Sample records for task preliminary functional

  1. Cockpit task management: A preliminary, normative theory

    NASA Technical Reports Server (NTRS)

    Funk, Ken

    1991-01-01

    Cockpit task management (CTM) involves the initiation, monitoring, prioritizing, and allocation of resources to concurrent tasks as well as termination of multiple concurrent tasks. As aircrews have more tasks to attend to due to reduced crew sizes and the increased complexity of aircraft and the air transportation system, CTM will become a more critical factor in aviation safety. It is clear that many aviation accidents and incidents can be satisfactorily explained in terms of CTM errors, and it is likely that more accidents induced by poor CTM practice will occur in the future unless the issue is properly addressed. The first step in understanding and facilitating CTM behavior was the development of a preliminary, normative theory of CTM which identifies several important CTM functions. From this theory, some requirements for pilot-vehicle interfaces were developed which are believed to facilitate CTM. A prototype PVI was developed which improves CTM performance and currently, a research program is under way that is aimed at developing a better understanding of CTM and facilitating CTM performance through better equipment and procedures.

  2. Development and Preliminary Reliability of a Multitasking Assessment for Executive Functioning After Concussion

    PubMed Central

    Radomski, Mary Vining; Davidson, Leslie Freeman; Finkelstein, Marsha; Weightman, Margaret M.; McCulloch, Karen L.; Scherer, Matthew R.

    2014-01-01

    OBJECTIVES. Executive functioning deficits may result from concussion. The Charge of Quarters (CQ) Duty Task is a multitask assessment designed to assess executive functioning in servicemembers after concussion. In this article, we discuss the rationale and process used in the development of the CQ Duty Task and present pilot data from the preliminary evaluation of interrater reliability (IRR). METHOD. Three evaluators observed as 12 healthy participants performed the CQ Duty Task and measured performance using various metrics. Intraclass correlation coefficient (ICC) quantified IRR. RESULTS. The ICC for task completion was .94. ICCs for other assessment metrics were variable. CONCLUSION. Preliminary IRR data for the CQ Duty Task are encouraging, but further investigation is needed to improve IRR in some domains. Lessons learned in the development of the CQ Duty Task could benefit future test development efforts with populations other than the military. PMID:25005507

  3. Human Health Effects, Task Force Assessment, Preliminary Report.

    ERIC Educational Resources Information Center

    Aronow, Wilbert S.; And Others

    Presented in this preliminary report is one of seven assessments conducted by a special task force of Project Clean Air, the Human Health Effects Task Force. The reports summarize assessments of the state of knowledge on various air pollution problems, particularly in California, and make tentative recommendations as to what the University of…

  4. Development and preliminary reliability of a multitasking assessment for executive functioning after concussion.

    PubMed

    Smith, Laurel B; Radomski, Mary Vining; Davidson, Leslie Freeman; Finkelstein, Marsha; Weightman, Margaret M; McCulloch, Karen L; Scherer, Matthew R

    2014-01-01

    OBJECTIVES. Executive functioning deficits may result from concussion. The Charge of Quarters (CQ) Duty Task is a multitask assessment designed to assess executive functioning in servicemembers after concussion. In this article, we discuss the rationale and process used in the development of the CQ Duty Task and present pilot data from the preliminary evaluation of interrater reliability (IRR). METHOD. Three evaluators observed as 12 healthy participants performed the CQ Duty Task and measured performance using various metrics. Intraclass correlation coefficient (ICC) quantified IRR. RESULTS. The ICC for task completion was .94. ICCs for other assessment metrics were variable. CONCLUSION. Preliminary IRR data for the CQ Duty Task are encouraging, but further investigation is needed to improve IRR in some domains. Lessons learned in the development of the CQ Duty Task could benefit future test development efforts with populations other than the military. Copyright © 2014 by the American Occupational Therapy Association, Inc.

  5. The cooking task: making a meal of executive functions.

    PubMed

    Doherty, T A; Barker, L A; Denniss, R; Jalil, A; Beer, M D

    2015-01-01

    Current standardized neuropsychological tests may fail to accurately capture real-world executive deficits. We developed a computer-based Cooking Task (CT) assessment of executive functions and trialed the measure with a normative group before use with a head-injured population. Forty-six participants completed the computerized CT and subtests from standardized neuropsychological tasks, including the Tower and Sorting Tests of executive function from the Delis-Kaplan Executive Function System (D-KEFS) and the Cambridge prospective memory test (CAMPROMPT), in order to examine whether standardized executive function tasks, predicted performance on measurement indices from the CT. Findings showed that verbal comprehension, rule detection and prospective memory contributed to measures of prospective planning accuracy and strategy implementation of the CT. Results also showed that functions necessary for cooking efficacy differ as an effect of task demands (difficulty levels). Performance on rule detection, strategy implementation and flexible thinking executive function measures contributed to accuracy on the CT. These findings raise questions about the functions captured by present standardized tasks particularly at varying levels of difficulty and during dual-task performance. Our preliminary findings also indicate that CT measures can effectively distinguish between executive function and Full Scale IQ abilities. Results of the present study indicate that the CT shows promise as an ecologically valid measure of executive function for future use with a head-injured population and indexes selective executive function's captured by standardized tests.

  6. The cooking task: making a meal of executive functions

    PubMed Central

    Doherty, T. A.; Barker, L. A.; Denniss, R.; Jalil, A.; Beer, M. D.

    2015-01-01

    Current standardized neuropsychological tests may fail to accurately capture real-world executive deficits. We developed a computer-based Cooking Task (CT) assessment of executive functions and trialed the measure with a normative group before use with a head-injured population. Forty-six participants completed the computerized CT and subtests from standardized neuropsychological tasks, including the Tower and Sorting Tests of executive function from the Delis-Kaplan Executive Function System (D-KEFS) and the Cambridge prospective memory test (CAMPROMPT), in order to examine whether standardized executive function tasks, predicted performance on measurement indices from the CT. Findings showed that verbal comprehension, rule detection and prospective memory contributed to measures of prospective planning accuracy and strategy implementation of the CT. Results also showed that functions necessary for cooking efficacy differ as an effect of task demands (difficulty levels). Performance on rule detection, strategy implementation and flexible thinking executive function measures contributed to accuracy on the CT. These findings raise questions about the functions captured by present standardized tasks particularly at varying levels of difficulty and during dual-task performance. Our preliminary findings also indicate that CT measures can effectively distinguish between executive function and Full Scale IQ abilities. Results of the present study indicate that the CT shows promise as an ecologically valid measure of executive function for future use with a head-injured population and indexes selective executive function’s captured by standardized tests. PMID:25717294

  7. Task Force on Education Funding Equity, Accountability, and Partnerships. Preliminary Report.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Legislative Services, Annapolis.

    In 1997, Maryland formed the Task Force on Education Funding Equity, Accountability, and Partnerships to ensure that students throughout Maryland have an equal opportunity for academic success. The Task Force's preliminary report features a comprehensive review of education funding and programs in grades K-12. The report presents membership and…

  8. Functional Task Test (FTT)

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Mulavara, Ajitkumar; Peters, Brian T.; Rescheke, Millard F.; Wood, Scott; Lawrence, Emily; Koffman, Igor; Ploutz-Snyder, Lori; Spiering, Barry A.; Feeback, Daniel L.; hide

    2009-01-01

    This slide presentation reviews the Functional Task Test (FTT), an interdisciplinary testing regimen that has been developed to evaluate astronaut postflight functional performance and related physiological changes. The objectives of the project are: (1) to develop a set of functional tasks that represent critical mission tasks for the Constellation Program, (2) determine the ability to perform these tasks after space flight, (3) Identify the key physiological factors that contribute to functional decrements and (4) Use this information to develop targeted countermeasures.

  9. Neuropsychological assessment of language functions during functional magnetic resonance imaging: development of new tasks. Preliminary report.

    PubMed

    Fersten, Ewa; Jakuciński, Maciej; Kuliński, Radosław; Koziara, Henryk; Mroziak, Barbara; Nauman, Paweł

    2011-01-01

    Due to the complex and extended cerebral organization of language functions, the brain regions crucial for speech and language, i.e. eloquent areas, have to be affected by neurooncological surgery. One of the techniques that may be helpful in pre-operative planning of the extent of tumour removal and estimating possible complications seems to be functional magnetic resonance imaging (fMRI). The aim of the study was to develop valid procedures for neuropsychological assessment of various language functions visualisable by fMRI in healthy individuals. In this fMRI study, 10 healthy (with no CNS pathology), right-handed volunteers aged 25-35 were examined using four tasks designed to measure different language functions, and one for short-term memory assessment. A 1.5-T MRI scanner performing ultrafast functional (EPI) sequences with 4-mm slice thickness and 1-mm interslice gap was used to detect the BOLD response to stimuli present-ed in a block design (30-second alternating blocks of activity and rest). The analyses used the SPM software running in a MATLAB environment, and the obtained data were interpreted by means of colour-coded maps superimposed on structural brain scans. For each of the tasks developed for particular language functions, a different area of increased neuronal activity was found. The differential localization of function-related neuronal activity seems interesting and the research worth continuing, since verbal communication failure may result from impairment of any of various language functions, and studies reported in the literature seem to focus on verbal expression only.

  10. Human factors evaluation of remote afterloading brachytherapy. Volume 2, Function and task analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callan, J.R.; Gwynne, J.W. III; Kelly, T.T.

    1995-05-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the first phase of the project, which involved an extensive function and task analysis of RAB. This analysis identified the functions and tasks in RAB, made preliminary estimates of the likelihood of human error in each task, and determined the skills needed to perform each RAB task.more » The findings of the function and task analysis served as the foundation for the remainder of the project, which evaluated four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training and qualifications of RAB staff; and organizational practices and policies. At its completion, the project identified and prioritized areas for recommended NRC and industry attention based on all of the evaluations and analyses.« less

  11. Functional Task Test: 3. Skeletal Muscle Performance Adaptations to Space Flight

    NASA Technical Reports Server (NTRS)

    Ryder, Jeffrey W.; Wickwire, P. J.; Buxton, R. E.; Bloomberg, J. J.; Ploutz-Snyder, L.

    2011-01-01

    The functional task test is a multi-disciplinary study investigating how space-flight induced changes to physiological systems impacts functional task performance. Impairment of neuromuscular function would be expected to negatively affect functional performance of crewmembers following exposure to microgravity. This presentation reports the results for muscle performance testing in crewmembers. Functional task performance will be presented in the abstract "Functional Task Test 1: sensory motor adaptations associated with postflight alternations in astronaut functional task performance." METHODS: Muscle performance measures were obtained in crewmembers before and after short-duration space flight aboard the Space Shuttle and long-duration International Space Station (ISS) missions. The battery of muscle performance tests included leg press and bench press measures of isometric force, isotonic power and total work. Knee extension was used for the measurement of central activation and maximal isometric force. Upper and lower body force steadiness control were measured on the bench press and knee extension machine, respectively. Tests were implemented 60 and 30 days before launch, on landing day (Shuttle crew only), and 6, 10 and 30 days after landing. Seven Space Shuttle crew and four ISS crew have completed the muscle performance testing to date. RESULTS: Preliminary results for Space Shuttle crew reveal significant reductions in the leg press performance metrics of maximal isometric force, power and total work on R+0 (p<0.05). Bench press total work was also significantly impaired, although maximal isometric force and power were not significantly affected. No changes were noted for measurements of central activation or force steadiness. Results for ISS crew were not analyzed due to the current small sample size. DISCUSSION: Significant reductions in lower body muscle performance metrics were observed in returning Shuttle crew and these adaptations are likely

  12. Preliminary investigation of motion requirements for the simulation of helicopter hover tasks

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.

    1980-01-01

    Data from a preliminary experiment are presented which attempted to define a helicopter hover task that would allow the detection of objectively-measured differences in fixed base/moving base simulator performance. The addition of heave, pitch, and roll movement of a ship at sea to the hover task, by means of an adaption of a simulator g-seat, potentially fulfills the desired definition. The feasibility of g-seat substitution for platform motion can be investigated utilizing this task.

  13. A Novel Device for Grasping Assessment during Functional Tasks: Preliminary Results

    PubMed Central

    Rocha, Ana Carolinne Portela; Tudella, Eloisa; Pedro, Leonardo M.; Appel, Viviane Cristina Roma; da Silva, Louise Gracelli Pereira; Caurin, Glauco Augusto de Paula

    2016-01-01

    This paper presents a methodology and first results obtained in a study with a novel device that allows the analysis of grasping quality. Such a device is able to acquire motion information of upper limbs allowing kinetic of manipulation analysis as well. A pilot experiment was carried out with six groups of typically developing children aged between 5 and 10 years, with seven to eight children in each one. The device, designed to emulate a glass, has an optical system composed by one digital camera and a special convex mirror that together allow image acquisition of grasping hand posture when it is grasped and manipulated. It also carries an Inertial Measurement Unit that captures motion data as acceleration, orientation, and angular velocities. The novel instrumented object is used in our approach to evaluate functional tasks performance in quantitative terms. During tests, each child was invited to grasp the cylindrical part of the device that was placed on the top of a table, simulating the task of drinking a glass of water. In the sequence, the child was oriented to transport the device back to the starting position and release it. The task was repeated three times for each child. A grasping hand posture evaluation is presented as an example to evaluate grasping quality. Additionally, motion patterns obtained with the trials performed with the different groups are presented and discussed. This device is attractive due to its portable characteristics, the small size, and its ability to evaluate grasping form. The results may be also useful to analyze the evolution of the rehabilitation process through reach-to-grasping movement and the grasping images analysis. PMID:26942178

  14. Pediatric functional magnetic resonance neuroimaging: tactics for encouraging task compliance.

    PubMed

    Schlund, Michael W; Cataldo, Michael F; Siegle, Greg J; Ladouceur, Cecile D; Silk, Jennifer S; Forbes, Erika E; McFarland, Ashley; Iyengar, Satish; Dahl, Ronald E; Ryan, Neal D

    2011-05-06

    Neuroimaging technology has afforded advances in our understanding of normal and pathological brain function and development in children and adolescents. However, noncompliance involving the inability to remain in the magnetic resonance imaging (MRI) scanner to complete tasks is one common and significant problem. Task noncompliance is an especially significant problem in pediatric functional magnetic resonance imaging (fMRI) research because increases in noncompliance produces a greater risk that a study sample will not be representative of the study population. In this preliminary investigation, we describe the development and application of an approach for increasing the number of fMRI tasks children complete during neuroimaging. Twenty-eight healthy children ages 9-13 years participated. Generalization of the approach was examined in additional fMRI and event-related potential investigations with children at risk for depression, children with anxiety and children with depression (N=120). Essential features of the approach include a preference assessment for identifying multiple individualized rewards, increasing reinforcement rates during imaging by pairing tasks with chosen rewards and presenting a visual 'road map' listing tasks, rewards and current progress. Our results showing a higher percentage of fMRI task completion by healthy children provides proof of concept data for the recommended tactics. Additional support was provided by results showing our approach generalized to several additional fMRI and event-related potential investigations and clinical populations. We proposed that some forms of task noncompliance may emerge from less than optimal reward protocols. While our findings may not directly support the effectiveness of the multiple reward compliance protocol, increased attention to how rewards are selected and delivered may aid cooperation with completing fMRI tasks. The proposed approach contributes to the pediatric neuroimaging literature by

  15. The Functional Task Test (FTT): An Interdisciplinary Testing Protocol to Investigate the Factors Underlying Changes in Astronaut Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Lawrence, E. L.; Arzeno, N. M.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts. S. H.; hide

    2011-01-01

    Exposure to space flight causes adaptations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. To achieve this goal we developed an interdisciplinary testing protocol (Functional Task Test, FTT) that evaluates both astronaut functional performance and related physiological changes. Functional tests include ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper- and lower-body muscle strength, power, endurance, control, and neuromuscular drive. Crewmembers perform this integrated test protocol before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on two sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Preliminary results from both Shuttle and ISS crewmembers indicate decrement in performance of the functional tasks after both short and long-duration space flight. On-going data collection continues to improve the statistical power required to map changes in functional task performance to alterations in physiological systems. The information obtained from this study will be used to design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.

  16. Effects of repetitive transcranial magnetic stimulation in performing eye-hand integration tasks: four preliminary studies with children showing low-functioning autism.

    PubMed

    Panerai, Simonetta; Tasca, Domenica; Lanuzza, Bartolo; Trubia, Grazia; Ferri, Raffaele; Musso, Sabrina; Alagona, Giovanna; Di Guardo, Giuseppe; Barone, Concetta; Gaglione, Maria P; Elia, Maurizio

    2014-08-01

    This report, based on four studies with children with low-functioning autism, aimed at evaluating the effects of repetitive transcranial magnetic stimulation delivered on the left and right premotor cortices on eye-hand integration tasks; defining the long-lasting effects of high-frequency repetitive transcranial magnetic stimulation; and investigating the real efficacy of high-frequency repetitive transcranial magnetic stimulation by comparing three kinds of treatments (high-frequency repetitive transcranial magnetic stimulation, a traditional eye-hand integration training, and both treatments combined). Results showed a significant increase in eye-hand performances only when high-frequency repetitive transcranial magnetic stimulation was delivered on the left premotor cortex; a persistent improvement up to 1 h after the end of the stimulation; better outcomes in the treatment combining high-frequency repetitive transcranial magnetic stimulation and eye-hand integration training. Based on these preliminary findings, further evaluations on the usefulness of high-frequency repetitive transcranial magnetic stimulation in rehabilitation of children with autism are strongly recommended. © The Author(s) 2013.

  17. Examining the Feasibility, Tolerability, and Preliminary Efficacy of Repetitive Task-Specific Practice for People With Unilateral Spatial Neglect

    PubMed Central

    Lang, Catherine E.; Birkenmeier, Rebecca; Holm, Margo; Rubinstein, Elaine; Van Swearingen, Jessie; Skidmore, Elizabeth R.

    2016-01-01

    OBJECTIVE. We examined the feasibility, tolerability, and preliminary efficacy of repetitive task-specific practice for people with unilateral spatial neglect (USN). METHOD. People with USN ≥6 mo poststroke participated in a single-group, repeated-measures study. Attendance, total repetitions, and satisfaction indicated feasibility and pain indicated tolerability. Paired t tests and effect sizes were used to estimate changes in upper-extremity use (Motor Activity Log), function (Action Research Arm Test), and attention (Catherine Bergego Scale). RESULTS. Twenty participants attended 99.4% of sessions and completed a high number of repetitions. Participants reported high satisfaction and low pain, and they demonstrated small, significant improvements in upper-extremity use (before Bonferroni corrections; t = –2.1, p = .04, d = .30), function (t = –3.0, p < .01, d = .20), and attention (t = –3.4, p < .01, d = –.44). CONCLUSION. Repetitive task-specific practice is feasible and tolerable for people with USN. Improvements in upper-extremity use, function, and attention may be attainable. PMID:27294994

  18. Functional Task Test: 2. Spaceflight-Induced Cardiovascular Change and Recovery During NASA's Functional Task Test

    NASA Technical Reports Server (NTRS)

    Phillips, Tiffany; Arzeno, Natalia M.; Stenger, Michael; Lee, Stuart M. C.; Bloomberg, Jacob J.; Platts, Steven H.

    2011-01-01

    The overall objective of the functional task test (FTT) is to correlate spaceflight-induced physiological adaptations with changes in performance of high priority exploration mission-critical tasks. This presentation will focus on the recovery from fall/stand test (RFST), which measures the cardiovascular response to the transition from the prone posture (simulated fall) to standing in normal gravity, as well as heart rate (HR) during 11 functional tasks. As such, this test describes some aspects of spaceflight-induced cardiovascular deconditioning and the course of recovery in Space Shuttle and International Space Station (ISS) astronauts. The sensorimotor and neuromuscular components of the FTT are described in two separate abstracts: Functional Task Test 1 and 3.

  19. Pediatric functional magnetic resonance neuroimaging: tactics for encouraging task compliance

    PubMed Central

    2011-01-01

    Background Neuroimaging technology has afforded advances in our understanding of normal and pathological brain function and development in children and adolescents. However, noncompliance involving the inability to remain in the magnetic resonance imaging (MRI) scanner to complete tasks is one common and significant problem. Task noncompliance is an especially significant problem in pediatric functional magnetic resonance imaging (fMRI) research because increases in noncompliance produces a greater risk that a study sample will not be representative of the study population. Method In this preliminary investigation, we describe the development and application of an approach for increasing the number of fMRI tasks children complete during neuroimaging. Twenty-eight healthy children ages 9-13 years participated. Generalization of the approach was examined in additional fMRI and event-related potential investigations with children at risk for depression, children with anxiety and children with depression (N = 120). Essential features of the approach include a preference assessment for identifying multiple individualized rewards, increasing reinforcement rates during imaging by pairing tasks with chosen rewards and presenting a visual 'road map' listing tasks, rewards and current progress. Results Our results showing a higher percentage of fMRI task completion by healthy children provides proof of concept data for the recommended tactics. Additional support was provided by results showing our approach generalized to several additional fMRI and event-related potential investigations and clinical populations. Discussion We proposed that some forms of task noncompliance may emerge from less than optimal reward protocols. While our findings may not directly support the effectiveness of the multiple reward compliance protocol, increased attention to how rewards are selected and delivered may aid cooperation with completing fMRI tasks Conclusion The proposed approach

  20. An architecture for intelligent task interruption

    NASA Technical Reports Server (NTRS)

    Sharma, D. D.; Narayan, Srini

    1990-01-01

    In the design of real time systems the capability for task interruption is often considered essential. The problem of task interruption in knowledge-based domains is examined. It is proposed that task interruption can be often avoided by using appropriate functional architectures and knowledge engineering principles. Situations for which task interruption is indispensable, a preliminary architecture based on priority hierarchies is described.

  1. Cognitive Task Analysis of Business Jet Pilots' Weather Flying Behaviors: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Latorella, Kara; Pliske, Rebecca; Hutton, Robert; Chrenka, Jason

    2001-01-01

    This report presents preliminary findings from a cognitive task analysis (CTA) of business aviation piloting. Results describe challenging weather-related aviation decisions and the information and cues used to support these decisions. Further, these results demonstrate the role of expertise in business aviation decision-making in weather flying, and how weather information is acquired and assessed for reliability. The challenging weather scenarios and novice errors identified in the results provide the basis for experimental scenarios and dependent measures to be used in future flight simulation evaluations of candidate aviation weather information systems. Finally, we analyzed these preliminary results to recommend design and training interventions to improve business aviation decision-making with weather information. The primary objective of this report is to present these preliminary findings and to document the extended CTA methodology used to elicit and represent expert business aviator decision-making with weather information. These preliminary findings will be augmented with results from additional subjects using this methodology. A summary of the complete results, absent the detailed treatment of methodology provided in this report, will be documented in a separate publication.

  2. Preliminary findings of altered functional connectivity of the default mode network linked to functional outcomes one year after pediatric traumatic brain injury.

    PubMed

    Stephens, Jaclyn A; Salorio, Cynthia F; Barber, Anita D; Risen, Sarah R; Mostofsky, Stewart H; Suskauer, Stacy J

    2017-07-10

    This study examined functional connectivity of the default mode network (DMN) and examined brain-behavior relationships in a pilot cohort of children with chronic mild to moderate traumatic brain injury (TBI). Compared to uninjured peers, children with TBI demonstrated less anti-correlated functional connectivity between DMN and right Brodmann Area 40 (BA 40). In children with TBI, more anomalous less anti-correlated) connectivity between DMN and right BA 40 was linked to poorer performance on response inhibition tasks. Collectively, these preliminary findings suggest that functional connectivity between DMN and BA 40 may relate to longterm functional outcomes in chronic pediatric TBI.

  3. Characterization of task-free and task-performance brain states via functional connectome patterns.

    PubMed

    Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming

    2013-12-01

    Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACPs) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Characterization of Task-free and Task-performance Brain States via Functional Connectome Patterns

    PubMed Central

    Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming

    2014-01-01

    Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACP) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain. PMID:23938590

  5. The performance of ravens on simple discrimination tasks: a preliminary study

    PubMed Central

    Range, Friederike; Bugnyar, Thomas; Kotrschal, Kurt

    2015-01-01

    Recent studies suggest the existence of primate-like cognitive abilities in corvids. Although the learning abilities of corvids in comparison to other species have been investigated before, little is known on how corvids perform on simple discrimination tasks if tested in experimental settings comparable to those that have been used for studying complex cognitive abilities. In this study, we tested a captive group of 12 ravens (Corvus corax) on four discrimination problems and their reversals. In contrast to other studies investigating learning abilities, our ravens were not food deprived and participation in experiments was voluntary. This preliminary study showed that all ravens successfully solved feature and position discriminations and several of the ravens could solve new tasks in a few trials, making very few mistakes. PMID:25948877

  6. Task-relevant cognitive and motor functions are prioritized during prolonged speed-accuracy motor task performance.

    PubMed

    Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas

    2018-06-01

    This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.

  7. Functional Task Test: 1. Sensorimotor changes Associated with Postflight Alterations in Astronaut Functional Task Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Arzeno, N. H.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Platts, S. H.; Peters, B. T.; hide

    2011-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. This presentation will focus on the sensorimotor contributions to postflight functional performance.

  8. Cortical activity in fine-motor tasks in children with Developmental Coordination Disorder: A preliminary fNIRS study.

    PubMed

    Caçola, Priscila; Getchell, Nancy; Srinivasan, Dhivya; Alexandrakis, Georgios; Liu, Hanli

    2018-04-01

    Developmental Coordination Disorder (DCD) is as a neurodevelopmental condition characterized by poor motor proficiency, which impacts academic performance and activities of daily living. Several studies have determined that children with DCD activate different regions of the brain when performing motor skills in comparison to typically developing (TD) children. However, none have used Functional Near-Infrared Spectroscopy (fNIRS) to explore cortical activation in this population. With that, the goal of this preliminary study was to investigate cortical activation using fNIRS in six children with DCD and six TD children between ages of 8 and 12 years. Three fine-motor tasks were performed: Finger Tapping (FT), Curve Tracing (CT), and Paragraph Writing (PW). Tasks were presented in counterbalanced order and had a baseline of 30s. Cortical activity elicited during performance of the FT, CT, and PW tasks was measured by fNIRS, and activation areas within each group were statistically compared. Results indicated that participant groups used different focal activation areas as well as different neural networks to perform the tasks. These distinct patterns were also task-specific, with differences in the right Pre-Motor Cortex (Pre-MC) and Supplementary Motor Area (SMA) for CT, and the right Dorsolateral Prefrontal Cortex (DLPFC) and the right Pre-MC for the PW task. These results add to the body of research exploring neurological alterations in children with DCD, and establish the feasibility of using fNIRS technology with this population. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  9. Function in the Human Connectome: Task-fMRI and Individual Differences in Behavior

    PubMed Central

    Barch, Deanna M.; Burgess, Gregory C.; Harms, Michael P.; Petersen, Steven E.; Schlaggar, Bradley L.; Corbetta, Maurizio; Glasser, Matthew F.; Curtiss, Sandra; Dixit, Sachin; Feldt, Cindy; Nolan, Dan; Bryant, Edward; Hartley, Tucker; Footer, Owen; Bjork, James M.; Poldrack, Russ; Smith, Steve; Johansen-Berg, Heidi; Snyder, Abraham Z.; Van Essen, David C.

    2014-01-01

    The primary goal of the Human Connectome Project (HCP) is to delineate the typical patterns of structural and functional connectivity in the healthy adult human brain. However, we know that there are important individual differences in such patterns of connectivity, with evidence that this variability is associated with alterations in important cognitive and behavioral variables that affect real world function. The HCP data will be a critical stepping-off point for future studies that will examine how variation in human structural and functional connectivity play a role in adult and pediatric neurological and psychiatric disorders that account for a huge amount of public health resources. Thus, the HCP is collecting behavioral measures of a range of motor, sensory, cognitive and emotional processes that will delineate a core set of functions relevant to understanding the relationship between brain connectivity and human behavior. In addition, the HCP is using task-fMRI (tfMRI) to help delineate the relationships between individual differences in the neurobiological substrates of mental processing and both functional and structural connectivity, as well as to help characterize and validate the connectivity analyses to be conducted on the structural and functional connectivity data. This paper describes the logic and rationale behind the development of the behavioral, individual difference, and tfMRI batteries and provides preliminary data on the patterns of activation associated with each of the fMRI tasks, at both a group and individual level. PMID:23684877

  10. Dividing Attention Between Tasks: Testing Whether Explicit Payoff Functions Elicit Optimal Dual-Task Performance.

    PubMed

    Farmer, George D; Janssen, Christian P; Nguyen, Anh T; Brumby, Duncan P

    2018-04-01

    We test people's ability to optimize performance across two concurrent tasks. Participants performed a number entry task while controlling a randomly moving cursor with a joystick. Participants received explicit feedback on their performance on these tasks in the form of a single combined score. This payoff function was varied between conditions to change the value of one task relative to the other. We found that participants adapted their strategy for interleaving the two tasks, by varying how long they spent on one task before switching to the other, in order to achieve the near maximum payoff available in each condition. In a second experiment, we show that this behavior is learned quickly (within 2-3 min over several discrete trials) and remained stable for as long as the payoff function did not change. The results of this work show that people are adaptive and flexible in how they prioritize and allocate attention in a dual-task setting. However, it also demonstrates some of the limits regarding people's ability to optimize payoff functions. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  11. Separate cortical networks involved in music perception: preliminary functional MRI evidence for modularity of music processing.

    PubMed

    Schmithorst, Vincent J

    2005-04-01

    Music perception is a quite complex cognitive task, involving the perception and integration of various elements including melody, harmony, pitch, rhythm, and timbre. A preliminary functional MRI investigation of music perception was performed, using a simplified passive listening task. Group independent component analysis (ICA) was used to separate out various components involved in music processing, as the hemodynamic responses are not known a priori. Various components consistent with auditory processing, expressive language, syntactic processing, and visual association were found. The results are discussed in light of various hypotheses regarding modularity of music processing and its overlap with language processing. The results suggest that, while some networks overlap with ones used for language processing, music processing may involve its own domain-specific processing subsystems.

  12. The functional connectivity of semantic task changes in the recovery from stroke aphasia

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Wu, Xia; Yao, Li; Li, Kun-Cheng; Shu, Hua; Dong, Qi

    2007-03-01

    Little is known about the difference of functional connectivity of semantic task between the recovery aphasic patients and normal subject. In this paper, an fMRI experiment was performed in a patient with aphasia following a left-sided ischemic lesion and normal subject. Picture naming was used as semantic activation task in this study. We compared the preliminary functional connectivity results of the recovery aphasic patient with the normal subject. The fMRI data were separated by independent component analysis (ICA) into 90 components. According to our experience and other papers, we chose a region of interest (ROI) of semantic (x=-57, y=15, z=8, r=11mm). From the 90 components, we chose one component as the functional connectivity of the semantic ROI according to one criterion. The criterion is the mean value of the voxels in the ROI. So the component of the highest mean value of the ROI is the functional connectivity of the ROI. The voxel with its value higher than 2.4 was thought as activated (p<0.05). And the functional connectivity networks of the normal subjects were t-tested as group network. From the result, we can know the semantic functional connectivity of stroke aphasic patient and normal subjects are different. The activated areas of the left inferior frontal gyrus and inferior/middle temporal gyrus are larger than the ones of normal. The activated area of the right inferior frontal gyrus is smaller than the ones of normal. The functional connectivity of stroke aphasic patient under semantic condition is different with the normal one. The focus of the stroke aphasic patient can affect the functional connectivity.

  13. Bilateral assessment of functional tasks for robot-assisted therapy applications

    PubMed Central

    Wang, Sarah; Bai, Ping; Strachota, Elaine; Tchekanov, Guennady; Melbye, Jeff; McGuire, John

    2011-01-01

    This article presents a novel evaluation system along with methods to evaluate bilateral coordination of arm function on activities of daily living tasks before and after robot-assisted therapy. An affordable bilateral assessment system (BiAS) consisting of two mini-passive measuring units modeled as three degree of freedom robots is described. The process for evaluating functional tasks using the BiAS is presented and we demonstrate its ability to measure wrist kinematic trajectories. Three metrics, phase difference, movement overlap, and task completion time, are used to evaluate the BiAS system on a bilateral symmetric (bi-drink) and a bilateral asymmetric (bi-pour) functional task. Wrist position and velocity trajectories are evaluated using these metrics to provide insight into temporal and spatial bilateral deficits after stroke. The BiAS system quantified movements of the wrists during functional tasks and detected differences in impaired and unimpaired arm movements. Case studies showed that stroke patients compared to healthy subjects move slower and are less likely to use their arm simultaneously even when the functional task requires simultaneous movement. After robot-assisted therapy, interlimb coordination spatial deficits moved toward normal coordination on functional tasks. PMID:21881901

  14. Preliminary results of BRAVO project: brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks.

    PubMed

    Bergamasco, Massimo; Frisoli, Antonio; Fontana, Marco; Loconsole, Claudio; Leonardis, Daniele; Troncossi, Marco; Foumashi, Mohammad Mozaffari; Parenti-Castelli, Vincenzo

    2011-01-01

    This paper presents the preliminary results of the project BRAVO (Brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks). The objective of this project is to define a new approach to the development of assistive and rehabilitative robots for motor impaired users to perform complex visuomotor tasks that require a sequence of reaches, grasps and manipulations of objects. BRAVO aims at developing new robotic interfaces and HW/SW architectures for rehabilitation and regain/restoration of motor function in patients with upper limb sensorimotor impairment through extensive rehabilitation therapy and active assistance in the execution of Activities of Daily Living. The final system developed within this project will include a robotic arm exoskeleton and a hand orthosis that will be integrated together for providing force assistance. The main novelty that BRAVO introduces is the control of the robotic assistive device through the active prediction of intention/action. The system will actually integrate the information about the movement carried out by the user with a prediction of the performed action through an interpretation of current gaze of the user (measured through eye-tracking), brain activation (measured through BCI) and force sensor measurements. © 2011 IEEE

  15. Stimulus selectivity of drug purchase tasks: A preliminary study evaluating alcohol and cigarette demand.

    PubMed

    Strickland, Justin C; Stoops, William W

    2017-06-01

    The use of drug purchase tasks to measure drug demand in human behavioral pharmacology and addiction research has proliferated in recent years. Few studies have systematically evaluated the stimulus selectivity of drug purchase tasks to demonstrate that demand metrics are specific to valuation of or demand for the commodity under study. Stimulus selectivity is broadly defined for this purpose as a condition under which a specific stimulus input or target (e.g., alcohol, cigarettes) is the primary determinant of behavior (e.g., demand). The overall goal of the present study was to evaluate the stimulus selectivity of drug purchase tasks. Participants were sampled from the Amazon.com's crowdsourcing platform Mechanical Turk. Participants completed either alcohol and soda purchase tasks (Experiment 1; N = 139) or cigarette and chocolate purchase tasks (Experiment 2; N = 46), and demand metrics were compared to self-reported use behaviors. Demand metrics for alcohol and soda were closely associated with commodity-similar (e.g., alcohol demand and weekly alcohol use) but not commodity-different (e.g., alcohol demand and weekly soda use) variables. A similar pattern was observed for cigarette and chocolate demand, but selectivity was not as consistent as for alcohol and soda. Collectively, we observed robust selectivity for alcohol and soda purchase tasks and modest selectivity for cigarette and chocolate purchase tasks. These preliminary outcomes suggest that demand metrics adequately reflect the specific commodity under study and support the continued use of purchase tasks in substance use research. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Hierarchical organization of brain functional networks during visual tasks.

    PubMed

    Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

    2011-09-01

    The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

  17. Age-Related Differences in Reorganization of Functional Connectivity for a Dual Task with Increasing Postural Destabilization

    PubMed Central

    Huang, Cheng-Ya; Lin, Linda L.; Hwang, Ing-Shiou

    2017-01-01

    The aged brain may not make good use of central resources, so dual task performance may be degraded. From the brain connectome perspective, this study investigated dual task deficits of older adults that lead to task failure of a suprapostural motor task with increasing postural destabilization. Twelve younger (mean age: 25.3 years) and 12 older (mean age: 65.8 years) adults executed a designated force-matching task from a level-surface or a stabilometer board. Force-matching error, stance sway, and event-related potential (ERP) in the preparatory period were measured. The force-matching accuracy and the size of postural sway of the older adults tended to be more vulnerable to stance configuration than that of the young adults, although both groups consistently showed greater attentional investment on the postural task as sway regularity increased in the stabilometer condition. In terms of the synchronization likelihood (SL) of the ERP, both younger and older adults had net increases in the strengths of the functional connectivity in the whole brain and in the fronto-sensorimotor network in the stabilometer condition. Also, the SL in the fronto-sensorimotor network of the older adults was greater than that of the young adults for both stance conditions. However, unlike the young adults, the older adults did not exhibit concurrent deactivation of the functional connectivity of the left temporal-parietal-occipital network for postural-suprapostural task with increasing postural load. In addition, the older adults potentiated functional connectivity of the right prefrontal area to cope with concurrent force-matching with increasing postural load. In conclusion, despite a universal negative effect on brain volume conduction, our preliminary results showed that the older adults were still capable of increasing allocation of neural sources, particularly via compensatory recruitment of the right prefrontal loop, for concurrent force-matching under the challenging postural

  18. Effect of a dual task on quantitative Timed Up and Go performance in community-dwelling older adults: A preliminary study.

    PubMed

    Smith, Erin; Walsh, Lorcan; Doyle, Julie; Greene, Barry; Blake, Catherine

    2017-08-01

    The Timed Up and Go test (TUG) is used as a measure of functional ability in older adults; however, the method of measurement does not allow us to determine which aspects of the test deficits occur in. The aim of the present study was to examine the ability of the quantitative TUG (QTUG) to measure performance during the TUG test under three different conditions - single task, motor task and cognitive dual task - and to compare performance between fallers and non-fallers in high-functioning community-dwelling older adults. A total of 37 community-dwelling older adults, 16 with a self-reported falls history in the previous year, were recruited. Participants underwent a falls risk assessment with a physiotherapist including the QTUG under three conditions (single task, motor task, cognitive dual-task). A total of 10 clinical parameters were chosen for analysis using mancova and a series of ancova, with age, sex and body mass index included as covariates. The mancova analysis showed a significant difference across the three task conditions (Wilk's Lambda F 20,186  = 3.37, P < 0.001. No overall significant difference between faller and non-faller groups (Wilk's Lambda F 10,96  = 1.469, P = 0.163) or significant interaction between task and faller status (Wilk's Lambda F 20,192  = 1.131, P = 0.321) was found. ancova results for each of the parameters showed overall differences between single, motor and cognitive tasks for all of the variables, except time in double support. When faller and non-faller differences were explored, cadence and stride velocity was greater, and stride time longer in those with a prior history of falls. In community-dwelling older adults, these preliminary results show that a cognitive dual-task significantly (P < 0.025) affects QTUG performance in almost all parameters, with a significant (P < 0.025) reduction in time-to-stand observed with a motor task. Although no statistical difference was found between

  19. Dual-task performance involving hand dexterity and cognitive tasks and daily functioning in people with schizophrenia: a pilot study.

    PubMed

    Lin, Keh-chung; Wu, Yi-fang; Chen, I-chen; Tsai, Pei-luen; Wu, Ching-yi; Chen, Chia-ling

    2015-01-01

    This study investigated separate and concurrent performance on cognitive and hand dexterity tasks and the relationship to daily functioning in 16 people with schizophrenia and 16 healthy control participants. Participants performed the Purdue Pegboard Test and the Serial Seven Subtraction Test under single- and dual-task conditions and completed two daily functioning evaluations. The hand dexterity of all participants declined in the dual-task condition, but the discrepancy between single-task and dual-task hand dexterity was greater in the schizophrenia group than in the control group (p<.03, d>.70, for all). The extent of discrepancy in hand dexterity was negatively correlated with daily functioning in the schizophrenia group (rs=-.3 to -.5, ps=.04-.26). Ability to perform dual tasks may be an indicator of daily functioning in people with schizophrenia. Use of dual-task training may be considered as a therapeutic activity with these clients. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  20. Task relevance induces momentary changes in the functional visual field during reading.

    PubMed

    Kaakinen, Johanna K; Hyönä, Jukka

    2014-02-01

    In the research reported here, we examined whether task demands can induce momentary tunnel vision during reading. More specifically, we examined whether the size of the functional visual field depends on task relevance. Forty participants read an expository text with a specific task in mind while their eye movements were recorded. A display-change paradigm with random-letter strings as preview masks was used to study the size of the functional visual field within sentences that contained task-relevant and task-irrelevant information. The results showed that orthographic parafoveal-on-foveal effects and preview benefits were observed for words within task-irrelevant but not task-relevant sentences. The results indicate that the size of the functional visual field is flexible and depends on the momentary processing demands of a reading task. The higher cognitive processing requirements experienced when reading task-relevant text rather than task-irrelevant text induce momentary tunnel vision, which narrows the functional visual field.

  1. Effects of Functional-Task Training on Older Adults With Alzheimer's Disease.

    PubMed

    Pedroso, Renata V; Ayán, Carlos; Fraga, Francisco J; da Silva, Thays M V; Cancela, José M; Santos-Galduròz, Ruth F

    2018-01-01

    The aim of this study was to verify the effects of functional-task training on cognitive function, activities of daily living (ADL) performance, and functional fitness in community-dwelling older adults with diagnosis of Alzheimer's disease (AD). A total of 57 participants (22 functional-task training group [FTG], 21 social gathering group [SGG], 14 control group [CG]) were recruited. Participants in both intervention groups carried out three 1-hr sessions per week of a functional-task program and social gathering activities for 12 weeks. Significant improvements were observed in executive functions (TMT, t-test, p = .03) in the SGG and in upper limb strength (arm curl, t-test, p = .01) in the FTG. Functional-task training has no significant effect on cognitive function, ADL, and functional fitness among people with AD, although it may contribute to slowing down the process of deterioration this illness causes.

  2. A preliminary study of the effects of working memory training on brain function.

    PubMed

    Stevens, Michael C; Gaynor, Alexandra; Bessette, Katie L; Pearlson, Godfrey D

    2016-06-01

    Working memory (WM) training improves WM ability in Attention-Deficit/Hyperactivity Disorder (ADHD), but its efficacy for non-cognitive ADHD impairments ADHD has been sharply debated. The purpose of this preliminary study was to characterize WM training-related changes in ADHD brain function and see if they were linked to clinical improvement. We examined 18 adolescents diagnosed with DSM-IV Combined-subtype ADHD before and after 25 sessions of WM training using a frequently employed approach (Cogmed™) using a nonverbal Sternberg WM fMRI task, neuropsychological tests, and participant- and parent-reports of ADHD symptom severity and associated functional impairment. Whole brain SPM8 analyses identified ADHD activation deficits compared to 18 non-ADHD control participants, then tested whether impaired ADHD frontoparietal brain activation would increase following WM training. Post hoc tests examined the relationships between neural changes and neurocognitive or clinical improvements. As predicted, WM training increased WM performance, ADHD clinical functioning, and WM-related ADHD brain activity in several frontal, parietal and temporal lobe regions. Increased left inferior frontal sulcus region activity was seen in all Encoding, Maintenance, and Retrieval Sternberg task phases. ADHD symptom severity improvements were most often positively correlated with activation gains in brain regions known to be engaged for WM-related executive processing; improvement of different symptom types had different neural correlates. The responsiveness of both amodal WM frontoparietal circuits and executive process-specific WM brain regions was altered by WM training. The latter might represent a promising, relatively unexplored treatment target for researchers seeking to optimize clinical response in ongoing ADHD WM training development efforts.

  3. Ability Beliefs, Task Value, and Performance as a Function of Race in a Dart-Throwing Task

    ERIC Educational Resources Information Center

    Gao, Zan; Kosma, Maria; Harrison, Louis, Jr.

    2009-01-01

    This study examines differences in self-efficacy, expectancy-related beliefs, task value, and performance in a dart-throwing task as a function of race among diverse college students using the expectancy-value model and self-efficacy theory. It also examines the predictive contributions of these beliefs on task performance within each racial…

  4. Task modulates functional connectivity networks in free viewing behavior.

    PubMed

    Seidkhani, Hossein; Nikolaev, Andrey R; Meghanathan, Radha Nila; Pezeshk, Hamid; Masoudi-Nejad, Ali; van Leeuwen, Cees

    2017-10-01

    In free visual exploration, eye-movement is immediately followed by dynamic reconfiguration of brain functional connectivity. We studied the task-dependency of this process in a combined visual search-change detection experiment. Participants viewed two (nearly) same displays in succession. First time they had to find and remember multiple targets among distractors, so the ongoing task involved memory encoding. Second time they had to determine if a target had changed in orientation, so the ongoing task involved memory retrieval. From multichannel EEG recorded during 200 ms intervals time-locked to fixation onsets, we estimated the functional connectivity using a weighted phase lag index at the frequencies of theta, alpha, and beta bands, and derived global and local measures of the functional connectivity graphs. We found differences between both memory task conditions for several network measures, such as mean path length, radius, diameter, closeness and eccentricity, mainly in the alpha band. Both the local and the global measures indicated that encoding involved a more segregated mode of operation than retrieval. These differences arose immediately after fixation onset and persisted for the entire duration of the lambda complex, an evoked potential commonly associated with early visual perception. We concluded that encoding and retrieval differentially shape network configurations involved in early visual perception, affecting the way the visual input is processed at each fixation. These findings demonstrate that task requirements dynamically control the functional connectivity networks involved in early visual perception. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Psychometric Functions of Dual-Task Paradigms for Measuring Listening Effort.

    PubMed

    Wu, Yu-Hsiang; Stangl, Elizabeth; Zhang, Xuyang; Perkins, Joanna; Eilers, Emily

    The purpose of the study was to characterize the psychometric functions that describe task performance in dual-task listening effort measures as a function of signal to noise ratio (SNR). Younger adults with normal hearing (YNH, n = 24; experiment 1) and older adults with hearing impairment (n = 24; experiment 2) were recruited. Dual-task paradigms wherein the participants performed a primary speech recognition task simultaneously with a secondary task were conducted at a wide range of SNRs. Two different secondary tasks were used: an easy task (i.e., a simple visual reaction-time task) and a hard task (i.e., the incongruent Stroop test). The reaction time (RT) quantified the performance of the secondary task. For both participant groups and for both easy and hard secondary tasks, the curves that described the RT as a function of SNR were peak shaped. The RT increased as SNR changed from favorable to intermediate SNRs, and then decreased as SNRs moved from intermediate to unfavorable SNRs. The RT reached its peak (longest time) at the SNRs at which the participants could understand 30 to 50% of the speech. In experiments 1 and 2, the dual-task trials that had the same SNR were conducted in one block. To determine if the peak shape of the RT curves was specific to the blocked SNR presentation order used in these experiments, YNH participants were recruited (n = 25; experiment 3) and dual-task measures, wherein the SNR was varied from trial to trial (i.e., nonblocked), were conducted. The results indicated that, similar to the first two experiments, the RT curves had a peak shape. Secondary task performance was poorer at the intermediate SNRs than at the favorable and unfavorable SNRs. This pattern was observed for both YNH and older adults with hearing impairment participants and was not affected by either task type (easy or hard secondary task) or SNR presentation order (blocked or nonblocked). The shorter RT at the unfavorable SNRs (speech intelligibility < 30

  6. Effects of Repetitive Transcranial Magnetic Stimulation in Performing Eye-Hand Integration Tasks: Four Preliminary Studies with Children Showing Low-Functioning Autism

    ERIC Educational Resources Information Center

    Panerai, Simonetta; Tasca, Domenica; Lanuzza, Bartolo; Trubia, Grazia; Ferri, Raffaele; Musso, Sabrina; Alagona, Giovanna; Di Guardo, Giuseppe; Barone, Concetta; Gaglione, Maria P.; Elia, Maurizio

    2014-01-01

    This report, based on four studies with children with low-functioning autism, aimed at evaluating the effects of repetitive transcranial magnetic stimulation delivered on the left and right premotor cortices on eye-hand integration tasks; defining the long-lasting effects of high-frequency repetitive transcranial magnetic stimulation; and…

  7. The functional neuroanatomy of multitasking: combining dual tasking with a short term memory task.

    PubMed

    Deprez, Sabine; Vandenbulcke, Mathieu; Peeters, Ron; Emsell, Louise; Amant, Frederic; Sunaert, Stefan

    2013-09-01

    Insight into the neural architecture of multitasking is crucial when investigating the pathophysiology of multitasking deficits in clinical populations. Presently, little is known about how the brain combines dual-tasking with a concurrent short-term memory task, despite the relevance of this mental operation in daily life and the frequency of complaints related to this process, in disease. In this study we aimed to examine how the brain responds when a memory task is added to dual-tasking. Thirty-three right-handed healthy volunteers (20 females, mean age 39.9 ± 5.8) were examined with functional brain imaging (fMRI). The paradigm consisted of two cross-modal single tasks (a visual and auditory temporal same-different task with short delay), a dual-task combining both single tasks simultaneously and a multi-task condition, combining the dual-task with an additional short-term memory task (temporal same-different visual task with long delay). Dual-tasking compared to both individual visual and auditory single tasks activated a predominantly right-sided fronto-parietal network and the cerebellum. When adding the additional short-term memory task, a larger and more bilateral frontoparietal network was recruited. We found enhanced activity during multitasking in components of the network that were already involved in dual-tasking, suggesting increased working memory demands, as well as recruitment of multitask-specific components including areas that are likely to be involved in online holding of visual stimuli in short-term memory such as occipito-temporal cortex. These results confirm concurrent neural processing of a visual short-term memory task during dual-tasking and provide evidence for an effective fMRI multitasking paradigm. © 2013 Elsevier Ltd. All rights reserved.

  8. Predicting human protein function with multi-task deep neural networks.

    PubMed

    Fa, Rui; Cozzetto, Domenico; Wan, Cen; Jones, David T

    2018-01-01

    Machine learning methods for protein function prediction are urgently needed, especially now that a substantial fraction of known sequences remains unannotated despite the extensive use of functional assignments based on sequence similarity. One major bottleneck supervised learning faces in protein function prediction is the structured, multi-label nature of the problem, because biological roles are represented by lists of terms from hierarchically organised controlled vocabularies such as the Gene Ontology. In this work, we build on recent developments in the area of deep learning and investigate the usefulness of multi-task deep neural networks (MTDNN), which consist of upstream shared layers upon which are stacked in parallel as many independent modules (additional hidden layers with their own output units) as the number of output GO terms (the tasks). MTDNN learns individual tasks partially using shared representations and partially from task-specific characteristics. When no close homologues with experimentally validated functions can be identified, MTDNN gives more accurate predictions than baseline methods based on annotation frequencies in public databases or homology transfers. More importantly, the results show that MTDNN binary classification accuracy is higher than alternative machine learning-based methods that do not exploit commonalities and differences among prediction tasks. Interestingly, compared with a single-task predictor, the performance improvement is not linearly correlated with the number of tasks in MTDNN, but medium size models provide more improvement in our case. One of advantages of MTDNN is that given a set of features, there is no requirement for MTDNN to have a bootstrap feature selection procedure as what traditional machine learning algorithms do. Overall, the results indicate that the proposed MTDNN algorithm improves the performance of protein function prediction. On the other hand, there is still large room for deep learning

  9. The development and preliminary psychometric evaluation of an attachment Implicit Association Task.

    PubMed

    Venta, Amanda; Jardin, Charles; Kalpakci, Allison; Sharp, Carla

    2016-01-01

    The importance of measuring attachment insecurity is underscored by a vast literature tying attachment insecurity to numerous psychological disorders. Self-report measures assess explicit attachment beliefs and experiences, while interview measures, like the Adult Attachment Interview, assess implicit internal working models about the self as worthy of care and others as reliable sources of care. The present study is a preliminary psychometric evaluation of a potentially cost-effective method of assessing implicit internal working models of attachment through the development of an Implicit Association Test (IAT). A racially diverse sample of 104 college females was administered Internet-based versions of three IATs (assessing views of the self, mother, and father) as well as self-report measures of attachment and interpersonal problems. Analyses were conducted to evaluate the (a) internal consistency of each task, (b) correlations among the tasks, (c) concurrent validity, and (d) convergent validity. Adequate internal consistency was noted and correlations among the three IATs were significant. No significant associations were observed between the explicit self-report measures of attachment and the IATs. Two primary areas for future research are discussed. First, future research should utilize an implicit attachment measure alongside an IAT. Second, future research should reevaluate the IAT stimuli used.

  10. Complete 3D kinematics of upper extremity functional tasks.

    PubMed

    van Andel, Carolien J; Wolterbeek, Nienke; Doorenbosch, Caroline A M; Veeger, DirkJan H E J; Harlaar, Jaap

    2008-01-01

    Upper extremity (UX) movement analysis by means of 3D kinematics has the potential to become an important clinical evaluation method. However, no standardized protocol for clinical application has yet been developed, that includes the whole upper limb. Standardization problems include the lack of a single representative function, the wide range of motion of joints and the complexity of the anatomical structures. A useful protocol would focus on the functional status of the arm and particularly the orientation of the hand. The aim of this work was to develop a standardized measurement method for unconstrained movement analysis of the UX that includes hand orientation, for a set of functional tasks for the UX and obtain normative values. Ten healthy subjects performed four representative activities of daily living (ADL). In addition, six standard active range of motion (ROM) tasks were executed. Joint angles of the wrist, elbow, shoulder and scapula were analyzed throughout each ADL task and minimum/maximum angles were determined from the ROM tasks. Characteristic trajectories were found for the ADL tasks, standard deviations were generally small and ROM results were consistent with the literature. The results of this study could form the normative basis for the development of a 'UX analysis report' equivalent to the 'gait analysis report' and would allow for future comparisons with pediatric and/or pathologic movement patterns.

  11. Tolerability to prolonged lifting tasks. A validation of the recommended limits.

    PubMed

    Capodaglio, P; Bazzini, G

    1997-01-01

    Prolonged physical exertion is subjectively regulated by the perception of effort. This preliminary study was conducted to validate the use of subjective perceptions of effort in assessing objectively tolerable workloads for prolonged lifting tasks. Ten healthy male subjects tested their maximal lifting capacity (MLC) on a lift dynamometer (LidoLift, Loredan Biomed., West Sacramento, CA) and underwent incremental and 30-minute endurance lifting tests. Cardiorespiratory parameters were monitored with an oxygen uptake analyzer, mechanical parameters were calculated using a computerized dynamometer. Ratings of perceived exertion were given on Borg's 10-point scale. Physiological responses to repetitive lifting were matched with subjective perceptions. A single-variable statistical regression for power functions was performed to obtain the individual "iso-perception" curves as functions of the mechanical work exerted. We found that the "iso-perception" curve corresponding to a "moderate" perception of effort may represent the individual "tolerance threshold" for prolonged lifting tasks, since physiological responses at this level of intensity did not change significantly and the respiratory exchange ratio was less than one. The individually tolerable weight for lifting tasks lasting 30 min has been expressed as a percentage of the isoinertial MLC value and compared with the currently recommended limits for prolonged lifting tasks (Italian legislation D.L. 626/94). On the basis of our preliminary results a "tolerance threshold" of 20% MLC has been proposed for prolonged lifting tasks.

  12. Preliminary Evidence That Excitatory Transcranial Direct Current Stimulation Extends Time to Task Failure of a Sustained, Submaximal Muscular Contraction in Older Adults.

    PubMed

    Oki, Kentaro; Mahato, Niladri K; Nakazawa, Masato; Amano, Shinichi; France, Christopher R; Russ, David W; Clark, Brian C

    2016-08-01

    Decreased cortical excitability has been proposed as a potential mechanism underlying task failure during sustained muscular contractions, and cortical excitability may decrease with old age. We tested the hypothesis that transcranial direct current stimulation, which has been reported to raise cortical excitability, would prolong the time to task failure during a sustained muscular contraction in older adults. Thirteen older adults (68.3±2.0 years; eight women and five men) performed isometric, elbow flexions to failure while receiving sham or anodal transcranial direct current stimulation. Order of stimulation was randomized, and the subjects and investigators were blinded to condition. Time to task failure was measured alongside selected psychological indices of perceived exertion and affect. Anodal transcranial direct current stimulation prolonged mean time to task failure by approximately 15% (16.9±2.2 vs 14.7±1.8 minutes) and slowed the rate of increase in rating of perceived exertion (0.29±0.03 vs 0.31±0.03) relative to the sham condition. These preliminary findings suggest that anodal transcranial direct current stimulation enhances time to task failure of a sustained, submaximal contraction in older adults by potentially increasing cortical excitability and/or influencing the perception of exertion. These results raise the question of whether interventions that acutely increase cortical excitability could enhance physical function and/or exercise-induced adaptations in older adults. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. A preliminary analysis of self-control with aversive events: the effects of task magnitude and delay on the choices of children with autism.

    PubMed

    Lerman, Dorothea C; Addison, Laura R; Kodak, Tiffany

    2006-01-01

    When faced with a choice between two aversive events, a person exhibits self-control by choosing a smaller, more immediate aversive event over a larger, delayed aversive event. Task demands are often aversive to children with autism and other developmental disabilities. The purpose of this study was to evaluate behavioral sensitivity to differences in the amount and delay of tasks as part of a preliminary study on self-control. Participants were 2 children with autism who engaged in problem behavior maintained by escape. Results indicated a lack of self-control with respect to choosing between two aversive tasks and suggested potential strategies for increasing self-control (i.e., choosing a small immediate task over a large delayed task).

  14. Functional requirements regarding medical registries--preliminary results.

    PubMed

    Oberbichler, Stefan; Hörbst, Alexander

    2013-01-01

    The term medical registry is used to reference tools and processes to support clinical or epidemiologic research or provide a data basis for decisions regarding health care policies. In spite of this wide range of applications the term registry and the functional requirements which a registry should support are not clearly defined. This work presents preliminary results of a literature review to discover functional requirements which form a registry. To extract these requirements a set of peer reviewed articles was collected. These set of articles was screened by using methods from qualitative research. Up to now most discovered functional requirements focus on data quality (e. g. prevent transcription error by conducting automatic domain checks).

  15. The functional head impulse test: preliminary data.

    PubMed

    Corallo, Giulia; Versino, Maurizio; Mandalà, Marco; Colnaghi, Silvia; Ramat, Stefano

    2018-06-04

    The functional head impulse test is a new test of vestibular function based on the ability to recognize the orientation of a Landolt C optotype that briefly appears on a computer screen during passive head impulses imposed by the examiner over a range of head accelerations. Here, we compare its results with those of the video head impulse test on a population of vestibular neuritis patients recorded acutely and after 3 months from symptoms onset. The preliminary results presented here show that while both tests are able to identify the affected labyrinth and to show a recovery of vestibular functionality at 3 months, the two tests are not redundant, but complementary.

  16. The Role of Control Functions in Mentalizing: Dual-Task Studies of Theory of Mind and Executive Function

    ERIC Educational Resources Information Center

    Bull, Rebecca; Phillips, Louise H.; Conway, Claire A.

    2008-01-01

    Conflicting evidence has arisen from correlational studies regarding the role of executive control functions in Theory of Mind. The current study used dual-task manipulations of executive functions (inhibition, updating and switching) to investigate the role of these control functions in mental state and non-mental state tasks. The "Eyes"…

  17. Spaceflight-induced cardiovascular changes and recovery during NASA's Functional Task Test

    NASA Astrophysics Data System (ADS)

    Arzeno, Natalia M.; Stenger, Michael B.; Bloomberg, Jacob J.; Platts, Steven H.

    2013-11-01

    Microgravity-induced physiologic changes could impair a crewmember's performance upon return to a gravity environment. The Functional Task Test aims to correlate these physiologic alterations with changes in performance during mission-critical tasks. In this study, we evaluated spaceflight-induced cardiovascular changes during 11 functional tasks in 7 Shuttle astronauts before spaceflight, on landing day, and 1, 6, and 30 days after landing. Mean heart rate was examined during each task and autonomic activity was approximated by heart rate variability during the Recovery from Fall/Stand Test, a 2-min prone rest followed by a 3-min stand. Heart rate was increased on landing day during all of the tasks, and remained elevated 6 days after landing during 6 of the 11 tasks. Parasympathetic modulation was diminished and sympathovagal balance was increased on landing day. Additionally, during the stand test 6 days after landing, parasympathetic modulation remained suppressed and heart rate remained elevated compared to preflight levels. Heart rate and autonomic activity were not different from preflight levels 30 days after landing. We detected changes in heart rate and autonomic activity during a 3-min stand and a variety of functional tasks, where cardiovascular deconditioning was still evident 6 days after returning from short-duration spaceflight. The delayed recovery times for heart rate and parasympathetic modulation indicate the necessity of assessing functional performance after long-duration spaceflight to ensure crew health and safety.

  18. Analysis of Skeletal Muscle Metrics as Predictors of Functional Task Performance

    NASA Technical Reports Server (NTRS)

    Ryder, Jeffrey W.; Buxton, Roxanne E.; Redd, Elizabeth; Scott-Pandorf, Melissa; Hackney, Kyle J.; Fiedler, James; Ploutz-Snyder, Robert J.; Bloomberg, Jacob J.; Ploutz-Snyder, Lori L.

    2010-01-01

    PURPOSE: The ability to predict task performance using physiological performance metrics is vital to ensure that astronauts can execute their jobs safely and effectively. This investigation used a weighted suit to evaluate task performance at various ratios of strength, power, and endurance to body weight. METHODS: Twenty subjects completed muscle performance tests and functional tasks representative of those that would be required of astronauts during planetary exploration (see table for specific tests/tasks). Subjects performed functional tasks while wearing a weighted suit with additional loads ranging from 0-120% of initial body weight. Performance metrics were time to completion for all tasks except hatch opening, which consisted of total work. Task performance metrics were plotted against muscle metrics normalized to "body weight" (subject weight + external load; BW) for each trial. Fractional polynomial regression was used to model the relationship between muscle and task performance. CONCLUSION: LPMIF/BW is the best predictor of performance for predominantly lower-body tasks that are ambulatory and of short duration. LPMIF/BW is a very practical predictor of occupational task performance as it is quick and relatively safe to perform. Accordingly, bench press work best predicts hatch-opening work performance.

  19. Musical Training, Bilingualism, and Executive Function: A Closer Look at Task Switching and Dual-Task Performance

    ERIC Educational Resources Information Center

    Moradzadeh, Linda; Blumenthal, Galit; Wiseheart, Melody

    2015-01-01

    This study investigated whether musical training and bilingualism are associated with enhancements in specific components of executive function, namely, task switching and dual-task performance. Participants (n = 153) belonging to one of four groups (monolingual musician, bilingual musician, bilingual non-musician, or monolingual non-musician)…

  20. Functional localization of a "Time Keeper" function separate from attentional resources and task strategy.

    PubMed

    Tracy, J I; Faro, S H; Mohamed, F B; Pinsk, M; Pinus, A

    2000-03-01

    The functional neuroanatomy of time estimation has not been well-documented. This research investigated the fMRI measured brain response to an explicit, prospective time interval production (TIP) task. The study tested for the presence of brain activity reflecting a primary time keeper function, distinct from the brain systems involved either in conscious strategies to monitor time or attentional resource and other cognitive processes to accomplish the task. In the TIP task participants were given a time interval and asked to indicate when it elapsed. Two control tasks (counting forwards, backwards) were administered, in addition to a dual task format of the TIP task. Whole brain images were collected at 1.5 Tesla. Analyses (n = 6) yielded a statistical parametric map (SPM ¿z¿) reflecting time keeping and not strategy (counting, number manipulation) or attention resource utilization. Additional SPM ¿z¿s involving activation associated with the accuracy and magnitude the of time estimation response are presented. Results revealed lateral cerebellar and inferior temporal lobe activation were associated with primary time keeping. Behavioral data provided evidence that the procedures for the explicit time judgements did not occur automatically and utilized controlled processes. Activation sites associated with accuracy, magnitude, and the dual task provided indications of the other structures involved in time estimation that implemented task components related to controlled processing. The data are consistent with prior proposals that the cerebellum is a repository of codes for time processing, but also implicate temporal lobe structures for this type of time estimation task. Copyright 2000 Academic Press.

  1. A functional MRI study of working memory task in euthymic bipolar disorder: evidence for task-specific dysfunction.

    PubMed

    Monks, Paul J; Thompson, Jill M; Bullmore, Edward T; Suckling, John; Brammer, Michael J; Williams, Steve C R; Simmons, Andrew; Giles, Nicola; Lloyd, Adrian J; Harrison, C Louise; Seal, Marc; Murray, Robin M; Ferrier, I Nicol; Young, Allan H; Curtis, Vivienne A

    2004-12-01

    Even when euthymic bipolar disorder patients can have persistent deficits in working memory, but the neural basis of this deficit remains unclear. We undertook an functional magnetic resonance imaging investigation of euthymic bipolar disorder patients performing two working memory paradigms; the two-back and Sternberg tasks, selected to examine the central executive and the phonological loop respectively. We hypothesized that neuronal dysfunction would be specific to the network underlying the executive rather than the phonological loop component of working memory. Twelve right-handed euthymic bipolar I males receiving lithium carbonate monotherapy were matched with 12 controls. The two-back task comprised a single working memory load contrasted with baseline vigilance condition. The Sternberg paradigm used a parametric design incorporating variable working memory load with fixed delay between presentation of an array of items to be remembered and a target item. Functional activation data were acquired during performance of the tasks and were analysed to produce brain activation maps representing significant group differences in activation (ANOVA). Load-response curves were derived from the Sternberg task data set. There were no significant between-group differences (t-test) in performance of the two-back task, or in 2 x 5 group by memory load ANOVA for the performance data from Sternberg task. In the two-back task, compared with controls bipolar disorder patients showed reductions in bilateral frontal, temporal and parietal activation, and increased activations with the left precentral, right medial frontal and left supramarginal gyri. No between-group differences were observed in the Sternberg task at any working memory load. Our findings support the notion that, in euthymic bipolar disorder, failure to engage fronto-executive function underpins the core neuropsychological deficits. Blackwell Munksgaard, 2004

  2. Social task switching: On the automatic social engagement of executive functions.

    PubMed

    Dudarev, Veronica; Hassin, Ran R

    2016-01-01

    Humans are quintessentially social, yet much of cognitive psychology has focused on the individual, in individual settings. The literature on joint action is one of the most prominent exceptions. Joint-action research studies the sociality of our mental representations by examining how the tasks of other people around us affect our own task performance. In this paper we go beyond examining whether we represent others and their tasks, by asking whether we also automatically do their tasks with them, even if they require effortful executive functions. To this end we examine one of the core executive functions, shifting, in a new paradigm that allows us to investigate task-switching in a joint-action setup. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Development of Internet-Based Tasks for the Executive Function Performance Test.

    PubMed

    Rand, Debbie; Lee Ben-Haim, Keren; Malka, Rachel; Portnoy, Sigal

    The Executive Function Performance Test (EFPT) is a reliable and valid performance-based tool to assess executive functions (EFs). This study's objective was to develop and verify two Internet-based tasks for the EFPT. A cross-sectional study assessed the alternate-form reliability of the Internet-based bill-paying and telephone-use tasks in healthy adults and people with subacute stroke (Study 1). It also sought to establish the tasks' criterion reliability for assessing EF deficits by correlating performance with that on the Trail Making Test in five groups: healthy young adults, healthy older adults, people with subacute stroke, people with chronic stroke, and young adults with attention deficit hyperactivity disorder (Study 2). The alternative-form reliability and initial construct validity for the Internet-based bill-paying task were verified. Criterion validity was established for both tasks. The Internet-based tasks are comparable to the original EFPT tasks and can be used for assessment of EF deficits. Copyright © 2018 by the American Occupational Therapy Association, Inc.

  4. A Preliminary Analysis of Self-Control with Aversive Events: the Effects of Task Magnitude and Delay on the Choices of Children with Autism

    PubMed Central

    Lerman, Dorothea C; Addison, Laura R; Kodak, Tiffany

    2006-01-01

    When faced with a choice between two aversive events, a person exhibits self-control by choosing a smaller, more immediate aversive event over a larger, delayed aversive event. Task demands are often aversive to children with autism and other developmental disabilities. The purpose of this study was to evaluate behavioral sensitivity to differences in the amount and delay of tasks as part of a preliminary study on self-control. Participants were 2 children with autism who engaged in problem behavior maintained by escape. Results indicated a lack of self-control with respect to choosing between two aversive tasks and suggested potential strategies for increasing self-control (i.e., choosing a small immediate task over a large delayed task). PMID:16813043

  5. Concept definition for space station technology development experiments. Experiment definition, task 2

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The second task of a study with the overall objective of providing a conceptual definition of the Technology Development Mission Experiments proposed by LaRC on space station is discussed. During this task, the information (goals, objectives, and experiment functional description) assembled on a previous task was translated into the actual experiment definition. Although still of a preliminary nature, aspects such as: environment, sensors, data acquisition, communications, handling, control telemetry requirements, crew activities, etc., were addressed. Sketches, diagrams, block diagrams, and timeline analyses of crew activities are included where appropriate.

  6. Musical training, bilingualism, and executive function: a closer look at task switching and dual-task performance.

    PubMed

    Moradzadeh, Linda; Blumenthal, Galit; Wiseheart, Melody

    2015-07-01

    This study investigated whether musical training and bilingualism are associated with enhancements in specific components of executive function, namely, task switching and dual-task performance. Participants (n = 153) belonging to one of four groups (monolingual musician, bilingual musician, bilingual non-musician, or monolingual non-musician) were matched on age and socioeconomic status and administered task switching and dual-task paradigms. Results demonstrated reduced global and local switch costs in musicians compared with non-musicians, suggesting that musical training can contribute to increased efficiency in the ability to shift flexibly between mental sets. On dual-task performance, musicians also outperformed non-musicians. There was neither a cognitive advantage for bilinguals relative to monolinguals, nor an interaction between music and language to suggest additive effects of both types of experience. These findings demonstrate that long-term musical training is associated with improvements in task switching and dual-task performance. Copyright © 2014 Cognitive Science Society, Inc.

  7. A Method for Functional Task Alignment Analysis of an Arthrocentesis Simulator.

    PubMed

    Adams, Reid A; Gilbert, Gregory E; Buckley, Lisa A; Nino Fong, Rodolfo; Fuentealba, I Carmen; Little, Erika L

    2018-05-16

    During simulation-based education, simulators are subjected to procedures composed of a variety of tasks and processes. Simulators should functionally represent a patient in response to the physical action of these tasks. The aim of this work was to describe a method for determining whether a simulator does or does not have sufficient functional task alignment (FTA) to be used in a simulation. Potential performance checklist items were gathered from published arthrocentesis guidelines and aggregated into a performance checklist using Lawshe's method. An expert panel used this performance checklist and an FTA analysis questionnaire to evaluate a simulator's ability to respond to the physical actions required by the performance checklist. Thirteen items, from a pool of 39, were included on the performance checklist. Experts had mixed reviews of the simulator's FTA and its suitability for use in simulation. Unexpectedly, some positive FTA was found for several tasks where the simulator lacked functionality. By developing a detailed list of specific tasks required to complete a clinical procedure, and surveying experts on the simulator's response to those actions, educators can gain insight into the simulator's clinical accuracy and suitability. Unexpected of positive FTA ratings of function deficits suggest that further revision of the survey method is required.

  8. Metabolic Assessment of Suited Mobility Using Functional Tasks

    NASA Technical Reports Server (NTRS)

    Norcross, J. R.; McFarland, S. M.; Ploutz-Snyder, Robert

    2016-01-01

    Existing methods for evaluating extravehicular activity (EVA) suit mobility have typically focused on isolated joint range of motion or torque, but these techniques have little to do with how well a crewmember functionally performs in an EVA suit. To evaluate suited mobility at the system level through measuring metabolic cost (MC) of functional tasks.

  9. NASA's Functional Task Test: Informing the Design of an Integrated Countermeasure System

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2015-01-01

    The goals of the Functional Task Test (FTT) study were to determine the effects of spaceflight on functional tests that are representative of critical exploration mission tasks and to identify the key physiological factors that contribute to decrements in performance.

