometimes formalized in a so-called meta-analysis. In brain imaging, this approach underlies the specification of regions of interest (ROIs) that are usually selected on the basis of the coordinates of previously detected effects. In this paper, we propose to use a database of images, rather than coordinates, and frame the problem as transfer learning: learning a discriminant model on a reference task to apply it to a different but related new task. To facilitate statistical analysis of small cohorts, we use a sparse discriminant model that selects predictive voxels on the reference task and thus provides a principled procedure to define ROIs. The benefits of our approach are twofold. First it uses the reference database for prediction, i.e., to provide potential biomarkers in a clinical setting. Second it increases statistical power on the new task. We demonstrate on a set of 18 pairs of functional MRI experimental conditions that our approach gives good prediction. In addition, on a specific transfer situation involving different scanners at different locations, we show that voxel selection based on transfer learning leads to higher detection power on small cohorts.
NASA Astrophysics Data System (ADS)
Zhang, George Z.; Myers, Kyle J.; Park, Subok
2013-03-01
Digital breast tomosynthesis (DBT) has shown promise for improving the detection of breast cancer, but it has not yet been fully optimized due to a large space of system parameters to explore. A task-based statistical approach1 is a rigorous method for evaluating and optimizing this promising imaging technique with the use of optimal observers such as the Hotelling observer (HO). However, the high data dimensionality found in DBT has been the bottleneck for the use of a task-based approach in DBT evaluation. To reduce data dimensionality while extracting salient information for performing a given task, efficient channels have to be used for the HO. In the past few years, 2D Laguerre-Gauss (LG) channels, which are a complete basis for stationary backgrounds and rotationally symmetric signals, have been utilized for DBT evaluation2, 3 . But since background and signal statistics from DBT data are neither stationary nor rotationally symmetric, LG channels may not be efficient in providing reliable performance trends as a function of system parameters. Recently, partial least squares (PLS) has been shown to generate efficient channels for the Hotelling observer in detection tasks involving random backgrounds and signals.4 In this study, we investigate the use of PLS as a method for extracting salient information from DBT in order to better evaluate such systems.
Effects of music engagement on responses to painful stimulation.
Bradshaw, David H; Chapman, C Richard; Jacobson, Robert C; Donaldson, Gary W
2012-06-01
We propose a theoretical framework for the behavioral modulation of pain based on constructivism, positing that task engagement, such as listening for errors in a musical passage, can establish a construction of reality that effectively replaces pain as a competing construction. Graded engagement produces graded reductions in pain as indicated by reduced psychophysiological arousal and subjective pain report. Fifty-three healthy volunteers having normal hearing participated in 4 music listening conditions consisting of passive listening (no task) or performing an error detection task varying in signal complexity and task difficulty. During all conditions, participants received normally painful fingertip shocks varying in intensity while stimulus-evoked potentials (SEP), pupil dilation responses (PDR), and retrospective pain reports were obtained. SEP and PDR increased with increasing stimulus intensity. Task performance decreased with increasing task difficulty. Mixed model analyses, adjusted for habituation/sensitization and repeated measures within person, revealed significant quadratic trends for SEP and pain report (Pchange<0.001) with large reductions from no task to easy task and smaller graded reductions corresponding to increasing task difficulty/complexity. PDR decreased linearly (Pchange<0.001) with graded task condition. We infer that these graded reductions in indicators of central and peripheral arousal and in reported pain correspond to graded increases in engagement in the music listening task. Engaging activities may prevent pain by creating competing constructions of reality that draw on the same processing resources as pain. Better understanding of these processes will advance the development of more effective pain modulation through improved manipulation of engagement strategies.
Examining the influence of a spatially irrelevant working memory load on attentional allocation.
McDonnell, Gerald P; Dodd, Michael D
2013-08-01
The present study examined the influence of holding task-relevant gaze cues in working memory during a target detection task. Gaze cues shift attention in gaze-consistent directions, even when they are irrelevant to a primary detection task. It is unclear, however, whether gaze cues need to be perceived online to elicit these effects, or how these effects may be moderated if the gaze cues are relevant to a secondary task. In Experiment 1, participants encoded a face for a subsequent memory task, after which they performed an unrelated target detection task. Critically, gaze direction was irrelevant to the target detection task, but memory for the perceived face was tested at trial conclusion. Surprisingly, participants exhibited inhibition-of-return (IOR) and not facilitation, with slower response times for the gazed-at location. In Experiments 2, presentation duration and cue-target stimulus-onset asynchrony were manipulated and we continued to observe IOR with no early facilitation. Experiment 3 revealed facilitation but not IOR when the memory task was removed; Experiment 4 also revealed facilitation when the gaze cue memory task was replaced with arrows cues. The present experiments provide an important dissociation between perceiving cues online versus holding them in memory as it relates to attentional allocation. 2013 APA, all rights reserved
The Influence of Similarity on Visual Working Memory Representations
Lin, Po-Han; Luck, Steven J.
2007-01-01
In verbal memory, similarity between items in memory often leads to interference and impaired memory performance. The present study sought to determine whether analogous interference effects would be observed in visual working memory by varying the similarity of the to-be-remembered objects in a color change-detection task. Instead of leading to interference and impaired performance, increased similarity among the items being held in memory led to improved performance. Moreover, when two similar colors were presented along with one dissimilar color, memory performance was better for the similar colors than for the dissimilar color. Similarity produced better performance even when the objects were presented sequentially and even when memory for the first item in the sequence was tested. These findings show that similarity does not lead to interference between representations in visual working memory. Instead, similarity may lead to improved task performance, possibly due to increased stability or precision of the memory representations during maintenance. PMID:19430536
Rodebaugh, Thomas L; Heimberg, Richard G; Taylor, Kristin P; Lenze, Eric J
2016-01-01
Social anxiety disorder is associated with lower interpersonal warmth, possibly explaining its associated interpersonal impairment. Across two samples, we attempted to replicate previous findings that the disorder's constraint of interpersonal warmth can be detected via behavioral economic tasks. We also tested the test-retest stability of task indices. Results indicated that factors associated with social anxiety disorder (and not the disorder itself), such as the severity of social anxiety and more extreme interpersonal problems, lead to less generous behavior on the economic task examined. Results were clearest regarding fine-grained indices derived from latent trajectories. Unexpectedly, the combination of generalized anxiety disorder and higher depression also restricted generosity. Two of three indices showed acceptable test-retest stability. Maladaptive giving behavior may be a treatment target to improve interpersonal functioning in psychiatric disorders; therefore, future work should more precisely characterize behavioral economic tasks, including basic psychometric work (i.e., tests of reliability and validity).
Rodebaugh, Thomas L.; Heimberg, Richard G.; Taylor, Kristin P.; Lenze, Eric J.
2015-01-01
Social anxiety disorder is associated with lower interpersonal warmth, possibly explaining its associated interpersonal impairment. Across two samples, we attempted to replicate previous findings that the disorder’s constraint of interpersonal warmth can be detected via behavioral economic tasks. We also tested the test-retest stability of task indices. Results indicated that factors associated with social anxiety disorder (and not the disorder itself), such as the severity of social anxiety and more extreme interpersonal problems, lead to less generous behavior on the economic task examined. Results were clearest regarding fine-grained indices derived from latent trajectories. Unexpectedly, the combination of generalized anxiety disorder and higher depression also restricted generosity. Two of three indices showed acceptable test-retest stability. Maladaptive giving behavior may be a treatment target to improve interpersonal functioning in psychiatric disorders; therefore, future work should more precisely characterize behavioral economic tasks, including basic psychometric work (i.e., tests of reliability and validity). PMID:27034911
Searching for emotion or race: task-irrelevant facial cues have asymmetrical effects.
Lipp, Ottmar V; Craig, Belinda M; Frost, Mareka J; Terry, Deborah J; Smith, Joanne R
2014-01-01
Facial cues of threat such as anger and other race membership are detected preferentially in visual search tasks. However, it remains unclear whether these facial cues interact in visual search. If both cues equally facilitate search, a symmetrical interaction would be predicted; anger cues should facilitate detection of other race faces and cues of other race membership should facilitate detection of anger. Past research investigating this race by emotional expression interaction in categorisation tasks revealed an asymmetrical interaction. This suggests that cues of other race membership may facilitate the detection of angry faces but not vice versa. Utilising the same stimuli and procedures across two search tasks, participants were asked to search for targets defined by either race or emotional expression. Contrary to the results revealed in the categorisation paradigm, cues of anger facilitated detection of other race faces whereas differences in race did not differentially influence detection of emotion targets.
Attending to unrelated targets boosts short-term memory for color arrays.
Makovski, Tal; Swallow, Khena M; Jiang, Yuhong V
2011-05-01
Detecting a target typically impairs performance in a second, unrelated task. It has been recently reported however, that detecting a target in a stream of distractors can enhance long-term memory of faces and scenes that were presented concurrently with the target (the attentional boost effect). In this study we ask whether target detection also enhances performance in a visual short-term memory task, where capacity limits are severe. Participants performed two tasks at once: a one shot, color change detection task and a letter-detection task. In Experiment 1, a central letter appeared at the same time as 3 or 5 color patches (memory display). Participants encoded the colors and pressed the spacebar if the letter was a T (target). After a short retention interval, a probe display of color patches appeared. Performance on the change detection task was enhanced when a target, rather than a distractor, appeared with the memory display. This effect was not modulated by memory load or the frequency of trials in which a target appeared. However, there was no enhancement when the target appeared at the same time as the probe display (Experiment 2a) or during the memory retention interval (Experiment 2b). Together these results suggest that detecting a target facilitates the encoding of unrelated information into visual short-term memory. Copyright © 2010 Elsevier Ltd. All rights reserved.
Robot-assisted laparoscopic ultrasonography for hepatic surgery.
Schneider, Caitlin M; Peng, Peter D; Taylor, Russell H; Dachs, Gregory W; Hasser, Christopher J; DiMaio, Simon P; Choti, Michael A
2012-05-01
This study describes and evaluates a novel, robot-assisted laparoscopic ultrasonographic device for hepatic surgery. Laparoscopic liver surgery is being performed with increasing frequency. One major drawback of this approach is the limited capability of intraoperative ultrasonography (IOUS) using standard laparoscopic devices. Robotic surgery systems offer the opportunity to develop new tools to improve techniques in minimally invasive surgery. This study evaluates a new integrated ultrasonography (US) device with the da Vinci Surgical System for laparoscopic visualization, comparing it with conventional handheld laparoscopic IOUS for performing key tasks in hepatic surgery. A prototype laparoscopic IOUS instrument was developed for the da Vinci Surgical System and compared with a conventional laparoscopic US device in simulation tasks: (1) In vivo porcine hepatic visualization and probe manipulation, (2) lesion detection accuracy, and (3) biopsy precision. Usability was queried by poststudy questionnaire. The robotic US proved better than conventional laparoscopic US in liver surface exploration (85% success vs 73%; P = .030) and tool manipulation (79% vs 57%; P = .028), whereas no difference was detected in lesion identification (63 vs 58; P = .41) and needle biopsy tasks (57 vs 48; P = .11). Subjects found the robotic US to facilitate better probe positioning (80%), decrease fatigue (90%), and be more useful overall (90%) on the post-task questionnaire. We found this robot-assisted IOUS system to be practical and useful in the performance of important tasks required for hepatic surgery, outperforming free-hand laparoscopic IOUS for certain tasks, and was more subjectively usable to the surgeon. Systems such as this may expand the use of robotic surgery for complex operative procedures requiring IOUS. Copyright © 2012 Mosby, Inc. All rights reserved.
Evaluation of Improved Engine Compartment Overheat Detection Techniques.
1986-08-01
radiation properties (emissivity and reflectivity) of the surface. The first task of the numerical procedure is to investigate the radiosity (radiative heat...and radiosity are spatially uniform within each zone. 0 Radiative properties are spatially uniform and independent of direction. 0 The enclosure is...variation in the radiosity will be nonuniform in distribution in that region. The zone analysis method assumes the : . ,. temperature and radiation
Changes in the Capacity of Visual Working Memory in 5- to 10-Year-Olds
ERIC Educational Resources Information Center
Riggs, Kevin J.; McTaggart, James; Simpson, Andrew; Freeman, Richard P. J.
2006-01-01
Using the Luck and Vogel change detection paradigm, we sought to investigate the capacity of visual working memory in 5-, 7-, and 10-year-olds. We found that performance on the task improved significantly with age and also obtained evidence that the capacity of visual working memory approximately doubles between 5 and 10 years of age, where it…
Working Memory Training Improves Dual-Task Performance on Motor Tasks.
Kimura, Takehide; Kaneko, Fuminari; Nagahata, Keita; Shibata, Eriko; Aoki, Nobuhiro
2017-01-01
The authors investigated whether working memory training improves motor-motor dual-task performance consisted of upper and lower limb tasks. The upper limb task was a simple reaction task and the lower limb task was an isometric knee extension task. 45 participants (age = 21.8 ± 1.6 years) were classified into a working memory training group (WM-TRG), dual-task training group, or control group. The training duration was 2 weeks (15 min, 4 times/week). Our results indicated that working memory capacity increased significantly only in the WM-TRG. Dual-task performance improved in the WM-TRG and dual-task training group. Our study provides the novel insight that working memory training improves dual-task performance without specific training on the target motor task.
NASA Technical Reports Server (NTRS)
Temple, D. R.; De Dios, Y. E.; Layne, C. S.; Bloomberg, J. J.; Mulavara, A. P.
2016-01-01
Astronauts exposed to microgravity face sensorimotor challenges incurred when readapting to a gravitational environment. Sensorimotor Adaptability (SA) training has been proposed as a countermeasure to improve locomotor performance during re-adaptation, and it is suggested that the benefits of SA training may be further enhanced by improving detection of weak sensory signals via mechanisms such as stochastic resonance when a non-zero level of stochastic white noise based electrical stimulation is applied to the vestibular system (stochastic vestibular stimulation, SVS). The purpose of this study was to test the efficacy of using SVS to improve short-term adaptation in a sensory discordant environment during performance of a locomotor task.
Detecting Surgical Tools by Modelling Local Appearance and Global Shape.
Bouget, David; Benenson, Rodrigo; Omran, Mohamed; Riffaud, Laurent; Schiele, Bernt; Jannin, Pierre
2015-12-01
Detecting tools in surgical videos is an important ingredient for context-aware computer-assisted surgical systems. To this end, we present a new surgical tool detection dataset and a method for joint tool detection and pose estimation in 2d images. Our two-stage pipeline is data-driven and relaxes strong assumptions made by previous works regarding the geometry, number, and position of tools in the image. The first stage classifies each pixel based on local appearance only, while the second stage evaluates a tool-specific shape template to enforce global shape. Both local appearance and global shape are learned from training data. Our method is validated on a new surgical tool dataset of 2 476 images from neurosurgical microscopes, which is made freely available. It improves over existing datasets in size, diversity and detail of annotation. We show that our method significantly improves over competitive baselines from the computer vision field. We achieve 15% detection miss-rate at 10(-1) false positives per image (for the suction tube) over our surgical tool dataset. Results indicate that performing semantic labelling as an intermediate task is key for high quality detection.
Partido, Brian B; Jones, Archie A; English, Dana L; Nguyen, Carol A; Jacks, Mary E
2015-02-01
Dental and dental hygiene faculty members often do not provide consistent instruction in the clinical environment, especially in tasks requiring clinical judgment. From previous efforts to calibrate faculty members in calculus detection using typodonts, researchers have suggested using human subjects and emerging technology to improve consistency in clinical instruction. The purpose of this pilot study was to determine if a dental endoscopy-assisted training program would improve intra- and interrater reliability of dental hygiene faculty members in calculus detection. Training included an ODU 11/12 explorer, typodonts, and dental endoscopy. A convenience sample of six participants was recruited from the dental hygiene faculty at a California community college, and a two-group randomized experimental design was utilized. Intra- and interrater reliability was measured before and after calibration training. Pretest and posttest Kappa averages of all participants were compared using repeated measures (split-plot) ANOVA to determine the effectiveness of the calibration training on intra- and interrater reliability. The results showed that both kinds of reliability significantly improved for all participants and the training group improved significantly in interrater reliability from pretest to posttest. Calibration training was beneficial to these dental hygiene faculty members, especially those beginning with less than full agreement. This study suggests that calculus detection calibration training utilizing dental endoscopy can effectively improve interrater reliability of dental and dental hygiene clinical educators. Future studies should include human subjects, involve more participants at multiple locations, and determine whether improved rater reliability can be sustained over time.
Improvement of tritium accountancy technology for ITER fuel cycle safety enhancement
NASA Astrophysics Data System (ADS)
O'hira, S.; Hayashi, T.; Nakamura, H.; Kobayashi, K.; Tadokoro, T.; Nakamura, H.; Itoh, T.; Yamanishi, T.; Kawamura, Y.; Iwai, Y.; Arita, T.; Maruyama, T.; Kakuta, T.; Konishi, S.; Enoeda, M.; Yamada, M.; Suzuki, T.; Nishi, M.; Nagashima, T.; Ohta, M.
2000-03-01
In order to improve the safe handling and control of tritium for the ITER fuel cycle, effective in situ tritium accounting methods have been developed at the Tritium Process Laboratory in the Japan Atomic Energy Research Institute under one of the ITER-EDA R&D tasks. The remote and multilocation analysis of process gases by an application of laser Raman spectroscopy developed and tested could provide a measurement of hydrogen isotope gases with a detection limit of 0.3 kPa analytical periods of 120 s. An in situ tritium inventory measurement by application of a `self-assaying' storage bed with 25 g tritium capacity could provide a measurement with the required detection limit of less than 1% and a design proof of a bed with 100 g tritium capacity.
Fritz, Jonathan; Elhilali, Mounya; Shamma, Shihab
2005-08-01
Listening is an active process in which attentive focus on salient acoustic features in auditory tasks can influence receptive field properties of cortical neurons. Recent studies showing rapid task-related changes in neuronal spectrotemporal receptive fields (STRFs) in primary auditory cortex of the behaving ferret are reviewed in the context of current research on cortical plasticity. Ferrets were trained on spectral tasks, including tone detection and two-tone discrimination, and on temporal tasks, including gap detection and click-rate discrimination. STRF changes could be measured on-line during task performance and occurred within minutes of task onset. During spectral tasks, there were specific spectral changes (enhanced response to tonal target frequency in tone detection and discrimination, suppressed response to tonal reference frequency in tone discrimination). However, only in the temporal tasks, the STRF was changed along the temporal dimension by sharpening temporal dynamics. In ferrets trained on multiple tasks, distinctive and task-specific STRF changes could be observed in the same cortical neurons in successive behavioral sessions. These results suggest that rapid task-related plasticity is an ongoing process that occurs at a network and single unit level as the animal switches between different tasks and dynamically adapts cortical STRFs in response to changing acoustic demands.
Deep Multi-Task Learning for Tree Genera Classification
NASA Astrophysics Data System (ADS)
Ko, C.; Kang, J.; Sohn, G.
2018-05-01
The goal for our paper is to classify tree genera using airborne Light Detection and Ranging (LiDAR) data with Convolution Neural Network (CNN) - Multi-task Network (MTN) implementation. Unlike Single-task Network (STN) where only one task is assigned to the learning outcome, MTN is a deep learning architect for learning a main task (classification of tree genera) with other tasks (in our study, classification of coniferous and deciduous) simultaneously, with shared classification features. The main contribution of this paper is to improve classification accuracy from CNN-STN to CNN-MTN. This is achieved by introducing a concurrence loss (Lcd) to the designed MTN. This term regulates the overall network performance by minimizing the inconsistencies between the two tasks. Results show that we can increase the classification accuracy from 88.7 % to 91.0 % (from STN to MTN). The second goal of this paper is to solve the problem of small training sample size by multiple-view data generation. The motivation of this goal is to address one of the most common problems in implementing deep learning architecture, the insufficient number of training data. We address this problem by simulating training dataset with multiple-view approach. The promising results from this paper are providing a basis for classifying a larger number of dataset and number of classes in the future.
Saliency detection by conditional generative adversarial network
NASA Astrophysics Data System (ADS)
Cai, Xiaoxu; Yu, Hui
2018-04-01
Detecting salient objects in images has been a fundamental problem in computer vision. In recent years, deep learning has shown its impressive performance in dealing with many kinds of vision tasks. In this paper, we propose a new method to detect salient objects by using Conditional Generative Adversarial Network (GAN). This type of network not only learns the mapping from RGB images to salient regions, but also learns a loss function for training the mapping. To the best of our knowledge, this is the first time that Conditional GAN has been used in salient object detection. We evaluate our saliency detection method on 2 large publicly available datasets with pixel accurate annotations. The experimental results have shown the significant and consistent improvements over the state-of-the-art method on a challenging dataset, and the testing speed is much faster.
Liu, Yi-Hung; Chen, Yan-Jen
2011-01-01
Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD) manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD) has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD) to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms. PMID:22016625
Liu, Yi-Hung; Chen, Yan-Jen
2011-01-01
Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD) manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD) has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD) to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms.
Face detection on distorted images using perceptual quality-aware features
NASA Astrophysics Data System (ADS)
Gunasekar, Suriya; Ghosh, Joydeep; Bovik, Alan C.
2014-02-01
We quantify the degradation in performance of a popular and effective face detector when human-perceived image quality is degraded by distortions due to additive white gaussian noise, gaussian blur or JPEG compression. It is observed that, within a certain range of perceived image quality, a modest increase in image quality can drastically improve face detection performance. These results can be used to guide resource or bandwidth allocation in a communication/delivery system that is associated with face detection tasks. A new face detector based on QualHOG features is also proposed that augments face-indicative HOG features with perceptual quality-aware spatial Natural Scene Statistics (NSS) features, yielding improved tolerance against image distortions. The new detector provides statistically significant improvements over a strong baseline on a large database of face images representing a wide range of distortions. To facilitate this study, we created a new Distorted Face Database, containing face and non-face patches from images impaired by a variety of common distortion types and levels. This new dataset is available for download and further experimentation at www.ideal.ece.utexas.edu/˜suriya/DFD/.
Object form discontinuity facilitates displacement discrimination across saccades.
Demeyer, Maarten; De Graef, Peter; Wagemans, Johan; Verfaillie, Karl
2010-06-01
Stimulus displacements coinciding with a saccadic eye movement are poorly detected by human observers. In recent years, converging evidence has shown that this phenomenon does not result from poor transsaccadic retention of presaccadic stimulus position information, but from the visual system's efforts to spatially align presaccadic and postsaccadic perception on the basis of visual landmarks. It is known that this process can be disrupted, and transsaccadic displacement detection performance can be improved, by briefly blanking the stimulus display during and immediately after the saccade. In the present study, we investigated whether this improvement could also follow from a discontinuity in the task-irrelevant form of the displaced stimulus. We observed this to be the case: Subjects more accurately identified the direction of intrasaccadic displacements when the displaced stimulus simultaneously changed form, compared to conditions without a form change. However, larger improvements were still observed under blanking conditions. In a second experiment, we show that facilitation induced by form changes and blanks can combine. We conclude that a strong assumption of visual stability underlies the suppression of transsaccadic change detection performance, the rejection of which generalizes from stimulus form to stimulus position.
Feature-fused SSD: fast detection for small objects
NASA Astrophysics Data System (ADS)
Cao, Guimei; Xie, Xuemei; Yang, Wenzhe; Liao, Quan; Shi, Guangming; Wu, Jinjian
2018-04-01
Small objects detection is a challenging task in computer vision due to its limited resolution and information. In order to solve this problem, the majority of existing methods sacrifice speed for improvement in accuracy. In this paper, we aim to detect small objects at a fast speed, using the best object detector Single Shot Multibox Detector (SSD) with respect to accuracy-vs-speed trade-off as base architecture. We propose a multi-level feature fusion method for introducing contextual information in SSD, in order to improve the accuracy for small objects. In detailed fusion operation, we design two feature fusion modules, concatenation module and element-sum module, different in the way of adding contextual information. Experimental results show that these two fusion modules obtain higher mAP on PASCAL VOC2007 than baseline SSD by 1.6 and 1.7 points respectively, especially with 2-3 points improvement on some small objects categories. The testing speed of them is 43 and 40 FPS respectively, superior to the state of the art Deconvolutional single shot detector (DSSD) by 29.4 and 26.4 FPS.
Yang, Kun; Perez, Manuela; Hossu, Gabriela; Hubert, Nicolas; Perrenot, Cyril; Hubert, Jacques
2017-01-01
In robotic surgery, the professional ergonomic habit of using an armrest reduces operator fatigue and increases the precision of motion. We designed and validated a pressure surveillance system (PSS) based on force sensors to investigate armrest use. The objective was to evaluate whether adding an alarm to the PSS system could shorten ergonomic training and improve performance. Twenty robot and simulator-naïve participants were recruited and randomized in two groups (A and B). The PSS was installed on a robotic simulator, the dV-Trainer, to detect contact with the armrest. The Group A members completed three tasks on the dV-Trainer without the alarm, making 15 attempts at each task. The Group B members practiced the first two tasks with the alarm and then completed the final tasks without the alarm. The simulator provided an overall score reflecting the trainees' performance. We used the new concept of an "armrest load" score to describe the ergonomic habit of using the armrest. Group B had a significantly higher performance score (p < 0.001) and armrest load score (p < 0.001) than Group A from the fifth attempt of the first task to the end of the experiment. Based on the conditioned reflex effect, the alarm associated with the PSS rectified ergonomic errors and accelerated professional ergonomic habit acquisition. The combination of the PSS and alarm is effective in significantly shortening the learning curve in the robotic training process.
Improving Cognitive Skills of the Industrial Robot
NASA Astrophysics Data System (ADS)
Bezák, Pavol
2015-08-01
At present, there are plenty of industrial robots that are programmed to do the same repetitive task all the time. Industrial robots doing such kind of job are not able to understand whether the action is correct, effective or good. Object detection, manipulation and grasping is challenging due to the hand and object modeling uncertainties, unknown contact type and object stiffness properties. In this paper, the proposal of an intelligent humanoid hand object detection and grasping model is presented assuming that the object properties are known. The control is simulated in the Matlab Simulink/ SimMechanics, Neural Network Toolbox and Computer Vision System Toolbox.
Validating models of target acquisition performance in the dismounted soldier context
NASA Astrophysics Data System (ADS)
Glaholt, Mackenzie G.; Wong, Rachel K.; Hollands, Justin G.
2018-04-01
The problem of predicting real-world operator performance with digital imaging devices is of great interest within the military and commercial domains. There are several approaches to this problem, including: field trials with imaging devices, laboratory experiments using imagery captured from these devices, and models that predict human performance based on imaging device parameters. The modeling approach is desirable, as both field trials and laboratory experiments are costly and time-consuming. However, the data from these experiments is required for model validation. Here we considered this problem in the context of dismounted soldiering, for which detection and identification of human targets are essential tasks. Human performance data were obtained for two-alternative detection and identification decisions in a laboratory experiment in which photographs of human targets were presented on a computer monitor and the images were digitally magnified to simulate range-to-target. We then compared the predictions of different performance models within the NV-IPM software package: Targeting Task Performance (TTP) metric model and the Johnson model. We also introduced a modification to the TTP metric computation that incorporates an additional correction for target angular size. We examined model predictions using NV-IPM default values for a critical model constant, V50, and we also considered predictions when this value was optimized to fit the behavioral data. When using default values, certain model versions produced a reasonably close fit to the human performance data in the detection task, while for the identification task all models substantially overestimated performance. When using fitted V50 values the models produced improved predictions, though the slopes of the performance functions were still shallow compared to the behavioral data. These findings are discussed in relation to the models' designs and parameters, and the characteristics of the behavioral paradigm.
Sustained and transient attention in the continuous performance task.
Smid, H G O M; de Witte, M R; Homminga, I; van den Bosch, R J
2006-08-01
One of the most frequently applied methods to study abnormal cognition is the Continuous Performance Task (CPT). It is unclear, however, which cognitive functions are engaged in normal CPT performance. The aims of the present study were to identify the neurocognitive functions engaged in the main variants of the CPT and to determine to what extent these variants differentially engage these functions. We hypothesized that the main CPT versions (CPT-X, CPT-AX, CPT-Identical Pairs) can be distinguished by whether they demand sustained or transient attention and sustained or transient response preparation. Transient attention to objects like letters or digits, that is, the need to switch attention to different objects from trial to trial, impairs target detection accuracy relative to sustained attention to a single object. Transient response preparation, that is, the possibility to switch response preparation on and off from trial to trial, improves response speed relative to having to sustain response preparation across all trials. Comparison of task performance and Event-Related brain Potentials (ERPs) of healthy participants obtained in the main CPT variants confirmed these hypotheses. Behavioral and ERP measures indicated worse target detection in the CPT-AX than in the CPT-X, consistent with a higher demand on transient attention in that task. In contrast, behavioral and ERP measures indicated higher response speed in the CPT-AX than in the CPT-X, associated with more response preparation in advance of the targets. This supports the idea of increased transient response preparation in the CPT-AX. We conclude that CPTs differ along at least two task variables that each influences a different cognitive function.
A Mechanism for Error Detection in Speeded Response Time Tasks
ERIC Educational Resources Information Center
Holroyd, Clay B.; Yeung, Nick; Coles, Michael G. H.; Cohen, Jonathan D.
2005-01-01
The concept of error detection plays a central role in theories of executive control. In this article, the authors present a mechanism that can rapidly detect errors in speeded response time tasks. This error monitor assigns values to the output of cognitive processes involved in stimulus categorization and response generation and detects errors…
Connecting a cognitive architecture to robotic perception
NASA Astrophysics Data System (ADS)
Kurup, Unmesh; Lebiere, Christian; Stentz, Anthony; Hebert, Martial
2012-06-01
We present an integrated architecture in which perception and cognition interact and provide information to each other leading to improved performance in real-world situations. Our system integrates the Felzenswalb et. al. object-detection algorithm with the ACT-R cognitive architecture. The targeted task is to predict and classify pedestrian behavior in a checkpoint scenario, most specifically to discriminate between normal versus checkpoint-avoiding behavior. The Felzenswalb algorithm is a learning-based algorithm for detecting and localizing objects in images. ACT-R is a cognitive architecture that has been successfully used to model human cognition with a high degree of fidelity on tasks ranging from basic decision-making to the control of complex systems such as driving or air traffic control. The Felzenswalb algorithm detects pedestrians in the image and provides ACT-R a set of features based primarily on their locations. ACT-R uses its pattern-matching capabilities, specifically its partial-matching and blending mechanisms, to track objects across multiple images and classify their behavior based on the sequence of observed features. ACT-R also provides feedback to the Felzenswalb algorithm in the form of expected object locations that allow the algorithm to eliminate false-positives and improve its overall performance. This capability is an instance of the benefits pursued in developing a richer interaction between bottom-up perceptual processes and top-down goal-directed cognition. We trained the system on individual behaviors (only one person in the scene) and evaluated its performance across single and multiple behavior sets.
Select Methodology for Validating Advanced Satellite Measurement Systems
NASA Technical Reports Server (NTRS)
Larar, Allen M.; Zhou, Daniel K.; Liu, Xi; Smith, William L.
2008-01-01
Advanced satellite sensors are tasked with improving global measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Measurement system validation is crucial to achieving this goal and maximizing research and operational utility of resultant data. Field campaigns including satellite under-flights with well calibrated FTS sensors aboard high-altitude aircraft are an essential part of the validation task. This presentation focuses on an overview of validation methodology developed for assessment of high spectral resolution infrared systems, and includes results of preliminary studies performed to investigate the performance of the Infrared Atmospheric Sounding Interferometer (IASI) instrument aboard the MetOp-A satellite.
Joint Facial Action Unit Detection and Feature Fusion: A Multi-conditional Learning Approach.