  10. Increased Cortical Activity in Binge Drinkers during Working Memory Task: A Preliminary Assessment through a Functional Magnetic Resonance Imaging Study

    PubMed Central

    Campanella, Salvatore; Peigneux, Philippe; Petit, Géraldine; Lallemand, Frédéric; Saeremans, Mélanie; Noël, Xavier; Metens, Thierry; Nouali, Mustapha; De Tiège, Xavier; De Witte, Philippe; Ward, Roberta; Verbanck, Paul

    2013-01-01

    Background Cerebral dysfunction is a common feature of both chronic alcohol abusers and binge drinkers. Here, we aimed to study whether, at equated behavioral performance levels, binge drinkers exhibited increased neural activity while performing simple cognitive tasks. Methods Thirty-two participants (16 binge drinkers and 16 matched controls) were scanned using functional magnetic resonance imaging (fMRI) while performing an n-back working memory task. In the control zero-back (N0) condition, subjects were required to press a button with the right hand when the number “2″ was displayed. In the two-back (N2) condition, subjects had to press a button when the displayed number was identical to the number shown two trials before. Results fMRI analyses revealed higher bilateral activity in the pre-supplementary motor area in binge drinkers than matched controls, even though behavioral performances were similar. Moreover, binge drinkers showed specific positive correlations between the number of alcohol doses consumed per occasion and higher activity in the dorsomedial prefrontal cortex, as well as between the number of drinking occasions per week and higher activity in cerebellum, thalamus and insula while performing the N2 memory task. Conclusions Binge alcohol consumption leads to possible compensatory cerebral changes in binge drinkers that facilitate normal behavioral performance. These changes in cerebral responses may be considered as vulnerability factors for developing adult substance use disorders. PMID:23638017

  11. Inverted-U Function Relating Cortical Plasticity and Task Difficulty

    PubMed Central

    Engineer, Navzer D.; Engineer, Crystal T.; Reed, Amanda C.; Pandya, Pritesh K.; Jakkamsetti, Vikram; Moucha, Raluca; Kilgard, Michael P.

    2012-01-01

    Many psychological and physiological studies with simple stimuli have suggested that perceptual learning specifically enhances the response of primary sensory cortex to task-relevant stimuli. The aim of this study was to determine whether auditory discrimination training on complex tasks enhances primary auditory cortex responses to a target sequence relative to non-target and novel sequences. We collected responses from more than 2,000 sites in 31 rats trained on one of six discrimination tasks that differed primarily in the similarity of the target and distractor sequences. Unlike training with simple stimuli, long-term training with complex stimuli did not generate target specific enhancement in any of the groups. Instead, cortical receptive field size decreased, latency decreased, and paired pulse depression decreased in rats trained on the tasks of intermediate difficulty while tasks that were too easy or too difficult either did not alter or degraded cortical responses. These results suggest an inverted-U function relating neural plasticity and task difficulty. PMID:22249158

  12. Sequencing bilateral and unilateral task-oriented training versus task oriented training alone to improve arm function in individuals with chronic stroke.

    PubMed

    McCombe Waller, Sandy; Whitall, Jill; Jenkins, Toye; Magder, Laurence S; Hanley, Daniel F; Goldberg, Andrew; Luft, Andreas R

    2014-12-14

    Recovering useful hand function after stroke is a major scientific challenge for patients with limited motor recovery. We hypothesized that sequential training beginning with proximal bilateral followed by unilateral task oriented training is superior to time-matched unilateral training alone. Proximal bilateral training could optimally prepare the motor system to respond to the more challenging task-oriented training. Twenty-six participants with moderate severity hemiparesis Intervention: PARTICIPANTS received either 6-weeks of bilateral proximal training followed sequentially by 6-weeks unilateral task-oriented training (COMBO) or 12-weeks of unilateral task-oriented training alone (SAEBO). A subset of 8 COMB0 and 9 SAEBO participants underwent three functional magnetic resonance imaging (fMRI) scans of hand and elbow movement every 6 weeks. Fugl-Meyer Upper extremity scale, Modified Wolf Motor Function Test, University of Maryland Arm Questionnaire for Stroke, Motor cortex activation (fMRI). The COMBO group demonstrated significantly greater gains between baseline and 12-weeks over all outcome measures (p = .018 based on a MANOVA test) and specifically in the Modified Wolf Motor Function test (time). Both groups demonstrated within-group gains on the Fugl-Meyer Upper Extremity test (impairment) and University of Maryland Arm Questionnaire for Stroke (functional use). fMRI subset analyses showed motor cortex (primary and premotor) activation during hand movement was significantly increased by sequential combination training but not by task-oriented training alone. Sequentially combining a proximal bilateral before a unilateral task-oriented training may be an effective way to facilitate gains in arm and hand function in those with moderate to severe paresis post-stroke compared to unilateral task oriented training alone.

  13. Resting-state functional magnetic resonance imaging for surgical planning in pediatric patients: a preliminary experience.

    PubMed

    Roland, Jarod L; Griffin, Natalie; Hacker, Carl D; Vellimana, Ananth K; Akbari, S Hassan; Shimony, Joshua S; Smyth, Matthew D; Leuthardt, Eric C; Limbrick, David D

    2017-12-01

    OBJECTIVE Cerebral mapping for surgical planning and operative guidance is a challenging task in neurosurgery. Pediatric patients are often poor candidates for many modern mapping techniques because of inability to cooperate due to their immature age, cognitive deficits, or other factors. Resting-state functional MRI (rs-fMRI) is uniquely suited to benefit pediatric patients because it is inherently noninvasive and does not require task performance or significant cooperation. Recent advances in the field have made mapping cerebral networks possible on an individual basis for use in clinical decision making. The authors present their initial experience translating rs-fMRI into clinical practice for surgical planning in pediatric patients. METHODS The authors retrospectively reviewed cases in which the rs-fMRI analysis technique was used prior to craniotomy in pediatric patients undergoing surgery in their institution. Resting-state analysis was performed using a previously trained machine-learning algorithm for identification of resting-state networks on an individual basis. Network maps were uploaded to the clinical imaging and surgical navigation systems. Patient demographic and clinical characteristics, including need for sedation during imaging and use of task-based fMRI, were also recorded. RESULTS Twenty patients underwent rs-fMRI prior to craniotomy between December 2013 and June 2016. Their ages ranged from 1.9 to 18.4 years, and 12 were male. Five of the 20 patients also underwent task-based fMRI and one underwent awake craniotomy. Six patients required sedation to tolerate MRI acquisition, including resting-state sequences. Exemplar cases are presented including anatomical and resting-state functional imaging. CONCLUSIONS Resting-state fMRI is a rapidly advancing field of study allowing for whole brain analysis by a noninvasive modality. It is applicable to a wide range of patients and effective even under general anesthesia. The nature of resting

  14. Spaceflight-Induced Cardiovascular Changes and Recovery During NASA's Functional Task Test

    NASA Technical Reports Server (NTRS)

    Arzeno, N. M.; Stenger, M. B.; Bloomberg, J. J.; Platts, S. H.

    2010-01-01

    Microgravity-induced physiological changes could impair a crewmember s performance upon return to a gravity environment. The Functional Task Test (FTT) is designed to correlate these physiological changes to performance in mission-critical tasks. The Recovery from Fall/Stand Test (RFST) simulates one such task, measuring the ability to recover from a prone position and the cardiovascular response to orthostasis. The purpose of this study was to evaluate spaceflight-induced cardiovascular changes during the FTT. METHODS: Five astronauts participated in the FTT before 10-15 day missions, on landing day (R+0), and one (R+1), six (R+6) and thirty (R+30) days after landing. The RFST consisted of a 2-minute prone rest followed by a 3-minute stand during which heart rate (HR, Holter) and continuous blood pressure (BP, Finometer) were measured. Spectral heart rate variability (HRV) was calculated during the RFST to approximate autonomic function. Statistical analysis was performed with two-factor repeated measures ANOVA. RESULTS: During RFST, HR was higher on R+0 than preflight (p<0.004). This increase in HR persisted on R+1 and R+6 during the stand portion of RFST (p<0.026). BP was well-regulated on all test days. Parasympathetic activity was diminished on R+0 (p=0.035). Sympathovagal balance tended to be affected by spaceflight (main effect, p=0.072), appearing to be slightly elevated during postflight RFST except on R+30. Additionally, analysis of HR during the functional tasks yielded a higher HR on R+0 than preflight during 8 of 11 tasks analyzed, where all tasks had HR return to preflight values by R+30 (p<0.05). CONCLUSION: Spaceflight causes an increase in HR, decrease in parasympathetic activity, and increase in sympathovagal balance, which we confirmed during RFST. These spaceflight-induced changes seen in the RFST, along with the increased postflight HR in most functional tasks, can be used to assess functional performance after short-duration spaceflight.

  15. Incorporating Target Priorities in the Sensor Tasking Reward Function

    NASA Astrophysics Data System (ADS)

    Gehly, S.; Bennett, J.

    2016-09-01

    Orbital debris tracking poses many challenges, most fundamentally the need to track a large number of objects from a limited number of sensors. The use of information theoretic sensor allocation provides a means to efficiently collect data on the multitarget system. An additional need of the community is the ability to specify target priorities, driven both by user needs and environmental factors such as collision warnings. This research develops a method to incorporate target priorities in the sensor tasking reward function, allowing for several applications in different tasking modes such as catalog maintenance, calibration, and collision monitoring. A set of numerical studies is included to demonstrate the functionality of the method.

  16. Functional Disconnectivity during Inter-Task Resting State in Dementia with Lewy Bodies.

    PubMed

    Chabran, Eléna; Roquet, Daniel; Gounot, Daniel; Sourty, Marion; Armspach, Jean-Paul; Blanc, Frédéric

    2018-01-01

    Limited research has been done on the functional connectivity in visuoperceptual regions in dementia with Lewy bodies (DLB) patients. This study aimed to investigate the functional connectivity differences between a task condition and an inter-task resting state condition within a visuoperceptual paradigm, in DLB patients compared with Alzheimer disease (AD) patients and healthy elderly control subjects. Twenty-six DLB, 29 AD, and 22 healthy subjects underwent a detailed clinical and neuropsychological examination along with a functional MRI during the different conditions of a visuoperceptual paradigm. Functional images were analyzed using group-level spatial independent component analysis and seed-based connectivity analyses. While the DLB patients scored well and did not differ from the control and AD groups in terms of functional activity and connectivity during the task conditions, they showed decreased functional connectivity in visuoperceptual regions during the resting state condition, along with a temporal impairment of the default-mode network activity. Functional connectivity disturbances were also found within two attentional-executive networks and between these networks and visuoperceptual regions. We found a specific functional profile in the switching between task and resting state conditions in DLB patients. This result could help better characterize functional impairments in DLB and their contribution to several core symptoms of this pathology such as visual hallucinations and cognitive fluctuations. © 2018 S. Karger AG, Basel.

  17. Accessory stimulus modulates executive function during stepping task

    PubMed Central

    Watanabe, Tatsunori; Koyama, Soichiro; Tanabe, Shigeo

    2015-01-01

    When multiple sensory modalities are simultaneously presented, reaction time can be reduced while interference enlarges. The purpose of this research was to examine the effects of task-irrelevant acoustic accessory stimuli simultaneously presented with visual imperative stimuli on executive function during stepping. Executive functions were assessed by analyzing temporal events and errors in the initial weight transfer of the postural responses prior to a step (anticipatory postural adjustment errors). Eleven healthy young adults stepped forward in response to a visual stimulus. We applied a choice reaction time task and the Simon task, which consisted of congruent and incongruent conditions. Accessory stimuli were randomly presented with the visual stimuli. Compared with trials without accessory stimuli, the anticipatory postural adjustment error rates were higher in trials with accessory stimuli in the incongruent condition and the reaction times were shorter in trials with accessory stimuli in all the task conditions. Analyses after division of trials according to whether anticipatory postural adjustment error occurred or not revealed that the reaction times of trials with anticipatory postural adjustment errors were reduced more than those of trials without anticipatory postural adjustment errors in the incongruent condition. These results suggest that accessory stimuli modulate the initial motor programming of stepping by lowering decision threshold and exclusively under spatial incompatibility facilitate automatic response activation. The present findings advance the knowledge of intersensory judgment processes during stepping and may aid in the development of intervention and evaluation tools for individuals at risk of falls. PMID:25925321

  18. Task-evoked brain functional magnetic susceptibility mapping by independent component analysis (χICA).

    PubMed

    Chen, Zikuan; Calhoun, Vince D

    2016-03-01

    Conventionally, independent component analysis (ICA) is performed on an fMRI magnitude dataset to analyze brain functional mapping (AICA). By solving the inverse problem of fMRI, we can reconstruct the brain magnetic susceptibility (χ) functional states. Upon the reconstructed χ dataspace, we propose an ICA-based brain functional χ mapping method (χICA) to extract task-evoked brain functional map. A complex division algorithm is applied to a timeseries of fMRI phase images to extract temporal phase changes (relative to an OFF-state snapshot). A computed inverse MRI (CIMRI) model is used to reconstruct a 4D brain χ response dataset. χICA is implemented by applying a spatial InfoMax ICA algorithm to the reconstructed 4D χ dataspace. With finger-tapping experiments on a 7T system, the χICA-extracted χ-depicted functional map is similar to the SPM-inferred functional χ map by a spatial correlation of 0.67 ± 0.05. In comparison, the AICA-extracted magnitude-depicted map is correlated with the SPM magnitude map by 0.81 ± 0.05. The understanding of the inferiority of χICA to AICA for task-evoked functional map is an ongoing research topic. For task-evoked brain functional mapping, we compare the data-driven ICA method with the task-correlated SPM method. In particular, we compare χICA with AICA for extracting task-correlated timecourses and functional maps. χICA can extract a χ-depicted task-evoked brain functional map from a reconstructed χ dataspace without the knowledge about brain hemodynamic responses. The χICA-extracted brain functional χ map reveals a bidirectional BOLD response pattern that is unavailable (or different) from AICA. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Visual pathways from the perspective of cost functions and multi-task deep neural networks.

    PubMed

    Scholte, H Steven; Losch, Max M; Ramakrishnan, Kandan; de Haan, Edward H F; Bohte, Sander M

    2018-01-01

    Vision research has been shaped by the seminal insight that we can understand the higher-tier visual cortex from the perspective of multiple functional pathways with different goals. In this paper, we try to give a computational account of the functional organization of this system by reasoning from the perspective of multi-task deep neural networks. Machine learning has shown that tasks become easier to solve when they are decomposed into subtasks with their own cost function. We hypothesize that the visual system optimizes multiple cost functions of unrelated tasks and this causes the emergence of a ventral pathway dedicated to vision for perception, and a dorsal pathway dedicated to vision for action. To evaluate the functional organization in multi-task deep neural networks, we propose a method that measures the contribution of a unit towards each task, applying it to two networks that have been trained on either two related or two unrelated tasks, using an identical stimulus set. Results show that the network trained on the unrelated tasks shows a decreasing degree of feature representation sharing towards higher-tier layers while the network trained on related tasks uniformly shows high degree of sharing. We conjecture that the method we propose can be used to analyze the anatomical and functional organization of the visual system and beyond. We predict that the degree to which tasks are related is a good descriptor of the degree to which they share downstream cortical-units. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Amygdala Functional Connectivity is Reduced After the Cold Pressor Task

    PubMed Central

    Clewett, David; Schoeke, Andrej; Mather, Mara

    2013-01-01

    The amygdala forms a crucial link between central pain and stress systems. There is much evidence that psychological stress affects amygdala activity, but it is less clear how painful stressors influence subsequent amygdala functional connectivity. In the present study, we used pulsed arterial spin labeling (PASL) to investigate differences in healthy male adults’ resting-state amygdala functional connectivity following a cold pressor versus control task, with the stressor and control conditions conducted on different days. During the period of peak cortisol response to acute stress (approximately fifteen to thirty minutes after stressor onset), participants were asked to rest for six minutes with their eyes closed during a PASL scanning sequence. The cold pressor task led to reduced resting-state functional connectivity between the amygdalae and orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (VMPFC), which occurred irrespective of cortisol release. The stressor also induced greater inverse connectivity between the left amygdala and dorsal anterior cingulate cortex (dACC), a brain region implicated in the down-regulation of amygdala responsivity. Furthermore, the degree of post-stressor left amygdala decoupling with the lateral OFC varied according to self-reported pain intensity during the cold pressor task. These findings indicate that the cold pressor task alters amygdala interactions with prefrontal and ACC regions 15–30 minutes after the stressor, and that these altered functional connectivity patterns are related to pain perception rather than cortisol feedback. PMID:23645370

  1. A One-Hour Sleep Restriction Impacts Brain Processing in Young Children Across Tasks: Evidence From Event-related Potentials

    PubMed Central

    Molfese, Dennis L.; Ivanenko, Anna; Key, Alexandra Fonaryova; Roman, Adrienne; Molfese, Victoria J.; O'Brien, Louise M.; Gozal, David; Kota, Srinivas; Hudac, Caitlin M.

    2014-01-01

    The effect of mild sleep restriction on cognitive functioning in young children is unclear, yet sleep loss may impact children's abilities to attend to tasks with high processing demands. In a preliminary investigation, six children (6.6 - 8.3 years of age) with normal sleep patterns performed three tasks: attention (“Oddball”), speech perception (conconant-vowel syllables) and executive function (Directional Stroop). Event-related potentials (ERP) responses were recorded before (Control) and following one-week of 1-hour per day of sleep restriction. Brain activity across all tasks following Sleep Restriction differed from activity during Control Sleep, indicating that minor sleep restriction impacts children's neurocognitive functioning. PMID:23862635

  2. Effect of task-oriented activities on hand functions, cognitive functions and self-expression of elderly patients with dementia.

    PubMed

    Son, Bo-Young; Bang, Yo-Soon; Hwang, Min-Ji; Oh, Eun-Ju

    2017-08-01

    [Purpose] This study investigates the effects of task-oriented activities on hand function, cognitive function, and self-expression of the elderly with dementia, and then identify the influencing factors on self-expression in sub-factors of dependent variables. [Subjects and Methods] Forty elderly persons were divided into two groups: intervention group (n=20) and control group (n=20). The interventions were applied to the subjects 3 times a week, 50 minutes per each time, for a total of five weeks. We measured the jamar hand dynamometer test for grip strength, the jamar hydraulic pinch gauge test for prehension test, nine-hole pegboard test for coordination test, and Loewenstein Occupational Therapy Cognitive Assessment-Geriatric Population for cognitive function, and self-expression rating scale for self-expression test. [Results] The task-oriented activities promoted hand function, cognitive function (visual perception, spatial perception, visuomotor organization, attention & concentration) and self-expression of the elderly with early dementia, and the factors influencing the self-expression were cognitive function (visual perception) and hand function (coordination). The study showed that the task-oriented program enabled self-expression by improving hand function and cognitive function. [Conclusion] This study suggested that there should be provided the task-oriented program for prevention and treatment of the elderly with early dementia in the clinical settings and it was considered that results have a value as basic data that can be verified relationship of hand function, cognitive function, and self-expression.

  3. Effect of task-oriented activities on hand functions, cognitive functions and self-expression of elderly patients with dementia

    PubMed Central

    Son, Bo-Young; Bang, Yo-Soon; Hwang, Min-Ji; Oh, Eun-Ju

    2017-01-01

    [Purpose] This study investigates the effects of task-oriented activities on hand function, cognitive function, and self-expression of the elderly with dementia, and then identify the influencing factors on self-expression in sub-factors of dependent variables. [Subjects and Methods] Forty elderly persons were divided into two groups: intervention group (n=20) and control group (n=20). The interventions were applied to the subjects 3 times a week, 50 minutes per each time, for a total of five weeks. We measured the jamar hand dynamometer test for grip strength, the jamar hydraulic pinch gauge test for prehension test, nine-hole pegboard test for coordination test, and Loewenstein Occupational Therapy Cognitive Assessment-Geriatric Population for cognitive function, and self-expression rating scale for self-expression test. [Results] The task-oriented activities promoted hand function, cognitive function (visual perception, spatial perception, visuomotor organization, attention & concentration) and self-expression of the elderly with early dementia, and the factors influencing the self-expression were cognitive function (visual perception) and hand function (coordination). The study showed that the task-oriented program enabled self-expression by improving hand function and cognitive function. [Conclusion] This study suggested that there should be provided the task-oriented program for prevention and treatment of the elderly with early dementia in the clinical settings and it was considered that results have a value as basic data that can be verified relationship of hand function, cognitive function, and self-expression. PMID:28878462

  4. NASA's Functional Task Test: Providing Information for an Integrated Countermeasure System

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Feiveson, A. H.; Laurie, S. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.; hide

    2015-01-01

    Exposure to the microgravity conditions of spaceflight causes astronauts to experience alterations in multiple physiological systems. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. Some or all of these changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on a planetary surface. The goals of the Functional Task Test (FTT) study were to determine the effects of spaceflight on functional tests that are representative of critical exploration mission tasks and to identify the key physiological factors that contribute to decrements in performance. The FTT was comprised of seven functional tests and a corresponding set of interdisciplinary physiological measures targeting the sensorimotor, cardiovascular and muscular changes associated with exposure to spaceflight. Both Shuttle and ISS crewmembers participated in this study. Additionally, we conducted a supporting study using the FTT protocol on subjects before and after 70 days of 6? head-down bed rest. The bed rest analog allowed us to investigate the impact of body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance, and then to compare them with the results obtained in our spaceflight study. Spaceflight data were collected on three sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Bed rest subjects were tested three times before bed rest and immediately after getting up from bed rest as well as 1, 6, and 12 days after reambulation. We have shown that for Shuttle, ISS and bed rest subjects, functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for

  5. Nominal and functional task difficulty in skill acquisition: Effects on performance in two tests of transfer.

    PubMed

    Sanli, Elizabeth A; Lee, Timothy D

    2015-06-01

    The influence of nominal and functional task difficulty during the acquisition of a motor skill was examined in two tests of transfer of learning. The task involved a ballistic, target-directed, finger action. Nominal task difficulty was defined as the distance of the target from the home position. Functional task difficulty was created by manipulating the progression of target distances during practice. Based on the challenge point framework (Guadagnoli & Lee, 2004), we predicted that practice with a set of targets farther away from the performer would benefit from less functional task difficulty, while practice with a closer set of targets would benefit from more functional task difficulty. In single-task transfer tests, learners who practiced using the high nominal task difficulty targets benefitted in terms of persistence of performance over time. In dual-task transfer tests, groups with an intermediate combined (nominal and functional) task difficulty performed with greater persistence over time on tests of transfer than those who practiced with the highest or lowest combined difficulty. Together these findings suggest that the influences of nominal and functional task difficulty during acquisition are weighted differentially depending upon the transfer test context. The challenge point framework does not accurately capture this complex relationship in its current form. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Do tasks make a difference? Accounting for heterogeneity of performance of children with reading difficulties on tasks of executive function: findings from a meta-analysis.

    PubMed

    Booth, Josephine N; Boyle, James M E; Kelly, Steve W

    2010-03-01

    Research studies have implicated executive functions in reading difficulties (RD). But while some studies have found children with RD to be impaired on tasks of executive function other studies report unimpaired performance. A meta-analysis was carried out to determine whether these discrepant findings can be accounted for by differences in the tasks of executive function that are utilized. A total of 48 studies comparing the performance on tasks of executive function of children with RD with their typically developing peers were included in the meta-analysis, yielding 180 effect sizes. An overall effect size of 0.57 (SE .03) was obtained, indicating that children with RD have impairments on tasks of executive function. However, effect sizes varied considerably suggesting that the impairment is not uniform. Moderator analysis revealed that task modality and IQ-achievement discrepancy definitions of RD influenced the magnitude of effect; however, the age and gender of participants and the nature of the RD did not have an influence. While the children's RD were associated with executive function impairments, variation in effect size is a product of the assessment task employed, underlying task demands, and definitional criteria.

  7. Functional reorganization during cognitive function tasks in patients with amyotrophic lateral sclerosis.

    PubMed

    Keller, Jürgen; Böhm, Sarah; Aho-Özhan, Helena E A; Loose, Markus; Gorges, Martin; Kassubek, Jan; Uttner, Ingo; Abrahams, Sharon; Ludolph, Albert C; Lulé, Dorothée

    2018-06-01

    Cognitive deficits, especially in the domains of social cognition and executive function including verbal fluency, are common in amyotrophic lateral sclerosis (ALS) patients. There is yet sparse understanding of pathogenesis of the underlying, possibly adaptive, cortical patterns. To address this issue, 65 patients with ALS and 33 age-, gender- and education-matched healthy controls were tested on cognitive and behavioral deficits with the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Using functional magnetic resonance imaging (fMRI), cortical activity during social cognition and executive function tasks (theory of mind, verbal fluency, alternation) adapted from the ECAS was determined in a 3 Tesla scanner. Compared to healthy controls, ALS patients performed worse in the ECAS overall (p < 0.001) and in all of its subdomains (p < 0.02), except memory. Imaging revealed altered cortical activation during all tasks, with patients consistently showing a hyperactivation in relevant brain areas compared to healthy controls. Additionally, cognitively high performing ALS patients consistently exhibited more activation in frontal brain areas than low performing patients and behaviorally unimpaired patients presented with more neuronal activity in orbitofrontal areas than behaviorally impaired patients. In conclusion, hyperactivation in fMRI cognitive tasks seems to represent an early adaptive process to overcome neuronal cell loss in relevant brain areas. The hereby presented cortical pattern change might suggest that, once this loss passes a critical threshold and no cortical buffering is possible, clinical representation of cognitive and behavioral impairment evolves. Future studies might shed light on the pattern of cortical pattern change in the course of ALS.

  8. Human factors evaluation of teletherapy: Function and task analysis. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, R.D.; Henriksen, K.; Jones, R.

    1995-07-01

    As a treatment methodology, teletherapy selectively destroys cancerous and other tissue by exposure to an external beam of ionizing radiation. Sources of radiation are either a radioactive isotope, typically Cobalt-60 (Co-60), or a linear accelerator. Records maintained by the NRC have identified instances of teletherapy misadministration where the delivered radiation dose has differed from the radiation prescription (e.g., instances where fractions were delivered to the wrong patient, to the wrong body part, or were too great or too little with respect to the defined treatment volume). Both human error and machine malfunction have led to misadministrations. Effective and safe treatmentmore » requires a concern for precision and consistency of human-human and human-machine interactions throughout the course of therapy. The present study is the first part of a series of human factors evaluations for identifying the root causes that lead to human error in the teletherapy environment. The human factors evaluations included: (1) a function and task analysis of teletherapy activities, (2) an evaluation of the human-system interfaces, (3) an evaluation of procedures used by teletherapy staff, (4) an evaluation of the training and qualifications of treatment staff (excluding the oncologists), (5) an evaluation of organizational practices and policies, and (6) an identification of problems and alternative approaches for NRC and industry attention. The present report addresses the function and task analysis of teletherapy activities and provides the foundation for the conduct of the subsequent evaluations. The report includes sections on background, methodology, a description of the function and task analysis, and use of the task analysis findings for the subsequent tasks. The function and task analysis data base also is included.« less

  9. Functional Connectivity among Spikes in Low Dimensional Space during Working Memory Task in Rat

    PubMed Central

    Tian, Xin

    2014-01-01

    Working memory (WM) is critically important in cognitive tasks. The functional connectivity has been a powerful tool for understanding the mechanism underlying the information processing during WM tasks. The aim of this study is to investigate how to effectively characterize the dynamic variations of the functional connectivity in low dimensional space among the principal components (PCs) which were extracted from the instantaneous firing rate series. Spikes were obtained from medial prefrontal cortex (mPFC) of rats with implanted microelectrode array and then transformed into continuous series via instantaneous firing rate method. Granger causality method is proposed to study the functional connectivity. Then three scalar metrics were applied to identify the changes of the reduced dimensionality functional network during working memory tasks: functional connectivity (GC), global efficiency (E) and casual density (CD). As a comparison, GC, E and CD were also calculated to describe the functional connectivity in the original space. The results showed that these network characteristics dynamically changed during the correct WM tasks. The measure values increased to maximum, and then decreased both in the original and in the reduced dimensionality. Besides, the feature values of the reduced dimensionality were significantly higher during the WM tasks than they were in the original space. These findings suggested that functional connectivity among the spikes varied dynamically during the WM tasks and could be described effectively in the low dimensional space. PMID:24658291

  10. Stuttering on function words in bilingual children who stutter: A preliminary study.

    PubMed

    Gkalitsiou, Zoi; Byrd, Courtney T; Bedore, Lisa M; Taliancich-Klinger, Casey L

    2017-01-01

    Evidence suggests young monolingual children who stutter (CWS) are more disfluent on function than content words, particularly when produced in the initial utterance position. The purpose of the present preliminary study was to investigate whether young bilingual CWS present with this same pattern. The narrative and conversational samples of four bilingual Spanish- and English-speaking CWS were analysed. All four bilingual participants produced significantly more stuttering on function words compared to content words, irrespective of their position in the utterance, in their Spanish narrative and conversational speech samples. Three of the four participants also demonstrated more stuttering on function compared to content words in their narrative speech samples in English, but only one participant produced more stuttering on function than content words in her English conversational sample. These preliminary findings are discussed relative to linguistic planning and language proficiency and their potential contribution to stuttered speech.

  11. Functional connectivity of task context representations in prefrontal nodes of the multiple demand network.

    PubMed

    Stiers, Peter; Goulas, Alexandros

    2018-06-01

    A subset of regions in the lateral and medial prefrontal cortex and the anterior insula increase their activity level whenever a cognitive task becomes more demanding, regardless of the specific nature of this demand. During execution of a task, these areas and the surrounding cortex temporally encode aspects of the task context in spatially distributed patterns of activity. It is not clear whether these patterns reflect underlying anatomical subnetworks that still exist when task execution has finished. We use fMRI in 12 participants performing alternating blocks of three cognitive tasks to address this question. A first data set is used to define multiple demand regions in each participant. A second dataset from the same participants is used to determine multiple demand voxel assemblies with a preference for one task over the others. We then show that these voxels remain functionally coupled during execution of non-preferred tasks and that they exhibit stronger functional connectivity during rest. This indicates that the assemblies of task preference sharing voxels reflect patterns of underlying anatomical connections. Moreover, we show that voxels preferring the same task have more similar whole brain functional connectivity profiles that are consistent across participants. This suggests that voxel assemblies differ in patterns of input-output connections, most likely reflecting task demand-specific information exchange.

  12. Understanding neuromotor strategy during functional upper extremity tasks using symbolic dynamics.

    PubMed

    Nathan, Dominic E; Guastello, Stephen J; Prost, Robert W; Jeutter, Dean C

    2012-01-01

    The ability to model and quantify brain activation patterns that pertain to natural neuromotor strategy of the upper extremities during functional task performance is critical to the development of therapeutic interventions such as neuroprosthetic devices. The mechanisms of information flow, activation sequence and patterns, and the interaction between anatomical regions of the brain that are specific to movement planning, intention and execution of voluntary upper extremity motor tasks were investigated here. This paper presents a novel method using symbolic dynamics (orbital decomposition) and nonlinear dynamic tools of entropy, self-organization and chaos to describe the underlying structure of activation shifts in regions of the brain that are involved with the cognitive aspects of functional upper extremity task performance. Several questions were addressed: (a) How is it possible to distinguish deterministic or causal patterns of activity in brain fMRI from those that are really random or non-contributory to the neuromotor control process? (b) Can the complexity of activation patterns over time be quantified? (c) What are the optimal ways of organizing fMRI data to preserve patterns of activation, activation levels, and extract meaningful temporal patterns as they evolve over time? Analysis was performed using data from a custom developed time resolved fMRI paradigm involving human subjects (N=18) who performed functional upper extremity motor tasks with varying time delays between the onset of intention and onset of actual movements. The results indicate that there is structure in the data that can be quantified through entropy and dimensional complexity metrics and statistical inference, and furthermore, orbital decomposition is sensitive in capturing the transition of states that correlate with the cognitive aspects of functional task performance.

  13. Choose, rate or squeeze: Comparison of economic value functions elicited by different behavioral tasks

    PubMed Central

    Pessiglione, Mathias

    2017-01-01

    A standard view in neuroeconomics is that to make a choice, an agent first assigns subjective values to available options, and then compares them to select the best. In choice tasks, these cardinal values are typically inferred from the preference expressed by subjects between options presented in pairs. Alternatively, cardinal values can be directly elicited by asking subjects to place a cursor on an analog scale (rating task) or to exert a force on a power grip (effort task). These tasks can vary in many respects: they can notably be more or less costly and consequential. Here, we compared the value functions elicited by choice, rating and effort tasks on options composed of two monetary amounts: one for the subject (gain) and one for a charity (donation). Bayesian model selection showed that despite important differences between the three tasks, they all elicited a same value function, with similar weighting of gain and donation, but variable concavity. Moreover, value functions elicited by the different tasks could predict choices with equivalent accuracy. Our finding therefore suggests that comparable value functions can account for various motivated behaviors, beyond economic choice. Nevertheless, we report slight differences in the computational efficiency of parameter estimation that may guide the design of future studies. PMID:29161252

  14. Mid-Task Break Improves Global Integration of Functional Connectivity in Lower Alpha Band

    PubMed Central

    Li, Junhua; Lim, Julian; Chen, Yu; Wong, Kianfoong; Thakor, Nitish; Bezerianos, Anastasios; Sun, Yu

    2016-01-01

    Numerous efforts have been devoted to revealing neurophysiological mechanisms of mental fatigue, aiming to find an effective way to reduce the undesirable fatigue-related outcomes. Until recently, mental fatigue is thought to be related to functional dysconnectivity among brain regions. However, the topological representation of brain functional connectivity altered by mental fatigue is only beginning to be revealed. In the current study, we applied a graph theoretical approach to analyse such topological alterations in the lower alpha band (8~10 Hz) of EEG data from 20 subjects undergoing a two-session experiment, in which one session includes four successive blocks with visual oddball tasks (session 1) whereas a mid-task break was introduced in the middle of four task blocks in the other session (session 2). Phase lag index (PLI) was then employed to measure functional connectivity strengths for all pairs of EEG channels. Behavior and connectivity maps were compared between the first and last task blocks in both sessions. Inverse efficiency scores (IES = reaction time/response accuracy) were significantly increased in the last task block, showing a clear effect of time-on-task in participants. Furthermore, a significant block-by-session interaction was revealed in the IES, suggesting the effectiveness of the mid-task break on maintaining task performance. More importantly, a significant session-independent deficit of global integration and an increase of local segregation were found in the last task block across both sessions, providing further support for the presence of a reshaped topology in functional brain connectivity networks under fatigue state. Moreover, a significant block-by-session interaction was revealed in the characteristic path length, small-worldness, and global efficiency, attributing to the significantly disrupted network topology in session 1 in comparison of the maintained network structure in session 2. Specifically, we found increased

  15. Can task-switching training enhance executive control functioning in children with attention deficit/-hyperactivity disorder?

    PubMed

    Kray, Jutta; Karbach, Julia; Haenig, Susann; Freitag, Christine

    2011-01-01

    The key cognitive impairments of children with attention deficit/-hyperactivity disorder (ADHD) include executive control functions such as inhibitory control, task-switching, and working memory (WM). In this training study we examined whether task-switching training leads to improvements in these functions. Twenty children with combined type ADHD and stable methylphenidate medication performed a single-task and a task-switching training in a crossover training design. The children were randomly assigned to one of two groups. One group started with the single-task training and then performed the task-switching training and the other group vice versa. The effectiveness of the task-switching training was measured as performance improvements (relative to the single-task training) on a structurally similar but new switching task and on other executive control tasks measuring inhibitory control and verbal WM as well as on fluid intelligence (reasoning). The children in both groups showed improvements in task-switching, that is, a reduction of switching costs, but not in performing the single-tasks across four training sessions. Moreover, the task-switching training lead to selective enhancements in task-switching performance, that is, the reduction of task-switching costs was found to be larger after task-switching than after single-task training. Similar selective improvements were observed for inhibitory control and verbal WM, but not for reasoning. Results of this study suggest that task-switching training is an effective cognitive intervention that helps to enhance executive control functioning in children with ADHD.

  16. Can Task-Switching Training Enhance Executive Control Functioning in Children with Attention Deficit/-Hyperactivity Disorder?

    PubMed Central

    Kray, Jutta; Karbach, Julia; Haenig, Susann; Freitag, Christine

    2012-01-01

    The key cognitive impairments of children with attention deficit/-hyperactivity disorder (ADHD) include executive control functions such as inhibitory control, task-switching, and working memory (WM). In this training study we examined whether task-switching training leads to improvements in these functions. Twenty children with combined type ADHD and stable methylphenidate medication performed a single-task and a task-switching training in a crossover training design. The children were randomly assigned to one of two groups. One group started with the single-task training and then performed the task-switching training and the other group vice versa. The effectiveness of the task-switching training was measured as performance improvements (relative to the single-task training) on a structurally similar but new switching task and on other executive control tasks measuring inhibitory control and verbal WM as well as on fluid intelligence (reasoning). The children in both groups showed improvements in task-switching, that is, a reduction of switching costs, but not in performing the single-tasks across four training sessions. Moreover, the task-switching training lead to selective enhancements in task-switching performance, that is, the reduction of task-switching costs was found to be larger after task-switching than after single-task training. Similar selective improvements were observed for inhibitory control and verbal WM, but not for reasoning. Results of this study suggest that task-switching training is an effective cognitive intervention that helps to enhance executive control functioning in children with ADHD. PMID:22291628

  17. Effects of Gait Self-Efficacy and Lower-Extremity Physical Function on Dual-Task Performance in Older Adults

    PubMed Central

    Banducci, Sarah E.; Daugherty, Ana M.; Fanning, Jason; Awick, Elizabeth A.; Porter, Gwenndolyn C.; Burzynska, Agnieszka; Shen, Sa; Kramer, Arthur F.; McAuley, Edward

    2017-01-01

    Objectives. Despite evidence of self-efficacy and physical function's influences on functional limitations in older adults, few studies have examined relationships in the context of complex, real-world tasks. The present study tested the roles of self-efficacy and physical function in predicting older adults' street-crossing performance in single- and dual-task simulations. Methods. Lower-extremity physical function, gait self-efficacy, and street-crossing success ratio were assessed in 195 older adults (60–79 years old) at baseline of a randomized exercise trial. During the street-crossing task, participants walked on a self-propelled treadmill in a virtual reality environment. Participants crossed the street without distraction (single-task trials) and conversed on a cell phone (dual-task trials). Structural equation modeling was used to test hypothesized associations independent of demographic and clinical covariates. Results. Street-crossing performance was better on single-task trials when compared with dual-task trials. Direct effects of self-efficacy and physical function on success ratio were observed in dual-task trials only. The total effect of self-efficacy was significant in both conditions. The indirect path through physical function was evident in the dual-task condition only. Conclusion. Physical function can predict older adults' performance on high fidelity simulations of complex, real-world tasks. Perceptions of function (i.e., self-efficacy) may play an even greater role. The trial is registered with United States National Institutes of Health ClinicalTrials.gov (ID: NCT01472744; Fit & Active Seniors Trial). PMID:28255557

  18. Efficacy of Mirror Therapy Containing Functional Tasks in Poststroke Patients.

    PubMed

    Lim, Kil-Byung; Lee, Hong-Jae; Yoo, Jeehyun; Yun, Hyun-Ju; Hwang, Hye-Jung

    2016-08-01

    To investigate the effect of mirror therapy containing functional tasks on upper extremity function and activities of daily living in patients with subacute stroke. The subjects were randomly divided into two groups: the mirror therapy group (30 patients) and the sham therapy group (30 patients). The mirror therapy group underwent a mirror therapy program together with conventional therapy for 20 minutes per day on 5 days per week for 4 weeks. The control group received a sham conventional therapy program under the same schedule as the mirror therapy group. The Fugl-Meyer Motor Function Assessment (FMA), Brunnstrom motor recovery stage, and Modified Barthel Index (MBI) were evaluated 4 weeks after the treatment. The upper extremity function on the affected side and ability to perform daily life activities after the intervention were significantly improved in both groups. After 4 weeks of intervention, improvements in the FMA (p=0.027) and MBI (p=0.041) were significantly greater in the mirror therapy group than the sham therapy group. In this study, we found that the mirror therapy containing functional task was effective in terms of improving the upper extremity functions and activities of daily living in patients with subacute stroke.

  19. Task frequency as a function of age for the powerline technician trade.

    PubMed

    Parkhouse, Wade; Gall, Brent

    2004-05-15

    It is traditionally believed that worker productivity declines with age. The greatest contributor to this stereotype, particularly in physically demanding jobs, is that older workers can no longer maintain their sustained level of work due to the age-associated decline in physical capacity. The objective of this study was to determine the change in the frequency of task performance as a function of age in the power line technician (PLT) trade. The task requirements of the PLT occupation were determined through the use of a detailed job demands analysis (JDA) and the frequency at which these tasks were performed was acquired through a survey derived from the JDA. The results of the survey were assessed as a function of age. Older lineworkers (> or = 50 years) were found to spend more time working on the ground whereas the younger PLTs (< or = 39 years) more frequently performed the climbing tasks and the corresponding work on the poles and towers. In contrast the older PLTs performed all pushing/pulling tasks at a greater or equal frequency to that of the younger lineworkers. Despite these differences the frequency of task performance is similar across the age groups studied.

  20. Functional Magnetic Resonance Imaging Correlates of First-Episode Psychoses during Attentional and Memory Task Performance.

    PubMed

    Del Casale, Antonio; Kotzalidis, Georgios D; Rapinesi, Chiara; Sorice, Serena; Girardi, Nicoletta; Ferracuti, Stefano; Girardi, Paolo

    2016-01-01

    The nature of the alteration of the response to cognitive tasks in first-episode psychosis (FEP) still awaits clarification. We used activation likelihood estimation, an increasingly used method in evaluating normal and pathological brain function, to identify activation changes in functional magnetic resonance imaging (fMRI) studies of FEP during attentional and memory tasks. We included 11 peer-reviewed fMRI studies assessing FEP patients versus healthy controls (HCs) during performance of attentional and memory tasks. Our database comprised 290 patients with FEP, matched with 316 HCs. Between-group analyses showed that HCs, compared to FEP patients, exhibited hyperactivation of the right middle frontal gyrus (Brodmann area, BA, 9), right inferior parietal lobule (BA 40), and right insula (BA 13) during attentional task performances and hyperactivation of the left insula (BA 13) during memory task performances. Right frontal, parietal, and insular dysfunction during attentional task performance and left insular dysfunction during memory task performance are significant neural functional FEP correlates. © 2016 S. Karger AG, Basel.

  1. Perception and Reality of Cognitive Function: Information Processing Speed, Perceived Memory Function, and Perceived Task Difficulty in Older Adults.

    PubMed

    Torrens-Burton, Anna; Basoudan, Nasreen; Bayer, Antony J; Tales, Andrea

    2017-01-01

    This study examines the relationships between two measures of information processing speed associated with executive function (Trail Making Test and a computer-based visual search test), the perceived difficulty of the tasks, and perceived memory function (measured by the Memory Functioning Questionnaire) in older adults (aged 50+ y) with normal general health, cognition (Montreal Cognitive Assessment score of 26+), and mood. The participants were recruited from the community rather than through clinical services, and none had ever sought or received help from a health professional for a memory complaint or mental health problem. For both the trail making and the visual search tests, mean information processing speed was not correlated significantly with perceived memory function. Some individuals did, however, reveal substantially slower information processing speeds (outliers) that may have clinical significance and indicate those who may benefit most from further assessment and follow up. For the trail making, but not the visual search task, higher levels of subjective memory dysfunction were associated with a greater perception of task difficulty. The relationship between actual information processing speed and perceived task difficulty also varied with respect to the task used. These findings highlight the importance of taking into account the type of task and metacognition factors when examining the integrity of information processing speed in older adults, particularly as this measure is now specifically cited as a key cognitive subdomain within the diagnostic framework for neurocognitive disorders.

  2. Perception and Reality of Cognitive Function: Information Processing Speed, Perceived Memory Function, and Perceived Task Difficulty in Older Adults

    PubMed Central

    Torrens-Burton, Anna; Basoudan, Nasreen; Bayer, Antony J.; Tales, Andrea

    2017-01-01

    This study examines the relationships between two measures of information processing speed associated with executive function (Trail Making Test and a computer-based visual search test), the perceived difficulty of the tasks, and perceived memory function (measured by the Memory Functioning Questionnaire) in older adults (aged 50+ y) with normal general health, cognition (Montreal Cognitive Assessment score of 26+), and mood. The participants were recruited from the community rather than through clinical services, and none had ever sought or received help from a health professional for a memory complaint or mental health problem. For both the trail making and the visual search tests, mean information processing speed was not correlated significantly with perceived memory function. Some individuals did, however, reveal substantially slower information processing speeds (outliers) that may have clinical significance and indicate those who may benefit most from further assessment and follow up. For the trail making, but not the visual search task, higher levels of subjective memory dysfunction were associated with a greater perception of task difficulty. The relationship between actual information processing speed and perceived task difficulty also varied with respect to the task used. These findings highlight the importance of taking into account the type of task and metacognition factors when examining the integrity of information processing speed in older adults, particularly as this measure is now specifically cited as a key cognitive subdomain within the diagnostic framework for neurocognitive disorders. PMID:28984584

  3. Oscillatory lower body negative pressure impairs working memory task-related functional hyperemia in healthy volunteers.

    PubMed

    Merchant, Sana; Medow, Marvin S; Visintainer, Paul; Terilli, Courtney; Stewart, Julian M

    2017-04-01

    Neurovascular coupling (NVC) describes the link between an increase in task-related neural activity and increased cerebral blood flow denoted "functional hyperemia." We previously showed induced cerebral blood flow oscillations suppressed functional hyperemia; conversely functional hyperemia also suppressed cerebral blood flow oscillations. We used lower body negative pressure (OLBNP) oscillations to force oscillations in middle cerebral artery cerebral blood flow velocity (CBFv). Here, we used N-back testing, an intellectual memory challenge as a neural activation task, to test the hypothesis that OLBNP-induced oscillatory cerebral blood flow can reduce functional hyperemia and NVC produced by a working memory task and can interfere with working memory. We used OLBNP (-30 mmHg) at 0.03, 0.05, and 0.10 Hz and measured spectral power of CBFv at all frequencies. Neither OLBNP nor N-back, alone or combined, affected hemodynamic parameters. 2-Back power and OLBNP individually were compared with 2-back power during OLBNP. 2-Back alone produced a narrow band increase in oscillatory arterial pressure (OAP) and oscillatory cerebral blood flow power centered at 0.0083 Hz. Functional hyperemia in response to 2-back was reduced to near baseline and 2-back memory performance was decreased by 0.03-, 0.05-, and 0.10-Hz OLBNP. OLBNP alone produced increased oscillatory power at frequencies of oscillation not suppressed by added 2-back. However, 2-back preceding OLBNP suppressed OLBNP power. OLBNP-driven oscillatory CBFv blunts NVC and memory performance, while memory task reciprocally interfered with forced CBFv oscillations. This shows that induced cerebral blood flow oscillations suppress functional hyperemia and functional hyperemia suppresses cerebral blood flow oscillations. NEW & NOTEWORTHY We show that induced cerebral blood flow oscillations suppress functional hyperemia produced by a working memory task as well as memory task performance. We conclude that oscillatory

  4. Reliability of functional MR imaging with word-generation tasks for mapping Broca's area.

    PubMed

    Brannen, J H; Badie, B; Moritz, C H; Quigley, M; Meyerand, M E; Haughton, V M

    2001-10-01

    Functional MR (fMR) imaging of word generation has been used to map Broca's area in some patients selected for craniotomy. The purpose of this study was to measure the reliability, precision, and accuracy of word-generation tasks to identify Broca's area. The Brodmann areas activated during performance of word-generation tasks were tabulated in 34 consecutive patients referred for fMR imaging mapping of language areas. In patients performing two iterations of the letter word-generation tasks, test-retest reliability was quantified by using the concurrence ratio (CR), or the number of voxels activated by each iteration in proportion to the average number of voxels activated from both iterations of the task. Among patients who also underwent category or antonym word generation or both, the similarity of the activation from each task was assessed with the CR. In patients who underwent electrocortical stimulation (ECS) mapping of speech function during craniotomy while awake, the sites with speech function were compared with the locations of activation found during fMR imaging of word generation. In 31 of 34 patients, activation was identified in the inferior frontal gyri or middle frontal gyri or both in Brodmann areas 9, 44, 45, or 46, unilaterally or bilaterally, with one or more of the tasks. Activation was noted in the same gyri when the patient performed a second iteration of the letter word-generation task or second task. The CR for pixel precision in a single section averaged 49%. In patients who underwent craniotomy while awake, speech areas located with ECS coincided with areas of the brain activated during a word-generation task. fMR imaging with word-generation tasks produces technically satisfactory maps of Broca's area, which localize the area accurately and reliably.

  5. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study

    PubMed Central

    Stoodley, Catherine J.; Valera, Eve M.; Schmahmann, Jeremy D.

    2011-01-01

    Anatomical, clinical and imaging findings suggest that the cerebellum is engaged in cognitive and affective functions as well as motor control. Evidence from converging modalities also indicates that there is a functional topography in the human cerebellum for overt control of movement vs. higher functions, such that the cerebellum can be divided into zones depending on connectivity with sensorimotor vs. multimodal association cortices. Using functional MRI, we show that regions active during overt movement differ from those involved in higher-level language, spatial processing and working memory tasks. Nine healthy participants each completed five tasks in order to determine the relative activation patterns for the different paradigms. Right-handed finger-tapping activated right cerebellar lobules IV-V and VIII, consistent with descriptions of the cerebellar homunculi. Verb generation engaged right cerebellar lobules VI-Crus I and a second cluster in lobules VIIB-VIIIA. Mental rotation activation peaks were localized to medial left cerebellar lobule VII (Crus II). A 2-back working memory task activated bilateral regions of lobules VI-VII. Viewing arousing vs. neutral images did not reliably activate the cerebellum or cerebral limbic areas in this study. The cerebellar functional topography identified in this study reflects the involvement of different cerebro-cerebellar circuits depending on the demands of the task being performed: overt movement activated sensorimotor cortices along with contralateral cerebellar lobules IV-VI and VIII, whereas more cognitively demanding tasks engaged prefrontal and parietal cortices along with cerebellar lobules VI and VII. These findings provide further support for a cerebellar role in both motor and cognitive tasks, and better establish the existence of functional subregions in the cerebellum. Future studies are needed to determine the exact contribution of the cerebellum – and different cerebro-cerebellar circuits – to

  6. Task-Related Deactivation and Functional Connectivity of the Subgenual Cingulate Cortex in Major Depressive Disorder

    PubMed Central

    Davey, Christopher G.; Yücel, Murat; Allen, Nicholas B.; Harrison, Ben J.

    2012-01-01

    Background: Major depressive disorder is associated with functional alterations in activity and resting-state connectivity of the extended medial frontal network. In this study we aimed to examine how task-related medial network activity and connectivity were affected in depression. Methods: 18 patients with major depressive disorder, aged 15- to 24-years-old, were matched with 19 healthy control participants. We characterized task-related activations and deactivations while participants engaged with an executive-control task (the multi-source interference task, MSIT). We used a psycho-physiological interactions approach to examine functional connectivity changes with subgenual anterior cingulate cortex. Voxel-wise statistical maps for each analysis were compared between the patient and control groups. Results: There were no differences between groups in their behavioral performances on the MSIT task, and nor in patterns of activation and deactivation. Assessment of functional connectivity with the subgenual cingulate showed that depressed patients did not demonstrate the same reduction in functional connectivity with the ventral striatum during task performance, but that they showed greater reduction in functional connectivity with adjacent ventromedial frontal cortex. The magnitude of this latter connectivity change predicted the relative activation of task-relevant executive-control regions in depressed patients. Conclusion: The study reinforces the importance of the subgenual cingulate cortex for depression, and demonstrates how dysfunctional connectivity with ventral brain regions might influence executive–attentional processes. PMID:22403553

  7. Functional MR imaging and traumatic paraplegia: preliminary report.

    PubMed

    Sabbah, P; Lévêque, C; Pfefer, F; Nioche, C; Gay, S; Sarrazin, J L; Barouti, H; Tadie, M; Cordoliani, Y S

    2000-12-01

    To evaluate residual activity in the sensorimotor cortex of the lower limbs in paraplegia. 5 patients suffering from a complete paralysis after traumatic medullar lesion (ASIA=A). Clinical evaluation of motility and sensitivity. 1. Control functional MR study of the sensorimotor cortex during simultaneous movements of hands, imaginary motor task and passive hands stimulation. 2. Concerning the lower limbs, 3 fMRI conditions: 1-patient attempts to move his toes with flexion-extension, 2-mental imagery task of the same movement, 3-peripheral passive proprio-somesthesic stimulation (squeezing) of the big toes. Activations were observed in the primary sensorimotor cortex (M1), premotor regions and in the supplementary motor area (SMA) during movement and mental imaginary tasks in the control study and during attempt to move and mental imaginary tasks in the study concerning the lower limbs. Passive somesthesic stimulation generated activation posterior to the central sulcus for 2 patients. Activations in the sensorimotor cortex of the lower limbs can be generated either by attempting to move or mental evocation. In spite of a clinical evaluation of complete paraplegia, fMRI can show a persistence of sensitive anatomic conduction, confirmed by Somesthesic Evoked Potentials.

  8. Emotional verbal fluency: a new task on emotion and executive function interaction.

    PubMed

    Sass, Katharina; Fetz, Karolina; Oetken, Sarah; Habel, Ute; Heim, Stefan

    2013-09-01

    The present study introduces "Emotional Verbal Fluency" as a novel (partially computerized) task, which is aimed to investigate the interaction between emotionally loaded words and executive functions. Verbal fluency tasks are thought to measure executive functions but the interaction with emotional aspects is hardly investigated. In the current study, a group of healthy subjects (n = 21, mean age 25 years, 76% females) were asked to generate items that are either part of a semantic category (e.g., plants, toys, vehicles; standard semantic verbal fluency) or can trigger the emotions joy, anger, sadness, fear and disgust. The results of the task revealed no differences between performance on semantic and emotional categories, suggesting a comparable task difficulty for healthy subjects. Hence, these first results on the comparison between semantic and emotional verbal fluency seem to highlight that both might be suitable for examining executive functioning. However, an interaction was found between the category type and repetition (first vs. second sequence of the same category) with larger performance decrease for semantic in comparison to emotional categories. Best performance overall was found for the emotional category "joy" suggesting a positivity bias in healthy subjects. To conclude, emotional verbal fluency is a promising approach to investigate emotional components in an executive task, which may stimulate further research, especially in psychiatric patients who suffer from emotional as well as cognitive deficits.

  9. Emotional Verbal Fluency: A New Task on Emotion and Executive Function Interaction

    PubMed Central

    Sass, Katharina; Fetz, Karolina; Oetken, Sarah; Habel, Ute; Heim, Stefan

    2013-01-01

    The present study introduces “Emotional Verbal Fluency” as a novel (partially computerized) task, which is aimed to investigate the interaction between emotionally loaded words and executive functions. Verbal fluency tasks are thought to measure executive functions but the interaction with emotional aspects is hardly investigated. In the current study, a group of healthy subjects (n = 21, mean age 25 years, 76% females) were asked to generate items that are either part of a semantic category (e.g., plants, toys, vehicles; standard semantic verbal fluency) or can trigger the emotions joy, anger, sadness, fear and disgust. The results of the task revealed no differences between performance on semantic and emotional categories, suggesting a comparable task difficulty for healthy subjects. Hence, these first results on the comparison between semantic and emotional verbal fluency seem to highlight that both might be suitable for examining executive functioning. However, an interaction was found between the category type and repetition (first vs. second sequence of the same category) with larger performance decrease for semantic in comparison to emotional categories. Best performance overall was found for the emotional category “joy” suggesting a positivity bias in healthy subjects. To conclude, emotional verbal fluency is a promising approach to investigate emotional components in an executive task, which may stimulate further research, especially in psychiatric patients who suffer from emotional as well as cognitive deficits. PMID:25379243

  10. Age differences in high frequency phasic heart rate variability and performance response to increased executive function load in three executive function tasks

    PubMed Central

    Byrd, Dana L.; Reuther, Erin T.; McNamara, Joseph P. H.; DeLucca, Teri L.; Berg, William K.

    2015-01-01

    The current study examines similarity or disparity of a frontally mediated physiological response of mental effort among multiple executive functioning tasks between children and adults. Task performance and phasic heart rate variability (HRV) were recorded in children (6 to 10 years old) and adults in an examination of age differences in executive functioning skills during periods of increased demand. Executive load levels were varied by increasing the difficulty levels of three executive functioning tasks: inhibition (IN), working memory (WM), and planning/problem solving (PL). Behavioral performance decreased in all tasks with increased executive demand in both children and adults. Adults’ phasic high frequency HRV was suppressed during the management of increased IN and WM load. Children’s phasic HRV was suppressed during the management of moderate WM load. HRV was not suppressed during either children’s or adults’ increasing load during the PL task. High frequency phasic HRV may be most sensitive to executive function tasks that have a time-response pressure, and simply requiring performance on a self-paced task requiring frontal lobe activation may not be enough to generate HRV responsitivity to increasing demand. PMID:25798113

  11. Associations between physical function, dual-task performance and cognition in patients with mild Alzheimer's disease.

    PubMed

    Sobol, Nanna Aue; Hoffmann, Kristine; Vogel, Asmus; Lolk, Annette; Gottrup, Hanne; Høgh, Peter; Hasselbalch, Steen G; Beyer, Nina

    2016-11-01

    Alzheimer's disease (AD) causes a gradual decline in cognition, limitations of dual-tasking and physical function leading to total dependence. Hence, information about the interaction between physical function, dual-task performance and cognition may lead to new treatment strategies with the purpose of preserving function and quality of life. The objective of this study was to investigate the associations between physical function, dual-task performance and cognition in community-dwelling patients with mild AD. Baseline results from 185 participants (50-90 years old) in the single blinded multicenter RCT 'ADEX' (Alzheimer's disease: the effect of physical exercise) were used. Assessments included tests of physical function: 400-m walk test, 10-m walk test, Timed Up and Go test and 30-s chair stand test; dual-task performance, i.e., 10-m walk while counting backwards from 50 or naming the months backwards; and cognition, i.e., Mini Mental State Examination, Symbol Digit Modalities Test, the Stroop Color and Word Test, and Lexical verbal fluency test. Results in the 30-s chair stand test correlated significantly with all tests of cognition (r = .208-.242) while the other physical function tests only randomly correlated with tests of cognition. Results in the dual-task counting backwards correlated significantly with results in all tests of cognition (r = .259-.388), which accounted for 7%-15% of the variation indicating that a faster time to complete dual-task performance was associated with better cognitive performance. The evidence of the associations between physical function, dual-task performance and cognition is important when creating new rehabilitation interventions to patients with mild AD.

  12. Behavioral and functional strategies during tool use tasks in bonobos.

    PubMed

    Bardo, Ameline; Borel, Antony; Meunier, Hélène; Guéry, Jean-Pascal; Pouydebat, Emmanuelle

    2016-09-01

    Different primate species have developed extensive capacities for grasping and manipulating objects. However, the manual abilities of primates remain poorly known from a dynamic point of view. The aim of the present study was to quantify the functional and behavioral strategies used by captive bonobos (Pan paniscus) during tool use tasks. The study was conducted on eight captive bonobos which we observed during two tool use tasks: food extraction from a large piece of wood and food recovery from a maze. We focused on grasping postures, in-hand movements, the sequences of grasp postures used that have not been studied in bonobos, and the kind of tools selected. Bonobos used a great variety of grasping postures during both tool use tasks. They were capable of in-hand movement, demonstrated complex sequences of contacts, and showed more dynamic manipulation during the maze task than during the extraction task. They arrived on the location of the task with the tool already modified and used different kinds of tools according to the task. We also observed individual manual strategies. Bonobos were thus able to develop in-hand movements similar to humans and chimpanzees, demonstrated dynamic manipulation, and they responded to task constraints by selecting and modifying tools appropriately, usually before they started the tasks. These results show the necessity to quantify object manipulation in different species to better understand their real manual specificities, which is essential to reconstruct the evolution of primate manual abilities. © 2016 Wiley Periodicals, Inc.

  13. Analyzing railroad dispatchers' strategies : a cognitive task analysis of a distributed planning task

    DOT National Transportation Integrated Search

    1998-10-11

    This paper describes a preliminary cognitive task analysis (CTA) that is being conducted to examine how experienced train dispatchers manage and schedule trains. The CTA uses ethnographic field observations and structured interview techniques. The ob...

  14. Smoking and the bandit: a preliminary study of smoker and nonsmoker differences in exploratory behavior measured with a multiarmed bandit task.

    PubMed

    Addicott, Merideth A; Pearson, John M; Wilson, Jessica; Platt, Michael L; McClernon, F Joseph

    2013-02-01

    Advantageous decision-making is an adaptive trade-off between exploring alternatives and exploiting the most rewarding option. This trade-off may be related to maladaptive decision-making associated with nicotine dependence; however, explore/exploit behavior has not been previously investigated in the context of addiction. The explore/exploit trade-off is captured by the multiarmed bandit task, in which different arms of a slot machine are chosen to discover the relative payoffs. The goal of this study was to preliminarily investigate whether smokers differ from nonsmokers in their degree of exploratory behavior. Smokers (n = 18) and nonsmokers (n = 17) completed a 6-armed bandit task as well as self-report measures of behavior and personality traits. Smokers were found to exhibit less exploratory behavior (i.e., made fewer switches between slot machine arms) than nonsmokers within the first 300 trials of the bandit task. The overall proportion of exploratory choices negatively correlated with self-reported measures of delay aversion and nonplanning impulsivity. These preliminary results suggest that smokers make fewer initial exploratory choices on the bandit task. The bandit task is a promising measure that could provide valuable insights into how nicotine use and dependence is associated with explore/exploit decision-making. (c) 2013 APA, all rights reserved.

  15. Muscle function in glenohumeral joint stability during lifting task.

    PubMed

    Blache, Yoann; Begon, Mickaël; Michaud, Benjamin; Desmoulins, Landry; Allard, Paul; Dal Maso, Fabien

    2017-01-01

    Ensuring glenohumeral stability during repetitive lifting tasks is a key factor to reduce the risk of shoulder injuries. Nevertheless, the literature reveals some lack concerning the assessment of the muscles that ensure glenohumeral stability during specific lifting tasks. Therefore, the purpose of this study was to assess the stabilization function of shoulder muscles during a lifting task. Kinematics and muscle electromyograms (n = 9) were recorded from 13 healthy adults during a bi-manual lifting task performed from the hip to the shoulder level. A generic upper-limb OpenSim model was implemented to simulate glenohumeral stability and instability by performing static optimizations with and without glenohumeral stability constraints. This procedure enabled to compute the level of shoulder muscle activity and forces in the two conditions. Without the stability constraint, the simulated movement was unstable during 74%±16% of the time. The force of the supraspinatus was significantly increased of 107% (p<0.002) when the glenohumeral stability constraint was implemented. The increased supraspinatus force led to greater compressive force (p<0.001) and smaller shear force (p<0.001), which contributed to improved glenohumeral stability. It was concluded that the supraspinatus may be the main contributor to glenohumeral stability during lifting task.

  16. Muscle function in glenohumeral joint stability during lifting task

    PubMed Central

    Begon, Mickaël; Michaud, Benjamin; Desmoulins, Landry; Allard, Paul

    2017-01-01

    Ensuring glenohumeral stability during repetitive lifting tasks is a key factor to reduce the risk of shoulder injuries. Nevertheless, the literature reveals some lack concerning the assessment of the muscles that ensure glenohumeral stability during specific lifting tasks. Therefore, the purpose of this study was to assess the stabilization function of shoulder muscles during a lifting task. Kinematics and muscle electromyograms (n = 9) were recorded from 13 healthy adults during a bi-manual lifting task performed from the hip to the shoulder level. A generic upper-limb OpenSim model was implemented to simulate glenohumeral stability and instability by performing static optimizations with and without glenohumeral stability constraints. This procedure enabled to compute the level of shoulder muscle activity and forces in the two conditions. Without the stability constraint, the simulated movement was unstable during 74%±16% of the time. The force of the supraspinatus was significantly increased of 107% (p<0.002) when the glenohumeral stability constraint was implemented. The increased supraspinatus force led to greater compressive force (p<0.001) and smaller shear force (p<0.001), which contributed to improved glenohumeral stability. It was concluded that the supraspinatus may be the main contributor to glenohumeral stability during lifting task. PMID:29244838

  17. Heavy vehicle driver workload assessment. Task 1, task analysis data and protocols review

    DOT National Transportation Integrated Search

    This report contains a review of available task analytic data and protocols pertinent to heavy vehicle operation and determination of the availability and relevance of such data to heavy vehicle driver workload assessment. Additionally, a preliminary...

  18. Efficacy of Mirror Therapy Containing Functional Tasks in Poststroke Patients

    PubMed Central

    2016-01-01

    Objective To investigate the effect of mirror therapy containing functional tasks on upper extremity function and activities of daily living in patients with subacute stroke. Methods The subjects were randomly divided into two groups: the mirror therapy group (30 patients) and the sham therapy group (30 patients). The mirror therapy group underwent a mirror therapy program together with conventional therapy for 20 minutes per day on 5 days per week for 4 weeks. The control group received a sham conventional therapy program under the same schedule as the mirror therapy group. The Fugl-Meyer Motor Function Assessment (FMA), Brunnstrom motor recovery stage, and Modified Barthel Index (MBI) were evaluated 4 weeks after the treatment. Results The upper extremity function on the affected side and ability to perform daily life activities after the intervention were significantly improved in both groups. After 4 weeks of intervention, improvements in the FMA (p=0.027) and MBI (p=0.041) were significantly greater in the mirror therapy group than the sham therapy group. Conclusion In this study, we found that the mirror therapy containing functional task was effective in terms of improving the upper extremity functions and activities of daily living in patients with subacute stroke. PMID:27606269

  19. Differences in neural activation as a function of risk-taking task parameters

    PubMed Central

    Congdon, Eliza; Bato, Angelica A.; Schonberg, Tom; Mumford, Jeanette A.; Karlsgodt, Katherine H.; Sabb, Fred W.; London, Edythe D.; Cannon, Tyrone D.; Bilder, Robert M.; Poldrack, Russell A.

    2013-01-01

    Despite evidence supporting a relationship between impulsivity and naturalistic risk-taking, the relationship of impulsivity with laboratory-based measures of risky decision-making remains unclear. One factor contributing to this gap in our understanding is the degree to which different risky decision-making tasks vary in their details. We conducted an fMRI investigation of the Angling Risk Task (ART), which is an improved behavioral measure of risky decision-making. In order to examine whether the observed pattern of neural activation was specific to the ART or generalizable, we also examined correlates of the Balloon Analog Risk Taking (BART) task in the same sample of 23 healthy adults. Exploratory analyses were conducted to examine the relationship between neural activation, performance, impulsivity and self-reported risk-taking. While activation in a valuation network was associated with reward tracking during the ART but not the BART, increased fronto-cingulate activation was seen during risky choice trials in the BART as compared to the ART. Thus, neural activation during risky decision-making trials differed between the two tasks, and this observation was likely driven by differences in task parameters, namely the absence vs. presence of ambiguity and/or stationary vs. increasing probability of loss on the ART and BART, respectively. Exploratory association analyses suggest that sensitivity of neural response to the magnitude of potential reward during the ART was associated with a suboptimal performance strategy, higher scores on a scale of dysfunctional impulsivity (DI) and a greater likelihood of engaging in risky behaviors, while this pattern was not seen for the BART. Our results suggest that the ART is decomposable and associated with distinct patterns of neural activation; this represents a preliminary step toward characterizing a behavioral measure of risky decision-making that may support a better understanding of naturalistic risk-taking. PMID

  20. Differences in neural activation as a function of risk-taking task parameters.

    PubMed

    Congdon, Eliza; Bato, Angelica A; Schonberg, Tom; Mumford, Jeanette A; Karlsgodt, Katherine H; Sabb, Fred W; London, Edythe D; Cannon, Tyrone D; Bilder, Robert M; Poldrack, Russell A

    2013-01-01

    Despite evidence supporting a relationship between impulsivity and naturalistic risk-taking, the relationship of impulsivity with laboratory-based measures of risky decision-making remains unclear. One factor contributing to this gap in our understanding is the degree to which different risky decision-making tasks vary in their details. We conducted an fMRI investigation of the Angling Risk Task (ART), which is an improved behavioral measure of risky decision-making. In order to examine whether the observed pattern of neural activation was specific to the ART or generalizable, we also examined correlates of the Balloon Analog Risk Taking (BART) task in the same sample of 23 healthy adults. Exploratory analyses were conducted to examine the relationship between neural activation, performance, impulsivity and self-reported risk-taking. While activation in a valuation network was associated with reward tracking during the ART but not the BART, increased fronto-cingulate activation was seen during risky choice trials in the BART as compared to the ART. Thus, neural activation during risky decision-making trials differed between the two tasks, and this observation was likely driven by differences in task parameters, namely the absence vs. presence of ambiguity and/or stationary vs. increasing probability of loss on the ART and BART, respectively. Exploratory association analyses suggest that sensitivity of neural response to the magnitude of potential reward during the ART was associated with a suboptimal performance strategy, higher scores on a scale of dysfunctional impulsivity (DI) and a greater likelihood of engaging in risky behaviors, while this pattern was not seen for the BART. Our results suggest that the ART is decomposable and associated with distinct patterns of neural activation; this represents a preliminary step toward characterizing a behavioral measure of risky decision-making that may support a better understanding of naturalistic risk-taking.

  1. The effect of fMRI task combinations on determining the hemispheric dominance of language functions.

    PubMed

    Niskanen, Eini; Könönen, Mervi; Villberg, Ville; Nissi, Mikko; Ranta-Aho, Perttu; Säisänen, Laura; Karjalainen, Pasi; Aikiä, Marja; Kälviäinen, Reetta; Mervaala, Esa; Vanninen, Ritva

    2012-04-01

    The purpose of this study is to establish the most suitable combination of functional magnetic resonance imaging (fMRI) language tasks for clinical use in determining language dominance and to define the variability in laterality index (LI) and activation power between different combinations of language tasks. Activation patterns of different fMRI analyses of five language tasks (word generation, responsive naming, letter task, sentence comprehension, and word pair) were defined for 20 healthy volunteers (16 right-handed). LIs and sums of T values were calculated for each task separately and for four combinations of tasks in predefined regions of interest. Variability in terms of activation power and lateralization was defined in each analysis. In addition, the visual assessment of lateralization of language functions based on the individual fMRI activation maps was conducted by an experienced neuroradiologist. A combination analysis of word generation, responsive naming, and sentence comprehension was the most suitable in terms of activation power, robustness to detect essential language areas, and scanning time. In general, combination analyses of the tasks provided higher overall activation levels than single tasks and reduced the number of outlier voxels disturbing the calculation of LI. A combination of auditory and visually presented tasks that activate different aspects of language functions with sufficient activation power may be a useful task battery for determining language dominance in patients.

  2. Functional mobility in a divided attention task in older adults with cognitive impairment.

    PubMed

    Borges, Sheila de Melo; Radanovic, Márcia; Forlenza, Orestes Vicente

    2015-01-01

    Motor disorders may occur in mild cognitive impairment (MCI) and at early stages of Alzheimer's disease (AD), particularly under divided attention conditions. We examined functional mobility in 104 older adults (42 with MCI, 26 with mild AD, and 36 cognitively healthy) using the Timed Up and Go test (TUG) under 4 experimental conditions: TUG single task, TUG plus a cognitive task, TUG plus a manual task, and TUG plus a cognitive and a manual task. Statistically significant differences in mean time of execution were found in all four experimental conditions when comparing MCI and controls (p < .001), and when comparing MCI and AD patients (p < .05). Receiver-operating characteristic curve analyses showed that all four testing conditions could differentiate the three groups (area under the curve > .8, p < .001 for MCI vs. controls; area under the curve > .7, p < .001 for MCI vs. AD). The authors conclude that functional motor deficits occurring in MCI can be assessed by the TUG test, in single or dual task modality.

  3. The influences of obesity and age on functional performance during intermittent upper extremity tasks.

    PubMed

    Cavuoto, Lora A; Nussbaum, Maury A

    2014-01-01

    In this study, the main and interactive effects of obesity and age on functional performance were assessed during intermittent exertions involving the upper extremity. The prevalence of obesity has doubled over the past 30 years and this increase is associated with higher health care costs, rates of workplace injury, and lost workdays. Obesity and aging can modify job demands and affect worker capacity in terms of muscular and psychomotor function. However, there is a lack of empirical studies quantifying the work-relevant (or ergonomic) impacts related to task demands, capacities, and their potential imbalance. Eight obese and eight non-obese participants from each of two age groups (18-25 and 50-65 years) completed three endurance tasks involving fixed levels of task demands: hand grip, shoulder flexion, and a simulated assembly task using the upper extremity. Measures of functional performance including endurance, discomfort, motor control, and task performance were recorded for each of the task conditions. Endurance times were ∼60% longer for the non-obese group, and older participants had longer endurance times; however there was no evidence of interactive effects of obesity and age. Obesity also impaired functional performance, as indicated by higher rates of strength loss, increases in discomfort, and declines in task performance. These observed impairments may reflect underlying physiological differences among individuals who are obese, but that are independent of age. Obesity-related impairments may have implications for the design of work duration and demand level to prevent fatigue development for workers who are obese.

  4. The Functional Task Test: Results from the One-Year Mission

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2017-01-01

    Exposure to the microgravity conditions of spaceflight causes astronauts to experience alterations in multiple physiological systems including sensorimotor disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. Some or all of these changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on a planetary surface. The goal of our recently completed Functional Task Test (FTT) study was to determine the effects of spaceflight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. The FTT is comprised of seven functional tests and a corresponding set of interdisciplinary physiological measures specifically targeting the sensorimotor, cardiovascular and muscular changes associated with exposure to spaceflight. Both Shuttle and International Space Station (ISS) astronauts were tested before and after spaceflight. Additionally, we conducted a supporting study in which subjects performed the FTT protocol before and after 70 days of 6 deg head-down bed rest, an analog for spaceflight. Two groups of bed rest subjects were studied: one group who performed aerobic and resistive exercise during bed rest using protocols similar to astronauts and one group who served as non-exercise controls. The bed rest analog allowed us to isolate the impact of body unloading without other spaceflight environmental factors on both functional tasks and on the underlying physiological factors that lead to decrements in performance, and then to compare those results with the results obtained in our spaceflight study. As an extension to the FTT study we collected data from one ISS crewmember who experienced 340 days in space using the same FTT protocol used previously to test spaceflight and bed rest subjects. Data were collected three times preflight and 1.7, 7.5 and 36.5 days after

  5. Dual-task training effects on motor and cognitive functional abilities in individuals with stroke: a systematic review.

    PubMed

    He, Ying; Yang, Lei; Zhou, Jing; Yao, Liqing; Pang, Marco Yiu Chung

    2018-02-01

    This systematic review aimed to examine the effects of dual-task balance and mobility training in people with stroke. An extensive electronic databases literature search was conducted using MEDLINE, PubMed, EBSCO, The Cochrane Library, Web of Science, SCOPUS, and Wiley Online Library. Randomized controlled studies that assessed the effects of dual-task training in stroke patients were included for the review (last search in December 2017). The methodological quality was evaluated using the Cochrane Collaboration recommendation, and level of evidence was determined according to the criteria described by the Oxford Center for Evidence-Based Medicine. About 13 articles involving 457 participants were included in this systematic review. All had substantial risk of bias and thus provided level IIb evidence only. Dual-task mobility training was found to induce more improvement in single-task walking function (standardized effect size = 0.14-2.24), when compared with single-task mobility training. Its effect on dual-task walking function was not consistent. Cognitive-motor balance training was effective in improving single-task balance function (standardized effect size = 0.27-1.82), but its effect on dual-task balance ability was not studied. The beneficial effect of dual-task training on cognitive function was provided by one study only and thus inconclusive. There is some evidence that dual-task training can improve single-task walking and balance function in individuals with stroke. However, any firm recommendation cannot be made due to the weak methodology of the studies reviewed.

  6. The Work Tasks Motivation Scale for Teachers (WTMST)

    ERIC Educational Resources Information Center

    Fernet, Claude; Senecal, Caroline; Guay, Frederic; Marsh, Herbert; Dowson, Martin

    2008-01-01

    The authors developed and validated a measure of teachers' motivation toward specific work tasks: The Work Tasks Motivation Scale for Teachers (WTMST). The WTMST is designed to assess five motivational constructs toward six work tasks (e.g., class preparation, teaching). The authors conducted a preliminary (n = 42) and a main study among…

  7. An analysis of functional shoulder movements during task performance using Dartfish movement analysis software.

    PubMed

    Khadilkar, Leenesh; MacDermid, Joy C; Sinden, Kathryn E; Jenkyn, Thomas R; Birmingham, Trevor B; Athwal, George S

    2014-01-01

    Video-based movement analysis software (Dartfish) has potential for clinical applications for understanding shoulder motion if functional measures can be reliably obtained. The primary purpose of this study was to describe the functional range of motion (ROM) of the shoulder used to perform a subset of functional tasks. A second purpose was to assess the reliability of functional ROM measurements obtained by different raters using Dartfish software. Ten healthy participants, mean age 29 ± 5 years, were videotaped while performing five tasks selected from the Disabilities of the Arm, Shoulder and Hand (DASH). Video cameras and markers were used to obtain video images suitable for analysis in Dartfish software. Three repetitions of each task were performed. Shoulder movements from all three repetitions were analyzed using Dartfish software. The tracking tool of the Dartfish software was used to obtain shoulder joint angles and arcs of motion. Test-retest and inter-rater reliability of the measurements were evaluated using intraclass correlation coefficients (ICC). Maximum (coronal plane) abduction (118° ± 16°) and (sagittal plane) flexion (111° ± 15°) was observed during 'washing one's hair;' maximum extension (-68° ± 9°) was identified during 'washing one's own back.' Minimum shoulder ROM was observed during 'opening a tight jar' (33° ± 13° abduction and 13° ± 19° flexion). Test-retest reliability (ICC = 0.45 to 0.94) suggests high inter-individual task variability, and inter-rater reliability (ICC = 0.68 to 1.00) showed moderate to excellent agreement. KEY FINDINGS INCLUDE: 1) functional shoulder ROM identified in this study compared to similar studies; 2) healthy individuals require less than full ROM when performing five common ADL tasks 3) high participant variability was observed during performance of the five ADL tasks; and 4) Dartfish software provides a clinically relevant tool to analyze shoulder function.

  8. Musical tasks targeting preserved and impaired functions in two dementias.

    PubMed

    Halpern, Andrea R; Golden, Hannah L; Magdalinou, Nadia; Witoonpanich, Pirada; Warren, Jason D

    2015-03-01

    Studies of musical abilities in dementia have for the most part been rather general assessments of abilities, for instance, assessing retention of music learned premorbidly. Here, we studied patients with dementias with contrasting cognitive profiles to explore specific aspects of music cognition under challenge. Patients suffered from Alzheimer's disease (AD), in which a primary impairment is in forming new declarative memories, or Lewy body disease (PD/LBD), a type of parkinsonism in which executive impairments are prominent. In the AD patients, we examined musical imagery. Behavioral and neural evidence confirms involvement of perceptual networks in imagery, and these are relatively spared in early stages of the illness. Thus, we expected patients to have relatively intact imagery in a mental pitch comparison task. For the LBD patients, we tested whether executive dysfunction would extend to music. We probed inhibitory skills by asking for a speeded pitch or timbre judgment when the irrelevant dimension was held constant or also changed. Preliminary results show that AD patients score similarly to controls in the imagery tasks, but PD/LBD patients are impaired relative to controls in suppressing some irrelevant musical dimensions, particularly when the required judgment varies from trial to trial. © 2014 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  9. A preliminary study of the effects of working memory training on brain function in Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Stevens, Michael C.; Gaynor, Alexandra; Bessette, Katie L.; Pearlson, Godfrey D.

    2015-01-01

    Working memory (WM) training improves WM ability in Attention-Deficit/Hyperactivity Disorder (ADHD), but its efficacy for non-cognitive ADHD impairments ADHD has been sharply debated. The purpose of this preliminary study was to characterize WM training-related changes in ADHD brain function and see if they were linked to clinical improvement. We examined 18 adolescents diagnosed with DSM-IV Combined-subtype ADHD before and after 25 sessions of WM training using a frequently employed approach (CogmedTM) using a nonverbal Sternberg WM fMRI task, neuropsychological tests, and participant- and parent-reports of ADHD symptom severity and associated functional impairment. Whole brain SPM8 analyses identified ADHD activation deficits compared to 18 non-ADHD control participants, then tested whether impaired ADHD frontoparietal brain activation would increase following WM training. Post hoc tests examined the relationships between neural changes and neurocognitive or clinical improvements. As predicted, WM training increased WM performance, ADHD clinical functioning, and WM-related ADHD brain activity in several frontal, parietal and temporal lobe regions. Increased left inferior frontal sulcus region activity was seen in all Encoding, Maintenance, and Retrieval Sternberg task phases. ADHD symptom severity improvements were most often positively correlated with activation gains in brain regions known to be engaged for WM-related executive processing; improvement of different symptom types had different neural correlates. The responsiveness of both amodal WM frontoparietal circuits and executive process-specific WM brain regions was altered by WM training. The latter might represent a promising, relatively unexplored treatment target for researchers seeking to optimize clinical response in ongoing ADHD WM training development efforts. PMID:26138580

  10. Speech versus manual control of camera functions during a telerobotic task

    NASA Technical Reports Server (NTRS)

    Bierschwale, John M.; Sampaio, Carlos E.; Stuart, Mark A.; Smith, Randy L.

    1989-01-01

    Voice input for control of camera functions was investigated in this study. Objective were to (1) assess the feasibility of a voice-commanded camera control system, and (2) identify factors that differ between voice and manual control of camera functions. Subjects participated in a remote manipulation task that required extensive camera-aided viewing. Each subject was exposed to two conditions, voice and manual input, with a counterbalanced administration order. Voice input was found to be significantly slower than manual input for this task. However, in terms of remote manipulator performance errors and subject preference, there was no difference between modalities. Voice control of continuous camera functions is not recommended. It is believed that the use of voice input for discrete functions, such as multiplexing or camera switching, could aid performance. Hybrid mixes of voice and manual input may provide the best use of both modalities. This report contributes to a better understanding of the issues that affect the design of an efficient human/telerobot interface.

  11. The Richness of Task-Evoked Hemodynamic Responses Defines a Pseudohierarchy of Functionally Meaningful Brain Networks

    PubMed Central

    Orban, Pierre; Doyon, Julien; Petrides, Michael; Mennes, Maarten; Hoge, Richard; Bellec, Pierre

    2015-01-01

    Functional magnetic resonance imaging can measure distributed and subtle variations in brain responses associated with task performance. However, it is unclear whether the rich variety of responses observed across the brain is functionally meaningful and consistent across individuals. Here, we used a multivariate clustering approach that grouped brain regions into clusters based on the similarity of their task-evoked temporal responses at the individual level, and then established the spatial consistency of these individual clusters at the group level. We observed a stable pseudohierarchy of task-evoked networks in the context of a delayed sequential motor task, where the fractionation of networks was driven by a gradient of involvement in motor sequence preparation versus execution. In line with theories about higher-level cognitive functioning, this gradient evolved in a rostro-caudal manner in the frontal lobe. In addition, parcellations in the cerebellum and basal ganglia matched with known anatomical territories and fiber pathways with the cerebral cortex. These findings demonstrate that subtle variations in brain responses associated with task performance are systematic enough across subjects to define a pseudohierarchy of task-evoked networks. Such networks capture meaningful functional features of brain organization as shaped by a given cognitive context. PMID:24729172

  12. Performance on a computerized shopping task significantly predicts real world functioning in persons diagnosed with bipolar disorder.

    PubMed

    Laloyaux, Julien; Pellegrini, Nadia; Mourad, Haitham; Bertrand, Hervé; Domken, Marc-André; Van der Linden, Martial; Larøi, Frank

    2013-12-15

    Persons diagnosed with bipolar disorder often suffer from cognitive impairments. However, little is known concerning how these cognitive deficits impact their real world functioning. We developed a computerized real-life activity task, where participants are required to shop for a list of grocery store items. Twenty one individuals diagnosed with bipolar disorder and 21 matched healthy controls were administered the computerized shopping task. Moreover, the patient group was assessed with a battery of cognitive tests and clinical scales. Performance on the shopping task significantly differentiated patients and healthy controls for two variables: Total time to complete the shopping task and Mean time spent to consult the shopping list. Moreover, in the patient group, performance on these variables from the shopping task correlated significantly with cognitive functioning (i.e. processing speed, verbal episodic memory, planning, cognitive flexibility, and inhibition) and with clinical variables including duration of illness and real world functioning. Finally, variables from the shopping task were found to significantly explain 41% of real world functioning of patients diagnosed with bipolar disorder. These findings suggest that the shopping task provides a good indication of real world functioning and cognitive functioning of persons diagnosed with bipolar disorder. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Eye-scan behavior in a flight simulation task as a function of level of training

    NASA Technical Reports Server (NTRS)

    Comstock, J. R., Jr.; Coates, G. D.; Kirby, R. H.

    1985-01-01

    The present study explored eye-scan behavior as a function of level of subject training. Oculometric (eye-scan) measures were recorded from each of ten subjects during training trials on a CRT-based flight simulation task. The task developed for the study incorporated subtasks representative of specific activities performed by pilots, but which could be performed at asymptotic levels within relatively short periods of training. Changes in eye-scan behavior were examined as initially untrained subjects developed skill in the task. Eye-scan predictors of performance on the task were found. Examination of eye-scan in proximity to selected task events revealed differences in the distribution of looks at the instruments as a function of level of training.

  14. Differences in perceptual learning transfer as a function of training task.

    PubMed

    Green, C Shawn; Kattner, Florian; Siegel, Max H; Kersten, Daniel; Schrater, Paul R

    2015-01-01

    A growing body of research--including results from behavioral psychology, human structural and functional imaging, single-cell recordings in nonhuman primates, and computational modeling--suggests that perceptual learning effects are best understood as a change in the ability of higher-level integration or association areas to read out sensory information in the service of particular decisions. Work in this vein has argued that, depending on the training experience, the "rules" for this read-out can either be applicable to new contexts (thus engendering learning generalization) or can apply only to the exact training context (thus resulting in learning specificity). Here we contrast learning tasks designed to promote either stimulus-specific or stimulus-general rules. Specifically, we compare learning transfer across visual orientation following training on three different tasks: an orientation categorization task (which permits an orientation-specific learning solution), an orientation estimation task (which requires an orientation-general learning solution), and an orientation categorization task in which the relevant category boundary shifts on every trial (which lies somewhere between the two tasks above). While the simple orientation-categorization training task resulted in orientation-specific learning, the estimation and moving categorization tasks resulted in significant orientation learning generalization. The general framework tested here--that task specificity or generality can be predicted via an examination of the optimal learning solution--may be useful in building future training paradigms with certain desired outcomes.

  15. Task activation and functional connectivity show concordant memory laterality in temporal lobe epilepsy.

    PubMed

    Sideman, Noah; Chaitanya, Ganne; He, Xiaosong; Doucet, Gaelle; Kim, Na Young; Sperling, Michael R; Sharan, Ashwini D; Tracy, Joseph I

    2018-04-01

    In epilepsy, asymmetries in the organization of mesial temporal lobe (MTL) functions help determine the cognitive risk associated with procedures such as anterior temporal lobectomy. Past studies have investigated the change/shift in a visual episodic memory laterality index (LI) in mesial temporal lobe structures through functional magnetic resonance imaging (fMRI) task activations. Here, we examine whether underlying task-related functional connectivity (FC) is concordant with such standard fMRI laterality measures. A total of 56 patients with temporal lobe epilepsy (TLE) (Left TLE [LTLE]: 31; Right TLE [RTLE]: 25) and 34 matched healthy controls (HC) underwent fMRI scanning during performance of a scene encoding task (SET). We assessed an activation-based LI of the hippocampal gyrus (HG) and parahippocampal gyrus (PHG) during the SET and its correspondence with task-related FC measures. Analyses involving the HG and PHG showed that the patients with LTLE had a consistently higher LI (right-lateralized) than that of the HC and group with RTLE, indicating functional reorganization. The patients with RTLE did not display a reliable contralateral shift away from the pathology, with the mesial structures showing quite distinct laterality patterns (HG, no laterality bias; PHG, no evidence of LI shift). The FC data for the group with LTLE provided confirmation of reorganization effects, revealing that a rightward task LI may be based on underlying connections between several left-sided regions (middle/superior occipital and left medial frontal gyri) and the right PHG. The FCs between the right HG and left anterior cingulate/medial frontal gyri were also observed in LTLE. Importantly, the data demonstrate that the areas involved in the LTLE task activation shift to the right hemisphere showed a corresponding increase in task-related FCs between the hemispheres. Altered laterality patterns based on mesial temporal lobe epilepsy (MTLE) pathology manifest as several

  16. Speech versus manual control of camera functions during a telerobotic task

    NASA Technical Reports Server (NTRS)

    Bierschwale, John M.; Sampaio, Carlos E.; Stuart, Mark A.; Smith, Randy L.

    1993-01-01

    This investigation has evaluated the voice-commanded camera control concept. For this particular task, total voice control of continuous and discrete camera functions was significantly slower than manual control. There was no significant difference between voice and manual input for several types of errors. There was not a clear trend in subjective preference of camera command input modality. Task performance, in terms of both accuracy and speed, was very similar across both levels of experience.

  17. Multicenter validation of a bedside antisaccade task as a measure of executive function

    PubMed Central

    Hellmuth, J.; Mirsky, J.; Heuer, H.W.; Matlin, A.; Jafari, A.; Garbutt, S.; Widmeyer, M.; Berhel, A.; Sinha, L.; Miller, B.L.; Kramer, J.H.

    2012-01-01

    Objective: To create and validate a simple, standardized version of the antisaccade (AS) task that requires no specialized equipment for use as a measure of executive function in multicenter clinical studies. Methods: The bedside AS (BAS) task consisted of 40 pseudorandomized AS trials presented on a laptop computer. BAS performance was compared with AS performance measured using an infrared eye tracker in normal elders (NE) and individuals with mild cognitive impairment (MCI) or dementia (n = 33). The neuropsychological domain specificity of the BAS was then determined in a cohort of NE, MCI, and dementia (n = 103) at UCSF, and the BAS was validated as a measure of executive function in a 6-center cohort (n = 397) of normal adults and patients with a variety of brain diseases. Results: Performance on the BAS and laboratory AS task was strongly correlated and BAS performance was most strongly associated with neuropsychological measures of executive function. Even after controlling for disease severity and processing speed, BAS performance was associated with multiple assessments of executive function, most strongly the informant-based Frontal Systems Behavior Scale. Conclusions: The BAS is a simple, valid measure of executive function in aging and neurologic disease. PMID:22573640

  18. Functional network centrality in obesity: A resting-state and task fMRI study.

    PubMed

    García-García, Isabel; Jurado, María Ángeles; Garolera, Maite; Marqués-Iturria, Idoia; Horstmann, Annette; Segura, Bàrbara; Pueyo, Roser; Sender-Palacios, María José; Vernet-Vernet, Maria; Villringer, Arno; Junqué, Carme; Margulies, Daniel S; Neumann, Jane

    2015-09-30

    Obesity is associated with structural and functional alterations in brain areas that are often functionally distinct and anatomically distant. This suggests that obesity is associated with differences in functional connectivity of regions distributed across the brain. However, studies addressing whole brain functional connectivity in obesity remain scarce. Here, we compared voxel-wise degree centrality and eigenvector centrality between participants with obesity (n=20) and normal-weight controls (n=21). We analyzed resting state and task-related fMRI data acquired from the same individuals. Relative to normal-weight controls, participants with obesity exhibited reduced degree centrality in the right middle frontal gyrus in the resting-state condition. During the task fMRI condition, obese participants exhibited less degree centrality in the left middle frontal gyrus and the lateral occipital cortex along with reduced eigenvector centrality in the lateral occipital cortex and occipital pole. Our results highlight the central role of the middle frontal gyrus in the pathophysiology of obesity, a structure involved in several brain circuits signaling attention, executive functions and motor functions. Additionally, our analysis suggests the existence of task-dependent reduced centrality in occipital areas; regions with a role in perceptual processes and that are profoundly modulated by attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Targeting Alertness to Improve Cognition in Older Adults: A Preliminary Report of Benefits in Executive Function and Skill Acquisition

    PubMed Central

    Van Vleet, Thomas M.; DeGutis, Joseph M.; Merzenich, Michael M.; Simpson, Gregory V.; Zomet, Ativ; Dabit, Sawsan

    2016-01-01

    Efficient self-regulation of alertness declines with age exacerbating normal declines in performance across multiple cognitive domains, including learning and skill acquisition. Previous cognitive intervention studies have shown that it is possible to enhance alertness in patients with acquired brain injury and marked attention impairments, and that this benefit generalizes to improvements in more global cognitive functions. In the current preliminary studies, we sought to test whether this approach, that targets both tonic (over a period of minutes) and phasic (moment-to-moment) alertness, can improve key executive functioning declines in older adults, and enhance the rate of skill acquisition. The results of both experiments 1 and 2 demonstrate that, compared to active control training, alertness training significantly enhanced performance in several validated executive function measures. In experiment 2, alertness training significantly improved skill acquisition compared to active control training in a well-characterized speed of processing task, with the largest benefits shown in the most challenging speed of processing blocks. The results of the current study suggest that targeting intrinsic alertness in cognitive training provides a novel approach to improve executive functions in older adults and may be a useful adjunct treatment to enhance benefits gained in other clinically validated treatments. PMID:27372902

  20. Relationships Among Lower Body Strength, Power, and Performance of Functional Tasks

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori; Ryder, J.; Hackney, K.; Scott-Pandorf, M.; Redd, E.; Buxton, R.; Bloomberg, J.

    2010-01-01

    There is a large degree of variability among crewmembers with respect to decrements in muscle strength and power following long duration spaceflight, ranging from 0 to approx.30% reductions. The purpose of this study was to investigate the influence of varying decrements in lower body muscle strength and power (relative to body weight) on the performance of 2 occupationally relevant tasks (ladder climb and supine egress & walk). Seventeen participants with leg strength similar to US crewmembers performed a leg press power test, an isokinetic knee extension strength test and they were asked to complete the 2 functional tasks as quickly as possible. On additional test days the participants were asked to repeat the functional tasks under 3 conditions where a different external load was applied each time using a weighted suit in order to experimentally manipulate participants strength/body weight and power/body weight ratios. The weight in the suit ranged from 20-120% of body weight and was distributed in proportion to limb segment weights to minimize changes in center of gravity. The ladder task consisted of climbing 40 rungs on a ladder treadmill as fast as possible. The supine egress & walk task consisted of rising from a supine position and walking through an obstacle course. Results show a relatively linear relationship between strength/body weight and task time and power/body weight with task time such that the fastest performance times are associated with higher strength and power with about half the variance in task time is accounted for by a single variable (either strength or power). For the average person, a 20% reduction in power/body weight (from 18 to 14.4 W/kg) induces an increase (slowing) of about 10 seconds in the ladder climb task from 14 to 24 seconds (approx.70%) and a slowing of the supine egress & walk task from 14 to 21 seconds (approx.50%). Similar relationships were observed with strength/body weight and task performance. For the average

  1. Evaluation of Cognitive Function of Children with Developmental Disabilities by means of Button-Press Task

    NASA Astrophysics Data System (ADS)

    Nakazono, Shogo; Kobori, Satoshi

    The button-press task means that the subject observes a moving target and presses a button to stop it when the target enters a specified area on a computer display. Subjects perform normal task, suppressed task and delayed task. In the suppressed task, the moving target disappears at some point during the trial. In the delayed task, there is some lag time between the time of pressing button and of stopping target. In these tasks, subjects estimate the movement of the target, and press the button considering his/her own reaction time. In our previous study, we showed that cognitive and motor function was able to be evaluated by these tasks. In this study, we examined error data of children with developmental disabilities to evaluate the cognitive function, and investigated the learning processes. Moreover, we discussed the developmental stages by comparing the children with disabilities to normal control children, and we clarified the behavior characteristics of children with developmental disabilities. Asa result, it was shown that our evaluation method and system for the button-press task were effective to evaluate cognitive ability of children with developmental disabilities.

  2. Selecting Tasks for Evaluating Human Performance as a Function of Gravity

    NASA Technical Reports Server (NTRS)

    Norcross, Jason R.; Gernhardt, Michael L.

    2011-01-01

    A challenge in understanding human performance as a function of gravity is determining which tasks to research. Initial studies began with treadmill walking, which was easy to quantify and control. However, with the development of pressurized rovers, it is less important to optimize human performance for ambulation as pressurized rovers will likely perform gross translation for them. Future crews are likely to spend much of their extravehicular activity (EVA) performing geology, construction,a nd maintenance type tasks. With these types of tasks, people have different performance strategies, and it is often difficult to quantify the task and measure steady-state metabolic rates or perform biomechanical analysis. For many of these types of tasks, subjective feedback may be the only data that can be collected. However, subjective data may not fully support a rigorous scientific comparison of human performance across different gravity levels and suit factors. NASA would benefit from having a wide variety of quantifiable tasks that allow human performance comparison across different conditions. In order to determine which tasks will effectively support scientific studies, many different tasks and data analysis techniques will need to be employed. Many of these tasks and techniques will not be effective, but some will produce quantifiable results that are sensitive enough to show performance differences. One of the primary concerns related to EVA performance is metabolic rate. The higher the metabolic rate, the faster the astronaut will exhaust consumables. The focus of this poster will be on how different tasks affect metabolic rate across different gravity levels.

  3. Investigating executive functions in children with severe speech and movement disorders using structured tasks.

    PubMed

    Stadskleiv, Kristine; von Tetzchner, Stephen; Batorowicz, Beata; van Balkom, Hans; Dahlgren-Sandberg, Annika; Renner, Gregor

    2014-01-01

    Executive functions are the basis for goal-directed activity and include planning, monitoring, and inhibition, and language seems to play a role in the development of these functions. There is a tradition of studying executive function in both typical and atypical populations, and the present study investigates executive functions in children with severe speech and motor impairments who are communicating using communication aids with graphic symbols, letters, and/or words. There are few neuropsychological studies of children in this group and little is known about their cognitive functioning, including executive functions. It was hypothesized that aided communication would tax executive functions more than speech. Twenty-nine children using communication aids and 27 naturally speaking children participated. Structured tasks resembling everyday activities, where the action goals had to be reached through communication with a partner, were used to get information about executive functions. The children (a) directed the partner to perform actions like building a Lego tower from a model the partner could not see and (b) gave information about an object without naming it to a person who had to guess what object it was. The executive functions of planning, monitoring, and impulse control were coded from the children's on-task behavior. Both groups solved most of the tasks correctly, indicating that aided communicators are able to use language to direct another person to do a complex set of actions. Planning and lack of impulsivity was positively related to task success in both groups. The aided group completed significantly fewer tasks, spent longer time and showed more variation in performance than the comparison group. The aided communicators scored lower on planning and showed more impulsivity than the comparison group, while both groups showed an equal degree of monitoring of the work progress. The results are consistent with the hypothesis that aided language tax

  4. Investigating executive functions in children with severe speech and movement disorders using structured tasks

    PubMed Central

    Stadskleiv, Kristine; von Tetzchner, Stephen; Batorowicz, Beata; van Balkom, Hans; Dahlgren-Sandberg, Annika; Renner, Gregor

    2014-01-01

    Executive functions are the basis for goal-directed activity and include planning, monitoring, and inhibition, and language seems to play a role in the development of these functions. There is a tradition of studying executive function in both typical and atypical populations, and the present study investigates executive functions in children with severe speech and motor impairments who are communicating using communication aids with graphic symbols, letters, and/or words. There are few neuropsychological studies of children in this group and little is known about their cognitive functioning, including executive functions. It was hypothesized that aided communication would tax executive functions more than speech. Twenty-nine children using communication aids and 27 naturally speaking children participated. Structured tasks resembling everyday activities, where the action goals had to be reached through communication with a partner, were used to get information about executive functions. The children (a) directed the partner to perform actions like building a Lego tower from a model the partner could not see and (b) gave information about an object without naming it to a person who had to guess what object it was. The executive functions of planning, monitoring, and impulse control were coded from the children's on-task behavior. Both groups solved most of the tasks correctly, indicating that aided communicators are able to use language to direct another person to do a complex set of actions. Planning and lack of impulsivity was positively related to task success in both groups. The aided group completed significantly fewer tasks, spent longer time and showed more variation in performance than the comparison group. The aided communicators scored lower on planning and showed more impulsivity than the comparison group, while both groups showed an equal degree of monitoring of the work progress. The results are consistent with the hypothesis that aided language tax

  5. Multi-task functional MRI in multiple sclerosis patients without clinical disability.

    PubMed

    Colorado, René A; Shukla, Karan; Zhou, Yuxiang; Wolinsky, Jerry S; Narayana, Ponnada A

    2012-01-02

    While the majority of individuals with multiple sclerosis (MS) develop significant clinical disability, a subset experiences a disease course with minimal impairment even in the presence of significant apparent tissue damage on magnetic resonance imaging (MRI). Functional magnetic resonance imaging (fMRI) in MS patients with low disability suggests that increased use of the cognitive control system may limit the clinical manifestation of the disease. The current fMRI studies tested the hypothesis that nondisabled MS patients show increased recruitment of cognitive control regions while performing sensory, motor and cognitive tasks. Twenty two patients with relapsing-remitting MS and an Expanded Disability Status Scale (EDSS) score of ≤1.5 and 23 matched healthy controls were recruited. Subjects underwent fMRI while observing flashing checkerboards, performing right or left hand movements, or executing the 2-back working memory task. Compared to control subjects, patients demonstrated increased activation of the right dorsolateral prefrontal cortex and anterior cingulate cortex during the performance of the working memory task. This pattern of functional recruitment also was observed during the performance of non-dominant hand movements. These results support the mounting evidence of increased functional recruitment of cognitive control regions in the working memory system of MS patients with low disability and provide new evidence for the role of increased cognitive control recruitment in the motor system. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Supporting interruption management and multimodal interface design: three meta-analyses of task performance as a function of interrupting task modality.

    PubMed

    Lu, Sara A; Wickens, Christopher D; Prinet, Julie C; Hutchins, Shaun D; Sarter, Nadine; Sebok, Angelia

    2013-08-01

    The aim of this study was to integrate empirical data showing the effects of interrupting task modality on the performance of an ongoing visual-manual task and the interrupting task itself. The goal is to support interruption management and the design of multimodal interfaces. Multimodal interfaces have been proposed as a promising means to support interruption management.To ensure the effectiveness of this approach, their design needs to be based on an analysis of empirical data concerning the effectiveness of individual and redundant channels of information presentation. Three meta-analyses were conducted to contrast performance on an ongoing visual task and interrupting tasks as a function of interrupting task modality (auditory vs. tactile, auditory vs. visual, and single modality vs. redundant auditory-visual). In total, 68 studies were included and six moderator variables were considered. The main findings from the meta-analyses are that response times are faster for tactile interrupting tasks in case of low-urgency messages.Accuracy is higher with tactile interrupting tasks for low-complexity signals but higher with auditory interrupting tasks for high-complexity signals. Redundant auditory-visual combinations are preferable for communication tasks during high workload and with a small visual angle of separation. The three meta-analyses contribute to the knowledge base in multimodal information processing and design. They highlight the importance of moderator variables in predicting the effects of interruption task modality on ongoing and interrupting task performance. The findings from this research will help inform the design of multimodal interfaces in data-rich, event-driven domains.

  7. Smoking and the bandit: A preliminary study of smoker and non-smoker differences in exploratory behavior measured with a multi-armed bandit task

    PubMed Central

    Addicott, Merideth A.; Pearson, John M.; Wilson, Jessica; Platt, Michael L.; McClernon, F. Joseph

    2014-01-01

    Advantageous decision-making is an adaptive trade-off between exploring alternatives and exploiting the most rewarding option. This trade-off may be related to maladaptive decision-making associated with nicotine dependence; however, explore/exploit behavior has not been previously investigated in the context of addiction. The explore/exploit trade-off is captured by the multi-armed bandit task, in which different arms of a slot machine are chosen to discover the relative payoffs. The goal of this study was to preliminarily investigate whether smokers differ from non-smokers in their degree of exploratory behavior. Smokers (n = 18) and non-smokers (n = 17) completed a six-armed bandit task as well as self-report measures of behavior and personality traits. Smokers were found to exhibit less exploratory behavior (i.e. made fewer switches between slot machine arms) than non-smokers within the first 300 trials of the bandit task. The overall proportion of exploratory choices negatively correlated with self-reported measures of delay aversion and nonplanning impulsivity. These preliminary results suggest that smokers make fewer initial exploratory choices on the bandit task. The bandit task is a promising measure that could provide valuable insights into how nicotine use and dependence is associated with explore/exploit decision-making. PMID:23245198

  8. Corrective emotional experience in an integrative affect-focused therapy: Building a preliminary model using task analysis.

    PubMed

    Nakamura, Kaori; Iwakabe, Shigeru

    2018-03-01

    The present study constructed a preliminary process model of corrective emotional experience (CEE) in an integrative affect-focused therapy. Task analysis was used to analyse 6 in-session events taken from 6 Japanese clients who worked with an integrative affect-focused therapist. The 6 events included 3 successful CEEs and 3 partially successful CEEs for comparison. A rational-empirical model of CEE was generated, which consisted of two parallel client change processes, intrapersonal change and interpersonal change, and the therapist interventions corresponding to each process. Therapist experiential interventions and therapist affirmation facilitated both intrapersonal and interpersonal change processes, whereas his relational interventions were associated with the interpersonal change process. The partially successful CEEs were differentiated by the absence of the component of core painful emotions or negative beliefs in intrapersonal change process, which seemed crucial for the interpersonal change process to develop. CEE is best represented by a preliminary model that depicts two parallel yet interacting change processes. Intrapersonal change process is similar to the sequence of change described by the emotional processing model (Pascual-Leone & Greenberg, ), whereas interpersonal change process is a unique contribution of this study. Interpersonal change process was facilitated when the therapist's active stance and use of immediacy responses to make their relational process explicit allowed a shared exploration. Therapist affirmation bridged intrapersonal change to interpersonal change by promoting an adaptive sense of self in clients and forging a deeper emotional connection between the two. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Differences between child and adult large-scale functional brain networks for reading tasks.

    PubMed

    Liu, Xin; Gao, Yue; Di, Qiqi; Hu, Jiali; Lu, Chunming; Nan, Yun; Booth, James R; Liu, Li

    2018-02-01

    Reading is an important high-level cognitive function of the human brain, requiring interaction among multiple brain regions. Revealing differences between children's large-scale functional brain networks for reading tasks and those of adults helps us to understand how the functional network changes over reading development. Here we used functional magnetic resonance imaging data of 17 adults (19-28 years old) and 16 children (11-13 years old), and graph theoretical analyses to investigate age-related changes in large-scale functional networks during rhyming and meaning judgment tasks on pairs of visually presented Chinese characters. We found that: (1) adults had stronger inter-regional connectivity and nodal degree in occipital regions, while children had stronger inter-regional connectivity in temporal regions, suggesting that adults rely more on visual orthographic processing whereas children rely more on auditory phonological processing during reading. (2) Only adults showed between-task differences in inter-regional connectivity and nodal degree, whereas children showed no task differences, suggesting the topological organization of adults' reading network is more specialized. (3) Children showed greater inter-regional connectivity and nodal degree than adults in multiple subcortical regions; the hubs in children were more distributed in subcortical regions while the hubs in adults were more distributed in cortical regions. These findings suggest that reading development is manifested by a shift from reliance on subcortical to cortical regions. Taken together, our study suggests that Chinese reading development is supported by developmental changes in brain connectivity properties, and some of these changes may be domain-general while others may be specific to the reading domain. © 2017 Wiley Periodicals, Inc.

  10. Orangutans (Pongo abelii) seek information about tool functionality in a metacognition tubes task.

    PubMed

    Mulcahy, Nicholas J

    2016-11-01

    Nonhuman primates appear to engage in metacognition by knowing when they need to search for relevant information for solving the tubes task. The task involves presenting subjects with a number of tubes with only 1 having food hidden inside. Before choosing, subjects look inside the tubes more often when they do not know which 1 contains the food (hidden trials) compared to when they do know this information (visible trials). It is argued, however, that nonmetacognitive general food searching strategies can explain this looking behavior. To address this issue, 3 orangutans were tested with a novel tubes task in which they were only required to seek information about tool functionality. The results showed that subjects had the ability to search for tool functionality but no subject looked significantly more in hidden trials compared to visible trials. Subjects were retested with the same condition and given a second condition in which the cost of a wrong choice was increased. In both conditions, 2 subjects looked significantly more inside the hidden trials compared to the visible trials. Subjects were also tested with the traditional tubes task in which food was hidden inside 1 tube. All subjects looked inside the tubes significantly more in the hidden trials compared to the visible trials. However, subjects conducted more excessive looks compared to when looking for tool functionality. I suggest that excessive searches may be caused by food being a strong stimulus and discuss the relevance of this possibility for metacognitive research involving the tubes task. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Anomalous neural circuit function in schizophrenia during a virtual Morris water task.

    PubMed

    Folley, Bradley S; Astur, Robert; Jagannathan, Kanchana; Calhoun, Vince D; Pearlson, Godfrey D

    2010-02-15

    Previous studies have reported learning and navigation impairments in schizophrenia patients during virtual reality allocentric learning tasks. The neural bases of these deficits have not been explored using functional MRI despite well-explored anatomic characterization of these paradigms in non-human animals. Our objective was to characterize the differential distributed neural circuits involved in virtual Morris water task performance using independent component analysis (ICA) in schizophrenia patients and controls. Additionally, we present behavioral data in order to derive relationships between brain function and performance, and we have included a general linear model-based analysis in order to exemplify the incremental and differential results afforded by ICA. Thirty-four individuals with schizophrenia and twenty-eight healthy controls underwent fMRI scanning during a block design virtual Morris water task using hidden and visible platform conditions. Independent components analysis was used to deconstruct neural contributions to hidden and visible platform conditions for patients and controls. We also examined performance variables, voxel-based morphometry and hippocampal subparcellation, and regional BOLD signal variation. Independent component analysis identified five neural circuits. Mesial temporal lobe regions, including the hippocampus, were consistently task-related across conditions and groups. Frontal, striatal, and parietal circuits were recruited preferentially during the visible condition for patients, while frontal and temporal lobe regions were more saliently recruited by controls during the hidden platform condition. Gray matter concentrations and BOLD signal in hippocampal subregions were associated with task performance in controls but not patients. Patients exhibited impaired performance on the hidden and visible conditions of the task, related to negative symptom severity. While controls showed coupling between neural circuits, regional

  12. Brazilian adaptation of the Hotel Task: A tool for the ecological assessment of executive functions.

    PubMed

    Cardoso, Caroline de Oliveira; Zimmermann, Nicolle; Paraná, Camila Borges; Gindri, Gigiane; de Pereira, Ana Paula Almeida; Fonseca, Rochele Paz

    2015-01-01

    Over recent years, neuropsychological research has been increasingly concerned with the need to develop more ecologically valid instruments for the assessment of executive functions. The Hotel Task is one of the most widely used ecological measures of executive functioning, and provides an assessment of planning, organization, self-monitoring and cognitive flexibility. The goal of this study was to adapt the Hotel Task for use in the Brazilian population. The sample comprised 27 participants (three translators, six expert judges, seven healthy adults, ten patients with traumatic brain injuries and one hotel manager). The adaptation process consisted of five steps, which were repeated until a satisfactory version of the task was produced. The steps were as follows:(1) Translation;(2) Development of new stimuli and brainstorming among the authors;(3) Analysis by expert judges;(4) Pilot studies;(5) Assessment by an expert in business administration and hotel management. The adapted version proved adequate and valid for the assessment of executive functions. However, further research must be conducted to obtain evidence of the reliability, as well as the construct and criterion validity, sensitivity and specificity, of the Hotel Task. Many neurological and/or psychiatric populations may benefit from the adapted task, since it may make significant contributions to the assessment of dysexecutive syndromes and their impact on patient functioning.

  13. Brazilian adaptation of the Hotel Task: A tool for the ecological assessment of executive functions

    PubMed Central

    Cardoso, Caroline de Oliveira; Zimmermann, Nicolle; Paraná, Camila Borges; Gindri, Gigiane; de Pereira, Ana Paula Almeida; Fonseca, Rochele Paz

    2015-01-01

    Over recent years, neuropsychological research has been increasingly concerned with the need to develop more ecologically valid instruments for the assessment of executive functions. The Hotel Task is one of the most widely used ecological measures of executive functioning, and provides an assessment of planning, organization, self-monitoring and cognitive flexibility. Objective The goal of this study was to adapt the Hotel Task for use in the Brazilian population. Methods The sample comprised 27 participants (three translators, six expert judges, seven healthy adults, ten patients with traumatic brain injuries and one hotel manager). The adaptation process consisted of five steps, which were repeated until a satisfactory version of the task was produced. The steps were as follows: (1) Translation; (2) Development of new stimuli and brainstorming among the authors; (3) Analysis by expert judges; (4) Pilot studies; (5) Assessment by an expert in business administration and hotel management. Results The adapted version proved adequate and valid for the assessment of executive functions. However, further research must be conducted to obtain evidence of the reliability, as well as the construct and criterion validity, sensitivity and specificity, of the Hotel Task. Conclusion Many neurological and/or psychiatric populations may benefit from the adapted task, since it may make significant contributions to the assessment of dysexecutive syndromes and their impact on patient functioning. PMID:29213957

  14. Decreased Functional Brain Activation in Friedreich Ataxia Using the Simon Effect Task

    ERIC Educational Resources Information Center

    Georgiou-Karistianis, N.; Akhlaghi, H.; Corben, L. A.; Delatycki, M. B.; Storey, E.; Bradshaw, J. L.; Egan, G. F.

    2012-01-01

    The present study applied the Simon effect task to examine the pattern of functional brain reorganization in individuals with Friedreich ataxia (FRDA), using functional magnetic resonance imaging (fMRI). Thirteen individuals with FRDA and 14 age and sex matched controls participated, and were required to respond to either congruent or incongruent…

  15. Long-range functional interactions of anterior insula and medial frontal cortex are differently modulated by visuospatial and inductive reasoning tasks.

    PubMed

    Ebisch, Sjoerd J H; Mantini, Dante; Romanelli, Roberta; Tommasi, Marco; Perrucci, Mauro G; Romani, Gian Luca; Colom, Roberto; Saggino, Aristide

    2013-09-01

    The brain is organized into functionally specific networks as characterized by intrinsic functional relationships within discrete sets of brain regions. However, it is poorly understood whether such functional networks are dynamically organized according to specific task-states. The anterior insular cortex (aIC)-dorsal anterior cingulate cortex (dACC)/medial frontal cortex (mFC) network has been proposed to play a central role in human cognitive abilities. The present functional magnetic resonance imaging (fMRI) study aimed at testing whether functional interactions of the aIC-dACC/mFC network in terms of temporally correlated patterns of neural activity across brain regions are dynamically modulated by transitory, ongoing task demands. For this purpose, functional interactions of the aIC-dACC/mFC network are compared during two distinguishable fluid reasoning tasks, Visualization and Induction. The results show an increased functional coupling of bilateral aIC with visual cortices in the occipital lobe during the Visualization task, whereas coupling of mFC with right anterior frontal cortex was enhanced during the Induction task. These task-specific modulations of functional interactions likely reflect ability related neural processing. Furthermore, functional connectivity strength between right aIC and right dACC/mFC reliably predicts general task performance. The findings suggest that the analysis of long-range functional interactions may provide complementary information about brain-behavior relationships. On the basis of our results, it is proposed that the aIC-dACC/mFC network contributes to the integration of task-common and task-specific information based on its within-network as well as its between-network dynamic functional interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Functional Fixedness in Creative Thinking Tasks Depends on Stimulus Modality.

    PubMed

    Chrysikou, Evangelia G; Motyka, Katharine; Nigro, Cristina; Yang, Song-I; Thompson-Schill, Sharon L

    2016-11-01

    Pictorial examples during creative thinking tasks can lead participants to fixate on these examples and reproduce their elements even when yielding suboptimal creative products. Semantic memory research may illuminate the cognitive processes underlying this effect. Here, we examined whether pictures and words differentially influence access to semantic knowledge for object concepts depending on whether the task is close- or open-ended. Participants viewed either names or pictures of everyday objects, or a combination of the two, and generated common, secondary, or ad hoc uses for them. Stimulus modality effects were assessed quantitatively through reaction times and qualitatively through a novel coding system, which classifies creative output on a continuum from top-down-driven to bottom-up-driven responses. Both analyses revealed differences across tasks. Importantly, for ad hoc uses, participants exposed to pictures generated more top-down-driven responses than those exposed to object names. These findings have implications for accounts of functional fixedness in creative thinking, as well as theories of semantic memory for object concepts.

  17. Ventrolateral prefrontal activation during a N-back task assessed with multichannel functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Zhu, Ye; Jiang, Tianzi

    2007-05-01

    Functional near-infrared spectroscopy (fNIRS) has been used to investigate the changes in the concentration of oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin in brain issue during several cognitive tasks. In the present study, by means of multichannel dual wavelength light-emitting diode continuous-wave (CW) NIRS, we investigated the blood oxygenation changes of prefrontal cortex in 18 healthy subjects while performing a verbal n-back task (0-back and 2-back), which has been rarely investigated by fNIRS. Compared to the 0-back task (control task), we found a significant increase of O2Hb and total amount of hemoglobin (THb) in left and right ventrolateral prefrontal cortex (VLPFC) during the execution of the 2-back task compared to the 0-back task (p<0.05, FDR corrected). This result is consistent with the previous functional neuroimaging studies that have found the VLPFC activation related to verbal working memory. However, we found no significant hemisphere dominance. In addition, the effects of gender and its interaction with task performance on O2Hb concentration change were suggested in the present study. Our findings not only confirm that multichannel fNIRS is suitable to detect spatially specific activation during the performance of cognitive tasks; but also suggest that it should be cautious of gender-dependent difference in cerebral activation when interpreting the fNIRS data during cognitive tasks.

  18. NASA's Functional Task Test: Effects of Spaceflight and Six Degree Head-Down Bedrest on Dynamic Postural Stability

    NASA Technical Reports Server (NTRS)

    Taylor, L. C.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2015-01-01

    The goals of the Functional Task Test (FTT) study were to determine the effects of spaceflight on functional tests that are representative of critical exploration mission tasks and to identify the physiological factors that contribute to decrements in performance.

  19. Toddlers Benefit from Labeling on an Executive Function Search Task

    ERIC Educational Resources Information Center

    Miller, Stephanie E.; Marcovitch, Stuart

    2011-01-01

    Although labeling improves executive function (EF) performance in children older than 3 years, the results from studies with younger children have been equivocal. In the current study, we assessed performance in a computerized multistep multilocation search task with older 2-year-olds. The correct search location was either (a) not marked by a…

  20. Feasibility of the adaptive and automatic presentation of tasks (ADAPT) system for rehabilitation of upper extremity function post-stroke

    PubMed Central

    2011-01-01

    Background Current guidelines for rehabilitation of arm and hand function after stroke recommend that motor training focus on realistic tasks that require reaching and manipulation and engage the patient intensively, actively, and adaptively. Here, we investigated the feasibility of a novel robotic task-practice system, ADAPT, designed in accordance with such guidelines. At each trial, ADAPT selects a functional task according to a training schedule and with difficulty based on previous performance. Once the task is selected, the robot picks up and presents the corresponding tool, simulates the dynamics of the tasks, and the patient interacts with the tool to perform the task. Methods Five participants with chronic stroke with mild to moderate impairments (> 9 months post-stroke; Fugl-Meyer arm score 49.2 ± 5.6) practiced four functional tasks (selected out of six in a pre-test) with ADAPT for about one and half hour and 144 trials in a pseudo-random schedule of 3-trial blocks per task. Results No adverse events occurred and ADAPT successfully presented the six functional tasks without human intervention for a total of 900 trials. Qualitative analysis of trajectories showed that ADAPT simulated the desired task dynamics adequately, and participants reported good, although not excellent, task fidelity. During training, the adaptive difficulty algorithm progressively increased task difficulty leading towards an optimal challenge point based on performance; difficulty was then continuously adjusted to keep performance around the challenge point. Furthermore, the time to complete all trained tasks decreased significantly from pretest to one-hour post-test. Finally, post-training questionnaires demonstrated positive patient acceptance of ADAPT. Conclusions ADAPT successfully provided adaptive progressive training for multiple functional tasks based on participant's performance. Our encouraging results establish the feasibility of ADAPT; its efficacy will next be tested

  1. Feasibility of the adaptive and automatic presentation of tasks (ADAPT) system for rehabilitation of upper extremity function post-stroke.

    PubMed

    Choi, Younggeun; Gordon, James; Park, Hyeshin; Schweighofer, Nicolas

    2011-08-03

    Current guidelines for rehabilitation of arm and hand function after stroke recommend that motor training focus on realistic tasks that require reaching and manipulation and engage the patient intensively, actively, and adaptively. Here, we investigated the feasibility of a novel robotic task-practice system, ADAPT, designed in accordance with such guidelines. At each trial, ADAPT selects a functional task according to a training schedule and with difficulty based on previous performance. Once the task is selected, the robot picks up and presents the corresponding tool, simulates the dynamics of the tasks, and the patient interacts with the tool to perform the task. Five participants with chronic stroke with mild to moderate impairments (> 9 months post-stroke; Fugl-Meyer arm score 49.2 ± 5.6) practiced four functional tasks (selected out of six in a pre-test) with ADAPT for about one and half hour and 144 trials in a pseudo-random schedule of 3-trial blocks per task. No adverse events occurred and ADAPT successfully presented the six functional tasks without human intervention for a total of 900 trials. Qualitative analysis of trajectories showed that ADAPT simulated the desired task dynamics adequately, and participants reported good, although not excellent, task fidelity. During training, the adaptive difficulty algorithm progressively increased task difficulty leading towards an optimal challenge point based on performance; difficulty was then continuously adjusted to keep performance around the challenge point. Furthermore, the time to complete all trained tasks decreased significantly from pretest to one-hour post-test. Finally, post-training questionnaires demonstrated positive patient acceptance of ADAPT. ADAPT successfully provided adaptive progressive training for multiple functional tasks based on participant's performance. Our encouraging results establish the feasibility of ADAPT; its efficacy will next be tested in a clinical trial.

  2. Preliminary evaluation of an analog procedure to assess acceptability of intimate partner violence against women: the Partner Violence Acceptability Movie Task

    PubMed Central

    Gracia, Enrique; Rodriguez, Christina M.; Lila, Marisol

    2015-01-01

    Acceptability of partner violence against women is a risk factor linked to its perpetration, and to public, professionals’ and victims’ responses to this behavior. Research on the acceptability of violence in intimate partner relationships is, however, limited by reliance solely on self-reports that often provide distorted or socially desirable accounts that may misrepresent respondents’ attitudes. This study presents data on the development and initial validation of a new analog task assessing respondents’ acceptability of physical violence toward women in intimate relationships: the Partner Violence Acceptability Movie Task (PVAM). This new analog task is intended to provide a more implicit measure of the acceptability of partner violence against women. For this analog task, clips were extracted from commercially available films (90-s segments) portraying partner violence. Two independent samples were used to develop and evaluate the PVAM: a sample of 245 undergraduate students and a sample of 94 male intimate partner violence offenders. This new analog task demonstrated acceptable internal consistency. Results also indicated adequate construct validity. Both perpetrators and undergraduates scoring high in the PVAM also scored higher in self-reported justifications of partner abuse. Perpetrators of partner violence scored significantly higher in acceptability of partner violence than the undergraduate sample (both male and female students), and male students scored higher than females. These preliminary results suggest that the PVAM may be a promising tool to assess the acceptability of violence in intimate partner relationships, highlighting the need to consider alternatives to self-report to evaluate potential beliefs about partner violence. PMID:26528220

  3. Neural efficiency as a function of task demands☆

    PubMed Central

    Dunst, Beate; Benedek, Mathias; Jauk, Emanuel; Bergner, Sabine; Koschutnig, Karl; Sommer, Markus; Ischebeck, Anja; Spinath, Birgit; Arendasy, Martin; Bühner, Markus; Freudenthaler, Heribert; Neubauer, Aljoscha C.

    2014-01-01

    The neural efficiency hypothesis describes the phenomenon that brighter individuals show lower brain activation than less bright individuals when working on the same cognitive tasks. The present study investigated whether the brain activation–intelligence relationship still applies when more versus less intelligent individuals perform tasks with a comparable person-specific task difficulty. In an fMRI-study, 58 persons with lower (n = 28) or respectively higher (n = 30) intelligence worked on simple and difficult inductive reasoning tasks having the same person-specific task difficulty. Consequently, less bright individuals received sample-based easy and medium tasks, whereas bright subjects received sample-based medium and difficult tasks. This design also allowed a comparison of lower versus higher intelligent individuals when working on the same tasks (i.e. sample-based medium task difficulty). In line with expectations, differences in task performance and in brain activation were only found for the subset of tasks with the same sample-based task difficulty, but not when comparing tasks with the same person-specific task difficulty. These results suggest that neural efficiency reflects an (ability-dependent) adaption of brain activation to the respective task demands. PMID:24489416

  4. Speech and Pause Characteristics in Multiple Sclerosis: A Preliminary Study of Speakers with High and Low Neuropsychological Test Performance

    ERIC Educational Resources Information Center

    Feenaughty, Lynda; Tjaden, Kris; Benedict, Ralph H. B.; Weinstock-Guttman, Bianca

    2013-01-01

    This preliminary study investigated how cognitive-linguistic status in multiple sclerosis (MS) is reflected in two speech tasks (i.e. oral reading, narrative) that differ in cognitive-linguistic demand. Twenty individuals with MS were selected to comprise High and Low performance groups based on clinical tests of executive function and information…

  5. Prospective Teachers' Reactions to "Right-or-Wrong" Tasks: The Case of Derivatives of Absolute Value Functions

    ERIC Educational Resources Information Center

    Tsamir, Pessia; Rasslan, Shaker; Dreyfus, Tommy

    2006-01-01

    This paper illustrates the role of a "Thinking-about-Derivatives" task in identifying learners' derivative conceptions and for promoting their critical thinking about derivatives of absolute value functions. The task included three parts: "Define" the derivative of a function f(x) at x = x[subscript 0], "Solve-if-Possible" the derivative of f(x) =…

  6. Subjective cognitive impairment: functional MRI during a divided attention task.

    PubMed

    Rodda, J; Dannhauser, T; Cutinha, D J; Shergill, S S; Walker, Z

    2011-10-01

    Individuals with subjective cognitive impairment (SCI) have persistent memory complaints but normal neurocognitive performance. For some, this may represent a pre-mild cognitive impairment (MCI) stage of Alzheimer's disease (AD). Given that attentional deficits and associated brain activation changes are present early in the course of AD, we aimed to determine whether SCI is associated with brain activation changes during attentional processing. Eleven SCI subjects and 10 controls completed a divided attention task during functional magnetic resonance imaging. SCI and control groups did not differ in sociodemographic, neurocognitive or behavioural measures. When group activation during the divided attention task was compared, the SCI group demonstrated increased activation in left medial temporal lobe, bilateral thalamus, posterior cingulate and caudate. This pattern of increased activation is similar to the pattern of decreased activation reported during divided attention in AD and may indicate compensatory changes. These findings suggest the presence of early functional changes in SCI; longitudinal studies will help to further elucidate the relationship between SCI and AD. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  7. Functional Connectivity of Cognitive Brain Networks in Schizophrenia during a Working Memory Task

    PubMed Central

    Godwin, Douglass; Ji, Andrew; Kandala, Sridhar; Mamah, Daniel

    2017-01-01

    Task-based connectivity studies facilitate the understanding of how the brain functions during cognition, which is commonly impaired in schizophrenia (SZ). Our aim was to investigate functional connectivity during a working memory task in SZ. We hypothesized that the task-negative (default mode) network and the cognitive control (frontoparietal) network would show dysconnectivity. Twenty-five SZ patient and 31 healthy control scans were collected using the customized 3T Siemens Skyra MRI scanner, previously used to collect data for the Human Connectome Project. Blood oxygen level dependent signal during the 0-back and 2-back conditions were extracted within a network-based parcelation scheme. Average functional connectivity was assessed within five brain networks: frontoparietal (FPN), default mode (DMN), cingulo-opercular (CON), dorsal attention (DAN), and ventral attention network; as well as between the DMN or FPN and other networks. For within-FPN connectivity, there was a significant interaction between n-back condition and group (p = 0.015), with decreased connectivity at 0-back in SZ subjects compared to controls. FPN-to-DMN connectivity also showed a significant condition × group effect (p = 0.003), with decreased connectivity at 0-back in SZ. Across groups, connectivity within the CON and DAN were increased during the 2-back condition, while DMN connectivity with either CON or DAN were decreased during the 2-back condition. Our findings support the role of the FPN, CON, and DAN in working memory and indicate that the pattern of FPN functional connectivity differs between SZ patients and control subjects during the course of a working memory task. PMID:29312020

  8. Functional Connectivity of Cognitive Brain Networks in Schizophrenia during a Working Memory Task.

    PubMed

    Godwin, Douglass; Ji, Andrew; Kandala, Sridhar; Mamah, Daniel

    2017-01-01

    Task-based connectivity studies facilitate the understanding of how the brain functions during cognition, which is commonly impaired in schizophrenia (SZ). Our aim was to investigate functional connectivity during a working memory task in SZ. We hypothesized that the task-negative (default mode) network and the cognitive control (frontoparietal) network would show dysconnectivity. Twenty-five SZ patient and 31 healthy control scans were collected using the customized 3T Siemens Skyra MRI scanner, previously used to collect data for the Human Connectome Project. Blood oxygen level dependent signal during the 0-back and 2-back conditions were extracted within a network-based parcelation scheme. Average functional connectivity was assessed within five brain networks: frontoparietal (FPN), default mode (DMN), cingulo-opercular (CON), dorsal attention (DAN), and ventral attention network; as well as between the DMN or FPN and other networks. For within-FPN connectivity, there was a significant interaction between n -back condition and group ( p  = 0.015), with decreased connectivity at 0-back in SZ subjects compared to controls. FPN-to-DMN connectivity also showed a significant condition × group effect ( p  = 0.003), with decreased connectivity at 0-back in SZ. Across groups, connectivity within the CON and DAN were increased during the 2-back condition, while DMN connectivity with either CON or DAN were decreased during the 2-back condition. Our findings support the role of the FPN, CON, and DAN in working memory and indicate that the pattern of FPN functional connectivity differs between SZ patients and control subjects during the course of a working memory task.

  9. Classroom-Based Functional Analysis and Intervention for Disruptive and Off-Task Behaviors

    ERIC Educational Resources Information Center

    Shumate, Emily D.; Wills, Howard P.

    2010-01-01

    Although there is a growing body of literature on the use of functional analysis in schools, there is a need for more demonstrations of this technology being used during the course of typical instruction. In this study, we conducted functional analyses of disruptive and off-task behavior in a reading classroom setting for 3 participants of typical…

  10. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    NASA Astrophysics Data System (ADS)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  11. Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.

    PubMed

    Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J

    2018-04-18

    Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.

  12. Videogame training strategy-induced change in brain function during a complex visuomotor task.

    PubMed

    Lee, Hyunkyu; Voss, Michelle W; Prakash, Ruchika Shaurya; Boot, Walter R; Vo, Loan T K; Basak, Chandramallika; Vanpatter, Matt; Gratton, Gabriele; Fabiani, Monica; Kramer, Arthur F

    2012-07-01

    Although changes in brain function induced by cognitive training have been examined, functional plasticity associated with specific training strategies is still relatively unexplored. In this study, we examined changes in brain function during a complex visuomotor task following training using the Space Fortress video game. To assess brain function, participants completed functional magnetic resonance imaging (fMRI) before and after 30 h of training with one of two training regimens: Hybrid Variable-Priority Training (HVT), with a focus on improving specific skills and managing task priority, or Full Emphasis Training (FET), in which participants simply practiced the game to obtain the highest overall score. Control participants received only 6 h of FET. Compared to FET, HVT learners reached higher performance on the game and showed less brain activation in areas related to visuo-spatial attention and goal-directed movement after training. Compared to the control group, HVT exhibited less brain activation in right dorsolateral prefrontal cortex (DLPFC), coupled with greater performance improvement. Region-of-interest analysis revealed that the reduction in brain activation was correlated with improved performance on the task. This study sheds light on the neurobiological mechanisms of improved learning from directed training (HVT) over non-directed training (FET), which is related to visuo-spatial attention and goal-directed motor planning, while separating the practice-based benefit, which is related to executive control and rule management. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Voice and Fluency Changes as a Function of Speech Task and Deep Brain Stimulation

    ERIC Educational Resources Information Center

    Van Lancker Sidtis, Diana; Rogers, Tiffany; Godier, Violette; Tagliati, Michele; Sidtis, John J.

    2010-01-01

    Purpose: Speaking, which naturally occurs in different modes or "tasks" such as conversation and repetition, relies on intact basal ganglia nuclei. Recent studies suggest that voice and fluency parameters are differentially affected by speech task. In this study, the authors examine the effects of subcortical functionality on voice and fluency,…

  14. Assessing language and visuospatial functions with one task: a "dual use" approach to performing fMRI in children.

    PubMed

    Ebner, Kathina; Lidzba, Karen; Hauser, Till-Karsten; Wilke, Marko

    2011-10-01

    In order to increase the rate of successful functional MR studies in children it is helpful to shorten the time spent in the scanner. To this effect, assessing two cognitive functions with one task seems to be a promising approach. The hypothesis of this study was that the control condition of an established language task (vowel identification task, VIT) requires visuospatial processing and that the control condition (VIT(CC)) therefore may also be applicable to localize visuospatial functions. As a reference task, a visual search task (VST, previously established for use in children) was employed. To test this hypothesis, 43 children (19 f, 24 m; 12.0±2.6, range 7.9 to 17.8 years) were recruited and scanned using both tasks. Second-level random effects group analyses showed activation of left inferior-frontal cortex in the active condition of the VIT, as in previous studies. Additionally, analysis of the VIT(CC) demonstrated activation in right-dominant superior parietal and high-frontal brain regions, classically associated with visuospatial functions; activation seen in the VST was similar with a substantial overlap. However, lateralization in the parietal lobe was significantly more bilateral in the VST than in the VIT(CC). This suggests that the VIT can not only be applied to assess language functions (using the active>control contrast), but also that the control>active condition is useful for assessing visuospatial functions. Future task design may benefit from such a "dual use" approach to performing fMRI not only, but also particularly in children. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Expressive writing and eating disorder features: a preliminary trial in a student sample of the impact of three writing tasks on eating disorder symptoms and associated cognitive, affective and interpersonal factors.

    PubMed

    East, Philippa; Startup, Helen; Roberts, Clifford; Schmidt, Ulrike

    2010-05-01

    To evaluate the impact of three writing tasks on the cognitive, affective and interpersonal factors typically associated with eating disorder symptoms, in a student population. Two experimental tasks and one control task were evaluated. Participants gave subjective ratings of the writing experience, and objective questionnaire measures were administered at baseline, and 4- and 8-week follow-up. Participants who dropped out without completing the writing tasks were more experientially avoidant. The three tasks differed significantly in subjective impact, and the experimental tasks were most effective in reducing eating disorder symptoms. They also ameliorated some key features associated with eating difficulties. The control task generally had less, no or a detrimental effect. The results provide preliminary indirect support for the use of therapeutic writing to address specific features associated with the eating disorder presentation. Further research is required to replicate the present findings and extend these to the clinical population. Copyright (c) 2010 John Wiley & Sons, Ltd and Eating Disorders Association.

  16. Selecting Tasks for Evaluating Human Performance as a Function of Gravity

    NASA Technical Reports Server (NTRS)

    Norcross, J. R.; Gernhardt, M. L.

    2010-01-01

    A challenge in understanding human performance as a function of gravity is determining which tasks to research. Initial studies began with treadmill walking, which was easy to quantify and control. However, with the development of pressurized rovers, it is less important to optimize human performance for ambulation as rovers will likely perform gross translation for them. Future crews are likely to spend much of their extravehicular activity (EVA) performing geology, construction and maintenance type tasks, for which it is difficult to measure steady-state-workloads. To evaluate human performance in reduced gravity, we have collected metabolic, biomechanical and subjective data for different tasks at varied gravity levels. Methods: Ten subjects completed 5 different tasks including weight transfer, shoveling, treadmill walking, treadmill running and treadmill incline walking. All tasks were performed shirt-sleeved at 1-g, 3/8-g and 1/6-g. Off-loaded conditions were achieved via the Active Response Gravity Offload System. Treadmill tasks were performed for 3 minutes with reported oxygen consumption (VO2) averaged over the last 2 minutes. Shoveling was performed for 3 minutes with metabolic cost reported as ml O2 consumed per kg material shoveled. Weight transfer reports metabolic cost as liters O2 consumed to complete the task. Statistical analysis was performed via repeated measures ANOVA. Results: Statistically significant metabolic differences were noted between all 3 gravity levels for treadmill running and incline walking. For the other 3 tasks, there were significant differences between 1-g and each reduced gravity, but not between 1/6-g and 3/8-g. For weight transfer, significant differences were seen between gravities in both trial-average VO2 and time-to-completion with noted differences in strategy for task completion. Conclusion: To determine if gravity has a metabolic effect on human performance, this research may indicate that tasks should be selected

  17. Automated system function allocation and display format: Task information processing requirements

    NASA Technical Reports Server (NTRS)

    Czerwinski, Mary P.

    1993-01-01

    An important consideration when designing the interface to an intelligent system concerns function allocation between the system and the user. The display of information could be held constant, or 'fixed', leaving the user with the task of searching through all of the available information, integrating it, and classifying the data into a known system state. On the other hand, the system, based on its own intelligent diagnosis, could display only relevant information in order to reduce the user's search set. The user would still be left the task of perceiving and integrating the data and classifying it into the appropriate system state. Finally, the system could display the patterns of data. In this scenario, the task of integrating the data is carried out by the system, and the user's information processing load is reduced, leaving only the tasks of perception and classification of the patterns of data. Humans are especially adept at this form of display processing. Although others have examined the relative effectiveness of alphanumeric and graphical display formats, it is interesting to reexamine this issue together with the function allocation problem. Currently, Johnson Space Center is the test site for an intelligent Thermal Control System (TCS), TEXSYS, being tested for use with Space Station Freedom. Expert TCS engineers, as well as novices, were asked to classify several displays of TEXSYS data into various system states (including nominal and anomalous states). Three different display formats were used: fixed, subset, and graphical. The hypothesis tested was that the graphical displays would provide for fewer errors and faster classification times by both experts and novices, regardless of the kind of system state represented within the display. The subset displays were hypothesized to be the second most effective display format/function allocation condition, based on the fact that the search set is reduced in these displays. Both the subset and the

  18. Executive functioning and processing speed in age-related differences in memory: contribution of a coding task.

    PubMed

    Baudouin, Alexia; Clarys, David; Vanneste, Sandrine; Isingrini, Michel

    2009-12-01

    The aim of the present study was to examine executive dysfunctioning and decreased processing speed as potential mediators of age-related differences in episodic memory. We compared the performances of young and elderly adults in a free-recall task. Participants were also given tests to measure executive functions and perceptual processing speed and a coding task (the Digit Symbol Substitution Test, DSST). More precisely, we tested the hypothesis that executive functions would mediate the age-related differences observed in the free-recall task better than perceptual speed. We also tested the assumption that a coding task, assumed to involve both executive processes and perceptual speed, would be the best mediator of age-related differences in memory. Findings first confirmed that the DSST combines executive processes and perceptual speed. Secondly, they showed that executive functions are a significant mediator of age-related differences in memory, and that DSST performance is the best predictor.

  19. Visual perceptual training reconfigures post-task resting-state functional connectivity with a feature-representation region.

    PubMed

    Sarabi, Mitra Taghizadeh; Aoki, Ryuta; Tsumura, Kaho; Keerativittayayut, Ruedeerat; Jimura, Koji; Nakahara, Kiyoshi

    2018-01-01

    The neural mechanisms underlying visual perceptual learning (VPL) have typically been studied by examining changes in task-related brain activation after training. However, the relationship between post-task "offline" processes and VPL remains unclear. The present study examined this question by obtaining resting-state functional magnetic resonance imaging (fMRI) scans of human brains before and after a task-fMRI session involving visual perceptual training. During the task-fMRI session, participants performed a motion coherence discrimination task in which they judged the direction of moving dots with a coherence level that varied between trials (20, 40, and 80%). We found that stimulus-induced activation increased with motion coherence in the middle temporal cortex (MT+), a feature-specific region representing visual motion. On the other hand, stimulus-induced activation decreased with motion coherence in the dorsal anterior cingulate cortex (dACC) and bilateral insula, regions involved in decision making under perceptual ambiguity. Moreover, by comparing pre-task and post-task rest periods, we revealed that resting-state functional connectivity (rs-FC) with the MT+ was significantly increased after training in widespread cortical regions including the bilateral sensorimotor and temporal cortices. In contrast, rs-FC with the MT+ was significantly decreased in subcortical regions including the thalamus and putamen. Importantly, the training-induced change in rs-FC was observed only with the MT+, but not with the dACC or insula. Thus, our findings suggest that perceptual training induces plastic changes in offline functional connectivity specifically in brain regions representing the trained visual feature, emphasising the distinct roles of feature-representation regions and decision-related regions in VPL.

  20. Functional Fixedness in Creative Thinking Tasks Depends on Stimulus Modality

    PubMed Central

    Chrysikou, Evangelia G.; Motyka, Katharine; Nigro, Cristina; Yang, Song-I; Thompson-Schill, Sharon L.

    2015-01-01

    Pictorial examples during creative thinking tasks can lead participants to fixate on these examples and reproduce their elements even when yielding suboptimal creative products. Semantic memory research may illuminate the cognitive processes underlying this effect. Here, we examined whether pictures and words differentially influence access to semantic knowledge for object concepts depending on whether the task is close- or open-ended. Participants viewed either names or pictures of everyday objects, or a combination of the two, and generated common, secondary, or ad hoc uses for them. Stimulus modality effects were assessed quantitatively through reaction times and qualitatively through a novel coding system, which classifies creative output on a continuum from top-down-driven to bottom-up-driven responses. Both analyses revealed differences across tasks. Importantly, for ad hoc uses, participants exposed to pictures generated more top-down-driven responses than those exposed to object names. These findings have implications for accounts of functional fixedness in creative thinking, as well as theories of semantic memory for object concepts. PMID:28344724

  1. Functional performance comparison between real and virtual tasks in older adults

    PubMed Central

    Bezerra, Ítalla Maria Pinheiro; Crocetta, Tânia Brusque; Massetti, Thais; da Silva, Talita Dias; Guarnieri, Regiani; Meira, Cassio de Miranda; Arab, Claudia; de Abreu, Luiz Carlos; de Araujo, Luciano Vieira; Monteiro, Carlos Bandeira de Mello

    2018-01-01

    Abstract Introduction: Ageing is usually accompanied by deterioration of physical abilities, such as muscular strength, sensory sensitivity, and functional capacity, making chronic diseases, and the well-being of older adults new challenges to global public health. Objective: The purpose of this study was to evaluate whether a task practiced in a virtual environment could promote better performance and enable transfer to the same task in a real environment. Method: The study evaluated 65 older adults of both genders, aged 60 to 82 years (M = 69.6, SD = 6.3). A timing coincident task was applied to measure the perceptual-motor ability to perform a motor response. The participants were divided into 2 groups: started in a real interface and started in a virtual interface. Results: All subjects improved their performance during the practice, but improvement was not observed for the real interface, as the participants were near maximum performance from the beginning of the task. However, there was no transfer of performance from the virtual to real environment or vice versa. Conclusions: The virtual environment was shown to provide improvement of performance with a short-term motor learning protocol in a timing coincident task. This result suggests that the practice of tasks in a virtual environment seems to be a promising tool for the assessment and training of healthy older adults, even though there was no transfer of performance to a real environment. Trial registration: ISRCTN02960165. Registered 8 November 2016. PMID:29369177

  2. Preliminary Studies on Differential Expression of Auditory Functional Genes in the Brain After Repeated Blast Exposures

    DTIC Science & Technology

    2012-01-01

    exposed mice showed significant injury (Figure). The injury level was more on the medial contra- lateral side of the brain than the ipsilateral side. The...code) JRRD Volume 49, Number 7, 2012Pages 1153–1162Preliminary studies on differential expression of auditory functional genes in the brain after...hearing- related genes in different regions of the brain 6 h after repeated blast exposures in mice. Preliminary data showed that the expres- sion of

  3. Functional neural correlates of figure copy and recall task performances in cognitively impaired individuals: an 18F-FDG-PET study.