Eleftheriadis, Stefanos; Rudovic, Ognjen; Pantic, Maja
2016-10-05
Automated analysis of facial expressions can benefit many domains, from marketing to clinical diagnosis of neurodevelopmental disorders. Facial expressions are typically encoded as a combination of facial muscle activations, i.e., action units. Depending on context, these action units co-occur in specific patterns, and rarely in isolation. Yet, most existing methods for automatic action unit detection fail to exploit dependencies among them, and the corresponding facial features. To address this, we propose a novel multi-conditional latent variable model for simultaneous fusion of facial features and joint action unit detection. Specifically, the proposed model performs feature fusion in a generative fashion via a low-dimensional shared subspace, while simultaneously performing action unit detection using a discriminative classification approach. We show that by combining the merits of both approaches, the proposed methodology outperforms existing purely discriminative/generative methods for the target task. To reduce the number of parameters, and avoid overfitting, a novel Bayesian learning approach based on Monte Carlo sampling is proposed, to integrate out the shared subspace. We validate the proposed method on posed and spontaneous data from three publicly available datasets (CK+, DISFA and Shoulder-pain), and show that both feature fusion and joint learning of action units leads to improved performance compared to the state-of-the-art methods for the task.
The Role of Temporal Disparity on Audiovisual Integration in Low-Vision Individuals.
Targher, Stefano; Micciolo, Rocco; Occelli, Valeria; Zampini, Massimiliano
2017-12-01
Recent findings have shown that sounds improve visual detection in low vision individuals when the audiovisual stimuli pairs of stimuli are presented simultaneously and from the same spatial position. The present study purports to investigate the temporal aspects of the audiovisual enhancement effect previously reported. Low vision participants were asked to detect the presence of a visual stimulus (yes/no task) presented either alone or together with an auditory stimulus at different stimulus onset asynchronies (SOAs). In the first experiment, the sound was presented either simultaneously or before the visual stimulus (i.e., SOAs 0, 100, 250, 400 ms). The results show that the presence of a task-irrelevant auditory stimulus produced a significant visual detection enhancement in all the conditions. In the second experiment, the sound was either synchronized with, or randomly preceded/lagged behind the visual stimulus (i.e., SOAs 0, ± 250, ± 400 ms). The visual detection enhancement was reduced in magnitude and limited only to the synchronous condition and to the condition in which the sound stimulus was presented 250 ms before the visual stimulus. Taken together, the evidence of the present study seems to suggest that audiovisual interaction in low vision individuals is highly modulated by top-down mechanisms.
Analog Computer-Aided Detection (CAD) information can be more effective than binary marks.
Cunningham, Corbin A; Drew, Trafton; Wolfe, Jeremy M
2017-02-01
In socially important visual search tasks, such as baggage screening and diagnostic radiology, experts miss more targets than is desirable. Computer-aided detection (CAD) programs have been developed specifically to improve performance in these professional search tasks. For example, in breast cancer screening, many CAD systems are capable of detecting approximately 90% of breast cancer, with approximately 0.5 false-positive detections per image. Nevertheless, benefits of CAD in clinical settings tend to be small (Birdwell, 2009) or even absent (Meziane et al., 2011; Philpotts, 2009). The marks made by a CAD system can be "binary," giving the same signal to any location where the signal is above some threshold. Alternatively, a CAD system presents an analog signal that reflects strength of the signal at a location. In the experiments reported, we compare analog and binary CAD presentations using nonexpert observers and artificial stimuli defined by two noisy signals: a visible color signal and an "invisible" signal that informed our simulated CAD system. We found that analog CAD generally yielded better overall performance than binary CAD. The analog benefit is similar at high and low target prevalence. Our data suggest that the form of the CAD signal can directly influence performance. Analog CAD may allow the computer to be more helpful to the searcher.
Impaired visual recognition of biological motion in schizophrenia.
Kim, Jejoong; Doop, Mikisha L; Blake, Randolph; Park, Sohee
2005-09-15
Motion perception deficits have been suggested to be an important feature of schizophrenia but the behavioral consequences of such deficits are unknown. Biological motion refers to the movements generated by living beings. The human visual system rapidly and effortlessly detects and extracts socially relevant information from biological motion. A deficit in biological motion perception may have significant consequences for detecting and interpreting social information. Schizophrenia patients and matched healthy controls were tested on two visual tasks: recognition of human activity portrayed in point-light animations (biological motion task) and a perceptual control task involving detection of a grouped figure against the background noise (global-form task). Both tasks required detection of a global form against background noise but only the biological motion task required the extraction of motion-related information. Schizophrenia patients performed as well as the controls in the global-form task, but were significantly impaired on the biological motion task. In addition, deficits in biological motion perception correlated with impaired social functioning as measured by the Zigler social competence scale [Zigler, E., Levine, J. (1981). Premorbid competence in schizophrenia: what is being measured? Journal of Consulting and Clinical Psychology, 49, 96-105.]. The deficit in biological motion processing, which may be related to the previously documented deficit in global motion processing, could contribute to abnormal social functioning in schizophrenia.
Spatial cluster detection using dynamic programming.
Sverchkov, Yuriy; Jiang, Xia; Cooper, Gregory F
2012-03-25
The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm.
Spatial cluster detection using dynamic programming
2012-01-01
Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm. PMID:22443103
Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau
2017-06-22
This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.
Parallel search for conjunctions with stimuli in apparent motion.
Casco, C; Ganis, G
1999-01-01
A series of experiments was conducted to determine whether apparent motion tends to follow the similarity rule (i.e. is attribute-specific) and to investigate the underlying mechanism. Stimulus duration thresholds were measured during a two-alternative forced-choice task in which observers detected either the location or the motion direction of target groups defined by the conjunction of size and orientation. Target element positions were randomly chosen within a nominally defined rectangular subregion of the display (target region). The target region was presented either statically (followed by a 250 ms duration mask) or dynamically, displaced by a small distance (18 min of arc) from frame to frame. In the motion display, the position of both target and background elements was changed randomly from frame to frame within the respective areas to abolish spatial correspondence over time. Stimulus duration thresholds were lower in the motion than in the static task, indicating that target detection in the dynamic condition does not rely on the explicit identification of target elements in each static frame. Increasing the distractor-to-target ratio was found to reduce detectability in the static, but not in the motion task. This indicates that the perceptual segregation of the target is effortless and parallel with motion but not with static displays. The pattern of results holds regardless of the task or search paradigm employed. The detectability in the motion condition can be improved by increasing the number of frames and/or by reducing the width of the target area. Furthermore, parallel search in the dynamic condition can be conducted with both short-range and long-range motion stimuli. Finally, apparent motion of conjunctions is insufficient on its own to support location decision and is disrupted by random visual noise. Overall, these findings show that (i) the mechanism underlying apparent motion is attribute-specific; (ii) the motion system mediates temporal integration of feature conjunctions before they are identified by the static system; and (iii) target detectability in these stimuli relies upon a nonattentive, cooperative, directionally selective motion mechanism that responds to high-level attributes (conjunction of size and orientation).
Limits of Spatial Attention in Three-Dimensional Space and Dual-task Driving Performance
Andersen, George J.; Ni, Rui; Bian, Zheng; Kang, Julie
2010-01-01
The present study examined the limits of spatial attention while performing two driving relevant tasks that varied in depth. The first task was to maintain a fixed headway distance behind a lead vehicle that varied speed. The second task was to detect a light-change target in an array of lights located above the roadway. In Experiment 1 the light detection task required drivers to encode color and location. The results indicated that reaction time to detect a light-change target increased and accuracy decreased as a function of the horizontal location of the light-change target and as a function of the distance from the driver. In a second experiment the light change task was changed to a singleton search (detect the onset of a yellow light) and the workload of the car following task was systematically varied. The results of Experiment 2 indicated that RT increased as a function of task workload, the 2D position of the light-change target and the distance of the light-change target. A multiple regression analysis indicated that the effect of distance on light detection performance was not due to changes in the projected size of the light target. In Experiment 3 we found that the distance effect in detecting a light change could not be explained by the location of eye fixations. The results demonstrate that when drivers attend to a roadway scene attention is limited in three-dimensional space. These results have important implications for developing tests for assessing crash risk among drivers as well as the design of in vehicle technologies such as head-up displays. PMID:21094336
Oei, Adam C; Patterson, Michael D
2015-01-01
Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well-understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for 20 h. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat) with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch) with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis.
Instrumenting free-swimming dolphins echolocating in open water.
Martin, Stephen W; Phillips, Michael; Bauer, Eric J; Moore, Patrick W; Houser, Dorian S
2005-04-01
Dolphins within the Navy Marine Mammal Program use echolocation to effectively locate underwater mines. They currently outperform manmade systems at similar tasks, particularly in cluttered environments and on buried targets. In hopes of improving manmade mine-hunting sonar systems, two instrumentation packages were developed to monitor free-swimming dolphin motion and echolocation during open-water target detection tasks. The biosonar measurement tool (BMT) is carried by a dolphin and monitors underwater position and attitude while simultaneously recording echolocation clicks and returning echoes through high-gain binaural receivers. The instrumented mine simulator (IMS) is a modified bottom target that monitors echolocation signals arriving at the target during ensonification. Dolphin subjects were trained to carry the BMT in open-bay bottom-object target searches in which the IMS could serve as a bottom object. The instrumentation provides detailed data that reveal hereto-unavailable information on the search strategies of free-swimming dolphins conducting open-water, bottom-object search tasks with echolocation.
Design and test of a situation-augmented display for an unmanned aerial vehicle monitoring task.
Lu, Jen-Li; Horng, Ruey-Yun; Chao, Chin-Jung
2013-08-01
In this study, a situation-augmented display for unmanned aerial vehicle (UAV) monitoring was designed, and its effects on operator performance and mental workload were examined. The display design was augmented with the knowledge that there is an invariant flight trajectory (formed by the relationship between altitude and velocity) for every flight, from takeoff to landing. 56 participants were randomly assigned to the situation-augmented display or a conventional display condition to work on 4 (number of abnormalities) x 2 (noise level) UAV monitoring tasks three times. Results showed that the effects of situation-augmented display on flight completion time and time to detect abnormalities were robust under various workload conditions, but error rate and perceived mental workload were unaffected by the display type. Results suggest that the UAV monitoring task is extremely difficult, and that display devices providing high-level situation-awareness may improve operator monitoring performance.
Posture and performance: sitting vs. standing for security screening.
Drury, C G; Hsiao, Y L; Joseph, C; Joshi, S; Lapp, J; Pennathur, P R
2008-03-01
A classification of the literature on the effects of workplace posture on performance of different mental tasks showed few consistent patterns. A parallel classification of the complementary effect of performance on postural variables gave similar results. Because of a lack of data for signal detection tasks, an experiment was performed using 12 experienced security operators performing an X-ray baggage-screening task with three different workplace arrangements. The current workplace, sitting on a high chair viewing a screen placed on top of the X-ray machine, was compared to a standing workplace and a conventional desk-sitting workplace. No performance effects of workplace posture were found, although the experiment was able to measure performance effects of learning and body part discomfort effects of workplace posture. There are implications for the classification of posture and performance and for the justification of ergonomics improvements based on performance increases.
Instrumenting free-swimming dolphins echolocating in open water
NASA Astrophysics Data System (ADS)
Martin, Stephen W.; Phillips, Michael; Bauer, Eric J.; Moore, Patrick W.; Houser, Dorian S.
2005-04-01
Dolphins within the Navy Marine Mammal Program use echolocation to effectively locate underwater mines. They currently outperform manmade systems at similar tasks, particularly in cluttered environments and on buried targets. In hopes of improving manmade mine-hunting sonar systems, two instrumentation packages were developed to monitor free-swimming dolphin motion and echolocation during open-water target detection tasks. The biosonar measurement tool (BMT) is carried by a dolphin and monitors underwater position and attitude while simultaneously recording echolocation clicks and returning echoes through high-gain binaural receivers. The instrumented mine simulator (IMS) is a modified bottom target that monitors echolocation signals arriving at the target during ensonification. Dolphin subjects were trained to carry the BMT in open-bay bottom-object target searches in which the IMS could serve as a bottom object. The instrumentation provides detailed data that reveal hereto-unavailable information on the search strategies of free-swimming dolphins conducting open-water, bottom-object search tasks with echolocation. .
Oei, Adam C.; Patterson, Michael D.
2015-01-01
Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well-understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for 20 h. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat) with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch) with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis. PMID:25713551
Supporting dynamic change detection: using the right tool for the task.
Vallières, Benoît R; Hodgetts, Helen M; Vachon, François; Tremblay, Sébastien
2016-01-01
Detecting task-relevant changes in a visual scene is necessary for successfully monitoring and managing dynamic command and control situations. Change blindness-the failure to notice visual changes-is an important source of human error. Change History EXplicit (CHEX) is a tool developed to aid change detection and maintain situation awareness; and in the current study we test the generality of its ability to facilitate the detection of changes when this subtask is embedded within a broader dynamic decision-making task. A multitasking air-warfare simulation required participants to perform radar-based subtasks, for which change detection was a necessary aspect of the higher-order goal of protecting one's own ship. In this task, however, CHEX rendered the operator even more vulnerable to attentional failures in change detection and increased perceived workload. Such support was only effective when participants performed a change detection task without concurrent subtasks. Results are interpreted in terms of the NSEEV model of attention behavior (Steelman, McCarley, & Wickens, Hum. Factors 53:142-153, 2011; J. Exp. Psychol. Appl. 19:403-419, 2013), and suggest that decision aids for use in multitasking contexts must be designed to fit within the available workload capacity of the user so that they may truly augment cognition.
Driver Vigilance in Automated Vehicles: Hazard Detection Failures Are a Matter of Time.
Greenlee, Eric T; DeLucia, Patricia R; Newton, David C
2018-06-01
The primary aim of the current study was to determine whether monitoring the roadway for hazards during automated driving results in a vigilance decrement. Although automated vehicles are relatively novel, the nature of human-automation interaction within them has the classic hallmarks of a vigilance task. Drivers must maintain attention for prolonged periods of time to detect and respond to rare and unpredictable events, for example, roadway hazards that automation may be ill equipped to detect. Given the similarity with traditional vigilance tasks, we predicted that drivers of a simulated automated vehicle would demonstrate a vigilance decrement in hazard detection performance. Participants "drove" a simulated automated vehicle for 40 minutes. During that time, their task was to monitor the roadway for roadway hazards. As predicted, hazard detection rate declined precipitously, and reaction times slowed as the drive progressed. Further, subjective ratings of workload and task-related stress indicated that sustained monitoring is demanding and distressing and it is a challenge to maintain task engagement. Monitoring the roadway for potential hazards during automated driving results in workload, stress, and performance decrements similar to those observed in traditional vigilance tasks. To the degree that vigilance is required of automated vehicle drivers, performance errors and associated safety risks are likely to occur as a function of time on task. Vigilance should be a focal safety concern in the development of vehicle automation.
Improving performance with clinical decision support.
Brailer, D J; Goldfarb, S; Horgan, M; Katz, F; Paulus, R A; Zakrewski, K
1996-07-01
CADU/CIS (Clinical and Administrative Decision-support Utility and Clinical Information System) is a clinical decision-support workstation that allows large volumes of clinical information systems data to be analyzed in a timely and user-friendly fashion. CARE PROCESS MEASUREMENT: For any given disease, subgroups of patients are identified, and automated, customized "clinical pathways" are generated. For each subgroup, the best practice norms for use of test and therapies are identified. Practice style variations are then compared to outcomes to focus inquiry on decisions that significantly affect outcomes. INTESTINAL OBSTRUCTION: Graduate Health Systems, a multisite integrated provider in the Philadelphia area, has used CADU/CIS to improve quality problems, reduce treatment-intensity variations, and improve clinical participation in care process evaluation and decision making. A task force selected intestinal obstruction without hernia as its first study because of the related high-volume and high-morbidity complications. Use of a ten-step method for clinical performance improvement showed that the intravenous administration of unnecessary fluids to 104 patients with intestinal obstruction induced congestive heart failure (CHF) in 5 patients. Task force members and other practicing physicians are now developing guidelines and other interventions aimed at fluid use. Indeed, the task force used CADU/CIS to identify an additional 250 patients in one year whose conditions were complicated by CHF. A clinical decision support tool can be instrumental in detecting problems with important clinical and economic implications, identifying their important underlying causes, tracking the associated tests and therapies, and monitoring interventions.
Cooperative satellite-based flood detection, mapping, and river monitoring in near real time
NASA Technical Reports Server (NTRS)
Brakenridge, Robert G.; Nghiem, Son V.
2004-01-01
The North Atlantic Oscillation (NAO), the Pacific-North American (PNA) teleconnection pattern, and the El Nino-Southern Oscillation (ENSO) combine to influence the planetary wave structure over the northern hemisphere. Floods and droughts are associated around the world with ENSO through such teleconnections, and improved flood prediction relies on understanding them better. The scientific study of floods, and consistent measurements thereof, are needed in order to allow 'Greenhouse warming' predictions about flooding to be tested, and the hydrologic effects of other phenomena such as ENSO to be evaluated. The needed tasks are: 1) detection/warning of flooding, 2) flood magnitude assessment, 3) flood inundation mapping, and 4) preservation of the record of flooding. Accomplishing these same tasks provides direct local societal benefits as well: they can save lives and reduce economic loss. We emphasize that the basic science observations need not be divorced from the immediate practical applications: both can occur together, and just as is the case for meteorological remote sensing.
NASA Astrophysics Data System (ADS)
Hilliard, Antony
Energy Monitoring and Targeting is a well-established business process that develops information about utility energy consumption in a business or institution. While M&T has persisted as a worthwhile energy conservation support activity, it has not been widely adopted. This dissertation explains M&T challenges in terms of diagnosing and controlling energy consumption, informed by a naturalistic field study of M&T work. A Cognitive Work Analysis of M&T identifies structures that diagnosis can search, information flows un-supported in canonical support tools, and opportunities to extend the most popular tool for MM&T: Cumulative Sum of Residuals (CUSUM) charts. A design application outlines how CUSUM charts were augmented with a more contemporary statistical change detection strategy, Recursive Parameter Estimates, modified to better suit the M&T task using Representation Aiding principles. The design was experimentally evaluated in a controlled M&T synthetic task, and was shown to significantly improve diagnosis performance.
NASA Astrophysics Data System (ADS)
Zhang, Baocheng; Teunissen, Peter J. G.; Yuan, Yunbin; Zhang, Xiao; Li, Min
2018-03-01
Sensing the ionosphere with the global positioning system involves two sequential tasks, namely the ionospheric observable retrieval and the ionospheric parameter estimation. A prominent source of error has long been identified as short-term variability in receiver differential code bias (rDCB). We modify the carrier-to-code leveling (CCL), a method commonly used to accomplish the first task, through assuming rDCB to be unlinked in time. Aside from the ionospheric observables, which are affected by, among others, the rDCB at one reference epoch, the Modified CCL (MCCL) can also provide the rDCB offsets with respect to the reference epoch as by-products. Two consequences arise. First, MCCL is capable of excluding the effects of time-varying rDCB from the ionospheric observables, which, in turn, improves the quality of ionospheric parameters of interest. Second, MCCL has significant potential as a means to detect between-epoch fluctuations experienced by rDCB of a single receiver.
Augmented Reality Cues and Elderly Driver Hazard Perception
Schall, Mark C.; Rusch, Michelle L.; Lee, John D.; Dawson, Jeffrey D.; Thomas, Geb; Aksan, Nazan; Rizzo, Matthew
2013-01-01
Objective Evaluate the effectiveness of augmented reality (AR) cues in improving driving safety in elderly drivers who are at increased crash risk due to cognitive impairments. Background Cognitively challenging driving environments pose a particular crash risk for elderly drivers. AR cueing is a promising technology to mitigate risk by directing driver attention to roadway hazards. This study investigates whether AR cues improve or interfere with hazard perception in elderly drivers with age-related cognitive decline. Methods Twenty elderly (Mean= 73 years, SD= 5 years), licensed drivers with a range of cognitive abilities measured by a speed of processing (SOP) composite participated in a one-hour drive in an interactive, fixed-base driving simulator. Each participant drove through six, straight, six-mile-long rural roadway scenarios following a lead vehicle. AR cues directed attention to potential roadside hazards in three of the scenarios, and the other three were uncued (baseline) drives. Effects of AR cueing were evaluated with respect to: 1) detection of hazardous target objects, 2) interference with detecting nonhazardous secondary objects, and 3) impairment in maintaining safe distance behind a lead vehicle. Results AR cueing improved the detection of hazardous target objects of low visibility. AR cues did not interfere with detection of nonhazardous secondary objects and did not impair ability to maintain safe distance behind a lead vehicle. SOP capacity did not moderate those effects. Conclusion AR cues show promise for improving elderly driver safety by increasing hazard detection likelihood without interfering with other driving tasks such as maintaining safe headway. PMID:23829037
Jacova, Claudia; McGrenere, Joanna; Lee, Hyunsoo S; Wang, William W; Le Huray, Sarah; Corenblith, Emily F; Brehmer, Matthew; Tang, Charlotte; Hayden, Sherri; Beattie, B Lynn; Hsiung, Ging-Yuek R
2015-01-01
Cognitive Testing on Computer (C-TOC) is a novel computer-based test battery developed to improve both usability and validity in the computerized assessment of cognitive function in older adults. C-TOC's usability was evaluated concurrently with its iterative development to version 4 in subjects with and without cognitive impairment, and health professional advisors representing different ethnocultural groups. C-TOC version 4 was then validated against neuropsychological tests (NPTs), and by comparing performance scores of subjects with normal cognition, Cognitive Impairment Not Dementia (CIND) and Alzheimer disease. C-TOC's language tests were validated in subjects with aphasic disorders. The most important usability issue that emerged from consultations with 27 older adults and with 8 cultural advisors was the test-takers' understanding of the task, particularly executive function tasks. User interface features did not pose significant problems. C-TOC version 4 tests correlated with comparator NPT (r=0.4 to 0.7). C-TOC test scores were normal (n=16)>CIND (n=16)>Alzheimer disease (n=6). All normal/CIND NPT performance differences were detected on C-TOC. Low computer knowledge adversely affected test performance, particularly in CIND. C-TOC detected impairments in aphasic disorders (n=11). In general, C-TOC had good validity in detecting cognitive impairment. Ensuring test-takers' understanding of the tasks, and considering their computer knowledge appear important steps towards C-TOC's implementation.
Pitts, Brandon J; Sarter, Nadine
2018-06-01
Objective This research sought to determine whether people can perceive and process three nonredundant (and unrelated) signals in vision, hearing, and touch at the same time and how aging and concurrent task demands affect this ability. Background Multimodal displays have been shown to improve multitasking and attention management; however, their potential limitations are not well understood. The majority of studies on multimodal information presentation have focused on the processing of only two concurrent and, most often, redundant cues by younger participants. Method Two experiments were conducted in which younger and older adults detected and responded to a series of singles, pairs, and triplets of visual, auditory, and tactile cues in the absence (Experiment 1) and presence (Experiment 2) of an ongoing simulated driving task. Detection rates, response times, and driving task performance were measured. Results Compared to younger participants, older adults showed longer response times and higher error rates in response to cues/cue combinations. Older participants often missed the tactile cue when three cues were combined. They sometimes falsely reported the presence of a visual cue when presented with a pair of auditory and tactile signals. Driving performance suffered most in the presence of cue triplets. Conclusion People are more likely to miss information if more than two concurrent nonredundant signals are presented to different sensory channels. Application The findings from this work help inform the design of multimodal displays and ensure their usefulness across different age groups and in various application domains.
A Framework for Speech Activity Detection Using Adaptive Auditory Receptive Fields.
Carlin, Michael A; Elhilali, Mounya
2015-12-01
One of the hallmarks of sound processing in the brain is the ability of the nervous system to adapt to changing behavioral demands and surrounding soundscapes. It can dynamically shift sensory and cognitive resources to focus on relevant sounds. Neurophysiological studies indicate that this ability is supported by adaptively retuning the shapes of cortical spectro-temporal receptive fields (STRFs) to enhance features of target sounds while suppressing those of task-irrelevant distractors. Because an important component of human communication is the ability of a listener to dynamically track speech in noisy environments, the solution obtained by auditory neurophysiology implies a useful adaptation strategy for speech activity detection (SAD). SAD is an important first step in a number of automated speech processing systems, and performance is often reduced in highly noisy environments. In this paper, we describe how task-driven adaptation is induced in an ensemble of neurophysiological STRFs, and show how speech-adapted STRFs reorient themselves to enhance spectro-temporal modulations of speech while suppressing those associated with a variety of nonspeech sounds. We then show how an adapted ensemble of STRFs can better detect speech in unseen noisy environments compared to an unadapted ensemble and a noise-robust baseline. Finally, we use a stimulus reconstruction task to demonstrate how the adapted STRF ensemble better captures the spectrotemporal modulations of attended speech in clean and noisy conditions. Our results suggest that a biologically plausible adaptation framework can be applied to speech processing systems to dynamically adapt feature representations for improving noise robustness.
NASA Astrophysics Data System (ADS)
Song, Bowen; Zhang, Guopeng; Wang, Huafeng; Zhu, Wei; Liang, Zhengrong
2013-02-01
Various types of features, e.g., geometric features, texture features, projection features etc., have been introduced for polyp detection and differentiation tasks via computer aided detection and diagnosis (CAD) for computed tomography colonography (CTC). Although these features together cover more information of the data, some of them are statistically highly-related to others, which made the feature set redundant and burdened the computation task of CAD. In this paper, we proposed a new dimension reduction method which combines hierarchical clustering and principal component analysis (PCA) for false positives (FPs) reduction task. First, we group all the features based on their similarity using hierarchical clustering, and then PCA is employed within each group. Different numbers of principal components are selected from each group to form the final feature set. Support vector machine is used to perform the classification. The results show that when three principal components were chosen from each group we can achieve an area under the curve of receiver operating characteristics of 0.905, which is as high as the original dataset. Meanwhile, the computation time is reduced by 70% and the feature set size is reduce by 77%. It can be concluded that the proposed method captures the most important information of the feature set and the classification accuracy is not affected after the dimension reduction. The result is promising and further investigation, such as automatically threshold setting, are worthwhile and are under progress.
2006-06-01
MRI, MRS, DCE, Choline , Perfusion, Breast Cancer, Diagnosis, Specificity 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...data analysis, patient recruitment and consent, and can now perform these tasks independently. 3. Through interactions with the DOD representative (Dr...out at 4 cc/sec during perfusion MRI acquisition. The detection of an apparent choline compounds (Cho) peak (S/N > 2) at 3.23 ppm was defined as
Brewer, Gene A; Knight, Justin B; Marsh, Richard L; Unsworth, Nash
2010-04-01
The multiprocess view proposes that different processes can be used to detect event-based prospective memory cues, depending in part on the specificity of the cue. According to this theory, attentional processes are not necessary to detect focal cues, whereas detection of nonfocal cues requires some form of controlled attention. This notion was tested using a design in which we compared performance on a focal and on a nonfocal prospective memory task by participants with high or low working memory capacity. An interaction was found, such that participants with high and low working memory performed equally well on the focal task, whereas the participants with high working memory performed significantly better on the nonfocal task than did their counterparts with low working memory. Thus, controlled attention was only necessary for detecting event-based prospective memory cues in the nonfocal task. These results have implications for theories of prospective memory, the processes necessary for cue detection, and the successful fulfillment of intentions.
Narrative Abilities, Memory and Attention in Children with a Specific Language Impairment
ERIC Educational Resources Information Center
Duinmeijer, Iris; de Jong, Jan; Scheper, Annette
2012-01-01
Background: While narrative tasks have proven to be valid measures for detecting language disorders, measuring communicative skills and predicting future academic performance, research into the comparability of different narrative tasks has shown that outcomes are dependent on the type of task used. Although many of the studies detecting task…
Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.
Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan
2016-08-01
In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assessment of mass detection performance in contrast enhanced digital mammography
NASA Astrophysics Data System (ADS)
Carton, Ann-Katherine; de Carvalho, Pablo M.; Li, Zhijin; Dromain, Clarisse; Muller, Serge
2015-03-01
We address the detectability of contrast-agent enhancing masses for contrast-agent enhanced spectral mammography (CESM), a dual-energy technique providing functional projection images of breast tissue perfusion and vascularity using simulated CESM images. First, the realism of simulated CESM images from anthropomorphic breast software phantoms generated with a software X-ray imaging platform was validated. Breast texture was characterized by power-law coefficients calculated in data sets of real clinical and simulated images. We also performed a 2-alternative forced choice (2-AFC) psychophysical experiment whereby simulated and real images were presented side-by-side to an experienced radiologist to test if real images could be distinguished from the simulated images. It was found that texture in our simulated CESM images has a fairly realistic appearance. Next, the relative performance of human readers and previously developed mathematical observers was assessed for the detection of iodine-enhancing mass lesions containing different contrast agent concentrations. A four alternative-forced-choice (4 AFC) task was designed; the task for the model and human observer was to detect which one of the four simulated DE recombined images contained an iodineenhancing mass. Our results showed that the NPW and NPWE models largely outperform human performance. After introduction of an internal noise component, both observers approached human performance. The CHO observer performs slightly worse than the average human observer. There is still work to be done in improving model observers as predictors of human-observer performance. Larger trials could also improve our test statistics. We hope that in the future, this framework of software breast phantoms, virtual image acquisition and processing, and mathematical observers can be beneficial to optimize CESM imaging techniques.
Flexibility in data interpretation: effects of representational format.
Braithwaite, David W; Goldstone, Robert L
2013-01-01
Graphs and tables differentially support performance on specific tasks. For tasks requiring reading off single data points, tables are as good as or better than graphs, while for tasks involving relationships among data points, graphs often yield better performance. However, the degree to which graphs and tables support flexibility across a range of tasks is not well-understood. In two experiments, participants detected main and interaction effects in line graphs and tables of bivariate data. Graphs led to more efficient performance, but also lower flexibility, as indicated by a larger discrepancy in performance across tasks. In particular, detection of main effects of variables represented in the graph legend was facilitated relative to detection of main effects of variables represented in the x-axis. Graphs may be a preferable representational format when the desired task or analytical perspective is known in advance, but may also induce greater interpretive bias than tables, necessitating greater care in their use and design.
Hwang, Jeong Yeon; Kim, Nambeom; Kim, Soohyun; Park, Juhyun; Choi, Jae-Won; Kim, Seog Ju; Kang, Chang-Ki; Lee, Yu Jin
2018-02-16
In the present study, we compared differences in brain activity during the Stroop task between patients with chronic insomnia disorder (CID) and good sleepers (GS). Furthermore, we evaluated changes in Stroop task-related brain activity after cognitive-behavioral therapy for insomnia (CBT-I). The final analysis included 21 patients with CID and 25 GS. All participants underwent functional magnetic resonance imaging (fMRI) while performing the color-word Stroop task. CBT-I, consisting of 5 sessions, was administered to 14 patients with CID in the absence of medication. After CBT-I, fMRI was repeated in the patients with CID while performing the same task. Sleep-related questionnaires and sleep variables from a sleep diary were also obtained before and after CBT-I. No significant differences in behavioral performance in the Stroop task or task-related brain activation were observed between the CID and GS groups. No changes in behavioral performance or brain activity were found after CBT-I. However, clinical improvement in the Insomnia Severity Index (ISI) score was significantly associated with changes in the Stroop task-related regional blood oxygen level-dependent signals in the left supramarginal gyrus. Our findings suggest that cognitive impairment in patients with CID was not detectable by the Stroop task or Stroop task-related brain activation on fMRI. Moreover, there was no altered brain activity during the Stroop task after CBT-I. However, the ISI score reflected changes in the neural correlates of cognitive processes in patients with CID after CBT-I.
Distinguishing bias from sensitivity effects in multialternative detection tasks.
Sridharan, Devarajan; Steinmetz, Nicholas A; Moore, Tirin; Knudsen, Eric I
2014-08-21
Studies investigating the neural bases of cognitive phenomena increasingly employ multialternative detection tasks that seek to measure the ability to detect a target stimulus or changes in some target feature (e.g., orientation or direction of motion) that could occur at one of many locations. In such tasks, it is essential to distinguish the behavioral and neural correlates of enhanced perceptual sensitivity from those of increased bias for a particular location or choice (choice bias). However, making such a distinction is not possible with established approaches. We present a new signal detection model that decouples the behavioral effects of choice bias from those of perceptual sensitivity in multialternative (change) detection tasks. By formulating the perceptual decision in a multidimensional decision space, our model quantifies the respective contributions of bias and sensitivity to multialternative behavioral choices. With a combination of analytical and numerical approaches, we demonstrate an optimal, one-to-one mapping between model parameters and choice probabilities even for tasks involving arbitrarily large numbers of alternatives. We validated the model with published data from two ternary choice experiments: a target-detection experiment and a length-discrimination experiment. The results of this validation provided novel insights into perceptual processes (sensory noise and competitive interactions) that can accurately and parsimoniously account for observers' behavior in each task. The model will find important application in identifying and interpreting the effects of behavioral manipulations (e.g., cueing attention) or neural perturbations (e.g., stimulation or inactivation) in a variety of multialternative tasks of perception, attention, and decision-making. © 2014 ARVO.
Distinguishing bias from sensitivity effects in multialternative detection tasks
Sridharan, Devarajan; Steinmetz, Nicholas A.; Moore, Tirin; Knudsen, Eric I.
2014-01-01
Studies investigating the neural bases of cognitive phenomena increasingly employ multialternative detection tasks that seek to measure the ability to detect a target stimulus or changes in some target feature (e.g., orientation or direction of motion) that could occur at one of many locations. In such tasks, it is essential to distinguish the behavioral and neural correlates of enhanced perceptual sensitivity from those of increased bias for a particular location or choice (choice bias). However, making such a distinction is not possible with established approaches. We present a new signal detection model that decouples the behavioral effects of choice bias from those of perceptual sensitivity in multialternative (change) detection tasks. By formulating the perceptual decision in a multidimensional decision space, our model quantifies the respective contributions of bias and sensitivity to multialternative behavioral choices. With a combination of analytical and numerical approaches, we demonstrate an optimal, one-to-one mapping between model parameters and choice probabilities even for tasks involving arbitrarily large numbers of alternatives. We validated the model with published data from two ternary choice experiments: a target-detection experiment and a length-discrimination experiment. The results of this validation provided novel insights into perceptual processes (sensory noise and competitive interactions) that can accurately and parsimoniously account for observers' behavior in each task. The model will find important application in identifying and interpreting the effects of behavioral manipulations (e.g., cueing attention) or neural perturbations (e.g., stimulation or inactivation) in a variety of multialternative tasks of perception, attention, and decision-making. PMID:25146574
Development of a Task-Exposure Matrix (TEM) for Pesticide Use (TEMPEST).
Dick, F D; Semple, S E; van Tongeren, M; Miller, B G; Ritchie, P; Sherriff, D; Cherrie, J W
2010-06-01
Pesticides have been associated with increased risks for a range of conditions including Parkinson's disease, but identifying the agents responsible has proven challenging. Improved pesticide exposure estimates would increase the power of epidemiological studies to detect such an association if one exists. Categories of pesticide use were identified from the tasks reported in a previous community-based case-control study in Scotland. Typical pesticides used in each task in each decade were identified from published scientific and grey literature and from expert interviews, with the number of potential agents collapsed into 10 groups of pesticides. A pesticide usage database was then created, using the task list and the typical pesticide groups employed in those tasks across seven decades spanning the period 1945-2005. Information about the method of application and concentration of pesticides used in these tasks was then incorporated into the database. A list was generated of 81 tasks involving pesticide exposure in Scotland covering seven decades producing a total of 846 task per pesticide per decade combinations. A Task-Exposure Matrix for PESTicides (TEMPEST) was produced by two occupational hygienists who quantified the likely probability and intensity of inhalation and dermal exposures for each pesticide group for a given use during each decade. TEMPEST provides a basis for assessing exposures to specific pesticide groups in Scotland covering the period 1945-2005. The methods used to develop TEMPEST could be used in a retrospective assessment of occupational exposure to pesticides for Scottish epidemiological studies or adapted for use in other countries.
Use of EEG workload indices for diagnostic monitoring of vigilance decrement.
Kamzanova, Altyngul T; Kustubayeva, Almira M; Matthews, Gerald
2014-09-01
A study was run to test which of five electroencephalographic (EEG) indices was most diagnostic of loss of vigilance at two levels of workload. EEG indices of alertness include conventional spectral power measures as well as indices combining measures from multiple frequency bands, such as the Task Load Index (TLI) and the Engagement Index (El). However, it is unclear which indices are optimal for early detection of loss of vigilance. Ninety-two participants were assigned to one of two experimental conditions, cued (lower workload) and uncued (higher workload), and then performed a 40-min visual vigilance task. Performance on this task is believed to be limited by attentional resource availability. EEG was recorded continuously. Performance, subjective state, and workload were also assessed. The task showed a vigilance decrement in performance; cuing improved performance and reduced subjective workload. Lower-frequency alpha (8 to 10.9 Hz) and TLI were most sensitive to the task parameters. The magnitude of temporal change was larger for lower-frequency alpha. Surprisingly, higher TLI was associated with superior performance. Frontal theta and El were influenced by task workload only in the final period of work. Correlational data also suggested that the indices are distinct from one another. Lower-frequency alpha appears to be the optimal index for monitoring vigilance on the task used here, but further work is needed to test how diagnosticity of EEG indices varies with task demands. Lower-frequency alpha may be used to diagnose loss of operator alertness on tasks requiring vigilance.
Compact Microscope Imaging System With Intelligent Controls Improved
NASA Technical Reports Server (NTRS)
McDowell, Mark
2004-01-01
The Compact Microscope Imaging System (CMIS) with intelligent controls is a diagnostic microscope analysis tool with intelligent controls for use in space, industrial, medical, and security applications. This compact miniature microscope, which can perform tasks usually reserved for conventional microscopes, has unique advantages in the fields of microscopy, biomedical research, inline process inspection, and space science. Its unique approach integrates a machine vision technique with an instrumentation and control technique that provides intelligence via the use of adaptive neural networks. The CMIS system was developed at the NASA Glenn Research Center specifically for interface detection used for colloid hard spheres experiments; biological cell detection for patch clamping, cell movement, and tracking; and detection of anode and cathode defects for laboratory samples using microscope technology.
Quarantine Regulations and the Impact of Modern Detection Methods.
Martin, Robert R; Constable, Fiona; Tzanetakis, Ioannis E
2016-08-04
Producers worldwide need access to the best plant varieties and cultivars available to be competitive in global markets. This often means moving plants across international borders as soon as they are available. At the same time, quarantine agencies are tasked with minimizing the risk of introducing exotic pests and pathogens along with imported plant material, with the goal to protect domestic agriculture and native fauna and flora. These two drivers, the movement of more plant material and reduced risk of pathogen introduction, are at odds. Improvements in large-scale or next-generation sequencing (NGS) and bioinformatics for data analysis have resulted in improved speed and accuracy of pathogen detection that could facilitate plant trade with reduced risk of pathogen movement. There are concerns to be addressed before NGS can replace existing tools used for pathogen detection in plant quarantine and certification programs. Here, we discuss the advantages and possible pitfalls of this technology for meeting the needs of plant quarantine and certification.
NASA Astrophysics Data System (ADS)
Zink, Frank Edward
The detection and classification of pulmonary nodules is of great interest in chest radiography. Nodules are often indicative of primary cancer, and their detection is particularly important in asymptomatic patients. The ability to classify nodules as calcified or non-calcified is important because calcification is a positive indicator that the nodule is benign. Dual-energy methods offer the potential to improve both the detection and classification of nodules by allowing the formation of material-selective images. Tissue-selective images can improve detection by virtue of the elimination of obscuring rib structure. Bone -selective images are essentially calcium images, allowing classification of the nodule. A dual-energy technique is introduced which uses a computed radiography system to acquire dual-energy chest radiographs in a single-exposure. All aspects of the dual-energy technique are described, with particular emphasis on scatter-correction, beam-hardening correction, and noise-reduction algorithms. The adaptive noise-reduction algorithm employed improves material-selective signal-to-noise ratio by up to a factor of seven with minimal sacrifice in selectivity. A clinical comparison study is described, undertaken to compare the dual-energy technique to conventional chest radiography for the tasks of nodule detection and classification. Observer performance data were collected using the Free Response Observer Characteristic (FROC) method and the bi-normal Alternative FROC (AFROC) performance model. Results of the comparison study, analyzed using two common multiple observer statistical models, showed that the dual-energy technique was superior to conventional chest radiography for detection of nodules at a statistically significant level (p < .05). Discussion of the comparison study emphasizes the unique combination of data collection and analysis techniques employed, as well as the limitations of comparison techniques in the larger context of technology assessment.
Detection of Pigment Networks in Dermoscopy Images
NASA Astrophysics Data System (ADS)
Eltayef, Khalid; Li, Yongmin; Liu, Xiaohui
2017-02-01
One of the most important structures in dermoscopy images is the pigment network, which is also one of the most challenging and fundamental task for dermatologists in early detection of melanoma. This paper presents an automatic system to detect pigment network from dermoscopy images. The design of the proposed algorithm consists of four stages. First, a pre-processing algorithm is carried out in order to remove the noise and improve the quality of the image. Second, a bank of directional filters and morphological connected component analysis are applied to detect the pigment networks. Third, features are extracted from the detected image, which can be used in the subsequent stage. Fourth, the classification process is performed by applying feed-forward neural network, in order to classify the region as either normal or abnormal skin. The method was tested on a dataset of 200 dermoscopy images from Hospital Pedro Hispano (Matosinhos), and better results were produced compared to previous studies.
Chen, Wen-Yuan; Wang, Mei; Fu, Zhou-Xing
2014-06-16
Most railway accidents happen at railway crossings. Therefore, how to detect humans or objects present in the risk area of a railway crossing and thus prevent accidents are important tasks. In this paper, three strategies are used to detect the risk area of a railway crossing: (1) we use a terrain drop compensation (TDC) technique to solve the problem of the concavity of railway crossings; (2) we use a linear regression technique to predict the position and length of an object from image processing; (3) we have developed a novel strategy called calculating local maximum Y-coordinate object points (CLMYOP) to obtain the ground points of the object. In addition, image preprocessing is also applied to filter out the noise and successfully improve the object detection. From the experimental results, it is demonstrated that our scheme is an effective and corrective method for the detection of railway crossing risk areas.
Chen, Wen-Yuan; Wang, Mei; Fu, Zhou-Xing
2014-01-01
Most railway accidents happen at railway crossings. Therefore, how to detect humans or objects present in the risk area of a railway crossing and thus prevent accidents are important tasks. In this paper, three strategies are used to detect the risk area of a railway crossing: (1) we use a terrain drop compensation (TDC) technique to solve the problem of the concavity of railway crossings; (2) we use a linear regression technique to predict the position and length of an object from image processing; (3) we have developed a novel strategy called calculating local maximum Y-coordinate object points (CLMYOP) to obtain the ground points of the object. In addition, image preprocessing is also applied to filter out the noise and successfully improve the object detection. From the experimental results, it is demonstrated that our scheme is an effective and corrective method for the detection of railway crossing risk areas. PMID:24936948
Sweet-spot training for early esophageal cancer detection
NASA Astrophysics Data System (ADS)
van der Sommen, Fons; Zinger, Svitlana; Schoon, Erik J.; de With, Peter H. N.
2016-03-01
Over the past decade, the imaging tools for endoscopists have improved drastically. This has enabled physicians to visually inspect the intestinal tissue for early signs of malignant lesions. Besides this, recent studies show the feasibility of supportive image analysis for endoscopists, but the analysis problem is typically approached as a segmentation task where binary ground truth is employed. In this study, we show that the detection of early cancerous tissue in the gastrointestinal tract cannot be approached as a binary segmentation problem and it is crucial and clinically relevant to involve multiple experts for annotating early lesions. By employing the so-called sweet spot for training purposes as a metric, a much better detection performance can be achieved. Furthermore, a multi-expert-based ground truth, i.e. a golden standard, enables an improved validation of the resulting delineations. For this purpose, besides the sweet spot we also propose another novel metric, the Jaccard Golden Standard (JIGS) that can handle multiple ground-truth annotations. Our experiments involving these new metrics and based on the golden standard show that the performance of a detection algorithm of early neoplastic lesions in Barrett's esophagus can be increased significantly, demonstrating a 10 percent point increase in the resulting F1 detection score.
1995-06-01
applied to analyze numerous experimental tasks (Macmillan and Creelman , 1991). One of these tasks, target detection, is the subject research. In...between each associated pair of false alarm rate and hit rate z-scores is d’ for the bias level associated with the pairing (Macmillan and Creelman , 1991...unequal variance in normal distributions (Macmillan and Creelman , 1991). 61 1966). It is described in detail for the interested reader by Green and
Vila-Castelar, Clara; Ly, Jenny J; Kaplan, Lillian; Van Dyk, Kathleen; Berger, Jeffrey T; Macina, Lucy O; Stewart, Jennifer L; Foldi, Nancy S
2018-04-09
Donepezil is widely used to treat Alzheimer's disease (AD), but detecting early response remains challenging for clinicians. Acetylcholine is known to directly modulate attention, particularly under high cognitive conditions, but no studies to date test whether measures of attention under high load can detect early effects of donepezil. We hypothesized that load-dependent attention tasks are sensitive to short-term treatment effects of donepezil, while global and other domain-specific cognitive measures are not. This longitudinal, randomized, double-blind, placebo-controlled pilot trial (ClinicalTrials.gov Identifier: NCT03073876) evaluated 23 participants newly diagnosed with AD initiating de novo donepezil treatment (5 mg). After baseline assessment, participants were randomized into Drug (n = 12) or Placebo (n = 11) groups, and retested after approximately 6 weeks. Cognitive assessment included: (a) attention tasks (Foreperiod Effect, Attentional Blink, and Covert Orienting tasks) measuring processing speed, top-down accuracy, orienting, intra-individual variability, and fatigue; (b) global measures (Alzheimer's Disease Assessment Scale-Cognitive Subscale, Mini-Mental Status Examination, Dementia Rating Scale); and (c) domain-specific measures (memory, language, visuospatial, and executive function). The Drug but not the Placebo group showed benefits of treatment at high-load measures by preserving top-down accuracy, improving intra-individual variability, and averting fatigue. In contrast, other global or cognitive domain-specific measures could not detect treatment effects over the same treatment interval. The pilot-study suggests that attention measures targeting accuracy, variability, and fatigue under high-load conditions could be sensitive to short-term cholinergic treatment. Given the central role of acetylcholine in attentional function, load-dependent attentional measures may be valuable cognitive markers of early treatment response.
ERIC Educational Resources Information Center
Dratsch, Thomas; Schwartz, Caroline; Yanev, Kliment; Schilbach, Leonhard; Vogeley, Kai; Bente, Gary
2013-01-01
We investigated the influence of control over a social stimulus on the ability to detect direct gaze in high-functioning autism (HFA). In a pilot study, 19 participants with and 19 without HFA were compared on a gaze detection and a gaze setting task. Participants with HFA were less accurate in detecting direct gaze in the detection task, but did…
Deep belief networks for false alarm rejection in forward-looking ground-penetrating radar
NASA Astrophysics Data System (ADS)
Becker, John; Havens, Timothy C.; Pinar, Anthony; Schulz, Timothy J.
2015-05-01
Explosive hazards are one of the most deadly threats in modern conflicts. The U.S. Army is interested in a reliable way to detect these hazards at range. A promising way of accomplishing this task is using a forward-looking ground-penetrating radar (FLGPR) system. Recently, the Army has been testing a system that utilizes both L-band and X-band radar arrays on a vehicle mounted platform. Using data from this system, we sought to improve the performance of a constant false-alarm-rate (CFAR) prescreener through the use of a deep belief network (DBN). DBNs have also been shown to perform exceptionally well at generalized anomaly detection. They combine unsupervised pre-training with supervised fine-tuning to generate low-dimensional representations of high-dimensional input data. We seek to take advantage of these two properties by training a DBN on the features of the CFAR prescreener's false alarms (FAs) and then use that DBN to separate FAs from true positives. Our analysis shows that this method improves the detection statistics significantly. By training the DBN on a combination of image features, we were able to significantly increase the probability of detection while maintaining a nominal number of false alarms per square meter. Our research shows that DBNs are a good candidate for improving detection rates in FLGPR systems.
What you fear will appear: detection of schematic spiders in spider fear.
Peira, Nathalie; Golkar, Armita; Larsson, Maria; Wiens, Stefan
2010-01-01
Various experimental tasks suggest that fear guides attention. However, because these tasks often lack ecological validity, it is unclear to what extent results from these tasks can be generalized to real-life situations. In change detection tasks, a brief interruption of the visual input (i.e., a blank interval or a scene cut) often results in undetected changes in the scene. This setup resembles real-life viewing behavior and is used here to increase ecological validity of the attentional task without compromising control over the stimuli presented. Spider-fearful and nonfearful women detected schematic spiders and flowers that were added to one of two identical background pictures that alternated with a brief blank in between them (i.e., flicker paradigm). Results showed that spider-fearful women detected spiders (but not flowers) faster than did nonfearful women. Because spiders and flowers had similar low-level features, these findings suggest that fear guides attention on the basis of object features rather than simple low-level features.
NASA Technical Reports Server (NTRS)
Mercer, Joey; Gomez, Ashley; Gabets, Cynthia; Bienert, Nancy; Edwards, Tamsyn; Martin, Lynne; Gujral, Vimmy; Homola, Jeffrey
2016-01-01
To determine the capabilities and limitations of human operators and automation in separation assurance roles, the second of three Human-in-the-Loop (HITL) part-task studies investigated air traffic controllers ability to detect and resolve conflicts under varying task sets, traffic densities, and run lengths. Operations remained within a single sector, staffed by a single controller, and explored, among other things, the controllers responsibility for conflict resolution with or without their involvement in the conflict detection task. Furthermore, these conditions were examined across two different traffic densities; 1x (current-day traffic) and a 20 increase above current-day traffic levels (1.2x). Analyses herein offer an examination of the conflict resolution strategies employed by controllers. In particular, data in the form of elapsed time between conflict detection and conflict resolution are used to assess if, and how, the controllers involvement in the conflict detection task affected the way in which they resolved traffic conflicts.
The effects of stimulus-driven competition and task set on involuntary attention
Han, Suk Won; Marois, René
2014-01-01
It is well established that involuntary attention—the exogenous capture of attention by salient but task-irrelevant stimuli—can strongly modulate target detection and discrimination performance. There is an ongoing debate, however, about how involuntary attention affects target performance. Some studies suggest that it results from enhanced perception of the target, whereas others indicate instead that it affects decisional stages of information processing. From a review of these studies, we hypothesized that the presence of distractors and task sets are key factors in determining the effect of involuntary attention on target perception. Consistent with this hypothesis, here we found that noninformative cues summoning involuntary attention affected perceptual identification of a target when distractors were present. This cuing effect could not be attributed to reduced target location uncertainty or decision bias. The only condition under which involuntary attention improved target perception in the absence of distractors occurred when observers did not adopt a task set to focus attention on the target location. We conclude that the perceptual effects of involuntary attention depend on distractor interference and the adoption of a task set to resolve such stimulus competition. PMID:24970921
Gallagher, Anthony G; Seymour, Neal E; Jordan-Black, Julie-Anne; Bunting, Brendan P; McGlade, Kieran; Satava, Richard Martin
2013-06-01
We assessed the effectiveness of ToT from VR laparoscopic simulation training in 2 studies. In a second study, we also assessed the TER. ToT is a detectable performance improvement between equivalent groups, and TER is the observed percentage performance differences between 2 matched groups carrying out the same task but with 1 group pretrained on VR simulation. Concordance between simulated and in-vivo procedure performance was also assessed. Prospective, randomized, and blinded. In Study 1, experienced laparoscopic surgeons (n = 195) and in Study 2 laparoscopic novices (n = 30) were randomized to either train on VR simulation before completing an equivalent real-world task or complete the real-world task only. Experienced laparoscopic surgeons and novices who trained on the simulator performed significantly better than their controls, thus demonstrating ToT. Their performance showed a TER between 7% and 42% from the virtual to the real tasks. Simulation training impacted most on procedural error reduction in both studies (32-42%). The correlation observed between the VR and real-world task performance was r > 0·96 (Study 2). VR simulation training offers a powerful and effective platform for training safer skills.
Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System.
Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama
2017-01-01
Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one's center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one's individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one's overall performance in balance-related tasks belonging to different difficulty levels.
Impact of Time-of-Flight on PET Tumor Detection
Kadrmas, Dan J.; Casey, Michael E.; Conti, Maurizio; Jakoby, Bjoern W.; Lois, Cristina; Townsend, David W.
2009-01-01
Time-of-flight (TOF) PET uses very fast detectors to improve localization of events along coincidence lines-of-response. This information is then utilized to improve the tomographic reconstruction. This work evaluates the effect of TOF upon an observer's performance for detecting and localizing focal warm lesions in noisy PET images. Methods An advanced anthropomorphic lesion-detection phantom was scanned 12 times over 3 days on a prototype TOF PET/CT scanner (Siemens Medical Solutions). The phantom was devised to mimic whole-body oncologic 18F-FDG PET imaging, and a number of spheric lesions (diameters 6–16 mm) were distributed throughout the phantom. The data were reconstructed with the baseline line-of-response ordered-subsets expectation-maximization algorithm, with the baseline algorithm plus point spread function model (PSF), baseline plus TOF, and with both PSF+TOF. The lesion-detection performance of each reconstruction was compared and ranked using localization receiver operating characteristics (LROC) analysis with both human and numeric observers. The phantom results were then subjectively compared to 2 illustrative patient scans reconstructed with PSF and with PSF+TOF. Results Inclusion of TOF information provides a significant improvement in the area under the LROC curve compared to the baseline algorithm without TOF data (P = 0.002), providing a degree of improvement similar to that obtained with the PSF model. Use of both PSF+TOF together provided a cumulative benefit in lesion-detection performance, significantly outperforming either PSF or TOF alone (P < 0.002). Example patient images reflected the same image characteristics that gave rise to improved performance in the phantom data. Conclusion Time-of-flight PET provides a significant improvement in observer performance for detecting focal warm lesions in a noisy background. These improvements in image quality can be expected to improve performance for the clinical tasks of detecting lesions and staging disease. Further study in a large clinical population is warranted to assess the benefit of TOF for various patient sizes and count levels, and to demonstrate effective performance in the clinical environment. PMID:19617317
NASA Astrophysics Data System (ADS)
Alvarez-Llamas, C.; Pisonero, J.; Bordel, N.
2016-09-01
Direct solid determination of trace amounts of fluorine using Laser-Induced Breakdown Spectroscopy (LIBS) is a challenging task due to the low excitation efficiency of this element. Several strategies have been developed to improve the detection capabilities, including the use of LIBS in a He atmosphere to enhance the signal to background ratios of F atomic emission lines. An alternative method is based on the detection of the molecular compounds that are formed with fluorine in the LIBS plasma. In this work, the detection of CaF molecular emission bands is investigated to improve the analytical capabilities of atmospheric air LIBS for the determination of fluorine traces in solid samples. In particular, Cu matrix samples containing different fluorine concentration (between 50 and 600 μg/g), and variable amounts of Ca, are used to demonstrate the linear relationships between CaF emission signal and F concentration. Limits of detection for fluorine are improved by more than 1 order of magnitude using CaF emission bands versus F atomic lines, in atmospheric-air LIBS. Furthermore, a toothpaste powder sample is used to validate this analytical method. Good agreement is observed between the nominal and the predicted fluorine mass-content.
Image patch-based method for automated classification and detection of focal liver lesions on CT
NASA Astrophysics Data System (ADS)
Safdari, Mustafa; Pasari, Raghav; Rubin, Daniel; Greenspan, Hayit
2013-03-01
We developed a method for automated classification and detection of liver lesions in CT images based on image patch representation and bag-of-visual-words (BoVW). BoVW analysis has been extensively used in the computer vision domain to analyze scenery images. In the current work we discuss how it can be used for liver lesion classification and detection. The methodology includes building a dictionary for a training set using local descriptors and representing a region in the image using a visual word histogram. Two tasks are described: a classification task, for lesion characterization, and a detection task in which a scan window moves across the image and is determined to be normal liver tissue or a lesion. Data: In the classification task 73 CT images of liver lesions were used, 25 images having cysts, 24 having metastasis and 24 having hemangiomas. A radiologist circumscribed the lesions, creating a region of interest (ROI), in each of the images. He then provided the diagnosis, which was established either by biopsy or clinical follow-up. Thus our data set comprises 73 images and 73 ROIs. In the detection task, a radiologist drew ROIs around each liver lesion and two regions of normal liver, for a total of 159 liver lesion ROIs and 146 normal liver ROIs. The radiologist also demarcated the liver boundary. Results: Classification results of more than 95% were obtained. In the detection task, F1 results obtained is 0.76. Recall is 84%, with precision of 73%. Results show the ability to detect lesions, regardless of shape.
NASA Astrophysics Data System (ADS)
Li, Miao; Lin, Zaiping; Long, Yunli; An, Wei; Zhou, Yiyu
2016-05-01
The high variability of target size makes small target detection in Infrared Search and Track (IRST) a challenging task. A joint detection and tracking method based on block-wise sparse decomposition is proposed to address this problem. For detection, the infrared image is divided into overlapped blocks, and each block is weighted on the local image complexity and target existence probabilities. Target-background decomposition is solved by block-wise inexact augmented Lagrange multipliers. For tracking, label multi-Bernoulli (LMB) tracker tracks multiple targets taking the result of single-frame detection as input, and provides corresponding target existence probabilities for detection. Unlike fixed-size methods, the proposed method can accommodate size-varying targets, due to no special assumption for the size and shape of small targets. Because of exact decomposition, classical target measurements are extended and additional direction information is provided to improve tracking performance. The experimental results show that the proposed method can effectively suppress background clutters, detect and track size-varying targets in infrared images.
Vanmarcke, Steven; Calders, Filip; Wagemans, Johan
2016-01-01
Although categorization can take place at different levels of abstraction, classic studies on semantic labeling identified the basic level, for example, dog, as entry point for categorization. Ultrarapid categorization tasks have contradicted these findings, indicating that participants are faster at detecting superordinate-level information, for example, animal, in a complex visual image. We argue that both seemingly contradictive findings can be reconciled within the framework of parallel distributed processing and its successor Leabra (Local, Error-driven and Associative, Biologically Realistic Algorithm). The current study aimed at verifying this prediction in an ultrarapid categorization task with a dynamically changing presentation time (PT) for each briefly presented object, followed by a perceptual mask. Furthermore, we manipulated two defining task variables: level of categorization (basic vs. superordinate categorization) and object presentation mode (object-in-isolation vs. object-in-context). In contradiction with previous ultrarapid categorization research, focusing on reaction time, we used accuracy as our main dependent variable. Results indicated a consistent superordinate processing advantage, coinciding with an overall improvement in performance with longer PT and a significantly more accurate detection of objects in isolation, compared with objects in context, at lower stimulus PT. This contextual disadvantage disappeared when PT increased, indicating that figure-ground separation with recurrent processing is vital for meaningful contextual processing to occur.
Calders, Filip; Wagemans, Johan
2016-01-01
Although categorization can take place at different levels of abstraction, classic studies on semantic labeling identified the basic level, for example, dog, as entry point for categorization. Ultrarapid categorization tasks have contradicted these findings, indicating that participants are faster at detecting superordinate-level information, for example, animal, in a complex visual image. We argue that both seemingly contradictive findings can be reconciled within the framework of parallel distributed processing and its successor Leabra (Local, Error-driven and Associative, Biologically Realistic Algorithm). The current study aimed at verifying this prediction in an ultrarapid categorization task with a dynamically changing presentation time (PT) for each briefly presented object, followed by a perceptual mask. Furthermore, we manipulated two defining task variables: level of categorization (basic vs. superordinate categorization) and object presentation mode (object-in-isolation vs. object-in-context). In contradiction with previous ultrarapid categorization research, focusing on reaction time, we used accuracy as our main dependent variable. Results indicated a consistent superordinate processing advantage, coinciding with an overall improvement in performance with longer PT and a significantly more accurate detection of objects in isolation, compared with objects in context, at lower stimulus PT. This contextual disadvantage disappeared when PT increased, indicating that figure-ground separation with recurrent processing is vital for meaningful contextual processing to occur. PMID:27803794
Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng
2016-01-01
Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.
Blur Detection is Unaffected by Cognitive Load.
Loschky, Lester C; Ringer, Ryan V; Johnson, Aaron P; Larson, Adam M; Neider, Mark; Kramer, Arthur F
2014-03-01
Blur detection is affected by retinal eccentricity, but is it also affected by attentional resources? Research showing effects of selective attention on acuity and contrast sensitivity suggests that allocating attention should increase blur detection. However, research showing that blur affects selection of saccade targets suggests that blur detection may be pre-attentive. To investigate this question, we carried out experiments in which viewers detected blur in real-world scenes under varying levels of cognitive load manipulated by the N -back task. We used adaptive threshold estimation to measure blur detection thresholds at 0°, 3°, 6°, and 9° eccentricity. Participants carried out blur detection as a single task, a single task with to-be-ignored letters, or an N-back task with four levels of cognitive load (0, 1, 2, or 3-back). In Experiment 1, blur was presented gaze-contingently for occasional single eye fixations while participants viewed scenes in preparation for an easy picture recognition memory task, and the N -back stimuli were presented auditorily. The results for three participants showed a large effect of retinal eccentricity on blur thresholds, significant effects of N -back level on N -back performance, scene recognition memory, and gaze dispersion, but no effect of N -back level on blur thresholds. In Experiment 2, we replicated Experiment 1 but presented the images tachistoscopically for 200 ms (half with, half without blur), to determine whether gaze-contingent blur presentation in Experiment 1 had produced attentional capture by blur onset during a fixation, thus eliminating any effect of cognitive load on blur detection. The results with three new participants replicated those of Experiment 1, indicating that the use of gaze-contingent blur presentation could not explain the lack of effect of cognitive load on blur detection. Thus, apparently blur detection in real-world scene images is unaffected by attentional resources, as manipulated by the cognitive load produced by the N -back task.
Real-Time Performance Feedback for the Manual Control of Spacecraft
NASA Astrophysics Data System (ADS)
Karasinski, John Austin
Real-time performance metrics were developed to quantify workload, situational awareness, and manual task performance for use as visual feedback to pilots of aerospace vehicles. Results from prior lunar lander experiments with variable levels of automation were replicated and extended to provide insights for the development of real-time metrics. Increased levels of automation resulted in increased flight performance, lower workload, and increased situational awareness. Automated Speech Recognition (ASR) was employed to detect verbal callouts as a limited measure of subjects' situational awareness. A one-dimensional manual tracking task and simple instructor-model visual feedback scheme was developed. This feedback was indicated to the operator by changing the color of a guidance element on the primary flight display, similar to how a flight instructor points out elements of a display to a student pilot. Experiments showed that for this low-complexity task, visual feedback did not change subject performance, but did increase the subjects' measured workload. Insights gained from these experiments were applied to a Simplified Aid for EVA Rescue (SAFER) inspection task. The effects of variations of an instructor-model performance-feedback strategy on human performance in a novel SAFER inspection task were investigated. Real-time feedback was found to have a statistically significant effect of improving subject performance and decreasing workload in this complicated four degree of freedom manual control task with two secondary tasks.
Quantifying Phishing Susceptibility for Detection and Behavior Decisions.
Canfield, Casey Inez; Fischhoff, Baruch; Davis, Alex
2016-12-01
We use signal detection theory to measure vulnerability to phishing attacks, including variation in performance across task conditions. Phishing attacks are difficult to prevent with technology alone, as long as technology is operated by people. Those responsible for managing security risks must understand user decision making in order to create and evaluate potential solutions. Using a scenario-based online task, we performed two experiments comparing performance on two tasks: detection, deciding whether an e-mail is phishing, and behavior, deciding what to do with an e-mail. In Experiment 1, we manipulated the order of the tasks and notification of the phishing base rate. In Experiment 2, we varied which task participants performed. In both experiments, despite exhibiting cautious behavior, participants' limited detection ability left them vulnerable to phishing attacks. Greater sensitivity was positively correlated with confidence. Greater willingness to treat e-mails as legitimate was negatively correlated with perceived consequences from their actions and positively correlated with confidence. These patterns were robust across experimental conditions. Phishing-related decisions are sensitive to individuals' detection ability, response bias, confidence, and perception of consequences. Performance differs when people evaluate messages or respond to them but not when their task varies in other ways. Based on these results, potential interventions include providing users with feedback on their abilities and information about the consequences of phishing, perhaps targeting those with the worst performance. Signal detection methods offer system operators quantitative assessments of the impacts of interventions and their residual vulnerability. © 2016, Human Factors and Ergonomics Society.