    PubMed

    Han, Ji Young; Byun, Min Soo; Seo, Eun Hyun; Yi, Dahyun; Choe, Young Min; Sohn, Bo Kyung; Choi, Hyo Jung; Baek, Hyewon; Lee, Jun Ho; Kim, Hyun Jung; Woo, Jong Inn; Lee, Dong Yong

    2015-12-02

    Figure copy and recall tasks from the Benton Visual Retention Test (BVRT) and the Consortium to Establish a Registry of Alzheimer's Disease (CERAD) neuropsychological battery are used widely to assess visuospatial function in cognitively impaired (CI) individuals. We aimed to identify functional neural correlates of figure copy and recall task performances as measured by the BVRT and the CERAD constructional praxis (CP) and CP recall (CR) in CI individuals. Both tasks were administered to 64 CI individuals with early or prodromal stage Alzheimer's disease and 36 cognitively normal individuals. Voxel-wise correlations between test scores and regional cerebral glucose metabolism (rCMglc) measured by fluorine-18 fluorodeoxyglucose PET in CI participants were analyzed. BVRT figure copy task performance was associated with rCMglc of the bilateral posterior brain regions including the parieto-temporo-occipital regions, whereas the BVRT figure recall task performance was predominantly correlated with rCMglc of the left parietal and temporo-occipital regions. Meanwhile, CERAD CP performance was associated mainly with rCMglc of the left prefrontal and temporo-occipital areas as well as in the bilateral parietal regions, whereas CERAD CR performance was correlated with rCMglc of the right prefrontal, parietal, and temporal regions. In conclusion, the functional neural correlates of the two tasks were markedly different, suggesting that these tasks might measure different visuospatial functions. Our findings contribute toward understanding the functional neuroanatomical aspects of these tasks, which is useful for both interpreting the task results as well as for more sophisticated utilization of these tasks for probing specific neuroanatomical functions.

  4. Training Endogenous Task Shifting Using Music Therapy: A Feasibility Study.

    PubMed

    Lynch, Colleen; LaGasse, A Blythe

    2016-01-01

    People with acquired brain injury (ABI) are highly susceptible to disturbances in executive functioning (EF), and these effects are pervasive. Research studies using music therapy for cognitive improvement in this population are limited. The purpose of this study was to determine the feasibility of a Musical Executive Function Training (MEFT) intervention to address task-shifting skills in adults with ABI and to obtain preliminary evidence of intervention effect on task shifting. Fourteen participants were randomly assigned to one of three groups: a music therapy intervention group (MTG), a singing group (SG), or the no-intervention control group (CG). The SG and MTG met for one hour a day for five days. Feasibility measures included participant completion rates and intervention fidelity. Potential benefits were measured using the Trail Making Test and the Paced Auditory Serial Addition Task as a pre- and posttest measure. Participant completion rates and interventionist fidelity to the protocol supported feasibility. One-way ANOVA of the pre- and posttest group differences revealed a trend toward improvement in the MTG over the SG. Feasibility and effect size data support a larger trial of the MEFT protocol. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Authority and Agency in Young Children's Early Number Work: A Functional Linguistic Perspective

    ERIC Educational Resources Information Center

    Murphy, Carol

    2015-01-01

    This paper presents a preliminary study of three six year-old children's use of functional language when engaging collaboratively on a mathematics task. The analysis is presented as an illustration of young children's authority and agency in mathematics as evidenced in their discourse. Modality, as a function of language, was seen to indicate…

  6. Task-oriented rehabilitation robotics.

    PubMed

    Schweighofer, Nicolas; Choi, Younggeun; Winstein, Carolee; Gordon, James

    2012-11-01

    Task-oriented training is emerging as the dominant and most effective approach to motor rehabilitation of upper extremity function after stroke. Here, the authors propose that the task-oriented training framework provides an evidence-based blueprint for the design of task-oriented robots for the rehabilitation of upper extremity function in the form of three design principles: skill acquisition of functional tasks, active participation training, and individualized adaptive training. The previous robotic systems that incorporate elements of task-oriented trainings are then reviewed. Finally, the authors critically analyze their own attempt to design and test the feasibility of a TOR robot, ADAPT (Adaptive and Automatic Presentation of Tasks), which incorporates the three design principles. Because of its task-oriented training-based design, ADAPT departs from most other current rehabilitation robotic systems: it presents realistic functional tasks in which the task goal is constantly adapted, so that the individual actively performs doable but challenging tasks without physical assistance. To maximize efficacy for a large clinical population, the authors propose that future task-oriented robots need to incorporate yet-to-be developed adaptive task presentation algorithms that emphasize acquisition of fine motor coordination skills while minimizing compensatory movements.

  7. Manifestation of Incompleteness in Obsessive-Compulsive Disorder (OCD) as Reduced Functionality and Extended Activity beyond Task Completion

    PubMed Central

    Zor, Rama; Szechtman, Henry; Hermesh, Haggai; Fineberg, Naomi A.; Eilam, David

    2011-01-01

    Background This study focused on hypotheses regarding the source of incompleteness in obsessive-compulsive disorder (OCD). For this, we had to document the behavioral manifestation of incompleteness in compulsive rituals, predicting that an exaggerated focus on acts that are appropriate for the task will support the hypothesis on heightened responsibility/perfectionism. In contrast, activity past the expected terminal act for the motor task would support the “stop signal deficiency” hypothesis. Methodology and Principal Findings We employed video-telemetry to analyze 39 motor OCD rituals and compared each with a similar task performed by a non-OCD individual, in order to objectively and explicitly determine the functional end of the activity. We found that 75% of OCD rituals comprised a “tail,” which is a section that follows the functional end of the task that the patients ascribed to their activity. The other 25% tailless rituals comprised a relatively high number and higher rate of repetition of non-functional acts. Thus, in rituals with tail, incompleteness was manifested by the mere presence of the tail whereas in tailless rituals, incompleteness was manifested by the reduced functionality of the task due to an inflated execution and repetition of non-functional acts. Conclusions The prevalence of activity after the functional end (“tail”) and the elevated non-functionality in OCD motor rituals support the “lack of stop signal” theories as the underlying mechanism in OCD. Furthermore, the presence and content of the tail might have a therapeutic potential in cognitive-behavior therapy. PMID:21966460

  8. The effect of dual tasking on foot kinematics in people with functional ankle instability.

    PubMed

    Tavakoli, Sanam; Forghany, Saeed; Nester, Christopher

    2016-09-01

    Some cases of repeated inversion ankle sprains are thought to have a neurological basis and are termed functional ankle instability (FAI). In addition to factors local to the ankle, such as loss of proprioception, cognitive demands have the ability to influence motor control and may increase the risk of repetitive lateral sprains. The purpose of this study was to investigate the effect of cognitive demand on foot kinematics in physically active people with functional ankle instability. 21 physically active participants with FAI and 19 matched healthy controls completed trials of normal walking (single task) and normal walking while performing a cognitive task (dual task). Foot motion relative to the shank was recorded. Cognitive performance, ankle kinematics and movement variability in single and dual task conditions was characterized. During normal walking, the ankle joint was significantly more inverted in FAI compared to the control group pre and post initial contact. Under dual task conditions, there was a statistically significant increase in frontal plane foot movement variability during the period 200ms pre and post initial contact in people with FAI compared to the control group (p<0.05). Dual task also significantly increased plantar flexion and inversion during the period 200ms pre and post initial contact in the FAI group (p<0.05). participants with FAI demonstrated different ankle movement patterns and increased movement variability during a dual task condition. Cognitive load may increase risk of ankle instability in these people. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Upper-Extremity Dual-Task Function: An Innovative Method to Assess Cognitive Impairment in Older Adults.

    PubMed

    Toosizadeh, Nima; Najafi, Bijan; Reiman, Eric M; Mager, Reine M; Veldhuizen, Jaimeson K; O'Connor, Kathy; Zamrini, Edward; Mohler, Jane

    2016-01-01

    Difficulties in orchestrating simultaneous tasks (i.e., dual-tasking) have been associated with cognitive impairments in older adults. Gait tests have been commonly used as the motor task component for dual-task assessments; however, many older adults have mobility impairments or there is a lack of space in busy clinical settings. We assessed an upper-extremity function (UEF) test as an alternative motor task to study the dual-task motor performance in older adults. Older adults (≥65 years) were recruited, and cognitive ability was measured using the Montreal cognitive assessment (MoCA). Participants performed repetitive elbow flexion with their maximum pace, once single-task, and once while counting backward by one (dual-task). Single- and dual-task gait tests were also performed with normal speed. Three-dimensional kinematics was measured both from upper-extremity and lower-extremity using wearable sensors to determine UEF and gait parameters. Parameters were compared between the cognitively impaired and healthy groups using analysis of variance tests, while controlling for age, gender, and body mass index (BMI). Correlations between UEF and gait parameters for dual-task and dual-task cost were assessed using linear regression models. Sixty-seven older adults were recruited (age = 83 ± 10 years). Based on MoCA, 10 (15%) were cognitively impaired. While no significant differences were observed in the single-task condition, within the dual-task condition, the cognitively impaired group showed significantly less arm flexion speed (62%, d = 1.51, p = 0.02) and range of motion (27%, d = 0.93, p = 0.04), and higher speed variability (88%, d = 1.82, p < 0.0001) compared to the cognitively intact group, when adjusted with age, gender, and BMI. Significant correlations were observed between UEF speed parameters and gait stride velocity for dual-task condition (r = 0.55, p < 0.0001) and dual-task cost (r = 0.28, p = 0.03). We introduced a novel test for assessing dual-task

  10. Upper-Extremity Dual-Task Function: An Innovative Method to Assess Cognitive Impairment in Older Adults

    PubMed Central

    Toosizadeh, Nima; Najafi, Bijan; Reiman, Eric M.; Mager, Reine M.; Veldhuizen, Jaimeson K.; O’Connor, Kathy; Zamrini, Edward; Mohler, Jane

    2016-01-01

    Background: Difficulties in orchestrating simultaneous tasks (i.e., dual-tasking) have been associated with cognitive impairments in older adults. Gait tests have been commonly used as the motor task component for dual-task assessments; however, many older adults have mobility impairments or there is a lack of space in busy clinical settings. We assessed an upper-extremity function (UEF) test as an alternative motor task to study the dual-task motor performance in older adults. Methods: Older adults (≥65 years) were recruited, and cognitive ability was measured using the Montreal cognitive assessment (MoCA). Participants performed repetitive elbow flexion with their maximum pace, once single-task, and once while counting backward by one (dual-task). Single- and dual-task gait tests were also performed with normal speed. Three-dimensional kinematics was measured both from upper-extremity and lower-extremity using wearable sensors to determine UEF and gait parameters. Parameters were compared between the cognitively impaired and healthy groups using analysis of variance tests, while controlling for age, gender, and body mass index (BMI). Correlations between UEF and gait parameters for dual-task and dual-task cost were assessed using linear regression models. Results: Sixty-seven older adults were recruited (age = 83 ± 10 years). Based on MoCA, 10 (15%) were cognitively impaired. While no significant differences were observed in the single-task condition, within the dual-task condition, the cognitively impaired group showed significantly less arm flexion speed (62%, d = 1.51, p = 0.02) and range of motion (27%, d = 0.93, p = 0.04), and higher speed variability (88%, d = 1.82, p < 0.0001) compared to the cognitively intact group, when adjusted with age, gender, and BMI. Significant correlations were observed between UEF speed parameters and gait stride velocity for dual-task condition (r = 0.55, p < 0.0001) and dual-task cost (r = 0.28, p = 0.03). Conclusion: We

  11. TASK-2: a K2P K+ channel with complex regulation and diverse physiological functions

    PubMed Central

    Cid, L. Pablo; Roa-Rojas, Hugo A.; Niemeyer, María I.; González, Wendy; Araki, Masatake; Araki, Kimi; Sepúlveda, Francisco V.

    2013-01-01

    TASK-2 (K2P5.1) is a two-pore domain K+ channel belonging to the TALK subgroup of the K2P family of proteins. TASK-2 has been shown to be activated by extra- and intracellular alkalinization. Extra- and intracellular pH-sensors reside at arginine 224 and lysine 245 and might affect separate selectivity filter and inner gates respectively. TASK-2 is modulated by changes in cell volume and a regulation by direct G-protein interaction has also been proposed. Activation by extracellular alkalinization has been associated with a role of TASK-2 in kidney proximal tubule bicarbonate reabsorption, whilst intracellular pH-sensitivity might be the mechanism for its participation in central chemosensitive neurons. In addition to these functions TASK-2 has been proposed to play a part in apoptotic volume decrease in kidney cells and in volume regulation of glial cells and T-lymphocytes. TASK-2 is present in chondrocytes of hyaline cartilage, where it is proposed to play a central role in stabilizing the membrane potential. Additional sites of expression are dorsal root ganglion neurons, endocrine and exocrine pancreas and intestinal smooth muscle cells. TASK-2 has been associated with the regulation of proliferation of breast cancer cells and could become target for breast cancer therapeutics. Further work in native tissues and cells together with genetic modification will no doubt reveal the details of TASK-2 functions that we are only starting to suspect. PMID:23908634

  12. Development and Feasibility of a Virtual Reality Task for the Cognitive Assessment of Older Adults: The ECO-VR.

    PubMed

    Oliveira, Camila R; Lopes Filho, Brandel José P; Sugarman, Michael A; Esteves, Cristiane S; Lima, Margarida Maria B M P; Moret-Tatay, Carmen; Irigaray, Tatiana Q; Argimon, Irani Iracema L

    2016-12-13

    Cognitive assessment with virtual reality (VR) may have superior ecological validity for older adults compared to traditional pencil-and-paper cognitive assessment. However, few studies have reported the development of VR tasks. The aim of this study was to present the development, feasibility, content validity, and preliminary evidence of construct validity of an ecological task of cognitive assessment for older adults in VR (ECO-VR). The tasks were prepared based on theoretical and clinical backgrounds. We had 29 non-expert judges identify virtual visual stimuli and three-dimensional scenarios, and five expert judges assisted with content analysis and developing instructions. Finally, six older persons participated in three pilot studies and thirty older persons participated in the preliminary study to identify construct validity evidence. Data were analyzed by descriptive statistics and partial correlation. Target stimuli and three-dimensional scenarios were judged adequate and the content analysis demonstrated that ECO-VR evaluates temporo-spatial orientation, memory, language and executive functioning. We made significant changes to the instructions after the pilot studies to increase comprehensibility and reduce the completion time. The total score of ECO-VR was positively correlated mainly with performance in executive function (r = .172, p < .05) and memory tests (r = .488, p ≤ .01). The ECO-VR demonstrated feasibility for cognitive assessment in older adults, as well as content and construct validity evidences.

  13. Explorative Function in Williams Syndrome Analyzed through a Large-Scale Task with Multiple Rewards

    ERIC Educational Resources Information Center

    Foti, F.; Petrosini, L.; Cutuli, D.; Menghini, D.; Chiarotti, F.; Vicari, S.; Mandolesi, L.

    2011-01-01

    This study aimed to evaluate spatial function in subjects with Williams syndrome (WS) by using a large-scale task with multiple rewards and comparing the spatial abilities of WS subjects with those of mental age-matched control children. In the present spatial task, WS participants had to explore an open space to search nine rewards placed in…

  14. Cognitive Task Analysis and Work-Centered Support System Recommendations for a Deployed Network Operations Support Center (NOSC-D)

    DTIC Science & Technology

    2001-08-01

    This report presents the results of a preliminary Cognitive Task Analysis (CTA) of the deployed Network Operations Support Center (NOSC-D), and the...conducted Cognitive Task Analysis interviews with four (4) NOSC-D personnel. Because of the preliminary nature of the finding, the analysis is

  15. A virtual shopping task for the assessment of executive functions: Validity for people with stroke.

    PubMed

    Nir-Hadad, Shira Yama; Weiss, Patrice L; Waizman, Anna; Schwartz, Natalia; Kizony, Rachel

    2017-07-01

    The importance of assessing executive functions (EF) using ecologically valid assessments has been discussed extensively. Due to the difficulty of carrying out such assessments in real-world settings on a regular basis, virtual reality has been proposed as a technique to provide complex functional tasks under a variety of differing conditions while measuring various aspects of performance and controlling for stimuli. The main goal of this study was to examine the discriminant, construct-convergent and ecological validity of the Adapted Four-Item Shopping Task, an assessment of the Instrumental Activity of Daily Living (IADL) of shopping. Nineteen people with stroke, aged 50-85 years, and 20 age- and gender-matched healthy participants performed the shopping task in both the SeeMe Virtual Interactive Shopping environment and a real shopping environment (the hospital cafeteria) in a counterbalanced order. The shopping task outcomes were compared to clinical measures of EF. The findings provided good initial support for the validity of the Adapted Four-Item Shopping Task as an IADL assessment that requires the use of EF for people with stroke. Further studies should examine this task with a larger sample of people with stroke as well as with other populations who have deficits in EF.

  16. Life sciences payload definition and integration study, task C and D. Volume 2: Payload definition, integration, and planning studies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Life Sciences Payload Definition and Integration Study was composed of four major tasks. Tasks A and B, the laboratory definition phase, were the subject of prior NASA study. The laboratory definition phase included the establishment of research functions, equipment definitions, and conceptual baseline laboratory designs. These baseline laboratories were designated as Maxi-Nom, Mini-30, and Mini-7. The outputs of Tasks A and B were used by the NASA Life Sciences Payload Integration Team to establish guidelines for Tasks C and D, the laboratory integration phase of the study. A brief review of Tasks A and B is presented provide background continuity. The tasks C and D effort is the subject of this report. The Task C effort stressed the integration of the NASA selected laboratory designs with the shuttle sortie module. The Task D effort updated and developed costs that could be used by NASA for preliminary program planning.

  17. Monitoring supports performance in a dual-task paradigm involving a risky decision-making task and a working memory task

    PubMed Central

    Gathmann, Bettina; Schiebener, Johannes; Wolf, Oliver T.; Brand, Matthias

    2015-01-01

    Performing two cognitively demanding tasks at the same time is known to decrease performance. The current study investigates the underlying executive functions of a dual-tasking situation involving the simultaneous performance of decision making under explicit risk and a working memory task. It is suggested that making a decision and performing a working memory task at the same time should particularly require monitoring—an executive control process supervising behavior and the state of processing on two tasks. To test the role of a supervisory/monitoring function in such a dual-tasking situation we investigated 122 participants with the Game of Dice Task plus 2-back task (GDT plus 2-back task). This dual task requires participants to make decisions under risk and to perform a 2-back working memory task at the same time. Furthermore, a task measuring a set of several executive functions gathered in the term concept formation (Modified Card Sorting Test, MCST) and the newly developed Balanced Switching Task (BST), measuring monitoring in particular, were used. The results demonstrate that concept formation and monitoring are involved in the simultaneous performance of decision making under risk and a working memory task. In particular, the mediation analysis revealed that BST performance partially mediates the influence of MCST performance on the GDT plus 2-back task. These findings suggest that monitoring is one important subfunction for superior performance in a dual-tasking situation including decision making under risk and a working memory task. PMID:25741308

  18. Two-dimensional systolic-array architecture for pixel-level vision tasks

    NASA Astrophysics Data System (ADS)

    Vijverberg, Julien A.; de With, Peter H. N.

    2010-05-01

    This paper presents ongoing work on the design of a two-dimensional (2D) systolic array for image processing. This component is designed to operate on a multi-processor system-on-chip. In contrast with other 2D systolic-array architectures and many other hardware accelerators, we investigate the applicability of executing multiple tasks in a time-interleaved fashion on the Systolic Array (SA). This leads to a lower external memory bandwidth and better load balancing of the tasks on the different processing tiles. To enable the interleaving of tasks, we add a shadow-state register for fast task switching. To reduce the number of accesses to the external memory, we propose to share the communication assist between consecutive tasks. A preliminary, non-functional version of the SA has been synthesized for an XV4S25 FPGA device and yields a maximum clock frequency of 150 MHz requiring 1,447 slices and 5 memory blocks. Mapping tasks from video content-analysis applications from literature on the SA yields reductions in the execution time of 1-2 orders of magnitude compared to the software implementation. We conclude that the choice for an SA architecture is useful, but a scaled version of the SA featuring less logic with fewer processing and pipeline stages yielding a lower clock frequency, would be sufficient for a video analysis system-on-chip.

  19. Understanding the Effects of Long-duration Space Flight on Astronant Functional Task Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Batson, Crystal D.; Buxton, Roxanne E.; Feiveson, Al H.; Kofman, Igor S.; Lee, Stuart M. C.; Miller, Chris A.; Mulavara, Ajitkumar P.; Peters, Brian T.; Phillips, Tiffany; hide

    2014-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These physiological changes cause balance, gait and visual disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. These changes may affect a crewmember's ability to perform critical mission tasks immediately after landing on a planetary surface. To understand how changes in physiological function affect functional performance, an interdisciplinary pre- and postflight testing regimen, Functional Task Test (FTT), was developed to systematically evaluate both astronaut functional performance and related physiological changes. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting the FTT study on International Space Station (ISS) crewmembers before and after 6-month expeditions. Additionally, in a corresponding study we are using the FTT protocol on subjects before and after 70 days of 6deg head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. Therefore, the bed rest analog allows us to investigate the impact of body unloading on both functional tasks and on the underlying physiological factors that lead to decrement in performance and then compare them with the results obtained in our space flight study. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures included assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, heart rate, blood pressure

  20. Performance on a functional motor task is enhanced by sleep in middle-aged and older adults.

    PubMed

    Al-Sharman, Alham; Siengsukon, Catherine F

    2014-07-01

    Although sleep has been shown to enhance motor skill learning, it remains unclear whether sleep enhances learning of a functional motor task in middle-aged and older individuals. The purpose of this study was to examine whether sleep enhances motor learning of a functional motor task in middle-aged and older adults. Twenty middle-aged and 20 older individuals were randomly assigned to either the sleep condition or the no-sleep condition. Participants in the sleep condition practiced a novel walking task in the evening, and returned the following morning for retesting. Participants in the no-sleep condition practiced the walking task in the morning and returned the same day in the evening for a retest. Outcome measures included time around the walking path and spatiotemporal gait parameters. Only the middle-aged and older adults in the sleep condition demonstrated significant off-line improvement in performance, measured as a decline in time to walk around the novel path and improvement in spatiotemporal gait parameters. The middle-aged and older adults in the no-sleep condition failed to demonstrate off-line improvements in performance of this functional task. This is the first study to provide evidence that sleep facilitates learning a clinically relevant functional motor task in middle-aged and older adults. Because many neurologic conditions occur in the middle-aged and older adults and sleep issues are very prevalent in many neurologic conditions, it is imperative that physical therapists consider sleep as a factor that may impact motor learning and recovery in these individuals. (See Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A73) for more insights from the authors.

  1. Preliminary functional MRI neural correlates of executive functioning and empathy in children with obstructive sleep apnea.

    PubMed

    Kheirandish-Gozal, Leila; Yoder, Keith; Kulkarni, Richa; Gozal, David; Decety, Jean

    2014-03-01

    Pediatric obstructive sleep apnea (OSA) is associated with neurocognitive deficits. However, the neural substrates underlying such deficits remain unknown. To examine executive control and emotional processing in OSA, 10 children age 7 to 11 y with polysomnographically diagnosed OSA and 7 age- and sex-matched controls underwent a color-word Stroop task and an empathy task consisting of dynamic visual scenarios depicting interpersonal harm or neutral actions in a magnetic resonance imaging (MRI) scanner. Functional MRI data were processed using MATLAB 7.12 with SPM8 for region of interest (ROI) analyses, and a general linear model was used with regressors for each trial type in each task. For the Stroop task, accuracy was similar in the two groups, with no differences in the effect of incongruency on success rates. OSA showed greater neural activity than controls in eight ROI clusters for incongruent versus congruent trials (P < 0.001). Within the a priori ROIs, the anterior cingulate cortex was significantly different between groups (P < 0.05). For perceiving harm versus neutral actions, ROI analysis revealed a significant correlation between apnea-hypopnea index and left amygdala activity in harm versus neutral actions (r = -0.71, P < 0.05). These results provide the first functional MRI evidence that cognitive and empathetic processing is influenced by obstructive sleep apnea (OSA) in children. Children with OSA show greater neural recruitment of regions implicated in cognitive control, conflict monitoring, and attentional allocation in order to perform at the same level as children without OSA. When viewing empathy-eliciting scenarios, the severity of OSA predicted less sensitivity to harm in the left amygdala.

  2. Executive and attentional functions in chronic pain: Does performance decrease with increasing task load?

    PubMed Central

    Oosterman, Joukje M; Derksen, Laura C; van Wijck, Albert JM; Kessels, Roy PC; Veldhuijzen, Dieuwke S

    2012-01-01

    BACKGROUND: Diminished executive function and attentional control has been reported in chronic pain patients. However, the precise pattern of impairment in these aspects of cognition in chronic pain remains unclear. Moreover, a decline in psychomotor speed could potentially influence executive and attentional control performance in pain patients. OBJECTIVE: To examine different aspects of executive and attentional control in chronic pain together with the confounding role of psychomotor slowing. METHODS: Neuropsychological tests of sustained attention, planning ability, inhibition and mental flexibility were administered to 34 participants with chronic pain and 32 control participants. RESULTS: Compared with the controls, participants with chronic pain took longer to complete tests of sustained attention and mental flexibility, but did not perform worse on inhibition or planning tasks. The decreased performance on the mental flexibility task likely reflects a reduction in psychomotor speed. The pattern of performance on the sustained attention task reveals a specific decline in attention, indicated by a disproportionate decline in performance with an increase in task duration and by increased fluctuations in attention during task performance. No additional effect was noted of pain intensity, pain duration, pain catastrophizing, depressive symptoms, reduced sleep because of the pain or opioid use. CONCLUSIONS: Executive and attention functions are not uniformly affected in chronic pain. At least part of the previously reported decline in executive function in this group may reflect psychomotor slowing. Overall, limited evidence was found that executive and attention performance is indeed lower in chronic pain. Therefore, it can be concluded that in chronic pain sustained attention performance is diminished while mental flexibility, planning and inhibition appear to be intact. PMID:22606680

  3. Neurocognitive functioning in individuals with bipolar disorder and their healthy siblings: a preliminary study

    PubMed Central

    Bauer, Isabelle E.; Wu, Mon-Ju; Frazier, T.W.; Mwangi, Benson; Spiker, Danielle; Zunta-Soares, Giovana B.; Soares, Jair C.

    2016-01-01

    Background Cognitive deficits have been consistently reported in individuals with bipolar disorder (BD). The cognitive profile of siblings of individuals with BD is, however, less clearly established possibly due to the heterogeneity of neuropsychological measures used in previous studies. The aim of this exploratory study was to assess the cognitive function of siblings of individuals with BD and compare it with that of their first-degree relatives suffering with BD, and healthy controls (HC) using the Cambridge Neuropsychological Test Automated Battery (CANTAB) - a comprehensive and validated computerized cognitive battery. Methods We recruited 23 HC (33.52±10.29 years, 8 males), 27 individuals with BD (34.26±10.19 years, 9 males, 25 BDI, 1BDII and 1 BD-NOS), and 15 of their biologically related siblings (37.47±13.15 years, 4 males). Siblings had no current or lifetime history of mental disorders. Participants performed the CANTAB and completed questionnaires assessing mood and global functioning. Multivariate analyses compared CANTAB measures across the three participant groups. Results Individuals with BD and their siblings were less accurate in a task of sustained attention (Rapid Visual Processing) when compared to HC. Further, individuals with BD displayed pronounced deficits in affective processing (Affective Go/No-Go) compared to HC. There were no cognitive differences between siblings and individuals with BD. After correcting for current depressive symptoms, these results did not reach statistical significance. Conclusions Subthreshold depressive symptoms may be associated with reduced sustained attention in healthy siblings of BD patients. This preliminary result needs to be corroborated by large-scale, longitudinal studies assessing the relationship between cognition and mood in vulnerable individuals. PMID:27179338

  4. Child abuse and performance task assessments of executive functions in boys.

    PubMed

    Mezzacappa, E; Kindlon, D; Earls, F

    2001-11-01

    We examined executive functions using performance tasks in 126 boys aged 6 to 16 years. who attended public schools and therapeutic schools for children with emotional and behavioral problems. Children were further grouped based on the presence or absence of substantiated abuse histories. Based on their abuse histories and schools of origin, children were classified as Therapeutic, Abused (TA, N = 25). Therapeutic, Nonabused (TN, N = 52), and Public School (PS, N = 48). Controlling IQ and medication status, we compared children in the three groups on teacher ratings of behavior, on experimenter observations of behavior during testing, and on performance tasks challenging the capacities to inhibit an act in progress, and to passively avoid responses associated with adverse consequences. We examined mean group differences in symptoms, behaviors, and task performance, as well as differential age-dependent changes in these dimensions. Independent of abuse history, therapeutic school children demonstrated comparable levels of internalizing and externalizing symptoms, and comparable levels of redirections to task during testing-sessions, that were significantly higher than those of the public school children. Both groups of therapeutic school children also showed comparable overall performance on the capacities to inhibit an act in progress, and to passively avoid responses associated with adverse consequences that were poorer than the performance of children from the public school. Children with histories of substantiated abuse showed diminished improvement with increasing age in the capacity to passively avoid responses associated with adverse consequences when compared not only to the public school children, but also to the children from the therapeutic schools without histories of abuse. Our findings complement reports of behavioral observations of abused children, and reports associating child abuse with altered cognitive development in other areas of competence

  5. Effects of dual-task training on balance and executive functions in Parkinson's disease: A pilot study.

    PubMed

    Fernandes, Ângela; Rocha, Nuno; Santos, Rubim; Tavares, João Manuel R S

    2015-01-01

    The aim of this study was to analyze the efficacy of cognitive-motor dual-task training compared with single-task training on balance and executive functions in individuals with Parkinson's disease. Fifteen subjects, aged between 39 and 75 years old, were randomly assigned to the dual-task training group (n = 8) and single-task training group (n = 7). The training was run twice a week for 6 weeks. The single-task group received balance training and the dual-task group performed cognitive tasks simultaneously with the balance training. There were no significant differences between the two groups at baseline. After the intervention, the results for mediolateral sway with eyes closed were significantly better for the dual-task group and anteroposterior sway with eyes closed was significantly better for the single-task group. The results suggest superior outcomes for the dual-task training compared to the single-task training for static postural control, except in anteroposterior sway with eyes closed.

  6. Individual Differences in General Intelligence Correlate with Brain Function during Nonreasoning Tasks.

    ERIC Educational Resources Information Center

    Haier, Richard J.; White, Nathan S.; Alkire, Michael T.

    2003-01-01

    Administered Raven's Advanced Progressive Matrices to 22 adults and measured cerebral glucose activity as subjects viewed videos on 2 occasions. Data provide evidence that individual differences in intelligence correlate with brain function even when the brain is engaged in non-reasoning tasks. (SLD)

  7. Functional brain microstate predicts the outcome in a visuospatial working memory task.

    PubMed

    Muthukrishnan, Suriya-Prakash; Ahuja, Navdeep; Mehta, Nalin; Sharma, Ratna

    2016-11-01

    Humans have limited capacity of processing just up to 4 integrated items of information in the working memory. Thus, it is inevitable to commit more errors when challenged with high memory loads. However, the neural mechanisms that determine the accuracy of response at high memory loads still remain unclear. High temporal resolution of Electroencephalography (EEG) technique makes it the best tool to resolve the temporal dynamics of brain networks. EEG-defined microstate is the quasi-stable scalp electrical potential topography that represents the momentary functional state of brain. Thus, it has been possible to assess the information processing currently performed by the brain using EEG microstate analysis. We hypothesize that the EEG microstate preceding the trial could determine its outcome in a visuospatial working memory (VSWM) task. Twenty-four healthy participants performed a high memory load VSWM task, while their brain activity was recorded using EEG. Four microstate maps were found to represent the functional brain state prior to the trials in the VSWM task. One pre-trial microstate map was found to determine the accuracy of subsequent behavioural response. The intracranial generators of the pre-trial microstate map that determined the response accuracy were localized to the visuospatial processing areas at bilateral occipital, right temporal and limbic cortices. Our results imply that the behavioural outcome in a VSWM task could be determined by the intensity of activation of memory representations in the visuospatial processing brain regions prior to the trial. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Self-Regulation and Executive Functioning as Related to Survival in Motor Neuron Disease: Preliminary Findings.

    PubMed

    Garcia-Willingham, Natasha E; Roach, Abbey R; Kasarskis, Edward J; Segerstrom, Suzanne C

    2018-05-16

    Disease progression varies widely among patients with motor neuron disease (MND). Patients with MND and coexisting dementia have shorter survival. However, implications of mild cognitive and behavioral difficulties are unclear. The present study examined the relative contribution of executive functioning and self-regulation difficulties on survival over a 6-year period among patients with MND, who scored largely within normal limits on cognitive and behavioral indices. Patients with MND (N=37, age=59.97±11.57, 46% female) completed the Wisconsin Card Sorting Task (WCST) as an executive functioning perseveration index. The Behavior Rating Inventory of Executive Functions (BRIEF-A) was used as a behavioral measure of self-regulation in two subdomains self-regulatory behavior (Behavioral Regulation) and self-regulatory problem-solving (Metacognition). Cox proportional hazard regression analyses were used. In total, 23 patients died during follow-up. In Cox proportional hazard regressions adjusted for a priori covariates, each 10-point T-score increment in patient-reported BRIEF-A self-regulatory behavior and problem-solving difficulties increased mortality risk by 94% and103%, respectively (adjusted HR=1.94, 95% CI [1.07, 3.52]; adjusted HR=2.03, 95% CI [1.19, 3.48]). In sensitivity analyses, patient-reported self-regulatory problem-solving remained significant independent of disease severity and a priori covariates (adjusted HR=1.68, 95% CI [1.01, 2.78], though the predictive value of self-regulatory behavior was attenuated in adjusted models (HR=1.67, 95% CI [0.85, 3.27). Caregiver-reported BRIEF-A ratings of patients and WCST perseverative errors did not significantly predict survival. Preliminary evidence suggests patient-reported self-regulatory problem-solving difficulties indicate poorer prognosis in MND. Further research is needed to uncover mechanisms that negatively affect patient survival.

  9. The Lexical Stroop Sort (LSS) picture-word task: a computerized task for assessing the relationship between language and executive functioning in school-aged children.

    PubMed

    Wilbourn, Makeba Parramore; Kurtz, Laura E; Kalia, Vrinda

    2012-03-01

    The relationship between language development and executive function (EF) in children is not well understood. The Lexical Stroop Sort (LSS) task is a computerized EF task created for the purpose of examining the relationship between school-aged children's oral language development and EF. To validate this new measure, a diverse sample of school-aged children completed standardized oral language assessments, the LSS task, and the widely used Dimensional Change Card Sort (DCCS; Zelazo, 2006) task. Both EF tasks require children to sort stimuli into categories based on predetermined rules. While the DCCS largely relies on visual stimuli, the LSS employs children's phonological loop to access their semantic knowledge base. Accuracy and reaction times were recorded for both tasks. Children's scores on the LSS task were correlated with their scores on the DCCS task, and a similar pattern of relationships emerged between children's vocabulary and the two EF tasks, thus providing convergent validity for the LSS. However, children's phonological awareness was associated with their scores on the LSS, but not with those on the DCCS. In addition, a mediation model was used to elucidate the predictive relationship between phonological awareness and children's performance on the LSS task, with children's vocabulary fully mediating this relationship. The use of this newly created and validated LSS task with different populations, such as preschoolers and bilinguals, is also discussed.

  10. Executive functioning in preschool children: performance on A-not-B and other delayed response format tasks.

    PubMed

    Espy, K A; Kaufmann, P M; McDiarmid, M D; Glisky, M L

    1999-11-01

    The A-not-B (AB) task has been hypothesized to measure executive/frontal lobe function; however, the developmental and measurement characteristics of this task have not been investigated. Performances on AB and comparison tasks adapted from developmental and neuroscience literature was examined in 117 preschool children (ages 23-66 months). Age significantly predicted performance on AB, Delayed Alternation, Spatial Reversal, Color Reversal, and Self-Control tasks. A four-factor analytic model best fit task performance data. AB task indices loaded on two factors with measures from the Self-Control and Delayed Alternation tasks, respectively. AB indices did not load with those from the reversal tasks despite similarities in task administration and presumed cognitive demand (working memory). These results indicate that AB is sensitive to individual differences in age-related performance in preschool children and suggest that AB performance is related to both working memory and inhibition processes in this age range.

  11. Numerical bias in bounded and unbounded number line tasks.

    PubMed

    Cohen, Dale J; Blanc-Goldhammer, Daryn

    2011-04-01

    The number line task is often used to assess children's and adults' underlying representations of integers. Traditional bounded number line tasks, however, have limitations that can lead to misinterpretation. Here we present a new task, an unbounded number line task, that overcomes these limitations. In Experiment 1, we show that adults use a biased proportion estimation strategy to complete the traditional bounded number line task. In Experiment 2, we show that adults use a dead-reckoning integer estimation strategy in our unbounded number line task. Participants revealed a positively accelerating numerical bias in both tasks, but showed scalar variance only in the unbounded number line task. We conclude that the unbounded number line task is a more pure measure of integer representation than the bounded number line task, and using these results, we present a preliminary description of adults' underlying representation of integers.

  12. Establishing the resting state default mode network derived from functional magnetic resonance imaging tasks as an endophenotype: A twins study.

    PubMed

    Korgaonkar, Mayuresh S; Ram, Kaushik; Williams, Leanne M; Gatt, Justine M; Grieve, Stuart M

    2014-08-01

    The resting state default mode network (DMN) has been shown to characterize a number of neurological and psychiatric disorders. Evidence suggests an underlying genetic basis for this network and hence could serve as potential endophenotype for these disorders. Heritability is a defining criterion for endophenotypes. The DMN is measured either using a resting-state functional magnetic resonance imaging (fMRI) scan or by extracting resting state activity from task-based fMRI. The current study is the first to evaluate heritability of this task-derived resting activity. 250 healthy adult twins (79 monozygotic and 46 dizygotic same sex twin pairs) completed five cognitive and emotion processing fMRI tasks. Resting state DMN functional connectivity was derived from these five fMRI tasks. We validated this approach by comparing connectivity estimates from task-derived resting activity for all five fMRI tasks, with those obtained using a dedicated task-free resting state scan in an independent cohort of 27 healthy individuals. Structural equation modeling using the classic twin design was used to estimate the genetic and environmental contributions to variance for the resting-state DMN functional connectivity. About 9-41% of the variance in functional connectivity between the DMN nodes was attributed to genetic contribution with the greatest heritability found for functional connectivity between the posterior cingulate and right inferior parietal nodes (P<0.001). Our data provide new evidence that functional connectivity measures from the intrinsic DMN derived from task-based fMRI datasets are under genetic control and have the potential to serve as endophenotypes for genetically predisposed psychiatric and neurological disorders. Copyright © 2014 Wiley Periodicals, Inc.

  13. EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks.

    PubMed

    Berka, Chris; Levendowski, Daniel J; Lumicao, Michelle N; Yau, Alan; Davis, Gene; Zivkovic, Vladimir T; Olmstead, Richard E; Tremoulet, Patrice D; Craven, Patrick L

    2007-05-01

    The ability to continuously and unobtrusively monitor levels of task engagement and mental workload in an operational environment could be useful in identifying more accurate and efficient methods for humans to interact with technology. This information could also be used to optimize the design of safer, more efficient work environments that increase motivation and productivity. The present study explored the feasibility of monitoring electroencephalo-graphic (EEG) indices of engagement and workload acquired unobtrusively and quantified during performance of cognitive tests. EEG was acquired from 80 healthy participants with a wireless sensor headset (F3-F4,C3-C4,Cz-POz,F3-Cz,Fz-C3,Fz-POz) during tasks including: multi-level forward/backward-digit-span, grid-recall, trails, mental-addition, 20-min 3-Choice Vigilance, and image-learning and memory tests. EEG metrics for engagement and workload were calculated for each 1 -s of EEG. Across participants, engagement but not workload decreased over the 20-min vigilance test. Engagement and workload were significantly increased during the encoding period of verbal and image-learning and memory tests when compared with the recognition/ recall period. Workload but not engagement increased linearly as level of difficulty increased in forward and backward-digit-span, grid-recall, and mental-addition tests. EEG measures correlated with both subjective and objective performance metrics. These data in combination with previous studies suggest that EEG engagement reflects information-gathering, visual processing, and allocation of attention. EEG workload increases with increasing working memory load and during problem solving, integration of information, analytical reasoning, and may be more reflective of executive functions. Inspection of EEG on a second-by-second timescale revealed associations between workload and engagement levels when aligned with specific task events providing preliminary evidence that second

  14. Determining Reliability of a Dual-Task Functional Mobility Protocol for Individuals With Lower Extremity Amputation.

    PubMed

    Hunter, Susan W; Frengopoulos, Courtney; Holmes, Jeff; Viana, Ricardo; Payne, Michael W

    2018-04-01

    To determine the relative and absolute reliability of a dual-task functional mobility assessment. Cross-sectional study. Academic rehabilitation hospital. Individuals (N=60) with lower extremity amputation attending an outpatient amputee clinic (mean age, 58.21±12.59y; 18, 80% male) who were stratified into 3 groups: (1) transtibial amputation of vascular etiology (n=20); (2) transtibial amputation of nonvascular etiology (n=20); and (3) transfemoral or bilateral amputation of any etiology (n=20). Not applicable. Time to complete the L Test measured functional mobility under single- and dual-task conditions. The addition of a cognitive task (serial subtractions by 3's) created dual-task conditions. Single-task performance on the cognitive task was also reported. Intraclass correlation coefficients (ICCs) measured relative reliability; SEM and minimal detectable change with a 95% confidence interval (MDC 95 ) measured absolute reliability. Bland-Altman plots measured agreement between assessments. Relative reliability results were excellent for all 3 groups. Values for the dual-task L Test for those with transtibial amputation of vascular etiology (n=20; mean age, 60.36±7.84y; 19, 90% men) were ICC=.98 (95% confidence interval [CI], .94-.99), SEM=1.36 seconds, and MDC 95 =3.76 seconds; for those with transtibial amputation of nonvascular etiology (n=20; mean age, 55.85±14.08y; 17, 85% men), values were ICC=.93 (95% CI, .80-.98), SEM=1.34 seconds, and MDC 95 =3.71 seconds; and for those with transfemoral or bilateral amputation (n=20; mean age, 58.21±14.88y; 13, 65% men), values were ICC=.998 (95% CI, .996-.999), SEM=1.03 seconds, and MDC 95 =2.85 seconds. Bland-Altman plots indicated that assessments did not vary systematically for each group. This dual-task assessment protocol achieved approved levels of relative reliability values for the 3 groups tested. This protocol may be used clinically or in research settings to assess the interaction between cognition

  15. Vestibular Function Research (VFR) experiment. Phase B: Design definition study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Vestibular Functions Research (VFR) Experiment was established to investigate the neurosensory and related physiological processes believed to be associated with the space flight nausea syndrome and to develop logical means for its prediction, prevention and treatment. The VFR Project consists of ground and spaceflight experimentation using frogs as specimens. The phase B Preliminary Design Study provided for the preliminary design of the experiment hardware, preparation of performance and hardware specification and a Phase C/D development plan, establishment of STS (Space Transportation System) interfaces and mission operations, and the study of a variety of hardware, experiment and mission options. The study consist of three major tasks: (1) mission mode trade-off; (2) conceptual design; and (3) preliminary design.

  16. Using functional transcranial Doppler ultrasonography to assess language lateralisation: Influence of task and difficulty level

    PubMed Central

    Badcock, Nicholas A.; Nye, Abigail; Bishop, Dorothy V. M.

    2011-01-01

    Language is lateralised to the left hemisphere in most people, but it is unclear whether the same degree and direction of lateralisation is found for all verbal tasks and whether laterality is affected by task difficulty. We used functional transcranial Doppler ultrasonography (fTCD) to assess the lateralisation of language processing in 27 young adults using three tasks: word generation (WG), auditory naming (AN), and picture story (PS). WG and AN are active tasks requiring behavioural responses whereas PS is a passive task that involves listening to an auditory story accompanied by pictures. We also examined the effect of task difficulty by a post hoc behavioural categorisation of trials in the WG task and a word frequency manipulation in the AN task. fTCD was used to measure task-dependent blood flow velocity changes in the left and right middle cerebral arteries. All of these tasks were significantly left lateralised: WG, 77% of individuals left, 5% right; AN, 72% left: 4% right; PS, 56% left: 0% right. There were significant positive relationships between WG and AN (r = 0.56) as well as AN and PS (r = .76) but not WG and PS (r = −0.22). The task difficulty manipulation affected accuracy in both WG and AN tasks, as well as reaction time in the AN task, but did not significantly influence laterality indices in either task. It is concluded that verbal tasks are not interchangeable when assessing cerebral lateralisation, but that differences between tasks are not a consequence of task difficulty. PMID:23098198

  17. Will working memory training generalize to improve off-task behavior in children with attention-deficit/hyperactivity disorder?

    PubMed

    Green, Chloe T; Long, Debra L; Green, David; Iosif, Ana-Maria; Dixon, J Faye; Miller, Meghan R; Fassbender, Catherine; Schweitzer, Julie B

    2012-07-01

    Computerized working memory and executive function training programs designed to target specific impairments in executive functioning are becoming increasingly available, yet how well these programs generalize to improve functional deficits in disorders, such as attention-deficit/hyperactivity disorder (ADHD), beyond the training context is not well-established. The aim of this study was to examine the extent to which working memory (WM) training in children with ADHD would diminish a core dysfunctional behavior associated with the disorder, "off-task" behavior during academic task performance. The effect of computerized WM training (adaptive) was compared to a placebo condition (nonadaptive) in a randomized, double-blind, placebo-controlled design in 26 children (18 males; age, 7 to 14 years old) diagnosed with ADHD. Participants completed the training in approximately 25 sessions. The Restricted Academic Situations Task (RAST) observational system was used to assess aspects of off-task behavior during the completion of an academic task. Traditional measures of ADHD symptoms (Conners' Parent Rating Scale) and WM ability (standardized WM tests) were also collected. WM training led to significant reductions in off-task ADHD-associated behavior on the RAST system and improvement on WM tests. There were no significant differences between groups in improvement on parent rating scales. Findings lend insight into the generalizability of the effects of WM training and the relation between deficits in WM and off-task behavioral components of ADHD. These preliminary data suggest WM training may provide a mechanism for indirectly altering academic performance in children with ADHD.

  18. A method to classify schizophrenia using inter-task spatial correlations of functional brain images.

    PubMed

    Michael, Andrew M; Calhoun, Vince D; Andreasen, Nancy C; Baum, Stefi A

    2008-01-01

    The clinical heterogeneity of schizophrenia (scz) and the overlap of self reported and observed symptoms with other mental disorders makes its diagnosis a difficult task. At present no laboratory-based or image-based diagnostic tool for scz exists and such tools are desired to support existing methods for more precise diagnosis. Functional magnetic resonance imaging (fMRI) is currently employed to identify and correlate cognitive processes related to scz and its symptoms. Fusion of multiple fMRI tasks that probe different cognitive processes may help to better understand hidden networks of this complex disorder. In this paper we utilize three different fMRI tasks and introduce an approach to classify subjects based on inter-task spatial correlations of brain activation. The technique was applied to groups of patients and controls and its validity was checked with the leave-one-out method. We show that the classification rate increases when information from multiple tasks are combined.

  19. Acoustic Variations in Adductor Spasmodic Dysphonia as a Function of Speech Task.

    ERIC Educational Resources Information Center

    Sapienza, Christine M.; Walton, Suzanne; Murry, Thomas

    1999-01-01

    Acoustic phonatory events were identified in 14 women diagnosed with adductor spasmodic dysphonia (ADSD), a focal laryngeal dystonia that disturbs phonatory function, and compared with those of 14 age-matched women with no vocal dysfunction. Findings indicated ADSD subjects produced more aberrant acoustic events than controls during tasks of…

  20. Executive function and childhood stuttering: Parent ratings and evidence from a behavioral task.

    PubMed

    Ntourou, Katerina; Anderson, Julie D; Wagovich, Stacy A

    2018-06-01

    The purpose of this study was to examine the executive function (EF) abilities of preschool children who do (CWS) and do not stutter (CWNS) using a parent-report questionnaire and a behavioral task. Participants were 75 CWS and 75 CWNS between the ages of 3;0 and 5;11 (years; months). Parents rated their children's EF abilities using the Behavioral Rating Inventory of Executive Function-Preschool Version (BRIEF-P; Gioia, Espy, & Isquith, 2003). Children's ability to integrate cognitive flexibility, inhibitory control, and working memory was measured using a behavioral task, the Head-Toes-Knees-Shoulders (HTKS; Cameron Ponitz, McClelland, Matthews, & Morrison, 2009). The CWS were judged by their parents as being less proficient in working memory, shift/flexibility, and overall EF than the parents of the CWNS. Children in the CWS group were also 2½ to 7 times more likely than children in the CWNS group to exhibit clinically significant difficulties with EF. Behavioral task findings revealed that 3-year old CWS performed more poorly than their peers on the HTKS. Parental ratings of executive function and working memory were significantly and moderately correlated with receptive and expressive vocabulary skills only for the CWNS group. CWS have more difficulty with EF in everyday life and may experience early delays in their ability to integrate aspects of attention and EF compared to CWNS. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Idiom Comprehension Deficits in High-Functioning Autism Spectrum Disorder Using a Korean Autism Social Language Task.

    PubMed

    Lee, Seul Bee; Song, Seung Ha; Ham, Ju Hyun; Song, Dong Ho; Cheon, Keun-Ah

    2015-11-01

    High-functioning autism spectrum disorder (ASD) involves pragmatic impairment of language skills. Among numerous tasks for assessing pragmatic linguistic skills, idioms are important to evaluating high-functioning ASD. Nevertheless, no assessment tool has been developed with specific consideration of Korean culture. Therefore, we designed the Korean Autism Social Language Task (KASLAT) to test idiom comprehension in ASD. The aim of the current study was to introduce this novel psychological tool and evaluate idiom comprehension deficits in high-functioning ASD. The participants included 42 children, ages 6-11 years, who visited our child psychiatric clinic between April 2014 and May 2015. The ASD group comprised 16 children; the attention deficit hyperactivity disorder (ADHD) group consisted of 16 children. An additional 10 normal control children who had not been diagnosed with either disorder participated in this study. Idiom comprehension ability was assessed in these three groups using the KASLAT. Both ASD and ADHD groups had significantly lower scores on the matched and mismatched tasks, compared to the normal control children (matched tasks mean score: ASD 11.56, ADHD 11.56, normal control 14.30; mismatched tasks mean score: ASD 6.50, ADHD 4.31, normal control 11.30). However, no significant differences were found in scores of KASLAT between the ADHD and ASD groups. These findings suggest that children with ASD exhibit greater impairment in idiom comprehension, compared to normal control children. The KASLAT may be useful in evaluating idiom comprehension ability.

  2. The effects of mirror therapy with tasks on upper extremity function and self-care in stroke patients.

    PubMed

    Park, Youngju; Chang, Moonyoung; Kim, Kyeong-Mi; An, Duk-Hyun

    2015-05-01

    [Purpose] The purpose of this study was to determine the effects of mirror therapy with tasks on upper extremity unction and self-care in stroke patients. [Subjects] Thirty participants were randomly assigned to either an experimental group (n=15) or a control group (n=15). [Methods] Subjects in the experimental group received mirror therapy with tasks, and those in the control group received a sham therapy; both therapies were administered, five times per week for six weeks. The main outcome measures were the Manual Function Test for the paralyzed upper limb and the Functional Independence Measure for self-care performance. [Results] The experimental group had more significant gains in change scores compared with the control group after the intervention. [Conclusion] We consider mirror therapy with tasks to be an effective form of intervention for upper extremity function and self-care in stroke patients.

  3. Cognitive task analysis: Techniques applied to airborne weapons training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terranova, M.; Seamster, T.L.; Snyder, C.E.

    1989-01-01

    This is an introduction to cognitive task analysis as it may be used in Naval Air Systems Command (NAVAIR) training development. The focus of a cognitive task analysis is human knowledge, and its methods of analysis are those developed by cognitive psychologists. This paper explains the role that cognitive task analysis and presents the findings from a preliminary cognitive task analysis of airborne weapons operators. Cognitive task analysis is a collection of powerful techniques that are quantitative, computational, and rigorous. The techniques are currently not in wide use in the training community, so examples of this methodology are presented alongmore » with the results. 6 refs., 2 figs., 4 tabs.« less

  4. Executive function deficits in team sport athletes with a history of concussion revealed by a visual-auditory dual task paradigm.

    PubMed

    Tapper, Anthony; Gonzalez, Dave; Roy, Eric; Niechwiej-Szwedo, Ewa

    2017-02-01

    The purpose of this study was to examine executive functions in team sport athletes with and without a history of concussion. Executive functions comprise many cognitive processes including, working memory, attention and multi-tasking. Past research has shown that concussions cause difficulties in vestibular-visual and vestibular-auditory dual-tasking, however, visual-auditory tasks have been examined rarely. Twenty-nine intercollegiate varsity ice hockey athletes (age = 19.13, SD = 1.56; 15 females) performed an experimental dual-task paradigm that required simultaneously processing visual and auditory information. A brief interview, event description and self-report questionnaires were used to assign participants to each group (concussion, no-concussion). Eighteen athletes had a history of concussion and 11 had no concussion history. The two tests involved visuospatial working memory (i.e., Corsi block test) and auditory tone discrimination. Participants completed both tasks individually, then simultaneously. Two outcome variables were measured, Corsi block memory span and auditory tone discrimination accuracy. No differences were shown when each task was performed alone; however, athletes with a history of concussion had a significantly worse performance on the tone discrimination task in the dual-task condition. In conclusion, long-term deficits in executive functions were associated with a prior history of concussion when cognitive resources were stressed. Evaluations of executive functions and divided attention appear to be helpful in discriminating participants with and without a history concussion.

  5. Functional connectivity in task-negative network of the Deaf: effects of sign language experience

    PubMed Central

    Talavage, Thomas M.; Wilbur, Ronnie B.

    2014-01-01

    Prior studies investigating cortical processing in Deaf signers suggest that life-long experience with sign language and/or auditory deprivation may alter the brain’s anatomical structure and the function of brain regions typically recruited for auditory processing (Emmorey et al., 2010; Pénicaud et al., 2013 inter alia). We report the first investigation of the task-negative network in Deaf signers and its functional connectivity—the temporal correlations among spatially remote neurophysiological events. We show that Deaf signers manifest increased functional connectivity between posterior cingulate/precuneus and left medial temporal gyrus (MTG), but also inferior parietal lobe and medial temporal gyrus in the right hemisphere- areas that have been found to show functional recruitment specifically during sign language processing. These findings suggest that the organization of the brain at the level of inter-network connectivity is likely affected by experience with processing visual language, although sensory deprivation could be another source of the difference. We hypothesize that connectivity alterations in the task negative network reflect predictive/automatized processing of the visual signal. PMID:25024915

  6. The effects of stimulus modality and task integrality: Predicting dual-task performance and workload from single-task levels

    NASA Technical Reports Server (NTRS)

    Hart, S. G.; Shively, R. J.; Vidulich, M. A.; Miller, R. C.

    1986-01-01

    The influence of stimulus modality and task difficulty on workload and performance was investigated. The goal was to quantify the cost (in terms of response time and experienced workload) incurred when essentially serial task components shared common elements (e.g., the response to one initiated the other) which could be accomplished in parallel. The experimental tasks were based on the Fittsberg paradigm; the solution to a SternBERG-type memory task determines which of two identical FITTS targets are acquired. Previous research suggested that such functionally integrated dual tasks are performed with substantially less workload and faster response times than would be predicted by suming single-task components when both are presented in the same stimulus modality (visual). The physical integration of task elements was varied (although their functional relationship remained the same) to determine whether dual-task facilitation would persist if task components were presented in different sensory modalities. Again, it was found that the cost of performing the two-stage task was considerably less than the sum of component single-task levels when both were presented visually. Less facilitation was found when task elements were presented in different sensory modalities. These results suggest the importance of distinguishing between concurrent tasks that complete for limited resources from those that beneficially share common resources when selecting the stimulus modalities for information displays.

  7. Investigating the effects of caffeine on executive functions using traditional Stroop and a new ecologically-valid virtual reality task, the Jansari assessment of Executive Functions (JEF(©)).

    PubMed

    Soar, K; Chapman, E; Lavan, N; Jansari, A S; Turner, J J D

    2016-10-01

    Caffeine has been shown to have effects on certain areas of cognition, but in executive functioning the research is limited and also inconsistent. One reason could be the need for a more sensitive measure to detect the effects of caffeine on executive function. This study used a new non-immersive virtual reality assessment of executive functions known as JEF(©) (the Jansari Assessment of Executive Function) alongside the 'classic' Stroop Colour-Word task to assess the effects of a normal dose of caffeinated coffee on executive function. Using a double-blind, counterbalanced within participants procedure 43 participants were administered either a caffeinated or decaffeinated coffee and completed the 'JEF(©)' and Stroop tasks, as well as a subjective mood scale and blood pressure pre- and post condition on two separate occasions a week apart. JEF(©) yields measures for eight separate aspects of executive functions, in addition to a total average score. Findings indicate that performance was significantly improved on the planning, creative thinking, event-, time- and action-based prospective memory, as well as total JEF(©) score following caffeinated coffee relative to the decaffeinated coffee. The caffeinated beverage significantly decreased reaction times on the Stroop task, but there was no effect on Stroop interference. The results provide further support for the effects of a caffeinated beverage on cognitive functioning. In particular, it has demonstrated the ability of JEF(©) to detect the effects of caffeine across a number of executive functioning constructs, which weren't shown in the Stroop task, suggesting executive functioning improvements as a result of a 'typical' dose of caffeine may only be detected by the use of more real-world, ecologically valid tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A FUNCTIONAL NEUROIMAGING INVESTIGATION OF THE ROLES OF STRUCTURAL COMPLEXITY AND TASK-DEMAND DURING AUDITORY SENTENCE PROCESSING

    PubMed Central

    Love, Tracy; Haist, Frank; Nicol, Janet; Swinney, David

    2009-01-01

    Using functional magnetic resonance imaging (fMRI), this study directly examined an issue that bridges the potential language processing and multi-modal views of the role of Broca’s area: the effects of task-demands in language comprehension studies. We presented syntactically simple and complex sentences for auditory comprehension under three different (differentially complex) task-demand conditions: passive listening, probe verification, and theme judgment. Contrary to many language imaging findings, we found that both simple and complex syntactic structures activated left inferior frontal cortex (L-IFC). Critically, we found activation in these frontal regions increased together with increased task-demands. Specifically, tasks that required greater manipulation and comparison of linguistic material recruited L-IFC more strongly; independent of syntactic structure complexity. We argue that much of the presumed syntactic effects previously found in sentence imaging studies of L-IFC may, among other things, reflect the tasks employed in these studies and that L-IFC is a region underlying mnemonic and other integrative functions, on which much language processing may rely. PMID:16881268

  9. Differential effects of power training versus functional task practice on compensation and restoration of arm function after stroke.

    PubMed

    Corti, Manuela; McGuirk, Theresa E; Wu, Samuel S; Patten, Carolynn

    2012-09-01

    Improved upper-extremity (UE) movement with stroke rehabilitation may involve restoration of more normal or development of compensatory movement patterns. The authors investigated the differential effects of functional task practice (FTP) and dynamic resistance training (POWER) on clinical function and reaching kinematics in an effort to distinguish between mechanisms of gains. A total of 14 hemiparetic individuals were randomly assigned to 10 weeks of either FTP or POWER and then crossed over to 10 weeks of the alternate treatment. Treatment order A was FTP followed by POWER, whereas treatment order B was POWER followed by FTP. Evaluation before and after each treatment block included a battery of clinical evaluations and kinematics of paretic UE functional reach to grasp. Both FTP and POWER improved movement accuracy, as revealed by a shift toward normal, including fewer submovements and reduced reach-path ratio. However, active range of motion revealed differential treatment effects. Shoulder flexion and elbow extension decreased with FTP and were associated with increased trunk displacement. In contrast, shoulder flexion and elbow extension excursion increased with POWER and were associated with significantly reduced trunk displacement. Treatment order B (POWER followed by FTP) revealed greater overall improvements. FTP increases compensatory movement patterns to improve UE function. POWER leads to more normal movement patterns. POWER prior to FTP may enhance the benefits of repetitive task practice.

  10. Development of a task-level robot programming and simulation system

    NASA Technical Reports Server (NTRS)

    Liu, H.; Kawamura, K.; Narayanan, S.; Zhang, G.; Franke, H.; Ozkan, M.; Arima, H.; Liu, H.

    1987-01-01

    An ongoing project in developing a Task-Level Robot Programming and Simulation System (TARPS) is discussed. The objective of this approach is to design a generic TARPS that can be used in a variety of applications. Many robotic applications require off-line programming, and a TARPS is very useful in such applications. Task level programming is object centered in that the user specifies tasks to be performed instead of robot paths. Graphics simulation provides greater flexibility and also avoids costly machine setup and possible damage. A TARPS has three major modules: world model, task planner and task simulator. The system architecture, design issues and some preliminary results are given.

  11. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state.

    PubMed

    Yang, Yan-Li; Deng, Hong-Xia; Xing, Gui-Yang; Xia, Xiao-Luan; Li, Hai-Fang

    2015-02-01

    It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  12. The scaling behavior of hand motions reveals self-organization during an executive function task

    NASA Astrophysics Data System (ADS)

    Anastas, Jason R.; Stephen, Damian G.; Dixon, James A.

    2011-05-01

    Recent approaches to cognition explain cognitive phenomena in terms of interaction-dominant dynamics. In the current experiment, we extend this approach to executive function, a construct used to describe flexible, goal-oriented behavior. Participants were asked to perform a widely used executive function task, card sorting, under two conditions. In one condition, participants were given a rule with which to sort the cards. In the other condition, participants had to induce the rule from experimenter feedback. The motion of each participant’s hand was tracked during the sorting task. Detrended fluctuation analysis was performed on the inter-point time series using a windowing strategy to capture changes over each trial. For participants in the induction condition, the Hurst exponent sharply increased and then decreased. The Hurst exponents for the explicit condition did not show this pattern. Our results suggest that executive function may be understood in terms of changes in stability that arise from interaction-dominant dynamics.

  13. Predicting performance on the Columbia Card Task: effects of personality characteristics, mood, and executive functions.

    PubMed

    Buelow, Melissa T

    2015-04-01

    Behavioral measures of risky decision making are frequently used by researchers and clinicians; however, most of these measures are strongly associated with personality characteristics and state mood. The present study sought to examine personality, mood, and executive function predictors of performance on a newer measure of decision making, the Columbia Card Task (CCT). Participants were 489 undergraduate students who completed either the hot or cold version of the CCT as well as measures of state mood, impulsive sensation seeking, behavioral inhibition and activation systems, and executive functions (Wisconsin Card Sort Task; Digit Span). Results indicated that performance on the CCT-cold was predicted by Wisconsin Card Sort Task errors, and Digit Span predicted the CCT-hot. In addition, significant correlations were found between the CCT information use variables and the predictor variables. Implications for the utility of the CCT as a clinical instrument and its relationship with other measures of decision making are discussed. © The Author(s) 2014.

  14. Walking in School-Aged Children in a Dual-Task Paradigm Is Related to Age But Not to Cognition, Motor Behavior, Injuries, or Psychosocial Functioning

    PubMed Central

    Hagmann-von Arx, Priska; Manicolo, Olivia; Lemola, Sakari; Grob, Alexander

    2016-01-01

    Age-dependent gait characteristics and associations with cognition, motor behavior, injuries, and psychosocial functioning were investigated in 138 typically developing children aged 6.7–13.2 years (M = 10.0 years). Gait velocity, normalized velocity, and variability were measured using the walkway system GAITRite without an additional task (single task) and while performing a motor or cognitive task (dual task). Assessment of children’s cognition included tests for intelligence and executive functions; parents reported on their child’s motor behavior, injuries, and psychosocial functioning. Gait variability (an index of gait regularity) decreased with increasing age in both single- and dual-task walking. Dual-task gait decrements were stronger when children walked in the motor compared to the cognitive dual-task condition and decreased with increasing age in both dual-task conditions. Gait alterations from single- to dual-task conditions were not related to children’s cognition, motor behavior, injuries, or psychosocial functioning. PMID:27014158

  15. Thinking About a Task Is Associated with Increased Connectivity in Regions Activated by Task Performance

    PubMed Central

    Robertson, Edwin M.; Manoach, Dara S.; Stickgold, Robert

    2016-01-01

    Abstract We investigated whether functional neuroimaging of quiet “rest” can reveal the neural correlates of conscious thought. Using resting-state functional MRI, we measured functional connectivity during a resting scan that immediately followed performance of a finger tapping motor sequence task. Self-reports of the amount of time spent thinking about the task during the resting scan correlated with connectivity between regions of the motor network activated during task performance. Thus, thinking about a task is associated with coordinated activity in brain regions responsible for that task's performance. More generally, this study demonstrates the feasibility of using the combination of functional connectivity MRI and self-reports to examine the neural correlates of thought. PMID:26650337

  16. Idiom Comprehension Deficits in High-Functioning Autism Spectrum Disorder Using a Korean Autism Social Language Task

    PubMed Central

    Lee, Seul Bee; Song, Seung Ha; Ham, Ju Hyun; Song, Dong Ho

    2015-01-01

    Purpose High-functioning autism spectrum disorder (ASD) involves pragmatic impairment of language skills. Among numerous tasks for assessing pragmatic linguistic skills, idioms are important to evaluating high-functioning ASD. Nevertheless, no assessment tool has been developed with specific consideration of Korean culture. Therefore, we designed the Korean Autism Social Language Task (KASLAT) to test idiom comprehension in ASD. The aim of the current study was to introduce this novel psychological tool and evaluate idiom comprehension deficits in high-functioning ASD. Materials and Methods The participants included 42 children, ages 6-11 years, who visited our child psychiatric clinic between April 2014 and May 2015. The ASD group comprised 16 children; the attention deficit hyperactivity disorder (ADHD) group consisted of 16 children. An additional 10 normal control children who had not been diagnosed with either disorder participated in this study. Idiom comprehension ability was assessed in these three groups using the KASLAT. Results Both ASD and ADHD groups had significantly lower scores on the matched and mismatched tasks, compared to the normal control children (matched tasks mean score: ASD 11.56, ADHD 11.56, normal control 14.30; mismatched tasks mean score: ASD 6.50, ADHD 4.31, normal control 11.30). However, no significant differences were found in scores of KASLAT between the ADHD and ASD groups. Conclusion These findings suggest that children with ASD exhibit greater impairment in idiom comprehension, compared to normal control children. The KASLAT may be useful in evaluating idiom comprehension ability. PMID:26446644

  17. A New Semantic List Learning Task to Probe Functioning of the Papez Circuit

    PubMed Central

    Schallmo, Michael-Paul; Kassel, Michelle T.; Weisenbach, Sara L.; Walker, Sara J.; Guidotti-Breting, Leslie M.; Rao, Julia A.; Hazlett, Kathleen E.; Considine, Ciaran M.; Sethi, Gurpriya; Vats, Naalti; Pecina, Marta; Welsh, Robert C.; Starkman, Monica N.; Giordani, Bruno; Langenecker, Scott A.

    2016-01-01

    Introduction List learning tasks are powerful clinical tools for studying memory, yet have been relatively underutilized within the functional imaging literature. This limits understanding of regions such as the Papez circuit which support memory performance in healthy, non-demented adults. Method The current study characterized list learning performance in 40 adults who completed a Semantic List Learning Task (SLLT) with a Brown-Peterson manipulation during functional MRI (fMRI). Cued recall with semantic cues, and recognition memory were assessed after imaging. Internal reliability and convergent and discriminant validity were evaluated. Results Subjects averaged 38% accuracy in recall (62% for recognition), with primacy but no recency effects observed. Validity and reliability were demonstrated by showing that the SLLT was correlated with the California Verbal Learning test (CVLT), but not with executive functioning tests, and high intraclass correlation coefficient across lists for recall (.91). fMRI measurements during Encoding (vs. Silent Rehearsal) revealed significant activation in bilateral hippocampus, parahippocampus, and bilateral anterior and posterior cingulate cortex. Post-hoc analyses showed increased activation in anterior and middle hippocampus, subgenual cingulate, and mammillary bodies specific to Encoding. In addition, increasing age was positively associated with increased activation in a diffuse network, particularly frontal cortex and specific Papez regions for correctly recalled words. Gender differences were specific to left inferior and superior frontal cortex. Conclusions This is a clinically relevant list learning task that can be used in studies of groups for which the Papez circuit is damaged or disrupted, in mixed or crossover studies at imaging and clinical sites. PMID:26313512

  18. The Persistence of Experience: Prior Attentional and Emotional State Affects Network Functioning in a Target Detection Task.

    PubMed

    Stern, Emily R; Muratore, Alexandra F; Taylor, Stephan F; Abelson, James L; Hof, Patrick R; Goodman, Wayne K

    2015-09-01

    Efficient, adaptive behavior relies on the ability to flexibly move between internally focused (IF) and externally focused (EF) attentional states. Despite evidence that IF cognitive processes such as event imagination comprise a significant amount of awake cognition, the consequences of internal absorption on the subsequent recruitment of brain networks during EF tasks are unknown. The present functional magnetic resonance imaging (fMRI) study employed a novel attentional state switching task. Subjects imagined positive and negative events (IF task) or performed a working memory task (EF task) before switching to a target detection (TD) task also requiring attention to external information, allowing for the investigation of neural functioning during external attention based on prior attentional state. There was a robust increase of activity in frontal, parietal, and temporal regions during TD when subjects were previously performing the EF compared with IF task, an effect that was most pronounced following negative IF. Additionally, dorsolateral prefrontal cortex was less negatively coupled with ventromedial prefrontal and posterior cingulate cortices during TD following IF compared with EF. These findings reveal the striking consequences for brain activity following immersion in an IF attentional state, which have strong implications for psychiatric disorders characterized by excessive internal focus. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Exposure to Blue Light Increases Subsequent Functional Activation of the Prefrontal Cortex During Performance of a Working Memory Task

    PubMed Central

    Alkozei, Anna; Smith, Ryan; Pisner, Derek A.; Vanuk, John R.; Berryhill, Sarah M.; Fridman, Andrew; Shane, Bradley R.; Knight, Sara A.; Killgore, William D.S.