Can hip and knee kinematics be improved by eliminating thigh markers?
Schulz, Brian W.; Kimmel, Wendy L.
2017-01-01
Background Marker sets developed for gait analysis are often applied to more dynamic tasks with little or no validation, despite known complications of soft tissue artifact. Methods This study presents a comparison of hip and knee kinematics as calculated by five concurrently-worn tracking marker sets during eight different tasks. The first three marker sets were based on Helen Hayes but used 1) proximal thigh wands, 2) distal thigh wands, and 3) patellar markers instead of thigh wands. The remaining two marker sets used rigid clusters on the 4) thighs and shanks and 5) only shanks. Pelvis and foot segments were shared by all marker sets. The first three tasks were maximal femoral rotations using different knee and hip positions to quantify the ability of each marker set to capture this motion. The remaining five tasks were walking, walking a 1m radius circle, running, jumping, and lunging. Findings In general, few and small differences in knee and hip flexion-extension were observed between marker sets, while many and large differences in adduction-abduction and external-internal rotations were observed. The shank-only tracking marker set was capable of detecting the greatest hip external-internal rotation, yet only did so during dynamic tasks where greater hip axial motions would be expected. All data are available as supplementary material. Interpretation Marker set selection is critical to non-sagittal hip and knee motions. The shank-only tracking marker set presented here is a viable alternative that may improve knee and hip kinematics by eliminating errors from thigh soft tissue artifact. PMID:20493599
Mental workload while driving: effects on visual search, discrimination, and decision making.
Recarte, Miguel A; Nunes, Luis M
2003-06-01
The effects of mental workload on visual search and decision making were studied in real traffic conditions with 12 participants who drove an instrumented car. Mental workload was manipulated by having participants perform several mental tasks while driving. A simultaneous visual-detection and discrimination test was used as performance criteria. Mental tasks produced spatial gaze concentration and visual-detection impairment, although no tunnel vision occurred. According to ocular behavior analysis, this impairment was due to late detection and poor identification more than to response selection. Verbal acquisition tasks were innocuous compared with production tasks, and complex conversations, whether by phone or with a passenger, are dangerous for road safety.
The effects of bilingualism on conflict monitoring, cognitive control, and garden-path recovery.
Teubner-Rhodes, Susan E; Mishler, Alan; Corbett, Ryan; Andreu, Llorenç; Sanz-Torrent, Monica; Trueswell, John C; Novick, Jared M
2016-05-01
Bilinguals demonstrate benefits on non-linguistic tasks requiring cognitive control-the regulation of mental activity to resolve information-conflict during processing. This "bilingual advantage" has been attributed to the consistent management of two languages, yet it remains unknown if these benefits extend to sentence processing. In monolinguals, cognitive control helps detect and revise misinterpretations of sentence meaning. Here, we test if the bilingual advantage extends to parsing and interpretation by comparing bilinguals' and monolinguals' syntactic ambiguity resolution before and after practicing N-back, a non-syntactic cognitive-control task. Bilinguals outperformed monolinguals on a high-conflict but not a no-conflict version of N-back and on sentence comprehension, indicating that the advantage extends to language interpretation. Gains on N-back conflict trials also predicted comprehension improvements for ambiguous sentences, suggesting that the bilingual advantage emerges across tasks tapping shared cognitive-control procedures. Because the overall task benefits were observed for conflict and non-conflict trials, bilinguals' advantage may reflect increased cognitive flexibility. Copyright © 2016 Elsevier B.V. All rights reserved.
Daini, Roberta; Comparetti, Chiara M.; Ricciardelli, Paola
2014-01-01
Neuropsychological and neuroimaging studies have shown that facial recognition and emotional expressions are dissociable. However, it is unknown if a single system supports the processing of emotional and non-emotional facial expressions. We aimed to understand if individuals with impairment in face recognition from birth (congenital prosopagnosia, CP) can use non-emotional facial expressions to recognize a face as an already seen one, and thus, process this facial dimension independently from features (which are impaired in CP), and basic emotional expressions. To this end, we carried out a behavioral study in which we compared the performance of 6 CP individuals to that of typical development individuals, using upright and inverted faces. Four avatar faces with a neutral expression were presented in the initial phase. The target faces presented in the recognition phase, in which a recognition task was requested (2AFC paradigm), could be identical (neutral) to those of the initial phase or present biologically plausible changes to features, non-emotional expressions, or emotional expressions. After this task, a second task was performed, in which the participants had to detect whether or not the recognized face exactly matched the study face or showed any difference. The results confirmed the CPs' impairment in the configural processing of the invariant aspects of the face, but also showed a spared configural processing of non-emotional facial expression (task 1). Interestingly and unlike the non-emotional expressions, the configural processing of emotional expressions was compromised in CPs and did not improve their change detection ability (task 2). These new results have theoretical implications for face perception models since they suggest that, at least in CPs, non-emotional expressions are processed configurally, can be dissociated from other facial dimensions, and may serve as a compensatory strategy to achieve face recognition. PMID:25520643
Daini, Roberta; Comparetti, Chiara M; Ricciardelli, Paola
2014-01-01
Neuropsychological and neuroimaging studies have shown that facial recognition and emotional expressions are dissociable. However, it is unknown if a single system supports the processing of emotional and non-emotional facial expressions. We aimed to understand if individuals with impairment in face recognition from birth (congenital prosopagnosia, CP) can use non-emotional facial expressions to recognize a face as an already seen one, and thus, process this facial dimension independently from features (which are impaired in CP), and basic emotional expressions. To this end, we carried out a behavioral study in which we compared the performance of 6 CP individuals to that of typical development individuals, using upright and inverted faces. Four avatar faces with a neutral expression were presented in the initial phase. The target faces presented in the recognition phase, in which a recognition task was requested (2AFC paradigm), could be identical (neutral) to those of the initial phase or present biologically plausible changes to features, non-emotional expressions, or emotional expressions. After this task, a second task was performed, in which the participants had to detect whether or not the recognized face exactly matched the study face or showed any difference. The results confirmed the CPs' impairment in the configural processing of the invariant aspects of the face, but also showed a spared configural processing of non-emotional facial expression (task 1). Interestingly and unlike the non-emotional expressions, the configural processing of emotional expressions was compromised in CPs and did not improve their change detection ability (task 2). These new results have theoretical implications for face perception models since they suggest that, at least in CPs, non-emotional expressions are processed configurally, can be dissociated from other facial dimensions, and may serve as a compensatory strategy to achieve face recognition.
Gimmon, Yoav; Jacob, Grinshpon; Lenoble-Hoskovec, Constanze; Büla, Christophe; Melzer, Itshak
2013-01-01
Decline in gait stability has been associated with increased fall risk in older adults. Reliable and clinically feasible methods of gait instability assessment are needed. This study evaluated the relative and absolute reliability and concurrent validity of the testing procedure of the clinical version of the Narrow Path Walking Test (NPWT) under single task (ST) and dual task (DT) conditions. Thirty independent community-dwelling older adults (65-87 years) were tested twice. Participants were instructed to walk within the 6-m narrow path without stepping out. Trial time, number of steps, trial velocity, number of step errors, and number of cognitive task errors were determined. Intraclass correlation coefficients (ICCs) were calculated as indices of agreement, and a graphic approach called "mountain plot" was applied to help interpret the direction and magnitude of disagreements between testing procedures. Smallest detectable change and smallest real difference (SRD) were computed to determine clinically relevant improvement at group and individual levels, respectively. Concurrent validity was assessed using Performance Oriented Mobility Assessment Tool (POMA) and the Short Physical Performance Battery (SPPB). Test-retest agreement (ICC1,2) varied from 0.77 to 0.92 in ST and from 0.78 to 0.92 in DT conditions, with no apparent systematic differences between testing procedures demonstrated by the mountain plot graphs. Smallest detectable change and smallest real change were small for motor task performance and larger for cognitive errors. Significant correlations were observed for trial velocity and trial time with POMA and SPPB. The present results indicate that the NPWT testing procedure is highly reliable and reproducible. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Adaptation of Physiological and Cognitive Workload via Interactive Multi-modal Displays
2014-05-28
peer-reviewed journals (N/A for none) 09/07/2013 Received Paper 8.00 James Merlo, Joseph E. Mercado , Jan B.F. Van Erp, Peter A. Hancock. Improving...08, . : , Mr. Joseph Mercado , Mr. Timothy White, Dr. Peter Hancock. Effects of Cross-Modal Sensory Cueing Automation Failurein a Target Detection Task...fields:...... ...... ...... ...... ...... PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Discipline Joseph Mercado 0.50 Timothy White 0.50 1.00 2
Improvements in Space Surveillance Processing for Wide Field of View Optical Sensors
NASA Astrophysics Data System (ADS)
Sydney, P.; Wetterer, C.
2014-09-01
For more than a decade, an autonomous satellite tracking system at the Air Force Maui Optical and Supercomputing (AMOS) observatory has been generating routine astrometric measurements of Earth-orbiting Resident Space Objects (RSOs) using small commercial telescopes and sensors. Recent work has focused on developing an improved processing system, enhancing measurement performance and response while supporting other sensor systems and missions. This paper will outline improved techniques in scheduling, detection, astrometric and photometric measurements, and catalog maintenance. The processing system now integrates with Special Perturbation (SP) based astrodynamics algorithms, allowing covariance-based scheduling and more precise orbital estimates and object identification. A merit-based scheduling algorithm provides a global optimization framework to support diverse collection tasks and missions. The detection algorithms support a range of target tracking and camera acquisition rates. New comprehensive star catalogs allow for more precise astrometric and photometric calibrations including differential photometry for monitoring environmental changes. This paper will also examine measurement performance with varying tracking rates and acquisition parameters.
Task performance in astronomical adaptive optics
NASA Astrophysics Data System (ADS)
Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, J. C.; Caucci, Luca
2006-06-01
In objective or task-based assessment of image quality, figures of merit are defined by the performance of some specific observer on some task of scientific interest. This methodology is well established in medical imaging but is just beginning to be applied in astronomy. In this paper we survey the theory needed to understand the performance of ideal or ideal-linear (Hotelling) observers on detection tasks with adaptive-optical data. The theory is illustrated by discussing its application to detection of exoplanets from a sequence of short-exposure images.
Renewal of the Attentive Sensing Project
2006-02-07
decisions about target presence or absence, is denoted track before detect . We have investigated joint tracking and detection in the context of the foveal...computationally tractable bounds. 4 Task 2: Sensor Configuration for Tracking and Track Before Detect Task 2 consisted of investigation of attentive...strategy to multiple targets and to track before detect sensors. To apply principles developed in the context of foveal sensors to more immediately
Radar based autonomous sensor module
NASA Astrophysics Data System (ADS)
Styles, Tim
2016-10-01
Most surveillance systems combine camera sensors with other detection sensors that trigger an alert to a human operator when an object is detected. The detection sensors typically require careful installation and configuration for each application and there is a significant burden on the operator to react to each alert by viewing camera video feeds. A demonstration system known as Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT) has been developed to address these issues using Autonomous Sensor Modules (ASM) and a central High Level Decision Making Module (HLDMM) that can fuse the detections from multiple sensors. This paper describes the 24 GHz radar based ASM, which provides an all-weather, low power and license exempt solution to the problem of wide area surveillance. The radar module autonomously configures itself in response to tasks provided by the HLDMM, steering the transmit beam and setting range resolution and power levels for optimum performance. The results show the detection and classification performance for pedestrians and vehicles in an area of interest, which can be modified by the HLDMM without physical adjustment. The module uses range-Doppler processing for reliable detection of moving objects and combines Radar Cross Section and micro-Doppler characteristics for object classification. Objects are classified as pedestrian or vehicle, with vehicle sub classes based on size. Detections are reported only if the object is detected in a task coverage area and it is classified as an object of interest. The system was shown in a perimeter protection scenario using multiple radar ASMs, laser scanners, thermal cameras and visible band cameras. This combination of sensors enabled the HLDMM to generate reliable alerts with improved discrimination of objects and behaviours of interest.
Baltus, Alina; Vosskuhl, Johannes; Boetzel, Cindy; Herrmann, Christoph Siegfried
2018-05-13
Recent research provides evidence for a functional role of brain oscillations for perception. For example, auditory temporal resolution seems to be linked to individual gamma frequency of auditory cortex. Individual gamma frequency not only correlates with performance in between-channel gap detection tasks but can be modulated via auditory transcranial alternating current stimulation. Modulation of individual gamma frequency is accompanied by an improvement in gap detection performance. Aging changes electrophysiological frequency components and sensory processing mechanisms. Therefore, we conducted a study to investigate the link between individual gamma frequency and gap detection performance in elderly people using auditory transcranial alternating current stimulation. In a within-subject design, twelve participants were electrically stimulated with two individualized transcranial alternating current stimulation frequencies: 3 Hz above their individual gamma frequency (experimental condition) and 4 Hz below their individual gamma frequency (control condition) while they were performing a between-channel gap detection task. As expected, individual gamma frequencies correlated significantly with gap detection performance at baseline and in the experimental condition, transcranial alternating current stimulation modulated gap detection performance. In the control condition, stimulation did not modulate gap detection performance. In addition, in elderly, the effect of transcranial alternating current stimulation on auditory temporal resolution seems to be dependent on endogenous frequencies in auditory cortex: elderlies with slower individual gamma frequencies and lower auditory temporal resolution profit from auditory transcranial alternating current stimulation and show increased gap detection performance during stimulation. Our results strongly suggest individualized transcranial alternating current stimulation protocols for successful modulation of performance. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Molloy, Erin K; Meyerand, Mary E; Birn, Rasmus M
2014-02-01
Functional MRI blood oxygen level-dependent (BOLD) signal changes can be subtle, motivating the use of imaging parameters and processing strategies that maximize the temporal signal-to-noise ratio (tSNR) and thus the detection power of neuronal activity-induced fluctuations. Previous studies have shown that acquiring data at higher spatial resolutions results in greater percent BOLD signal changes, and furthermore that spatially smoothing higher resolution fMRI data improves tSNR beyond that of data originally acquired at a lower resolution. However, higher resolution images come at the cost of increased acquisition time, and the number of image volumes also influences detectability. The goal of our study is to determine how the detection power of neuronally induced BOLD fluctuations acquired at higher spatial resolutions and then spatially smoothed compares to data acquired at the lower resolutions with the same imaging duration. The number of time points acquired during a given amount of imaging time is a practical consideration given the limited ability of certain populations to lie still in the MRI scanner. We compare acquisitions at three different in-plane spatial resolutions (3.50×3.50mm(2), 2.33×2.33mm(2), 1.75×1.75mm(2)) in terms of their tSNR, contrast-to-noise ratio, and the power to detect both task-related activation and resting-state functional connectivity. The impact of SENSE acceleration, which speeds up acquisition time increasing the number of images collected, is also evaluated. Our results show that after spatially smoothing the data to the same intrinsic resolution, lower resolution acquisitions have a slightly higher detection power of task-activation in some, but not all, brain areas. There were no significant differences in functional connectivity as a function of resolution after smoothing. Similarly, the reduced tSNR of fMRI data acquired with a SENSE factor of 2 is offset by the greater number of images acquired, resulting in few significant differences in detection power of either functional activation or connectivity after spatial smoothing. © 2013.
Jacobi-Polishook, Talia; Shorer, Zamir; Melzer, Itshak
2009-05-15
To investigate the effects of Methylphenidate (MPH) on postural stability in attention deficit hyperactivity disorder (ADHD) children in single and dual task conditions. A randomized controlled double-blind study analyzing postural stability in 24 ADHD children before and after MPH vs. placebo treatments, in three task conditions: (1) Single task, standing still; (2) dual task, standing still performing a memory-attention demanding task; (3) standing still listening to music. MPH resulted in a significant improvement in postural stability during the dual task condition and while listening to music, with no equivalent improvement in placebo controls. MPH improves postural stability in ADHD, especially when an additional task is performed. This is probably due to enhanced attention abilities, thus contributing to improved balance control during performance of tasks that require attention. MPH remains to be studied as a potential drug treatment to improve balance control and physical functioning in other clinical populations.
Spatial selective attention in a complex auditory environment such as polyphonic music.
Saupe, Katja; Koelsch, Stefan; Rübsamen, Rudolf
2010-01-01
To investigate the influence of spatial information in auditory scene analysis, polyphonic music (three parts in different timbres) was composed and presented in free field. Each part contained large falling interval jumps in the melody and the task of subjects was to detect these events in one part ("target part") while ignoring the other parts. All parts were either presented from the same location (0 degrees; overlap condition) or from different locations (-28 degrees, 0 degrees, and 28 degrees or -56 degrees, 0 degrees, and 56 degrees in the azimuthal plane), with the target part being presented either at 0 degrees or at one of the right-sided locations. Results showed that spatial separation of 28 degrees was sufficient for a significant improvement in target detection (i.e., in the detection of large interval jumps) compared to the overlap condition, irrespective of the position (frontal or right) of the target part. A larger spatial separation of the parts resulted in further improvements only if the target part was lateralized. These data support the notion of improvement in the suppression of interfering signals with spatial sound source separation. Additionally, the data show that the position of the relevant sound source influences auditory performance.
Lin, Po-Han; Luck, Steven J.
2012-01-01
The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task – in which the to-be-remembered information consists of simple, briefly presented features – is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference. PMID:22403556
Lin, Po-Han; Luck, Steven J
2012-01-01
The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task - in which the to-be-remembered information consists of simple, briefly presented features - is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference.
Visu-Petra, George; Varga, Mihai; Miclea, Mircea; Visu-Petra, Laura
2013-01-01
The possibility to enhance the detection efficiency of the Concealed Information Test (CIT) by increasing executive load was investigated, using an interference design. After learning and executing a mock crime scenario, subjects underwent three deception detection tests: an RT-based CIT, an RT-based CIT plus a concurrent memory task (CITMem), and an RT-based CIT plus a concurrent set-shifting task (CITShift). The concealed information effect, consisting in increased RT and lower response accuracy for probe items compared to irrelevant items, was evidenced across all three conditions. The group analyses indicated a larger difference between RTs to probe and irrelevant items in the dual-task conditions, but this difference was not translated in a significantly increased detection efficiency at an individual level. Signal detection parameters based on the comparison with a simulated innocent group showed accurate discrimination for all conditions. Overall response accuracy on the CITMem was highest and the difference between response accuracy to probes and irrelevants was smallest in this condition. Accuracy on the concurrent tasks (Mem and Shift) was high, and responses on these tasks were significantly influenced by CIT stimulus type (probes vs. irrelevants). The findings are interpreted in relation to the cognitive load/dual-task interference literature, generating important insights for research on the involvement of executive functions in deceptive behavior. PMID:23543918
Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network.
Li, Yuexiang; Shen, Linlin
2018-02-11
Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. In this paper, we proposed two deep learning methods to address three main tasks emerging in the area of skin lesion image processing, i.e., lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. The proposed deep learning frameworks were evaluated on the ISIC 2017 dataset. Experimental results show the promising accuracies of our frameworks, i.e., 0.753 for task 1, 0.848 for task 2 and 0.912 for task 3 were achieved.
Flexibility in data interpretation: effects of representational format
Braithwaite, David W.; Goldstone, Robert L.
2013-01-01
Graphs and tables differentially support performance on specific tasks. For tasks requiring reading off single data points, tables are as good as or better than graphs, while for tasks involving relationships among data points, graphs often yield better performance. However, the degree to which graphs and tables support flexibility across a range of tasks is not well-understood. In two experiments, participants detected main and interaction effects in line graphs and tables of bivariate data. Graphs led to more efficient performance, but also lower flexibility, as indicated by a larger discrepancy in performance across tasks. In particular, detection of main effects of variables represented in the graph legend was facilitated relative to detection of main effects of variables represented in the x-axis. Graphs may be a preferable representational format when the desired task or analytical perspective is known in advance, but may also induce greater interpretive bias than tables, necessitating greater care in their use and design. PMID:24427145
Cross-modal cueing effects of visuospatial attention on conscious somatosensory perception.
Doruk, Deniz; Chanes, Lorena; Malavera, Alejandra; Merabet, Lotfi B; Valero-Cabré, Antoni; Fregni, Felipe
2018-04-01
The impact of visuospatial attention on perception with supraliminal stimuli and stimuli at the threshold of conscious perception has been previously investigated. In this study, we assess the cross-modal effects of visuospatial attention on conscious perception for near-threshold somatosensory stimuli applied to the face. Fifteen healthy participants completed two sessions of a near-threshold cross-modality cue-target discrimination/conscious detection paradigm. Each trial began with an endogenous visuospatial cue that predicted the location of a weak near-threshold electrical pulse delivered to the right or left cheek with high probability (∼75%). Participants then completed two tasks: first, a forced-choice somatosensory discrimination task (felt once or twice?) and then, a somatosensory conscious detection task (did you feel the stimulus and, if yes, where (left/right)?). Somatosensory discrimination was evaluated with the response reaction times of correctly detected targets, whereas the somatosensory conscious detection was quantified using perceptual sensitivity (d') and response bias (beta). A 2 × 2 repeated measures ANOVA was used for statistical analysis. In the somatosensory discrimination task (1 st task), participants were significantly faster in responding to correctly detected targets (p < 0.001). In the somatosensory conscious detection task (2 nd task), a significant effect of visuospatial attention on response bias (p = 0.008) was observed, suggesting that participants had a less strict criterion for stimuli preceded by spatially valid than invalid visuospatial cues. We showed that spatial attention has the potential to modulate the discrimination and the conscious detection of near-threshold somatosensory stimuli as measured, respectively, by a reduction of reaction times and a shift in response bias toward less conservative responses when the cue predicted stimulus location. A shift in response bias indicates possible effects of spatial attention on internal decision processes. The lack of significant results in perceptual sensitivity (d') could be due to weaker effects of endogenous attention on perception.
Horvath, G; Liszli, P; Kekesi, G; Büki, A; Benedek, G
2017-02-01
The rodent tasks with food rewards are useful methods to evaluate memory functions, including hole-board and corridor tests. The AMBITUS system (a square corridor with several food rewards), as a combination of these tests, was developed for the investigation of a variety of parameters associated with exploration and cognitive performance in rodents. Experiments were performed to characterize these behaviors in healthy rats and a new "schizophrenia-like" rat substrain with impaired learning ability to reveal the reliability in tests related to these functions. A square corridor was constructed with equally spaced sites along each wall (4 inside and 4 outside) resulting in 16 side-boxes for food rewards. Photocells at each box recorded the visits into the side-boxes (as exploratory activity), while the eating parameters were obtained from video records. The animals were exposed to two types of tasks repeatedly in two series: all (16) or only the inside (8) boxes (Task 1 or Task 2, respectively) were baited. Most of the rats acquired Task 1, and their performance improved by repetition, but the new substrain showed decreased exploration and learning capacity. The introduction of Task 2 caused prompt preference of the baited inner side-boxes, and gradually improved working and reference memory during the trials. The manual and automated scoring of the visits into the side-boxes showed significant (r=0.97) correlation. The results proved that healthy animals could perform the simple tasks in the square corridor after a few repetitions. The semi-automated AMBITUS system might be appropriate to detect cognitive flexibility after different manipulations, and it provides immediate, online assessment of exploratory behavior of a large number of animals within a short period of time, and it reduces the possibility of experimenter bias. Copyright © 2016 Elsevier Inc. All rights reserved.
Analog Computer-Aided Detection (CAD) information can be more effective than binary marks
Cunningham, Corbin A.; Drew, Trafton; Wolfe, Jeremy M.
2017-01-01
In socially important visual search tasks such as baggage screening and diagnostic radiology, experts miss more targets than is desirable. Computer Aided Detection (CAD) programs have been developed specifically to help improve performance in these professional search tasks. For example, in breast cancer screening, many CAD systems are capable of detecting approximately 90% of breast cancer, with approximately 0.5 false positive detections per image. Nevertheless, benefits of CAD in clinical settings tend to be small (Birdwell, 2009) or even absent (Meziane et al., 2011; Philpotts, 2009). The marks made by a CAD system can be “Binary”, giving the same signal to any location where the signal is above some threshold. Alternatively, a CAD system present an Analog signal that reflected strength of the signal at a location. In the experiments reported here, we compare analog and binary CAD presentations using non-expert observers and artificial stimuli defined by two noisy signals: a visible color signal and an "invisible" signal that informed our simulated CAD system. We found that analog CAD generally yielded better overall performance than binary CAD. The analog benefit is similar at high and low target prevalence. Our data suggest that the form of the CAD signal can directly influence performance. Analog CAD may allow the computer to be more helpful to the searcher. PMID:27928658
NASA Astrophysics Data System (ADS)
Chou, Cheng-Ying; Anastasio, Mark A.
2016-04-01
In propagation-based X-ray phase-contrast (PB XPC) imaging, the measured image contains a mixture of absorption- and phase-contrast. To obtain separate images of the projected absorption and phase (i.e., refractive) properties of a sample, phase retrieval methods can be employed. It has been suggested that phase-retrieval can always improve image quality in PB XPC imaging. However, when objective (task-based) measures of image quality are employed, this is not necessarily true and phase retrieval can be detrimental. In this work, signal detection theory is utilized to quantify the performance of a Hotelling observer (HO) for detecting a known signal in a known background. Two cases are considered. In the first case, the HO acts directly on the measured intensity data. In the second case, the HO acts on either the retrieved phase or absorption image. We demonstrate that the performance of the HO is superior when acting on the measured intensity data. The loss of task-specific information induced by phase-retrieval is quantified by computing the efficiency of the HO as the ratio of the test statistic signal-to-noise ratio (SNR) for the two cases. The effect of the system geometry on this efficiency is systematically investigated. Our findings confirm that phase-retrieval can impair signal detection performance in XPC imaging.
Crack Damage Detection Method via Multiple Visual Features and Efficient Multi-Task Learning Model.
Wang, Baoxian; Zhao, Weigang; Gao, Po; Zhang, Yufeng; Wang, Zhe
2018-06-02
This paper proposes an effective and efficient model for concrete crack detection. The presented work consists of two modules: multi-view image feature extraction and multi-task crack region detection. Specifically, multiple visual features (such as texture, edge, etc.) of image regions are calculated, which can suppress various background noises (such as illumination, pockmark, stripe, blurring, etc.). With the computed multiple visual features, a novel crack region detector is advocated using a multi-task learning framework, which involves restraining the variability for different crack region features and emphasizing the separability between crack region features and complex background ones. Furthermore, the extreme learning machine is utilized to construct this multi-task learning model, thereby leading to high computing efficiency and good generalization. Experimental results of the practical concrete images demonstrate that the developed algorithm can achieve favorable crack detection performance compared with traditional crack detectors.
Fisun, A Ia
2015-01-01
Presented the directions of activity of the medical service in the past year, including improving the legal framework, the optimization of medical management software, improving combat and mobilization readiness of units of the army, the optimization of therapeutic and preventive activities, implementation of innovative technologies, increasing mobility of units and subunits, their level of equipping with modern samples of property, training of qualified personnel, intensify research and etc. Analyzed and formulated directions of development of military medicine in 2015, including improvement of combat and mobilization readiness of the management body, military and medical organizations and departments, improving the legal framework of the military health care, holding among the troops interventions for the prevention morbidity of personnel by pneumonia and meningitis, work with commanders at all levels to ensure the preservation and strengthening of health of servicemen, improving of the system of early and active detection of diseases in the military, providing a guaranteed level of care to all contingent Ministry of Defense, improving the quality and accessibility of sanatorium treatment, maintaining constant readiness of medical special forces to carry out tasks for the purpose, improvement of professional training of personnel of the medical service, providing qualitative preparation of government medical service to participate in the training of troops, implementation of unexpected problems, equipping of army medical service with modern medical equipment finishing of the construction and renovation of military medical organizations facilities, improvement of social protection of personnel and many others.
Ferreira Junior, José Raniery; Oliveira, Marcelo Costa; de Azevedo-Marques, Paulo Mazzoncini
2016-12-01
Lung cancer is the leading cause of cancer-related deaths in the world, and its main manifestation is pulmonary nodules. Detection and classification of pulmonary nodules are challenging tasks that must be done by qualified specialists, but image interpretation errors make those tasks difficult. In order to aid radiologists on those hard tasks, it is important to integrate the computer-based tools with the lesion detection, pathology diagnosis, and image interpretation processes. However, computer-aided diagnosis research faces the problem of not having enough shared medical reference data for the development, testing, and evaluation of computational methods for diagnosis. In order to minimize this problem, this paper presents a public nonrelational document-oriented cloud-based database of pulmonary nodules characterized by 3D texture attributes, identified by experienced radiologists and classified in nine different subjective characteristics by the same specialists. Our goal with the development of this database is to improve computer-aided lung cancer diagnosis and pulmonary nodule detection and classification research through the deployment of this database in a cloud Database as a Service framework. Pulmonary nodule data was provided by the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), image descriptors were acquired by a volumetric texture analysis, and database schema was developed using a document-oriented Not only Structured Query Language (NoSQL) approach. The proposed database is now with 379 exams, 838 nodules, and 8237 images, 4029 of them are CT scans and 4208 manually segmented nodules, and it is allocated in a MongoDB instance on a cloud infrastructure.
Testing the Limits of Optimizing Dual-Task Performance in Younger and Older Adults
Strobach, Tilo; Frensch, Peter; Müller, Herrmann Josef; Schubert, Torsten
2012-01-01
Impaired dual-task performance in younger and older adults can be improved with practice. Optimal conditions even allow for a (near) elimination of this impairment in younger adults. However, it is unknown whether such (near) elimination is the limit of performance improvements in older adults. The present study tests this limit in older adults under conditions of (a) a high amount of dual-task training and (b) training with simplified component tasks in dual-task situations. The data showed that a high amount of dual-task training in older adults provided no evidence for an improvement of dual-task performance to the optimal dual-task performance level achieved by younger adults. However, training with simplified component tasks in dual-task situations exclusively in older adults provided a similar level of optimal dual-task performance in both age groups. Therefore through applying a testing the limits approach, we demonstrated that older adults improved dual-task performance to the same level as younger adults at the end of training under very specific conditions. PMID:22408613
Capistran, Julie; Martini, Rose
2016-10-01
Cognitive Orientation to daily Occupational Performance (CO-OP) approach has been shown to be effective for improving the performance of tasks worked on in therapy and the use of cognitive strategies. No study to date seems to have explored its effectiveness for improving performance of untrained tasks (inter-task transfer) in children with Developmental Coordination Disorder (DCD). This study aimed to determine whether CO-OP leads to improved performance in an untrained task. A single-subject design with multiple baselines across skills was adopted, with three replications. Four children with DCD (7-12years) received 10 sessions of CO-OP intervention where each child worked on three tasks during therapy sessions and a fourth task was identified, but not worked on, to verify inter-task transfer. Task performance was rated over four phases (baseline, intervention, post-intervention, follow-up) using the Performance Quality Rating Scale (PQRS-OD). Graphed data was statistically analyzed using a two or three standard deviation band method. Significant improvement was obtained for 11 of 12 tasks worked on during therapy and for two of the four untrained tasks. These results indicate that the effectiveness of CO-OP to improve untrained tasks in children merit further exploration. Copyright © 2016 Elsevier B.V. All rights reserved.
Anisotropic-Scale Junction Detection and Matching for Indoor Images.
Xue, Nan; Xia, Gui-Song; Bai, Xiang; Zhang, Liangpei; Shen, Weiming
Junctions play an important role in characterizing local geometrical structures of images, and the detection of which is a longstanding but challenging task. Existing junction detectors usually focus on identifying the location and orientations of junction branches while ignoring their scales, which, however, contain rich geometries of images. This paper presents a novel approach for junction detection and characterization, which especially exploits the locally anisotropic geometries of a junction and estimates its scales by relying on an a-contrario model. The output junctions are with anisotropic scales, saying that a scale parameter is associated with each branch of a junction and are thus named as anisotropic-scale junctions (ASJs). We then apply the new detected ASJs for matching indoor images, where there are dramatic changes of viewpoints and the detected local visual features, e.g., key-points, are usually insufficient and lack distinctive ability. We propose to use the anisotropic geometries of our junctions to improve the matching precision of indoor images. The matching results on sets of indoor images demonstrate that our approach achieves the state-of-the-art performance on indoor image matching.Junctions play an important role in characterizing local geometrical structures of images, and the detection of which is a longstanding but challenging task. Existing junction detectors usually focus on identifying the location and orientations of junction branches while ignoring their scales, which, however, contain rich geometries of images. This paper presents a novel approach for junction detection and characterization, which especially exploits the locally anisotropic geometries of a junction and estimates its scales by relying on an a-contrario model. The output junctions are with anisotropic scales, saying that a scale parameter is associated with each branch of a junction and are thus named as anisotropic-scale junctions (ASJs). We then apply the new detected ASJs for matching indoor images, where there are dramatic changes of viewpoints and the detected local visual features, e.g., key-points, are usually insufficient and lack distinctive ability. We propose to use the anisotropic geometries of our junctions to improve the matching precision of indoor images. The matching results on sets of indoor images demonstrate that our approach achieves the state-of-the-art performance on indoor image matching.
Chan, Louis K H; Hayward, William G
2009-02-01
In feature integration theory (FIT; A. Treisman & S. Sato, 1990), feature detection is driven by independent dimensional modules, and other searches are driven by a master map of locations that integrates dimensional information into salience signals. Although recent theoretical models have largely abandoned this distinction, some observed results are difficult to explain in its absence. The present study measured dimension-specific performance during detection and localization, tasks that require operation of dimensional modules and the master map, respectively. Results showed a dissociation between tasks in terms of both dimension-switching costs and cross-dimension attentional capture, reflecting a dimension-specific nature for detection tasks and a dimension-general nature for localization tasks. In a feature-discrimination task, results precluded an explanation based on response mode. These results are interpreted to support FIT's postulation that different mechanisms are involved in parallel and focal attention searches. This indicates that the FIT architecture should be adopted to explain the current results and that a variety of visual attention findings can be addressed within this framework. Copyright 2009 APA, all rights reserved.
Visual performance on detection tasks with double-targets of the same and different difficulty.
Chan, Alan H S; Courtney, Alan J; Ma, C W
2002-10-20
This paper reports a study of measurement of horizontal visual sensitivity limits for 16 subjects in single-target and double-targets detection tasks. Two phases of tests were conducted in the double-targets task; targets of the same difficulty were tested in phase one while targets of different difficulty were tested in phase two. The range of sensitivity for the double-targets test was found to be smaller than that for single-target in both the same and different target difficulty cases. The presence of another target was found to affect performance to a marked degree. Interference effect of the difficult target on detection of the easy one was greater than that of the easy one on the detection of the difficult one. Performance decrement was noted when correct percentage detection was plotted against eccentricity of target in both the single-target and double-targets tests. Nevertheless, the non-significant correlation found between the performance for the two tasks demonstrated that it was impossible to predict quantitatively ability for detection of double targets from the data for single targets. This indicated probable problems in generalizing data for single target visual lobes to those for multiple targets. Also lobe area values obtained from measurements using a single-target task cannot be applied in a mathematical model for situations with multiple occurrences of targets.
Ventral and Dorsal Visual Stream Contributions to the Perception of Object Shape and Object Location
Zachariou, Valentinos; Klatzky, Roberta; Behrmann, Marlene
2017-01-01
Growing evidence suggests that the functional specialization of the two cortical visual pathways may not be as distinct as originally proposed. Here, we explore possible contributions of the dorsal “where/how” visual stream to shape perception and, conversely, contributions of the ventral “what” visual stream to location perception in human adults. Participants performed a shape detection task and a location detection task while undergoing fMRI. For shape detection, comparable BOLD activation in the ventral and dorsal visual streams was observed, and the magnitude of this activation was correlated with behavioral performance. For location detection, cortical activation was significantly stronger in the dorsal than ventral visual pathway and did not correlate with the behavioral outcome. This asymmetry in cortical profile across tasks is particularly noteworthy given that the visual input was identical and that the tasks were matched for difficulty in performance. We confirmed the asymmetry in a subsequent psychophysical experiment in which participants detected changes in either object location or shape, while ignoring the other, task-irrelevant dimension. Detection of a location change was slowed by an irrelevant shape change matched for difficulty, but the reverse did not hold. We conclude that both ventral and dorsal visual streams contribute to shape perception, but that location processing appears to be essentially a function of the dorsal visual pathway. PMID:24001005
Word Recognition and Learning: Effects of Hearing Loss and Amplification Feature
Stewart, Elizabeth C.; Willman, Amanda P.; Odgear, Ian S.
2017-01-01
Two amplification features were examined using auditory tasks that varied in stimulus familiarity. It was expected that the benefits of certain amplification features would increase as the familiarity with the stimuli decreased. A total of 20 children and 15 adults with normal hearing as well as 21 children and 17 adults with mild to severe hearing loss participated. Three models of ear-level devices were selected based on the quality of the high-frequency amplification or the digital noise reduction (DNR) they provided. The devices were fitted to each participant and used during testing only. Participants completed three tasks: (a) word recognition, (b) repetition and lexical decision of real and nonsense words, and (c) novel word learning. Performance improved significantly with amplification for both the children and the adults with hearing loss. Performance improved further with wideband amplification for the children more than for the adults. In steady-state noise and multitalker babble, performance decreased for both groups with little to no benefit from amplification or from the use of DNR. When compared with the listeners with normal hearing, significantly poorer performance was observed for both the children and adults with hearing loss on all tasks with few exceptions. Finally, analysis of across-task performance confirmed the hypothesis that benefit increased as the familiarity of the stimuli decreased for wideband amplification but not for DNR. However, users who prefer DNR for listening comfort are not likely to jeopardize their ability to detect and learn new information when using this feature. PMID:29169314
Can spectro-temporal complexity explain the autistic pattern of performance on auditory tasks?
Samson, Fabienne; Mottron, Laurent; Jemel, Boutheina; Belin, Pascal; Ciocca, Valter
2006-01-01
To test the hypothesis that level of neural complexity explain the relative level of performance and brain activity in autistic individuals, available behavioural, ERP and imaging findings related to the perception of increasingly complex auditory material under various processing tasks in autism were reviewed. Tasks involving simple material (pure tones) and/or low-level operations (detection, labelling, chord disembedding, detection of pitch changes) show a superior level of performance and shorter ERP latencies. In contrast, tasks involving spectrally- and temporally-dynamic material and/or complex operations (evaluation, attention) are poorly performed by autistics, or generate inferior ERP activity or brain activation. Neural complexity required to perform auditory tasks may therefore explain pattern of performance and activation of autistic individuals during auditory tasks.
Clustering microcalcifications techniques in digital mammograms
NASA Astrophysics Data System (ADS)
Díaz, Claudia. C.; Bosco, Paolo; Cerello, Piergiorgio
2008-11-01
Breast cancer has become a serious public health problem around the world. However, this pathology can be treated if it is detected in early stages. This task is achieved by a radiologist, who should read a large amount of mammograms per day, either for a screening or diagnostic purpose in mammography. However human factors could affect the diagnosis. Computer Aided Detection is an automatic system, which can help to specialists in the detection of possible signs of malignancy in mammograms. Microcalcifications play an important role in early detection, so we focused on their study. The two mammographic features that indicate the microcalcifications could be probably malignant are small size and clustered distribution. We worked with density techniques for automatic clustering, and we applied them on a mammography CAD prototype developed at INFN-Turin, Italy. An improvement of performance is achieved analyzing images from a Perugia-Assisi Hospital, in Italy.
Mehryary, Farrokh; Kaewphan, Suwisa; Hakala, Kai; Ginter, Filip
2016-01-01
Biomedical event extraction is one of the key tasks in biomedical text mining, supporting various applications such as database curation and hypothesis generation. Several systems, some of which have been applied at a large scale, have been introduced to solve this task. Past studies have shown that the identification of the phrases describing biological processes, also known as trigger detection, is a crucial part of event extraction, and notable overall performance gains can be obtained by solely focusing on this sub-task. In this paper we propose a novel approach for filtering falsely identified triggers from large-scale event databases, thus improving the quality of knowledge extraction. Our method relies on state-of-the-art word embeddings, event statistics gathered from the whole biomedical literature, and both supervised and unsupervised machine learning techniques. We focus on EVEX, an event database covering the whole PubMed and PubMed Central Open Access literature containing more than 40 million extracted events. The top most frequent EVEX trigger words are hierarchically clustered, and the resulting cluster tree is pruned to identify words that can never act as triggers regardless of their context. For rarely occurring trigger words we introduce a supervised approach trained on the combination of trigger word classification produced by the unsupervised clustering method and manual annotation. The method is evaluated on the official test set of BioNLP Shared Task on Event Extraction. The evaluation shows that the method can be used to improve the performance of the state-of-the-art event extraction systems. This successful effort also translates into removing 1,338,075 of potentially incorrect events from EVEX, thus greatly improving the quality of the data. The method is not solely bound to the EVEX resource and can be thus used to improve the quality of any event extraction system or database. The data and source code for this work are available at: http://bionlp-www.utu.fi/trigger-clustering/.
F18 EF5 PET/CT Imaging in Patients with Brain Metastases from Breast Cancer
2012-07-01
been demonstrated to improve local control and survival in select patients after WBRT . At present we do not have any method of determining a priori...relapse after WBRT would represent a significant step forward in the management of patients with brain metastases from breast cancer. We propose to...use a noninvasive imaging method to detect residual tumor hypoxia in patients receiving WBRT . Body: Task 1. To estimate the degree of hypoxia
Endogenous synchronous fluorescence spectroscopy (SFS) of basal cell carcinoma-initial study
NASA Astrophysics Data System (ADS)
Borisova, E.; Zhelyazkova, Al.; Keremedchiev, M.; Penkov, N.; Semyachkina-Glushkovskaya, O.; Avramov, L.
2016-01-01
The human skin is a complex, multilayered and inhomogeneous organ with spatially varying optical properties. Analysis of cutaneous fluorescence spectra could be a very complicated task; therefore researchers apply complex mathematical tools for data evaluation, or try to find some specific approaches, that would simplify the spectral analysis. Synchronous fluorescence spectroscopy (SFS) allows improving the spectral resolution, which could be useful for the biological tissue fluorescence characterization and could increase the tumour detection diagnostic accuracy.
Aliakbaryhosseinabadi, Susan; Kamavuako, Ernest Nlandu; Jiang, Ning; Farina, Dario; Mrachacz-Kersting, Natalie
2017-11-01
Dual tasking is defined as performing two tasks concurrently and has been shown to have a significant effect on attention directed to the performance of the main task. In this study, an attention diversion task with two different levels was administered while participants had to complete a cue-based motor task consisting of foot dorsiflexion. An auditory oddball task with two levels of complexity was implemented to divert the user's attention. Electroencephalographic (EEG) recordings were made from nine single channels. Event-related potentials (ERPs) confirmed that the oddball task of counting a sequence of two tones decreased the auditory P300 amplitude more than the oddball task of counting one target tone among three different tones. Pre-movement features quantified from the movement-related cortical potential (MRCP) were changed significantly between single and dual-task conditions in motor and fronto-central channels. There was a significant delay in movement detection for the case of single tone counting in two motor channels only (237.1-247.4ms). For the task of sequence counting, motor cortex and frontal channels showed a significant delay in MRCP detection (232.1-250.5ms). This study investigated the effect of attention diversion in dual-task conditions by analysing both ERPs and MRCPs in single channels. The higher attention diversion lead to a significant reduction in specific MRCP features of the motor task. These results suggest that attention division in dual-tasking situations plays an important role in movement execution and detection. This has important implications in designing real-time brain-computer interface systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Using multisensory cues to facilitate air traffic management.
Ngo, Mary K; Pierce, Russell S; Spence, Charles
2012-12-01
In the present study, we sought to investigate whether auditory and tactile cuing could be used to facilitate a complex, real-world air traffic management scenario. Auditory and tactile cuing provides an effective means of improving both the speed and accuracy of participants' performance in a variety of laboratory-based visual target detection and identification tasks. A low-fidelity air traffic simulation task was used in which participants monitored and controlled aircraft.The participants had to ensure that the aircraft landed or exited at the correct altitude, speed, and direction and that they maintained a safe separation from all other aircraft and boundaries. The performance measures recorded included en route time, handoff delay, and conflict resolution delay (the performance measure of interest). In a baseline condition, the aircraft in conflict was highlighted in red (visual cue), and in the experimental conditions, this standard visual cue was accompanied by a simultaneously presented auditory, vibrotactile, or audiotactile cue. Participants responded significantly more rapidly, but no less accurately, to conflicts when presented with an additional auditory or audiotactile cue than with either a vibrotactile or visual cue alone. Auditory and audiotactile cues have the potential for improving operator performance by reducing the time it takes to detect and respond to potential visual target events. These results have important implications for the design and use of multisensory cues in air traffic management.
Neural Correlates of Changes in a Visual Search Task due to Cognitive Training in Seniors
Wild-Wall, Nele; Falkenstein, Michael; Gajewski, Patrick D.
2012-01-01
This study aimed to elucidate the underlying neural sources of near transfer after a multidomain cognitive training in older participants in a visual search task. Participants were randomly assigned to a social control, a no-contact control and a training group, receiving a 4-month paper-pencil and PC-based trainer guided cognitive intervention. All participants were tested in a before and after session with a conjunction visual search task. Performance and event-related potentials (ERPs) suggest that the cognitive training improved feature processing of the stimuli which was expressed in an increased rate of target detection compared to the control groups. This was paralleled by enhanced amplitudes of the frontal P2 in the ERP and by higher activation in lingual and parahippocampal brain areas which are discussed to support visual feature processing. Enhanced N1 and N2 potentials in the ERP for nontarget stimuli after cognitive training additionally suggest improved attention and subsequent processing of arrays which were not immediately recognized as targets. Possible test repetition effects were confined to processes of stimulus categorisation as suggested by the P3b potential. The results show neurocognitive plasticity in aging after a broad cognitive training and allow pinpointing the functional loci of effects induced by cognitive training. PMID:23029625
Comparison of two weighted integration models for the cueing task: linear and likelihood
NASA Technical Reports Server (NTRS)
Shimozaki, Steven S.; Eckstein, Miguel P.; Abbey, Craig K.
2003-01-01
In a task in which the observer must detect a signal at two locations, presenting a precue that predicts the location of a signal leads to improved performance with a valid cue (signal location matches the cue), compared to an invalid cue (signal location does not match the cue). The cue validity effect has often been explained with a limited capacity attentional mechanism improving the perceptual quality at the cued location. Alternatively, the cueing effect can also be explained by unlimited capacity models that assume a weighted combination of noisy responses across the two locations. We compare two weighted integration models, a linear model and a sum of weighted likelihoods model based on a Bayesian observer. While qualitatively these models are similar, quantitatively they predict different cue validity effects as the signal-to-noise ratios (SNR) increase. To test these models, 3 observers performed in a cued discrimination task of Gaussian targets with an 80% valid precue across a broad range of SNR's. Analysis of a limited capacity attentional switching model was also included and rejected. The sum of weighted likelihoods model best described the psychophysical results, suggesting that human observers approximate a weighted combination of likelihoods, and not a weighted linear combination.
Hahn, Sowon; Buttaccio, Daniel R; Hahn, Jungwon; Lee, Taehun
2015-01-01
The present study demonstrates that levels of extraversion and neuroticism can predict attentional performance during a change detection task. After completing a change detection task built on the flicker paradigm, participants were assessed for personality traits using the Revised Eysenck Personality Questionnaire (EPQ-R). Multiple regression analyses revealed that higher levels of extraversion predict increased change detection accuracies, while higher levels of neuroticism predict decreased change detection accuracies. In addition, neurotic individuals exhibited decreased sensitivity A' and increased fixation dwell times. Hierarchical regression analyses further revealed that eye movement measures mediate the relationship between neuroticism and change detection accuracies. Based on the current results, we propose that neuroticism is associated with decreased attentional control over the visual field, presumably due to decreased attentional disengagement. Extraversion can predict increased attentional performance, but the effect is smaller than the relationship between neuroticism and attention.
Performance changes in lung nodule detection following perceptual feedback of eye movements
NASA Astrophysics Data System (ADS)
Donovan, T.; Manning, D. J.; Crawford, T.
2008-03-01
In a previously reported study we demonstrated that expert performance can decline following perceptual feedback of eye movements in the relatively simple radiological task of wrist fracture detection. This study was carried out to determine if the same effect could be observed using a more complicated radiological task of identifying lung nodules on chest radiographs. Four groups (n=10 in each group) of observers with different levels of expertise were tested. The groups were naÃve observers, level 1 radiography students, level 2 radiography students and experts. Feedback was presented to the observers in the form of their scan paths and fixations. Half the observers had feedback and half had no perceptual feedback. JAFROC analysis was used to measure observer performance. A repeated measures ANOVA was carried out. There was no significant effect between the pre and post "no feedback" condition. There was a significant difference between the pre and post "feedback" condition with a significant improvement following feedback (F(1,16)=6.6,p = 0.021). Overall the mean percentage improvement was small of 3.3%, with most of the improvement due to the level 1 group where the percentage increase in the figure of merit (FOM) was 8.4% and this was significant (p<0.05). Eye tracking metrics indicate that the expert and naÃve observers were less affected by feedback or a second look whereas there were mixed results between the level 1 and level 2 students possibly reflecting the different search strategies used. Perceptual feedback may be beneficial for those early in their training.
Yoshida, Kenji; Yokomizo, Akira; Matsuda, Tadashi; Hamasaki, Tsutomu; Kondo, Yukihiro; Yamaguchi, Kunihisa; Kanayama, Hiro-Omi; Wakumoto, Yoshiaki; Horie, Shigeo; Naito, Seiji
2015-09-01
To assess whether our ureteroscopic real-time navigation system has the possibility to reduce radiation exposure and improve performance of ureteroscopic maneuvers in surgeons of various ages and experience levels. Our novel ureteroscopic navigation system used a magnetic tracking device to detect the position of the ureteroscope and display it on a three-dimensional image. We recruited 31 urologists from five institutions to perform two tasks. Task 1 consisted of finding three internal markings on the phantom calices. Task 2 consisted of identifying all calices by ureteroscopy. In both tasks, participants performed with simulated fluoroscopy first, followed by our navigation system. Accuracy rates (AR) for identification, required time (T) for completing the task, migration length (ML), and time exposed to simulated fluoroscopy were recorded. The AR, T, and ML for both tasks were significantly better with the navigation system than without it (Task 1 with simulated fluoroscopy vs with navigation: AR 87.1 % vs 98.9%, P=0.003; T 355 s vs 191 s, P<0.0001; ML 4627 mm vs 2701 mm, P<0.0001. Task 2: AR 88.2% vs 96.7%, P=0.011; T 394 s vs 333 s, P=0.027; ML 5966 mm vs 5299 mm, P=0.0006). In both tasks, the participants used the simulated fluoroscopy about 20% of the total task time. Our navigation system, while still under development, could help surgeons of all levels to achieve better performances for ureteroscopic maneuvers compared with using fluoroscopic guidance. It also has the potential to reduce radiation exposure during fluoroscopy.
SIGNAL DETECTION BEHAVIOR IN HUMANS AND RATS: A COMPARISON WITH MATCHED TASKS.
Animal models of human cognitive processes are essential for studying the neurobiological mechanisms of these processes and for developing therapies for intoxication and neurodegenerative diseases. A discrete-trial signal detection task was developed for assessing sustained atten...
Hahn, Britta; Ross, Thomas J; Wolkenberg, Frank A; Shakleya, Diaa M; Huestis, Marilyn A; Stein, Elliot A
2009-09-01
Attention-enhancing effects of nicotine appear to depend on the nature of the attentional function. Underlying neuroanatomical mechanisms, too, may vary depending on the function modulated. This functional magnetic resonance imaging study recorded blood oxygen level-dependent (BOLD) activity in minimally deprived smokers during tasks of simple stimulus detection, selective attention, or divided attention after single-blind application of a transdermal nicotine (21 mg) or placebo patch. Smokers' performance in the placebo condition was unimpaired as compared with matched nonsmokers. Nicotine reduced reaction time (RT) in the stimulus detection and selective attention but not divided attention condition. Across all task conditions, nicotine reduced activation in frontal, temporal, thalamic, and visual regions and enhanced deactivation in so-called "default" regions. Thalamic effects correlated with RT reduction selectively during stimulus detection. An interaction with task condition was observed in middle and superior frontal gyri, where nicotine reduced activation only during stimulus detection. A visuomotor control experiment provided evidence against nonspecific effects of nicotine. In conclusion, although prefrontal activity partly displayed differential modulation by nicotine, most BOLD effects were identical across tasks, despite differential performance effects, suggesting that common neuronal mechanisms can selectively benefit different attentional functions. Overall, the effects of nicotine may be explained by increased functional efficiency and downregulated task-independent "default" functions.
Laboratory review: the role of gait analysis in seniors' mobility and fall prevention.
Bridenbaugh, Stephanie A; Kressig, Reto W
2011-01-01
Walking is a complex motor task generally performed automatically by healthy adults. Yet, by the elderly, walking is often no longer performed automatically. Older adults require more attention for motor control while walking than younger adults. Falls, often with serious consequences, can be the result. Gait impairments are one of the biggest risk factors for falls. Several studies have identified changes in certain gait parameters as independent predictors of fall risk. Such gait changes are often too discrete to be detected by clinical observation alone. At the Basel Mobility Center, we employ the GAITRite electronic walkway system for spatial-temporal gait analysis. Although we have a large range of indications for gait analyses and several areas of clinical research, our focus is on the association between gait and cognition. Gait analysis with walking as a single-task condition alone is often insufficient to reveal underlying gait disorders present during normal, everyday activities. We use a dual-task paradigm, walking while simultaneously performing a second cognitive task, to assess the effects of divided attention on motor performance and gait control. Objective quantification of such clinically relevant gait changes is necessary to determine fall risk. Early detection of gait disorders and fall risk permits early intervention and, in the best-case scenario, fall prevention. We and others have shown that rhythmic movement training such as Jaques-Dalcroze eurhythmics, tai chi and social dancing can improve gait regularity and automaticity, thus increasing gait safety and reducing fall risk. Copyright © 2010 S. Karger AG, Basel.
Recovery of high speed memory scanning after transient global amnesia: a case report.
Okura, M; Tomotake, M; Mori, K; Ikuta, T
1996-12-01
We described the case of a 59 year old female with transient global amnesia (TGA) who had been examined neuropsychologically using Sternberg's paradigm and a random number generation (RNG) task on the following day, 1 week and 4 weeks after a TGA episode. The slope value of the linear function, a measure of cognitive memory scanning speed, decreased with time and showed a marked decrease 1 week after TGA, suggesting that the stage of serial and exhaustive scanning recovered within 1 week. The zero-intercept value, on the other hand, increased during 1 week but decreased 4 weeks later and was not related directly to recovery from TGA. The performance in RNG task improved 1 week later, but deteriorated 4 weeks after the episode. Such a change in RNG was in accordance with that of the zero-intercept value, predicting a relationship. It is concluded that the subclinical memory deficit, detected with these tasks, persisted longer than clinical recovery from TGA.
A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment.
Xie, Long; Dolui, Sudipto; Das, Sandhitsu R; Stockbower, Grace E; Daffner, Molly; Rao, Hengyi; Yushkevich, Paul A; Detre, John A; Wolk, David A
2016-01-01
Arterial spin labeled perfusion magnetic resonance imaging (ASL MRI) provides non-invasive quantification of cerebral blood flow, which can be used as a biomarker of brain function due to the tight coupling between cerebral blood flow (CBF) and brain metabolism. A growing body of literature suggests that regional CBF is altered in neurodegenerative diseases. Here we examined ASL MRI CBF in subjects with amnestic mild cognitive impairment (n = 65) and cognitively normal healthy controls (n = 62), both at rest and during performance of a memory-encoding task. As compared to rest, task-enhanced ASL MRI improved group discrimination, which supports the notion that physiologic measures during a cognitive challenge, or "stress test", may increase the ability to detect subtle functional changes in early disease stages. Further, logistic regression analysis demonstrated that ASL MRI and concomitantly acquired structural MRI provide complementary information of disease status. The current findings support the potential utility of task-enhanced ASL MRI as a biomarker in early Alzheimer's disease.
Nikolla, Dritan; Edgar, Graham; Catherwood, Dianne; Matthews, Tristan
2018-02-01
In this study, we investigate whether emotionally engaged bottom-up processes of attention can be a source of 'interference' in situations where top-down control of attention is necessary. Participants were asked to monitor and report on a video of a war scenario showing a developing battle in two conditions: emotionally positive and emotionally negative. Half of the participants (n = 15) were exposed to task-irrelevant pictures of positive emotional valence embedded within the scenario; the other half were exposed to task-irrelevant pictures of negative emotional valence. Sensitivity and Bias scores were calculated using signal detection theory. Overall, task accuracy scores were dependent upon the valence; negative pictures had an adverse effect on performance, whereas positive pictures improved performance. We concluded that negative emotional pictures interfered with top-down control of attention by attracting competing bottom-up processes of attention. We found the opposite effect for positive emotional stimuli. © 2017 The British Psychological Society.
Identifying compensatory movement patterns in the upper extremity using a wearable sensor system.
Ranganathan, Rajiv; Wang, Rui; Dong, Bo; Biswas, Subir
2017-11-30
Movement impairments such as those due to stroke often result in the nervous system adopting atypical movements to compensate for movement deficits. Monitoring these compensatory patterns is critical for improving functional outcomes during rehabilitation. The purpose of this study was to test the feasibility and validity of a wearable sensor system for detecting compensatory trunk kinematics during activities of daily living. Participants with no history of neurological impairments performed reaching and manipulation tasks with their upper extremity, and their movements were recorded by a wearable sensor system and validated using a motion capture system. Compensatory movements of the trunk were induced using a brace that limited range of motion at the elbow. Our results showed that the elbow brace elicited compensatory movements of the trunk during reaching tasks but not manipulation tasks, and that a wearable sensor system with two sensors could reliably classify compensatory movements (~90% accuracy). These results show the potential of the wearable system to assess and monitor compensatory movements outside of a lab setting.
Spectral Resolution and Coverage Impact on Advanced Sounder Information Content
NASA Technical Reports Server (NTRS)
Larar, Allen M.; Liu, Xu; Zhou, Daniel K.; Smith, William L.
2010-01-01
Advanced satellite sensors are tasked with improving global measurements of the Earth s atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such measurement improvements requires instrument system advancements. This presentation focuses on the impact of spectral resolution and coverage changes on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species variables obtainable from advanced atmospheric sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder (CrIS) systems on the MetOp and NPP/NPOESS series of satellites. Key words: remote sensing, advanced sounders, information content, IASI, CrIS
Health Monitor for Multitasking, Safety-Critical, Real-Time Software
NASA Technical Reports Server (NTRS)
Zoerner, Roger
2011-01-01
Health Manager can detect Bad Health prior to a failure occurring by periodically monitoring the application software by looking for code corruption errors, and sanity-checking each critical data value prior to use. A processor s memory can fail and corrupt the software, or the software can accidentally write to the wrong address and overwrite the executing software. This innovation will continuously calculate a checksum of the software load to detect corrupted code. This will allow a system to detect a failure before it happens. This innovation monitors each software task (thread) so that if any task reports "bad health," or does not report to the Health Manager, the system is declared bad. The Health Manager reports overall system health to the outside world by outputting a square wave signal. If the square wave stops, this indicates that system health is bad or hung and cannot report. Either way, "bad health" can be detected, whether caused by an error, corrupted data, or a hung processor. A separate Health Monitor Task is started and run periodically in a loop that starts and stops pending on a semaphore. Each monitored task registers with the Health Manager, which maintains a count for the task. The registering task must indicate if it will run more or less often than the Health Manager. If the task runs more often than the Health Manager, the monitored task calls a health function that increments the count and verifies it did not go over max-count. When the periodic Health Manager runs, it verifies that the count did not go over the max-count and zeroes it. If the task runs less often than the Health Manager, the periodic Health Manager will increment the count. The monitored task zeroes the count, and both the Health Manager and monitored task verify that the count did not go over the max-count.
Kray, Jutta; Karbach, Julia; Haenig, Susann; Freitag, Christine
2011-01-01
The key cognitive impairments of children with attention deficit/-hyperactivity disorder (ADHD) include executive control functions such as inhibitory control, task-switching, and working memory (WM). In this training study we examined whether task-switching training leads to improvements in these functions. Twenty children with combined type ADHD and stable methylphenidate medication performed a single-task and a task-switching training in a crossover training design. The children were randomly assigned to one of two groups. One group started with the single-task training and then performed the task-switching training and the other group vice versa. The effectiveness of the task-switching training was measured as performance improvements (relative to the single-task training) on a structurally similar but new switching task and on other executive control tasks measuring inhibitory control and verbal WM as well as on fluid intelligence (reasoning). The children in both groups showed improvements in task-switching, that is, a reduction of switching costs, but not in performing the single-tasks across four training sessions. Moreover, the task-switching training lead to selective enhancements in task-switching performance, that is, the reduction of task-switching costs was found to be larger after task-switching than after single-task training. Similar selective improvements were observed for inhibitory control and verbal WM, but not for reasoning. Results of this study suggest that task-switching training is an effective cognitive intervention that helps to enhance executive control functioning in children with ADHD.
Kray, Jutta; Karbach, Julia; Haenig, Susann; Freitag, Christine
2012-01-01
The key cognitive impairments of children with attention deficit/-hyperactivity disorder (ADHD) include executive control functions such as inhibitory control, task-switching, and working memory (WM). In this training study we examined whether task-switching training leads to improvements in these functions. Twenty children with combined type ADHD and stable methylphenidate medication performed a single-task and a task-switching training in a crossover training design. The children were randomly assigned to one of two groups. One group started with the single-task training and then performed the task-switching training and the other group vice versa. The effectiveness of the task-switching training was measured as performance improvements (relative to the single-task training) on a structurally similar but new switching task and on other executive control tasks measuring inhibitory control and verbal WM as well as on fluid intelligence (reasoning). The children in both groups showed improvements in task-switching, that is, a reduction of switching costs, but not in performing the single-tasks across four training sessions. Moreover, the task-switching training lead to selective enhancements in task-switching performance, that is, the reduction of task-switching costs was found to be larger after task-switching than after single-task training. Similar selective improvements were observed for inhibitory control and verbal WM, but not for reasoning. Results of this study suggest that task-switching training is an effective cognitive intervention that helps to enhance executive control functioning in children with ADHD. PMID:22291628
Performance on perceptual word identification is mediated by discrete states.
Swagman, April R; Province, Jordan M; Rouder, Jeffrey N
2015-02-01
We contrast predictions from discrete-state models of all-or-none information loss with signal-detection models of graded strength for the identification of briefly flashed English words. Previous assessments have focused on whether ROC curves are straight or not, which is a test of a discrete-state model where detection leads to the highest confidence response with certainty. We along with many others argue this certainty assumption is too constraining, and, consequently, the straight-line ROC test is too stringent. Instead, we assess a core property of discrete-state models, conditional independence, where the pattern of responses depends only on which state is entered. The conditional independence property implies that confidence ratings are a mixture of detect and guess state responses, and that stimulus strength factors, the duration of the flashed word in this report, affect only the probability of entering a state and not responses conditional on a state. To assess this mixture property, 50 participants saw words presented briefly on a computer screen at three variable flash durations followed by either a two-alternative confidence ratings task or a yes-no confidence ratings task. Comparable discrete-state and signal-detection models were fit to the data for each participant and task. The discrete-state models outperformed the signal detection models for 90 % of participants in the two-alternative task and for 68 % of participants in the yes-no task. We conclude discrete-state models are viable for predicting performance across stimulus conditions in a perceptual word identification task.