    2016-01-01

    Study Objectives: Prolonged exposure to blue wavelength light has been shown to have an alerting effect, and enhances performance on cognitive tasks. A small number of studies have also shown that relatively short exposure to blue light leads to changes in functional brain responses during the period of exposure. The extent to which blue light continues to affect brain functioning during a cognitively challenging task after cessation of longer periods of exposure (i.e., roughly 30 minutes or longer), however, has not been fully investigated. Methods: A total of 35 healthy participants (18 female) were exposed to either blue (469 nm) (n = 17) or amber (578 nm) (n = 18) wavelength light for 30 minutes in a darkened room, followed immediately by functional magnetic resonance imaging (fMRI) while undergoing a working memory task (N-back task). Results: Participants in the blue light condition were faster in their responses on the N-back task and showed increased activation in the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex compared to those in the amber control light condition. Furthermore, greater activation within the VLPFC was correlated with faster N-back response times. Conclusions: This is the first study to suggest that a relatively brief, single exposure to blue light has a subsequent beneficial effect on working memory performance, even after cessation of exposure, and leads to temporarily persisting functional brain changes within prefrontal brain regions associated with executive functions. These findings may have broader implication for using blue-enriched light in a variety of work settings where alertness and quick decision-making are important. Citation: Alkozei A, Smith R, Pisner DA, Vanuk JR, Berryhill SM, Fridman A, Shane BR, Knight SA, Killgore WD. Exposure to blue light increases subsequent functional activation of the prefrontal cortex during performance of a working memory task. SLEEP 2016;39(9):1671–1680. PMID:27253770

  20. Disengagement from tasks as a function of cognitive load and depressive symptom severity.

    PubMed

    Bowie, Christopher R; Milanovic, Melissa; Tran, Tanya; Cassidy, Sarah

    2017-01-01

    Depression is associated with impairment in cognition and everyday functioning. Mechanisms of cognitive dysfunction in depression and the factors that influence strategic deployment of cognitive abilities in complex environments remain elusive. In this study we investigated whether depression symptom severity is associated with disengagement from a working memory task (Paced Auditory Serial Addition Task; PASAT) with parametric adjustment of task difficulty. 235 participants completed the Beck Depression Inventory, low and high cognitive load conditions of the PASAT, and quality of life. Cognitive disengagement was the sum of consecutive items in which participants did not proffer a response to the trial. Individuals with higher depression severity showed more cognitive disengagement on the high but not low cognitive load trial of the PASAT; they did not differ in number of correct responses. Increased disengagement from the low to high cognitive load was associated with more impaired quality of life. Depression severity is associated with increased disengagement from tasks as difficulty increases. These findings suggest the importance of measuring how cognitive skills are avoided in complex environments in addition to considering performance accuracy. Individuals with depressive symptoms might preferentially avoid cognitive tasks that are perceived as more complex in spite of intact ability.

  1. Task-specific image partitioning.

    PubMed

    Kim, Sungwoong; Nowozin, Sebastian; Kohli, Pushmeet; Yoo, Chang D

    2013-02-01

    Image partitioning is an important preprocessing step for many of the state-of-the-art algorithms used for performing high-level computer vision tasks. Typically, partitioning is conducted without regard to the task in hand. We propose a task-specific image partitioning framework to produce a region-based image representation that will lead to a higher task performance than that reached using any task-oblivious partitioning framework and existing supervised partitioning framework, albeit few in number. The proposed method partitions the image by means of correlation clustering, maximizing a linear discriminant function defined over a superpixel graph. The parameters of the discriminant function that define task-specific similarity/dissimilarity among superpixels are estimated based on structured support vector machine (S-SVM) using task-specific training data. The S-SVM learning leads to a better generalization ability while the construction of the superpixel graph used to define the discriminant function allows a rich set of features to be incorporated to improve discriminability and robustness. We evaluate the learned task-aware partitioning algorithms on three benchmark datasets. Results show that task-aware partitioning leads to better labeling performance than the partitioning computed by the state-of-the-art general-purpose and supervised partitioning algorithms. We believe that the task-specific image partitioning paradigm is widely applicable to improving performance in high-level image understanding tasks.

  2. Neural Correlates of a Perspective-taking Task Using in a Realistic Three-dimmensional Environment Based Task: A Pilot Functional Magnetic Resonance Imaging Study.

    PubMed

    Agarwal, Sri Mahavir; Shivakumar, Venkataram; Kalmady, Sunil V; Danivas, Vijay; Amaresha, Anekal C; Bose, Anushree; Narayanaswamy, Janardhanan C; Amorim, Michel-Ange; Venkatasubramanian, Ganesan

    2017-08-31

    Perspective-taking ability is an essential spatial faculty that is of much interest in both health and neuropsychiatric disorders. There is limited data on the neural correlates of perspective taking in the context of a realistic three-dimensional environment. We report the results of a pilot study exploring the same in eight healthy volunteers. Subjects underwent two runs of an experiment in a 3 Tesla magnetic resonance imaging (MRI) involving alternate blocks of a first-person perspective based allocentric object location memory task (OLMT), a third-person perspective based egocentric visual perspective taking task (VPRT), and a table task (TT) that served as a control. Difference in blood oxygen level dependant response during task performance was analyzed using Statistical Parametric Mapping software, version 12. Activations were considered significant if they survived family-wise error correction at the cluster level using a height threshold of p <0.001, uncorrected at the voxel level. A significant difference in accuracy and reaction time based on task type was found. Subjects had significantly lower accuracy in VPRT compared to TT. Accuracy in the two active tasks was not significantly different. Subjects took significantly longer in the VPRT in comparison to TT. Reaction time in the two active tasks was not significantly different. Functional MRI revealed significantly higher activation in the bilateral visual cortex and left temporoparietal junction (TPJ) in VPRT compared to OLMT. The results underscore the importance of TPJ in egocentric manipulation in healthy controls in the context of reality-based spatial tasks.

  3. Medical Writing Competency Model - Section 1: Functions, Tasks, and Activities.

    PubMed

    Clemow, David B; Wagner, Bertil; Marshallsay, Christopher; Benau, Dan; L'Heureux, Darryl; Brown, David H; Dasgupta, Devjani Ghosh; Girten, Eileen; Hubbard, Frank; Gawrylewski, Helle-Mai; Ebina, Hiroko; Stoltenborg, Janet; York, J P; Green, Kim; Wood, Linda Fossati; Toth, Lisa; Mihm, Michael; Katz, Nancy R; Vasconcelos, Nina-Maria; Sakiyama, Norihisa; Whitsell, Robin; Gopalakrishnan, Shobha; Bairnsfather, Susan; Wanderer, Tatyana; Schindler, Thomas M; Mikyas, Yeshi; Aoyama, Yumiko

    2018-01-01

    This article provides Section 1 of the 2017 Edition 2 Medical Writing Competency Model that describes the core work functions and associated tasks and activities related to professional medical writing within the life sciences industry. The functions in the Model are scientific communication strategy; document preparation, development, and finalization; document project management; document template, standard, format, and style development and maintenance; outsourcing, alliance partner, and client management; knowledge, skill, ability, and behavior development and sharing; and process improvement. The full Model also includes Section 2, which covers the knowledge, skills, abilities, and behaviors needed for medical writers to be effective in their roles; Section 2 is presented in a companion article. Regulatory, publication, and other scientific writing as well as management of writing activities are covered. The Model was developed to aid medical writers and managers within the life sciences industry regarding medical writing hiring, training, expectation and goal setting, performance evaluation, career development, retention, and role value sharing to cross-functional partners.

  4. Hemodynamic Response Alteration As a Function of Task Complexity and Expertise—An fNIRS Study in Jugglers

    PubMed Central

    Carius, Daniel; Andrä, Christian; Clauß, Martina; Ragert, Patrick; Bunk, Michael; Mehnert, Jan

    2016-01-01

    Detailed knowledge about online brain processing during the execution of complex motor tasks with a high motion range still remains elusive. The aim of the present study was to investigate the hemodynamic responses within sensorimotor networks as well as in visual motion area during the execution of a complex visuomotor task such as juggling. More specifically, we were interested in how far the hemodynamic response as measured with functional near infrared spectroscopy (fNIRS) adapts as a function of task complexity and the level of the juggling expertise. We asked expert jugglers to perform different juggling tasks with different levels of complexity such as a 2-ball juggling, 3- and 5-ball juggling cascades. We here demonstrate that expert jugglers show an altered neurovascular response with increasing task complexity, since a 5-ball juggling cascade showed enhanced hemodynamic responses for oxygenated hemoglobin as compared to less complex tasks such as a 3- or 2-ball juggling pattern. Moreover, correlations between the hemodynamic response and the level of the juggling expertise during the 5-ball juggling cascade, acquired by cinematographic video analysis, revealed only a non-significant trend in primary motor cortex, indicating that a higher level of expertise might be associated with lower hemodynamic responses. PMID:27064925

  5. The BOLD Response during Stroop Task-Like Inhibition Paradigms: Effects of Task Difficulty and Task-Relevant Modality

    ERIC Educational Resources Information Center

    Mitchell, Rachel L. C.

    2005-01-01

    Previous studies of the Stroop task propose two key mediators: the prefrontal and cingulate cortices but hints exist of functional specialization within these regions. This study aimed to examine the effect of task modality upon the prefrontal and cingulate response by examining the response to colour, number, and shape Stroop tasks whilst BOLD…

  6. Naturalistic Assessment of Everyday Functioning in Individuals with Mild Cognitive Impairment: The Day Out Task

    PubMed Central

    Schmitter-Edgecombe, Maureen; McAlister, Courtney; Weakley, Alyssa

    2012-01-01

    Objective The Day Out Task (DOT), a naturalistic task that requires multitasking in a real-world setting, was used to examine everyday functioning in individuals with mild cognitive impairment (MCI). Method Thirty-eight participants with MCI and 38 cognitively healthy older adult controls prioritized, organized, initiated and completed a number of subtasks in a campus apartment to prepare for a day out (e.g., determine and gather change for bus, bring a magazine). Participants also completed tests assessing cognitive constructs important in multitasking (i.e., retrospective memory, prospective memory, planning). Results Compared to controls, the MCI group required more time to complete the DOT and demonstrated poorer task accuracy, performing more subtasks incompletely and inaccurately. Despite poorer DOT task accuracy, the MCI and control groups approached completion of the DOT in a similar manner. For the MCI group, retrospective memory was a unique predictor of the number of subtasks left incomplete and inaccurate, while prospective memory was a unique predictor of DOT sequencing. The DOT measures, but not the cognitive tests, were predictive of knowledgeable informant report of everyday functioning. Conclusions These findings suggest that difficulty remembering and keeping track of multiple goals and subgoals may contribute to the poorer performance of individuals with MCI in complex everyday situations. PMID:22846035

  7. Functional heterogeneity of conflict, error, task-switching, and unexpectedness effects within medial prefrontal cortex.

    PubMed

    Nee, Derek Evan; Kastner, Sabine; Brown, Joshua W

    2011-01-01

    The last decade has seen considerable discussion regarding a theoretical account of medial prefrontal cortex (mPFC) function with particular focus on the anterior cingulate cortex. The proposed theories have included conflict detection, error likelihood prediction, volatility monitoring, and several distinct theories of error detection. Arguments for and against particular theories often treat mPFC as functionally homogeneous, or at least nearly so, despite some evidence for distinct functional subregions. Here we used functional magnetic resonance imaging (fMRI) to simultaneously contrast multiple effects of error, conflict, and task-switching that have been individually construed in support of various theories. We found overlapping yet functionally distinct subregions of mPFC, with activations related to dominant error, conflict, and task-switching effects successively found along a rostral-ventral to caudal-dorsal gradient within medial prefrontal cortex. Activations in the rostral cingulate zone (RCZ) were strongly correlated with the unexpectedness of outcomes suggesting a role in outcome prediction and preparing control systems to deal with anticipated outcomes. The results as a whole support a resolution of some ongoing debates in that distinct theories may each pertain to corresponding distinct yet overlapping subregions of mPFC. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. The Functional Effect of Teacher Positive and Neutral Affect on Task Performance of Students with Significant Disabilities

    ERIC Educational Resources Information Center

    Park, Sungho; Singer, George H. S.; Gibson, Mary

    2005-01-01

    The study uses an alternating treatment design to evaluate the functional effect of teacher's affect on students' task performance. Tradition in special education holds that teachers should engage students using positive and enthusiastic affect for task presentations and praise. To test this assumption, we compared two affective conditions. Three…

  9. Do Tasks Make a Difference? Accounting for Heterogeneity of Performance of Children with Reading Difficulties on Tasks of Executive Function: Findings from a Meta-Analysis

    ERIC Educational Resources Information Center

    Booth, Josephine N.; Boyle, James M. E.; Kelly, Steve W.

    2010-01-01

    Research studies have implicated executive functions in reading difficulties (RD). But while some studies have found children with RD to be impaired on tasks of executive function other studies report unimpaired performance. A meta-analysis was carried out to determine whether these discrepant findings can be accounted for by differences in the…

  10. Design, synthesis and preliminary antimicrobial evaluation of n-alkyl chain tethered c-5 functionalized bis-isatins

    USDA-ARS?s Scientific Manuscript database

    A series of N-alkyl tethered C-5 functionalized bis-isatins were synthesized and evaluated for antimicrobial activity against pathogenic microorganisms. The preliminary evaluation studies revealed the compound 4t, with an optimal combination of bromo-substituent at the C-5 position of isatin ring al...

  11. Work Functioning Among Firefighters: A Comparison Between Self-Reported Limitations and Functional Task Performance.

    PubMed

    MacDermid, Joy C; Tang, Kenneth; Sinden, Kathryn E; D'Amico, Robert

    2018-05-25

    Purpose Performance-based and disease indicators have been widely studied in firefighters; self-reported work role limitations have not. The aim of this study was to describe the distributions and correlations of a generic self-reported Work Limitations Questionnaire (WLQ-26) and firefighting-specific task performance-based tests. Methods Active firefighters from the City of Hamilton Fire Services (n = 293) were recruited. Participants completed the WLQ-26 to quantify on-the-job difficulties over five work domains: work scheduling (4 items), output demands (7 items), physical demands (8 items), mental demands (4 items), and social demands (3 items). A subset of participants (n = 149) were also assessed on hose drag and stair climb with a high-rise pack performance-based tests. Descriptive statistics and correlations were used to compare item/subscale performance; and to describe the inter-relationships between tests. Results The mean WLQ-26 item scores (/5) ranged from 4.1 to 4.4 (median = 5 for all items); most firefighters (54.5-80.5%) selected "difficult none of the time" response option on all items. A substantial ceiling effect was observed across all five WLQ-26 subscales as 44.0-55.6% were in the highest category. Subscale means ranged from 61.8 (social demands) to 78.7 (output demands and physical demands). Internal consistency exceeded 0.90 on all subscales. For the hose drag task, the mean time-to-completion was 48.0 s (SD = 14.5; range 20.4-95.0). For the stair climb task, the mean time-to-completion was 76.7 s (SD = 37.2; range 21.0-218.0). There were no significant correlations between self-report work limitations and performance of firefighting tasks. Conclusions The WLQ-26 measured five domains, but had ceiling effects in firefighters. Performance-based testing showed wider score range, lacked ceiling effects and did not correlate to the WLQ-26. A firefighter-specific, self-report role functioning scale may be needed to identify

  12. Sex-related functional asymmetry of the amygdala: preliminary evidence using a case-matched lesion approach.

    PubMed

    Tranel, Daniel; Bechara, Antoine

    2009-06-01

    We have reported previously that there appears to be an intriguing sex-related functional asymmetry of the prefrontal cortices, especially the ventromedial sector, in regard to social conduct, emotional processing, and decision-making, whereby the right-sided sector is important in men but not women and the left-sided sector is important in women but not men. The amygdala is another structure that has been widely implicated in emotion processing and social decision-making, and the question arises as to whether the amygdala, in a manner akin to what has been observed for the prefrontal cortex, might have sex-related functional asymmetry in regard to social and emotional functions. A preliminary test of this question was carried out in the current study, where we used a case-matched lesion approach and contrasted a pair of men cases and a pair of women cases, where in each pair one patient had left amygdala damage and the other had right amygdala damage. We investigated the domains of social conduct, emotional processing and personality, and decision-making. The results provide support for the notion that there is sex-related functional asymmetry of the amygdala in regard to these functions - in the male pair, the patient with right-sided amygdala damage was impaired in these functions, and the patient with left-sided amygdala damage was not, whereas in the female pair, the opposite pattern obtained, with the left-sided woman being impaired and the right-sided woman being unimpaired. These data provide preliminary support for the notion that sex-related functional asymmetry of the amygdala may entail functions such as social conduct, emotional processing, and decision-making, a finding that in turn could reflect (as either a cause or effect) differences in the manner in which men and women apprehend, process, and execute emotion-related information.

  13. Neural correlates of successful memory retrieval in aging: Do executive functioning and task difficulty matter?

    PubMed

    Angel, Lucie; Bastin, Christine; Genon, Sarah; Salmon, Eric; Fay, Séverine; Balteau, Evelyne; Maquet, Pierre; Luxen, André; Isingrini, Michel; Collette, Fabienne

    2016-01-15

    The current experiment aimed to explore age differences in brain activity associated with successful memory retrieval in older adults with different levels of executive functioning, at different levels of task demand. Memory performance and fMRI activity during a recognition task were compared between a young group and two older groups characterized by a low (old-low group) vs. high (old-high group) level of executive functioning. Participants first encoded pictures, presented once (Hard condition) or twice (Easy condition), and then completed a recognition memory task. Old-low adults had poorer memory performance than the two other groups, which did not differ, in both levels of task demands. In the Easy condition, even though older adults demonstrated reduced activity compared to young adults in several regions, they also showed additional activations in the right superior frontal gyrus and right parietal lobule (positively correlated to memory accuracy) for the old-high group and in the right precuneus (negatively correlated to memory accuracy), right anterior cingulate gyrus and right supramarginal gyrus for the old-low group. In the Hard condition, some regions were also more activated in the young group than in the older groups. Vice versa, old-high participants demonstrated more activity than either the young or the old-low group in the right frontal gyrus, associated with more accurate memory performance, and in the left frontal gyrus. In sum, the present study clearly showed that age differences in the neural correlates of retrieval success were modulated by task difficulty, as suggested by the CRUNCH model, but also by interindividual variability, in particular regarding executive functioning. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Influence of Sequential vs. Simultaneous Dual-Task Exercise Training on Cognitive Function in Older Adults.

    PubMed

    Tait, Jamie L; Duckham, Rachel L; Milte, Catherine M; Main, Luana C; Daly, Robin M

    2017-01-01

    Emerging research indicates that exercise combined with cognitive training may improve cognitive function in older adults. Typically these programs have incorporated sequential training, where exercise and cognitive training are undertaken separately. However, simultaneous or dual-task training, where cognitive and/or motor training are performed simultaneously with exercise, may offer greater benefits. This review summary provides an overview of the effects of combined simultaneous vs. sequential training on cognitive function in older adults. Based on the available evidence, there are inconsistent findings with regard to the cognitive benefits of sequential training in comparison to cognitive or exercise training alone. In contrast, simultaneous training interventions, particularly multimodal exercise programs in combination with secondary tasks regulated by sensory cues, have significantly improved cognition in both healthy older and clinical populations. However, further research is needed to determine the optimal characteristics of a successful simultaneous training program for optimizing cognitive function in older people.

  15. Functional mapping of language networks in the normal brain using a word-association task.

    PubMed

    Ghosh, Shantanu; Basu, Amrita; Kumaran, Senthil S; Khushu, Subash

    2010-08-01

    Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI) in normal human subjects. Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2*-weighted gradient-echo echo-planar imaging (GE-EPI) sequence (TR 4523 ms, TE 64 ms, flip angle 90°) with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s) with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2) with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD) signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Single subject analysis of the functional data (FWE-corrected, P≤0.001) revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG), superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG), anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001) revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Group data analysis revealed a cerebellar-occipital-fusiform-thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these areas facilitate language comprehension by activating a semantic association

  16. Mental Task Classification Scheme Utilizing Correlation Coefficient Extracted from Interchannel Intrinsic Mode Function.

    PubMed

    Rahman, Md Mostafizur; Fattah, Shaikh Anowarul

    2017-01-01

    In view of recent increase of brain computer interface (BCI) based applications, the importance of efficient classification of various mental tasks has increased prodigiously nowadays. In order to obtain effective classification, efficient feature extraction scheme is necessary, for which, in the proposed method, the interchannel relationship among electroencephalogram (EEG) data is utilized. It is expected that the correlation obtained from different combination of channels will be different for different mental tasks, which can be exploited to extract distinctive feature. The empirical mode decomposition (EMD) technique is employed on a test EEG signal obtained from a channel, which provides a number of intrinsic mode functions (IMFs), and correlation coefficient is extracted from interchannel IMF data. Simultaneously, different statistical features are also obtained from each IMF. Finally, the feature matrix is formed utilizing interchannel correlation features and intrachannel statistical features of the selected IMFs of EEG signal. Different kernels of the support vector machine (SVM) classifier are used to carry out the classification task. An EEG dataset containing ten different combinations of five different mental tasks is utilized to demonstrate the classification performance and a very high level of accuracy is achieved by the proposed scheme compared to existing methods.

  17. Performance on naturalistic virtual reality tasks depends on global cognitive functioning as assessed via traditional neurocognitive tests.

    PubMed

    Oliveira, Jorge; Gamito, Pedro; Alghazzawi, Daniyal M; Fardoun, Habib M; Rosa, Pedro J; Sousa, Tatiana; Picareli, Luís Felipe; Morais, Diogo; Lopes, Paulo

    2017-08-14

    This investigation sought to understand whether performance in naturalistic virtual reality tasks for cognitive assessment relates to the cognitive domains that are supposed to be measured. The Shoe Closet Test (SCT) was developed based on a simple visual search task involving attention skills, in which participants have to match each pair of shoes with the colors of the compartments in a virtual shoe closet. The interaction within the virtual environment was made using the Microsoft Kinect. The measures consisted of concurrent paper-and-pencil neurocognitive tests for global cognitive functioning, executive functions, attention, psychomotor ability, and the outcomes of the SCT. The results showed that the SCT correlated with global cognitive performance as measured with the Montreal Cognitive Assessment (MoCA). The SCT explained one third of the total variance of this test and revealed good sensitivity and specificity in discriminating scores below one standard deviation in this screening tool. These findings suggest that performance of such functional tasks involves a broad range of cognitive processes that are associated with global cognitive functioning and that may be difficult to isolate through paper-and-pencil neurocognitive tests.

  18. Blunted amygdala functional connectivity during a stress task in alcohol dependent individuals: A pilot study.

    PubMed

    Wade, Natasha E; Padula, Claudia B; Anthenelli, Robert M; Nelson, Erik; Eliassen, James; Lisdahl, Krista M

    2017-12-01

    Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD). We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC). For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. After controlling for family-wise error (p = 0.05), there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC), temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence.

  19. Validation of Cardiovascular Parameters during NASA's Functional Task Test

    NASA Technical Reports Server (NTRS)

    Arzeno, N. M.; Stenger, M. B.; Bloomberg, J. J.; Platts, S. H.

    2009-01-01

    Microgravity exposure causes physiological deconditioning and impairs crewmember task performance. The Functional Task Test (FTT) is designed to correlate these physiological changes to performance in a series of operationally-relevant tasks. One of these, the Recovery from Fall/Stand Test (RFST), tests both the ability to recover from a prone position and cardiovascular responses to orthostasis. PURPOSE: Three minutes were chosen for the duration of this test, yet it is unknown if this is long enough to induce cardiovascular responses similar to the operational 5 min stand test. The purpose of this study was to determine the validity and reliability of heart rate variability (HRV) analysis of a 3 min stand and to examine the effect of spaceflight on these measures. METHODS: To determine the validity of using 3 vs. 5 min of standing to assess HRV, ECG was collected from 7 healthy subjects who participated in a 6 min RFST. Mean R-R interval (RR) and spectral HRV were measured in minutes 0-3 and 0-5 following the heart rate transient due to standing. Significant differences between the segments were determined by a paired t-test. To determine the reliability of the 3-min stand test, 13 healthy subjects completed 3 trials of the FTT on separate days, including the RFST with a 3 min stand. Analysis of variance (ANOVA) was performed on the HRV measures. One crewmember completed the FTT before a 14-day mission, on landing day (R+0) and one (R+1) day after returning to Earth. RESULTS VALIDITY: HRV measures reflecting autonomic activity were not significantly different during the 0-3 and 0-5 min segments. RELIABILITY: The average coefficient of variation for RR, systolic (SBP) and diastolic blood pressures during the RFST were less than 8% for the 3 sessions. ANOVA results yielded a greater inter-subject variability (p<0.006) than inter-session variability (p>0.05) for HRV in the RFST. SPACEFLIGHT: Lower RR and higher SBP were observed on R+0 in rest and stand. On R+1

  20. Preliminary Three-Dimensional Simulation of Sediment and Cesium Transport in the Ogi Dam Reservoir using FLESCOT – Task 6, Subtask 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo; Kurikami, Hiroshi; Yokuda, Satoru T.

    2014-03-28

    After the accident at the Fukushima Daiichi Nuclear Power Plant in March 2011, the Japan Atomic Energy Agency and the Pacific Northwest National Laboratory initiated a collaborative project on environmental restoration. In October 2013, the collaborative team started a task of three-dimensional modeling of sediment and cesium transport in the Fukushima environment using the FLESCOT (Flow, Energy, Salinity, Sediment Contaminant Transport) code. As the first trial, we applied it to the Ogi Dam Reservoir that is one of the reservoirs in the Japan Atomic Energy Agency’s (JAEA’s) investigation project. Three simulation cases under the following different temperature conditions were studied:more » • incoming rivers and the Ogi Dam Reservoir have the same water temperature • incoming rivers have lower water temperature than that of the reservoir • incoming rivers have higher water temperature than that of the reservoir. The preliminary simulations suggest that seasonal temperature changes influence the sediment and cesium transport. The preliminary results showed the following: • Suspended sand, and cesium adsorbed by sand, coming into the reservoirs from upstream rivers is deposited near the reservoir entrance. • Suspended silt, and cesium adsorbed by silt, is deposited farther in the reservoir. • Suspended clay, and cesium adsorbed by clay, travels the farthest into the reservoir. With sufficient time, the dissolved cesium reaches the downstream end of the reservoir. This preliminary modeling also suggests the possibility of a suitable dam operation to control the cesium migration farther downstream from the dam. JAEA has been sampling in the Ogi Dam Reservoir, but these data were not yet available for the current model calibration and validation for this reservoir. Nonetheless these preliminary FLESCOT modeling results were qualitatively valid and confirmed the applicability of the FLESCOT code to the Ogi Dam Reservoir, and in general to other

  1. The effect of single-task and dual-task balance exercise programs on balance performance in adults with osteoporosis: a randomized controlled preliminary trial.

    PubMed

    Konak, H E; Kibar, S; Ergin, E S

    2016-11-01

    Osteoporosis is a serious disease characterized by muscle weakness in the lower extremities, shortened length of trunk, and increased dorsal kyphosis leading to poor balance performance. Although balance impairment increases in adults with osteoporosis, falls and fall-related injuries have been shown to occur mainly during the dual-task performance. Several studies have shown that dual-task performance was improved with specific repetitive dual-task exercises. The aims of this study were to compare the effect of single- and dual-task balance exercise programs on static balance, dynamic balance, and activity-specific balance confidence in adults with osteoporosis and to assess the effectiveness of dual-task balance training on gait speed under dual-task conditions. Older adults (N = 42) (age range, 45-88 years) with osteoporosis were randomly assigned into two groups. Single-task balance training group was given single-task balance exercises for 4 weeks, whereas dual-task balance training group received dual-task balance exercises. Participants received 45-min individualized training session, three times a week. Static balance was evaluated by one-leg stance (OLS) and a kinesthetic ability trainer (KAT) device. Dynamic balance was measured by the Berg Balance Scale (BBS), Time Up and Go (TUG) test, and gait speed. Self-confidence was assessed with the Activities-specific Balance Confidence (ABC-6) scale. Assessments were performed at baseline and after the 4-week program. At the end of the treatment periods, KAT score, BBS score, time in OLS and TUG, gait speeds under single- and dual-task conditions, and ABC-6 scale scores improved significantly in all patients (p < 0.05). However, BBS and gait speeds under single- and dual-task conditions showed significantly greater improvement in the dual-task balance training group than in the single-task balance training group (p < 0.05). ABC-6 scale scores improved more in the single-task balance training group than

  2. A Developmental Window into Trade-offs in Executive Function: The Case of Task Switching versus Response Inhibition in 6-year-olds

    PubMed Central

    Chatham, Christopher H.; Wiseheart, Melody; Munakata, Yuko

    2014-01-01

    Good executive function has been linked to many positive outcomes in academic performance, health, and social competence. However, some aspects of executive function may interfere with other cognitive processes. Childhood provides a unique test case for investigating such cognitive trade-offs, given the dramatic failures and developments observed during this period. For example, most children categorically switch or perseverate when asked to switch between rules on a card-sorting task. To test potential trade-offs with the development of task switching abilities, we compared 6-year-olds who switched versus perseverated in a card-sorting task on two aspects of inhibitory control: response inhibition (via a stop signal task) and interference control (via a Simon task). Across two studies, switchers showed worse response inhibition than perseverators, consistent with the idea of cognitive trade-offs; however, switchers showed better interference control than perseverators, consistent with prior work documenting benefits associated with the development of executive function. This pattern of positive and negative associations may reflect aspects of working memory (active maintenance of current goals, and clearing of prior goals) that help children focused on a single task-goal but hurt in situations with conflicting goals. Implications for understanding components of executive function and their relationships across development are discussed. PMID:24791710

  3. Assessment of executive functions in children and adolescents with acquired brain injury (ABI) using a novel complex multi-tasking computerised task: The Jansari assessment of Executive Functions for Children (JEF-C©).

    PubMed

    Gilboa, Yafit; Jansari, Ashok; Kerrouche, Bernadette; Uçak, Emel; Tiberghien, Anne; Benkhaled, Ouarda; Aligon, Delphine; Mariller, Aude; Verdier, Valentine; Mintegui, Amaia; Abada, Geneviève; Canizares, Céline; Goldstein, Andrew; Chevignard, Mathilde

    2017-12-28

    The Jansari assessment of Executive Functions for Children (JEF-C © ) is a new non-immersive computerised assessment of executive functions. The objectives of the study were to test the feasibility and validity of JEF-C © in children and adolescents with acquired brain injury (ABI). Twenty-nine patients with ABI aged 10-18 years and 30 age-and gender-matched controls were tested. Participants performed JEF-C © , Wechsler Abbreviated Scale of Intelligence (WASI) and the Behavioural Assessment of the Dysexecutive Syndrome for Children (BADS-C), while parents completed the Behaviour Rating Inventory of Executive Function (BRIEF) questionnaire. The JEF-C © task proved feasible in patients with ABI. The internal consistency was medium (Cronbach's alpha = 0.62 and significant intercorrelations between individual JEF-C © constructs). Patients performed significantly worse than controls on most of the JEF-C © subscales and total score, with 41.4% of participants with ABI classified as having severe executive dysfunction. No significant correlations were found between JEF-C © total score, the BRIEF indices, and the BADS-C. Significant correlations were found between JEF-C © and demographic characteristics of the sample and intellectual ability, but not with severity/medical variables. JEF-C © is a playful complex task that appears to be a sensitive and ecologically valid assessment tool, especially for relatively high-functioning individuals.

  4. Exposure to Blue Light Increases Subsequent Functional Activation of the Prefrontal Cortex During Performance of a Working Memory Task.

    PubMed

    Alkozei, Anna; Smith, Ryan; Pisner, Derek A; Vanuk, John R; Berryhill, Sarah M; Fridman, Andrew; Shane, Bradley R; Knight, Sara A; Killgore, William D S

    2016-09-01

    Prolonged exposure to blue wavelength light has been shown to have an alerting effect, and enhances performance on cognitive tasks. A small number of studies have also shown that relatively short exposure to blue light leads to changes in functional brain responses during the period of exposure. The extent to which blue light continues to affect brain functioning during a cognitively challenging task after cessation of longer periods of exposure (i.e., roughly 30 minutes or longer), however, has not been fully investigated. A total of 35 healthy participants (18 female) were exposed to either blue (469 nm) (n = 17) or amber (578 nm) (n = 18) wavelength light for 30 minutes in a darkened room, followed immediately by functional magnetic resonance imaging (fMRI) while undergoing a working memory task (N-back task). Participants in the blue light condition were faster in their responses on the N-back task and showed increased activation in the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex compared to those in the amber control light condition. Furthermore, greater activation within the VLPFC was correlated with faster N-back response times. This is the first study to suggest that a relatively brief, single exposure to blue light has a subsequent beneficial effect on working memory performance, even after cessation of exposure, and leads to temporarily persisting functional brain changes within prefrontal brain regions associated with executive functions. These findings may have broader implication for using blue-enriched light in a variety of work settings where alertness and quick decision-making are important. © 2016 Associated Professional Sleep Societies, LLC.

  5. Functional Roles of Neural Preparatory Processes in a Cued Stroop Task Revealed by Linking Electrophysiology with Behavioral Performance.

    PubMed

    Wang, Chao; Ding, Mingzhou; Kluger, Benzi M

    2015-01-01

    It is well established that cuing facilitates behavioral performance and that different aspects of instructional cues evoke specific neural preparatory processes in cued task-switching paradigms. To deduce the functional role of these neural preparatory processes the majority of studies vary aspects of the experimental paradigm and describe how these variations alter markers of neural preparatory processes. Although these studies provide important insights, they also have notable limitations, particularly in terms of understanding the causal or functional relationship of neural markers to cognitive and behavioral processes. In this study, we sought to address these limitations and uncover the functional roles of neural processes by examining how variability in the amplitude of neural preparatory processes predicts behavioral performance to subsequent stimuli. To achieve this objective 16 young adults were recruited to perform a cued Stroop task while their brain activity was measured using high-density electroencephalography. Four temporally overlapping but functionally and topographically distinct cue-triggered event related potentials (ERPs) were identified: 1) A left-frontotemporal negativity (250-700 ms) that was positively associated with word-reading performance; 2) a midline-frontal negativity (450-800 ms) that was positively associated with color-naming and incongruent performance; 3) a left-frontal negativity (450-800 ms) that was positively associated with switch trial performance; and 4) a centroparietal positivity (450-800 ms) that was positively associated with performance for almost all trial types. These results suggest that at least four dissociable cognitive processes are evoked by instructional cues in the present task, including: 1) domain-specific task facilitation; 2) switch-specific task-set reconfiguration; 3) preparation for response conflict; and 4) proactive attentional control. Examining the relationship between ERPs and behavioral

  6. Functional Roles of Neural Preparatory Processes in a Cued Stroop Task Revealed by Linking Electrophysiology with Behavioral Performance

    PubMed Central

    Wang, Chao; Ding, Mingzhou; Kluger, Benzi M.

    2015-01-01

    It is well established that cuing facilitates behavioral performance and that different aspects of instructional cues evoke specific neural preparatory processes in cued task-switching paradigms. To deduce the functional role of these neural preparatory processes the majority of studies vary aspects of the experimental paradigm and describe how these variations alter markers of neural preparatory processes. Although these studies provide important insights, they also have notable limitations, particularly in terms of understanding the causal or functional relationship of neural markers to cognitive and behavioral processes. In this study, we sought to address these limitations and uncover the functional roles of neural processes by examining how variability in the amplitude of neural preparatory processes predicts behavioral performance to subsequent stimuli. To achieve this objective 16 young adults were recruited to perform a cued Stroop task while their brain activity was measured using high-density electroencephalography. Four temporally overlapping but functionally and topographically distinct cue-triggered event related potentials (ERPs) were identified: 1) A left-frontotemporal negativity (250-700 ms) that was positively associated with word-reading performance; 2) a midline-frontal negativity (450-800 ms) that was positively associated with color-naming and incongruent performance; 3) a left-frontal negativity (450-800 ms) that was positively associated with switch trial performance; and 4) a centroparietal positivity (450-800 ms) that was positively associated with performance for almost all trial types. These results suggest that at least four dissociable cognitive processes are evoked by instructional cues in the present task, including: 1) domain-specific task facilitation; 2) switch-specific task-set reconfiguration; 3) preparation for response conflict; and 4) proactive attentional control. Examining the relationship between ERPs and behavioral

  7. Final definition and preliminary design study for the initial atmospheric cloud physics laboratory, a Spacelab mission payload

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The following areas related to the final definition and preliminary design study of the initial atmospheric cloud physics laboratory (ACPL) were covered: (1) proposal organization, personnel, schedule, and project management, (2) proposed configurations, (3) study objectives, (4) ACPL experiment program listing and description, (5) mission/flight flexibility and modularity/commonality, (6) study plan, and (7) description of following tasks: requirement analysis and definition task flow, systems analysis and trade studies, subsystem analysis and trade studies, specifications and interface control documents, preliminary design task flow, work breakdown structure, programmatic analysis and planning, and project costs. Finally, an overview of the scientific requirements was presented.

  8. Task Engagement in Young Adults with High-Functioning Autism Spectrum Disorders: Generalization Effects of Behavioral Skills Training

    ERIC Educational Resources Information Center

    Palmen, Annemiek; Didden, Robert

    2012-01-01

    This study evaluated the effectiveness of a behavioral skills training package on task engagement in six young adults with high-functioning ASD who worked in a regular job-training setting. Experimental sessions were implemented in a small-group training format in a therapy room using unknown tasks. Data were collected on participant's off-task…

  9. Influence of Sequential vs. Simultaneous Dual-Task Exercise Training on Cognitive Function in Older Adults

    PubMed Central

    Tait, Jamie L.; Duckham, Rachel L.; Milte, Catherine M.; Main, Luana C.; Daly, Robin M.

    2017-01-01

    Emerging research indicates that exercise combined with cognitive training may improve cognitive function in older adults. Typically these programs have incorporated sequential training, where exercise and cognitive training are undertaken separately. However, simultaneous or dual-task training, where cognitive and/or motor training are performed simultaneously with exercise, may offer greater benefits. This review summary provides an overview of the effects of combined simultaneous vs. sequential training on cognitive function in older adults. Based on the available evidence, there are inconsistent findings with regard to the cognitive benefits of sequential training in comparison to cognitive or exercise training alone. In contrast, simultaneous training interventions, particularly multimodal exercise programs in combination with secondary tasks regulated by sensory cues, have significantly improved cognition in both healthy older and clinical populations. However, further research is needed to determine the optimal characteristics of a successful simultaneous training program for optimizing cognitive function in older people. PMID:29163146

  10. Parameter estimation in a human operator describing function model for a two-dimensional tracking task

    NASA Technical Reports Server (NTRS)

    Vanlunteren, A.

    1977-01-01

    A previously described parameter estimation program was applied to a number of control tasks, each involving a human operator model consisting of more than one describing function. One of these experiments is treated in more detail. It consisted of a two dimensional tracking task with identical controlled elements. The tracking errors were presented on one display as two vertically moving horizontal lines. Each loop had its own manipulator. The two forcing functions were mutually independent and consisted each of 9 sine waves. A human operator model was chosen consisting of 4 describing functions, thus taking into account possible linear cross couplings. From the Fourier coefficients of the relevant signals the model parameters were estimated after alignment, averaging over a number of runs and decoupling. The results show that for the elements in the main loops the crossover model applies. A weak linear cross coupling existed with the same dynamics as the elements in the main loops but with a negative sign.

  11. Effects of two-handed task training on upper limb function of chronic hemiplegic patients after stroke

    PubMed Central

    Yang, Byung Il; Song, Bo Kyoung; Joung, Sang Mi

    2017-01-01

    [Purpose] The purpose of this study was to determine whether two-handed task training is effective on motor learning of injured cerebral cortex activation and upper extremity function recovery after stroke. [Subjects and Methods] Two hemiplegic subjects participated in this study: one patient was affected on the dominant side of the body and the other was affected on the non-dominant side of the body, and both scored in the range of 58–66 in the Fugl-Meyer assessment. The excitability of the corticospinal tract and Manual Function Test were examined. [Results] The excitability of the corticospinal tract and the Manual Function Test showed significant differences in the activation of both sides of the cerebral cortex and in the variation in learning effect of upper extremity motor function recovery in patients with hemiplegic non-dominant hand (left). [Conclusion] The results suggested that two-handed task training had a different influence on dominant hand (right) and non-dominant hand (left) motor recovery. PMID:28210051

  12. Performance on an episodic encoding task yields further insight into functional brain development.

    PubMed

    McAuley, Tara; Brahmbhatt, Shefali; Barch, Deanna M

    2007-01-15

    To further characterize changes in functional brain development that are associated with the emergence of cognitive control, participants 14 to 28 years of age were scanned while performing an episodic encoding task with a levels-of-processing manipulation. Using data from the 12 youngest and oldest participants (endpoint groups), 18 regions were identified that showed group differences in task-related activity as a function of processing depth. One region, located in left inferior frontal gyrus, showed enhanced activity in deep relative to shallow encoding that was larger in magnitude for the older group. Seventeen regions showed enhanced activity in shallow relative to deep encoding that was larger in magnitude for the youngest group. These regions were distributed across a broad network that included both cortical and subcortical areas. Regression analyses using the entire sample showed that age made a significant contribution to the difference in beta weights between deep and shallow encoding for 17 of the 18 identified regions in the direction predicted by the endpoint analysis. We conclude that the patterns of brain activation associated with deep and shallow encoding differ between adolescents and young adults in a manner that is consistent with the interactive specialization account of functional brain development.

  13. Performance-based workload assessment: Allocation strategy and added task sensitivity

    NASA Technical Reports Server (NTRS)

    Vidulich, Michael A.

    1990-01-01

    The preliminary results of a research program investigating the use of added tasks to evaluate mental workload are reviewed. The focus of the first studies was a reappraisal of the traditional secondary task logic that encouraged the use of low-priority instructions for the added task. It was believed that such low-priority tasks would encourage subjects to split their available resources among the two tasks. The primary task would be assigned all the resources it needed, and any remaining reserve capacity would be assigned to the secondary task. If the model were correct, this approach was expected to combine sensitivity to primary task difficulty with unintrusiveness to primary task performance. The first studies of the current project demonstrated that a high-priority added task, although intrusive, could be more sensitive than the traditional low-priority secondary task. These results suggested that a more appropriate model of the attentional effects associated with added task performance might be based on capacity switching, rather than the traditional optimal allocation model.

  14. The effects of a mid-task break on the brain connectome in healthy participants: A resting-state functional MRI study.

    PubMed

    Sun, Yu; Lim, Julian; Dai, Zhongxiang; Wong, KianFoong; Taya, Fumihiko; Chen, Yu; Li, Junhua; Thakor, Nitish; Bezerianos, Anastasios

    2017-05-15

    Although rest breaks are commonly administered as a countermeasure to reduce mental fatigue and boost cognitive performance, the effects of taking a break on behavior are not consistent. Moreover, our understanding of the underlying neural mechanisms of rest breaks and how they modulate mental fatigue is still rudimentary. In this study, we investigated the effects of receiving a rest break on the topological properties of brain connectivity networks via a two-session experimental paradigm, in which one session comprised four successive blocks of a mentally demanding visual selective attention task (No-rest session), whereas the other contained a rest break between the second and third task blocks (Rest session). Functional brain networks were constructed using resting-state functional MRI data recorded from 20 healthy adults before and after the performance of the task blocks. Behaviorally, subjects displayed robust time-on-task (TOT) declines, as reflected by increasingly slower reaction time as the test progressed and lower post-task self-reported ratings of engagement. However, we did not find a significant effect on task performance due to administering a mid-task break. Compared to pre-task measurements, post-task functional brain networks demonstrated an overall decrease of optimal small-world properties together with lower global efficiency. Specifically, we found TOT-related reduced nodal efficiency in brain regions that mainly resided in the subcortical areas. More interestingly, a significant block-by-session interaction was revealed in local efficiency, attributing to a significant post-task decline in No-rest session and a preserved local efficiency when a mid-task break opportunity was introduced in the Rest session. Taken together, these findings augment our understanding of how the resting brain reorganizes following the accumulation of prolonged task, suggest dissociable processes between the neural mechanisms of fatigue and recovery, and provide

  15. Masking release for words in amplitude-modulated noise as a function of modulation rate and task

    PubMed Central

    Buss, Emily; Whittle, Lisa N.; Grose, John H.; Hall, Joseph W.

    2009-01-01

    For normal-hearing listeners, masked speech recognition can improve with the introduction of masker amplitude modulation. The present experiments tested the hypothesis that this masking release is due in part to an interaction between the temporal distribution of cues necessary to perform the task and the probability of those cues temporally coinciding with masker modulation minima. Stimuli were monosyllabic words masked by speech-shaped noise, and masker modulation was introduced via multiplication with a raised sinusoid of 2.5–40 Hz. Tasks included detection, three-alternative forced-choice identification, and open-set identification. Overall, there was more masking release associated with the closed than the open-set tasks. The best rate of modulation also differed as a function of task; whereas low modulation rates were associated with best performance for the detection and three-alternative identification tasks, performance improved with modulation rate in the open-set task. This task-by-rate interaction was also observed when amplitude-modulated speech was presented in a steady masker, and for low- and high-pass filtered speech presented in modulated noise. These results were interpreted as showing that the optimal rate of amplitude modulation depends on the temporal distribution of speech cues and the information required to perform a particular task. PMID:19603883

  16. NON-INVASIVE 3D FACIAL ANALYSIS AND SURFACE ELECTROMYOGRAPHY DURING FUNCTIONAL PRE-ORTHODONTIC THERAPY: A PRELIMINARY REPORT

    PubMed Central

    Tartaglia, Gianluca M.; Grandi, Gaia; Mian, Fabrizio; Sforza, Chiarella; Ferrario, Virgilio F.

    2009-01-01

    Objectives: Functional orthodontic devices can modify oral function thus permitting more adequate growth processes. The assessment of their effects should include both facial morphology and muscle function. This preliminary study investigated whether a preformed functional orthodontic device could induce variations in facial morphology and function along with correction of oral dysfunction in a group of orthodontic patients in the mixed and early permanent dentitions. Material and Methods: The three-dimensional coordinates of 50 facial landmarks (forehead, eyes, nose, cheeks, mouth, jaw and ears) were collected in 10 orthodontic male patients aged 8-13 years, and in 89 healthy reference boys of the same age. Soft tissue facial angles, distances, and ratios were computed. Surface electromyography of the masseter and temporalis muscles was performed, and standardized symmetry, muscular torque and activity were calculated. Soft-tissue facial modifications were analyzed non-invasively before and after a 6-month treatment with a functional device. Comparisons were made with z-scores and paired Student's t-tests. Results: The 6-month treatment stimulated mandibular growth in the anterior and inferior directions, with significant variations in three-dimensional facial divergence and facial convexity. The modifications were larger in the patients than in reference children. In several occasions, the discrepancies relative to the norm became not significant after treatment. No significant variations in standardized muscular activity were found. Conclusions: Preliminary results showed that the continuous and correct use of the functional device induced measurable intraoral (dental arches) and extraoral (face) morphological modifications. The device did not modify the functional equilibrium of the masticatory muscles. PMID:19936531

  17. Non-invasive 3D facial analysis and surface electromyography during functional pre-orthodontic therapy: a preliminary report.

    PubMed

    Tartaglia, Gianluca M; Grandi, Gaia; Mian, Fabrizio; Sforza, Chiarella; Ferrario, Virgilio F

    2009-01-01

    Functional orthodontic devices can modify oral function thus permitting more adequate growth processes. The assessment of their effects should include both facial morphology and muscle function. This preliminary study investigated whether a preformed functional orthodontic device could induce variations in facial morphology and function along with correction of oral dysfunction in a group of orthodontic patients in the mixed and early permanent dentitions. The three-dimensional coordinates of 50 facial landmarks (forehead, eyes, nose, cheeks, mouth, jaw and ears) were collected in 10 orthodontic male patients aged 8-13 years, and in 89 healthy reference boys of the same age. Soft tissue facial angles, distances, and ratios were computed. Surface electromyography of the masseter and temporalis muscles was performed, and standardized symmetry, muscular torque and activity were calculated. Soft-tissue facial modifications were analyzed non-invasively before and after a 6-month treatment with a functional device. Comparisons were made with z-scores and paired Student's t-tests. The 6-month treatment stimulated mandibular growth in the anterior and inferior directions, with significant variations in three-dimensional facial divergence and facial convexity. The modifications were larger in the patients than in reference children. In several occasions, the discrepancies relative to the norm became not significant after treatment. No significant variations in standardized muscular activity were found. Preliminary results showed that the continuous and correct use of the functional device induced measurable intraoral (dental arches) and extraoral (face) morphological modifications. The device did not modify the functional equilibrium of the masticatory muscles.

  18. Multitasking capacities in persons diagnosed with schizophrenia: a preliminary examination of their neurocognitive underpinnings and ability to predict real world functioning.

    PubMed

    Laloyaux, Julien; Van der Linden, Martial; Levaux, Marie-Noëlle; Mourad, Haitham; Pirri, Anthony; Bertrand, Hervé; Domken, Marc-André; Adam, Stéphane; Larøi, Frank

    2014-07-30

    Difficulties in everyday life activities are core features of persons diagnosed with schizophrenia and in particular during multitasking activities. However, at present, patients׳ multitasking capacities have not been adequately examined in the literature due to the absence of suitable assessment strategies. We thus recently developed a computerized real-life activity task designed to take into account the complex and multitasking nature of certain everyday life activities where participants are required to prepare a room for a meeting. Twenty-one individuals diagnosed with schizophrenia and 20 matched healthy controls completed the computerized task. Patients were also evaluated with a cognitive battery, measures of symptomatology and real world functioning. To examine the ecological validity, 14 other patients were recruited and were given the computerized version and a real version of the meeting preparation task. Results showed that performance on the computerized task was significantly correlated with executive functioning, pointing to the major implication of these cognitive processes in multitasking situations. Performance on the computerized task also significantly predicted up to 50% of real world functioning. Moreover, the computerized task demonstrated good ecological validity. These findings suggest the importance of evaluating multitasking capacities in patients diagnosed with schizophrenia in order to predict real world functioning. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Attentional Focus Effects as a Function of Task Difficulty

    ERIC Educational Resources Information Center

    Wulf, Gabriele; Tollner, Thomas; Shea, Charles H.

    2007-01-01

    The purpose of the present study was to examine whether the advantages of adopting an external focus would be seen primarily for relatively challenging (postural stability) tasks but not less demanding tasks. To examine this, the authors used balance tasks that imposed increased challenges to maintaining stability. The present results support the…

  20. The Relationship Between Expectancy of Success and Task Difficulty as a Function of Absolute and Relative Success Criteria

    ERIC Educational Resources Information Center

    Smith, Ronald E.; And Others

    1976-01-01

    Subjects (N=80) made expectancy of success statements in a dart throwing task under two conditions. Significant differences between criterion groups were obtained, with success statements remaining constant across difficulty levels in the relative criterion condition while declining rapidly as a function of task difficulty in the absolute…

  1. Dexterity: A MATLAB-based analysis software suite for processing and visualizing data from tasks that measure arm or forelimb function.

    PubMed

    Butensky, Samuel D; Sloan, Andrew P; Meyers, Eric; Carmel, Jason B

    2017-07-15

    Hand function is critical for independence, and neurological injury often impairs dexterity. To measure hand function in people or forelimb function in animals, sensors are employed to quantify manipulation. These sensors make assessment easier and more quantitative and allow automation of these tasks. While automated tasks improve objectivity and throughput, they also produce large amounts of data that can be burdensome to analyze. We created software called Dexterity that simplifies data analysis of automated reaching tasks. Dexterity is MATLAB software that enables quick analysis of data from forelimb tasks. Through a graphical user interface, files are loaded and data are identified and analyzed. These data can be annotated or graphed directly. Analysis is saved, and the graph and corresponding data can be exported. For additional analysis, Dexterity provides access to custom scripts created by other users. To determine the utility of Dexterity, we performed a study to evaluate the effects of task difficulty on the degree of impairment after injury. Dexterity analyzed two months of data and allowed new users to annotate the experiment, visualize results, and save and export data easily. Previous analysis of tasks was performed with custom data analysis, requiring expertise with analysis software. Dexterity made the tools required to analyze, visualize and annotate data easy to use by investigators without data science experience. Dexterity increases accessibility to automated tasks that measure dexterity by making analysis of large data intuitive, robust, and efficient. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A dissociation of dorso-lateral striatum and amygdala function on the same stimulus-response habit task.

    PubMed

    McDonald, R J; Hong, N S

    2004-01-01

    This experiment tested the idea that the amygdala-based learning and memory system covertly acquires a stimulus-reward (stimulus-outcome) association during acquisition of a stimulus-response (S-R) habit task developed for the eight-arm radial maze. Groups of rats were given dorso-lateral striatal or amygdala lesions and then trained on the S-R habit task on the eight-arm radial maze. Rats with neurotoxic damage to the dorso-lateral striatum were severely impaired on the acquisition of the S-R habit task but showed a conditioned-cue preference for the stimulus reinforced during S-R habit training. Rats with neurotoxic damage to the amygdala were able to acquire the S-R habit task but did not show a conditioned-cue preference for the stimulus reinforced during S-R habit training. This pattern of results represents a dissociation of learning and memory functions of the dorsal striatum and amygdala on the same task.

  3. Functional neuroanatomy associated with the interaction between emotion and cognition in explicit memory tasks in patients with generalized anxiety disorder.

    PubMed

    Moon, Chung-Man; Yang, Jong-Chul; Jeong, Gwang-Woo

    2017-01-01

    The functional neuroanatomy for explicit memory in conjunction with the major anxiety symptoms in patients with generalized anxiety disorder (GAD) has not yet been clearly identified. To investigate the brain activation patterns on the interaction between emotional and cognitive function during the explicit memory tasks, as well as its correlation with clinical characteristics in GAD. The participants comprised GAD patients and age-matched healthy controls. The fMR images were obtained while the participants performed an explicit memory task with neutral and anxiety-inducing words. Patients showed significantly decreased functional activities in the putamen, head of the caudate nucleus, hippocampus, and middle cingulate gyrus during the memory tasks with the neutral and anxiety-inducing words, whereas the precentral gyrus and ventrolateral prefrontal cortex were significantly increased only in the memory tasks with the anxiety-inducing words. Also, the blood oxygenation level-dependent (BOLD) signal changes in the hippocampus were positively correlated with the recognition accuracy for both neutral and anxiety-inducing words. This study identified the brain areas associated with the interaction between emotional regulation and cognitive function in the explicit memory tasks in patients with GAD. These findings would be helpful to understand the neural mechanism on the explicit memory-related cognitive deficits and emotional dysfunction with GAD symptoms. © The Foundation Acta Radiologica 2016.

  4. The relationship between psychiatric symptomatology and motivation of challenging behaviour: a preliminary study.

    PubMed

    Holden, Børge; Gitlesen, Jens Petter

    2008-01-01

    In addition to explaining challenging behaviour by way of behaviour analytic, functional analyses, challenging behaviour is increasingly explained by way of psychiatric symptomatology. According to some researchers, the two approaches complement each other, as psychiatric symptomatology may form a motivational basis for the individual's response to more immediate environmental challenges, like deprivation and aversive conditions. The most common example may be that depressive mood may render task demands aversive. Consequently, the person may show escape-motivated challenging behaviour in the presence of demands. The question becomes whether, or to what extent, relationships between psychiatric symptomatologies and particular functions of challenging behaviour exist. In the present, preliminary study, PAS-ADD checklist, a psychiatric screening instrument, and motivation assessment scale (MAS) were employed in order to investigate this issue. The results show that symptomatologies are largely unrelated to particular behavioural functions. Practical implications are discussed.

  5. Formative versus Reflective Measurement of Executive Function Tasks: Response to Commentaries and Another Perspective

    ERIC Educational Resources Information Center

    Willoughby, Michael T.

    2014-01-01

    The focus article (Willoughby et al., 2014) (1) introduced the distinction between formative and reflective measurement and (2) proposed that performance-based executive function tasks may be better conceptualized from the perspective of formative rather than reflective measurement. This proposal stands in sharp contrast to conventional…

  6. Learning to juggle: on the assembly of functional subsystems into a task-specific dynamical organization.

    PubMed

    Huys, R; Daffertshofer, A; Beek, P J

    2003-04-01

    We examined the development of task-specific couplings among functional subsystems (i.e., ball circulation, respiration, and body sway) when learning to juggle a three-ball cascade, with a focus on learning-induced changes in the coupling between ball movements and respiration and the coupling between ball movements and body sway. Six novices practiced to juggle three balls in cascade fashion for one hour per day for twenty days. On specific days (7 in total), ball movements, center-of-pressure (CoP) trajectories and respiration traces were measured simultaneously. Discrete, time-continuous and spectral analyses revealed that the spatio-temporal variability of the juggling patterns decreased with practice and that the degree to which the task constraints were satisfied increased gradually. No conclusive evidence was found for ball movement-respiration coupling. In contrast, clear-cut evidence was found for the presence of 1:3 and 2:3 frequency locking between the vertical component of the ball trajectories and both the anterior-posterior and the medio-lateral components of the CoP. Incidence and expression of these mode locks varied across individuals and altered in the course of learning. Gradual changes in locking strength, appearances and disappearances of mode locks, as well as abrupt transitions between coupled states were observed. These results indicate that dissimilar learning dynamics may arise in the functional embedding of subsystems into a task-specific organization and that motor equivalence is an inherent property of such emerging task-specific organizations.

  7. The Function Concept at the Transition to Upper Secondary School Level: Tasks for a Situation of Change

    ERIC Educational Resources Information Center

    Best, Mareike; Bikner-Ahsbahs, Angelika

    2017-01-01

    This paper is about the development of a task sequence to help overcome the fragmented understanding of the "function" concept that students often bring with them into the initial stage of upper secondary school level. Our aim is to make the students' use of functions more flexible in certain respects, for example when functions are…

  8. Choosing Your Poison: Optimizing Simulator Visual System Selection as a Function of Operational Tasks

    NASA Technical Reports Server (NTRS)

    Sweet, Barbara T.; Kaiser, Mary K.

    2013-01-01

    Although current technology simulator visual systems can achieve extremely realistic levels they do not completely replicate the experience of a pilot sitting in the cockpit, looking at the outside world. Some differences in experience are due to visual artifacts, or perceptual features that would not be present in a naturally viewed scene. Others are due to features that are missing from the simulated scene. In this paper, these differences will be defined and discussed. The significance of these differences will be examined as a function of several particular operational tasks. A framework to facilitate the choice of visual system characteristics based on operational task requirements will be proposed.

  9. Working memory costs of task switching.

    PubMed

    Liefooghe, Baptist; Barrouillet, Pierre; Vandierendonck, André; Camos, Valérie

    2008-05-01

    Although many accounts of task switching emphasize the importance of working memory as a substantial source of the switch cost, there is a lack of evidence demonstrating that task switching actually places additional demands on working memory. The present study addressed this issue by implementing task switching in continuous complex span tasks with strictly controlled time parameters. A series of 4 experiments demonstrate that recall performance decreased as a function of the number of task switches and that the concurrent load of item maintenance had no influence on task switching. These results indicate that task switching induces a cost on working memory functioning. Implications for theories of task switching, working memory, and resource sharing are addressed.

  10. Functional Activation during the Rapid Visual Information Processing Task in a Middle Aged Cohort: An fMRI Study.

    PubMed

    Neale, Chris; Johnston, Patrick; Hughes, Matthew; Scholey, Andrew

    2015-01-01

    The Rapid Visual Information Processing (RVIP) task, a serial discrimination task where task performance believed to reflect sustained attention capabilities, is widely used in behavioural research and increasingly in neuroimaging studies. To date, functional neuroimaging research into the RVIP has been undertaken using block analyses, reflecting the sustained processing involved in the task, but not necessarily the transient processes associated with individual trial performance. Furthermore, this research has been limited to young cohorts. This study assessed the behavioural and functional magnetic resonance imaging (fMRI) outcomes of the RVIP task using both block and event-related analyses in a healthy middle aged cohort (mean age = 53.56 years, n = 16). The results show that the version of the RVIP used here is sensitive to changes in attentional demand processes with participants achieving a 43% accuracy hit rate in the experimental task compared with 96% accuracy in the control task. As shown by previous research, the block analysis revealed an increase in activation in a network of frontal, parietal, occipital and cerebellar regions. The event related analysis showed a similar network of activation, seemingly omitting regions involved in the processing of the task (as shown in the block analysis), such as occipital areas and the thalamus, providing an indication of a network of regions involved in correct trial performance. Frontal (superior and inferior frontal gryi), parietal (precuenus, inferior parietal lobe) and cerebellar regions were shown to be active in both the block and event-related analyses, suggesting their importance in sustained attention/vigilance. These networks and the differences between them are discussed in detail, as well as implications for future research in middle aged cohorts.

  11. Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task

    PubMed Central

    Al-Qazzaz, Noor Kamal; Hamid Bin Mohd Ali, Sawal; Ahmad, Siti Anom; Islam, Mohd Shabiul; Escudero, Javier

    2015-01-01

    We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10–20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1–db20), Symlets (sym1–sym20), and Coiflets (coif1–coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using “sym9” across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions. PMID:26593918

  12. Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task.

    PubMed

    Al-Qazzaz, Noor Kamal; Bin Mohd Ali, Sawal Hamid; Ahmad, Siti Anom; Islam, Mohd Shabiul; Escudero, Javier

    2015-11-17

    We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10-20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1-db20), Symlets (sym1-sym20), and Coiflets (coif1-coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using "sym9" across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions.

  13. PreSMA stimulation changes task-free functional connectivity in the fronto-basal-ganglia that correlates with response inhibition efficiency

    PubMed Central

    Xu, Benjamin; Sandrini, Marco; Wang, Wen-tung; Smith, Jason F.; Sarlls, Joelle E.; Awosika, Oluwole; Butman, John A.; Horwitz, Barry; Cohen, Leonardo G.

    2016-01-01

    Previous work using transcranial magnetic stimulation (TMS) demonstrated that the right pre-supplementary motor area (preSMA), a node in the fronto-basal-ganglia network, is critical for response inhibition. However, TMS influences interconnected regions, raising the possibility of a link between the preSMA activity and the functional connectivity within the network. To understand this relationship, we applied single-pulse TMS to the right preSMA during functional magnetic resonance imaging when the subjects were at rest to examine changes in neural activity and functional connectivity within the network in relation to the efficiency of response inhibition evaluated with a stop-signal task. The results showed that preSMA-TMS increased activation in the right inferior-frontal cortex (rIFC) and basal ganglia and modulated their task-free functional connectivity. Both the TMS-induced changes in the basal-ganglia activation and the functional connectivity between rIFC and left striatum, and of the overall network correlated with the efficiency of response inhibition and with the white-matter microstructure along the preSMA – rIFC pathway. These results suggest that the task-free functional and structural connectivity between the rIFCop and basal ganglia are critical to the efficiency of response inhibition. PMID:27144466

  14. Task-set inertia and memory-consolidation bottleneck in dual tasks.

    PubMed

    Koch, Iring; Rumiati, Raffaella I

    2006-11-01

    Three dual-task experiments examined the influence of processing a briefly presented visual object for deferred verbal report on performance in an unrelated auditory-manual reaction time (RT) task. RT was increased at short stimulus-onset asynchronies (SOAs) relative to long SOAs, showing that memory consolidation processes can produce a functional processing bottleneck in dual-task performance. In addition, the experiments manipulated the spatial compatibility of the orientation of the visual object and the side of the speeded manual response. This cross-task compatibility produced relative RT benefits only when the instruction for the visual task emphasized overlap at the level of response codes across the task sets (Experiment 1). However, once the effective task set was in place, it continued to produce cross-task compatibility effects even in single-task situations ("ignore" trials in Experiment 2) and when instructions for the visual task did not explicitly require spatial coding of object orientation (Experiment 3). Taken together, the data suggest a considerable degree of task-set inertia in dual-task performance, which is also reinforced by finding costs of switching task sequences (e.g., AC --> BC vs. BC --> BC) in Experiment 3.

  15. Preliminary cognitive scale of basic and instrumental activities of daily living for dementia and mild cognitive impairment.

    PubMed

    Rodríguez-Bailón, María; Montoro-Membila, Nuria; Garcia-Morán, Tamara; Arnedo-Montoro, María Luisa; Funes Molina, María Jesús

    2015-01-01

    In the present study we explored cognitive and functional deficits in patients with multidomain mild cognitive impairment (MCI), patients with dementia, and healthy age-matched control participants using the Cognitive Scale for Basic and Instrumental Activities of Daily Living, a new preliminary informant-based assessment tool. This tool allowed us to evaluate four key cognitive abilities-task memory schema, error detection, problem solving, and task self-initiation-in a range of basic and instrumental activities of daily living (BADL and IADL, respectively). The first part of the present study was devoted to testing the psychometric adequateness of this new informant-based tool and its convergent validity with other global functioning and neuropsychological measures. The second part of the study was aimed at finding the patterns of everyday cognitive factors that best discriminate between the three groups. We found that patients with dementia exhibited impairment in all cognitive abilities in both basic and instrumental activities. By contrast, patients with MCI were found to have preserved task memory schema in both types of ADL; however, such patients exhibited deficits in error detection and task self-initiation but only in IADL. Finally, patients with MCI also showed a generalized problem solving deficit that affected even BADL. Studying various cognitive processes instantiated in specific ADL differing in complexity seems a promising strategy to further understand the specific relationships between cognition and function in these and other cognitively impaired populations.

  16. Translation, Adaptation, and Preliminary Validation of the Female Sexual Function Index into Spanish (Colombia).

    PubMed

    Vallejo-Medina, Pablo; Pérez-Durán, Claudia; Saavedra-Roa, Alejandro

    2018-04-01

    The Female Sexual Function Index (FSFI) subjectively explores the dimensions of female sexual functioning. This research undertook to adapt and validate the FSFI to Spanish language in a Colombian sample. To this effect, this study was conducted in two steps, namely: (1) cultural adaptation of the scale with the collaboration of seven experts; and (2) preliminary validation of the scale in a sample of 925 participants. Reliability indices were appropriate in this sample, and external validity in relation to other measures showed significant relationships. Findings suggest that the FSFI is reliable and valid in Spanish for a Colombian population. Further research is needed to establish the test-retest reliability and discriminant validity of this Spanish version.

  17. Transfer of training between distinct motor tasks after stroke: Implications for task- specific approaches to upper extremity neurorehabilitation

    PubMed Central

    Schaefer, Sydney Y.; Patterson, Chavelle B.; Lang, Catherine E.

    2013-01-01

    Background Although task-specific training is emerging as a viable approach for recovering motor function after stroke, there is little evidence for whether the effects of such training transfer to other functional motor tasks not directly practiced in therapy. Objective The purpose of the current study was to test whether training on one motor task would transfer to untrained tasks that were either spatiotemporally similar or different in individuals with chronic hemiparesis post-stroke. Methods Eleven participants with chronic mild-to-moderate hemiparesis following stroke completed five days of supervised massed practice of a feeding task with their affected side. Performance on the feeding task, along with two other untrained functional upper extremity motor tasks (sorting, dressing) was assessed before and after training. Results Performance of all three tasks improved significantly after training exclusively on one motor task. The amount of improvement in the untrained tasks was comparable, and was not dependent on the degree of similarity to the trained task. Conclusions Because the number and type of tasks that can be practiced are often limited within standard stroke rehabilitation, results from this study will be useful for designing task-specific training plans to maximize therapy benefits. PMID:23549521

  18. Transfer of training between distinct motor tasks after stroke: implications for task-specific approaches to upper-extremity neurorehabilitation.

    PubMed

    Schaefer, Sydney Y; Patterson, Chavelle B; Lang, Catherine E

    2013-09-01

    Although task-specific training is emerging as a viable approach for recovering motor function after stroke, there is little evidence for whether the effects of such training transfer to other functional motor tasks not directly practiced in therapy. The purpose of the current study was to test whether training on one motor task in individuals with chronic hemiparesis poststroke would transfer to untrained tasks that were either spatiotemporally similar or different. In all, 11 participants with chronic mild to moderate hemiparesis following stroke completed 5 days of supervised massed practice of a feeding task with their affected side. Performance on the feeding task, along with 2 other untrained functional upper-extremity motor tasks (sorting, dressing) was assessed before and after training. Performance of all 3 tasks improved significantly after training exclusively on 1 motor task. The amount of improvement in the untrained tasks was comparable and was not dependent on the degree of similarity to the trained task. Because the number and type of tasks that can be practiced are often limited within standard stroke rehabilitation, results from this study will be useful for designing task-specific training plans to maximize therapy benefits.

  19. Effects of Physical-Cognitive Dual Task Training on Executive Function and Gait Performance in Older Adults: A Randomized Controlled Trial

    PubMed Central

    Falbo, S.; Condello, G.; Capranica, L.; Forte, R.

    2016-01-01

    Physical and cognitive training seem to counteract age-related decline in physical and mental function. Recently, the possibility of integrating cognitive demands into physical training has attracted attention. The purpose of this study was to evaluate the effects of twelve weeks of designed physical-cognitive training on executive cognitive function and gait performance in older adults. Thirty-six healthy, active individuals aged 72.30 ± 5.84 years were assigned to two types of physical training with major focus on physical single task (ST) training (n = 16) and physical-cognitive dual task (DT) training (n = 20), respectively. They were tested before and after the intervention for executive function (inhibition, working memory) through Random Number Generation and for gait (walking with/without negotiating hurdles) under both single and dual task (ST, DT) conditions. Gait performance improved in both groups, while inhibitory performance decreased after exercise training with ST focus but tended to increase after training with physical-cognitive DT focus. Changes in inhibition performance were correlated with changes in DT walking performance with group differences as a function of motor task complexity (with/without hurdling). The study supports the effectiveness of group exercise classes for older individuals to improve gait performance, with physical-cognitive DT training selectively counteracting the age-related decline in a core executive function essential for daily living. PMID:28053985

  20. Effects of Physical-Cognitive Dual Task Training on Executive Function and Gait Performance in Older Adults: A Randomized Controlled Trial.

    PubMed

    Falbo, S; Condello, G; Capranica, L; Forte, R; Pesce, C

    2016-01-01

    Physical and cognitive training seem to counteract age-related decline in physical and mental function. Recently, the possibility of integrating cognitive demands into physical training has attracted attention. The purpose of this study was to evaluate the effects of twelve weeks of designed physical-cognitive training on executive cognitive function and gait performance in older adults. Thirty-six healthy, active individuals aged 72.30 ± 5.84 years were assigned to two types of physical training with major focus on physical single task (ST) training ( n = 16) and physical-cognitive dual task (DT) training ( n = 20), respectively. They were tested before and after the intervention for executive function (inhibition, working memory) through Random Number Generation and for gait (walking with/without negotiating hurdles) under both single and dual task (ST, DT) conditions. Gait performance improved in both groups, while inhibitory performance decreased after exercise training with ST focus but tended to increase after training with physical-cognitive DT focus. Changes in inhibition performance were correlated with changes in DT walking performance with group differences as a function of motor task complexity (with/without hurdling). The study supports the effectiveness of group exercise classes for older individuals to improve gait performance, with physical-cognitive DT training selectively counteracting the age-related decline in a core executive function essential for daily living.

  1. The “Task B problem” and other considerations in developmental functional neuroimaging

    PubMed Central

    Church, Jessica A.; Petersen, Steven E.; Schlaggar, Bradley L.

    2012-01-01

    Functional neuroimaging provides a remarkable tool to allow us to study cognition across the lifespan and in special populations in a safe way. However, experimenters face a number of methodological issues, and these issues are particularly pertinent when imaging children. This brief article discusses assessing task performance, strategies for dealing with group performance differences, controlling for movement, statistical power, proper atlas registration, and data analysis strategies. In addition, there will be discussion of two other topics that have important implications for interpreting fMRI data: the question of whether functional neuroanatomical differences between adults and children are the consequence of putative developmental neurovascular differences, and the issue of interpreting negative blood oxygenation-level dependent (BOLD) signal change. PMID:20496376

  2. Self-narrative reconstruction in emotion-focused therapy: A preliminary task analysis.

    PubMed

    Cunha, Carla; Mendes, Inês; Ribeiro, António P; Angus, Lynne; Greenberg, Leslie S; Gonçalves, Miguel M

    2017-11-01

    This research explored the consolidation phase of emotion-focused therapy (EFT) for depression and studies-through a task-analysis method-how client-therapist dyads evolved from the exploration of the problem to self-narrative reconstruction. Innovative moments (IMs) were used to situate the process of self-narrative reconstruction within sessions, particularly through reconceptualization and performing change IMs. We contrasted the observation of these occurrences with a rational model of self-narrative reconstruction, previously built. This study presents the rational model and the revised rational-empirical model of the self-narrative reconstruction task in three EFT dyads, suggesting nine steps necessary for task resolution: (1) Explicit recognition of differences in the present and steps in the path of change; (2) Development of a meta-perspective contrast between present self and past self; (3) Amplification of contrast in the self; (4) A positive appreciation of changes is conveyed; (5) Occurrence of feelings of empowerment, competence, and mastery; (6) Reference to difficulties still present; (7) Emphasis on the loss of centrality of the problem; (8) Perception of change as a gradual, developing process; and (9) Reference to projects, experiences of change, or elaboration of new plans. Central aspects of therapist activity in facilitating the client's progression along these nine steps are also elaborated.