Characterization of crosstalk in stereoscopic display devices.
Zafar, Fahad; Badano, Aldo
2014-12-01
Many different types of stereoscopic display devices are used for commercial and research applications. Stereoscopic displays offer the potential to improve performance in detection tasks for medical imaging diagnostic systems. Due to the variety of stereoscopic display technologies, it remains unclear how these compare with each other for detection and estimation tasks. Different stereo devices have different performance trade-offs due to their display characteristics. Among them, crosstalk is known to affect observer perception of 3D content and might affect detection performance. We measured and report the detailed luminance output and crosstalk characteristics for three different types of stereoscopic display devices. We recorded the effect of other issues on recorded luminance profiles such as viewing angle, use of different eye wear, and screen location. Our results show that the crosstalk signature for viewing 3D content can vary considerably when using different types of 3D glasses for active stereo displays. We also show that significant differences are present in crosstalk signatures when varying the viewing angle from 0 degrees to 20 degrees for a stereo mirror 3D display device. Our detailed characterization can help emulate the effect of crosstalk in conducting computational observer image quality assessment evaluations that minimize costly and time-consuming human reader studies.
Efficient source separation algorithms for acoustic fall detection using a microsoft kinect.
Li, Yun; Ho, K C; Popescu, Mihail
2014-03-01
Falls have become a common health problem among older adults. In previous study, we proposed an acoustic fall detection system (acoustic FADE) that employed a microphone array and beamforming to provide automatic fall detection. However, the previous acoustic FADE had difficulties in detecting the fall signal in environments where interference comes from the fall direction, the number of interferences exceeds FADE's ability to handle or a fall is occluded. To address these issues, in this paper, we propose two blind source separation (BSS) methods for extracting the fall signal out of the interferences to improve the fall classification task. We first propose the single-channel BSS by using nonnegative matrix factorization (NMF) to automatically decompose the mixture into a linear combination of several basis components. Based on the distinct patterns of the bases of falls, we identify them efficiently and then construct the interference free fall signal. Next, we extend the single-channel BSS to the multichannel case through a joint NMF over all channels followed by a delay-and-sum beamformer for additional ambient noise reduction. In our experiments, we used the Microsoft Kinect to collect the acoustic data in real-home environments. The results show that in environments with high interference and background noise levels, the fall detection performance is significantly improved using the proposed BSS approaches.
Investigation on the improvement and transfer of dual-task coordination skills.
Strobach, Tilo; Frensch, Peter A; Soutschek, Alexander; Schubert, Torsten
2012-11-01
Recent research has demonstrated that dual-task performance in situations with two simultaneously presented tasks can be substantially improved with extensive practice. This improvement was related to the acquisition of task coordination skills. Earlier studies provided evidence that these skills result from hybrid practice, including dual and single tasks, but not from single-task practice. It is an open question, however, whether task coordination skills are independent from the specific practice situation and are transferable to new situations or whether they are non-transferable and task-specific. The present study, therefore, tested skill transfer in (1) a dual-task situation with identical tasks in practice and transfer, (2) a dual-task situation with two tasks changed from practice to transfer, and (3) a task switching situation with two sequentially presented tasks. Our findings are largely consistent with the assumption that task coordination skills are non-transferable and task-specific. We cannot, however, definitively reject the assumption of transferable skills when measuring error rates in the dual-task situation with two changed tasks after practice. In the task switching situation, single-task and hybrid practice both led to a transfer effect on mixing costs.
Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network
2018-01-01
Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. In this paper, we proposed two deep learning methods to address three main tasks emerging in the area of skin lesion image processing, i.e., lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. The proposed deep learning frameworks were evaluated on the ISIC 2017 dataset. Experimental results show the promising accuracies of our frameworks, i.e., 0.753 for task 1, 0.848 for task 2 and 0.912 for task 3 were achieved. PMID:29439500
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, A; Little, K; Chung, J
Purpose: To validate the use of a Channelized Hotelling Observer (CHO) model for guiding image processing parameter selection and enable improved nodule detection in digital chest radiography. Methods: In a previous study, an anthropomorphic chest phantom was imaged with and without PMMA simulated nodules using a GE Discovery XR656 digital radiography system. The impact of image processing parameters was then explored using a CHO with 10 Laguerre-Gauss channels. In this work, we validate the CHO’s trend in nodule detectability as a function of two processing parameters by conducting a signal-known-exactly, multi-reader-multi-case (MRMC) ROC observer study. Five naive readers scored confidencemore » of nodule visualization in 384 images with 50% nodule prevalence. The image backgrounds were regions-of-interest extracted from 6 normal patient scans, and the digitally inserted simulated nodules were obtained from phantom data in previous work. Each patient image was processed with both a near-optimal and a worst-case parameter combination, as determined by the CHO for nodule detection. The same 192 ROIs were used for each image processing method, with 32 randomly selected lung ROIs per patient image. Finally, the MRMC data was analyzed using the freely available iMRMC software of Gallas et al. Results: The image processing parameters which were optimized for the CHO led to a statistically significant improvement (p=0.049) in human observer AUC from 0.78 to 0.86, relative to the image processing implementation which produced the lowest CHO performance. Conclusion: Differences in user-selectable image processing methods on a commercially available digital radiography system were shown to have a marked impact on performance of human observers in the task of lung nodule detection. Further, the effect of processing on humans was similar to the effect on CHO performance. Future work will expand this study to include a wider range of detection/classification tasks and more observers, including experienced chest radiologists.« less
Understanding the delayed-keyword effect on metacomprehension accuracy.
Thiede, Keith W; Dunlosky, John; Griffin, Thomas D; Wiley, Jennifer
2005-11-01
The typical finding from research on metacomprehension is that accuracy is quite low. However, recent studies have shown robust accuracy improvements when judgments follow certain generation tasks (summarizing or keyword listing) but only when these tasks are performed at a delay rather than immediately after reading (K. W. Thiede & M. C. M. Anderson, 2003; K. W. Thiede, M. C. M. Anderson, & D. Therriault, 2003). The delayed and immediate conditions in these studies confounded the delay between reading and generation tasks with other task lags, including the lag between multiple generation tasks and the lag between generation tasks and judgments. The first 2 experiments disentangle these confounded manipulations and provide clear evidence that the delay between reading and keyword generation is the only lag critical to improving metacomprehension accuracy. The 3rd and 4th experiments show that not all delayed tasks produce improvements and suggest that delayed generative tasks provide necessary diagnostic cues about comprehension for improving metacomprehension accuracy.
Sabel, Bernhard A; Kenkel, Sigrid; Kasten, Erich
2004-01-01
We wished to evaluate the efficacy of vision restoration therapy (VRT) in patients with post-chiasmatic brain damage using different functional perimetric tests. These were compared with measures of subjective vision and reaction time. An open trial was conducted with hemianopia/scotoma (n=16) patients. Before and after 6 months of VRT results of high resolution (HRP) and Tuebingen automated perimetry (TAP) were evaluated and compared to performance in a Scanning Laser Ophthalmoscope (SLO) as previously reported. Whereas TAP and HRP used above-threshold or near-threshold individual target stimuli on grey background, the SLO used a psychophysical task of detection of three black targets (reverse stimulus) on bright red, patterned background. Subjective testimonials of activities of daily living (ADL) were probed with questionnaires and interviews. Before VRT, the visual field border as assessed by SLO was located significantly closer to the vertical midline than the HRP and TAP border (border mismatch). After VRT the SLO border was still unchanged whereas HRP measurements revealed significant border shifts due to improved stimulus detection (p<0.0001) and improved reaction time (p<0.005) . Fewer misses were also observed in both eyes with TAP (p<0.01) which was primarily due to a significant shift of the absolute borders. Thus, VRT potentiated the mismatch between the SLO borders and the HRP/TAP borders. Fixation performance and the blind spot position remained unchanged after VRT. ADL ratings in the questionnaire improved significantly after VRT which was confirmed by independent patient testimonials. We replicated earlier findings that VRT improves stimulus detection in HRP and TAP perimetry which were accompanied by subjective, visual improvements. These changes are not caused by fixation or eye movement artifacts. Because the SLO border was located significantly closer to the vertical midline before VRT ("border mismatch") and, in contrast to HRP and TAP, did not change after VRT, we interpret this border mismatch to indicate that the SLO task was too difficult to perform and thus insensitive to VRT effects. Significant reaction time improvements indicate that plasticity of temporal processing might play an important role in vision restoration after brain damage. A further description of the precise psychophysical nature of the restored areas of residual vision is now warranted.
Signal detection theory and methods for evaluating human performance in decision tasks
NASA Technical Reports Server (NTRS)
Obrien, Kevin; Feldman, Evan M.
1993-01-01
Signal Detection Theory (SDT) can be used to assess decision making performance in tasks that are not commonly thought of as perceptual. SDT takes into account both the sensitivity and biases in responding when explaining the detection of external events. In the standard SDT tasks, stimuli are selected in order to reveal the sensory capabilities of the observer. SDT can also be used to describe performance when decisions must be made as to the classification of easily and reliably sensed stimuli. Numbers are stimuli that are minimally affected by sensory processing and can belong to meaningful categories that overlap. Multiple studies have shown that the task of categorizing numbers from overlapping normal distributions produces performance predictable by SDT. These findings are particularly interesting in view of the similarity between the task of the categorizing numbers and that of determining the status of a mechanical system based on numerical values that represent sensor readings. Examples of the use of SDT to evaluate performance in decision tasks are reviewed. The methods and assumptions of SDT are shown to be effective in the measurement, evaluation, and prediction of human performance in such tasks.
Rummel, Jan; Wesslein, Ann-Katrin; Meiser, Thorsten
2017-05-01
Event-based prospective memory (PM) is the ability to remember to perform an intention in response to an environmental cue. Recent microstructure models postulate four distinguishable stages of successful event-based PM fulfillment. That is, (a) the event must be noticed, (b) the intention must be retrieved, (c) the context must be verified, and (d) the intended action must be coordinated with the demands of any currently ongoing task (e.g., Marsh, Hicks, & Watson, 2002b). Whereas the cognitive processes of Stages 1, 2, and 3 have been studied more or less extensively, little is known about the processes of Stage 4 so far. To fill this gap, the authors manipulated the magnitude of response overlap between the ongoing task and the PM task to isolate Stage-4 processes. Results demonstrate that PM performance improves in the presence versus absence of a response overlap, independent of cue saliency (Experiment 1) and of demands from currently ongoing tasks (Experiment 2). Furthermore, working-memory capacity is associated with PM performance, especially when there is little response overlap (Experiments 2 and 3). Finally, PM performance benefits only from strong response overlap, that is, only when the appropriate ongoing-task and PM response keys were identical (Experiment 4). They conclude that coordinating ongoing-task and PM actions puts cognitive demands on the individual which are distinguishable from the demands imposed by cue-detection and intention-retrieval processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Ramratan, Wendy S; Rabin, Laura A; Wang, Cuiling; Zimmerman, Molly E; Katz, Mindy J; Lipton, Richard B; Buschke, Herman
2012-03-01
Individuals with amnestic mild cognitive impairment (aMCI) show deficits on traditional episodic memory tasks and reductions in speed of performance on reaction time tasks. We present results on a novel task, the Cued-Recall Retrieval Speed Task (CRRST), designed to simultaneously measure level and speed of retrieval. A total of 390 older adults (mean age, 80.2 years), learned 16 words based on corresponding categorical cues. In the retrieval phase, we measured accuracy (% correct) and retrieval speed/reaction time (RT; time from cue presentation to voice onset of a correct response) across 6 trials. Compared to healthy elderly adults (HEA, n = 303), those with aMCI (n = 87) exhibited poorer performance in retrieval speed (difference = -0.13; p < .0001) and accuracy on the first trial (difference = -0.19; p < .0001), and their rate of improvement in retrieval speed was slower over subsequent trials. Those with aMCI also had greater within-person variability in processing speed (variance ratio = 1.22; p = .0098) and greater between-person variability in accuracy (variance ratio = 2.08; p = .0001) relative to HEA. Results are discussed in relation to the possibility that computer-based measures of cued-learning and processing speed variability may facilitate early detection of dementia in at-risk older adults.
Meyer, Georg F.; Wong, Li Ting; Timson, Emma; Perfect, Philip; White, Mark D.
2012-01-01
We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues. PMID:22957068
Imai, Ayano; Oda, Yuriko; Seki, Shinobu; Nakagawa, Kiyotaka; Miyazawa, Teruo; Ueda, Fumitaka
2018-01-01
Severe fatigue can negatively affect quality of life, and oxidative stress may play a role in its mechanism. The aim of this study was to evaluate the effect of dietary supplementation of astaxanthin and sesamin (AS), strong food-derived antioxidants, on fatigue. Twenty-four healthy volunteers were supplemented with AS and placebo, each for four weeks. After each supplementation period, participants underwent tasks inducing mental and physical fatigue (visual display terminal task and ergometer task, respectively). Subjective fatigue was evaluated using a visual analogue scale during and after the mental and physical tasks, and daily subjective fatigue was evaluated by the Chalder fatigue questionnaire. Secondary outcomes included other subjective feelings, work efficiency, autonomic nerve activity, levels of an oxidative stress marker (plasma phosphatidylcholine hydroperoxide (PCOOH)) and safety. AS supplementation was associated with significantly improved recovery from mental fatigue compared with placebo. Increased PCOOH levels during mental and physical tasks were attenuated by AS supplementation. No differences between AS and placebo were detected in secondary outcomes, and no adverse effects of AS supplementation were observed. In conclusion, AS supplementation may be a candidate to promote recovery from mental fatigue which is experienced by many healthy people. PMID:29495607
Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System
Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama
2018-01-01
Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one’s center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one’s individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one’s overall performance in balance-related tasks belonging to different difficulty levels. PMID:29359128
Chemical entity recognition in patents by combining dictionary-based and statistical approaches
Akhondi, Saber A.; Pons, Ewoud; Afzal, Zubair; van Haagen, Herman; Becker, Benedikt F.H.; Hettne, Kristina M.; van Mulligen, Erik M.; Kors, Jan A.
2016-01-01
We describe the development of a chemical entity recognition system and its application in the CHEMDNER-patent track of BioCreative 2015. This community challenge includes a Chemical Entity Mention in Patents (CEMP) recognition task and a Chemical Passage Detection (CPD) classification task. We addressed both tasks by an ensemble system that combines a dictionary-based approach with a statistical one. For this purpose the performance of several lexical resources was assessed using Peregrine, our open-source indexing engine. We combined our dictionary-based results on the patent corpus with the results of tmChem, a chemical recognizer using a conditional random field classifier. To improve the performance of tmChem, we utilized three additional features, viz. part-of-speech tags, lemmas and word-vector clusters. When evaluated on the training data, our final system obtained an F-score of 85.21% for the CEMP task, and an accuracy of 91.53% for the CPD task. On the test set, the best system ranked sixth among 21 teams for CEMP with an F-score of 86.82%, and second among nine teams for CPD with an accuracy of 94.23%. The differences in performance between the best ensemble system and the statistical system separately were small. Database URL: http://biosemantics.org/chemdner-patents PMID:27141091
How Important is Conflict Detection to the Conflict Resolution Task?
NASA Technical Reports Server (NTRS)
Mercer, Joey; Gabets, Cynthia; Gomez, Ashley; Edwards, Tamsyn; Bienert, Nancy; Claudatos, Lauren; Homola, Jeffrey R.
2016-01-01
To determine the capabilities and limitations of human operators and automation in separation assurance roles, the second of three Human-in-the-Loop (HITL) part-task studies investigates air traffic controllers ability to detect and resolve conflicts under varying task sets, traffic densities, and run lengths. Operations remained within a single sector, staffed by a single controller, and explored, among other things, the controllers conflict resolution performance in conditions with or without their involvement in the conflict detection task. Whereas comparisons of conflict resolution performance between these two conditions are available in a prior publication, this paper explores whether or not other subjective measures display a relationship to that data. Analyses of controller workload and situation awareness measures attempt to quantify their contribution to controllers ability to resolve traffic conflicts.
Application of a multiscale maximum entropy image restoration algorithm to HXMT observations
NASA Astrophysics Data System (ADS)
Guan, Ju; Song, Li-Ming; Huo, Zhuo-Xi
2016-08-01
This paper introduces a multiscale maximum entropy (MSME) algorithm for image restoration of the Hard X-ray Modulation Telescope (HXMT), which is a collimated scan X-ray satellite mainly devoted to a sensitive all-sky survey and pointed observations in the 1-250 keV range. The novelty of the MSME method is to use wavelet decomposition and multiresolution support to control noise amplification at different scales. Our work is focused on the application and modification of this method to restore diffuse sources detected by HXMT scanning observations. An improved method, the ensemble multiscale maximum entropy (EMSME) algorithm, is proposed to alleviate the problem of mode mixing exiting in MSME. Simulations have been performed on the detection of the diffuse source Cen A by HXMT in all-sky survey mode. The results show that the MSME method is adapted to the deconvolution task of HXMT for diffuse source detection and the improved method could suppress noise and improve the correlation and signal-to-noise ratio, thus proving itself a better algorithm for image restoration. Through one all-sky survey, HXMT could reach a capacity of detecting a diffuse source with maximum differential flux of 0.5 mCrab. Supported by Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (XDA04010300) and National Natural Science Foundation of China (11403014)
NASA Astrophysics Data System (ADS)
Wen, Gezheng; Markey, Mia K.; Miner Haygood, Tamara; Park, Subok
2018-02-01
Model observers are widely used in task-based assessments of medical image quality. The presence of multiple abnormalities in a single set of images, such as in multifocal multicentric breast cancer (MFMC), has an immense clinical impact on treatment planning and survival outcomes. Detecting multiple breast tumors is challenging as MFMC is relatively uncommon, and human observers do not know the number or locations of tumors a priori. Digital breast tomosynthesis (DBT), in which an x-ray beam sweeps over a limited angular range across the breast, has the potential to improve the detection of multiple tumors. However, prior studies of DBT image quality all focus on unifocal breast cancers. In this study, we extended our 2D multi-lesion (ML) channelized Hotelling observer (CHO) into a 3D ML-CHO that detects multiple lesions from volumetric imaging data. Then we employed the 3D ML-CHO to identify optimal DBT acquisition geometries for detection of MFMC. Digital breast phantoms with multiple embedded synthetic lesions were scanned by simulated DBT scanners of different geometries (wide/narrow angular span, different number of projections per scan) to simulate MFMC cases. With new implementations of 3D partial least squares (PLS) and modified Laguerre-Gauss (LG) channels, the 3D ML-CHO made detection decisions based upon the overall information from individual DBT slices and their correlations. Our evaluation results show that: (1) the 3D ML-CHO could achieve good detection performance with a small number of channels, and 3D PLS channels on average outperform the counterpart LG channels; (2) incorporating locally varying anatomical backgrounds and their correlations as in the 3D ML-CHO is essential for multi-lesion detection; (3) the most effective DBT geometry for detection of MFMC may vary when the task of clinical interest changes, and a given DBT geometry may not yield images that are equally informative for detecting MF, MC, and unifocal cancers.
Fisher-Pipher, Sarah; Kenyon, Lisa K; Westman, Marci
2017-07-01
Improving functional mobility is often a desired outcome for adolescents with cerebral palsy (CP). Traditional neurorehabilitation approaches are frequently directed at impairments; however, improvements may not be carried over into functional mobility. The purpose of this case report was to describe the examination, intervention, and outcomes of a task-oriented physical therapy intervention program to improve dynamic balance, functional mobility, and dual-task performance in an adolescent with CP. The participant was a 15-year-old girl with spastic triplegic CP (Gross Motor Classification System Level II). Examination procedures included the Canadian Occupational Performance Measure, 6-minute walk test, Muscle Power Sprint Test, 10 x 5-meter sprint test, Timed Up and Down Stairs Test, Gross Motor Function Measure, Gillette Functional Assessment Questionnaire, and functional lower extremity strength tests. Intervention focused on task-oriented dynamic balance and mobility tasks that incorporated coordination and speed demands as well as task-specific lower extremity and trunk strengthening activities. Dual task demands were integrated into all intervention activities. Post-intervention testing revealed improvements in cardiovascular endurance, anaerobic power, agility, stair climbing, gross motor skills, and mobility. The participant appeared to benefit from a task-oriented program to improve dynamic balance, functional mobility, and dual-task performance.
Intraindividual variability as an indicator of malingering in head injury.
Strauss, Esther; Slick, Daniel J; Levy-Bencheton, Judi; Hunter, Michael; MacDonald, Stuart W S; Hultsch, David F
2002-07-01
The utility of various measures of malingering was evaluated using an analog design in which half the participants (composed of three groups: naive healthy people, professionals working with head-injured people, individuals who suffered a head injury but not currently in litigation) were asked to try their best and the remainder was asked to feign believable injury. Participants were assessed with the Reliable Digit Span (RDS) task, the Victoria Symptom Validity Test (VSVT), and the Computerized Dot Counting Test (CDCT) on three separate occasions in order to determine whether repeat administration of tests improves prediction. The results indicated that regardless of an individual's experience, consideration of both level of performance (particularly on forced-choice symptom validity tasks) and intraindividual variability holds considerable promise for the detection of malingering.
Automatic detection of lexical change: an auditory event-related potential study.
Muller-Gass, Alexandra; Roye, Anja; Kirmse, Ursula; Saupe, Katja; Jacobsen, Thomas; Schröger, Erich
2007-10-29
We investigated the detection of rare task-irrelevant changes in the lexical status of speech stimuli. Participants performed a nonlinguistic task on word and pseudoword stimuli that occurred, in separate conditions, rarely or frequently. Task performance for pseudowords was deteriorated relative to words, suggesting unintentional lexical analysis. Furthermore, rare word and pseudoword changes had a similar effect on the event-related potentials, starting as early as 165 ms. This is the first demonstration of the automatic detection of change in lexical status that is not based on a co-occurring acoustic change. We propose that, following lexical analysis of the incoming stimuli, a mental representation of the lexical regularity is formed and used as a template against which lexical change can be detected.
Burnat, K; Zernicki, B
1997-01-01
We used 5 binocularly deprived cats (BD cats), 4 control cats reared also in the laboratory (C cats) and 4 cats reared in a normal environment (N cats). The cats were trained to discriminate an upward or downward-moving light spot versus a stationary spot (detection task) and then an upward versus a downward spot (direction task). The N and C cats learned slowly. The learning was slower than in previously studied discriminations of stationary stimuli. However, all N and C cats mastered the detection task and except one C cat the direction task. In contrast, 4 BD cats failed in the detection task and all in the direction task. This result is consistent with single-cell recording data showing impairment of direction analysis in the visual system in BD cats. After completing the training the upper part of the middle suprasylvian sulcus was removed unilaterally in 7 cats and bilaterally in 6 cats. Surprisingly, the unilateral lesions were more effective: the clear-cut retention deficits were found in 5 cats lesioned unilaterally, whereas only in one cat lesioned bilaterally.
Altmann, Lori J. P.; Stegemöller, Elizabeth; Hazamy, Audrey A.; Wilson, Jonathan P.; Okun, Michael S.; McFarland, Nikolaus R.; Shukla, Aparna Wagle; Hass, Chris J.
2015-01-01
Background When performing two tasks at once, a dual task, performance on one or both tasks typically suffers. People with Parkinson’s disease (PD) usually experience larger dual task decrements on motor tasks than healthy older adults (HOA). Our objective was to investigate the decrements in cycling caused by performing cognitive tasks with a range of difficulty in people with PD and HOAs. Methods Twenty-eight participants with Parkinson’s disease and 20 healthy older adults completed a baseline cycling task with no secondary tasks and then completed dual task cycling while performing 12 tasks from six cognitive domains representing a wide range of difficulty. Results Cycling was faster during dual task conditions than at baseline, and was significantly faster for six tasks (all p<.02) across both groups. Cycling speed improved the most during the easiest cognitive tasks, and cognitive performance was largely unaffected. Cycling improvement was predicted by task difficulty (p<.001). People with Parkinson’s disease cycled slower (p<.03) and showed reduced dual task benefits (p<.01) than healthy older adults. Conclusions Unexpectedly, participants’ motor performance improved during cognitive dual tasks, which cannot be explained in current models of dual task performance. To account for these findings, we propose a model integrating dual task and acute exercise approaches which posits that cognitive arousal during dual tasks increases resources to facilitate motor and cognitive performance, which is subsequently modulated by motor and cognitive task difficulty. This model can explain both the improvement observed on dual tasks in the current study and more typical dual task findings in other studies. PMID:25970607
An improved method to detect correct protein folds using partial clustering.
Zhou, Jianjun; Wishart, David S
2013-01-16
Structure-based clustering is commonly used to identify correct protein folds among candidate folds (also called decoys) generated by protein structure prediction programs. However, traditional clustering methods exhibit a poor runtime performance on large decoy sets. We hypothesized that a more efficient "partial" clustering approach in combination with an improved scoring scheme could significantly improve both the speed and performance of existing candidate selection methods. We propose a new scheme that performs rapid but incomplete clustering on protein decoys. Our method detects structurally similar decoys (measured using either C(α) RMSD or GDT-TS score) and extracts representatives from them without assigning every decoy to a cluster. We integrated our new clustering strategy with several different scoring functions to assess both the performance and speed in identifying correct or near-correct folds. Experimental results on 35 Rosetta decoy sets and 40 I-TASSER decoy sets show that our method can improve the correct fold detection rate as assessed by two different quality criteria. This improvement is significantly better than two recently published clustering methods, Durandal and Calibur-lite. Speed and efficiency testing shows that our method can handle much larger decoy sets and is up to 22 times faster than Durandal and Calibur-lite. The new method, named HS-Forest, avoids the computationally expensive task of clustering every decoy, yet still allows superior correct-fold selection. Its improved speed, efficiency and decoy-selection performance should enable structure prediction researchers to work with larger decoy sets and significantly improve their ab initio structure prediction performance.
An improved method to detect correct protein folds using partial clustering
2013-01-01
Background Structure-based clustering is commonly used to identify correct protein folds among candidate folds (also called decoys) generated by protein structure prediction programs. However, traditional clustering methods exhibit a poor runtime performance on large decoy sets. We hypothesized that a more efficient “partial“ clustering approach in combination with an improved scoring scheme could significantly improve both the speed and performance of existing candidate selection methods. Results We propose a new scheme that performs rapid but incomplete clustering on protein decoys. Our method detects structurally similar decoys (measured using either Cα RMSD or GDT-TS score) and extracts representatives from them without assigning every decoy to a cluster. We integrated our new clustering strategy with several different scoring functions to assess both the performance and speed in identifying correct or near-correct folds. Experimental results on 35 Rosetta decoy sets and 40 I-TASSER decoy sets show that our method can improve the correct fold detection rate as assessed by two different quality criteria. This improvement is significantly better than two recently published clustering methods, Durandal and Calibur-lite. Speed and efficiency testing shows that our method can handle much larger decoy sets and is up to 22 times faster than Durandal and Calibur-lite. Conclusions The new method, named HS-Forest, avoids the computationally expensive task of clustering every decoy, yet still allows superior correct-fold selection. Its improved speed, efficiency and decoy-selection performance should enable structure prediction researchers to work with larger decoy sets and significantly improve their ab initio structure prediction performance. PMID:23323835
Cimolin, Veronica; Beretta, Elena; Piccinini, Luigi; Turconi, Anna Carla; Locatelli, Federica; Galli, Manuela; Strazzer, Sandra
2012-01-01
The aims of this study are to quantify the movement limitation of upper limbs in hemiplegic children with traumatic brain injury (TBI) by using a clinical-functional scale and upper limb kinematics and to evaluate the effectiveness of constraint-induced movement therapy (CIMT) on upper limbs. Pre-post study. Clinical rehabilitation research laboratory. Ten children with TBI. The participants were evaluated by clinical examinations (Gross Motor Function Measure, Besta scale, Quality of Upper Extremities Skills Test, and Manual Ability Classification System) and 3D kinematic movement analysis of the upper limb before the CIMT program (pretest: 0.7 years after the injury) and at the end of the program (posttest: 10 weeks later). After the CIMT, most of the clinical measures improved significantly. Some significant improvements were present in terms of kinematics, in particular, in the movement duration and the velocity of movement execution of both tasks; the index of curvature and the average jerk improved, respectively, during reaching and hand-to-mouth task, while the adjusting sway parameter decreased during the 2 movements. Significant improvements were found in upper limb joint excursion after the rehabilitative programme too. Our results suggest that the CIMT program can improve movement efficiency and upper limb function in children after TBI. The integration of the clinical outcomes and upper limb kinematics revealed to be crucial in detecting the effects of the CIMT programme.
Detection of Hail Storms in Radar Imagery Using Deep Learning
NASA Technical Reports Server (NTRS)
Pullman, Melinda; Gurung, Iksha; Ramachandran, Rahul; Maskey, Manil
2017-01-01
In 2016, hail was responsible for 3.5 billion and 23 million dollars in damage to property and crops, respectively, making it the second costliest weather phenomenon in the United States. In an effort to improve hail-prediction techniques and reduce the societal impacts associated with hail storms, we propose a deep learning technique that leverages radar imagery for automatic detection of hail storms. The technique is applied to radar imagery from 2011 to 2016 for the contiguous United States and achieved a precision of 0.848. Hail storms are primarily detected through the visual interpretation of radar imagery (Mrozet al., 2017). With radars providing data every two minutes, the detection of hail storms has become a big data task. As a result, scientists have turned to neural networks that employ computer vision to identify hail-bearing storms (Marzbanet al., 2001). In this study, we propose a deep Convolutional Neural Network (ConvNet) to understand the spatial features and patterns of radar echoes for detecting hailstorms.
NASA Astrophysics Data System (ADS)
Liu, Chunhui; Zhang, Duona; Zhao, Xintao
2018-03-01
Saliency detection in synthetic aperture radar (SAR) images is a difficult problem. This paper proposed a multitask saliency detection (MSD) model for the saliency detection task of SAR images. We extract four features of the SAR image, which include the intensity, orientation, uniqueness, and global contrast, as the input of the MSD model. The saliency map is generated by the multitask sparsity pursuit, which integrates the multiple features collaboratively. Detection of different scale features is also taken into consideration. Subjective and objective evaluation of the MSD model verifies its effectiveness. Based on the saliency maps obtained by the MSD model, we apply the saliency map of the SAR image to the SAR and color optical image fusion. The experimental results of real data show that the saliency map obtained by the MSD model helps to improve the fusion effect, and the salient areas in the SAR image can be highlighted in the fusion results.
Using a high spatial resolution tactile sensor for intention detection.
Castellini, Claudio; Koiva, Risto
2013-06-01
Intention detection is the interpretation of biological signals with the aim of automatically, reliably and naturally understanding what a human subject desires to do. Although intention detection is not restricted to disabled people, such methods can be crucial in improving a patient's life, e.g., aiding control of a robotic wheelchair or of a self-powered prosthesis. Traditionally, intention detection is done using, e.g., gaze tracking, surface electromyography and electroencephalography. In this paper we present exciting initial results of an experiment aimed at intention detection using a high-spatial-resolution, high-dynamic-range tactile sensor. The tactile image of the ventral side of the forearm of 9 able-bodied participants was recorded during a variable-force task stimulated at the fingertip. Both the forces at the fingertip and at the forearm were synchronously recorded. We show that a standard dimensionality reduction technique (Principal Component Analysis) plus a Support Vector Machine attain almost perfect detection accuracy of the direction and the intensity of the intended force. This paves the way for high spatial resolution tactile sensors to be used as a means for intention detection.