  3. Decreased functional brain activation in Friedreich ataxia using the Simon effect task.

    PubMed

    Georgiou-Karistianis, N; Akhlaghi, H; Corben, L A; Delatycki, M B; Storey, E; Bradshaw, J L; Egan, G F

    2012-08-01

    The present study applied the Simon effect task to examine the pattern of functional brain reorganization in individuals with Friedreich ataxia (FRDA), using functional magnetic resonance imaging (fMRI). Thirteen individuals with FRDA and 14 age and sex matched controls participated, and were required to respond to either congruent or incongruent arrow stimuli, presented either to the left or right of a screen, via laterally-located button press responses. Although the Simon effect (incongruent minus congruent stimuli) showed common regions of activation in both groups, including the superior and middle prefrontal cortices, insulae, superior and inferior parietal lobules (LPs, LPi), occipital cortex and cerebellum, there was reduced functional activation across a range of brain regions (cortical, subcortical and cerebellar) in individuals with FRDA. The greater Simon effect behaviourally in individuals with FRDA, compared with controls, together with concomitant reductions in functional brain activation and reduced functional connectivity between cortical and sub-cortical regions, implies a likely disruption of cortico-cerebellar loops and ineffective engagement of cognitive/attention regions required for response suppression. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Monitoring of prefrontal cortex activation during verbal n-back task with 24-channel functional NIRS imager

    NASA Astrophysics Data System (ADS)

    Li, Chengjun; Gong, Hui; Gan, Zhuo; Luo, Qingming

    2005-01-01

    Human prefrontal cortex (PFC) helps mediate working memory (WM), a system that is used for temporary storage and manipulation of information and is involved with many higher-level cognitive functions. Here, we report a functional near-infrared spectroscopy (NIRS) study on the PFC activation caused by verbal WM task. For investigating the effect of memory load on brain activation, we adopted the "n-back" task in which subjects must decide for each present letter whether it matches the letter presented n items back in sequence. 27 subjects (ages 18-24, 13 females) participated in the work. Concentration changes in oxy-Hb (HbO2), deoxy-Hb (Hb), and total-Hb (HbT) in the subjects" prefrontal cortex were monitored by a 24-channel functional NIRS imager. The cortical activations and deactivations were found in left ventrolateral PFC and bilateral dorsolateral PFC. As memory load increased, subjects showed poorer behavioral performance as well as monotonically increasing magnitudes of the activations and deactivations in PFC.

  5. An Automated, Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI

    PubMed Central

    Churchill, Nathan W.; Spring, Robyn; Afshin-Pour, Babak; Dong, Fan; Strother, Stephen C.

    2015-01-01

    BOLD fMRI is sensitive to blood-oxygenation changes correlated with brain function; however, it is limited by relatively weak signal and significant noise confounds. Many preprocessing algorithms have been developed to control noise and improve signal detection in fMRI. Although the chosen set of preprocessing and analysis steps (the “pipeline”) significantly affects signal detection, pipelines are rarely quantitatively validated in the neuroimaging literature, due to complex preprocessing interactions. This paper outlines and validates an adaptive resampling framework for evaluating and optimizing preprocessing choices by optimizing data-driven metrics of task prediction and spatial reproducibility. Compared to standard “fixed” preprocessing pipelines, this optimization approach significantly improves independent validation measures of within-subject test-retest, and between-subject activation overlap, and behavioural prediction accuracy. We demonstrate that preprocessing choices function as implicit model regularizers, and that improvements due to pipeline optimization generalize across a range of simple to complex experimental tasks and analysis models. Results are shown for brief scanning sessions (<3 minutes each), demonstrating that with pipeline optimization, it is possible to obtain reliable results and brain-behaviour correlations in relatively small datasets. PMID:26161667

  6. C2 Link Security for UAS: Technical Literature Study and Preliminary Functional Requirements. Version 0.9 (Working Draft)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document provides a study of the technical literature related to Command and Control (C2) link security for Unmanned Aircraft Systems (UAS) for operation in the National Airspace System (NAS). Included is a preliminary set of functional requirements for C2 link security.

  7. 2017 NEPP Tasks Update for Ceramic and Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2017-01-01

    This presentation gives an overview of current NEPP tasks on ceramic and tantalum capacitors and plans for the future. It includes tasks on leakage currents, gas generation and case deformation in wet tantalum capacitors; ESR degradation and acceleration factors in MnO2 and polymer cathode capacitors. Preliminary results on the effect of moisture on degradation of reverse currents in MnO2 tantalum capacitors are discussed. Latest results on mechanical characteristics of MLCCs and modeling of degradation of leakage currents in BME capacitors with defects are also presented.

  8. Conceptual Replaceability Analysis for Order and Standard Loan Tasks.

    ERIC Educational Resources Information Center

    California Univ., Santa Barbara. Library Systems Development Program.

    Very preliminary systems concepts are presented for the Order and Standard Loan Subsystems. Each of the tasks defined for the current manual operations in (Library Systems Development) LSD 70-60 are evaluated against these concepts to determine how existing work will change when mechanized systems are installed. Then, utilizing this qualitative…

  9. Age-Related Differences in Multiple Task Monitoring

    PubMed Central

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age. PMID:25215609

  10. Age-related differences in multiple task monitoring.

    PubMed

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age.

  11. Space Station data system analysis/architecture study. Task 1: Functional requirements definition, DR-5

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The initial task in the Space Station Data System (SSDS) Analysis/Architecture Study is the definition of the functional and key performance requirements for the SSDS. The SSDS is the set of hardware and software, both on the ground and in space, that provides the basic data management services for Space Station customers and systems. The primary purpose of the requirements development activity was to provide a coordinated, documented requirements set as a basis for the system definition of the SSDS and for other subsequent study activities. These requirements should also prove useful to other Space Station activities in that they provide an indication of the scope of the information services and systems that will be needed in the Space Station program. The major results of the requirements development task are as follows: (1) identification of a conceptual topology and architecture for the end-to-end Space Station Information Systems (SSIS); (2) development of a complete set of functional requirements and design drivers for the SSIS; (3) development of functional requirements and key performance requirements for the Space Station Data System (SSDS); and (4) definition of an operating concept for the SSIS. The operating concept was developed both from a Space Station payload customer and operator perspective in order to allow a requirements practicality assessment.

  12. Iowa Gambling Task Performance and Executive Function Predict Low-income Urban Preadolescents’ Risky Behaviors

    PubMed Central

    Ursache, Alexandra; Raver, C. Cybele

    2015-01-01

    This study examines preadolescents’ reports of risk-taking as predicted by two different, but related inhibitory control systems involving sensitivity to reward and loss on the one hand, and higher order processing in the context of cognitive conflict, known as executive functioning (EF), on the other. Importantly, this study examines these processes with a sample of inner-city, low-income preadolescents and as such examines the ways in which these processes may be related to risky behaviors as a function of children's levels of both concurrent and chronic exposure to household poverty. As part of a larger longitudinal study, 382 children (ages 9 -11) provided a self-report of risky behaviors and participated in the Iowa Gambling task, assessing bias for infrequent loss (preference for infrequent, high magnitude versus frequent, low magnitude loss) and the Hearts and Flowers task assessing executive functioning. Results demonstrated that a higher bias for infrequent loss was associated with higher risky behaviors for children who demonstrated lower EF. Furthermore, bias for infrequent loss was most strongly associated with higher risk-taking for children facing highest levels of poverty. Implications for early identification and prevention of risk-taking in inner-city preadolescents are discussed. PMID:26412918

  13. Are Letter Detection and Proofreading Tasks Equivalent?

    ERIC Educational Resources Information Center

    Saint-Aubin, Jean; Losier, Marie-Claire; Roy, Macha; Lawrence, Mike

    2015-01-01

    When readers search for misspellings in a proofreading task or for a letter in a letter detection task, they are more likely to omit function words than content words. However, with misspelled words, previous findings for the letter detection task were mixed. In two experiments, the authors tested the functional equivalence of both tasks. Results…

  14. The roles of sensory function and cognitive load in age differences in inhibition: Evidence from the Stroop task.

    PubMed

    Peng, Huamao; Gao, Yue; Mao, Xiaofei

    2017-02-01

    To explore the roles of visual function and cognitive load in aging of inhibition, the present study adopted a 2 (visual perceptual stress: noise, nonnoise) × 2 (cognitive load: low, high) × 2 (age: young, old) mixed design. The Stroop task was adopted to measure inhibition. The task presentation was masked with Gaussian noise according to the visual function of each individual in order to match visual perceptual stress between age groups. The results indicated that age differences in the Stroop effect were influenced by visual function and cognitive load. When the cognitive load was low, older adults exhibited a larger Stroop effect than did younger adults in the nonnoise condition, and this age difference disappeared when the visual noise of the 2 age groups was matched. Conversely, in the high cognitive load condition, we observed significant age differences in the Stroop effect in both the nonnoise and noise conditions. The additional cognitive load made the age differences in the Stroop task reappear even when visual perceptual stress was equivalent. These results demonstrate that visual function plays an important role in the aging of inhibition and its role is moderated by cognitive load. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Exploring individual differences in task switching: Persistence and other personality traits related to anterior cingulate cortex function.

    PubMed

    Umemoto, A; Holroyd, C B

    2016-01-01

    Anterior cingulate cortex (ACC) is involved in cognitive control and decision-making but its precise function is still highly debated. Based on evidence from lesion, neurophysiological, and neuroimaging studies, we have recently proposed a critical role for ACC in motivating extended behaviors according to learned task values (Holroyd and Yeung, 2012). Computational simulations based on this theory suggest a hierarchical mechanism in which a caudal division of ACC selects and applies control over task execution, and a rostral division of ACC facilitates switches between tasks according to a higher task strategy (Holroyd and McClure, 2015). This theoretical framework suggests that ACC may contribute to personality traits related to persistence and reward sensitivity (Holroyd and Umemoto, 2016). To explore this possibility, we carried out a voluntary task switching experiment in which on each trial participants freely chose one of two tasks to perform, under the condition that they try to select the tasks "at random" and equally often. The participants also completed several questionnaires that assessed personality trait related to persistence, apathy, anhedonia, and rumination, in addition to the Big 5 personality inventory. Among other findings, we observed greater compliance with task instructions by persistent individuals, as manifested by a greater facility with switching between tasks, which is suggestive of increased engagement of rostral ACC. © 2016 Elsevier B.V. All rights reserved.

  16. Efficacy of Attention Regulation in Preschool-Age Children Who Stutter: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Johnson, Kia N.; Conture, Edward G.; Walden, Tedra A.

    2012-01-01

    Purpose: This preliminary investigation assessed the attentional processes of preschool-age children who do (CWS) and do not stutter (CWNS) during Traditional cueing and Affect cueing tasks. Method: Participants consisted of 12 3- to 5-year-old CWS and the same number of CWNS (all boys). Both talker groups participated in two tasks of shifting and…

  17. Reading and lexical-decision tasks generate different patterns of individual variability as a function of condition difficulty.

    PubMed

    Zoccolotti, Pierluigi; De Luca, Maria; Di Filippo, Gloria; Marinelli, Chiara Valeria; Spinelli, Donatella

    2018-06-01

    We reanalyzed previous experiments based on lexical-decision and reading-aloud tasks in children with dyslexia and control children and tested the prediction of the difference engine model (DEM) that mean condition reaction times (RTs) and standard deviations (SDs) would be linearly related (Myerson et al., 2003). Then we evaluated the slope and the intercept with the x-axis of these linear functions in comparison with previously reported values (i.e., slope of about 0.30 and intercept of about 300 ms). In the case of lexical decision, the parameters were close to these values; by contrast, in the case of reading aloud, a much steeper slope (0.66) and a greater intercept (482.6 ms) were found. Therefore, interindividual variability grows at a much faster rate as a function of condition difficulty for reading than for lexical-decision tasks (or for other tasks reported in the literature). According to the DEM, the slope of the regression that relates means and SDs indicates the degree of correlation among the durations of the stages of processing. We propose that the need for a close coupling between orthographic and phonological processing in reading is what drives the particularly strong relationship between performance and interindividual variability that we observed in reading tasks.

  18. Altered Distant Synchronization of Background Network in Mild Cognitive Impairment during an Executive Function Task.

    PubMed

    Wang, Pengyun; Li, Rui; Yu, Jing; Huang, Zirui; Yan, Zhixiong; Zhao, Ke; Li, Juan

    2017-01-01

    Few studies to date have investigated the background network in the cognitive state relying on executive function in mild cognitive impairment (MCI) patients. Using the index of degree of centrality (DC), we explored distant synchronization of background network in MCI during a hybrid delayed-match-to-sample task (DMST), which mainly relies on the working memory component of executive function. We observed significant interactions between group and cognitive state in the bilateral posterior cingulate cortex (PCC) and the ventral subregion of precuneus. For normal control (NC) group, the long distance functional connectivity (FC) of the PCC/precuneus with the other regions of the brain was higher in rest state than that working memory state. For MCI patients, however, this pattern altered. There was no significant difference between rest and working memory state. The similar pattern was observed in the other cluster located in the right angular gyrus. To examine whether abnormal DC in PCC/precuneus and angular gyrus partially resulted from the deficit of FC between these regions and the other parts in the whole brain, we conducted a seed-based correlation analysis with these regions as seeds. The results indicated that the FC between bilateral PCC/precuneus and the right inferior parietal lobule (IPL) increased from rest to working memory state for NC participants. For MCI patients, however, there was no significant change between rest and working memory state. The similar pattern was observed for the FC between right angular gyrus and right anterior insula. However, there was no difference between MCI and NC groups in global efficiency and modularity. It may indicate a lack of efficient reorganization from rest state to a working memory state in the brain network of MCI patients. The present study demonstrates the altered distant synchronization of background network in MCI during a task relying on executive function. The results provide a new perspective regarding

  19. PreSMA stimulation changes task-free functional connectivity in the fronto-basal-ganglia that correlates with response inhibition efficiency.

    PubMed

    Xu, Benjamin; Sandrini, Marco; Wang, Wen-Tung; Smith, Jason F; Sarlls, Joelle E; Awosika, Oluwole; Butman, John A; Horwitz, Barry; Cohen, Leonardo G

    2016-09-01

    Previous work using transcranial magnetic stimulation (TMS) demonstrated that the right presupplementary motor area (preSMA), a node in the fronto-basal-ganglia network, is critical for response inhibition. However, TMS influences interconnected regions, raising the possibility of a link between the preSMA activity and the functional connectivity within the network. To understand this relationship, we applied single-pulse TMS to the right preSMA during functional magnetic resonance imaging when the subjects were at rest to examine changes in neural activity and functional connectivity within the network in relation to the efficiency of response inhibition evaluated with a stop-signal task. The results showed that preSMA-TMS increased activation in the right inferior-frontal cortex (rIFC) and basal ganglia and modulated their task-free functional connectivity. Both the TMS-induced changes in the basal-ganglia activation and the functional connectivity between rIFC and left striatum, and of the overall network correlated with the efficiency of response inhibition and with the white-matter microstructure along the preSMA-rIFC pathway. These results suggest that the task-free functional and structural connectivity between the rIFCop and basal ganglia are critical to the efficiency of response inhibition. Hum Brain Mapp 37:3236-3249, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. A preliminary investigation on exercise intensities of gardening tasks in older adults.

    PubMed

    Park, Sin-Ae; Shoemaker, Candice A; Haub, Mark D

    2008-12-01

    Heart rate (HR) was measured continuously while men (n=6) and women (n=2) ages 71 to 85 years (M=77.4, SD=4.1) completed nine gardening tasks. HR and VO2 from a submaximal graded exercise test were used to estimate gardening VO2, energy expenditure, % HRmax, and metabolic equivalents (METs). Tasks were low to moderate intensity physical activity (1.6-3.6 METs); those which worked the upper and lower body were moderate intensity physical activity while those that worked primarily the upper body were low intensity physical activity.

  1. Shoulder Strength Requirements for Upper Limb Functional Tasks: Do Age and Rotator Cuff Tear Status Matter?

    PubMed

    Santago, Anthony C; Vidt, Meghan E; Li, Xiaotong; Tuohy, Christopher J; Poehling, Gary G; Freehill, Michael T; Saul, Katherine R

    2017-12-01

    Understanding upper limb strength requirements for daily tasks is imperative for early detection of strength loss that may progress to disability due to age or rotator cuff tear. We quantified shoulder strength requirements for 5 upper limb tasks performed by 3 groups: uninjured young adults and older adults, and older adults with a degenerative supraspinatus tear prior to repair. Musculoskeletal models were developed for each group representing age, sex, and tear-related strength losses. Percentage of available strength used was quantified for the subset of tasks requiring the largest amount of shoulder strength. Significant differences in strength requirements existed across tasks: upward reach 105° required the largest average strength; axilla wash required the largest peak strength. However, there were limited differences across participant groups. Older adults with and without a tear used a larger percentage of their shoulder elevation (p < .001, p < .001) and external rotation (p < .001, p = .017) strength than the young adults, respectively. Presence of a tear significantly increased percentage of internal rotation strength compared to young (p < .001) and uninjured older adults (p = .008). Marked differences in strength demand across tasks indicate the need for evaluating a diversity of functional tasks to effectively detect early strength loss, which may lead to disability.

  2. Directionality analysis on functional magnetic resonance imaging during motor task using Granger causality.

    PubMed

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2012-01-01

    Directionality analysis of signals originating from different parts of brain during motor tasks has gained a lot of interest. Since brain activity can be recorded over time, methods of time series analysis can be applied to medical time series as well. Granger Causality is a method to find a causal relationship between time series. Such causality can be referred to as a directional connection and is not necessarily bidirectional. The aim of this study is to differentiate between different motor tasks on the basis of activation maps and also to understand the nature of connections present between different parts of the brain. In this paper, three different motor tasks (finger tapping, simple finger sequencing, and complex finger sequencing) are analyzed. Time series for each task were extracted from functional magnetic resonance imaging (fMRI) data, which have a very good spatial resolution and can look into the sub-cortical regions of the brain. Activation maps based on fMRI images show that, in case of complex finger sequencing, most parts of the brain are active, unlike finger tapping during which only limited regions show activity. Directionality analysis on time series extracted from contralateral motor cortex (CMC), supplementary motor area (SMA), and cerebellum (CER) show bidirectional connections between these parts of the brain. In case of simple finger sequencing and complex finger sequencing, the strongest connections originate from SMA and CMC, while connections originating from CER in either direction are the weakest ones in magnitude during all paradigms.

  3. The addition of functional task-oriented mental practice to conventional physical therapy improves motor skills in daily functions after stroke.

    PubMed

    Santos-Couto-Paz, Clarissa C; Teixeira-Salmela, Luci F; Tierra-Criollo, Carlos J

    2013-01-01

    Mental practice (MP) is a cognitive strategy which may improve the acquisition of motor skills and functional performance of athletes and individuals with neurological injuries. To determine whether an individualized, specific functional task-oriented MP, when added to conventional physical therapy (PT), promoted better learning of motor skills in daily functions in individuals with chronic stroke (13 ± 6.5 months post-stroke). Nine individuals with stable mild and moderate upper limb impairments participated, by employing an A1-B-A2 single-case design. Phases A1 and A2 included one month of conventional PT, and phase B the addition of MP training to PT. The motor activity log (MAL-Brazil) was used to assess the amount of use (AOU) and quality of movement (QOM) of the paretic upper limb; the revised motor imagery questionnaire (MIQ-RS) to assess the abilities in kinesthetic and visual motor imagery; the Minnesota manual dexterity test to assess manual dexterity; and gait speed to assess mobility. After phase A1, no significant changes were observed for any of the outcome measures. However, after phase B, significant improvements were observed for the MAL, AOU and QOM scores (p<0.0001), and MIQ-RS kinesthetic and visual scores (p=0.003; p=0.007, respectively). The significant gains in manual dexterity (p=0.002) and gait speed (p=0.019) were maintained after phase A2. Specific functional task-oriented MP, when added to conventional PT, led to improvements in motor imagery abilities combined with increases in the AOU and QOM in daily functions, manual dexterity, and gait speed.

  4. Detection of reduced interhemispheric cortical communication during task execution in multiple sclerosis patients using functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jimenez, Jon J.; Yang, Runze; Nathoo, Nabeela; Varshney, Vishal P.; Golestani, Ali-Mohammad; Goodyear, Bradley G.; Metz, Luanne M.; Dunn, Jeff F.

    2014-07-01

    Multiple sclerosis (MS) impairs brain activity through demyelination and loss of axons. Increased brain activity is accompanied by increases in microvascular hemoglobin oxygen saturation (oxygenation) and total hemoglobin, which can be measured using functional near-infrared spectroscopy (fNIRS). Due to the potentially reduced size and integrity of the white matter tracts within the corpus callosum, it may be expected that MS patients have reduced functional communication between the left and right sides of the brain; this could potentially be an indicator of disease progression. To assess interhemispheric communication in MS, we used fNIRS during a unilateral motor task and the resting state. The magnitude of the change in hemoglobin parameters in the motor cortex was significantly reduced in MS patients during the motor task relative to healthy control subjects. There was also a significant decrease in interhemispheric communication between the motor cortices (expressed as coherence) in MS patients compared to controls during the motor task, but not during the resting state. fNIRS assessment of interhemispheric coherence during task execution may be a useful marker in disorders with white matter damage or axonal loss, including MS.

  5. Cognitive correlates of spatial navigation: Associations between executive functioning and the virtual Morris Water Task.

    PubMed

    Korthauer, L E; Nowak, N T; Frahmand, M; Driscoll, I

    2017-01-15

    Although effective spatial navigation requires memory for objects and locations, navigating a novel environment may also require considerable executive resources. The present study investigated associations between performance on the virtual Morris Water Task (vMWT), an analog version of a nonhuman spatial navigation task, and neuropsychological tests of executive functioning and spatial performance in 75 healthy young adults. More effective vMWT performance (e.g., lower latency and distance to reach hidden platform, greater distance in goal quadrant on a probe trial, fewer path intersections) was associated with better verbal fluency, set switching, response inhibition, and ability to mentally rotate objects. Findings also support a male advantage in spatial navigation, with sex moderating several associations between vMWT performance and executive abilities. Overall, we report a robust relationship between executive functioning and navigational skill, with some evidence that men and women may differentially recruit cognitive abilities when navigating a novel environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effects of Task-oriented Approach on Affected Arm Function in Children with Spastic Hemiplegia Due to Cerebral Palsy.

    PubMed

    Song, Chiang-Soon

    2014-06-01

    [Purpose] The purpose of the present study was to examine the effects of task-oriented approach on motor function of the affected arm in children with spastic hemiplegia due to cerebral palsy. [Subjects] Twelve children were recruited by convenience sampling from 2 local rehabilitation centers. The present study utilized a one-group pretest-posttest design. All of children received task-oriented training for 6 weeks (40 min/day, 5 days/week) and also underwent regular occupational therapy. Three clinical tests, Box and Block Test (BBT), Manual Ability Measure (MAM-16), and Wee Functional Independence Measure (WeeFIM) were performed 1 day before and after training to evaluate the effects of the training. [Results] Compared with the pretest scores, there was a significant increase in the BBT, MAM-16, and WeeFIM scores of the children after the 6-week practice period. [Conclusion] The results of this study suggest that a task-oriented approach to treatment of the affected arm improves functional activities, such as manual dexterity and fine motor performance, as well as basic daily activities of patients with spastic hemiplegia due to cerebral palsy.

  7. Modulating Intrinsic Connectivity: Adjacent Subregions within Supplementary Motor Cortex, Dorsolateral Prefrontal Cortex, and Parietal Cortex Connect to Separate Functional Networks during Task and Also Connect during Rest

    PubMed Central

    Roth, Jennifer K.; Johnson, Marcia K.; Tokoglu, Fuyuze; Murphy, Isabella; Constable, R. Todd

    2014-01-01

    Supplementary motor area (SMA), the inferior frontal junction (IFJ), superior frontal junction (SFJ) and parietal cortex are active in many cognitive tasks. In a previous study, we found that subregions of each of these major areas were differentially active in component processes of executive function during working memory tasks. In the present study, each of these subregions was used as a seed in a whole brain functional connectivity analysis of working memory and resting state data. These regions show functional connectivity to different networks, thus supporting the parcellation of these major regions into functional subregions. Many regions showing significant connectivity during the working memory residual data (with task events regressed from the data) were also significantly connected during rest suggesting that these network connections to subregions within major regions of cortex are intrinsic. For some of these connections, task demands modulate activity in these intrinsic networks. Approximately half of the connections significant during task were significant during rest, indicating that some of the connections are intrinsic while others are recruited only in the service of the task. Furthermore, the network connections to traditional ‘task positive’ and ‘task negative’ (a.k.a ‘default mode’) regions shift from positive connectivity to negative connectivity depending on task demands. These findings demonstrate that such task-identified subregions are part of distinct networks, and that these networks have different patterns of connectivity for task as they do during rest, engaging connections both to task positive and task negative regions. These results have implications for understanding the parcellation of commonly active regions into more specific functional networks. PMID:24637793

  8. Improved proprioceptive function by application of subsensory electrical noise: Effects of aging and task-demand.

    PubMed

    Toledo, Diana R; Barela, José A; Kohn, André F

    2017-09-01

    The application of subsensory noise stimulation over the lower limbs has been shown to improve proprioception and postural control under certain conditions. Whereas the effect specificity seems to depend on several factors, studies are still needed to determine the appropriate method for training and rehabilitation purposes. In the current study, we investigated whether the application of subsensory electrical noise over the legs improves proprioceptive function in young and older adults. We aimed to provide evidence that stronger and age-related differential effects occur in more demanding tasks. Proprioceptive function was initially assessed by testing the detection of passive ankle movement (kinesthetic perception) in twenty-eight subjects (14 young and 14 older adults). Thereafter, postural control was assessed during tasks with different sensory challenges: i) by removing visual information (eyes closed) and; ii) by moving the visual scene (moving room paradigm). Tests performed with the application of electrical noise stimulation were compared to those performed without noise. The results showed that electrical noise applied over the legs led to a reduction in the response time to kinesthetic perception in both young and older adults. On the other hand, the magnitude of postural sway was reduced by noise stimulation only during a more challenging task, namely, when the optical flow was changing in an unpredictable (nonperiodic) manner. No differential effects of stimulation between groups were observed. These findings suggest that the relevance of proprioceptive inputs in tasks with different challenges, but not the subjects' age, is a determining factor for sensorimotor improvements due to electrical noise stimulation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Ertl and Non-Ertl amputees exhibit functional biomechanical differences during the sit-to-stand task.

    PubMed

    Ferris, Abbie E; Christiansen, Cory L; Heise, Gary D; Hahn, David; Smith, Jeremy D

    2017-05-01

    People with transtibial amputation stand ~50times/day. There are two general approaches to transtibial amputation: 1) distal tibia and fibula union using a "bone-bridge" (Ertl), 2) non-union of the tibia and fibula (Non-Ertl). The Ertl technique may improve functional outcomes by increasing the end-bearing ability of the residual limb. We hypothesized individuals with an Ertl would perform a five-time sit-to-stand task faster through greater involvement/end-bearing of the affected limb. Ertl (n=11) and Non-Ertl (n=7) participants sat on a chair with each foot on separate force plates and performed the five-time sit-to-stand task. A symmetry index (intact vs affected limbs) was calculated using peak ground reaction forces. The Ertl group performed the task significantly faster (9.33s (2.66) vs 13.27 (2.83)s). Symmetry index (23.33 (23.83)% Ertl, 36.53 (13.51)% Non-Ertl) indicated the intact limb for both groups produced more force than the affected limb. Ertl affected limb peak ground reaction forces were significantly larger than the Non-Ertl affected limb. Peak knee power and net work of the affected limb were smaller than their respective intact limb for both groups. The Ertl intact limb produced significantly greater peak knee power and net work than the Non-Ertl intact knee. Although loading asymmetries existed between the intact and affected limb of both groups, the Ertl group performed the task ~30% faster. This was driven by greater power and work production of the Ertl intact limb knee. Our results suggest that functional differences exist between the procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Complex network analysis of brain functional connectivity under a multi-step cognitive task

    NASA Astrophysics Data System (ADS)

    Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun

    2017-01-01

    Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a multi-step cognitive task involving consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed based on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to the order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and is obviously restricted to the order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse functional connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.

  11. Intrinsic and task-evoked network architectures of the human brain

    PubMed Central

    Cole, Michael W.; Bassett, Danielle S.; Power, Jonathan D.; Braver, Todd S.; Petersen, Steven E.

    2014-01-01

    Summary Many functional network properties of the human brain have been identified during rest and task states, yet it remains unclear how the two relate. We identified a whole-brain network architecture present across dozens of task states that was highly similar to the resting-state network architecture. The most frequent functional connectivity strengths across tasks closely matched the strengths observed at rest, suggesting this is an “intrinsic”, standard architecture of functional brain organization. Further, a set of small but consistent changes common across tasks suggests the existence of a task-general network architecture distinguishing task states from rest. These results indicate the brain’s functional network architecture during task performance is shaped primarily by an intrinsic network architecture that is also present during rest, and secondarily by evoked task-general and task-specific network changes. This establishes a strong relationship between resting-state functional connectivity and task-evoked functional connectivity – areas of neuroscientific inquiry typically considered separately. PMID:24991964

  12. Cognitive task analysis and innovation of training: the case of structured troubleshooting.

    PubMed

    Schaafstal, A; Schraagen, J M; van Berlo, M

    2000-01-01

    Troubleshooting is often a time-consuming and difficult activity. The question of how the training of novice technicians can be improved was the starting point of the research described in this article. A cognitive task analysis was carried out consisting of two preliminary observational studies on troubleshooting in naturalistic settings, combined with an interpretation of the data obtained in the context of the existing literature. On the basis of this cognitive task analysis, a new method for the training of troubleshooting was developed (structured troubleshooting), which combines a domain-independent strategy for troubleshooting with a context-dependent, multiple-level, functional decomposition of systems. This method has been systematically evaluated for its use in training. The results show that technicians trained in structured troubleshooting solve twice as many malfunctions, in less time, than those trained in the traditional way. Moreover, structured troubleshooting can be taught in less time than can traditional troubleshooting. Finally, technicians learn to troubleshoot in an explicit and uniform way. These advantages of structured troubleshooting ultimately lead to a reduction in training and troubleshooting costs.

  13. Twelve weeks of BodyBalance® training improved balance and functional task performance in middle-aged and older adults

    PubMed Central

    Nicholson, Vaughan P; McKean, Mark R; Burkett, Brendan J

    2014-01-01

    Purpose The purpose of the study was to evaluate the effect of BodyBalance® training on balance, functional task performance, fear of falling, and health-related quality of life in adults aged over 55 years. Participants and methods A total of 28 healthy, active adults aged 66±5 years completed the randomized controlled trial. Balance, functional task performance, fear of falling, and self-reported quality of life were assessed at baseline and after 12 weeks. Participants either undertook two sessions of BodyBalance per week for 12 weeks (n=15) or continued with their normal activities (n=13). Results Significant group-by-time interactions were found for the timed up and go (P=0.038), 30-second chair stand (P=0.037), and mediolateral center-of-pressure range in narrow stance with eyes closed (P=0.017). There were no significant effects on fear of falling or self-reported quality of life. Conclusion Twelve weeks of BodyBalance training is effective at improving certain balance and functional based tasks in healthy older adults. PMID:25395844

  14. The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy.

    PubMed

    Kirilina, Evgeniya; Jelzow, Alexander; Heine, Angela; Niessing, Michael; Wabnitz, Heidrun; Brühl, Rüdiger; Ittermann, Bernd; Jacobs, Arthur M; Tachtsidis, Ilias

    2012-05-15

    A major methodological challenge of functional near-infrared spectroscopy (fNIRS) is its high sensitivity to haemodynamic fluctuations in the scalp. Superficial fluctuations contribute on the one hand to the physiological noise of fNIRS, impairing the signal-to-noise ratio, and may on the other hand be erroneously attributed to cerebral changes, leading to false positives in fNIRS experiments. Here we explore the localisation, time course and physiological origin of task-evoked superficial signals in fNIRS and present a method to separate them from cortical signals. We used complementary fNIRS, fMRI, MR-angiography and peripheral physiological measurements (blood pressure, heart rate, skin conductance and skin blood flow) to study activation in the frontal lobe during a continuous performance task. The General Linear Model (GLM) was applied to analyse the fNIRS data, which included an additional predictor to account for systemic changes in the skin. We found that skin blood volume strongly depends on the cognitive state and that sources of task-evoked systemic signals in fNIRS are co-localized with veins draining the scalp. Task-evoked superficial artefacts were mainly observed in concentration changes of oxygenated haemoglobin and could be effectively separated from cerebral signals by GLM analysis. Based on temporal correlation of fNIRS and fMRI signals with peripheral physiological measurements we conclude that the physiological origin of the systemic artefact is a task-evoked sympathetic arterial vasoconstriction followed by a decrease in venous volume. Since changes in sympathetic outflow accompany almost any cognitive and emotional process, we expect scalp vessel artefacts to be present in a wide range of fNIRS settings used in neurocognitive research. Therefore a careful separation of fNIRS signals originating from activated brain and from scalp is a necessary precondition for unbiased fNIRS brain activation maps. Copyright © 2012 Elsevier Inc. All rights

  15. Frontal lobe functioning during a simple response conflict task in first-episode psychosis and its relationship to treatment response.

    PubMed

    Shafritz, Keith M; Ikuta, Toshikazu; Greene, Allison; Robinson, Delbert G; Gallego, Juan; Lencz, Todd; DeRosse, Pamela; Kingsley, Peter B; Szeszko, Philip R

    2018-05-09

    Prior functional magnetic resonance imaging (fMRI) studies have investigated the neural mechanisms underlying cognitive control in patients with psychosis with findings of both hypo- and hyperfrontality. One factor that may contribute to inconsistent findings is the use of complex and polyfactorial tasks to investigate frontal lobe functioning. In the current study we employed a simple response conflict task during fMRI to examine differences in brain activation between patients experiencing their first-episode of psychosis (n = 33) and age- and sex-matched healthy volunteers (n = 33). We further investigated whether baseline brain activation among patients predicted changes in symptom severity and treatment response following 12 weeks of controlled antipsychotic treatment. During the task subjects were instructed to press a response button on the same side or opposite side of a circle that appeared on either side of a central fixation point. Imaging data revealed that for the contrast of opposite-side vs. same-side, patients showed significantly greater activation compared with healthy volunteers in the anterior cingulate cortex and intraparietal sulcus. Among patients, greater baseline anterior cingulate cortex, temporal-parietal junction, and superior temporal cortex activation predicted greater symptom reduction and therapeutic response following treatment. All findings remained significant after covarying for task performance. Intact performance on this relatively parsimonious task was associated with frontal hyperactivity suggesting the need for patients to utilize greater neural resources to achieve task performance comparable to healthy individuals. Moreover, frontal hyperactivity observed using a simple fMRI task may provide a biomarker for predicting treatment response in first-episode psychosis.

  16. A coordinate-based ALE functional MRI meta-analysis of brain activation during verbal fluency tasks in healthy control subjects

    PubMed Central

    2014-01-01

    Background The processing of verbal fluency tasks relies on the coordinated activity of a number of brain areas, particularly in the frontal and temporal lobes of the left hemisphere. Recent studies using functional magnetic resonance imaging (fMRI) to study the neural networks subserving verbal fluency functions have yielded divergent results especially with respect to a parcellation of the inferior frontal gyrus for phonemic and semantic verbal fluency. We conducted a coordinate-based activation likelihood estimation (ALE) meta-analysis on brain activation during the processing of phonemic and semantic verbal fluency tasks involving 28 individual studies with 490 healthy volunteers. Results For phonemic as well as for semantic verbal fluency, the most prominent clusters of brain activation were found in the left inferior/middle frontal gyrus (LIFG/MIFG) and the anterior cingulate gyrus. BA 44 was only involved in the processing of phonemic verbal fluency tasks, BA 45 and 47 in the processing of phonemic and semantic fluency tasks. Conclusions Our comparison of brain activation during the execution of either phonemic or semantic verbal fluency tasks revealed evidence for spatially different activation in BA 44, but not other regions of the LIFG/LMFG (BA 9, 45, 47) during phonemic and semantic verbal fluency processing. PMID:24456150

  17. Language mapping in children using resting-state functional connectivity: comparison with a task-based approach

    NASA Astrophysics Data System (ADS)

    Gallagher, Anne; Tremblay, Julie; Vannasing, Phetsamone

    2016-12-01

    Patients with brain tumor or refractory epilepsy may be candidates for neurosurgery. Presurgical evaluation often includes language investigation to prevent or reduce the risk of postsurgical language deficits. Current techniques involve significant limitations with pediatric populations. Recently, near-infrared spectroscopy (NIRS) has been shown to be a valuable neuroimaging technique for language localization in children. However, it typically requires the child to perform a task (task-based NIRS), which may constitute a significant limitation. Resting-state functional connectivity NIRS (fcNIRS) is an approach that can be used to identify language networks at rest. This study aims to assess the utility of fcNIRS in children by comparing fcNIRS to more conventional task-based NIRS for language mapping in 33 healthy participants: 25 children (ages 3 to 16) and 8 adults. Data were acquired at rest and during a language task. Results show very good concordance between both approaches for language localization (Dice similarity coefficient=0.81±0.13) and hemispheric language dominance (kappa=0.86, p<0.006). The fcNIRS technique may be a valuable tool for language mapping in clinical populations, including children and patients with cognitive and behavioral impairments.

  18. Task oriented nonlinear control laws for telerobotic assembly operations

    NASA Technical Reports Server (NTRS)

    Walker, R. A.; Ward, L. S.; Elia, C. F.

    1987-01-01

    The goal of this research is to achieve very intelligent telerobotic controllers which are capable of receiving high-level commands from the human operator and implementing them in an adaptive manner in the object/task/manipulator workspace. Initiatives by the authors at Integrated Systems, Inc. to identify and develop the key technologies necessary to create such a flexible, highly programmable, telerobotic controller are presented. The focus of the discussion is on the modeling of insertion tasks in three dimensions and nonlinear implicit force feedback control laws which incorporate tool/workspace constraints. Preliminary experiments with dual arm beam assembly in 2-D are presented.

  19. Effect of type of cue, type of response, time delay and two different ongoing tasks on prospective memory functioning after acquired brain injury.

    PubMed

    Raskin, Sarah A; Buckheit, Carol A; Waxman, Amanda

    2012-01-01

    Failures of prospective memory (PM) are one of the most frequent, and least studied, sequelae of brain injury. PM, also referred to as memory for intentions, is the ability to remember to carry out a future task. Successful completion of a PM task requires the ability to monitor time, keep the action to be performed periodically in awareness, remember the task to be performed, and initiate the action. Although PM has been shown to be a common difficulty after brain injury, it remains unknown which aspects of performance are impaired. In this study, the performance of 25 individuals with brain injury and that of 25 healthy participants were measured separately on the following variables: time until completion of the task, difficulty of the ongoing task being performed while waiting, whether the task to be performed is an action or is verbal, and whether the cue to perform the task is the passing of a particular amount of time (e.g., 10 minutes) or is an external cue (e.g., an alarm sounding). Individuals with brain injury demonstrated impairment compared to healthy adults on virtually all variables. PM performance was also compared to a battery of standard neuropsychological measures of attention, memory, and executive functions, and to self-report measures of PM functioning, in order to determine the underlying cognitive deficits responsible for poor PM performance, if any. PM performance was correlated with measures of executive functioning but not to self-report measures of PM functioning. Implications are discussed in terms of cognitive rehabilitation recommendations.

  20. Plasma level-dependent effects of methylphenidate on task-related functional magnetic resonance imaging signal changes.

    PubMed

    Müller, Ulrich; Suckling, J; Zelaya, F; Honey, G; Faessel, H; Williams, S C R; Routledge, C; Brown, J; Robbins, T W; Bullmore, E T

    2005-08-01

    Methylphenidate (MPH) is a dopamine and noradrenaline enhancing drug used to treat attentional deficits. Understanding of its cognition-enhancing effects and the neurobiological mechanisms involved, especially in elderly people, is currently incomplete. The aim of this study was to investigate the relationship between MPH plasma levels and brain activation during visuospatial attention and movement preparation. Twelve healthy elderly volunteers were scanned twice using functional magnetic resonance imaging (fMRI) after oral administration of MPH 20 mg or placebo in a within-subject design. The cognitive paradigm was a four-choice reaction time task presented at two levels of difficulty (with and without spatial cue). Plasma MPH levels were measured at six time points between 30 and 205 min after dosing. FMRI data were analysed using a linear model to estimate physiological response to the task and nonparametric permutation tests for inference. Lateral premotor and medial posterior parietal cortical activation was increased by MPH, on average, over both levels of task difficulty. There was considerable intersubject variability in the pharmacokinetics of MPH. Greater area under the plasma concentration-time curve was positively correlated with strength of activation in motor and premotor cortex, temporoparietal cortex and caudate nucleus during the difficult version of the task. This is the first pharmacokinetic/pharmacodynamic study to find an association between plasma levels of MPH and its modulatory effects on brain activation measured using fMRI. The results suggest that catecholaminergic mechanisms may be important in brain adaptivity to task difficulty and in task-specific recruitment of spatial attention systems.

  1. Electrophysiological indices of anterior cingulate cortex function reveal changing levels of cognitive effort and reward valuation that sustain task performance.

    PubMed

    Umemoto, Akina; Inzlicht, Michael; Holroyd, Clay B

    2018-06-21

    Successful execution of goal-directed behaviors often requires the deployment of cognitive control, which is thought to require cognitive effort. Recent theories have proposed that anterior cingulate cortex (ACC) regulates control levels by weighing the reward-related benefits of control against its effort-related costs. However, given that the sensations of cognitive effort and reward valuation are available only to introspection, this hypothesis is difficult to investigate empirically. We have proposed that two electrophysiological indices of ACC function, frontal midline theta and the reward positivity (RewP), provide objective measures of these functions. To explore this issue, we recorded the electroencephalogram (EEG) from participants engaged in an extended, cognitively-demanding task. Participants performed a time estimation task for 2 h in which they received reward and error feedback according to their task performance. We observed that the amplitude of the RewP, a feedback-locked component of the event related brain potential associated with reward processing, decreased with time-on-task. Conversely, frontal midline theta power, which consists of 4-8 Hz EEG oscillations associated with cognitive effort, increased with time-on-task. We also explored how these phenomena changed over time by conducting within-participant multi-level modeling analyses. Our results suggest that extended execution of a cognitively-demanding task is characterized by an early phase in which high control levels foster rapid improvements in task performance, and a later phase in which high control levels were necessary to maintain stable task performance, perhaps counteracting waning reward valuation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Higher burnout scores in paediatric residents are associated with increased brain activity during attentional functional magnetic resonance imaging task.

    PubMed

    de Andrade, Anarella Penha Meirelles; Amaro, Edson; Farhat, Sylvia Costa Lima; Schvartsman, Claudio

    2016-06-01

    Burnout syndrome is common in healthcare workers. We evaluated its prevalence in paediatric residents and investigated its influence on cerebral function correlations, using functional magnetic resonance imaging (MRI), when they carried out an attentional paradigm. This cross-sectional descriptive study involved 28 residents from the Department of Paediatrics at the University of São Paulo. The functional MRI was carried out while the residents completed the Stroop colour word task paradigm to investigate their attentional task performance. The Maslach Burnout Inventory (MBI) was applied, and stress was assessed using the Lipp Inventory of Stress Symptoms for Adults and by a visual analogue mood scale. The MBI subscales of depersonalisation and emotional exhaustion indicated that 53.1% of the residents had moderate or high burnout syndrome. The whole-brain multivariate analysis showed positive correlations between the blood oxygenation level dependent effect and the MBI depersonalisation and emotional exhaustion indices in the dorsolateral prefrontal cortex, which controls for anxiety. Increased brain activation during an attention task, measured using functional MRI, was associated with higher burnout scores in paediatric residents. This study provides a biological basis for the implementation of measures to reduce burnout syndrome at the start of residency training programmes. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  3. Amnestic mild cognitive impairment: functional MR imaging study of response in posterior cingulate cortex and adjacent precuneus during problem-solving tasks.

    PubMed

    Jin, Guangwei; Li, Kuncheng; Hu, Yingying; Qin, Yulin; Wang, Xiangqing; Xiang, Jie; Yang, Yanhui; Lu, Jie; Zhong, Ning

    2011-11-01

    To compare the blood oxygen level-dependent (BOLD) response, measured with functional magnetic resonance (MR) imaging, in the posterior cingulate cortex (PCC) and adjacent precuneus regions between healthy control subjects and patients with amnestic mild cognitive impairment (MCI) during problem-solving tasks. This study was approved by the institutional review board. Each subject provided written informed consent. Thirteen patients with amnestic MCI and 13 age- and sex-matched healthy control subjects participated in the study. The functional magnetic resonance (MR) imaging tasks were simplified 4 × 4-grid number placement puzzles that were divided into a simple task (using the row rule or the column rule to solve the puzzle) and a complex task (using both the row and column rules to solve the puzzle). Behavioral results and functional imaging results between the healthy control group and the amnestic MCI group were analyzed. The accuracy for the complex task in the healthy control group was significantly higher than that in the amnestic MCI group (P < .05). The healthy control group exhibited a deactivated BOLD signal intensity (SI) change in the bilateral PCC and adjacent precuneus regions during the complex task, whereas the amnestic MCI group showed activation. The positive linear correlations between the BOLD SI change in bilateral PCC and adjacent precuneus regions and in bilateral hippocampi in the amnestic MCI group were significant (P < .001), while in the healthy control group, they were not (P ≥ .23). These findings suggest that an altered BOLD response in amnestic MCI patients during complex tasks might be related to a decline in problem-solving ability and to memory impairment and, thus, may indicate a compensatory response to memory impairment. RSNA, 2011

  4. Task-oriented training with computer gaming in people with rheumatoid arthritisor osteoarthritis of the hand: study protocol of a randomized controlled pilot trial.

    PubMed

    Srikesavan, Cynthia Swarnalatha; Shay, Barbara; Robinson, David B; Szturm, Tony

    2013-03-09

    Significant restriction in the ability to participate in home, work and community life results from pain, fatigue, joint damage, stiffness and reduced joint range of motion and muscle strength in people with rheumatoid arthritis or osteoarthritis of the hand. With modest evidence on the therapeutic effectiveness of conventional hand exercises, a task-oriented training program via real life object manipulations has been developed for people with arthritis. An innovative, computer-based gaming platform that allows a broad range of common objects to be seamlessly transformed into therapeutic input devices through instrumentation with a motion-sense mouse has also been designed. Personalized objects are selected to target specific training goals such as graded finger mobility, strength, endurance or fine/gross dexterous functions. The movements and object manipulation tasks that replicate common situations in everyday living will then be used to control and play any computer game, making practice challenging and engaging. The ongoing study is a 6-week, single-center, parallel-group, equally allocated and assessor-blinded pilot randomized controlled trial. Thirty people with rheumatoid arthritis or osteoarthritis affecting the hand will be randomized to receive either conventional hand exercises or the task-oriented training. The purpose is to determine a preliminary estimation of therapeutic effectiveness and feasibility of the task-oriented training program. Performance based and self-reported hand function, and exercise compliance are the study outcomes. Changes in outcomes (pre to post intervention) within each group will be assessed by paired Student t test or Wilcoxon signed-rank test and between groups (control versus experimental) post intervention using unpaired Student t test or Mann-Whitney U test. The study findings will inform decisions on the feasibility, safety and completion rate and will also provide preliminary data on the treatment effects of the task

  5. Task-oriented training with computer gaming in people with rheumatoid arthritisor osteoarthritis of the hand: study protocol of a randomized controlled pilot trial

    PubMed Central

    2013-01-01

    Background Significant restriction in the ability to participate in home, work and community life results from pain, fatigue, joint damage, stiffness and reduced joint range of motion and muscle strength in people with rheumatoid arthritis or osteoarthritis of the hand. With modest evidence on the therapeutic effectiveness of conventional hand exercises, a task-oriented training program via real life object manipulations has been developed for people with arthritis. An innovative, computer-based gaming platform that allows a broad range of common objects to be seamlessly transformed into therapeutic input devices through instrumentation with a motion-sense mouse has also been designed. Personalized objects are selected to target specific training goals such as graded finger mobility, strength, endurance or fine/gross dexterous functions. The movements and object manipulation tasks that replicate common situations in everyday living will then be used to control and play any computer game, making practice challenging and engaging. Methods/Design The ongoing study is a 6-week, single-center, parallel-group, equally allocated and assessor-blinded pilot randomized controlled trial. Thirty people with rheumatoid arthritis or osteoarthritis affecting the hand will be randomized to receive either conventional hand exercises or the task-oriented training. The purpose is to determine a preliminary estimation of therapeutic effectiveness and feasibility of the task-oriented training program. Performance based and self-reported hand function, and exercise compliance are the study outcomes. Changes in outcomes (pre to post intervention) within each group will be assessed by paired Student t test or Wilcoxon signed-rank test and between groups (control versus experimental) post intervention using unpaired Student t test or Mann–Whitney U test. Discussion The study findings will inform decisions on the feasibility, safety and completion rate and will also provide preliminary

  6. Aberrant Spontaneous and Task-Dependent Functional Connections in the Anxious Brain

    PubMed Central

    MacNamara, Annmarie; DiGangi, Julia; Phan, K. Luan

    2016-01-01

    A number of brain regions have been implicated in the anxiety disorders, yet none of these regions in isolation has been distinguished as the sole or discrete site responsible for anxiety disorder pathology. Therefore, the identification of dysfunctional neural networks as represented by alterations in the temporal correlation of blood-oxygen level dependent (BOLD) signal across several brain regions in anxiety disorders has been increasingly pursued in the past decade. Here, we review task-independent (e.g., resting state) and task-induced functional connectivity magnetic resonance imaging (fcMRI) studies in the adult anxiety disorders (including trauma- and stressor-related and obsessive compulsive disorders). The results of this review suggest that anxiety disorder pathophysiology involves aberrant connectivity between amygdala-frontal and frontal-striatal regions, as well as within and between canonical “intrinsic” brain networks - the default mode and salience networks, and that evidence of these aberrations may help inform findings of regional activation abnormalities observed in the anxiety disorders. Nonetheless, significant challenges remain, including the need to better understand mixed findings observed using different methods (e.g., resting state and task-based approaches); the need for more developmental work; the need to delineate disorder-specific and transdiagnostic fcMRI aberrations in the anxiety disorders; and the need to better understand the clinical significance of fcMRI abnormalities. In meeting these challenges, future work has the potential to elucidate aberrant neural networks as intermediate, brain-based phenotypes to predict disease onset and progression, refine diagnostic nosology, and ascertain treatment mechanisms and predictors of treatment response across anxiety, trauma-related and obsessive compulsive disorders. PMID:27141532

  7. Staying on Task: Age-Related Changes in the Relationship Between Executive Functioning and Response Time Consistency.

    PubMed

    Vasquez, Brandon P; Binns, Malcolm A; Anderson, Nicole D

    2016-03-01

    Little is known about the relationship of executive functioning with age-related increases in response time (RT) distribution indices (intraindividual standard deviation [ISD], and ex-Gaussian parameters mu, sigma, tau). The goals of this study were to (a) replicate findings of age-related changes in response time distribution indices during an engaging touch-screen RT task and (b) investigate age-related changes in the relationship between executive functioning and RT distribution indices. Healthy adults (24 young [aged 18-30], 24 young-old [aged 65-74], and 24 old-old [aged 75-85]) completed a touch-screen attention task and a battery of neuropsychological tests. The relationships between RT performance and executive functions were examined with structural equation modeling (SEM). ISD, mu, and tau, but not sigma, increased with age. SEM revealed tau as the most salient RT index associated with neuropsychological measures of executive functioning. Further analysis demonstrated that correlations between tau and a weighted executive function composite were significant only in the old-old group. Our results replicate findings of greater RT inconsistency in older adults and reveal that executive functioning is related to tau in adults aged 75-85. These results support literature identifying tau as a marker of cognitive control, which deteriorates in old age. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. How Stimulus and Task Complexity Affect Monitoring in High-Functioning Adults with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Koolen, Sophieke; Vissers, Constance Th. W. M.; Egger, Jos I. M.; Verhoeven, Ludo

    2014-01-01

    The present study examined whether individuals with autism spectrum disorder (ASD) are able to update and monitor working memory representations of visual input, and whether performance is influenced by stimulus and task complexity. 15 high-functioning adults with ASD and 15 controls were asked to allocate either elements of abstract figures or…

  9. The Technologist Function in Fields Related to Radiology: Tasks in Radiation Therapy and Diagnostic Ultrasound. Research Report No. 9; Relating Technologist Tasks in Diagnostic Radiology, Ultrasound and Radiation Therapy. Research Report No. 10.

    ERIC Educational Resources Information Center

    Gilpatrick, Eleanor

    The two research reports included in this document describe the application of the Health Services Mobility Study (HSMS) task analysis method to two technologist functions and examine the interrelationships of these tasks with those in diagnostic radiology. (The HSMS method includes processes for using the data for designing job ladders, for…

  10. Executive function is necessary for perspective selection, not Level-1 visual perspective calculation: evidence from a dual-task study of adults.

    PubMed

    Qureshi, Adam W; Apperly, Ian A; Samson, Dana

    2010-11-01

    Previous research suggests that perspective-taking and other "theory of mind" processes may be cognitively demanding for adult participants, and may be disrupted by concurrent performance of a secondary task. In the current study, a Level-1 visual perspective task was administered to 32 adults using a dual-task paradigm in which the secondary task tapped executive function. Results suggested that the secondary task did not affect the calculation of perspective, but did affect the selection of the relevant (Self or Other) perspective for a given trial. This is the first direct evidence of a cognitively efficient process for "theory of mind" in adults that operates independently of executive function. The contrast between this and previous findings points to a distinction between simple perspective-taking and the more complex and cognitively demanding abilities more typically examined in studies of "theory of mind". It is suggested that these findings may provide a parsimonious explanation of the success of infants on 'indirect' measures of perspective-taking that do not explicitly require selection of the relevant perspective. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Organizational Policy Decisions as a Function of Individual Differences and Task Design: Maintenance Tasks. Technical Report No. 10.

    ERIC Educational Resources Information Center

    O'Connor, Edward J.; And Others

    Ninety subjects completed identical simulated maintenance tasks under two experimental conditions. In the high job structural attribute condition subjects were told that the task was high in learning new skills, responsibility, feedback, and task identity; while in the low job structural condition they were told the opposite. Results indicated the…

  12. Psychological Issues in Online Adaptive Task Allocation

    NASA Technical Reports Server (NTRS)

    Morris, N. M.; Rouse, W. B.; Ward, S. L.; Frey, P. R.

    1984-01-01

    Adaptive aiding is an idea that offers potential for improvement over many current approaches to aiding in human-computer systems. The expected return of tailoring the system to fit the user could be in the form of improved system performance and/or increased user satisfaction. Issues such as the manner in which information is shared between human and computer, the appropriate division of labor between them, and the level of autonomy of the aid are explored. A simulated visual search task was developed. Subjects are required to identify targets in a moving display while performing a compensatory sub-critical tracking task. By manipulating characteristics of the situation such as imposed task-related workload and effort required to communicate with the computer, it is possible to create conditions in which interaction with the computer would be more or less desirable. The results of preliminary research using this experimental scenario are presented, and future directions for this research effort are discussed.

  13. Speech and pause characteristics in multiple sclerosis: A preliminary study of speakers with high and low neuropsychological test performance

    PubMed Central

    FEENAUGHTY, LYNDA; TJADEN, KRIS; BENEDICT, RALPH H.B.; WEINSTOCK-GUTTMAN, BIANCA

    2017-01-01

    This preliminary study investigated how cognitive-linguistic status in multiple sclerosis (MS) is reflected in two speech tasks (i.e. oral reading, narrative) that differ in cognitive-linguistic demand. Twenty individuals with MS were selected to comprise High and Low performance groups based on clinical tests of executive function and information processing speed and efficiency. Ten healthy controls were included for comparison. Speech samples were audio-recorded and measures of global speech timing were obtained. Results indicated predicted differences in global speech timing (i.e. speech rate and pause characteristics) for speech tasks differing in cognitive-linguistic demand, but the magnitude of these task-related differences was similar for all speaker groups. Findings suggest that assumptions concerning the cognitive-linguistic demands of reading aloud as compared to spontaneous speech may need to be re-considered for individuals with cognitive impairment. Qualitative trends suggest that additional studies investigating the association between cognitive-linguistic and speech motor variables in MS are warranted. PMID:23294227

  14. Preliminary pilot fMRI study of neuropostural optimization with a noninvasive asymmetric radioelectric brain stimulation protocol in functional dysmetria

    PubMed Central

    Mura, Marco; Castagna, Alessandro; Fontani, Vania; Rinaldi, Salvatore

    2012-01-01

    Purpose This study assessed changes in functional dysmetria (FD) and in brain activation observable by functional magnetic resonance imaging (fMRI) during a leg flexion-extension motor task following brain stimulation with a single radioelectric asymmetric conveyer (REAC) pulse, according to the precisely defined neuropostural optimization (NPO) protocol. Population and methods Ten healthy volunteers were assessed using fMRI conducted during a simple motor task before and immediately after delivery of a single REAC-NPO pulse. The motor task consisted of a flexion-extension movement of the legs with the knees bent. FD signs and brain activation patterns were compared before and after REAC-NPO. Results A single 250-millisecond REAC-NPO treatment alleviated FD, as evidenced by patellar asymmetry during a sit-up motion, and modulated activity patterns in the brain, particularly in the cerebellum, during the performance of the motor task. Conclusion Activity in brain areas involved in motor control and coordination, including the cerebellum, is altered by administration of a REAC-NPO treatment and this effect is accompanied by an alleviation of FD. PMID:22536071

  15. Preliminary validation of the military low back pain questionnaire.

    PubMed

    Roy, Tanja C; Fish, Karen L; Lopez, Heather P; Piva, Sara R

    2014-02-01

    Soldiers must perform a variety of physical tasks that the civilian population does not. The Modified Oswestry Disability Index (M-ODI) is the most widely used measure of function in patients with low back pain but does not include military tasks. The Military Low Back Pain Questionnaire (MBQ) was developed by military Physical Therapists to include tasks such as wearing body armor. The purpose of this study was to provide preliminary evidence for the reliability, responsiveness, and validity of the MBQ in nondeployed Soldiers. The MBQ had good reliability compared to the M-ODI. The inter-rater correlation coefficient for the M-ODI was 0.79 and 0.75 for the MBQ. Cronbach's alpha was 0.75 and 0.85 for the M-ODI and MBQ, respectively. The minimal detectable change for the M-ODI was 21.03 and 22.97 for the MBQ. Responsiveness was assessed using a global rating of change; area under the curve for the M-ODI was 0.82 and 0.90 for the MBQ. The correlation between the M-ODI and the MBQ was r = 0.80 indicating good concurrent validity. The MBQ was as reliable as the M-ODI in an Army population. There were trends in the psychometrics suggesting the MBQ may be more sensitive to change than the M-ODI in this population. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  16. Effect of a dual-task net-step exercise on cognitive and gait function in older adults.

    PubMed

    Kitazawa, Kazutoshi; Showa, Satoko; Hiraoka, Akira; Fushiki, Yasuhiro; Sakauchi, Humio; Mori, Mitsuru

    2015-01-01

    Participation in generally recommended aerobics or strength exercises may be challenging for older adults. Therefore, it is necessary to consider the types and levels of physical activities suited for them to improve their cognitive and gait function and adherence to exercise programs. This has prompted efforts to identify exercises that require less physical strength and frequency of performance, while still offering cognitive and health benefits. Here, we aimed to assess the effect of a novel dual-task net-step exercise (NSE) performed once a week for 8 consecutive weeks on improvements in cognitive performance and gait function in an older population. In this pretest/posttest experimental case control study, 60 healthy older adults (mean age 76.4 years) were recruited from community-dwelling people and separated randomly into 2 groups: a dual-task NSE group and a control group. The NSE group was asked to walk across a net without stepping on the ropes or being caught in the net. Two computer panel-type cognitive functional assessments, the Touch-M and Touch Panel-Type Dementia Assessment Scale, were administered at baseline and after 8 weeks of intervention to determine the effects of NSE. Improvements in gait function were also evaluated using Timed Up and Go test scores. Mixed-effect models with repeated measures (group × time) (analysis of variance, F test) were used to test the effects of NSE. Adjustments were made for covariates including age and sex (analysis of covariance). The NSE group showed significant improvement in cognitive performance (6.8% change; total Touch-M score 5.4 points; P = .04) and gait performance (11.5% change; Timed Up and Go time -0.98 second; P < .001) over the 8-week period. In the control group, there was no significant improvement. This study shows that dual-task NSE is capable of improving cognitive and gait performance in healthy older adults. Our results indicate that NSE offers an option for a large segment of the older

  17. Quantification of crew workload imposed by communications-related tasks in commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Acton, W. H.; Crabtree, M. S.; Simons, J. C.; Gomer, F. E.; Eckel, J. S.

    1983-01-01

    Information theoretic analysis and subjective paired-comparison and task ranking techniques were employed in order to scale the workload of 20 communications-related tasks frequently performed by the captain and first officer of transport category aircraft. Tasks were drawn from taped conversations between aircraft and air traffic controllers (ATC). Twenty crewmembers performed subjective message comparisons and task rankings on the basis of workload. Information theoretic results indicated a broad range of task difficulty levels, and substantial differences between captain and first officer workload levels. Preliminary subjective data tended to corroborate these results. A hybrid scale reflecting the results of both the analytical and the subjective techniques is currently being developed. The findings will be used to select representative sets of communications for use in high fidelity simulation.

  18. The ecological and construct validity of a newly developed measure of executive function: the Virtual Library Task.

    PubMed

    Renison, Belinda; Ponsford, Jennie; Testa, Renee; Richardson, Barry; Brownfield, Kylie

    2012-05-01

    Virtual reality (VR) assessment paradigms have the potential to address the limited ecological validity of pen and paper measures of executive function (EF) and the pragmatic and reliability issues associated with functional measures. To investigate the ecological validity and construct validity of a newly developed VR measure of EF, the Virtual Library Task (VLT); a real life analogous task--the Real Library Task (RLT); and five neuropsychological measures of EF were administered to 30 patients with traumatic brain injury (TBI) and 30 healthy Controls. Significant others for each participant also completed the Dysexecutive Questionnaire (DEX), which is a behavioral rating scale of everyday EF. Performances on the VLT and the RLT were significantly positively correlated indicating that VR performance is similar to real world performance. The TBI group performed significantly worse than the Control group on the VLT and the Modified Six Elements Test (MSET) but the other four neuropsychological measures of EF failed to differentiate the groups. Both the MSET and the VLT significantly predicted everyday EF suggesting that they are both ecologically valid tools for the assessment of EF. The VLT has the advantage over the MSET of providing objective measurement of individual components of EF.

  19. A functional approach for research on cognitive control: Analysing cognitive control tasks and their effects in terms of operant conditioning.

    PubMed

    Liefooghe, Baptist; De Houwer, Jan

    2016-02-01

    Cognitive control is an important mental ability that is examined using a multitude of cognitive control tasks and effects. The present paper presents the first steps in the elaboration of a functional approach, which aims to uncover the communalities and differences between different cognitive control tasks and their effects. Based on the idea that responses in cognitive control tasks qualify as operant behaviour, we propose to reinterpret cognitive control tasks in terms of operant contingencies and cognitive control effects as instances of moderated stimulus control. We illustrate how our approach can be used to uncover communalities between topographically different cognitive control tasks and can lead to novel questions about the processes underlying cognitive control. © 2015 International Union of Psychological Science.

  20. Effects of anxiety on task switching: evidence from the mixed antisaccade task.

    PubMed

    Ansari, Tahereh L; Derakshan, Nazanin; Richards, Anne

    2008-09-01

    According to the attentional control theory of anxiety (Eysenck, Derakshan, Santos, & Calvo, 2007), anxiety impairs performance on cognitive tasks that involve the shifting function of working memory. This hypothesis was tested using a mixed antisaccade paradigm, in which participants performed single-task and mixed-task versions of the paradigm. The single task involved the completion of separate blocks of anti- and prosaccade trials, whereas in the mixed task, participants completed anti- and prosaccade trials in a random order within blocks. Analysis of switch costs showed that high-anxious individuals did not exhibit the commonly reported paradoxical improvement in saccade latency, whereas low-anxious individuals did. The findings are discussed within the framework of attentional control theory.

  1. Are factors related to dual-task performance in people with Parkinson's disease dependent on the type of dual task?

    PubMed

    Strouwen, Carolien; Molenaar, Esther A L M; Keus, Samyra H J; Münks, Liesbeth; Heremans, Elke; Vandenberghe, Wim; Bloem, Bastiaan R; Nieuwboer, Alice

    2016-02-01

    Impaired dual-task performance significantly impacts upon functional mobility in people with Parkinson's disease (PD). The aim of this study was to identify determinants of dual-task performance in people with PD in three different dual tasks to assess their possible task-dependency. We recruited 121 home-dwelling patients with PD (mean age 65.93 years; mean disease duration 8.67 years) whom we subjected to regular walking (control condition) and to three dual-task conditions: walking combined with a backwards Digit Span task, an auditory Stroop task and a Mobile Phone task. We measured dual-task gait velocity using the GAITRite mat and dual-task reaction times and errors on the concurrent tasks as outcomes. Motor, cognitive and descriptive variables which correlated to dual-task performance (p < 0.20) were entered into a stepwise forward multiple linear regression model. Single-task gait velocity and executive function, tested by the alternating intake test, was significantly associated with gait velocity during the Digit Span (R(2) = 0.65; p < 0.001), the Stroop (R(2) = 0.73; p < 0.001) and the Mobile Phone task (R(2) = 0.62; p < 0.001). In addition, disease severity proved correlated to gait velocity during the Stroop task. Age was a surplus determinant of gait velocity while using a mobile phone. Single-task gait velocity and executive function as measured by a verbal fluency switching task were independent determinants of dual-task gait performance in people with PD. In contrast to expectation, these factors were the same across different tasks, supporting the robustness of the findings. Future study needs to determine whether these factors predict dual-task abnormalities prospectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Using Task Clarification, Graphic Feedback, And Verbal Feedback To Increase Closing-Task Completion In A Privately Owned Restaurant

    PubMed Central

    Weatherly, Nic L; Gravina, Nicole E

    2005-01-01

    An informant functional assessment was used to evaluate closing-task completion by servers and dishwashers at a restaurant. Based on the functional assessment results, an intervention consisting of task clarification, posted graphic feedback, and verbal feedback was implemented and evaluated with a multiple baseline design across two groups of employees. Results showed an increase of 15% and 38% in task completion for the two groups. PMID:15898481

  3. A functional connectivity-based neuromarker of sustained attention generalizes to predict recall in a reading task.

    PubMed

    Jangraw, David C; Gonzalez-Castillo, Javier; Handwerker, Daniel A; Ghane, Merage; Rosenberg, Monica D; Panwar, Puja; Bandettini, Peter A

    2018-02-01

    Sustaining attention to the task at hand is a crucial part of everyday life, from following a lecture at school to maintaining focus while driving. Lapses in sustained attention are frequent and often problematic, with conditions such as attention deficit hyperactivity disorder affecting millions of people worldwide. Recent work has had some success in finding signatures of sustained attention in whole-brain functional connectivity (FC) measures during basic tasks, but since FC can be dynamic and task-dependent, it remains unclear how fully these signatures would generalize to a more complex and naturalistic scenario. To this end, we used a previously defined whole-brain FC network - a marker of attention that was derived from a sustained attention task - to predict the ability of participants to recall material during a free-viewing reading task. Though the predictive network was trained on a different task and set of participants, the strength of FC in the sustained attention network predicted reading recall significantly better than permutation tests where behavior was scrambled to simulate chance performance. To test the generalization of the method used to derive the sustained attention network, we applied the same method to our reading task data to find a new FC network whose strength specifically predicts reading recall. Even though the sustained attention network provided significant prediction of recall, the reading network was more predictive of recall accuracy. The new reading network's spatial distribution indicates that reading recall is highest when temporal pole regions have higher FC with left occipital regions and lower FC with bilateral supramarginal gyrus. Right cerebellar to right frontal connectivity is also indicative of poor reading recall. We examine these and other differences between the two predictive FC networks, providing new insight into the task-dependent nature of FC-based performance metrics. Published by Elsevier Inc.

  4. Cognitive Functioning after Medial Frontal Lobe Damage Including the Anterior Cingulate Cortex: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Baird, Amee; Dewar, Bonnie-Kate; Critchley, Hugo; Gilbert, Sam J.; Dolan, Raymond J.; Cipolotti, Lisa

    2006-01-01

    Two patients with medial frontal lobe damage involving the anterior cingulate cortex (ACC) performed a range of cognitive tasks, including tests of executive function and anterior attention. Both patients lesions extended beyond the ACC, therefore caution needs to be exerted in ascribing observed deficits to the ACC alone. Patient performance was…

  5. A preliminary investigation of sleep quality in functional neurological disorders: Poor sleep appears common, and is associated with functional impairment.

    PubMed

    Graham, Christopher D; Kyle, Simon D

    2017-07-15

    Functional neurological disorders (FND) are disabling conditions for which there are few empirically-supported treatments. Disturbed sleep appears to be part of the FND context; however, the clinical importance of sleep disturbance (extent, characteristics and impact) remains largely unknown. We described sleep quality in two samples, and investigated the relationship between sleep and FND-related functional impairment. We included a sample recruited online via patient charities (N=205) and a consecutive clinical sample (N=20). Participants completed validated measures of sleep quality and sleep characteristics (e.g. total sleep time, sleep efficiency), mood, and FND-related functional impairment. Poor sleep was common in both samples (89% in the clinical range), which was characterised by low sleep efficiency (M=65.40%) and low total sleep time (M=6.05h). In regression analysis, sleep quality was negatively associated with FND-related functional impairment, accounting for 16% of the variance and remaining significant after the introduction of mood variables. These preliminary analyses suggest that subjective sleep disturbance (low efficiency, short sleep) is common in FND. Sleep quality was negatively associated with the functional impairment attributed to FND, independent of depression. Therefore, sleep disturbance may be a clinically important feature of FND. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Investigating Multitasking in High-Functioning Adolescents with Autism Spectrum Disorders Using the Virtual Errands Task

    ERIC Educational Resources Information Center

    Rajendran, Gnanathusharan; Law, Anna S.; Logie, Robert H.; van der Meulen, Marian; Fraser, Diane; Corley, Martin

    2011-01-01

    Using a modified version of the Virtual Errands Task (VET; McGeorge et al. in "Presence-Teleop Virtual Environ" 10(4):375-383, 2001), we investigated the executive ability of multitasking in 18 high-functioning adolescents with ASD and 18 typically developing adolescents. The VET requires multitasking (Law et al. in "Acta Psychol" 122(1):27-44,…

  7. Task Dependence, Tissue Specificity, and Spatial Distribution of Widespread Activations in Large Single-Subject Functional MRI Datasets at 7T

    PubMed Central

    Gonzalez-Castillo, Javier; Hoy, Colin W.; Handwerker, Daniel A.; Roopchansingh, Vinai; Inati, Souheil J.; Saad, Ziad S.; Cox, Robert W.; Bandettini, Peter A.