DeepFruits: A Fruit Detection System Using Deep Neural Networks
Sa, Inkyu; Ge, Zongyuan; Dayoub, Feras; Upcroft, Ben; Perez, Tristan; McCool, Chris
2016-01-01
This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0.807 to 0.838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform). The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit. PMID:27527168
Real-time stereo vision-based lane detection system
NASA Astrophysics Data System (ADS)
Fan, Rui; Dahnoun, Naim
2018-07-01
The detection of multiple curved lane markings on a non-flat road surface is still a challenging task for vehicular systems. To make an improvement, depth information can be used to enhance the robustness of the lane detection systems. In this paper, a proposed lane detection system is developed from our previous work where the estimation of the dense vanishing point is further improved using the disparity information. However, the outliers in the least squares fitting severely affect the accuracy when estimating the vanishing point. Therefore, in this paper we use random sample consensus to update the parameters of the road model iteratively until the percentage of the inliers exceeds our pre-set threshold. This significantly helps the system to overcome some suddenly changing conditions. Furthermore, we propose a novel lane position validation approach which computes the energy of each possible solution and selects all satisfying lane positions for visualisation. The proposed system is implemented on a heterogeneous system which consists of an Intel Core i7-4720HQ CPU and an NVIDIA GTX 970M GPU. A processing speed of 143 fps has been achieved, which is over 38 times faster than our previous work. Moreover, in order to evaluate the detection precision, we tested 2495 frames including 5361 lanes. It is shown that the overall successful detection rate is increased from 98.7% to 99.5%.
DeepFruits: A Fruit Detection System Using Deep Neural Networks.
Sa, Inkyu; Ge, Zongyuan; Dayoub, Feras; Upcroft, Ben; Perez, Tristan; McCool, Chris
2016-08-03
This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has led to the development of a state-of-the-art object detector termed Faster Region-based CNN (Faster R-CNN). We adapt this model, through transfer learning, for the task of fruit detection using imagery obtained from two modalities: colour (RGB) and Near-Infrared (NIR). Early and late fusion methods are explored for combining the multi-modal (RGB and NIR) information. This leads to a novel multi-modal Faster R-CNN model, which achieves state-of-the-art results compared to prior work with the F1 score, which takes into account both precision and recall performances improving from 0 . 807 to 0 . 838 for the detection of sweet pepper. In addition to improved accuracy, this approach is also much quicker to deploy for new fruits, as it requires bounding box annotation rather than pixel-level annotation (annotating bounding boxes is approximately an order of magnitude quicker to perform). The model is retrained to perform the detection of seven fruits, with the entire process taking four hours to annotate and train the new model per fruit.
Exploiting semantics for sensor re-calibration in event detection systems
NASA Astrophysics Data System (ADS)
Vaisenberg, Ronen; Ji, Shengyue; Hore, Bijit; Mehrotra, Sharad; Venkatasubramanian, Nalini
2008-01-01
Event detection from a video stream is becoming an important and challenging task in surveillance and sentient systems. While computer vision has been extensively studied to solve different kinds of detection problems over time, it is still a hard problem and even in a controlled environment only simple events can be detected with a high degree of accuracy. Instead of struggling to improve event detection using image processing only, we bring in semantics to direct traditional image processing. Semantics are the underlying facts that hide beneath video frames, which can not be "seen" directly by image processing. In this work we demonstrate that time sequence semantics can be exploited to guide unsupervised re-calibration of the event detection system. We present an instantiation of our ideas by using an appliance as an example--Coffee Pot level detection based on video data--to show that semantics can guide the re-calibration of the detection model. This work exploits time sequence semantics to detect when re-calibration is required to automatically relearn a new detection model for the newly evolved system state and to resume monitoring with a higher rate of accuracy.
Instructional Materials for Improved Job Performance.
ERIC Educational Resources Information Center
Foley, John P., Jr.
1978-01-01
Instructional materials developed in military research to improve performance of electromechanical maintenance tasks are described, with implications for teacher education. The materials require task analysis, job task relevance, and task-oriented training. Although many industries have implemented these techniques, teacher training institutions…
Neal, Andrew; Kwantes, Peter J
2009-04-01
The aim of this article is to develop a formal model of conflict detection performance. Our model assumes that participants iteratively sample evidence regarding the state of the world and accumulate it over time. A decision is made when the evidence reaches a threshold that changes over time in response to the increasing urgency of the task. Two experiments were conducted to examine the effects of conflict geometry and timing on response proportions and response time. The model is able to predict the observed pattern of response times, including a nonmonotonic relationship between distance at point of closest approach and response time, as well as effects of angle of approach and relative velocity. The results demonstrate that evidence accumulation models provide a good account of performance on a conflict detection task. Evidence accumulation models are a form of dynamic signal detection theory, allowing for the analysis of response times as well as response proportions, and can be used for simulating human performance on dynamic decision tasks.
Cloud computing task scheduling strategy based on improved differential evolution algorithm
NASA Astrophysics Data System (ADS)
Ge, Junwei; He, Qian; Fang, Yiqiu
2017-04-01
In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.
Wongcharoen, Suleeporn; Sungkarat, Somporn; Munkhetvit, Peeraya; Lugade, Vipul; Silsupadol, Patima
2017-02-01
The purpose of this study was to compare the efficacy of four different home-based interventions on dual-task balance performance and to determine the generalizability of the four trainings to untrained tasks. Sixty older adults, aged 65 and older, were randomly assigned to one of four home-based interventions: single-task motor training, single-task cognitive training, dual-task motor-cognitive training, and dual-task cognitive-cognitive training. Participants received 60-min individualized training sessions, 3 times a week for 4 weeks. Prior to and following the training program, participants were asked to walk under two single-task conditions (i.e. narrow walking and obstacle crossing) and two dual-task conditions (i.e. a trained narrow walking while performing verbal fluency task and an untrained obstacle crossing while counting backward by 3s task). A nine-camera motion capture system was used to collect the trajectories of 32 reflective markers placed on bony landmarks of participants. Three-dimensional kinematics of the whole body center of mass and base of support were computed. Results from the extrapolated center of mass displacement indicated that motor-cognitive training was more effective than the single-task motor training to improve dual-task balance performance (p=0.04, ES=0.11). Interestingly, balance performance under both single-task and dual-task conditions can also be improved through a non-motor, single-task cognitive training program (p=0.01, ES=0.13, and p=0.01, ES=0.11, respectively). However, improved dual-task processing skills during training were not transferred to the novel dual task (p=0.15, ES=0.09). This is the first study demonstrating that home-based dual-task training can be effectively implemented to improve balance performance during gait in older adults. Copyright © 2016 Elsevier B.V. All rights reserved.
Konak, H E; Kibar, S; Ergin, E S
2016-11-01
Osteoporosis is a serious disease characterized by muscle weakness in the lower extremities, shortened length of trunk, and increased dorsal kyphosis leading to poor balance performance. Although balance impairment increases in adults with osteoporosis, falls and fall-related injuries have been shown to occur mainly during the dual-task performance. Several studies have shown that dual-task performance was improved with specific repetitive dual-task exercises. The aims of this study were to compare the effect of single- and dual-task balance exercise programs on static balance, dynamic balance, and activity-specific balance confidence in adults with osteoporosis and to assess the effectiveness of dual-task balance training on gait speed under dual-task conditions. Older adults (N = 42) (age range, 45-88 years) with osteoporosis were randomly assigned into two groups. Single-task balance training group was given single-task balance exercises for 4 weeks, whereas dual-task balance training group received dual-task balance exercises. Participants received 45-min individualized training session, three times a week. Static balance was evaluated by one-leg stance (OLS) and a kinesthetic ability trainer (KAT) device. Dynamic balance was measured by the Berg Balance Scale (BBS), Time Up and Go (TUG) test, and gait speed. Self-confidence was assessed with the Activities-specific Balance Confidence (ABC-6) scale. Assessments were performed at baseline and after the 4-week program. At the end of the treatment periods, KAT score, BBS score, time in OLS and TUG, gait speeds under single- and dual-task conditions, and ABC-6 scale scores improved significantly in all patients (p < 0.05). However, BBS and gait speeds under single- and dual-task conditions showed significantly greater improvement in the dual-task balance training group than in the single-task balance training group (p < 0.05). ABC-6 scale scores improved more in the single-task balance training group than in the dual-task balance training group (p < 0.05). A 4-week single- and dual-task balance exercise programs are effective in improving static balance, dynamic balance, and balance confidence during daily activities in older adults with osteoporosis. However, single- and dual-task gait speeds showed greater improvement following the application of a specific type of dual-task exercise programs. 24102014-2.
1992-09-01
abilities is fit along with the autoregressive process. Initially, the influences on search performance of within-group age and sex were included as control...Results: PerformanceLAbility Structure Measurement Model: Ability Structure The correlations between all the ability measures, age, and sex are...subsequent analyses for young adults. Age and sex were included as control variables. There was an age range of 15 years; this range is sufficiently large that
Improving EMG based classification of basic hand movements using EMD.
Sapsanis, Christos; Georgoulas, George; Tzes, Anthony; Lymberopoulos, Dimitrios
2013-01-01
This paper presents a pattern recognition approach for the identification of basic hand movements using surface electromyographic (EMG) data. The EMG signal is decomposed using Empirical Mode Decomposition (EMD) into Intrinsic Mode Functions (IMFs) and subsequently a feature extraction stage takes place. Various combinations of feature subsets are tested using a simple linear classifier for the detection task. Our results suggest that the use of EMD can increase the discrimination ability of the conventional feature sets extracted from the raw EMG signal.
Detection of Subtle Cognitive Changes after mTBI Using a Novel Tablet-Based Task.
Fischer, Tara D; Red, Stuart D; Chuang, Alice Z; Jones, Elizabeth B; McCarthy, James J; Patel, Saumil S; Sereno, Anne B
2016-07-01
This study examined the potential for novel tablet-based tasks, modeled after eye tracking techniques, to detect subtle sensorimotor and cognitive deficits after mild traumatic brain injury (mTBI). Specifically, we examined whether performance on these tablet-based tasks (Pro-point and Anti-point) was able to correctly categorize concussed versus non-concussed participants, compared with performance on other standardized tests for concussion. Patients admitted to the emergency department with mTBI were tested on the Pro-point and Anti-point tasks, a current standard cognitive screening test (i.e., the Standard Assessment of Concussion [SAC]), and another eye movement-based tablet test, the King-Devick(®) (KD). Within hours after injury, mTBI patients showed significant slowing in response times, compared with both orthopedic and age-matched control groups, in the Pro-point task, demonstrating deficits in sensorimotor function. Mild TBI patients also showed significant slowing, compared with both control groups, on the Anti-point task, even when controlling for sensorimotor slowing, indicating deficits in cognitive function. Performance on the SAC test revealed similar deficits of cognitive function in the mTBI group, compared with the age-matched control group; however, the KD test showed no evidence of cognitive slowing in mTBI patients, compared with either control group. Further, measuring the sensitivity and specificity of these tasks to accurately predict mTBI with receiver operating characteristic analysis indicated that the Anti-point and Pro-point tasks reached excellent levels of accuracy and fared better than current standardized tools for assessment of concussion. Our findings suggest that these rapid tablet-based tasks are able to reliably detect and measure functional impairment in cognitive and sensorimotor control within hours after mTBI. These tasks may provide a more sensitive diagnostic measure for functional deficits that could prove key to earlier detection of concussion, evaluation of interventions, or even prediction of persistent symptoms.
Detection of Subtle Cognitive Changes after mTBI Using a Novel Tablet-Based Task
Red, Stuart D.; Chuang, Alice Z.; Jones, Elizabeth B.; McCarthy, James J.; Patel, Saumil S.; Sereno, Anne B.
2016-01-01
Abstract This study examined the potential for novel tablet-based tasks, modeled after eye tracking techniques, to detect subtle sensorimotor and cognitive deficits after mild traumatic brain injury (mTBI). Specifically, we examined whether performance on these tablet-based tasks (Pro-point and Anti-point) was able to correctly categorize concussed versus non-concussed participants, compared with performance on other standardized tests for concussion. Patients admitted to the emergency department with mTBI were tested on the Pro-point and Anti-point tasks, a current standard cognitive screening test (i.e., the Standard Assessment of Concussion [SAC]), and another eye movement–based tablet test, the King-Devick® (KD). Within hours after injury, mTBI patients showed significant slowing in response times, compared with both orthopedic and age-matched control groups, in the Pro-point task, demonstrating deficits in sensorimotor function. Mild TBI patients also showed significant slowing, compared with both control groups, on the Anti-point task, even when controlling for sensorimotor slowing, indicating deficits in cognitive function. Performance on the SAC test revealed similar deficits of cognitive function in the mTBI group, compared with the age-matched control group; however, the KD test showed no evidence of cognitive slowing in mTBI patients, compared with either control group. Further, measuring the sensitivity and specificity of these tasks to accurately predict mTBI with receiver operating characteristic analysis indicated that the Anti-point and Pro-point tasks reached excellent levels of accuracy and fared better than current standardized tools for assessment of concussion. Our findings suggest that these rapid tablet-based tasks are able to reliably detect and measure functional impairment in cognitive and sensorimotor control within hours after mTBI. These tasks may provide a more sensitive diagnostic measure for functional deficits that could prove key to earlier detection of concussion, evaluation of interventions, or even prediction of persistent symptoms. PMID:26398492
Smit, August B.; Verhage, Matthijs
2016-01-01
Many neurological and psychiatric disorders are characterized by deficits in cognitive flexibility. Modeling cognitive flexibility in mice enables the investigation of mechanisms underlying these deficits. The majority of currently available behavioral tests targeting this cognitive domain are reversal learning tasks that require scheduled food restriction, extended training periods and labor-intensive, and stress-inducing animal handling. Here, we describe a novel 4-day (4-d) continuously running task measuring discrimination- and reversal learning in an automated home cage (CognitionWall DL/RL task) that largely eliminates these limitations. In this task, mice can earn unlimited number of food rewards by passing through the correct hole of the three-holed CognitionWall. To assess the validity and sensitivity of this novel task, the performance of C57BL/6J mice, amyloid precursor protein/presenilin1 transgenic (APP/PS1) mice, α-calmodulin kinase-II (αCaMKII) T305D knock-in mice, and mice with an orbitofrontal cortex lesion were examined. We found that C57BL/6J mice reach stable performance levels within the 4 d of the task, while experiencing only slight reductions in weight and no major effects on circadian rhythm. The task detected learning deficits in APP/PS1 transgenic and αCaMKII T305D mutant mice. Additionally, we established that the orbitofrontal cortex underlies reversal learning performance in our task. Because of its short duration and the absence of food deprivation and concurrent weight loss, this novel automated home-cage task substantially improves comprehensive preclinical assessment of cognitive functions in mouse models of psychiatric and neurological disorders and also enables analysis during specific developmental stages. PMID:27918287
Event-related potential correlates of mindfulness meditation competence
Atchley, Rachel; Klee, Dan; Memmott, Tabatha; Goodrich, Elena; Wahbeh, Helané; Oken, Barry
2016-01-01
Objective This cross-sectional study evaluated event-related potentials (ERPs) across three groups: naïve, novice, and experienced meditators as potential physiological markers of mindfulness meditation competence. Methods Electroencephalographic (EEG) data was collected during a target tone detection task and a Breath Counting task. The Breath Counting task served as the mindfulness meditation condition for the novice and experienced meditator groups. Participants were instructed to respond to target tones with a button press in the first task (Tones), and then ignore the primed tones while breath counting. The primary outcomes were ERP responses to target tones, namely the N2 and P3, as markers of stimulus discrimination and attention, respectively. Results As expected, P3 amplitudes elicited by target tones were attenuated within groups during the Breath Counting task in comparison to the Tones task (p < .001). There was a task by group interaction for P3 (p = .039). Both meditator groups displayed greater change in peak-to-trough P3 amplitudes, with higher amplitudes during the Tones condition and more pronounced reductions in P3 amplitudes during the Breath Counting meditation task in comparison to the naïve group. Conclusions Meditators had stronger P3 amplitude responses to target tones when instructed to attend to the tones, and a greater attenuation of P3 amplitudes when instructed to ignore the same tones during the Breath Counting task. This study introduces the idea of identifying ERP markers as a means of measuring mindfulness meditation competence, and results suggest this may be a valid approach. This information has the potential to improve mindfulness meditation interventions by allowing objective assessment of mindfulness meditation quality. PMID:26850995
Event-related potential correlates of mindfulness meditation competence.
Atchley, R; Klee, D; Memmott, T; Goodrich, E; Wahbeh, H; Oken, B
2016-04-21
This cross-sectional study evaluated event-related potentials (ERPs) across three groups: naïve, novice, and experienced meditators as potential physiological markers of mindfulness meditation competence. Electroencephalographic (EEG) data were collected during a target tone detection task and a Breath Counting task. The Breath Counting task served as the mindfulness meditation condition for the novice and experienced meditator groups. Participants were instructed to respond to target tones with a button press in the first task (Tones), and then ignore the primed tones while Breath Counting. The primary outcomes were ERP responses to target tones, namely the N2 and P3, as markers of stimulus discrimination and attention, respectively. As expected, P3 amplitudes elicited by target tones were attenuated within groups during the Breath Counting task in comparison to the Tones task (p<.001). There was a task by group interaction for P3 (p=.039). Both meditator groups displayed greater change in peak-to-trough P3 amplitudes, with higher amplitudes during the Tones condition and more pronounced reductions in P3 amplitudes during the Breath Counting meditation task in comparison to the naïve group. Meditators had stronger P3 amplitude responses to target tones when instructed to attend to the tones, and a greater attenuation of P3 amplitudes when instructed to ignore the same tones during the Breath Counting task. This study introduces the idea of identifying ERP markers as a means of measuring mindfulness meditation competence, and results suggest this may be a valid approach. This information has the potential to improve mindfulness meditation interventions by allowing objective assessment of mindfulness meditation quality. Published by Elsevier Ltd.
Remmelink, Esther; Smit, August B; Verhage, Matthijs; Loos, Maarten
2016-11-01
Many neurological and psychiatric disorders are characterized by deficits in cognitive flexibility. Modeling cognitive flexibility in mice enables the investigation of mechanisms underlying these deficits. The majority of currently available behavioral tests targeting this cognitive domain are reversal learning tasks that require scheduled food restriction, extended training periods and labor-intensive, and stress-inducing animal handling. Here, we describe a novel 4-day (4-d) continuously running task measuring discrimination- and reversal learning in an automated home cage (CognitionWall DL/RL task) that largely eliminates these limitations. In this task, mice can earn unlimited number of food rewards by passing through the correct hole of the three-holed CognitionWall. To assess the validity and sensitivity of this novel task, the performance of C57BL/6J mice, amyloid precursor protein/presenilin1 transgenic (APP/PS1) mice, α-calmodulin kinase-II (αCaMKII) T305D knock-in mice, and mice with an orbitofrontal cortex lesion were examined. We found that C57BL/6J mice reach stable performance levels within the 4 d of the task, while experiencing only slight reductions in weight and no major effects on circadian rhythm. The task detected learning deficits in APP/PS1 transgenic and αCaMKII T305D mutant mice. Additionally, we established that the orbitofrontal cortex underlies reversal learning performance in our task. Because of its short duration and the absence of food deprivation and concurrent weight loss, this novel automated home-cage task substantially improves comprehensive preclinical assessment of cognitive functions in mouse models of psychiatric and neurological disorders and also enables analysis during specific developmental stages. © 2016 Remmelink et al.; Published by Cold Spring Harbor Laboratory Press.
Jones, B. M
2011-01-01
The detection and subsequent removal of land mines and unexploded ordnance (UXO) from many developing countries are slow, expensive, and dangerous tasks, but have the potential to improve the well-being of millions of people. Consequently, those involved with humanitarian mine and UXO clearance are actively searching for new and more efficient detection technologies. Remote explosive scent tracing (REST) using trained dogs has the potential to be one such technology. However, details regarding how best to train, test, and deploy dogs in this role have never been made publicly available. This article describes how the key characteristics of applied behavior analysis, as described by Baer, Wolf and Risley (1968, 1987), served as important objectives for the research and development of the behavioral technology component of REST while the author worked in humanitarian demining. PMID:22532731
Jones, B M
2011-01-01
The detection and subsequent removal of land mines and unexploded ordnance (UXO) from many developing countries are slow, expensive, and dangerous tasks, but have the potential to improve the well-being of millions of people. Consequently, those involved with humanitarian mine and UXO clearance are actively searching for new and more efficient detection technologies. Remote explosive scent tracing (REST) using trained dogs has the potential to be one such technology. However, details regarding how best to train, test, and deploy dogs in this role have never been made publicly available. This article describes how the key characteristics of applied behavior analysis, as described by Baer, Wolf and Risley (1968, 1987), served as important objectives for the research and development of the behavioral technology component of REST while the author worked in humanitarian demining.
A novel CUSUM-based approach for event detection in smart metering
NASA Astrophysics Data System (ADS)
Zhu, Zhicheng; Zhang, Shuai; Wei, Zhiqiang; Yin, Bo; Huang, Xianqing
2018-03-01
Non-intrusive load monitoring (NILM) plays such a significant role in raising consumer awareness on household electricity use to reduce overall energy consumption in the society. With regard to monitoring low power load, many researchers have introduced CUSUM into the NILM system, since the traditional event detection method is not as effective as expected. Due to the fact that the original CUSUM faces limitations given the small shift is below threshold, we therefore improve the test statistic which allows permissible deviation to gradually rise as the data size increases. This paper proposes a novel event detection and corresponding criterion that could be used in NILM systems to recognize transient states and to help the labelling task. Its performance has been tested in a real scenario where eight different appliances are connected to main line of electric power.
The Role of Response Bias in Perceptual Learning
2015-01-01
Sensory judgments improve with practice. Such perceptual learning is often thought to reflect an increase in perceptual sensitivity. However, it may also represent a decrease in response bias, with unpracticed observers acting in part on a priori hunches rather than sensory evidence. To examine whether this is the case, 55 observers practiced making a basic auditory judgment (yes/no amplitude-modulation detection or forced-choice frequency/amplitude discrimination) over multiple days. With all tasks, bias was present initially, but decreased with practice. Notably, this was the case even on supposedly “bias-free,” 2-alternative forced-choice, tasks. In those tasks, observers did not favor the same response throughout (stationary bias), but did favor whichever response had been correct on previous trials (nonstationary bias). Means of correcting for bias are described. When applied, these showed that at least 13% of perceptual learning on a forced-choice task was due to reduction in bias. In other situations, changes in bias were shown to obscure the true extent of learning, with changes in estimated sensitivity increasing once bias was corrected for. The possible causes of bias and the implications for our understanding of perceptual learning are discussed. PMID:25867609
NASA Technical Reports Server (NTRS)
Gai, E. G.; Curry, R. E.
1978-01-01
An investigation of the behavior of the human decisionmaker is described for a task related to the problem of a pilot using a traffic situation display to avoid collisions. This sequential signal detection task is characterized by highly correlated signals with time varying strength. Experimental results are presented and the behavior of the observers is analyzed using the theory of Markov processes and classical signal detection theory. Mathematical models are developed which describe the main result of the experiment: that correlation in sequential signals induced perseveration in the observer response and a strong tendency to repeat their previous decision, even when they were wrong.
Transfer of perceptual learning between different visual tasks
McGovern, David P.; Webb, Ben S.; Peirce, Jonathan W.
2012-01-01
Practice in most sensory tasks substantially improves perceptual performance. A hallmark of this ‘perceptual learning' is its specificity for the basic attributes of the trained stimulus and task. Recent studies have challenged the specificity of learned improvements, although transfer between substantially different tasks has yet to be demonstrated. Here, we measure the degree of transfer between three distinct perceptual tasks. Participants trained on an orientation discrimination, a curvature discrimination, or a ‘global form' task, all using stimuli comprised of multiple oriented elements. Before and after training they were tested on all three and a contrast discrimination control task. A clear transfer of learning was observed, in a pattern predicted by the relative complexity of the stimuli in the training and test tasks. Our results suggest that sensory improvements derived from perceptual learning can transfer between very different visual tasks. PMID:23048211
Transfer of perceptual learning between different visual tasks.
McGovern, David P; Webb, Ben S; Peirce, Jonathan W
2012-10-09
Practice in most sensory tasks substantially improves perceptual performance. A hallmark of this 'perceptual learning' is its specificity for the basic attributes of the trained stimulus and task. Recent studies have challenged the specificity of learned improvements, although transfer between substantially different tasks has yet to be demonstrated. Here, we measure the degree of transfer between three distinct perceptual tasks. Participants trained on an orientation discrimination, a curvature discrimination, or a 'global form' task, all using stimuli comprised of multiple oriented elements. Before and after training they were tested on all three and a contrast discrimination control task. A clear transfer of learning was observed, in a pattern predicted by the relative complexity of the stimuli in the training and test tasks. Our results suggest that sensory improvements derived from perceptual learning can transfer between very different visual tasks.
NASA Astrophysics Data System (ADS)
Ryzhikov, Volodymir D.; Opolonin, Oleksandr D.; Galkin, Serhiy M.; Voronkin, Yevheniy F.; Lysetska, Olena K.; Kostyukevych, Serhiy A.
2009-08-01
Detection of X-ray radiation by digital radiographic systems (DRS) is realized using multi-element detector arrays of scintillator-photodiode (S-PD) type. Accounting for our experience in development of X-ray introscopy systems, possibilities can be found for improvement of DRS detection efficiency. Namely, a more efficient use of the dynamic range of the analog-to-digit converter by means of instrumental compensation of scatter of detector characteristics and smaller apertures of individual detection channels. However, smaller apertures lead to lower levels of useful signals, and a problem emerges of signal interference over neighboring channels, which is related to optical separation of the scintillation elements. Also, more compact arrangement of electronic components of preamplifiers is achieved. The latter problem is solved by using multi-channel (from 32 to 1024 channels) photoreceiving devices (PRD). PRD has a set of photosensitive elements formed on one crystal, as well as shift registers ensuring preliminary amplification of signals and series connection to one outlet. The work envisages creation of receiving-detecting circuit (RDC) with improved spatial resolution (ISR) with the aim of producing advanced DRS with improved characteristics: density resolution better than 0.9%, and detecting ability allowing detection of θ 0.5 mm steel wire behind 6 mm steel. The work will result in the development of RDC with ISR (800-200 microns). In combination with various ionizing radiation sources and scanning mechanisms this will allow creation of DRS for many tasks of non-destructive testing (NDT) and technical diagnostics (TD), in particular, for check-up of pipelines, objects of oil and gas industries, etc. This work was supported by the Ministry of Education and Science of Ukraine, the U.S. Civilian Research and Development Foundation (CRDF), and by the NATO Science for Peace and Security Program (Project SfP-982823).
Predicting couple therapy outcomes based on speech acoustic features
Nasir, Md; Baucom, Brian Robert; Narayanan, Shrikanth
2017-01-01
Automated assessment and prediction of marital outcome in couples therapy is a challenging task but promises to be a potentially useful tool for clinical psychologists. Computational approaches for inferring therapy outcomes using observable behavioral information obtained from conversations between spouses offer objective means for understanding relationship dynamics. In this work, we explore whether the acoustics of the spoken interactions of clinically distressed spouses provide information towards assessment of therapy outcomes. The therapy outcome prediction task in this work includes detecting whether there was a relationship improvement or not (posed as a binary classification) as well as discerning varying levels of improvement or decline in the relationship status (posed as a multiclass recognition task). We use each interlocutor’s acoustic speech signal characteristics such as vocal intonation and intensity, both independently and in relation to one another, as cues for predicting the therapy outcome. We also compare prediction performance with one obtained via standardized behavioral codes characterizing the relationship dynamics provided by human experts as features for automated classification. Our experiments, using data from a longitudinal clinical study of couples in distressed relations, showed that predictions of relationship outcomes obtained directly from vocal acoustics are comparable or superior to those obtained using human-rated behavioral codes as prediction features. In addition, combining direct signal-derived features with manually coded behavioral features improved the prediction performance in most cases, indicating the complementarity of relevant information captured by humans and machine algorithms. Additionally, considering the vocal properties of the interlocutors in relation to one another, rather than in isolation, showed to be important for improving the automatic prediction. This finding supports the notion that behavioral outcome, like many other behavioral aspects, is closely related to the dynamics and mutual influence of the interlocutors during their interaction and their resulting behavioral patterns. PMID:28934302
Meuwese, Julia D I; van Loon, Anouk M; Lamme, Victor A F; Fahrenfort, Johannes J
2014-05-01
Perceptual decisions seem to be made automatically and almost instantly. Constructing a unitary subjective conscious experience takes more time. For example, when trying to avoid a collision with a car on a foggy road you brake or steer away in a reflex, before realizing you were in a near accident. This subjective aspect of object recognition has been given little attention. We used metacognition (assessed with confidence ratings) to measure subjective experience during object detection and object categorization for degraded and masked objects, while objective performance was matched. Metacognition was equal for degraded and masked objects, but categorization led to higher metacognition than did detection. This effect turned out to be driven by a difference in metacognition for correct rejection trials, which seemed to be caused by an asymmetry of the distractor stimulus: It does not contain object-related information in the detection task, whereas it does contain such information in the categorization task. Strikingly, this asymmetry selectively impacted metacognitive ability when objective performance was matched. This finding reveals a fundamental difference in how humans reflect versus act on information: When matching the amount of information required to perform two tasks at some objective level of accuracy (acting), metacognitive ability (reflecting) is still better in tasks that rely on positive evidence (categorization) than in tasks that rely more strongly on an absence of evidence (detection).
Metacognition and proofreading: the roles of aging, motivation, and interest.
Hargis, Mary B; Yue, Carole L; Kerr, Tyson; Ikeda, Kenji; Murayama, Kou; Castel, Alan D
2017-03-01
The current study examined younger and older adults' error detection accuracy, prediction calibration, and postdiction calibration on a proofreading task, to determine if age-related differences would be present in this type of common error detection task. Participants were given text passages, and were first asked to predict the percentage of errors they would detect in the passage. They then read the passage and circled errors (which varied in complexity and locality), and made postdictions regarding their performance, before repeating this with another passage and answering a comprehension test of both passages. There were no age-related differences in error detection accuracy, text comprehension, or metacognitive calibration, though participants in both age groups were overconfident overall in their metacognitive judgments. Both groups gave similar ratings of motivation to complete the task. The older adults rated the passages as more interesting than younger adults did, although this level of interest did not appear to influence error-detection performance. The age equivalence in both proofreading ability and calibration suggests that the ability to proofread text passages and the associated metacognitive monitoring used in judging one's own performance are maintained in aging. These age-related similarities persisted when younger adults completed the proofreading tasks on a computer screen, rather than with paper and pencil. The findings provide novel insights regarding the influence that cognitive aging may have on metacognitive accuracy and text processing in an everyday task.
Can tutoring improve performance on a reasoning task under deadline conditions?
Osman, Magda
2007-03-01
The present study examined the effectiveness of a tutoring technique that has been used to identify and address participants' misunderstandings in Wason's selection task. In particular, the study investigated whether the technique would lead to improvements in performance when the task was presented in a deadline format (a condition in which time restrictions are imposed). In Experiment 1, the effects of tutoring on performance were compared in free time (conditions in which no time restrictions are imposed) and deadline task formats. In Experiment 2, improvements in performance were studied in deadline task formats, in which the tutoring and test phases were separated by an interval of 1 day. The results suggested that tutoring improved performance on the selection task under deadline and in free time conditions. Additionally, the study showed that participants made errors because they had misinterpreted the task. With tutoring, they were able to modify their initial misunderstandings.
An analysis of relational complexity in an air traffic control conflict detection task.
Boag, Christine; Neal, Andrew; Loft, Shayne; Halford, Graeme S
2006-11-15
Theoretical analyses of air traffic complexity were carried out using the Method for the Analysis of Relational Complexity. Twenty-two air traffic controllers examined static air traffic displays and were required to detect and resolve conflicts. Objective measures of performance included conflict detection time and accuracy. Subjective perceptions of mental workload were assessed by a complexity-sorting task and subjective ratings of the difficulty of different aspects of the task. A metric quantifying the complexity of pair-wise relations among aircraft was able to account for a substantial portion of the variance in the perceived complexity and difficulty of conflict detection problems, as well as reaction time. Other variables that influenced performance included the mean minimum separation between aircraft pairs and the amount of time that aircraft spent in conflict.