    2015-01-01

    It was recently shown that when large amounts of task-based blood oxygen level–dependent (BOLD) data are combined to increase contrast- and temporal signal-to-noise ratios, the majority of the brain shows significant hemodynamic responses time-locked with the experimental paradigm. Here, we investigate the biological significance of such widespread activations. First, the relationship between activation extent and task demands was investigated by varying cognitive load across participants. Second, the tissue specificity of responses was probed using the better BOLD signal localization capabilities of a 7T scanner. Finally, the spatial distribution of 3 primary response types—namely positively sustained (pSUS), negatively sustained (nSUS), and transient—was evaluated using a newly defined voxel-wise waveshape index that permits separation of responses based on their temporal signature. About 86% of gray matter (GM) became significantly active when all data entered the analysis for the most complex task. Activation extent scaled with task load and largely followed the GM contour. The most common response type was nSUS BOLD, irrespective of the task. Our results suggest that widespread activations associated with extremely large single-subject functional magnetic resonance imaging datasets can provide valuable information about the functional organization of the brain that goes undetected in smaller sample sizes. PMID:25405938

  8. Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task.

    PubMed

    Méndez-Couz, Marta; Conejo, Nélida M; Vallejo, Guillermo; Arias, Jorge L

    2015-01-01

    Several studies suggest a prefrontal cortex involvement during the acquisition and consolidation of spatial memory, suggesting an active modulating role at late stages of acquisition processes. Recently, we have reported that the prelimbic and infralimbic areas of the prefrontal cortex, among other structures, are also specifically involved in the late phases of spatial memory extinction. This study aimed to evaluate whether the inactivation of the prelimbic area of the prefrontal cortex impaired spatial memory extinction. For this purpose, male Wistar rats were implanted bilaterally with cannulae into the prelimbic region of the prefrontal cortex. Animals were trained during 5 consecutive days in a hidden platform task and tested for reference spatial memory immediately after the last training session. One day after completing the training task, bilateral infusion of the GABAA receptor agonist Muscimol was performed before the extinction protocol was carried out. Additionally, cytochrome c oxidase histochemistry was applied to map the metabolic brain activity related to the spatial memory extinction under prelimbic cortex inactivation. Results show that animals acquired the reference memory task in the water maze, and the extinction task was successfully completed without significant impairment. However, analysis of the functional brain networks involved by cytochrome oxidase activity interregional correlations showed changes in brain networks between the group treated with Muscimol as compared to the saline-treated group, supporting the involvement of the mammillary bodies at a the late stage in the memory extinction process. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Gd uptake experiments for preliminary set of functionalized adsorbents

    DOE Data Explorer

    Clinton Noack

    2015-03-16

    These data summarize adsorption experiments conducted with Gd in 0.5 M NaCl. Results represent preliminary, proof-of-concept data utilizing fine-powder silica gel as the adsorbent support. Future testing will focus on larger, application-appropriate beads.

  10. Variations of response time in a selective attention task are linked to variations of functional connectivity in the attentional network.

    PubMed

    Prado, Jérôme; Carp, Joshua; Weissman, Daniel H

    2011-01-01

    Although variations of response time (RT) within a particular experimental condition are typically ignored, they may sometimes reflect meaningful changes in the efficiency of cognitive and neural processes. In the present study, we investigated whether trial-by-trial variations of response time (RT) in a cross-modal selective attention task were associated with variations of functional connectivity between brain regions that are thought to underlie attention. Sixteen healthy young adults performed an audiovisual selective attention task, which involved attending to a relevant visual letter while ignoring an irrelevant auditory letter, as we recorded their brain activity using functional magnetic resonance imaging (fMRI). In line with predictions, variations of RT were associated with variations of functional connectivity between the anterior cingulate cortex and various other brain regions that are posited to underlie attentional control, such as the right dorsolateral prefrontal cortex and bilateral regions of the posterior parietal cortex. They were also linked to variations of functional connectivity between anatomically early and anatomically late regions of the relevant-modality visual cortex whose communication is thought to be modulated by attentional control processes. By revealing that variations of RT in a selective attention task are linked to variations of functional connectivity in the attentional network, the present findings suggest that variations of attention may contribute to trial-by-trial fluctuations of behavioral performance. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. HIV/AIDS case management tasks and activities: the results of a functional analysis study.

    PubMed

    Grube, B; Chernesky, R H

    2001-01-01

    Functional analysis, a variation of the time study technique, was used to examine how HIV/AIDS case managers in the tri-county region of New York State spend their time-the actual tasks and activities they choose to perform relative to the total universe of activities and tasks subsumed in the general category of case management. The picture developed was of a system operating primarily in a crisis mode, spending relatively brief amounts of time completing a range of activities and providing an extensive scope of services for or on behalf of clients. The bulk of the work was client centered, not administrative, and involved providing disease management and essential services (e.g., family and mental health). The implications of these findings are discussed, with particular attention paid to the potential influence of client profiles and worker demographics.

  12. Characterizing "fibrofog": Subjective appraisal, objective performance, and task-related brain activity during a working memory task.

    PubMed

    Walitt, Brian; Čeko, Marta; Khatiwada, Manish; Gracely, John L; Rayhan, Rakib; VanMeter, John W; Gracely, Richard H

    2016-01-01

    The subjective experience of cognitive dysfunction ("fibrofog") is common in fibromyalgia. This study investigated the relation between subjective appraisal of cognitive function, objective cognitive task performance, and brain activity during a cognitive task using functional magnetic resonance imaging (fMRI). Sixteen fibromyalgia patients and 13 healthy pain-free controls completed a battery of questionnaires, including the Multiple Ability Self-Report Questionnaire (MASQ), a measure of self-perceived cognitive difficulties. Participants were evaluated for working memory performance using a modified N-back working memory task while undergoing Blood Oxygen Level Dependent (BOLD) fMRI measurements. Fibromyalgia patients and controls did not differ in working memory performance. Subjective appraisal of cognitive function was associated with better performance (accuracy) on the working memory task in healthy controls but not in fibromyalgia patients. In fibromyalgia patients, increased perceived cognitive difficulty was positively correlated with the severity of their symptoms. BOLD response during the working memory task did not differ between the groups. BOLD response correlated with task accuracy in control subjects but not in fibromyalgia patients. Increased subjective cognitive impairment correlated with decreased BOLD response in both groups but in different anatomic regions. In conclusion, "fibrofog" appears to be better characterized by subjective rather than objective impairment. Neurologic correlates of this subjective experience of impairment might be separate from those involved in the performance of cognitive tasks.

  13. Functional Task Test: Data Review

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita

    2014-01-01

    After space flight there are changes in multiple physiological systems including: Cardiovascular function; Sensorimotor function; and Muscle function. How do changes in these physiological system impact astronaut functional performance?

  14. Task Description Language

    NASA Technical Reports Server (NTRS)

    Simmons, Reid; Apfelbaum, David

    2005-01-01

    Task Description Language (TDL) is an extension of the C++ programming language that enables programmers to quickly and easily write complex, concurrent computer programs for controlling real-time autonomous systems, including robots and spacecraft. TDL is based on earlier work (circa 1984 through 1989) on the Task Control Architecture (TCA). TDL provides syntactic support for hierarchical task-level control functions, including task decomposition, synchronization, execution monitoring, and exception handling. A Java-language-based compiler transforms TDL programs into pure C++ code that includes calls to a platform-independent task-control-management (TCM) library. TDL has been used to control and coordinate multiple heterogeneous robots in projects sponsored by NASA and the Defense Advanced Research Projects Agency (DARPA). It has also been used in Brazil to control an autonomous airship and in Canada to control a robotic manipulator.

  15. Functional Dissociation of Latency-Variable, Stimulus- and Response-Locked Target P3 Sub-components in Task-Switching.

    PubMed

    Brydges, Christopher R; Barceló, Francisco

    2018-01-01

    Cognitive control warrants efficient task performance in dynamic and changing environments through adjustments in executive attention, stimulus and response selection. The well-known P300 component of the human event-related potential (ERP) has long been proposed to index "context-updating"-critical for cognitive control-in simple target detection tasks. However, task switching ERP studies have revealed both target P3 (300-350 ms) and later sustained P3-like potentials (400-1,200 ms) to first targets ensuing transition cues, although it remains unclear whether these target P3-like potentials also reflect context updating operations. To address this question, we applied novel single-trial EEG analyses-residue iteration decomposition (RIDE)-in order to disentangle target P3 sub-components in a sample of 22 young adults while they either repeated or switched (updated) task rules. The rationale was to revise the context updating hypothesis of P300 elicitation in the light of new evidence suggesting that "the context" consists of not only the sensory units of stimulation, but also associated motor units, and intermediate low- and high-order sensorimotor units, all of which may need to be dynamically updated on a trial by trial basis. The results showed functionally distinct target P3-like potentials in stimulus-locked, response-locked, and intermediate RIDE component clusters overlying parietal and frontal regions, implying multiple functionally distinct, though temporarily overlapping context updating operations. These findings support a reformulated version of the context updating hypothesis, and reveal a rich family of distinct target P3-like sub-components during the reactive control of target detection in task-switching, plausibly indexing the complex and dynamic workings of frontoparietal cortical networks subserving cognitive control.

  16. Functional Dissociation of Latency-Variable, Stimulus- and Response-Locked Target P3 Sub-components in Task-Switching

    PubMed Central

    Brydges, Christopher R.; Barceló, Francisco

    2018-01-01

    Cognitive control warrants efficient task performance in dynamic and changing environments through adjustments in executive attention, stimulus and response selection. The well-known P300 component of the human event-related potential (ERP) has long been proposed to index “context-updating”—critical for cognitive control—in simple target detection tasks. However, task switching ERP studies have revealed both target P3 (300–350 ms) and later sustained P3-like potentials (400–1,200 ms) to first targets ensuing transition cues, although it remains unclear whether these target P3-like potentials also reflect context updating operations. To address this question, we applied novel single-trial EEG analyses—residue iteration decomposition (RIDE)—in order to disentangle target P3 sub-components in a sample of 22 young adults while they either repeated or switched (updated) task rules. The rationale was to revise the context updating hypothesis of P300 elicitation in the light of new evidence suggesting that “the context” consists of not only the sensory units of stimulation, but also associated motor units, and intermediate low- and high-order sensorimotor units, all of which may need to be dynamically updated on a trial by trial basis. The results showed functionally distinct target P3-like potentials in stimulus-locked, response-locked, and intermediate RIDE component clusters overlying parietal and frontal regions, implying multiple functionally distinct, though temporarily overlapping context updating operations. These findings support a reformulated version of the context updating hypothesis, and reveal a rich family of distinct target P3-like sub-components during the reactive control of target detection in task-switching, plausibly indexing the complex and dynamic workings of frontoparietal cortical networks subserving cognitive control. PMID:29515383

  17. Altered segregation between task-positive and task-negative regions in mild traumatic brain injury.

    PubMed

    Sours, Chandler; Kinnison, Joshua; Padmala, Srikanth; Gullapalli, Rao P; Pessoa, Luiz

    2018-06-01

    Changes in large-scale brain networks that accompany mild traumatic brain injury (mTBI) were investigated using functional magnetic resonance imaging (fMRI) during the N-back working memory task at two cognitive loads (1-back and 2-back). Thirty mTBI patients were examined during the chronic stage of injury and compared to 28 control participants. Demographics and behavioral performance were matched across groups. Due to the diffuse nature of injury, we hypothesized that there would be an imbalance in the communication between task-positive and Default Mode Network (DMN) regions in the context of effortful task execution. Specifically, a graph-theoretic measure of modularity was used to quantify the extent to which groups of brain regions tended to segregate into task-positive and DMN sub-networks. Relative to controls, mTBI patients showed reduced segregation between the DMN and task-positive networks, but increased functional connectivity within the DMN regions during the more cognitively demanding 2-back task. Together, our findings reveal that patients exhibit alterations in the communication between and within neural networks during a cognitively demanding task. These findings reveal altered processes that persist through the chronic stage of injury, highlighting the need for longitudinal research to map the neural recovery of mTBI patients.

  18. Using virtual reality simulation to study navigation in a complex environment as a functional-cognitive task; A pilot study.

    PubMed

    Kizony, R; Zeilig, G; Krasovsky, T; Bondi, M; Weiss, P L; Kodesh, E; Kafri, M

    2017-01-01

    Navigation skills are required for performance of functional complex tasks and may decline due to aging. Investigation of navigation skills should include measurement of cognitive-executive and motor aspects, which are part of complex tasks. to compare young and older healthy adults in navigation within a simulated environment with and without a functional-cognitive task. Ten young adults (25.6±4.3 years) and seven community dwelling older men (69.9±3.8 years) were tested during a single session. After training on a self-paced treadmill to navigate in a non-functional simulation, they performed the Virtual Multiple Errands Test (VMET) in a mall simulation. Outcome measures included cognitive-executive aspects of performance and gait parameters. Younger adults' performance of the VMET was more efficient (1.8±1.0) than older adults (5.3±2.7; p < 0.05) and faster (younger 478.1±141.5 s, older 867.6±393.5 s; p < 0.05). There were no differences between groups in gait parameters. Both groups walked slower in the mall simulation. The shopping simulation provided a paradigm to assess the interplay between motor and cognitive aspects involved in the efficient performance of a complex task. The study emphasized the role of the cognitive-executive aspect of task performance in healthy older adults.

  19. Understanding how train dispatchers manage and control trains : results of a cognitive task analysis

    DOT National Transportation Integrated Search

    1999-03-01

    This report documents the results of a preliminary Cognitive Task Analysis (CTA) that examined how experienced train dispatchers manage and : schedule trains in today's environment The objective was to understand the cognitive demands placed on train...

  20. Executive Functions and the Improvement of Thinking Abilities: The Intervention in Reading Comprehension

    PubMed Central

    García-Madruga, Juan A.; Gómez-Veiga, Isabel; Vila, José Ó.

    2016-01-01

    In this paper, we propose a preliminary theory of executive functions that address in a specific way their relationship with working memory (WM) and higher-level cognition. It includes: (a) four core on-line WM executive functions that are involved in every novel and complex cognitive task; (b) two higher order off-line executive functions, planning and revision, that are required to resolving the most complex intellectual abilities; and (c) emotional control that is involved in any complex, novel and difficult task. The main assumption is that efficiency on thinking abilities may be improved by specific instruction or training on the executive functions necessary to solving novel and complex tasks involved in these abilities. Evidence for the impact of our training proposal on WM's executive functions involved in higher-level cognitive abilities comes from three studies applying an adaptive program designed to improve reading comprehension in primary school students by boosting the core WM's executive functions involved in it: focusing on relevant information, switching (or shifting) between representations or tasks, connecting incoming information from text with long-term representations, updating of the semantic representation of the text in WM, and inhibition of irrelevant information. The results are consistent with the assumption that cognitive enhancements from the training intervention may have affected not only a specific but also a more domain-general mechanism involved in various executive functions. We discuss some methodological issues in the studies of effects of WM training on reading comprehension. The perspectives and limitations of our approach are finally discussed. PMID:26869961

  1. Task-based neurofeedback training: A novel approach toward training executive functions.

    PubMed

    Hosseini, S M Hadi; Pritchard-Berman, Mika; Sosa, Natasha; Ceja, Angelica; Kesler, Shelli R

    2016-07-01

    Cognitive training is an emergent approach to improve cognitive functions in various neurodevelopmental and neurodegenerative diseases. However, current training programs can be relatively lengthy, making adherence potentially difficult for patients with cognitive difficulties. Previous studies suggest that providing individuals with real-time feedback about the level of brain activity (neurofeedback) can potentially help them learn to control the activation of specific brain regions. In the present study, we developed a novel task-based neurofeedback training paradigm that benefits from the effects of neurofeedback in parallel with computerized training. We focused on executive function training given its core involvement in various developmental and neurodegenerative diseases. Near-infrared spectroscopy (NIRS) was employed for providing neurofeedback by measuring changes in oxygenated hemoglobin in the prefrontal cortex. Of the twenty healthy adult participants, ten received real neurofeedback (NFB) on prefrontal activity during cognitive training, and ten were presented with sham feedback (SHAM). Compared with SHAM, the NFB group showed significantly improved executive function performance including measures of working memory after four sessions of training (100min total). The NFB group also showed significantly reduced training-related brain activity in the executive function network including right middle frontal and inferior frontal regions compared with SHAM. Our data suggest that providing neurofeedback along with cognitive training can enhance executive function after a relatively short period of training. Similar designs could potentially be used for patient populations with known neuropathology, potentially helping them to boost/recover the activity in the affected brain regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Task-Based Neurofeedback Training: A Novel Approach Toward Training Executive Functions

    PubMed Central

    Hosseini, SM Hadi; Pritchard-Berman, Mika; Sosa, Natasha; Ceja, Angelica; Kesler, Shelli R.

    2016-01-01

    Cognitive training is an emergent approach to improve cognitive functions in various neurodevelopmental and neurodegenerative diseases. However, current training programs can be relatively lengthy, making adherence potentially difficult for patients with cognitive difficulties. Previous studies suggest that providing individuals with real-time feedback about the level of brain activity (neurofeedback) can potentially help them learn to control the activation of specific brain regions. In the present study, we developed a novel task-based neurofeedback training paradigm that benefits from the effects of neurofeedback in parallel with computerized training. We focused on executive function training given its core involvement in various developmental and neurodegenerative diseases. Near-infrared spectroscopy (NIRS) was employed for providing neurofeedback by measuring changes in oxygenated hemoglobin in the prefrontal cortex. Of the twenty healthy adult participants, ten received real neurofeedback (NFB) on prefrontal activity during cognitive training, and ten were presented with sham feedback (SHAM). Compared with SHAM, the NFB group showed significantly improved executive function performance including measures of working memory after four sessions of training (100 minutes total). The NFB group also showed significantly reduced training-related brain activity in the executive function network including right middle frontal and inferior frontal regions compared with SHAM. Our data suggest that providing neurofeedback along with cognitive training can enhance executive function after a relatively short period of training. Similar designs could potentially be used for patient populations with known neuropathology, potentially helping them to boost/recover the activity in the affected brain regions. PMID:27015711

  3. From "rest" to language task: Task activation selects and prunes from broader resting-state network.

    PubMed

    Doucet, Gaelle E; He, Xiaosong; Sperling, Michael R; Sharan, Ashwini; Tracy, Joseph I

    2017-05-01

    Resting-state networks (RSNs) show spatial patterns generally consistent with networks revealed during cognitive tasks. However, the exact degree of overlap between these networks has not been clearly quantified. Such an investigation shows promise for decoding altered functional connectivity (FC) related to abnormal language functioning in clinical populations such as temporal lobe epilepsy (TLE). In this context, we investigated the network configurations during a language task and during resting state using FC. Twenty-four healthy controls, 24 right and 24 left TLE patients completed a verb generation (VG) task and a resting-state fMRI scan. We compared the language network revealed by the VG task with three FC-based networks (seeding the left inferior frontal cortex (IFC)/Broca): two from the task (ON, OFF blocks) and one from the resting state. We found that, for both left TLE patients and controls, the RSN recruited regions bilaterally, whereas both VG-on and VG-off conditions produced more left-lateralized FC networks, matching more closely with the activated language network. TLE brings with it variability in both task-dependent and task-independent networks, reflective of atypical language organization. Overall, our findings suggest that our RSN captured bilateral activity, reflecting a set of prepotent language regions. We propose that this relationship can be best understood by the notion of pruning or winnowing down of the larger language-ready RSN to carry out specific task demands. Our data suggest that multiple types of network analyses may be needed to decode the association between language deficits and the underlying functional mechanisms altered by disease. Hum Brain Mapp 38:2540-2552, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Task Force Report 4. Report of the Task Force on Marketing and Communications

    PubMed Central

    Dickinson, John C.; Evans, Kenneth L.; Carter, Jan; Burke, Kevin

    2004-01-01

    BACKGROUND To ensure the success of the proposed New Model of family medicine and to create a better understanding of the nature and role of family medicine, an effective communications plan must be developed and implemented. This Future of Family Medicine task force report proposes strategies for communicating the role of family physicians within medicine, as well as to purchasers, consumers, and other entities. METHODS After reviewing the findings from the research conducted for the Future of Family Medicine project, the task force presents a preliminary brand-positioning strategy for family medicine messages. Based on this strategy, the task force identifies 5 major audiences to which family medicine communications should be directed. A consistent method was used to determine optimum strategies to address each audience: defining the audience, assessing the literature and other pertinent evidence, identifying the communication objectives, determining the key messages, developing brand promises, and proposing strategies and tactics to support the messages and objectives. Preliminary communications plans are then presented for each of the 5 target audiences. MAJOR FINDINGS It is important that the organizations involved in family medicine make a multiyear commitment of resources to implement and support an aggressive communications strategy, which is based on key messages to target audiences. A concerted effort is particularly needed to address the declining interest among medical students in the specialty. Implementing a comprehensive family medicine career development program may be one effective strategy to reverse this trend. To help eliminate the current confusion among the public regarding family medicine and to promote clarity and consistency in terminology, the specialty should replace the name family practice with family medicine and a new graphic symbol for the discipline of family medicine should be developed. CONCLUSION As a discipline, family medicine

  5. A simple method for assessment of muscle force, velocity, and power producing capacities from functional movement tasks.

    PubMed

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-07-01

    A range of force (F) and velocity (V) data obtained from functional movement tasks (e.g., running, jumping, throwing, lifting, cycling) performed under variety of external loads have typically revealed strong and approximately linear F-V relationships. The regression model parameters reveal the maximum F (F-intercept), V (V-intercept), and power (P) producing capacities of the tested muscles. The aim of the present study was to evaluate the level of agreement between the routinely used "multiple-load model" and a simple "two-load model" based on direct assessment of the F-V relationship from only 2 external loads applied. Twelve participants were tested on the maximum performance vertical jumps, cycling, bench press throws, and bench pull performed against a variety of different loads. All 4 tested tasks revealed both exceptionally strong relationships between the parameters of the 2 models (median R = 0.98) and a lack of meaningful differences between their magnitudes (fixed bias below 3.4%). Therefore, addition of another load to the standard tests of various functional tasks typically conducted under a single set of mechanical conditions could allow for the assessment of the muscle mechanical properties such as the muscle F, V, and P producing capacities.

  6. Encoding and immediate retrieval tasks in patients with epilepsy: A functional MRI study of verbal and visual memory.

    PubMed

    Saddiki, Najat; Hennion, Sophie; Viard, Romain; Ramdane, Nassima; Lopes, Renaud; Baroncini, Marc; Szurhaj, William; Reyns, Nicolas; Pruvo, Jean Pierre; Delmaire, Christine

    2018-05-01

    Medial lobe temporal structures and more specifically the hippocampus play a decisive role in episodic memory. Most of the memory functional magnetic resonance imaging (fMRI) studies evaluate the encoding phase; the retrieval phase being performed outside the MRI. We aimed to determine the ability to reveal greater hippocampal fMRI activations during retrieval phase. Thirty-five epileptic patients underwent a two-step memory fMRI. During encoding phase, subjects were requested to identify the feminine or masculine gender of faces and words presented, in order to encourage stimulus encoding. One hour after, during retrieval phase, subjects had to recognize the word and face. We used an event-related design to identify hippocampal activations. There was no significant difference between patients with left temporal lobe epilepsy, patients with right temporal lobe epilepsy and patients with extratemporal lobe epilepsy on verbal and visual learning task. For words, patients demonstrated significantly more bilateral hippocampal activation for retrieval task than encoding task and when the tasks were associated than during encoding alone. Significant difference was seen between face-encoding alone and face retrieval alone. This study demonstrates the essential contribution of the retrieval task during a fMRI memory task but the number of patients with hippocampal activations was greater when the two tasks were taken into account. Copyright © 2018. Published by Elsevier Masson SAS.

  7. Executive Functioning and Processing Speed in Age-Related Differences in Memory: Contribution of a Coding Task

    ERIC Educational Resources Information Center

    Baudouin, Alexia; Clarys, David; Vanneste, Sandrine; Isingrini, Michel

    2009-01-01

    The aim of the present study was to examine executive dysfunctioning and decreased processing speed as potential mediators of age-related differences in episodic memory. We compared the performances of young and elderly adults in a free-recall task. Participants were also given tests to measure executive functions and perceptual processing speed…

  8. Trial-dependent psychometric functions accounting for perceptual learning in 2-AFC discrimination tasks.

    PubMed

    Kattner, Florian; Cochrane, Aaron; Green, C Shawn

    2017-09-01

    The majority of theoretical models of learning consider learning to be a continuous function of experience. However, most perceptual learning studies use thresholds estimated by fitting psychometric functions to independent blocks, sometimes then fitting a parametric function to these block-wise estimated thresholds. Critically, such approaches tend to violate the basic principle that learning is continuous through time (e.g., by aggregating trials into large "blocks" for analysis that each assume stationarity, then fitting learning functions to these aggregated blocks). To address this discrepancy between base theory and analysis practice, here we instead propose fitting a parametric function to thresholds from each individual trial. In particular, we implemented a dynamic psychometric function whose parameters were allowed to change continuously with each trial, thus parameterizing nonstationarity. We fit the resulting continuous time parametric model to data from two different perceptual learning tasks. In nearly every case, the quality of the fits derived from the continuous time parametric model outperformed the fits derived from a nonparametric approach wherein separate psychometric functions were fit to blocks of trials. Because such a continuous trial-dependent model of perceptual learning also offers a number of additional advantages (e.g., the ability to extrapolate beyond the observed data; the ability to estimate performance on individual critical trials), we suggest that this technique would be a useful addition to each psychophysicist's analysis toolkit.

  9. Understanding neural system dynamics through task modulation and measurement of functional MRI amplitude, latency, and width

    PubMed Central

    Bellgowan, P. S. F.; Saad, Z. S.; Bandettini, P. A.

    2003-01-01

    Estimates of hemodynamic amplitude, delay, and width were combined to investigate system dynamics involved in lexical decision making. Subjects performed a lexical decision task using word and nonword stimuli rotated 0°, 60°, or 120°. Averaged hemodynamic responses to repeated stimulation were fit to a Gamma-variate function convolved with a heavyside function of varying onset and duration to estimate each voxel's activation delay and width. Consistent with prolonged reaction times for the rotated stimuli and nonwords, the motor cortex showed delayed hemodynamic onset for both conditions. Language areas such as the lingual gyrus, middle temporal gyrus, fusiform gyrus, and precuneus all showed delayed hemodynamic onsets to rotated stimuli but not to nonword stimuli. The inferior frontal gyrus showed both increased onset latency for rotated stimuli and a wider hemodynamic response to nonwords, consistent with prolonged processing in this area during the lexical decision task. Phonological processing areas such as superior temporal and angular gyrus showed no delay or width difference for rotated stimuli. These results suggest that phonological routes but not semantic routes to the lexicon can proceed regardless of stimulus orientation. This study demonstrates the utility of estimating hemodynamic delay and width in addition to amplitude allowing for more quantitative measures of brain function such as mental chronometry. PMID:12552093

  10. Characterizing “fibrofog”: Subjective appraisal, objective performance, and task-related brain activity during a working memory task

    PubMed Central

    Walitt, Brian; Čeko, Marta; Khatiwada, Manish; Gracely, John L.; Rayhan, Rakib; VanMeter, John W.; Gracely, Richard H.

    2016-01-01

    The subjective experience of cognitive dysfunction (“fibrofog”) is common in fibromyalgia. This study investigated the relation between subjective appraisal of cognitive function, objective cognitive task performance, and brain activity during a cognitive task using functional magnetic resonance imaging (fMRI). Sixteen fibromyalgia patients and 13 healthy pain-free controls completed a battery of questionnaires, including the Multiple Ability Self-Report Questionnaire (MASQ), a measure of self-perceived cognitive difficulties. Participants were evaluated for working memory performance using a modified N-back working memory task while undergoing Blood Oxygen Level Dependent (BOLD) fMRI measurements. Fibromyalgia patients and controls did not differ in working memory performance. Subjective appraisal of cognitive function was associated with better performance (accuracy) on the working memory task in healthy controls but not in fibromyalgia patients. In fibromyalgia patients, increased perceived cognitive difficulty was positively correlated with the severity of their symptoms. BOLD response during the working memory task did not differ between the groups. BOLD response correlated with task accuracy in control subjects but not in fibromyalgia patients. Increased subjective cognitive impairment correlated with decreased BOLD response in both groups but in different anatomic regions. In conclusion, “fibrofog” appears to be better characterized by subjective rather than objective impairment. Neurologic correlates of this subjective experience of impairment might be separate from those involved in the performance of cognitive tasks. PMID:26955513

  11. Single-trial classification of motor imagery differing in task complexity: a functional near-infrared spectroscopy study

    PubMed Central

    2011-01-01

    Background For brain computer interfaces (BCIs), which may be valuable in neurorehabilitation, brain signals derived from mental activation can be monitored by non-invasive methods, such as functional near-infrared spectroscopy (fNIRS). Single-trial classification is important for this purpose and this was the aim of the presented study. In particular, we aimed to investigate a combined approach: 1) offline single-trial classification of brain signals derived from a novel wireless fNIRS instrument; 2) to use motor imagery (MI) as mental task thereby discriminating between MI signals in response to different tasks complexities, i.e. simple and complex MI tasks. Methods 12 subjects were asked to imagine either a simple finger-tapping task using their right thumb or a complex sequential finger-tapping task using all fingers of their right hand. fNIRS was recorded over secondary motor areas of the contralateral hemisphere. Using Fisher's linear discriminant analysis (FLDA) and cross validation, we selected for each subject a best-performing feature combination consisting of 1) one out of three channel, 2) an analysis time interval ranging from 5-15 s after stimulation onset and 3) up to four Δ[O2Hb] signal features (Δ[O2Hb] mean signal amplitudes, variance, skewness and kurtosis). Results The results of our single-trial classification showed that using the simple combination set of channels, time intervals and up to four Δ[O2Hb] signal features comprising Δ[O2Hb] mean signal amplitudes, variance, skewness and kurtosis, it was possible to discriminate single-trials of MI tasks differing in complexity, i.e. simple versus complex tasks (inter-task paired t-test p ≤ 0.001), over secondary motor areas with an average classification accuracy of 81%. Conclusions Although the classification accuracies look promising they are nevertheless subject of considerable subject-to-subject variability. In the discussion we address each of these aspects, their limitations for

  12. Using Task Clarification, Graphic Feedback, and Verbal Feedback to Increase Closing-Task Completion in a Privately Owned Restaurant.

    ERIC Educational Resources Information Center

    Austin, John; Weatherly, Nic L.; Gravina, Nicole E.

    2005-01-01

    An informant functional assessment was used to evaluate closing-task completion by servers and dishwashers at a restaurant. Based on the functional assessment results, an intervention consisting of task clarification, posted graphic feedback, and verbal feedback was implemented and evaluated with a multiple baseline design across two groups of…

  13. Toddlers benefit from labeling on an executive function search task.

    PubMed

    Miller, Stephanie E; Marcovitch, Stuart

    2011-03-01

    Although labeling improves executive function (EF) performance in children older than 3years, the results from studies with younger children have been equivocal. In the current study, we assessed performance in a computerized multistep multilocation search task with older 2-year-olds. The correct search location was either (a) not marked by a familiar picture or given a distinct label, (b) marked by a familiar picture but not given a distinct label, (c) marked by a familiar picture and labeled by the experimenter, or (d) marked by a familiar picture and labeled by the participant. The results revealed that accuracy improved across conditions such that children made the fewest errors when they generated the label for the hiding location. These findings support the hierarchical competing systems model, which postulates that improved performance can be explained by more powerful representations that guide search behavior. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Combining functional neuroimaging with off-line brain stimulation: modulation of task-related activity in language areas.

    PubMed

    Andoh, Jamila; Paus, Tomás

    2011-02-01

    Repetitive TMS (rTMS) provides a noninvasive tool for modulating neural activity in the human brain. In healthy participants, rTMS applied over the language-related areas in the left hemisphere, including the left posterior temporal area of Wernicke (LTMP) and inferior frontal area of Broca, have been shown to affect performance on word recognition tasks. To investigate the neural substrate of these behavioral effects, off-line rTMS was combined with fMRI acquired during the performance of a word recognition task. Twenty right-handed healthy men underwent fMRI scans before and after a session of 10-Hz rTMS applied outside the magnetic resonance scanner. Functional magnetic resonance images were acquired during the performance of a word recognition task that used English or foreign-language words. rTMS was applied over the LTMP in one group of 10 participants (LTMP group), whereas the homologue region in the right hemisphere was stimulated in another group of 10 participants (RTMP group). Changes in task-related fMRI response (English minus foreign languages) and task performances (response time and accuracy) were measured in both groups and compared between pre-rTMS and post-rTMS. Our results showed that rTMS increased task-related fMRI response in the homologue areas contralateral to the stimulated sites. We also found an effect of rTMS on response time for the LTMP group only. These findings provide insights into changes in neural activity in cortical regions connected to the stimulated site and are consistent with a hypothesis raised in a previous review about the role of the homologue areas in the contralateral hemisphere for preserving behavior after neural interference.

  15. Preliminary study of a millimeter wave FMCW InSAR for UAS indoor navigation.

    PubMed

    Scannapieco, Antonio F; Renga, Alfredo; Moccia, Antonio

    2015-01-22

    Small autonomous unmanned aerial systems (UAS) could be used for indoor inspection in emergency missions, such as damage assessment or the search for survivors in dangerous environments, e.g., power plants, underground railways, mines and industrial warehouses. Two basic functions are required to carry out these tasks, that is autonomous GPS-denied navigation with obstacle detection and high-resolution 3Dmapping with moving target detection. State-of-the-art sensors for UAS are very sensitive to environmental conditions and often fail in the case of poor visibility caused by dust, fog, smoke, flames or other factors that are met as nominal mission scenarios when operating indoors. This paper is a preliminary study concerning an innovative radar sensor based on the interferometric Synthetic Aperture Radar (SAR) principle, which has the potential to satisfy stringent requirements set by indoor autonomous operation. An architectural solution based on a frequency-modulated continuous wave (FMCW) scheme is proposed after a detailed analysis of existing compact and lightweight SAR. A preliminary system design is obtained, and the main imaging peculiarities of the novel sensor are discussed, demonstrating that high-resolution, high-quality observation of an assigned control volume can be achieved.

  16. Preliminary Study of a Millimeter Wave FMCW InSAR for UAS Indoor Navigation

    PubMed Central

    Scannapieco, Antonio F.; Renga, Alfredo; Moccia, Antonio

    2015-01-01

    Small autonomous unmanned aerial systems (UAS) could be used for indoor inspection in emergency missions, such as damage assessment or the search for survivors in dangerous environments, e.g., power plants, underground railways, mines and industrial warehouses. Two basic functions are required to carry out these tasks, that is autonomous GPS-denied navigation with obstacle detection and high-resolution 3D mapping with moving target detection. State-of-the-art sensors for UAS are very sensitive to environmental conditions and often fail in the case of poor visibility caused by dust, fog, smoke, flames or other factors that are met as nominal mission scenarios when operating indoors. This paper is a preliminary study concerning an innovative radar sensor based on the interferometric Synthetic Aperture Radar (SAR) principle, which has the potential to satisfy stringent requirements set by indoor autonomous operation. An architectural solution based on a frequency-modulated continuous wave (FMCW) scheme is proposed after a detailed analysis of existing compact and lightweight SAR. A preliminary system design is obtained, and the main imaging peculiarities of the novel sensor are discussed, demonstrating that high-resolution, high-quality observation of an assigned control volume can be achieved. PMID:25621606

  17. Neuroimaging explanations of age-related differences in task performance.

    PubMed

    Steffener, Jason; Barulli, Daniel; Habeck, Christian; Stern, Yaakov

    2014-01-01

    Advancing age affects both cognitive performance and functional brain activity and interpretation of these effects has led to a variety of conceptual research models without always explicitly linking the two effects. However, to best understand the multifaceted effects of advancing age, age differences in functional brain activity need to be explicitly tied to the cognitive task performance. This work hypothesized that age-related differences in task performance are partially explained by age-related differences in functional brain activity and formally tested these causal relationships. Functional MRI data was from groups of young and old adults engaged in an executive task-switching experiment. Analyses were voxel-wise testing of moderated-mediation and simple mediation statistical path models to determine whether age group, brain activity and their interaction explained task performance in regions demonstrating an effect of age group. Results identified brain regions whose age-related differences in functional brain activity significantly explained age-related differences in task performance. In all identified locations, significant moderated-mediation relationships resulted from increasing brain activity predicting worse (slower) task performance in older but not younger adults. Findings suggest that advancing age links task performance to the level of brain activity. The overall message of this work is that in order to understand the role of functional brain activity on cognitive performance, analysis methods should respect theoretical relationships. Namely, that age affects brain activity and brain activity is related to task performance.

  18. Effects of activity repetition training with Salat (prayer) versus task oriented training on functional outcomes of stroke.

    PubMed

    Ghous, Misbah; Malik, Arshad Nawaz; Amjad, Mian Imran; Kanwal, Maria

    2017-07-01

    Stroke is one of most disabling condition which directly affects quality of life. The objective of this study was to compare the effect of activity repetition training with salat (prayer) versus task oriented training on functional outcomes of stroke. The study design was randomized control trial and 32 patients were randomly assigned into two groups'. The stroke including infarction or haemorrhagic, age bracket 30-70 years was included. The demographics were recorded and standardized assessment tool included Berg Balance Scale (BBS), Motor assessment scale (MAS) and Time Up and Go Test (TUG). The measurements were obtained at baseline, after four and six weeks. The mean age of the patients was 54.44±10.59 years with 16 (59%) male and 11(41%) female patients. Activity Repetition Training group showed significant improvement (p<0.05) and is effective in enhancing the functional status as compare to task oriented training group. The repetition with motivation and concentration is the key in re-learning process of neural plasticity.

  19. Emotional task management: neural correlates of switching between affective and non-affective task-sets

    PubMed Central

    Reeck, Crystal

    2015-01-01

    Although task-switching has been investigated extensively, its interaction with emotionally salient task content remains unclear. Prioritized processing of affective stimulus content may enhance accessibility of affective task-sets and generate increased interference when switching between affective and non-affective task-sets. Previous research has demonstrated that more dominant task-sets experience greater switch costs, as they necessitate active inhibition during performance of less entrenched tasks. Extending this logic to the affective domain, the present experiment examined (a) whether affective task-sets are more dominant than non-affective ones, and (b) what neural mechanisms regulate affective task-sets, so that weaker, non-affective task-sets can be executed. While undergoing functional magnetic resonance imaging, participants categorized face stimuli according to either their gender (non-affective task) or their emotional expression (affective task). Behavioral results were consistent with the affective task dominance hypothesis: participants were slower to switch to the affective task, and cross-task interference was strongest when participants tried to switch from the affective to the non-affective task. These behavioral costs of controlling the affective task-set were mirrored in the activation of a right-lateralized frontostriatal network previously implicated in task-set updating and response inhibition. Connectivity between amygdala and right ventrolateral prefrontal cortex was especially pronounced during cross-task interference from affective features. PMID:25552571

  20. Cortical representation of facial and tongue movements: a task functional magnetic resonance imaging study.

    PubMed

    Xiao, Fu-Long; Gao, Pei-Yi; Qian, Tian-Yi; Sui, Bin-Bin; Xue, Jing; Zhou, Jian; Lin, Yan

    2017-05-01

    Functional magnetic resonance imaging (fMRI) mapping can present the activated cortical area during movement, while little is known about precise location in facial and tongue movements. To investigate the representation of facial and tongue movements by task fMRI. Twenty right-handed healthy subjects were underwent block design task fMRI examination. Task movements included lip pursing, cheek bulging, grinning and vertical tongue excursion. Statistical parametric mapping (SPM8) was applied to analysis the data. One-sample t-test was used to calculate the common activation area between facial and tongue movements. Also, paired t-test was used to test for areas of over- or underactivation in tongue movement compared with each group of facial movements. The common areas within facial and tongue movements suggested the similar motor circuits of activation in both movements. Prior activation in tongue movement was situated laterally and inferiorly in sensorimotor area relative to facial movements. Prior activation of tongue movement was investigated in left superior parietal lobe relative to lip pursing. Also, prior activation in bilateral cuneus lobe in grinning compared with tongue movement was detected. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  1. Neuropsychological Functioning In College Students with and without ADHD

    PubMed Central

    Weyandt, Lisa L.; Oster, Danielle R.; Gudmundsdottir, Bergljot Gyda; DuPaul, George J.; Anastopoulos, Arthur D.

    2016-01-01

    Increasing numbers of students with attention-deficit/hyperactivity disorder (ADHD) are attending college; however, little empirical information is available concerning the functional impairment experienced by these students. Although preliminary studies suggest that college students with ADHD are more likely to experience a variety of psychosocial and academic difficulties compared to their peers without the disorder, findings regarding neuropsychological functioning have been inconsistent with some studies reporting that college students with ADHD perform more poorly on various cognitive and neuropsychological tasks whereas others report no differences compared to non-ADHD peers. The purpose of the present study was to: a) examine the performance of 436 first-year college students with and without ADHD (51.6% female) on measures of executive function (EF) and intelligence; and b) investigate the association of self-reported use of stimulant medication with neuropsychological performance in students with ADHD. Participant data from their first year of involvement in the Trajectories Related to ADHD in College (TRAC) project, a longitudinal study following the 4-year outcomes of college students with and without ADHD, were analyzed. Participants with ADHD performed more poorly on task-based and self-report executive function measures relative to the comparison group. In contrast, no significant group differences in intellectual performance were found. Within the ADHD group, receipt of stimulant medication was associated with improved performance on some neuropsychological tasks, but not for intellectual functioning. Additional analyses also revealed significant group differences in EF based on clinical diagnostic status. Implications of these findings and suggestions for future research are advanced. PMID:27831696

  2. Preliminary design report for OTEC stationkeeping subsystems (SKSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-12-12

    Lockheed Ocean Systems with IMODCO prepared these preliminary designs for OTEC Stationkeeping Subsystems (SKSS) under contract to NOAA in support of the Department of Energy OTEC program. The results of Tasks III, V, and VI are presented in this design report. The report consists of five sections: introduction, preliminary designs for the multiple anchor leg (MAL) and tension anchor leg (TAL), costs and schedule, and conclusions. Extensive appendixes provide detailed descriptions of design methodology and include backup calculations and data to support the results presented. The objective of this effort is to complete the preliminary designs for the barge-MAL andmore » Spar-TAL SKSS. A set of drawings is provided for each which show arrangements, configuration, component details, engineering description, and deployment plan. Loads analysis, performance assessment, and sensitivity to requirements are presented, together with the methodology employed to analyze the systems and to derive the results presented. Life cycle costs and schedule are prepared and compared on a common basis. Finally, recommendations for the Commercial Plant SKSS are presented for both platform types.« less

  3. Evaluation of various mental task combinations for near-infrared spectroscopy-based brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Hwang, Han-Jeong; Lim, Jeong-Hwan; Kim, Do-Won; Im, Chang-Hwan

    2014-07-01

    A number of recent studies have demonstrated that near-infrared spectroscopy (NIRS) is a promising neuroimaging modality for brain-computer interfaces (BCIs). So far, most NIRS-based BCI studies have focused on enhancing the accuracy of the classification of different mental tasks. In the present study, we evaluated the performances of a variety of mental task combinations in order to determine the mental task pairs that are best suited for customized NIRS-based BCIs. To this end, we recorded event-related hemodynamic responses while seven participants performed eight different mental tasks. Classification accuracies were then estimated for all possible pairs of the eight mental tasks (C=28). Based on this analysis, mental task combinations with relatively high classification accuracies frequently included the following three mental tasks: "mental multiplication," "mental rotation," and "right-hand motor imagery." Specifically, mental task combinations consisting of two of these three mental tasks showed the highest mean classification accuracies. It is expected that our results will be a useful reference to reduce the time needed for preliminary tests when discovering individual-specific mental task combinations.

  4. Functional brain imaging of a complex navigation task following one night of total sleep deprivation

    NASA Technical Reports Server (NTRS)

    Strangman, Gary; Thompson, John H.; Strauss, Monica M.; Marshburn, Thomas H.; Sutton, Jeffrey P.

    2006-01-01

    Study Objectives: To assess the cerebral effects associated with sleep deprivation in a simulation of a complex, real-world, high-risk task. Design and Interventions: A two-week, repeated measures, cross-over experimental protocol, with counterbalanced orders of normal sleep (NS) and total sleep deprivation (TSD). Setting: Each subject underwent functional magnetic resonance imaging (fMRI) while performing a dual-joystick, 3D sensorimotor navigation task (simulated orbital docking). Scanning was performed twice per subject, once following a night of normal sleep (NS), and once following a single night of total sleep deprivation (TSD). Five runs (eight 24s docking trials each) were performed during each scanning session. Participants: Six healthy, young, right-handed volunteers (2 women; mean age 20) participated. Measurements and Results: Behavioral performance on multiple measures was comparable in the two sleep conditions. Neuroimaging results within sleep conditions revealed similar locations of peak activity for NS and TSD, including left sensorimotor cortex, left precuneus (BA 7), and right visual areas (BA 18/19). However, cerebral activation following TSD was substantially larger and exhibited higher amplitude modulations from baseline. When directly comparing NS and TSD, most regions exhibited TSD>NS activity, including multiple prefrontal cortical areas (BA 8/9,44/45,47), lateral parieto-occipital areas (BA 19/39, 40), superior temporal cortex (BA 22), and bilateral thalamus and amygdala. Only left parietal cortex (BA 7) demonstrated NS>TSD activity. Conclusions: The large network of cerebral differences between the two conditions, even with comparable behavioral performance, suggests the possibility of detecting TSD-induced stress via functional brain imaging techniques on complex tasks before stress-induced failures.

  5. In Health-Related Tasks, Where Does the School Nurse Function?

    ERIC Educational Resources Information Center

    Berg, Beryl; And Others

    1973-01-01

    The study provided a composite picture of health-related tasks performed in one school district. Nurses were able to evaluate their current practices and recommend specific improvements in nursing actions. Other school districts seeking a profile of their involvement in health-related tasks may request copies of the questionnaire or the entire…

  6. Effects of reward and punishment on task performance, mood and autonomic nervous function, and the interaction with personality.

    PubMed

    Sakuragi, Sokichi; Sugiyama, Yoshiki

    2009-06-01

    The effects of reward and punishment are different, and there are individual differences in sensitivity to reward and punishment. The purpose of this study was to investigate the effects of reward and punishment on task performance, mood, and autonomic nervous function, along with the interaction with personality. Twenty-one healthy female subjects volunteered for the experiment. The task performance was evaluated by required time and total errors while performing a Wisconsin Card Sorting Test. We assessed their personalities using the Minnesota Multiphasic Personality Inventory (MMPI) questionnaire, and mood states by a profile of mood states. Autonomic nervous function was estimated by a spectral analysis of heart rate variability, baroreflex sensitivity, and blood pressure. Repeated measures analysis of variance (ANOVA) revealed significant interaction of condition x time course on mood and autonomic nervous activity, which would indicate a less stressed state under the rewarding condition, but revealed no significant interaction of condition x time course on the task performance. The interactions with personality were further analyzed by repeated measures ANOVA applying the clinical scales of MMPI as independent variables, and significant interactions of condition x time course x Pt (psychasthenia) on task performance, mood, and blood pressure, were revealed. That is, the high Pt group, whose members tend to be sensitive and prone to worry, showed gradual improvement of task performance under the punishing situation with slight increase in systolic blood pressure, while showed no improvement under the rewarding situation with fatigue sense attenuation. In contrast, the low Pt group, whose members tend to be adaptive and self-confident, showed gradual improvement under the rewarding situation. Therefore, we should carefully choose the strategy of reward or punishment, considering the interaction with personality as well as the context in which it is given.

  7. Validation of Cardiovascular Parameters During NASA's Functional Task Test

    NASA Technical Reports Server (NTRS)

    Arzeno, N. M.; Stenger, M. B.; Bloomberg, J. J.; Platts, Steven H.

    2008-01-01

    Microgravity-induced physiological changes, including cardiovascular deconditioning may impair crewmembers f capabilities during exploration missions on the Moon and Mars. The Functional Task Test (FTT), which will be used to assess task performance in short and long duration astronauts, consists of 7 functional tests to evaluate crewmembers f ability to perform activities to be conducted in a partial-gravity environment or following an emergency landing on Earth. The Recovery from Fall/Stand Test (RFST) tests both the subject fs ability to get up from a prone position and orthostatic intolerance. PURPOSE: Crewmembers have never become presyncopal in the first 3 min of quiet stand, yet it is unknown whether 3 min is long enough to cause similar heart rate fluctuations to a 5-min stand. The purpose of this study was to validate and test the reliability of heart rate variability (HRV) analysis of a 3-min quiet stand. METHODS: To determine the validity of using 3 vs. 5-min of standing to assess HRV, 7 healthy subjects remained in a prone position for 2 min, stood up quickly and stood quietly for 6 min. ECG and continuous blood pressure data were recorded. Mean R-R interval and spectral HRV were measured in minutes 0-3 and 0-5 following the heart rate transient due to standing. Significant differences between the segments were determined by a paired t-test. To determine the reliability of the 3-min stand test, 13 healthy subjects completed 3 trials of the complete FTT on separate days, including the RFST with a 3-min stand test. Analysis of variance (ANOVA) was performed on the HRV measures. RESULTS: Spectral HRV measures reflecting autonomic activity were not different (p>0.05) during the 0-3 and 0-5 min segment (mean R-R interval: 738+/-74 ms, 728+/-69 ms; low frequency to high frequency ratio: 6.5+/-2.2, 7.7+/-2.7; normalized high frequency: 0.19+/-0.03, 0.18+/-0.04). The average coefficient of variation for mean R-R interval, systolic and diastolic blood pressures

  8. Evaluation of the Military Functional Assessment Program: Preliminary Assessment of the Construct Validity Using an Archived Database of Clinical Data.

    PubMed

    Kelley, Amanda M; Ranes, Bethany M; Estrada, Art; Grandizio, Catherine M

    2015-01-01

    Several important factors must be considered when deciding to return a soldier to duty after a traumatic brain injury (TBI). Premature return increases risk for not only second-impact syndrome during the acute phase but also permanent changes from repetitive concussions. Thus, there is a critical need for return-to-duty (RTD) assessment criteria that encompass the spectrum of injury and disease experienced by US soldiers, particularly TBI. To provide evidence-based standards to eventually serve as criteria for operational competence and performance of a soldier after injury. Specifically, the relationships between clinical assessments and novel military-specific tasks were evaluated. Exploratory analyses (including nonparametric tests and Spearman rank correlations) of an archived database. A total of 79 patients with TBI who participated in an RTD assessment program at a US Army rehabilitation and recovery center. Military Functional Assessment Program (to determine a soldier's operational competence and performance after TBI) tasks; Dizziness Handicap Inventory; Dynamic Visual Acuity (vestibular function); Sensory Organization Test (postural control); Repeatable Battery for the Assessment of Neuropsychological Status (neuropsychological screening test); Beck Depression Inventory-II; Beck Anxiety Inventory; Comprehensive Trail Making Test (visual search and sequencing); posttraumatic stress disorder checklist military version; Alcohol Use Disorders Identification Test; Epworth Sleepiness Scale; Patient Health Questionnaire; and Military Acute Concussion Evaluation. Selected military operational assessment tasks correlated significantly with clinical measures of vestibular function, psychological well-being, and cognitive function. Differences on occupational therapy assessments, a concussion screening tool, and a self-report health questionnaire were seen between those who passed and those who failed the RTD assessment. Specifically, those who passed the RTD

  9. Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.

    PubMed

    Cheng, Lin; Zhu, Yang; Sun, Junfeng; Deng, Lifu; He, Naying; Yang, Yang; Ling, Huawei; Ayaz, Hasan; Fu, Yi; Tong, Shanbao

    2018-01-25

    Task-related reorganization of functional connectivity (FC) has been widely investigated. Under classic static FC analysis, brain networks under task and rest have been demonstrated a general similarity. However, brain activity and cognitive process are believed to be dynamic and adaptive. Since static FC inherently ignores the distinct temporal patterns between rest and task, dynamic FC may be more a suitable technique to characterize the brain's dynamic and adaptive activities. In this study, we adopted [Formula: see text]-means clustering to investigate task-related spatiotemporal reorganization of dynamic brain networks and hypothesized that dynamic FC would be able to reveal the link between resting-state and task-state brain organization, including broadly similar spatial patterns but distinct temporal patterns. In order to test this hypothesis, this study examined the dynamic FC in default-mode network (DMN) and motor-related network (MN) using Blood-Oxygenation-Level-Dependent (BOLD)-fMRI data from 26 healthy subjects during rest (REST) and a hand closing-and-opening (HCO) task. Two principal FC states in REST and one principal FC state in HCO were identified. The first principal FC state in REST was found similar to that in HCO, which appeared to represent intrinsic network architecture and validated the broadly similar spatial patterns between REST and HCO. However, the second FC principal state in REST with much shorter "dwell time" implied the transient functional relationship between DMN and MN during REST. In addition, a more frequent shifting between two principal FC states indicated that brain network dynamically maintained a "default mode" in the motor system during REST, whereas the presence of a single principal FC state and reduced FC variability implied a more temporally stable connectivity during HCO, validating the distinct temporal patterns between REST and HCO. Our results further demonstrated that dynamic FC analysis could offer unique

  10. Evaluating input device usability as a function of task difficulty in a tracking task.

    PubMed

    Rupp, Michael A; Oppold, Paul; McConnell, Daniel S

    2015-01-01

    Game controllers are emerging as a preferred choice for the manual control of unmanned vehicles, but an understanding of their usability characteristics has yet to emerge. We compared the usability of an Xbox 360 game controller in a dual task situation using MATB II to the traditional joystick and keyboard interface in two experiments. In the first experiment, performance with the game controller was associated with fewer tracking errors. In a second experiment, we trained users on the devices, and found that even after training the game controller was still associated with fewer tracking errors as well as higher usability and lower workload ratings. These results are consistent with the idea that game controllers are highly usable input devices and do not require high mental workload to operate, thus making them suitable for complex control tasks.

  11. Exploring the Benefits of Task Repetition and Recycling for Classroom Language Learning.

    ERIC Educational Resources Information Center

    Lynch, Tony; Maclean, Joan

    2000-01-01

    Reports the preliminary results of an ongoing study of the benefits of building repetition into a communicative task in an English for Specific Purposes course. Compares the performances of two learners at markedly different levels of English proficiency and finds that both benefited from the opportunity to recycle communicative content as they…

  12. Association Between Initial Age of Exposure to Childhood Abuse and Cognitive Control: Preliminary Evidence.

    PubMed

    Mackiewicz Seghete, Kristen L; DePrince, Anne P; Banich, Marie T

    2018-05-22

    Cognitive control, which relies on the protracted development of frontal-parietal regions into adolescence, is a brain process that may be particularly vulnerable to the impact of childhood abuse. In this study, we used functional magnetic resonance imaging (fMRI) to examine associations between the age of onset of childhood abuse and alterations to the neural mechanisms supporting cognitive control in early adulthood, which have not been previously examined. During fMRI scanning, participants completed hybrid block/event-related versions of a classic color-word Stroop task as well as emotional Stroop tasks (threat and positive words). Participants were young adult women (N = 15; age range: 23-30 years) who had a history of childhood physical or sexual abuse that began prior to 13 years of age. Results indicated that earlier age of onset of childhood abuse was robustly associated with increased transient (i.e., event-related) recruitment of medial cognitive control regions in the classic color-word paradigm as well as with less suppression of medial frontal regions that are part of the default mode network, βs = -.16 to -.87. In comparison, increased activation in dorsolateral prefrontal regions was associated with earlier age of abuse onset under conditions of sustained (i.e., blocked) cognitive control in the emotional Stroop task for blocks of positive distracting words versus fixation, βs = -.50 to -.60. These results provide preliminary evidence that earlier age of exposure to childhood abuse impacts the functional activation of neural systems involved in cognitive control in adulthood. Copyright © 2018 International Society for Traumatic Stress Studies.

  13. Nicotine withdrawal modulates frontal brain function during an affective Stroop task

    PubMed Central

    Modlin, Leslie; Wang, Lihong; Kozink, Rachel V.; McClernon, F. Joseph

    2013-01-01

    Background Among nicotine-dependent smokers, smoking abstinence disrupts multiple cognitive and affective processes including conflict resolution and emotional information processing (EIP). However, the neurobiological basis of abstinence effects on resolving emotional interference on cognition remains largely uncharacterized. In this study, functional magnetic resonance imaging (fMRI) was used to investigate smoking abstinence effects on emotion–cognition interactions. Methods Smokers (n=17) underwent fMRI while performing an affective Stroop task (aST) over two sessions: once following 24-h abstinence and once following smoking as usual. The aST includes trials that serially present incongruent or congruent numerical grids bracketed by neutral or negative emotional distractors and view-only emotional image trials. Statistical analyses were conducted using a statistical threshold of p<0.05 cluster corrected. Results Smoking abstinence increased Stroop blood-oxygenation-level-dependent response in the right middle frontal and rostral anterior cingulate gyri. Moreover, withdrawal-induced negative affect was associated with less activation in frontoparietal regions during negative emotional information processing; whereas, during Stroop trials, negative affect predicted greater activation in frontal regions during negative, but not neutral emotional distractor trials. Conclusion Hyperactivation in the frontal executive control network during smoking abstinence may represent a need to recruit additional executive resources to meet task demands. Moreover, abstinence-induced negative affect may disrupt cognitive control neural circuitry during EIP and place additional demands on frontal executive neural resources during cognitive demands when presented with emotionally distracting stimuli. PMID:21989805

  14. Strategic Adaptation to Task Characteristics, Incentives, and Individual Differences in Dual-Tasking

    PubMed Central

    Janssen, Christian P.; Brumby, Duncan P.

    2015-01-01

    We investigate how good people are at multitasking by comparing behavior to a prediction of the optimal strategy for dividing attention between two concurrent tasks. In our experiment, 24 participants had to interleave entering digits on a keyboard with controlling a randomly moving cursor with a joystick. The difficulty of the tracking task was systematically varied as a within-subjects factor. Participants were also exposed to different explicit reward functions that varied the relative importance of the tracking task relative to the typing task (between-subjects). Results demonstrate that these changes in task characteristics and monetary incentives, together with individual differences in typing ability, influenced how participants choose to interleave tasks. This change in strategy then affected their performance on each task. A computational cognitive model was used to predict performance for a wide set of alternative strategies for how participants might have possibly interleaved tasks. This allowed for predictions of optimal performance to be derived, given the constraints placed on performance by the task and cognition. A comparison of human behavior with the predicted optimal strategy shows that participants behaved near optimally. Our findings have implications for the design and evaluation of technology for multitasking situations, as consideration should be given to the characteristics of the task, but also to how different users might use technology depending on their individual characteristics and their priorities. PMID:26161851

  15. Functional magnetic resonance imaging of visual object construction and shape discrimination : relations among task, hemispheric lateralization, and gender.

    PubMed

    Georgopoulos, A P; Whang, K; Georgopoulos, M A; Tagaris, G A; Amirikian, B; Richter, W; Kim, S G; Uğurbil, K

    2001-01-01

    We studied the brain activation patterns in two visual image processing tasks requiring judgements on object construction (FIT task) or object sameness (SAME task). Eight right-handed healthy human subjects (four women and four men) performed the two tasks in a randomized block design while 5-mm, multislice functional images of the whole brain were acquired using a 4-tesla system using blood oxygenation dependent (BOLD) activation. Pairs of objects were picked randomly from a set of 25 oriented fragments of a square and presented to the subjects approximately every 5 sec. In the FIT task, subjects had to indicate, by pushing one of two buttons, whether the two fragments could match to form a perfect square, whereas in the SAME task they had to decide whether they were the same or not. In a control task, preceding and following each of the two tasks above, a single square was presented at the same rate and subjects pushed any of the two keys at random. Functional activation maps were constructed based on a combination of conservative criteria. The areas with activated pixels were identified using Talairach coordinates and anatomical landmarks, and the number of activated pixels was determined for each area. Altogether, 379 pixels were activated. The counts of activated pixels did not differ significantly between the two tasks or between the two genders. However, there were significantly more activated pixels in the left (n = 218) than the right side of the brain (n = 161). Of the 379 activated pixels, 371 were located in the cerebral cortex. The Talairach coordinates of these pixels were analyzed with respect to their overall distribution in the two tasks. These distributions differed significantly between the two tasks. With respect to individual dimensions, the two tasks differed significantly in the anterior--posterior and superior--inferior distributions but not in the left--right (including mediolateral, within the left or right side) distribution. Specifically

  16. Interhemispheric Functional Brain Connectivity in Neonates with Prenatal Alcohol Exposure: Preliminary Findings.

    PubMed

    Donald, Kirsten A; Ipser, Jonathan C; Howells, Fleur M; Roos, Annerine; Fouche, Jean-Paul; Riley, Edward P; Koen, Nastassja; Woods, Roger P; Biswal, Bharat; Zar, Heather J; Narr, Katherine L; Stein, Dan J

    2016-01-01

    Children exposed to alcohol in utero demonstrate reduced white matter microstructural integrity. While early evidence suggests altered functional brain connectivity in the lateralization of motor networks in school-age children with prenatal alcohol exposure (PAE), the specific effects of alcohol exposure on the establishment of intrinsic connectivity in early infancy have not been explored. Sixty subjects received functional imaging at 2 to 4 weeks of age for 6 to 8 minutes during quiet natural sleep. Thirteen alcohol-exposed (PAE) and 14 age-matched control (CTRL) participants with usable data were included in a multivariate model of connectivity between sensorimotor intrinsic functional connectivity networks. Seed-based analyses of group differences in interhemispheric connectivity of intrinsic motor networks were also conducted. The Dubowitz neurological assessment was performed at the imaging visit. Alcohol exposure was associated with significant increases in connectivity between somatosensory, motor networks, brainstem/thalamic, and striatal intrinsic networks. Reductions in interhemispheric connectivity of motor and somatosensory networks did not reach significance. Although results are preliminary, findings suggest PAE may disrupt the temporal coherence in blood oxygenation utilization in intrinsic networks underlying motor performance in newborn infants. Studies that employ longitudinal designs to investigate the effects of in utero alcohol exposure on the evolving resting-state networks will be key in establishing the distribution and timing of connectivity disturbances already described in older children. Copyright © 2016 by the Research Society on Alcoholism.

  17. Toddlers Benefit from Labeling on an Executive Function Search Task

    PubMed Central

    Miller, Stephanie E.; Marcovitch, Stuart

    2010-01-01

    Although labeling improves executive function (EF) performance in children older than 3 (e.g., Kirkham, Cruess, & Diamond, 2003), the results from studies with younger children have been equivocal (e.g., Sophian & Wellman, 1983). In the present study, we assessed performance in a computerized multistep multilocation search task with older 2-year-old children. The correct search location was either: (a) not marked by a familiar picture nor given a distinct label, (b) marked by a familiar picture but not given a distinct label (c) marked by a familiar picture and labeled by the experimenter, or (d) marked by a familiar picture and labeled by the participant. The results revealed that accuracy improved across conditions such that children made fewest errors when they generated the label for the hiding location. These findings support the hierarchical competing systems model (Marcovitch & Zelazo, 2006, 2009) that postulates that improved performance can be explained by more powerful representations that guide search behavior. PMID:21112597

  18. Targeted brain activation using an MR-compatible wrist torque measurement device and isometric motor tasks during functional magnetic resonance imaging.

    PubMed

    Vlaar, Martijn P; Mugge, Winfred; Groot, Paul F C; Sharifi, Sarvi; Bour, Lo J; van der Helm, Frans C T; van Rootselaar, Anne-Fleur; Schouten, Alfred C

    2016-07-01

    Dedicated pairs of isometric wrist flexion tasks, with and without visual feedback of the exerted torque, were designed to target activation of the CBL and BG in healthy subjects during functional magnetic resonance imaging (fMRI). Selective activation of the cerebellum (CBL) and basal ganglia (BG), often implicated in movement disorders such as tremor and dystonia, may help identify pathological changes and expedite diagnosis. A prototyped MR-compatible wrist torque measurement device, free of magnetic and conductive materials, allowed safe execution of tasks during fMRI without causing artifacts. A significant increase of activity in CBL and BG was found in healthy volunteers during a constant torque task with visual feedback compared to a constant torque task without visual feedback. This study shows that specific pairs of motor tasks using MR-compatible equipment at the wrist allow for targeted activation of CBL and BG, paving a new way for research into the pathophysiology of movement disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Emotional task management: neural correlates of switching between affective and non-affective task-sets.

    PubMed

    Reeck, Crystal; Egner, Tobias

    2015-08-01

    Although task-switching has been investigated extensively, its interaction with emotionally salient task content remains unclear. Prioritized processing of affective stimulus content may enhance accessibility of affective task-sets and generate increased interference when switching between affective and non-affective task-sets. Previous research has demonstrated that more dominant task-sets experience greater switch costs, as they necessitate active inhibition during performance of less entrenched tasks. Extending this logic to the affective domain, the present experiment examined (a) whether affective task-sets are more dominant than non-affective ones, and (b) what neural mechanisms regulate affective task-sets, so that weaker, non-affective task-sets can be executed. While undergoing functional magnetic resonance imaging, participants categorized face stimuli according to either their gender (non-affective task) or their emotional expression (affective task). Behavioral results were consistent with the affective task dominance hypothesis: participants were slower to switch to the affective task, and cross-task interference was strongest when participants tried to switch from the affective to the non-affective task. These behavioral costs of controlling the affective task-set were mirrored in the activation of a right-lateralized frontostriatal network previously implicated in task-set updating and response inhibition. Connectivity between amygdala and right ventrolateral prefrontal cortex was especially pronounced during cross-task interference from affective features. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Transfer of learning between unimanual and bimanual rhythmic movement coordination: transfer is a function of the task dynamic.

    PubMed

    Snapp-Childs, Winona; Wilson, Andrew D; Bingham, Geoffrey P

    2015-07-01

    Under certain conditions, learning can transfer from a trained task to an untrained version of that same task. However, it is as yet unclear what those certain conditions are or why learning transfers when it does. Coordinated rhythmic movement is a valuable model system for investigating transfer because we have a model of the underlying task dynamic that includes perceptual coupling between the limbs being coordinated. The model predicts that (1) coordinated rhythmic movements, both bimanual and unimanual, are organised with respect to relative motion information for relative phase in the coupling function, (2) unimanual is less stable than bimanual coordination because the coupling is unidirectional rather than bidirectional, and (3) learning a new coordination is primarily about learning to perceive and use the relevant information which, with equal perceptual improvement due to training, yields equal transfer of learning from bimanual to unimanual coordination and vice versa [but, given prediction (2), the resulting performance is also conditioned by the intrinsic stability of each task]. In the present study, two groups were trained to produce 90° either unimanually or bimanually, respectively, and tested in respect to learning (namely improved performance in the trained 90° coordination task and improved visual discrimination of 90°) and transfer of learning (to the other, untrained 90° coordination task). Both groups improved in the task condition in which they were trained and in their ability to visually discriminate 90°, and this learning transferred to the untrained condition. When scaled by the relative intrinsic stability of each task, transfer levels were found to be equal. The results are discussed in the context of the perception-action approach to learning and performance.

  1. Comparing adaptive procedures for estimating the psychometric function for an auditory gap detection task.

    PubMed

    Shen, Yi

    2013-05-01

    A subject's sensitivity to a stimulus variation can be studied by estimating the psychometric function. Generally speaking, three parameters of the psychometric function are of interest: the performance threshold, the slope of the function, and the rate at which attention lapses occur. In the present study, three psychophysical procedures were used to estimate the three-parameter psychometric function for an auditory gap detection task. These were an up-down staircase (up-down) procedure, an entropy-based Bayesian (entropy) procedure, and an updated maximum-likelihood (UML) procedure. Data collected from four young, normal-hearing listeners showed that while all three procedures provided similar estimates of the threshold parameter, the up-down procedure performed slightly better in estimating the slope and lapse rate for 200 trials of data collection. When the lapse rate was increased by mixing in random responses for the three adaptive procedures, the larger lapse rate was especially detrimental to the efficiency of the up-down procedure, and the UML procedure provided better estimates of the threshold and slope than did the other two procedures.

  2. Children's planning performance in the Zoo Map task (BADS-C): Is it driven by general cognitive ability, executive functioning, or prospection?

    PubMed

    Ballhausen, Nicola; Mahy, Caitlin E V; Hering, Alexandra; Voigt, Babett; Schnitzspahn, Katharina M; Lagner, Prune; Ihle, Andreas; Kliegel, Matthias

    2017-01-01

    A minimal amount of research has examined the cognitive predictors of children's performance in naturalistic, errand-type planning tasks such as the Zoo Map task of the Behavioral Assessment of the Dysexecutive Syndrome for Children (BADS-C). Thus, the current study examined prospection (i.e., the ability to remember to carry out a future intention), executive functioning, and intelligence markers as predictors of performance in this widely used naturalistic planning task in 56 children aged 7- to 12-years-old. Measures of planning, prospection, inhibition, crystallized intelligence, and fluid intelligence were collected in an individual differences study. Regression analyses showed that prospection (rather than traditional measures of intelligence or inhibition) predicted planning, suggesting that naturalistic planning tasks such as the Zoo Map task may rely on future-oriented cognitive processes rather than executive problem solving or general knowledge.

  3. Executive brain functions after exposure to nocturnal traffic noise: effects of task difficulty and sleep quality.

    PubMed

    Schapkin, Sergei A; Falkenstein, Michael; Marks, Anke; Griefahn, Barbara

    2006-04-01

    The after-effects of nocturnal traffic noise on cognitive performance and inhibitory brain activity were investigated. Twenty participants (18-30 years) performed an easy and a difficult visual Go/Nogo task with simultaneous EEG recording after a quiet night and then during three nights when aircraft noise was presented with equivalent noise levels of 39, 44, and 50 dBA, respectively, between 11 p.m. to 7 a.m. Based on subjective sleep quality rating, participants were separated into "good" versus "bad" sleepers. The performance and inhibition-related components (N2, P3) of event-related potentials were analysed. The N2 and P3 amplitudes were smaller and latencies were prolonged in the difficult than in the easy task. This effect was more pronounced for Nogo than for Go trials. The Nogo-P3 amplitude was smaller in Noise than in "Quiet" conditions in the difficult task only. In the difficult task, the Nogo-P3 latency was prolonged in bad sleepers than in good sleepers. The Nogo-P3 amplitude was reduced in Noise as compared to "Quiet" conditions in bad sleepers only. Sleep quality in bad sleepers worsened steadily with increasing noise levels. No effects of noise or subjective sleep quality on performance were found. Inhibitory processes appear to be selectively impaired after nocturnal noise exposure. The task difficulty and perceived sleep quality are important factors modulating noise effects. The results suggest that nocturnal traffic noise increase physiological costs for inhibitory functioning on the day even if no overt performance decrement is observed.

  4. Functional imaging of brain responses to different outcomes of hypothesis testing: revealed in a category induction task.

    PubMed

    Li, Fuhong; Cao, Bihua; Luo, Yuejia; Lei, Yi; Li, Hong

    2013-02-01

    Functional magnetic resonance imaging (fMRI) was used to examine differences in brain activation that occur when a person receives the different outcomes of hypothesis testing (HT). Participants were provided with a series of images of batteries and were asked to learn a rule governing what kinds of batteries were charged. Within each trial, the first two charged batteries were sequentially displayed, and participants would generate a preliminary hypothesis based on the perceptual comparison. Next, a third battery that served to strengthen, reject, or was irrelevant to the preliminary hypothesis was displayed. The fMRI results revealed that (1) no significant differences in brain activation were found between the 2 hypothesis-maintain conditions (i.e., strengthen and irrelevant conditions); and (2) compared with the hypothesis-maintain conditions, the hypothesis-reject condition activated the left medial frontal cortex, bilateral putamen, left parietal cortex, and right cerebellum. These findings are discussed in terms of the neural correlates of the subcomponents of HT and working memory manipulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. A preliminary investigation into theory of mind and attributional style in adults with grandiose delusions.