Shaw, Tyler H; Funke, Matthew E; Dillard, Michael; Funke, Gregory J; Warm, Joel S; Parasuraman, Raja
2013-08-01
Transcranial Doppler sonography was used to measure cerebral blood flow velocity (CBFV) in the right and left cerebral hemispheres during the performance of a 50-min visual vigilance session. Observers monitored a simulated flight of unmanned aerial vehicles for cases in which one of the vehicles was flying in an inappropriate direction relative to its cohorts. Two types of vigilance tasks were employed: a traditional task in which observers made button press ("go") responses to critical signals, and a modification of the traditional task called the Sustained Attention to Response Task (SART) in which "go" responses acknowledged nonsignal events and response withholding ("no-go") signified signal detection. Signal detections and global CBFV scores declined over time. In addition, fine-grained event-related analyses revealed that the detection of signals was accompanied by an elevation of CBFV that was not present with missed signals. As was the case with the global scores, the magnitude of the transient CBFV increments associated with signal detection also declined over time, and these findings were independent of task type. The results support the view of CBFV as an index of the cognitive evaluation of stimulus significance, and a resource model of vigilance in which the need for continuous attention produces a depletion of information-processing assets that are not replenished as the task progresses. Further, temporal declines in the magnitude of event-related CBFV in response to critical signals only is evidence that the decrement function in vigilance is due to attentional processing and not specific task elements such as the required response format. Copyright © 2013. Published by Elsevier Inc.
Dalton, Brian E; de Busserolles, Fanny; Marshall, N Justin; Carleton, Karen L
2017-01-15
The distinct behaviours of animals and the varied habitats in which animals live place different requirements on their visual systems. A trade-off exists between resolution and sensitivity, with these properties varying across the retina. Spectral sensitivity, which affects both achromatic and chromatic (colour) vision, also varies across the retina, though the function of this inhomogeneity is less clear. We previously demonstrated spatially varying spectral sensitivity of double cones in the cichlid fish Metriaclima zebra owing to coexpression of different opsins. Here, we map the distributions of ganglion cells and cone cells and quantify opsin coexpression in single cones to show these also vary across the retina. We identify an area centralis with peak acuity and infrequent coexpression, which may be suited for tasks such as foraging and detecting male signals. The peripheral retina has reduced ganglion cell densities and increased opsin coexpression. Modeling of cichlid visual tasks indicates that coexpression might hinder colour discrimination of foraging targets and some fish colours. But, coexpression might improve contrast detection of dark objects against bright backgrounds, which might be useful for detecting predators or zooplankton. This suggests a trade-off between acuity and colour discrimination in the central retina versus lower resolution but more sensitive contrast detection in the peripheral retina. Significant variation in the pattern of coexpression among individuals, however, raises interesting questions about the selective forces at work. © 2017. Published by The Company of Biologists Ltd.
Cocos, Anne; Fiks, Alexander G; Masino, Aaron J
2017-07-01
Social media is an important pharmacovigilance data source for adverse drug reaction (ADR) identification. Human review of social media data is infeasible due to data quantity, thus natural language processing techniques are necessary. Social media includes informal vocabulary and irregular grammar, which challenge natural language processing methods. Our objective is to develop a scalable, deep-learning approach that exceeds state-of-the-art ADR detection performance in social media. We developed a recurrent neural network (RNN) model that labels words in an input sequence with ADR membership tags. The only input features are word-embedding vectors, which can be formed through task-independent pretraining or during ADR detection training. Our best-performing RNN model used pretrained word embeddings created from a large, non-domain-specific Twitter dataset. It achieved an approximate match F-measure of 0.755 for ADR identification on the dataset, compared to 0.631 for a baseline lexicon system and 0.65 for the state-of-the-art conditional random field model. Feature analysis indicated that semantic information in pretrained word embeddings boosted sensitivity and, combined with contextual awareness captured in the RNN, precision. Our model required no task-specific feature engineering, suggesting generalizability to additional sequence-labeling tasks. Learning curve analysis showed that our model reached optimal performance with fewer training examples than the other models. ADR detection performance in social media is significantly improved by using a contextually aware model and word embeddings formed from large, unlabeled datasets. The approach reduces manual data-labeling requirements and is scalable to large social media datasets. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Ghaly, Michael; Du, Yong; Links, Jonathan M.; Frey, Eric C.
2016-03-01
In SPECT imaging, collimators are a major factor limiting image quality and largely determine the noise and resolution of SPECT images. In this paper, we seek the collimator with the optimal tradeoff between image noise and resolution with respect to performance on two tasks related to myocardial perfusion SPECT: perfusion defect detection and joint detection and localization. We used the Ideal Observer (IO) operating on realistic background-known-statistically (BKS) and signal-known-exactly (SKE) data. The areas under the receiver operating characteristic (ROC) and localization ROC (LROC) curves (AUCd, AUCd+l), respectively, were used as the figures of merit for both tasks. We used a previously developed population of 54 phantoms based on the eXtended Cardiac Torso Phantom (XCAT) that included variations in gender, body size, heart size and subcutaneous adipose tissue level. For each phantom, organ uptakes were varied randomly based on distributions observed in patient data. We simulated perfusion defects at six different locations with extents and severities of 10% and 25%, respectively, which represented challenging but clinically relevant defects. The extent and severity are, respectively, the perfusion defect’s fraction of the myocardial volume and reduction of uptake relative to the normal myocardium. Projection data were generated using an analytical projector that modeled attenuation, scatter, and collimator-detector response effects, a 9% energy resolution at 140 keV, and a 4 mm full-width at half maximum (FWHM) intrinsic spatial resolution. We investigated a family of eight parallel-hole collimators that spanned a large range of sensitivity-resolution tradeoffs. For each collimator and defect location, the IO test statistics were computed using a Markov Chain Monte Carlo (MCMC) method for an ensemble of 540 pairs of defect-present and -absent images that included the aforementioned anatomical and uptake variability. Sets of test statistics were computed for both tasks and analyzed using ROC and LROC analysis methodologies. The results of this study suggest that collimators with somewhat poorer resolution and higher sensitivity than those of a typical low-energy high-resolution (LEHR) collimator were optimal for both defect detection and joint detection and localization tasks in myocardial perfusion SPECT for the range of defect sizes investigated. This study also indicates that optimizing instrumentation for a detection task may provide near-optimal performance on the more challenging detection-localization task.
(abstract) Mission Operations and Control Assurance: Flight Operations Quality Improvements
NASA Technical Reports Server (NTRS)
Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Witkowski, Mona M.
1993-01-01
Mission Operations and Command Assurance (MO&CA), a recent addition to flight operations teams at JPL. provides a system level function to instill quality in mission operations. MO&CA's primary goal at JPL is to help improve the operational reliability for projects during flight. MO&CA tasks include early detection and correction of process design and procedural deficiencies within projects. Early detection and correction are essential during development of operational procedures and training of operational teams. MO&CA's effort focuses directly on reducing the probability of radiating incorrect commands to a spacecraft. Over the last seven years at JPL, MO&CA has become a valuable asset to JPL flight projects. JPL flight projects have benefited significantly from MO&CA's efforts to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit directly from previous and ongoing experience. Since MO&CA, like Total Quality Management (TQM), focuses on continuous improvement of processes and elimination of rework, we recommend that this effort be continued on NASA flight projects.
NASA Astrophysics Data System (ADS)
Sharma, Kajal; Moon, Inkyu; Kim, Sung Gaun
2012-10-01
Estimating depth has long been a major issue in the field of computer vision and robotics. The Kinect sensor's active sensing strategy provides high-frame-rate depth maps and can recognize user gestures and human pose. This paper presents a technique to estimate the depth of features extracted from video frames, along with an improved feature-matching method. In this paper, we used the Kinect camera developed by Microsoft, which captured color and depth images for further processing. Feature detection and selection is an important task for robot navigation. Many feature-matching techniques have been proposed earlier, and this paper proposes an improved feature matching between successive video frames with the use of neural network methodology in order to reduce the computation time of feature matching. The features extracted are invariant to image scale and rotation, and different experiments were conducted to evaluate the performance of feature matching between successive video frames. The extracted features are assigned distance based on the Kinect technology that can be used by the robot in order to determine the path of navigation, along with obstacle detection applications.
Raised visual detection thresholds depend on the level of complexity of cognitive foveal loading.
Plainis, S; Murray, I J; Chauhan, K
2001-01-01
The objective of the study was to measure the interactions between visual thresholds for a simple light (the secondary task) presented peripherally and a simultaneously performed cognitive task (the primary task) presented foveally The primary task was highly visible but varied according to its cognitive complexity. Interactions between the tasks were determined by measuring detection thresholds for the peripheral task and accuracy of performance of the foveal task. Effects were measured for 5, 10, 20, and 30 deg eccentricity of the peripherally presented light and for three levels of cognitive complexity. Mesopic conditions (0.5 lx) were used. As expected, the concurrent presentation of the foveal cognitive task reduced peripheral sensitivity. Moreover, performance of the foveal task was adversely affected when conducting the peripheral task. Performance on both tasks was reduced as the level of complexity of the cognitive task increased. There were qualitative differences in task interactions between the central 10 deg and at greater eccentricities. Within 10 deg there was a disproportionate effect of eccentricity, previously interpreted as the 'tunnel-vision' model of visual field narrowing. Interactions outside 10 deg were less affected by eccentricity. These results are discussed in terms of the known neurophysiological characteristics of the primary visual pathway.
The aliphatic hydrocarbon perchloroethyelene (PCE) has been associated with neurobehavioral dysfunction including reduced attention in humans. The current study sought to assess the effects of inhaled PCE on sustained attention in rats performing a visual signal detection task (S...
Detecting Stress Patterns Is Related to Children's Performance on Reading Tasks
ERIC Educational Resources Information Center
Gutierrez-Palma, Nicolas; Raya-Garcia, Manuel; Palma-Reyes, Alfonso
2009-01-01
This paper investigates the relationship between the ability to detect changes in prosody and reading performance in Spanish. Participants were children aged 6-8 years who completed tasks involving reading words, reading pseudowords, stressing pseudowords, and reproducing pseudoword stress patterns. Results showed that the capacity to reproduce…
Cortical Spatio-Temporal Dynamics Underlying Phonological Target Detection in Humans
ERIC Educational Resources Information Center
Chang, Edward F.; Edwards, Erik; Nagarajan, Srikantan S.; Fogelson, Noa; Dalal, Sarang S.; Canolty, Ryan T.; Kirsch, Heidi E.; Barbaro, Nicholas M.; Knight, Robert T.
2011-01-01
Selective processing of task-relevant stimuli is critical for goal-directed behavior. We used electrocorticography to assess the spatio-temporal dynamics of cortical activation during a simple phonological target detection task, in which subjects press a button when a prespecified target syllable sound is heard. Simultaneous surface potential…
DOT National Transportation Integrated Search
0000-01-01
n the Access Restoration Project Task 1.2 Report 1, the algorithms for detecting roadway debris piles and flooded areas were described in detail. Those algorithms take CRS data as input and automatically detect the roadway obstructions. Although the ...
Mori, Shuji; Oyama, Kazuki; Kikuchi, Yousuke; Mitsudo, Takako; Hirose, Nobuyuki
2015-01-01
The objective of this study was to examine the hypothesis that between-channel gap detection, which includes between-frequency and between-ear gap detection, and perception of stop consonants, which is mediated by the length of voice-onset time (VOT), share common mechanisms, namely relative-timing operation in monitoring separate perceptual channels. The authors measured gap detection thresholds and identification functions of /ba/ and /pa/ along VOT in 49 native young adult Japanese listeners. There were three gap detection tasks. In the between-frequency task, the leading and trailing markers differed in terms of center frequency (Fc). The leading marker was a broadband noise of 10 to 20,000 Hz. The trailing marker was a 0.5-octave band-passed noise of 1000-, 2000-, 4000-, or 8000-Hz Fc. In the between-ear task, the two markers were spectrally identical but presented to separate ears. In the within-frequency task, the two spectrally identical markers were presented to the same ear. The /ba/-/pa/ identification functions were obtained in a task in which the listeners were presented synthesized speech stimuli of varying VOTs from 10 to 46 msec and asked to identify them as /ba/ or /pa/. The between-ear gap thresholds were significantly positively correlated with the between-frequency gap thresholds (except those obtained with the trailing marker of 4000-Hz Fc). The between-ear gap thresholds were not significantly correlated with the within-frequency gap thresholds, which were significantly correlated with all the between-frequency gap thresholds. The VOT boundaries and slopes of /ba/-/pa/ identification functions were not significantly correlated with any of these gap thresholds. There was a close relation between the between-ear and between-frequency gap detection, supporting the view that these two types of gap detection share common mechanisms of between-channel gap detection. However, there was no evidence for a relation between the perception of stop consonants and the between-frequency/ear gap detection in native Japanese speakers.
The role of extra-foveal processing in 3D imaging
NASA Astrophysics Data System (ADS)
Eckstein, Miguel P.; Lago, Miguel A.; Abbey, Craig K.
2017-03-01
The field of medical image quality has relied on the assumption that metrics of image quality for simple visual detection tasks are a reliable proxy for the more clinically realistic visual search tasks. Rank order of signal detectability across conditions often generalizes from detection to search tasks. Here, we argue that search in 3D images represents a paradigm shift in medical imaging: radiologists typically cannot exhaustively scrutinize all regions of interest with the high acuity fovea requiring detection of signals with extra-foveal areas (visual periphery) of the human retina. We hypothesize that extra-foveal processing can alter the detectability of certain types of signals in medical images with important implications for search in 3D medical images. We compare visual search of two different types of signals in 2D vs. 3D images. We show that a small microcalcification-like signal is more highly detectable than a larger mass-like signal in 2D search, but its detectability largely decreases (relative to the larger signal) in the 3D search task. Utilizing measurements of observer detectability as a function retinal eccentricity and observer eye fixations we can predict the pattern of results in the 2D and 3D search studies. Our findings: 1) suggest that observer performance findings with 2D search might not always generalize to 3D search; 2) motivate the development of a new family of model observers that take into account the inhomogeneous visual processing across the retina (foveated model observers).
ERIC Educational Resources Information Center
Prichard Committee for Academic Excellence, Lexington, KY.
This report contains the findings of two task forces established during 1994 by the Prichard Committee for Academic Excellence: (1) the Task Force on Improving Kentucky Schools; and (2) the Task Force on Restructuring Time and Learning. The task forces, comprised of parents and business members of the Prichard Committee, examined key elements of…
Improved probabilistic inference as a general learning mechanism with action video games.
Green, C Shawn; Pouget, Alexandre; Bavelier, Daphne
2010-09-14
Action video game play benefits performance in an array of sensory, perceptual, and attentional tasks that go well beyond the specifics of game play [1-9]. That a training regimen may induce improvements in so many different skills is notable because the majority of studies on training-induced learning report improvements on the trained task but limited transfer to other, even closely related, tasks ([10], but see also [11-13]). Here we ask whether improved probabilistic inference may explain such broad transfer. By using a visual perceptual decision making task [14, 15], the present study shows for the first time that action video game experience does indeed improve probabilistic inference. A neural model of this task [16] establishes how changing a single parameter, namely the strength of the connections between the neural layer providing the momentary evidence and the layer integrating the evidence over time, captures improvements in action-gamers behavior. These results were established in a visual, but also in a novel auditory, task, indicating generalization across modalities. Thus, improved probabilistic inference provides a general mechanism for why action video game playing enhances performance in a wide variety of tasks. In addition, this mechanism may serve as a signature of training regimens that are likely to produce transfer of learning. Copyright © 2010 Elsevier Ltd. All rights reserved.
Automatic detection and recognition of signs from natural scenes.
Chen, Xilin; Yang, Jie; Zhang, Jing; Waibel, Alex
2004-01-01
In this paper, we present an approach to automatic detection and recognition of signs from natural scenes, and its application to a sign translation task. The proposed approach embeds multiresolution and multiscale edge detection, adaptive searching, color analysis, and affine rectification in a hierarchical framework for sign detection, with different emphases at each phase to handle the text in different sizes, orientations, color distributions and backgrounds. We use affine rectification to recover deformation of the text regions caused by an inappropriate camera view angle. The procedure can significantly improve text detection rate and optical character recognition (OCR) accuracy. Instead of using binary information for OCR, we extract features from an intensity image directly. We propose a local intensity normalization method to effectively handle lighting variations, followed by a Gabor transform to obtain local features, and finally a linear discriminant analysis (LDA) method for feature selection. We have applied the approach in developing a Chinese sign translation system, which can automatically detect and recognize Chinese signs as input from a camera, and translate the recognized text into English.
Karbach, Julia; Verhaeghen, Paul
2014-11-01
This meta-analysis examined the effects of process-based executive-function and working memory training (49 articles, 61 independent samples) in older adults (> 60 years). The interventions resulted in significant effects on performance on the trained task and near-transfer tasks; significant results were obtained for the net pretest-to-posttest gain relative to active and passive control groups and for the net effect at posttest relative to active and passive control groups. Far-transfer effects were smaller than near-transfer effects but were significant for the net pretest-to-posttest gain relative to passive control groups and for the net gain at posttest relative to both active and passive control groups. We detected marginally significant differences in training-induced improvements between working memory and executive-function training, but no differences between the training-induced improvements observed in older adults and younger adults, between the benefits associated with adaptive and nonadaptive training, or between the effects in active and passive control conditions. Gains did not vary with total training time. © The Author(s) 2014.
Takagi, Shunsuke; Takeuchi, Takashi; Yamamoto, Naoki; Fujita, Munehisa; Furuta, Ko; Ishikawa, Hiroyo; Motohashi, Nobutaka; Nishikawa, Toru
2018-02-01
While electroconvulsive therapy (ECT) is a well-established, safe, and effective treatment for mental illnesses, the potential for adverse effects on cognitive functions remains controversial. We aimed to evaluate multiple cognitive functions in different time periods before and after ECT in a Japanese population. A battery of five neurocognitive tests was administered to patients who underwent a course of ECT treatment at three time points: before, immediately after, and 4 weeks after ECT. A transient but significant decline in letter fluency function was observed immediately after ECT, but had recovered well by 4 weeks. We also observed a significant improvement in the trail-making task at 4 weeks after ECT. In a Japanese population, adverse effects of ECT on verbal fluency function-related and other cognitive impairments were transient. Over the longer term, we detected significant improvements in the performance of tasks that presumably reflected information processing speed and executive functions. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.
A novel method for quantification of beam's-eye-view tumor tracking performance.
Hu, Yue-Houng; Myronakis, Marios; Rottmann, Joerg; Wang, Adam; Morf, Daniel; Shedlock, Daniel; Baturin, Paul; Star-Lack, Josh; Berbeco, Ross
2017-11-01
In-treatment imaging using an electronic portal imaging device (EPID) can be used to confirm patient and tumor positioning. Real-time tumor tracking performance using current digital megavolt (MV) imagers is hindered by poor image quality. Novel EPID designs may help to improve quantum noise response, while also preserving the high spatial resolution of the current clinical detector. Recently investigated EPID design improvements include but are not limited to multi-layer imager (MLI) architecture, thick crystalline and amorphous scintillators, and phosphor pixilation and focusing. The goal of the present study was to provide a method of quantitating improvement in tracking performance as well as to reveal the physical underpinnings of detector design that impact tracking quality. The study employs a generalizable ideal observer methodology for the quantification of tumor tracking performance. The analysis is applied to study both the effect of increasing scintillator thickness on a standard, single-layer imager (SLI) design as well as the effect of MLI architecture on tracking performance. The present study uses the ideal observer signal-to-noise ratio (d') as a surrogate for tracking performance. We employ functions which model clinically relevant tasks and generalized frequency-domain imaging metrics to connect image quality with tumor tracking. A detection task for relevant Cartesian shapes (i.e., spheres and cylinders) was used to quantitate trackability of cases employing fiducial markers. Automated lung tumor tracking algorithms often leverage the differences in benign and malignant lung tissue textures. These types of algorithms (e.g., soft-tissue localization - STiL) were simulated by designing a discrimination task, which quantifies the differentiation of tissue textures, measured experimentally and fit as a power-law in trend (with exponent β) using a cohort of MV images of patient lungs. The modeled MTF and NPS were used to investigate the effect of scintillator thickness and MLI architecture on tumor tracking performance. Quantification of MV images of lung tissue as an inverse power-law with respect to frequency yields exponent values of β = 3.11 and 3.29 for benign and malignant tissues, respectively. Tracking performance with and without fiducials was found to be generally limited by quantum noise, a factor dominated by quantum detective efficiency (QDE). For generic SLI construction, increasing the scintillator thickness (gadolinium oxysulfide - GOS) from a standard 290 μm to 1720 μm reduces noise to about 10%. However, 81% of this reduction is appreciated between 290 and 1000 μm. In comparing MLI and SLI detectors of equivalent individual GOS layer thickness, the improvement in noise is equal to the number of layers in the detector (i.e., 4) with almost no difference in MTF. Further, improvement in tracking performance was slightly less than the square-root of the reduction in noise, approximately 84-90%. In comparing an MLI detector with an SLI with a GOS scintillator of equivalent total thickness, improvement in object detectability is approximately 34-39%. We have presented a novel method for quantification of tumor tracking quality and have applied this model to evaluate the performance of SLI and MLI EPID designs. We showed that improved tracking quality is primarily limited by improvements in NPS. When compared to very thick scintillator SLI, employing MLI architecture exhibits the same gains in QDE, but by mitigating the effect of optical Swank noise, results in more dramatic improvements in tracking performance. © 2017 American Association of Physicists in Medicine.
A model of human event detection in multiple process monitoring situations
NASA Technical Reports Server (NTRS)
Greenstein, J. S.; Rouse, W. B.
1978-01-01
It is proposed that human decision making in many multi-task situations might be modeled in terms of the manner in which the human detects events related to his tasks and the manner in which he allocates his attention among his tasks once he feels events have occurred. A model of human event detection performance in such a situation is presented. An assumption of the model is that, in attempting to detect events, the human generates the probability that events have occurred. Discriminant analysis is used to model the human's generation of these probabilities. An experimental study of human event detection performance in a multiple process monitoring situation is described and the application of the event detection model to this situation is addressed. The experimental study employed a situation in which subjects simulataneously monitored several dynamic processes for the occurrence of events and made yes/no decisions on the presence of events in each process. Input to the event detection model of the information displayed to the experimental subjects allows comparison of the model's performance with the performance of the subjects.
Bridge-in-a-backpack(TM) task 4 : development of improved arch concrete mix to facilitate field use.
DOT National Transportation Integrated Search
2016-02-01
This report includes fulfillment of Task 4 of a multi-task contract to further enhance concrete filled FRP tubes, or : the Bridge in a Backpack. Task 4 investigates the development of improved concrete mixes for filling the FRP : tubes. : One critica...
Bridge-in-a-Backpack(TM) task 4 : development of improved arch concrete mix to facilitate field use.
DOT National Transportation Integrated Search
2016-02-01
This report includes fulfillment of Task 4 of a multi-task contract to further enhance concrete filled FRP tubes, or : the Bridge in a Backpack. Task 4 investigates the development of improved concrete mixes for filling the FRP : tubes. : One critica...
Polgár, Zita; Kinnunen, Mari; Újváry, Dóra; Miklósi, Ádám; Gácsi, Márta
2016-01-01
Many dog breeds are bred specifically for increased performance in scent-based tasks. Whether dogs bred for this purpose have higher olfactory capacities than other dogs, or even wolves with whom they share a common ancestor, has not yet been studied. Indeed, there is no standard test for assessing canine olfactory ability. This study aimed to create a simple procedure that requires no pre-training and to use it to measure differences in olfactory capacity across four groups of canines: (1) dog breeds that have been selected for their scenting ability; (2) dog breeds that have been bred for other purposes; (3) dog breeds with exaggerated short-nosed features; and (4) hand-reared grey wolves. The procedure involved baiting a container with raw turkey meat and placing it under one of four identical ceramic pots. Subjects were led along the row of pots and were tasked with determining by olfaction alone which of them contained the bait. There were five levels of increasing difficulty determined by the number of holes on the container’s lid. A subsample of both dogs and wolves was retested to assess reliability. The results showed that breeds selected for scent work were better than both short-nosed and non-scent breeds. In the most difficult level, wolves and scenting breeds performed better than chance, while non-scenting and short-nosed breeds did not. In the retested samples wolves improved their success; however, dogs showed no change in their performances indicating that a single test may be reliable enough to assess their capacity. Overall, we revealed measurable differences between dog breeds in their olfactory abilities and suggest that the Natural Detection Task is a good foundation for developing an efficient way of quantifying them. PMID:27152412
Polgár, Zita; Kinnunen, Mari; Újváry, Dóra; Miklósi, Ádám; Gácsi, Márta
2016-01-01
Many dog breeds are bred specifically for increased performance in scent-based tasks. Whether dogs bred for this purpose have higher olfactory capacities than other dogs, or even wolves with whom they share a common ancestor, has not yet been studied. Indeed, there is no standard test for assessing canine olfactory ability. This study aimed to create a simple procedure that requires no pre-training and to use it to measure differences in olfactory capacity across four groups of canines: (1) dog breeds that have been selected for their scenting ability; (2) dog breeds that have been bred for other purposes; (3) dog breeds with exaggerated short-nosed features; and (4) hand-reared grey wolves. The procedure involved baiting a container with raw turkey meat and placing it under one of four identical ceramic pots. Subjects were led along the row of pots and were tasked with determining by olfaction alone which of them contained the bait. There were five levels of increasing difficulty determined by the number of holes on the container's lid. A subsample of both dogs and wolves was retested to assess reliability. The results showed that breeds selected for scent work were better than both short-nosed and non-scent breeds. In the most difficult level, wolves and scenting breeds performed better than chance, while non-scenting and short-nosed breeds did not. In the retested samples wolves improved their success; however, dogs showed no change in their performances indicating that a single test may be reliable enough to assess their capacity. Overall, we revealed measurable differences between dog breeds in their olfactory abilities and suggest that the Natural Detection Task is a good foundation for developing an efficient way of quantifying them.
Choice of Grating Orientation for Evaluation of Peripheral Vision
Venkataraman, Abinaya Priya; Winter, Simon; Rosén, Robert; Lundström, Linda
2016-01-01
ABSTRACT Purpose Peripheral resolution acuity depends on the orientation of the stimuli. However, it is uncertain if such a meridional effect also exists for peripheral detection tasks because they are affected by optical errors. Knowledge of the quantitative differences in acuity for different grating orientations is crucial for choosing the appropriate stimuli for evaluations of peripheral resolution and detection tasks. We assessed resolution and detection thresholds for different grating orientations in the peripheral visual field. Methods Resolution and detection thresholds were evaluated for gratings of four different orientations in eight different visual field meridians in the 20-deg visual field in white light. Detection measurements in monochromatic light (543 nm; bandwidth, 10 nm) were also performed to evaluate the effects of chromatic aberration on the meridional effect. A combination of trial lenses and adaptive optics system was used to correct the monochromatic lower- and higher-order aberrations. Results For both resolution and detection tasks, gratings parallel to the visual field meridian had better threshold compared with the perpendicular gratings, whereas the two oblique gratings had similar thresholds. The parallel and perpendicular grating acuity differences for resolution and detection tasks were 0.16 logMAR and 0.11 logMAD, respectively. Elimination of chromatic errors did not affect the meridional preference in detection acuity. Conclusions Similar to peripheral resolution, detection also shows a meridional effect that appears to have a neural origin. The threshold difference seen for parallel and perpendicular gratings suggests the use of two oblique gratings as stimuli in alternative forced-choice procedures for peripheral vision evaluation to reduce measurement variation. PMID:26889822
Choice of Grating Orientation for Evaluation of Peripheral Vision.
Venkataraman, Abinaya Priya; Winter, Simon; Rosén, Robert; Lundström, Linda
2016-06-01
Peripheral resolution acuity depends on the orientation of the stimuli. However, it is uncertain if such a meridional effect also exists for peripheral detection tasks because they are affected by optical errors. Knowledge of the quantitative differences in acuity for different grating orientations is crucial for choosing the appropriate stimuli for evaluations of peripheral resolution and detection tasks. We assessed resolution and detection thresholds for different grating orientations in the peripheral visual field. Resolution and detection thresholds were evaluated for gratings of four different orientations in eight different visual field meridians in the 20-deg visual field in white light. Detection measurements in monochromatic light (543 nm; bandwidth, 10 nm) were also performed to evaluate the effects of chromatic aberration on the meridional effect. A combination of trial lenses and adaptive optics system was used to correct the monochromatic lower- and higher-order aberrations. For both resolution and detection tasks, gratings parallel to the visual field meridian had better threshold compared with the perpendicular gratings, whereas the two oblique gratings had similar thresholds. The parallel and perpendicular grating acuity differences for resolution and detection tasks were 0.16 logMAR and 0.11 logMAD, respectively. Elimination of chromatic errors did not affect the meridional preference in detection acuity. Similar to peripheral resolution, detection also shows a meridional effect that appears to have a neural origin. The threshold difference seen for parallel and perpendicular gratings suggests the use of two oblique gratings as stimuli in alternative forced-choice procedures for peripheral vision evaluation to reduce measurement variation.
Kray, Jutta; Fehér, Balázs
2017-01-01
Recent aging studies on training in task switching found that older adults showed larger improvements to an untrained switching task as younger adults do. However, less clear is what type of cognitive control processes can explain these training gains as participants were trained with a particular type of switching task including bivalent stimuli, requiring high inhibition demands, and no task cues helping them keeping track of the task sequence, and by this, requiring high working-memory (WM) demands. The aims of this study were first to specify whether inhibition, WM, or switching demands are critical for the occurrence of transfer and whether this transfer depends on the degree of overlap between training and transfer situation; and second to assess whether practiced-induced gains in task switching can be maintained over a longer period of time. To this end, we created five training conditions that varied in switching (switching vs. single task training), inhibition (switching training with bivalent or univalent stimuli), and WM demands (switching training with or without task cues). We investigated 81 younger adults and 82 older adults with a pretest-training-posttest design and a follow-up measurement after 6 months. Results indicated that all training and age groups showed improvements in task switching and a differential effect of training condition on improvements to an untrained switching task in younger and older adults. For younger adults, we found larger improvements in task switching for the switching groups than the single-task training group independently of inhibition and WM demands, suggesting that practice in switching is most critical. However, these benefits disappeared after 6 months. In contrast, for older adults training groups practicing task switching under high inhibition demands showed larger improvements to untrained switching tasks than the other groups. Moreover, these benefits were maintained over time. We also found that the transfer of benefits in task switching was larger with greater overlap between training and transfer situation. However, results revealed no evidence for transfer to other untrained cognitive task. Overall, the findings suggest that training in resolving interference while switching between two tasks is most critical for the occurrence of transfer in the elderly. PMID:28367135
Collaborative Workspaces to Accelerate Discovery
NASA Astrophysics Data System (ADS)
Meade, Bernard; Fluke, Christopher; Cooke, Jeff; Andreoni, Igor; Pritchard, Tyler; Curtin, Christopher; Bernard, Stephanie R.; Asher, Albany; Mack, Katherine J.; Murphy, Michael T.; Vohl, Dany; Codoreanu, Alex; Kotuš, Srđan M.; Rumokoy, Fanuel; Horst, Chuck; Reynolds, Tristan
2017-05-01
By applying a display ecology to the Deeper, Wider, Faster proactive, simultaneous telescope observing campaign, we have shown a dramatic reduction in the time taken to inspect DECam CCD images for potential transient candidates and to produce time-critical triggers to standby telescopes. We also show how facilitating rapid corroboration of potential candidates and the exclusion of non-candidates improves the accuracy of detection; and establish that a practical and enjoyable workspace can improve the experience of an otherwise taxing task for astronomers. We provide a critical road test of two advanced displays in a research context-a rare opportunity to demonstrate how they can be used rather than simply discuss how they might be used to accelerate discovery.