    PubMed

    Boyden, Paul; Knowles, Rebecca; Corcoran, Rhiannon; Hamilton, Simon; Rowse, Georgina

    2015-01-01

    A preliminary cognitive model of grandiose delusions has been put forward suggesting that persecutory and grandiose delusions shared distinct, yet overlapping psychological processes. This study aims to test this model and hypothesises that participants experiencing grandiose delusions may demonstrate a theory of mind (ToM) impairment and differences in attributional style compared to a control group. A cross-sectional design compared the performance of 18 individuals with grandiose delusions to a control group of 14 participants with depression. ToM was measured using a non-verbal joke appreciation task and a verbal stories task. Attributional style was measured using the internal, personal and situational attributions questionnaire. Participants experiencing grandiose delusions performed significantly worse on both ToM tasks compared to controls. Furthermore, these participants provided significantly more atypical answers when explaining the joke behind the ToM cartoons. No differences for subjective funniness ratings or attributional style were found. This preliminary study indicated participants experiencing grandiose delusions have ToM impairments which may contribute to the maintenance of this symptom.

  6. Emergent Literacy in Thai Preschoolers: A Preliminary Study.

    PubMed

    Yampratoom, Ramorn; Aroonyadech, Nawarat; Ruangdaraganon, Nichara; Roongpraiwan, Rawiwan; Kositprapa, Jariya

    To investigate emergent literacy skills, including phonological awareness when presented with an initial phoneme-matching task and letter knowledge when presented with a letter-naming task in Thai preschoolers, and to identify key factors associated with those skills. Four hundred twelve typically developing children in their final kindergarten year were enrolled in this study. Their emergent reading skills were measured by initial phoneme-matching and letter-naming tasks. Determinant variables, such as parents' education and teachers' perception, were collected by self-report questionnaires. The mean score of the initial phoneme-matching task was 4.5 (45% of a total of 10 scores). The mean score of the letter-naming task without a picture representing the target letter name was 30.2 (68.6% of a total of 44 scores), which increased to 38.8 (88.2% of a total of 44 scores) in the letter-naming task when a picture representing the target letter name was provided. Both initial phoneme-matching and letter-naming abilities were associated with the mother's education and household income. Letter-naming ability was also influenced by home reading activities and gender. This was a preliminary study into emergent literacy skills of Thai preschoolers. The findings supported the importance of focusing on phonological awareness and phonics, especially in the socioeconomic disadvantaged group.

  7. Breaking bad habits by improving executive function in individuals with obesity.

    PubMed

    Allom, Vanessa; Mullan, Barbara; Smith, Evelyn; Hay, Phillipa; Raman, Jayanthi

    2018-04-16

    Two primary factors that contribute to obesity are unhealthy eating and sedentary behavior. These behaviors are particularly difficult to change in the long-term because they are often enacted habitually. Cognitive Remediation Therapy has been modified and applied to the treatment of obesity (CRT-O) with preliminary results of a randomized controlled trial demonstrating significant weight loss and improvements in executive function. The objective of this study was to conduct a secondary data analysis of the CRT-O trial to evaluate whether CRT-O reduces unhealthy habits that contribute to obesity via improvements in executive function. Eighty participants with obesity were randomized to CRT-O or control. Measures of executive function (Wisconsin Card Sort Task and Trail Making Task) and unhealthy eating and sedentary behavior habits were administered at baseline, post-intervention and at 3 month follow-up. Participants receiving CRT-O demonstrated improvements in both measures of executive function and reductions in both unhealthy habit outcomes compared to control. Mediation analyses revealed that change in one element of executive function performance (Wisconsin Card Sort Task perseverance errors) mediated the effect of CRT-O on changes in both habit outcomes. These results suggest that the effectiveness of CRT-O may result from the disruption of unhealthy habits made possible by improvements in executive function. In particular, it appears that cognitive flexibility, as measured by the Wisconsin Card Sort task, is a key mechanism in this process. Improving cognitive flexibility may enable individuals to capitalise on interruptions in unhealthy habits by adjusting their behavior in line with their weight loss goals rather than persisting with an unhealthy choice. The RCT was registered with the Australian New Zealand Registry of Clinical Trials (trial id: ACTRN12613000537752 ).

  8. Preliminary study on liver function changes after trisectionectomy with versus without prior portal vein embolization.

    PubMed

    Malinowski, Maciej; Lock, Johan Friso; Seehofer, Daniel; Gebauer, Bernhard; Schulz, Antje; Demirel, Lina; Bednarsch, Jan; Stary, Victoria; Neuhaus, Peter; Stockmann, Martin

    2016-09-01

    Post-hepatectomy liver failure (PHLF) is the major risk factor for mortality after hepatectomy. Preoperative planning of the future liver remnant volume reduces PHLF rates; however, future liver remnant function (FLR-F) might have an even stronger predictive value. In this preliminary study, we used a new method to calculate FLR-F by the LiMAx test and computer tomography-assisted volumetric-analysis to visualize liver function changes after portal vein embolization (PVE) before extended hepatectomy. The subjects included patients undergoing extended right hepatectomy either directly (NO-PVE group) or after PVE (PVE group). Computed tomography (CT) scan and liver function tests (LiMAx) were done before PVE and preoperatively. FLR-F was calculated and correlated with the postoperative liver function. There were 12 patients in the NO-PVE group and 19 patients in the PVE group. FLR-F and postoperative liver function correlated significantly in both groups (p = 0.036, p = 0.011), although postoperative liver function was slightly overestimated, at 32 and 45 µg/kg/min, in the NO-PVE and PVE groups, respectively. LiMAx value did not change after PVE. Volume-function analysis using LiMAx and CT scan enables us to reliably predict early postoperative liver function. Global enzymatic liver function measured by the LiMAx test did not change after PVE, confirming that liver function distribution in the liver stays constant after PVE. An overestimation of FLR-F is needed to compensate for the intraoperative liver injury that occurs in patients undergoing extended hepatectomy.

  9. Functional neuroimaging of the Iowa Gambling Task in older adults.

    PubMed

    Halfmann, Kameko; Hedgcock, William; Bechara, Antoine; Denburg, Natalie L

    2014-11-01

    The neural systems most susceptible to age-related decline mirror the systems linked to decision making. Yet, the neural processes underlying decision-making disparities among older adults are not well understood. We sought to identify neural response patterns that distinguish 2 groups of older adults who exhibit divergent decision-making patterns. Participants were 31 healthy older adults (ages 59-88, 53% female), defined as advantageous or disadvantageous decision-makers based on Iowa Gambling Task (IGT) performance, who completed an alternate version of the IGT while undergoing functional MRI. The groups were indistinguishable on neuropsychological testing. We contrasted the BOLD signal between groups during 3 phases of the decision-making process: Prechoice (preselection), Prefeedback (postselection), and Feedback (receipt of gains/losses). We further examined whether BOLD signal varied as a function of age in each group. We observed greater activation among the IGT-Disadvantageous relative to -Advantageous older adults in the prefrontal cortex during the early phases of the decision-making process (Prechoice), and in posterior brain regions (e.g., the precuneus) during the later phases (Prefeedback and Feedback). We also found that with increasing age, IGT-Advantageous older adults showed increasing activation in the prefrontal cortex during all phases and increasing activation in the posterior cingulate during earlier phases of the decision process. By contrast, the IGT-Disadvantageous older adults exhibited a reduced or reversed trend. These functional differences may be a consequence of altered reward processing or differing compensatory strategies between IGT-Disadvantageous and -Advantageous older adults. This supports the notion that divergent neurobiological aging trajectories underlie disparate decision-making patterns. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain

    PubMed Central

    Dedovic, Katarina; Renwick, Robert; Mahani, Najmeh Khalili; Engert, Veronika; Lupien, Sonia J.; Pruessner, Jens C.

    2005-01-01

    Objective We developed a protocol for inducing moderate psychologic stress in a functional imaging setting and evaluated the effects of stress on physiology and brain activation. Methods The Montreal Imaging Stress Task (MIST), derived from the Trier Mental Challenge Test, consists of a series of computerized mental arithmetic challenges, along with social evaluative threat components that are built into the program or presented by the investigator. To allow the effects of stress and mental arithmetic to be investigated separately, the MIST has 3 test conditions (rest, control and experimental), which can be presented in either a block or an event-related design, for use with functional magnetic resonance imaging (fMRI) or positron emission tomography (PET). In the rest condition, subjects look at a static computer screen on which no tasks are shown. In the control condition, a series of mental arithmetic tasks are displayed on the computer screen, and subjects submit their answers by means of a response interface. In the experimental condition, the difficulty and time limit of the tasks are manipulated to be just beyond the individual's mental capacity. In addition, in this condition the presentation of the mental arithmetic tasks is supplemented by a display of information on individual and average performance, as well as expected performance. Upon completion of each task, the program presents a performance evaluation to further increase the social evaluative threat of the situation. Results In 2 independent studies using PET and a third independent study using fMRI, with a total of 42 subjects, levels of salivary free cortisol for the whole group were significantly increased under the experimental condition, relative to the control and rest conditions. Performing mental arithmetic was linked to activation of motor and visual association cortices, as well as brain structures involved in the performance of these tasks (e.g., the angular gyrus). Conclusions We

  11. Continuously Adaptive vs. Discrete Changes of Task Difficulty in the Training of a Complex Perceptual-Motor Task.

    ERIC Educational Resources Information Center

    Wood, Milton E.

    The purpose of the effort was to determine the benefits to be derived from the adaptive training technique of automatically adjusting task difficulty as a function of a student skill during early learning of a complex perceptual motor task. A digital computer provided the task dynamics, scoring, and adaptive control of a second-order, two-axis,…

  12. Musculoskeletal disorder risk as a function of vehicle rotation angle during assembly tasks.

    PubMed

    Ferguson, Sue A; Marras, Williams S; Gary Allread, W; Knapik, Gregory G; Vandlen, Kimberly A; Splittstoesser, Riley E; Yang, Gang

    2011-07-01

    Musculoskeletal disorders (MSD) are costly and common problem in automotive manufacturing. The research goal was to quantify MSD exposure as a function of vehicle rotation angle and region during assembly tasks. The study was conducted at the Center for Occupational Health in Automotive Manufacturing (COHAM) Laboratory. Twelve subjects participated in the study. The vehicle was divided into seven regions, (3 interior, 2 underbody and 2 engine regions) representative of work areas during assembly. Three vehicle rotation angles were examined for each region. The standard horizontal assembly condition (0° rotation) was the reference frame. Exposure was assessed on the spine loads and posture, shoulder posture and muscle activity, neck posture and muscle activity as well as wrist posture. In all regions, rotating the vehicle reduced musculoskeletal exposure. In five of the seven regions 45° of vehicle rotation represented the position that reduced MSD exposure most. Two of the seven regions indicated 90° of vehicle rotation had the greatest impact for reducing MSD exposure. This study demonstrated that vehicle rotation shows promise for reducing exposure to risk factors for MDS during automobile assembly tasks. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. Task-control of arousal and the effects of repeated unidirectional angular acceleration on human vestibular responses.

    DOT National Transportation Integrated Search

    1963-11-01

    Subjects were exposed to a 10-day habituation series of 200 CW accelerations in total darkness while performing attention-demanding tasks. Decelerations were sub-threshold. Preliminary and post-tests indicated that slow-phase nystagmus and duration o...

  14. PFC Blood Oxygenation Changes in Four Different Cognitive Tasks.

    PubMed

    Takeda, Tomotaka; Kawakami, Yoshiaki; Konno, Michiyo; Matsuda, Yoshiaki; Nishino, Masayasu; Suzuki, Yoshihiro; Kawano, Yoshiaki; Nakajima, Kazunori; Ozawa, Toshimitsu; Kondo, Yoshihiro; Sakatani, Kaoru

    2017-01-01

    Aging often results in a decline in cognitive function, related to alterations in the prefrontal cortex (PFC) activation. Maintenance of this function in an aging society is an important issue. Some practices/drills, moderate exercise, mastication, and a cognitive task itself could enhance cognitive function. In this validation study, before evaluating the effects of some drills on the elderly, we examined the neural substrate of blood oxygenation changes by the use of four cognitive tasks and fNIRS. Seven healthy volunteers (mean age 25.3 years) participated in this study. Each task session was designed in a block manner; 4 periods of rests (30 s) and 3 blocks of four tasks (30 s). The tasks used were: a computerized Stroop test, a Wisconsin Card Sorting Test, a Sternberg working memory paradigm, and a semantic verbal fluency task. The findings of the study are that all four tasks activated PFC to some extent, without laterality except for the verbal fluency task. The results confirm that NIRS is suitable for measurement of blood oxygenation changes in frontal brain areas that are associated with all four cognitive tasks.

  15. Recalibration in functional perceptual-motor tasks: A systematic review.

    PubMed

    Brand, Milou Tessa; de Oliveira, Rita Ferraz

    2017-12-01

    Skilled actions are the result of a perceptual-motor system being well-calibrated to the appropriate information variables. Changes to the perceptual or motor system initiates recalibration, which is the rescaling of the perceptual-motor system to informational variables. For example, a professional baseball player may need to rescale their throws due to fatigue. The aim of this systematic review is to analyse how recalibration can and has been measured and also to evaluate the literature on recalibration. Five databases were systematically screened to identify literature that reported experiments where a disturbance was applied to the perceptual-motor system in functional perceptual-motor tasks. Each of the 91 experiments reported the immediate effects of a disturbance and/or the effects of removing that disturbance after recalibration. The results showed that experiments applied disturbances to either perception or action, and used either direct or indirect measures of recalibration. In contrast with previous conclusions, active exploration was only sufficient for fast recalibration when the relevant information source was available. Further research into recalibration mechanisms should include the study of information sources as well as skill expertise. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Cerebellum and Integration of Neural Networks in Dual-Task Processing

    PubMed Central

    Wu, Tao; Liu, Jun; Hallett, Mark; Zheng, Zheng; Chan, Piu

    2014-01-01

    Performing two tasks simultaneously (dual-task) is common in human daily life. The neural correlates of dual-task processing remain unclear. In the current study, we used a dual motor and counting task with functional MRI (fMRI) to determine whether there are any areas additionally activated for dual-task performance. Moreover, we investigated the functional connectivity of these added activated areas, as well as the training effect on brain activity and connectivity. We found that the right cerebellar vermis, left lobule V of the cerebellar anterior lobe and precuneus are additionally activated for this type of dual-tasking. These cerebellar regions had functional connectivity with extensive motor- and cognitive-related regions. Dual-task training induced less activation in several areas, but increased the functional connectivity between these cerebellar regions and numbers of motor- and cognitive-related areas. Our findings demonstrate that some regions within the cerebellum can be additionally activated with dual-task performance. Their role in dual motor and cognitive task processes is likely to integrate motor and cognitive networks, and may be involved in adjusting these networks to be more efficient in order to perform dual-tasking properly. The connectivity of the precuneus differs from the cerebellar regions. A possible role of the precuneus in dual-task may be monitoring the operation of active brain networks. PMID:23063842

  17. Rules and more rules: the effects of multiple tasks, extensive training, and aging on task-switching performance.

    PubMed

    Buchler, Norbou G; Hoyer, William J; Cerella, John

    2008-06-01

    Task-switching performance was assessed in young and older adults as a function of the number of task sets to be actively maintained in memory (varied from 1 to 4) over the course of extended training (5 days). Each of the four tasks required the execution of a simple computational algorithm, which was instantaneously cued by the color of the two-digit stimulus. Tasks were presented in pure (task set size 1) and mixed blocks (task set sizes 2, 3, 4), and the task sequence was unpredictable. By considering task switching beyond two tasks, we found evidence for a cognitive control system that is not overwhelmed by task set size load manipulations. Extended training eliminated age effects in task-switching performance, even when the participants had to manage the execution of up to four tasks. The results are discussed in terms of current theories of cognitive control, including task set inertia and production system postulates.

  18. Development of flight experiment task requirements. Volume 2: Technical Report. Part 2: Appendix H: Tasks-skills data series

    NASA Technical Reports Server (NTRS)

    Hatterick, G. R.

    1972-01-01

    The data sheets presented contain the results of the task analysis portion of the study to identify skill requirements of space shuttle crew personnel. A comprehensive data base is provided of crew functions, operating environments, task dependencies, and task-skills applicable to a representative cross section of earth orbital research experiments.

  19. Functional magnetic resonance imaging study of Piaget's conservation-of-number task in preschool and school-age children: a neo-Piagetian approach.

    PubMed

    Houdé, Olivier; Pineau, Arlette; Leroux, Gaëlle; Poirel, Nicolas; Perchey, Guy; Lanoë, Céline; Lubin, Amélie; Turbelin, Marie-Renée; Rossi, Sandrine; Simon, Grégory; Delcroix, Nicolas; Lamberton, Franck; Vigneau, Mathieu; Wisniewski, Gabriel; Vicet, Jean-René; Mazoyer, Bernard

    2011-11-01

    Jean Piaget's theory is a central reference point in the study of logico-mathematical development in children. One of the most famous Piagetian tasks is number conservation. Failures and successes in this task reveal two fundamental stages in children's thinking and judgment, shifting at approximately 7 years of age from visuospatial intuition to number conservation. In the current study, preschool children (nonconservers, 5-6 years of age) and school-age children (conservers, 9-10 years of age) were presented with Piaget's conservation-of-number task and monitored by functional magnetic resonance imaging (fMRI). The cognitive change allowing children to access conservation was shown to be related to the neural contribution of a bilateral parietofrontal network involved in numerical and executive functions. These fMRI results highlight how the behavioral and cognitive stages Piaget formulated during the 20th century manifest in the brain with age. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. The benefits of endurance exercise and Tai Chi Chuan for the task-switching aspect of executive function in older adults: an ERP study.

    PubMed

    Fong, Dong-Yang; Chi, Li-Kang; Li, Fuzhong; Chang, Yu-Kai

    2014-01-01

    This study was designed to determine the relationship between physical activity and the task-switching aspect of executive function by investigating the modulating roles of age, modality of physical activity, and type of cognitive function using behavioral and event-related potential (ERP) assessments. Sixty-four participants were assigned to one of four groups based on age and history of physical activity: older adults performing endurance exercise (OEE), older adults practicing Tai Chi Chuan (OTC), older adults with a sedentary lifestyle (OSL), and young adults (YA). Study participants completed a task-switching task under homogeneous and heterogeneous conditions while ERPs were recorded. The results revealed that YA had shortest reaction times compared with the three older adults groups, with OSL exhibiting the longest reaction time. YA also exhibited shorter P3 latency than OSL. No differences were observed in P3 amplitude between YA, OEE, and OTC; however, all three groups had significantly larger P3 amplitude compared with OSL in both task conditions. In conclusion, age and participation in physical activity influence the relationship between physical activity and task-switching, and a positive relationship was observed regardless of the modality of physical activity and type of cognitive function. Our ERP findings support the model of the scaffolding theory of aging and cognition (STAC) and suggest that regular participation in endurance exercise and Tai Chi Chuan may have equivalent beneficial effects on cognition at the behavioral and neuroelectric levels.

  1. The benefits of endurance exercise and Tai Chi Chuan for the task-switching aspect of executive function in older adults: an ERP study

    PubMed Central

    Fong, Dong-Yang; Chi, Li-Kang; Li, Fuzhong; Chang, Yu-Kai

    2014-01-01

    This study was designed to determine the relationship between physical activity and the task-switching aspect of executive function by investigating the modulating roles of age, modality of physical activity, and type of cognitive function using behavioral and event-related potential (ERP) assessments. Sixty-four participants were assigned to one of four groups based on age and history of physical activity: older adults performing endurance exercise (OEE), older adults practicing Tai Chi Chuan (OTC), older adults with a sedentary lifestyle (OSL), and young adults (YA). Study participants completed a task-switching task under homogeneous and heterogeneous conditions while ERPs were recorded. The results revealed that YA had shortest reaction times compared with the three older adults groups, with OSL exhibiting the longest reaction time. YA also exhibited shorter P3 latency than OSL. No differences were observed in P3 amplitude between YA, OEE, and OTC; however, all three groups had significantly larger P3 amplitude compared with OSL in both task conditions. In conclusion, age and participation in physical activity influence the relationship between physical activity and task-switching, and a positive relationship was observed regardless of the modality of physical activity and type of cognitive function. Our ERP findings support the model of the scaffolding theory of aging and cognition (STAC) and suggest that regular participation in endurance exercise and Tai Chi Chuan may have equivalent beneficial effects on cognition at the behavioral and neuroelectric levels. PMID:25389403

  2. Development of an Objective Space Suit Mobility Performance Metric Using Metabolic Cost and Functional Tasks

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.; Norcross, Jason

    2016-01-01

    Existing methods for evaluating EVA suit performance and mobility have historically concentrated on isolated joint range of motion and torque. However, these techniques do little to evaluate how well a suited crewmember can actually perform during an EVA. An alternative method of characterizing suited mobility through measurement of metabolic cost to the wearer has been evaluated at Johnson Space Center over the past several years. The most recent study involved six test subjects completing multiple trials of various functional tasks in each of three different space suits; the results indicated it was often possible to discern between different suit designs on the basis of metabolic cost alone. However, other variables may have an effect on real-world suited performance; namely, completion time of the task, the gravity field in which the task is completed, etc. While previous results have analyzed completion time, metabolic cost, and metabolic cost normalized to system mass individually, it is desirable to develop a single metric comprising these (and potentially other) performance metrics. This paper outlines the background upon which this single-score metric is determined to be feasible, and initial efforts to develop such a metric. Forward work includes variable coefficient determination and verification of the metric through repeated testing.

  3. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task.

    PubMed

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Episodic memory performance improved significantly (p = 0.010) after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA). Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity. © 2015 S. Karger GmbH, Freiburg.

  4. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task

    PubMed Central

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    Objective It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Results Episodic memory performance improved significantly (p = 0.010) after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA). Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Conclusions Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity. PMID:26139105

  5. Preliminary concept for statewide intercity bus and rail transit system : priority corridor ranking and analysis.

    DOT National Transportation Integrated Search

    2009-03-01

    This product summarizes the preliminary concept and priority corridors for development of a potential : statewide intercity bus and rail network. The concept is based upon the results of Tasks 1 through 5 of Texas : Department of Transportation Proje...

  6. DOT-105/111/112/114 Tank Cars Shell Cracking and Structural Integrity Assessment: Task Force Report

    DOT National Transportation Integrated Search

    1986-02-01

    In August 1985, the FRA Associate Administrator for Safety asked the DOT Transportation Systems Center to make a preliminary technical assessment of the adequacy of the manufacturer's inspection and repair procedures. The Center formed a task force f...

  7. Preliminary data from a randomized pilot study of web-based functional analytic psychotherapy therapist training.

    PubMed

    Kanter, Jonathan W; Tsai, Mavis; Holman, Gareth; Koerner, Kelly

    2013-06-01

    Therapists of many persuasions emphasize the therapy relationship in their work, a priority backed by strong empirical evidence. Training in how to maximize the power and potential of the therapy relationship, however, has lagged behind. A novel approach to using the therapy relationship and to training therapists in its use is provided by Functional Analytic Psychotherapy (FAP). FAP training involves eight 2-hr weekly training sessions conducted online using web-conferencing technology. The training integrates behavioral principles with a focus on trainee-trainer and trainee-trainee relationships in a highly structured course that evokes the desirable FAP therapist-trainee behaviors and collectively shapes the behaviors through reinforcement by the trainer and other trainees. In a preliminary study, 16 therapist-trainees were randomly assigned to receive either immediate FAP training or training after a waitlist period. Significant and large effects of training were found on both self-reported and observer-assessed measures for the first training group, and the waitlist training group replicated the first training group with significant within-subject change over the course of training. Finally, qualitative feedback from therapists indicated high satisfaction with the primary elements of the training protocol. Several important limitations to this preliminary study are discussed.

  8. Task-related functional connectivity of the caudate mediates the association between trait mindfulness and implicit learning in older adults.

    PubMed

    Stillman, Chelsea M; You, Xiaozhen; Seaman, Kendra L; Vaidya, Chandan J; Howard, James H; Howard, Darlene V

    2016-08-01

    Accumulating evidence shows a positive relationship between mindfulness and explicit cognitive functioning, i.e., that which occurs with conscious intent and awareness. However, recent evidence suggests that there may be a negative relationship between mindfulness and implicit types of learning, or those that occur without conscious awareness or intent. Here we examined the neural mechanisms underlying the recently reported negative relationship between dispositional mindfulness and implicit probabilistic sequence learning in both younger and older adults. We tested the hypothesis that the relationship is mediated by communication, or functional connectivity, of brain regions once traditionally considered to be central to dissociable learning systems: the caudate, medial temporal lobe (MTL), and prefrontal cortex (PFC). We first replicated the negative relationship between mindfulness and implicit learning in a sample of healthy older adults (60-90 years old) who completed three event-related runs of an implicit sequence learning task. Then, using a seed-based connectivity approach, we identified task-related connectivity associated with individual differences in both learning and mindfulness. The main finding was that caudate-MTL connectivity (bilaterally) was positively correlated with learning and negatively correlated with mindfulness. Further, the strength of task-related connectivity between these regions mediated the negative relationship between mindfulness and learning. This pattern of results was limited to the older adults. Thus, at least in healthy older adults, the functional communication between two interactive learning-relevant systems can account for the relationship between mindfulness and implicit probabilistic sequence learning.

  9. TASK-RELATED FUNCTIONAL CONNECTIVITY OF THE CAUDATE MEDIATES THE ASSOCIATION BETWEEN TRAIT MINDFULNESS AND IMPLICIT LEARNING IN OLDER ADULTS

    PubMed Central

    Stillman, Chelsea M.; You, Xiaozhen; Seaman, Kendra L.; Vaidya, Chandan J.; Howard, James H.; Howard, Darlene V.

    2016-01-01

    Accumulating evidence shows a positive relationship between mindfulness and explicit cognitive functioning, i.e., that which occurs with conscious intent and awareness. However, recent evidence suggests that there may be a negative relationship between mindfulness and implicit types of learning, or those that occur without conscious awareness or intent. Here we examined the neural mechanisms underlying the recently reported negative relationship between dispositional mindfulness and implicit probabilistic sequence learning in both younger and older adults. We tested the hypothesis that the relationship is mediated by communication, or functional connectivity, of brain regions once traditionally considered to be central to dissociable learning systems: the caudate, medial temporal lobe (MTL), and prefrontal cortex (PFC). We first replicated the negative relationship between mindfulness and implicit learning in a sample of healthy older adults (60–90 years old) who completed three event-related runs of an implicit sequence learning task. Then, using a seed-based connectivity approach, we identified task-related connectivity associated with individual differences in both learning and mindfulness. The main finding was that caudate-MTL connectivity (bilaterally) was positively correlated with learning and negatively correlated with mindfulness. Further, the strength of task-related connectivity between these regions mediated the negative relationship between mindfulness and learning. This pattern of results was limited to the older adults. Thus, at least in healthy older adults, the functional communication between two interactive learning-relevant systems can account for the relationship between mindfulness and implicit probabilistic sequence learning. PMID:27121302

  10. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics.

    PubMed

    Linden, Anni-Maija; Sandu, Cristina; Aller, M Isabel; Vekovischeva, Olga Y; Rosenberg, Per H; Wisden, William; Korpi, Esa R

    2007-12-01

    The TASK-3 channel is an acid-sensitive two-pore-domain K+ channel, widely expressed in the brain and probably involved in regulating numerous neuronal populations. Here, we characterized the behavioral and pharmacological phenotypes of TASK-3 knockout (KO) mice. Circadian locomotor activity measurements revealed that the nocturnal activity of the TASK-3 KO mice was increased by 38% (P < 0.01) compared with wild-type littermate controls, light phase activity being similar. Although TASK-3 channels are abundant in cerebellar granule cells, the KO mice performed as well as the wild-type mice in walking on a rotating rod or along a 1.2-cm-diameter beam. However, they fell more frequently from a narrower 0.8-cm beam. The KO mice showed impaired working memory in the spontaneous alternation task, with the alternation percentage being 62 +/- 3% for the wild-type mice and 48 +/- 4% (P < 0.05) for the KO mice. Likewise, during training for the Morris water-maze spatial memory task, the KO mice were slower to find the hidden platform, and in the probe trial, the female KO mice visited fewer times the platform quadrant than the male KO and wild-type mice. In pharmacological tests, the TASK-3 KO mice showed reduced sensitivity to the inhalation anesthetic halothane and the cannabinoid receptor agonist WIN55212-2 mesylate [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate] but unaltered responses to the alpha2 adrenoceptor agonist dexmedetomidine, the i.v. anesthetic propofol, the opioid receptor agonist morphine, and the local anesthetic lidocaine. Overall, our results suggest important contributions of TASK-3 channels in the neuronal circuits regulating circadian rhythms, cognitive functions, and mediating specific pharmacological effects.

  11. Fifth Report of the NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking missions examine a number of specific issues related to the Shuttle-Mir program. Three teams composed of Task Force members and technical advisors were formed to address the follow issues: preliminary results from STS-71 and the status of preparations for STS-74; NASA's presence in Russia; and NASA's automated data processing and telecommunications (ADP/T) infrastructure in Russia. The three review team reports have been included in the fifth report of the Task Force.

  12. Brain activations during bimodal dual tasks depend on the nature and combination of component tasks

    PubMed Central

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2015-01-01

    We used functional magnetic resonance imaging to investigate brain activations during nine different dual tasks in which the participants were required to simultaneously attend to concurrent streams of spoken syllables and written letters. They performed a phonological, spatial or “simple” (speaker-gender or font-shade) discrimination task within each modality. We expected to find activations associated specifically with dual tasking especially in the frontal and parietal cortices. However, no brain areas showed systematic dual task enhancements common for all dual tasks. Further analysis revealed that dual tasks including component tasks that were according to Baddeley's model “modality atypical,” that is, the auditory spatial task or the visual phonological task, were not associated with enhanced frontal activity. In contrast, for other dual tasks, activity specifically associated with dual tasking was found in the left or bilateral frontal cortices. Enhanced activation in parietal areas, however, appeared not to be specifically associated with dual tasking per se, but rather with intermodal attention switching. We also expected effects of dual tasking in left frontal supramodal phonological processing areas when both component tasks required phonological processing and in right parietal supramodal spatial processing areas when both tasks required spatial processing. However, no such effects were found during these dual tasks compared with their component tasks performed separately. Taken together, the current results indicate that activations during dual tasks depend in a complex manner on specific demands of component tasks. PMID:25767443

  13. A problem-solving task specialized for functional neuroimaging: validation of the Scarborough adaptation of the Tower of London (S-TOL) using near-infrared spectroscopy

    PubMed Central

    Ruocco, Anthony C.; Rodrigo, Achala H.; Lam, Jaeger; Di Domenico, Stefano I.; Graves, Bryanna; Ayaz, Hasan

    2014-01-01

    Problem-solving is an executive function subserved by a network of neural structures of which the dorsolateral prefrontal cortex (DLPFC) is central. Whereas several studies have evaluated the role of the DLPFC in problem-solving, few standardized tasks have been developed specifically for use with functional neuroimaging. The current study adapted a measure with established validity for the assessment of problem-solving abilities to design a test more suitable for functional neuroimaging protocols. The Scarborough adaptation of the Tower of London (S-TOL) was administered to 38 healthy adults while hemodynamic oxygenation of the PFC was measured using 16-channel continuous-wave functional near-infrared spectroscopy (fNIRS). Compared to a baseline condition, problems that required two or three steps to achieve a goal configuration were associated with higher activation in the left DLPFC and deactivation in the medial PFC. Individuals scoring higher in trait deliberation showed consistently higher activation in the left DLPFC regardless of task difficulty, whereas individuals lower in this trait displayed less activation when solving simple problems. Based on these results, the S-TOL may serve as a standardized task to evaluate problem-solving abilities in functional neuroimaging studies. PMID:24734017

  14. A Preliminary Study on Gender Differences in Studying Systems Analysis and Design

    ERIC Educational Resources Information Center

    Lee, Fion S. L.; Wong, Kelvin C. K.

    2017-01-01

    Systems analysis and design is a crucial task in system development and is included in a typical information systems programme as a core course. This paper presented a preliminary study on gender differences in studying a systems analysis and design course of an undergraduate programme. Results indicated that male students outperformed female…

  15. Task Inhibition and Response Inhibition in Older vs. Younger Adults: A Diffusion Model Analysis

    PubMed Central

    Schuch, Stefanie

    2016-01-01

    Differences in inhibitory ability between older (64–79 years, N = 24) and younger adults (18–26 years, N = 24) were investigated using a diffusion model analysis. Participants performed a task-switching paradigm that allows assessing n−2 task repetition costs, reflecting inhibitory control on the level of tasks, as well as n−1 response-repetition costs, reflecting inhibitory control on the level of responses. N−2 task repetition costs were of similar size in both age groups. Diffusion model analysis revealed that for both younger and older adults, drift rate parameters were smaller in the inhibition condition relative to the control condition, consistent with the idea that persisting task inhibition slows down response selection. Moreover, there was preliminary evidence for task inhibition effects in threshold separation and non-decision time in the older, but not the younger adults, suggesting that older adults might apply different strategies when dealing with persisting task inhibition. N−1 response-repetition costs in mean RT were larger in older than younger adults, but in mean error rates tended to be larger in younger than older adults. Diffusion-model analysis revealed longer non-decision times in response repetitions than response switches in both age groups, consistent with the idea that motor processes take longer in response repetitions than response switches due to persisting response inhibition of a previously executed response. The data also revealed age-related differences in overall performance: Older adults responded more slowly and more accurately than young adults, which was reflected by a higher threshold separation parameter in diffusion model analysis. Moreover, older adults showed larger non-decision times and higher variability in non-decision time than young adults, possibly reflecting slower and more variable motor processes. In contrast, overall drift rate did not differ between older and younger adults. Taken together

  16. Goal Management Training and Mindfulness Meditation improve executive functions and transfer to ecological tasks of daily life in polysubstance users enrolled in therapeutic community treatment.

    PubMed

    Valls-Serrano, Carlos; Caracuel, Alfonso; Verdejo-Garcia, Antonio

    2016-08-01

    We have previously shown that Goal Management Training+Mindfulness Meditation (GMT+MM) improves executive functions in polysubstance users enrolled in outpatient treatment. The aim of this study was to establish if GMT+MM has similar positive effects on executive functions in polysubstance users in residential treatment, and if executive functions' gains transfer to more ecologically valid goal-oriented tasks. Thirty-two polysbustance users were randomly allocated to eight weeks of GMT+MM (n=16) or control, i.e., no-intervention (n=16); both groups received treatment as usual. Outcome measures included performance in laboratory tasks of basic and complex executive functions (i.e., basic: working memory and inhibition; complex: planning and self-regulation) and in an ecological task of goal-directed behavior (the Multiple Errands Test - contextualized version, MET-CV) measured post-interventions. Results showed that GMT+MM was superior to control in improving basic measures of working memory (Letter-number sequencing; F=4.516, p=0.049) and reflection impulsivity (Information Sampling Test; F=6.217, p=0.018), along with initial thinking times during planning (Zoo Map Test; F=8.143, p=0.008). In addition, GMT+MM was superior to control in improving performance in the MET-CV (task failures; F=8.485, p=0.007). Our findings demonstrate that GMT+MM increases reflective processes and the achievement of goals in daily activities, furthermore ecological test can detects changes easily than laboratory tasks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Effects of Attention and Levels of Processing on Explicit and Implicit Memory Function with Interesting and Uninteresting Tasks in University Students

    NASA Astrophysics Data System (ADS)

    Mahdavian, Alireza; Kormi-Nouri, Reza

    This study aims to investigate the effect of attention and levels of processing on memory function and recalling words in two situations when students are interested in the subject and when they are not. This is an experimental study of 160 students conducted individually using a computer software. Results reveal focused attention, interest in the subject and deep processing caused the explicit memory to be at its highest level of functionality. On the contrary, shallow processing, divided attention and lack of interest in the subject plunged memory function into its lowest levels. Variables have different effects on attention, explicit and implicit memory. That is, interesting tasks with focused attention and deep processing have the highest effect on explicit memory in order. Also, interesting tasks, focused attention, respectively affect implicit memory. But level of processing does not affect implicit memory significantly.

  18. Blink rate in boys with fragile X syndrome: preliminary evidence for altered dopamine function.

    PubMed

    Roberts, J E; Symons, F J; Johnson, A-M; Hatton, D D; Boccia, M L

    2005-09-01

    Dopamine, a neurotransmitter involved in motor and cognitive functioning, can be non-invasively measured via observation of spontaneous blink rates. Blink rates have been studied in a number of clinical conditions including schizophrenia, autism, Parkinsons, and attention deficit/hyperactivity disorder with results implicating either hyper or hypo dopaminergic states. This study examined spontaneous blink rate in boys with fragile X syndrome (FXS). Blink rates of boys (4-8 years old) with FXS (n = 6) were compared with those of age-matched typically developing boys (n = 6) during active and passive tasks. Blink rates (blinks per minute) for each task were compared between the two groups. Then, the relation between blink measures and core FXS-related features [problem behaviours, arousal, fmr 1 protein (FMRP)] were examined within the group of boys with FXS. Blink rate in boys with FXS was significantly higher than typically developing boys during passive tasks. Within the FXS group, there were significant correlations between blink rate and problem behaviours and physiological arousal (i.e. heart activity) but not with FMRP. Observed differences in spontaneous blink rate between boys with and without FXS and the relation between blink rate and physiological and behavioural measures in boys with FXS suggests that further work examining dopamine dysfunction as a factor in the pathophysiology of FXS may be warranted.

  19. Similarity in functional brain architecture between rest and specific task modes: A model of genetic and environmental contributions to episodic memory.

    PubMed

    Petrican, Raluca; Levine, Brian T

    2018-06-21

    The ability to keep a mental record of specific past events, dubbed episodic memory (EM), is key to lifespan adaptation. Nonetheless, the neural mechanisms underlying its typical inter-individual variability remain poorly understood. To address this issue, we tested whether individual differences in EM could be predicted from levels of functional brain re-organization between rest and task modes relevant to the transformation of perceptual information into mental representations (relational processing, meaning extraction, online maintenance versus updating of bound perceptual features). To probe the trait specificity of our model, we included three additional core mental functions, processing speed, abstract reasoning, and cognitive control. Finally, we investigated the extent to which our proposed model reflected genetic versus environmental contributions to EM variability. Hypotheses were tested by applying graph theoretical analysis and structural equation modeling to resting state and task fMRI data from two samples of participants in the Human Connectome Project (Sample 1: N = 338 unrelated individuals; Sample 2: N = 268 monozygotic vs. dizygotic twins [134 same-sex pairs]). Levels of functional brain reorganization between rest and the scrutinized task modes, particularly relational processing and online maintenance of bound perceptual features, contributed substantially to variations in both EM and abstract reasoning (but not in cognitive control or processing speed) among the younger adults in our sample, implying a substantial neurofunctional overlap, at least during this life stage. Similarity in functional organization between rest and each of the scrutinized task modes drew on distinguishable neural resources and showed differential susceptibility to genetic versus environmental influences. Our results suggest that variability on complex traits, such as EM, is supported by neural mechanisms comprising multiple components, each reflecting a

  20. Optimizing and Interpreting Insular Functional Connectivity Maps Obtained During Acute Experimental Pain: The Effects of Global Signal and Task Paradigm Regression.

    PubMed

    Ibinson, James W; Vogt, Keith M; Taylor, Kevin B; Dua, Shiv B; Becker, Christopher J; Loggia, Marco; Wasan, Ajay D

    2015-12-01

    The insula is uniquely located between the temporal and parietal cortices, making it anatomically well-positioned to act as an integrating center between the sensory and affective domains for the processing of painful stimulation. This can be studied through resting-state functional connectivity (fcMRI) imaging; however, the lack of a clear methodology for the analysis of fcMRI complicates the interpretation of these data during acute pain. Detected connectivity changes may reflect actual alterations in low-frequency synchronous neuronal activity related to pain, may be due to changes in global cerebral blood flow or the superimposed task-induced neuronal activity. The primary goal of this study was to investigate the effects of global signal regression (GSR) and task paradigm regression (TPR) on the changes in functional connectivity of the left (contralateral) insula in healthy subjects at rest and during acute painful electric nerve stimulation of the right hand. The use of GSR reduced the size and statistical significance of connectivity clusters and created negative correlation coefficients for some connectivity clusters. TPR with cyclic stimulation gave task versus rest connectivity differences similar to those with a constant task, suggesting that analysis which includes TPR is more accurately reflective of low-frequency neuronal activity. Both GSR and TPR have been inconsistently applied to fcMRI analysis. Based on these results, investigators need to consider the impact GSR and TPR have on connectivity during task performance when attempting to synthesize the literature.

  1. An evaluation of nursing tasks.

    PubMed

    Baptiste, Andrea

    2011-01-01

    Functional capacity evaluations have been criticized as being too general in theory and not being accurate enough to determine what tasks an employee can perform. This paper will describe results of a descriptive study that was conducted in a laboratory setting to objectively determine the physical demands of patient transfer tasks performed by nurses. Fifty three tasks were analyzed and broken down into sub-tasks to quantify the peak force required to perform each sub-task in order to determine which tasks pose healthcare workers at highest risk of injury. Dissecting the transfer task into segments allows us to see which part of the task requires high forces on the part of the caregiver. The task can then be modified to eliminate the risk of injury to the caregiver. This modification can be accomplished by using healthcare technology, such as floor based or overhead lifts, friction reducing devices, sit to stand lifts, properly designed slings, and motorized beds/trolleys. Technological solutions are available for some of these high risk tasks and should be implemented where applicable to reduce the force demand and eliminate or reduce the risk of injury to healthcare workers in nursing.

  2. Skill components of task analysis

    PubMed Central

    Rogers, Wendy A.; Fisk, Arthur D.

    2017-01-01

    Some task analysis methods break down a task into a hierarchy of subgoals. Although an important tool of many fields of study, learning to create such a hierarchy (redescription) is not trivial. To further the understanding of what makes task analysis a skill, the present research examined novices’ problems with learning Hierarchical Task Analysis and captured practitioners’ performance. All participants received a task description and analyzed three cooking and three communication tasks by drawing on their knowledge of those tasks. Thirty six younger adults (18–28 years) in Study 1 analyzed one task before training and five afterwards. Training consisted of a general handout that all participants received and an additional handout that differed between three conditions: a list of steps, a flow-diagram, and concept map. In Study 2, eight experienced task analysts received the same task descriptions as in Study 1 and demonstrated their understanding of task analysis while thinking aloud. Novices’ initial task analysis scored low on all coding criteria. Performance improved on some criteria but was well below 100 % on others. Practitioners’ task analyses were 2–3 levels deep but also scored low on some criteria. A task analyst’s purpose of analysis may be the reason for higher specificity of analysis. This research furthers the understanding of Hierarchical Task Analysis and provides insights into the varying nature of task analyses as a function of experience. The derived skill components can inform training objectives. PMID:29075044

  3. Turbulence flight director analysis and preliminary simulation

    NASA Technical Reports Server (NTRS)

    Johnson, D. E.; Klein, R. E.

    1974-01-01

    A control column and trottle flight director display system is synthesized for use during flight through severe turbulence. The column system is designed to minimize airspeed excursions without overdriving attitude. The throttle system is designed to augment the airspeed regulation and provide an indication of the trim thrust required for any desired flight path angle. Together they form an energy management system to provide harmonious display indications of current aircraft motions and required corrective action, minimize gust upset tendencies, minimize unsafe aircraft excursions, and maintain satisfactory ride qualities. A preliminary fixed-base piloted simulation verified the analysis and provided a shakedown for a more sophisticated moving-base simulation to be accomplished next. This preliminary simulation utilized a flight scenario concept combining piloting tasks, random turbulence, and discrete gusts to create a high but realistic pilot workload conducive to pilot error and potential upset. The turbulence director (energy management) system significantly reduced pilot workload and minimized unsafe aircraft excursions.

  4. Functional brain and age-related changes associated with congruency in task switching

    PubMed Central

    Eich, Teal S.; Parker, David; Liu, Dan; Oh, Hwamee; Razlighi, Qolamreza; Gazes, Yunglin; Habeck, Christian; Stern, Yaakov

    2016-01-01

    Alternating between completing two simple tasks, as opposed to completing only one task, has been shown to produce costs to performance and changes to neural patterns of activity, effects which are augmented in old age. Cognitive conflict may arise from factors other than switching tasks, however. Sensorimotor congruency (whether stimulus-response mappings are the same or different for the two tasks) has been shown to behaviorally moderate switch costs in older, but not younger adults. In the current study, we used fMRI to investigate the neurobiological mechanisms of response-conflict congruency effects within a task switching paradigm in older (N=75) and younger (N=62) adults. Behaviorally, incongruency moderated age-related differences in switch costs. Neurally, switch costs were associated with greater activation in the dorsal attention network for older relative to younger adults. We also found that older adults recruited an additional set of brain areas in the ventral attention network to a greater extent than did younger adults to resolve congruency-related response-conflict. These results suggest both a network and an age-based dissociation between congruency and switch costs in task switching. PMID:27520472

  5. Automated CPX support system preliminary design phase

    NASA Technical Reports Server (NTRS)

    Bordeaux, T. A.; Carson, E. T.; Hepburn, C. D.; Shinnick, F. M.

    1984-01-01

    The development of the Distributed Command and Control System (DCCS) is discussed. The development of an automated C2 system stimulated the development of an automated command post exercise (CPX) support system to provide a more realistic stimulus to DCCS than could be achieved with the existing manual system. An automated CPX system to support corps-level exercise was designed. The effort comprised four tasks: (1) collecting and documenting user requirements; (2) developing a preliminary system design; (3) defining a program plan; and (4) evaluating the suitability of the TRASANA FOURCE computer model.

  6. A novel attention training paradigm based on operant conditioning of eye gaze: Preliminary findings.

    PubMed

    Price, Rebecca B; Greven, Inez M; Siegle, Greg J; Koster, Ernst H W; De Raedt, Rudi

    2016-02-01

    Inability to engage with positive stimuli is a widespread problem associated with negative mood states across many conditions, from low self-esteem to anhedonic depression. Though attention retraining procedures have shown promise as interventions in some clinical populations, novel procedures may be necessary to reliably attenuate chronic negative mood in refractory clinical populations (e.g., clinical depression) through, for example, more active, adaptive learning processes. In addition, a focus on individual difference variables predicting intervention outcome may improve the ability to provide such targeted interventions efficiently. To provide preliminary proof-of-principle, we tested a novel paradigm using operant conditioning to train eye gaze patterns toward happy faces. Thirty-two healthy undergraduates were randomized to receive operant conditioning of eye gaze toward happy faces (train-happy) or neutral faces (train-neutral). At the group level, the train-happy condition attenuated sad mood increases following a stressful task, in comparison to train-neutral. In individual differences analysis, greater physiological reactivity (pupil dilation) in response to happy faces (during an emotional face-search task at baseline) predicted decreased mood reactivity after stress. These Preliminary results suggest that operant conditioning of eye gaze toward happy faces buffers against stress-induced effects on mood, particularly in individuals who show sufficient baseline neural engagement with happy faces. Eye gaze patterns to emotional face arrays may have a causal relationship with mood reactivity. Personalized medicine research in depression may benefit from novel cognitive training paradigms that shape eye gaze patterns through feedback. Baseline neural function (pupil dilation) may be a key mechanism, aiding in iterative refinement of this approach. (c) 2016 APA, all rights reserved).

  7. Males and females differ in brain activation during cognitive tasks.

    PubMed

    Bell, Emily C; Willson, Morgan C; Wilman, Alan H; Dave, Sanjay; Silverstone, Peter H

    2006-04-01

    To examine the effect of gender on regional brain activity, we utilized functional magnetic resonance imaging (fMRI) during a motor task and three cognitive tasks; a word generation task, a spatial attention task, and a working memory task in healthy male (n = 23) and female (n = 10) volunteers. Functional data were examined for group differences both in the number of pixels activated, and the blood-oxygen-level-dependent (BOLD) magnitude during each task. Males had a significantly greater mean activation than females in the working memory task with a greater number of pixels being activated in the right superior parietal gyrus and right inferior occipital gyrus, and a greater BOLD magnitude occurring in the left inferior parietal lobe. However, despite these fMRI changes, there were no significant differences between males and females on cognitive performance of the task. In contrast, in the spatial attention task, men performed better at this task than women, but there were no significant functional differences between the two groups. In the word generation task, there were no external measures of performance, but in the functional measurements, males had a significantly greater mean activation than females, where males had a significantly greater BOLD signal magnitude in the left and right dorsolateral prefrontal cortex, the right inferior parietal lobe, and the cingulate. In neither of the motor tasks (right or left hand) did males and females perform differently. Our fMRI findings during the motor tasks were a greater mean BOLD signal magnitude in males in the right hand motor task, compared to females where males had an increased BOLD signal magnitude in the right inferior parietal gyrus and in the left inferior frontal gyrus. In conclusion, these results demonstrate differential patterns of activation in males and females during a variety of cognitive tasks, even though performance in these tasks may not vary, and also that variability in performance may not

  8. Task Analytic Models to Guide Analysis and Design: Use of the Operator Function Model to Represent Pilot-Autoflight System Mode Problems

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Mitchell, Christine M.; Chappell, Alan R.; Shafto, Mike (Technical Monitor)

    1995-01-01

    Task-analytic models structure essential information about operator interaction with complex systems, in this case pilot interaction with the autoflight system. Such models serve two purposes: (1) they allow researchers and practitioners to understand pilots' actions; and (2) they provide a compact, computational representation needed to design 'intelligent' aids, e.g., displays, assistants, and training systems. This paper demonstrates the use of the operator function model to trace the process of mode engagements while a pilot is controlling an aircraft via the, autoflight system. The operator function model is a normative and nondeterministic model of how a well-trained, well-motivated operator manages multiple concurrent activities for effective real-time control. For each function, the model links the pilot's actions with the required information. Using the operator function model, this paper describes several mode engagement scenarios. These scenarios were observed and documented during a field study that focused on mode engagements and mode transitions during normal line operations. Data including time, ATC clearances, altitude, system states, and active modes and sub-modes, engagement of modes, were recorded during sixty-six flights. Using these data, seven prototypical mode engagement scenarios were extracted. One scenario details the decision of the crew to disengage a fully automatic mode in favor of a semi-automatic mode, and the consequences of this action. Another describes a mode error involving updating aircraft speed following the engagement of a speed submode. Other scenarios detail mode confusion at various phases of the flight. This analysis uses the operator function model to identify three aspects of mode engagement: (1) the progress of pilot-aircraft-autoflight system interaction; (2) control/display information required to perform mode management activities; and (3) the potential cause(s) of mode confusion. The goal of this paper is twofold

  9. Altered Cortical Swallowing Processing in Patients with Functional Dysphagia: A Preliminary Study

    PubMed Central

    Wollbrink, Andreas; Warnecke, Tobias; Winkels, Martin; Pantev, Christo; Dziewas, Rainer

    2014-01-01

    Objective Current neuroimaging research on functional disturbances provides growing evidence for objective neuronal correlates of allegedly psychogenic symptoms, thereby shifting the disease concept from a psychological towards a neurobiological model. Functional dysphagia is such a rare condition, whose pathogenetic mechanism is largely unknown. In the absence of any organic reason for a patient's persistent swallowing complaints, sensorimotor processing abnormalities involving central neural pathways constitute a potential etiology. Methods In this pilot study we measured cortical swallow-related activation in 5 patients diagnosed with functional dysphagia and a matched group of healthy subjects applying magnetoencephalography. Source localization of cortical activation was done with synthetic aperture magnetometry. To test for significant differences in cortical swallowing processing between groups, a non-parametric permutation test was afterwards performed on individual source localization maps. Results Swallowing task performance was comparable between groups. In relation to control subjects, in whom activation was symmetrically distributed in rostro-medial parts of the sensorimotor cortices of both hemispheres, patients showed prominent activation of the right insula, dorsolateral prefrontal cortex and lateral premotor, motor as well as inferolateral parietal cortex. Furthermore, activation was markedly reduced in the left medial primary sensory cortex as well as right medial sensorimotor cortex and adjacent supplementary motor area (p<0.01). Conclusions Functional dysphagia - a condition with assumed normal brain function - seems to be associated with distinctive changes of the swallow-related cortical activation pattern. Alterations may reflect exaggerated activation of a widely distributed vigilance, self-monitoring and salience rating network that interferes with down-stream deglutition sensorimotor control. PMID:24586948

  10. Preliminary Work for Examining the Scalability of Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Clouse, Jeff

    1998-01-01

    . These empirical results make no theoretical claims, nor compare the policies produced to optimal policies. A goal of our work is to be able to make the comparison between an optimal policy and one stored in an artificial neural network. A difficulty of performing such a study is finding a multiple-step task that is small enough that one can find an optimal policy using table lookup, yet large enough that, for practical purposes, an artificial neural network is really required. We have identified a limited form of the game OTHELLO as satisfying these requirements. The work we report here is in the very preliminary stages of research, but this paper provides background for the problem being studied and a description of our initial approach to examining the problem. In the remainder of this paper, we first describe reinforcement learning in more detail. Next, we present the game OTHELLO. Finally we argue that a restricted form of the game meets the requirements of our study, and describe our preliminary approach to finding an optimal solution to the problem.

  11. Mindfulness-Based Cognitive Therapy for Bipolar Disorder: Effects on Cognitive Functioning

    PubMed Central

    Stange, Jonathan P.; Eisner, Lori R.; Hölzel, Britta K.; Peckham, Andrew D.; Dougherty, Darin D.; Rauch, Scott L.; Nierenberg, Andrew A.; Lazar, Sara; Deckersbach, Thilo

    2012-01-01

    Bipolar disorder is associated with impairments in cognition, including difficulties in executive functioning, even when patients are euthymic (neither depressed nor manic). The purpose of this study was to assess changes in self-reported cognitive functioning in patients with bipolar disorder who participated in an open pilot trial of mindfulness-based cognitive therapy (MBCT). Following MBCT, patients reported significant improvements in executive functioning, memory, and ability to initiate and complete tasks, as measured by the Behavior Rating Inventory of Executive Function (BRIEF) and the Frontal Systems Behavior Scale (FrSBe). Changes in cognitive functioning were correlated with increases in mindful, nonjudgmental observance and awareness of thoughts, feelings, and sensations, and were not associated with decreases in depression. Improvements tended to diminish after termination of treatment, but some improvements, particularly those in executive functioning, persisted after 3 months. These results provide preliminary evidence that MBCT may be a treatment option that can be used as an adjunct to medication to improve cognitive functioning in bipolar disorder. PMID:22108398

  12. The Effect of Cognitive-Task Type and Walking Speed on Dual-Task Gait in Healthy Adults.

    PubMed

    Wrightson, James G; Ross, Emma Z; Smeeton, Nicholas J

    2016-01-01

    In a number of studies in which a dual-task gait paradigm was used, researchers reported a relationship between cognitive function and gait. However, it is not clear to what extent these effects are dependent on the type of cognitive and walking tasks used in the dual-task paradigm. This study examined whether stride-time variability (STV) and trunk range of motion (RoM) are affected by the type of cognitive task and walking speed used during dual-task gait. Participants walked at both their preferred walking speed and at 25% of their preferred walking speed and performed a serial subtraction and a working memory task at both speeds. Although both tasks significantly reduced STV at both walking speeds, there was no difference between the two tasks. Trunk RoM was affected by the walking speed and type of cognitive task used during dual-task gait: Mediolateral trunk RoM was increased at the slow walking speed, and anterior-posterior trunk RoM was higher only when performing the serial subtraction task at the slow walking speed. The reduction of STV, regardless of cognitive-task type, suggests that healthy adults may redirect cognitive processes away from gait toward cognitive-task performance during dual-task gait.

  13. Description and Preliminary Evaluation of a Curriculum for Teaching Conversational Skills to Children with High-Functioning Autism and Other Social Cognition Challenges

    ERIC Educational Resources Information Center

    Müller, Eve; Cannon, Lynn R.; Kornblum, Courtney; Clark, Jonna; Powers, Michal

    2016-01-01

    Purpose: The purpose of this clinical focus article is to provide (a) a detailed description of a school-based intervention designed to teach children with high-functioning autism spectrum disorders (HF-ASDs) and other social cognition challenges both the "how" and the "why" of conversation and (b) a preliminary evaluation of…

  14. Dynamic and functional balance tasks in subjects with persistent whiplash: a pilot trial.

    PubMed

    Stokell, Raina; Yu, Annie; Williams, Katrina; Treleaven, Julia

    2011-08-01

    Disturbances in static balance have been demonstrated in subjects with persistent whiplash. Some also report loss of balance and falls. These disturbances may contribute to difficulties in dynamic tasks. The aim of this study was to determine whether subjects with whiplash had deficits in dynamic and functional balance tasks when compared to a healthy control group. Twenty subjects with persistent pain following a whiplash injury and twenty healthy controls were assessed in single leg stance with eyes open and closed, the step test, Fukuda stepping test, tandem walk on a firm and soft surface, Singleton test with eyes open and closed, a stair walking test and the timed 10 m walk with and without head movement. Subjects with whiplash demonstrated significant deficits (p < 0.01) in single leg stance with eyes closed, the step test, tandem walk on a firm and soft surface, stair walking and the timed 10 m walk with and without head movement when compared to the control subjects. Specific assessment and rehabilitation directed towards improving these deficits may need to be considered in the management of patients with persistent whiplash if these results are confirmed in a larger cohort. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  15. Development and initial testing of functional task exercise on older adults with cognitive impairment at risk of Alzheimer's disease--FcTSim programme--a feasibility study.

    PubMed

    Law, Lawla L F; Barnett, Fiona; Yau, Matthew K; Gray, Marion A

    2013-12-01

    The purpose of this study was to illustrate the development of a new functional task-based exercise programme and initially test its feasibility as well as effectiveness for older adults with mild cognitive impairment (MCI). This study used a single-group repeated-measures design. A total of 11 patients (mean age 71.8 years) were recruited to participate in a structured functional task exercise programme for 10 weeks. All outcome measures were undertaken at baseline, post-intervention and post-3-month follow-up using the Neurobehavioral Cognitive Status Examination (NCSE), Verbal Fluency Test (VFT), Chinese Version Verbal Learning Test (CVVLT), Lawton Instrumental Activities of Daily Living Scale (Lawton IADL) and Problems in Everyday Living test (PEDL). Data were analysed using a repeated-measures analysis of variance. Cohen's d effect size was used to assess the practical significant effects. The participants showed significant improvement in NCSE composite score, VFT, CVVLT total free recall, CVVLT 10-minute delayed free recall, Lawton IADL and PEDL. Results of this study demonstrate that the newly designed functional task exercise programme, which uses simulated tasks, is feasible and beneficial to cognitive functions and functional status of older persons with MCI. The findings of the current study further reinforce occupational therapy practitioners' understanding that "occupation" is a "means" and an "end". Further study with a larger population is needed to draw more definitive conclusions. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Managing Multiple Tasks in Complex, Dynamic Environments

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    Sketchy planners are designed to achieve goals in realistically complex, time-pressured, and uncertain task environments. However, the ability to manage multiple, potentially interacting tasks in such environments requires extensions to the functionality these systems typically provide. This paper identifies a number of factors affecting how interacting tasks should be prioritized, interrupted, and resumed, and then describes a sketchy planner called APEX that takes account of these factors when managing multiple tasks.

  17. Task conflict effect in task switching.

    PubMed

    Braverman, Ami; Meiran, Nachshon

    2010-11-01

    A part of action preparation is deciding what the relevant task is. This task-decision process is conceptually separate from response selection. To show this, the authors manipulated task conflict in a spatial task-switching paradigm, using conflict stimuli that appeared during trials with univalent targets (affording 1 task). The conflict stimuli afforded task identity because they were used as task cues with bivalent targets (affording 2 tasks) that were intermixed with the univalent targets. Thus, for univalent targets, irrelevant stimuli either caused low task conflict or high task conflict. In three experiments, the authors found poorer performance in high task conflict trials than in low task conflict trials. Task conflict was introduced during target appearance (Experiment 1) or task preparation (Experiments 2 and 3). In the latter case, the task conflict effect decreased with increasing task preparation time showing that task preparation involves task decision.

  18. Transferring cognitive tasks between brain imaging modalities: implications for task design and results interpretation in FMRI studies.

    PubMed

    Warbrick, Tracy; Reske, Martina; Shah, N Jon

    2014-09-22

    As cognitive neuroscience methods develop, established experimental tasks are used with emerging brain imaging modalities. Here transferring a paradigm (the visual oddball task) with a long history of behavioral and electroencephalography (EEG) experiments to a functional magnetic resonance imaging (fMRI) experiment is considered. The aims of this paper are to briefly describe fMRI and when its use is appropriate in cognitive neuroscience; illustrate how task design can influence the results of an fMRI experiment, particularly when that task is borrowed from another imaging modality; explain the practical aspects of performing an fMRI experiment. It is demonstrated that manipulating the task demands in the visual oddball task results in different patterns of blood oxygen level dependent (BOLD) activation. The nature of the fMRI BOLD measure means that many brain regions are found to be active in a particular task. Determining the functions of these areas of activation is very much dependent on task design and analysis. The complex nature of many fMRI tasks means that the details of the task and its requirements need careful consideration when interpreting data. The data show that this is particularly important in those tasks relying on a motor response as well as cognitive elements and that covert and overt responses should be considered where possible. Furthermore, the data show that transferring an EEG paradigm to an fMRI experiment needs careful consideration and it cannot be assumed that the same paradigm will work equally well across imaging modalities. It is therefore recommended that the design of an fMRI study is pilot tested behaviorally to establish the effects of interest and then pilot tested in the fMRI environment to ensure appropriate design, implementation and analysis for the effects of interest.

  19. Force related hemodynamic responses during execution and imagery of a hand grip task: A functional near infrared spectroscopy study.

    PubMed

    Wriessnegger, Selina C; Kirchmeyr, Daniela; Bauernfeind, Günther; Müller-Putz, Gernot R

    2017-10-01

    We examined force related hemodynamic changes during the performance of a motor execution (ME) and motor imagery (MI) task by means of multichannel functional near infrared spectroscopy (fNIRS). The hemodynamic responses of fourteen healthy participants were measured while they performed a hand grip execution or imagery task with low and high grip forces. We found an overall higher increase of [oxy-Hb] concentration changes during ME for both grip forces but with a delayed peak maximum for the lower grip force. During the MI task with lower grip force, the [oxy-Hb] level increases are stronger compared to the MI with higher grip force. The facilitation in performing MI with higher grip strength might thus indicate less inhibition of the actual motor act which could also explain the later increase onset of [oxy-Hb] in the ME task with the lower grip force. Our results suggest that execution and imagery of a hand grip task with high and low grip forces, leads to different cortical activation patterns. Since impaired control of grip forces during object manipulation in particular is one aspect of fine motor control deficits after stroke, our study will contribute to future rehabilitation programs enhancing patient's grip force control. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Task-induced frequency modulation features for brain-computer interfacing.

    PubMed

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects' intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects' intents with an accuracy comparable to task-induced amplitude modulation. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  1. Task-induced frequency modulation features for brain-computer interfacing

    NASA Astrophysics Data System (ADS)

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Objective. Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects’ intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects’ intents with an accuracy comparable to task-induced amplitude modulation. Approach. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. Main results. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Significance. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  2. A Cross-Sectional and Follow-Up Functional MRI Study with a Working Memory Task in Adolescent Anorexia Nervosa

    ERIC Educational Resources Information Center

    Castro-Fornieles, Josefina; Caldu, Xavier; Andres-Perpina, Susana; Lazaro, Luisa; Bargallo, Nuria; Falcon, Carles; Plana, Maria Teresa; Junque, Carme

    2010-01-01

    Structural and functional brain abnormalities have been described in anorexia nervosa (AN). The objective of this study was to examine whether there is abnormal regional brain activation during a working memory task not associated with any emotional stimuli in adolescent patients with anorexia and to detect possible changes after weight recovery.…

  3. A Function-Based Intervention to Increase a Second-Grade Student's On-Task Behavior in a General Education Classroom

    ERIC Educational Resources Information Center

    Germer, Kathryn A.; Kaplan, Lauren M.; Giroux, Lindsay N.; Markham, Elizabeth H.; Ferris, Geoffrey J.; Oakes, Wendy P.; Lane, Kathleen Lynne

    2011-01-01

    A functional assessment-based intervention (FABI) was designed and implemented to increase the on-task behavior of David, a second-grade student in a general education classroom. David attended an elementary school that used a comprehensive, integrated, three-tiered (CI3T) model of prevention. The school's principal nominated David for Project…

  4. Decreased Efficiency of Task-Positive and Task-Negative Networks During Working Memory in Schizophrenia

    PubMed Central

    Metzak, Paul D.; Riley, Jennifer D.; Wang, Liang; Whitman, Jennifer C.; Ngan, Elton T. C.; Woodward, Todd S.

    2012-01-01

    Working memory (WM) is one of the most impaired cognitive processes in schizophrenia. Functional magnetic resonance imaging (fMRI) studies in this area have typically found a reduction in information processing efficiency but have focused on the dorsolateral prefrontal cortex. In the current study using the Sternberg Item Recognition Test, we consider networks of regions supporting WM and measure the activation of functionally connected neural networks over different WM load conditions. We used constrained principal component analysis with a finite impulse response basis set to compare the estimated hemodynamic response associated with different WM load condition for 15 healthy control subjects and 15 schizophrenia patients. Three components emerged, reflecting activated (task-positive) and deactivated (task-negative or default-mode) neural networks. Two of the components (with both task-positive and task-negative aspects) were load dependent, were involved in encoding and delay phases (one exclusively encoding and the other both encoding and delay), and both showed evidence for decreased efficiency in patients. The results suggest that WM capacity is reached sooner for schizophrenia patients as the overt levels of WM load increase, to the point that further increases in overt memory load do not increase fMRI activation, and lead to performance impairments. These results are consistent with an account holding that patients show reduced efficiency in task-positive and task-negative networks during WM and also partially support the shifted inverted-U-shaped curve theory of the relationship between WM load and fMRI activation in schizophrenia. PMID:21224491

  5. Errors on interrupter tasks presented during spatial and verbal working memory performance are linearly linked to large-scale functional network connectivity in high temporal resolution resting state fMRI.

    PubMed

    Magnuson, Matthew Evan; Thompson, Garth John; Schwarb, Hillary; Pan, Wen-Ju; McKinley, Andy; Schumacher, Eric H; Keilholz, Shella Dawn

    2015-12-01

    The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence. Sustained attention performance was also evaluated in a task interleaved between resting state scans. Functional connectivity within and between the DMN and TPN was related to performance on these tasks. Decreased TPN resting state connectivity was found to significantly correlate with fewer errors on an interrupter task presented during a spatial working memory paradigm and decreased DMN/TPN anti-correlation was significantly correlated with fewer errors on an interrupter task presented during a verbal working memory paradigm. A trend for increased DMN resting state connectivity to correlate to measures of fluid intelligence was also observed. These results provide additional evidence of the relationship between resting state networks and behavioral performance, and show that such results can be observed with high temporal resolution fMRI. Because cognitive scores and functional connectivity were collected on nonconsecutive days, these results highlight the stability of functional connectivity/cognitive performance coupling.

  6. Time Independent Functional task Training: a case study on the effect of inter-joint coordination driven haptic guidance in stroke therapy.

    PubMed

    Brokaw, Elizabeth B; Murray, Theresa M; Nef, Tobias; Lum, Peter S; Brokaw, Elizabeth B; Nichols, Diane; Holley, Rahsaan J

    2011-01-01

    After a stroke abnormal joint coordination of the arm may limit functional movement and recovery. To aid in training inter-joint movement coordination a haptic guidance method for functional driven rehabilitation after stroke called Time Independent Functional Training (TIFT) has been developed for the ARMin III robot. The mode helps retraining inter-joint coordination during functional movements, such as putting an object on a shelf, pouring from a pitcher, and sorting objects into bins. A single chronic stroke subject was tested for validation of the modality. The subject was given 1.5 hrs of robotic therapy twice a week for 4 weeks. The therapy and the results of training the single stroke subject are discussed. The subject showed a decrease in training joint error for the sorting task across training sessions and increased self-selected movement time in training. In kinematic reaching analysis the subject showed improvements in range of motion and joint coordination in a reaching task, as well as improvements in supination-pronation range of motion at the wrist. © 2011 IEEE

  7. The effect of voice quality and competing speakers in a passage comprehension task: perceived effort in relation to cognitive functioning and performance in children with normal hearing.

    PubMed

    von Lochow, Heike; Lyberg-Åhlander, Viveka; Sahlén, Birgitta; Kastberg, Tobias; Brännström, K Jonas

    2018-04-01

    The study investigates the effect of voice quality and competing speakers on perceived effort in a passage comprehension task in relation to cognitive functioning. In addition, it explores if perceived effort was related to performance. A total of 49 children (aged 7:03 to 12:02 years) with normal hearing participated. The children performed an auditory passage comprehension task presented with six different listening conditions consisting of a typical voice or a dysphonic voice presented in quiet, with one competing speaker, and with four competing speakers. After completing the task, they rated their perceived effort on a five-grade scale. The children also performed tasks measuring working memory capacity (WMC) and executive functioning. The results show that voice quality had no direct effect on perceived effort but the children's ratings of perceived effort were related to their executive functioning. A significant effect was seen for background listening condition indicating higher perceived effort for background listening conditions with competing speakers. The effects of background listening condition were mainly related to the children's WMC but also their executive functioning. It can be concluded that the individual susceptibility to the effect of the dysphonic voice is related to the child's executive functioning. The individual susceptibility to the presence of competing speakers is related to the child's WMC and executive functioning.

  8. Evaluation of changes in pelvic belt tension during 2 weight-bearing functional tasks.

    PubMed

    Arumugam, Ashokan; Milosavljevic, Stephan; Woodley, Stephanie; Sole, Gisela

    2012-06-01

    The purposes of this study were to evaluate changes in pelvic belt tension during 2 weight-bearing functional tasks (transition from bipedal to unipedal stance [BUS] and walking) and to evaluate the reliability and the percentage variation for belt tension scores from trial to trial. A cross-sectional repeated-measures study was conducted with 10 healthy male participants (mean age, 28.3 ± 8.8years). Participants performed 10 trials of BUS and walking while wearing a nonelastic pelvic compression belt (PCB) applied distal to the anterior superior iliac spines, with a load cell positioned in the center of the belt. The load cell was calibrated using known weights (1-10kg) to define the relationship between the applied tension and voltage change (R(2) = 0.99). Load cell tension values were recorded in voltage signals and then converted to newtons of force using appropriate conversion values (0.012V = 10N). Mean and standard deviation values, intraclass correlation coefficients (ICC 3,1), and percentage standard error of measurements (% SEM) were analyzed for PCB tension recorded during the BUS and walking trials. The mean tension achieved with a PCB was found to be 41.02 (±4.23) N during BUS and 44.07 (±5.80) N during walking. The trial-to-trial reliability (ICC 3,1) was high (ICC ≥0.9), and the variation in PCB tension across 10 trials (% SEM) was 4% or less. The mean tension achieved during the tasks was 44 N or less. The reliability is high, and the variation is low across the trials, which implies that a PCB could be used to produce consistent effects during repetition of the tasks (BUS and walking). Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  9. Lessons Learned from Crowdsourcing Complex Engineering Tasks.

    PubMed

    Staffelbach, Matthew; Sempolinski, Peter; Kijewski-Correa, Tracy; Thain, Douglas; Wei, Daniel; Kareem, Ahsan; Madey, Gregory

    2015-01-01

    Crowdsourcing is the practice of obtaining needed ideas, services, or content by requesting contributions from a large group of people. Amazon Mechanical Turk is a web marketplace for crowdsourcing microtasks, such as answering surveys and image tagging. We explored the limits of crowdsourcing by using Mechanical Turk for a more complicated task: analysis and creation of wind simulations. Our investigation examined the feasibility of using crowdsourcing for complex, highly technical tasks. This was done to determine if the benefits of crowdsourcing could be harnessed to accurately and effectively contribute to solving complex real world engineering problems. Of course, untrained crowds cannot be used as a mere substitute for trained expertise. Rather, we sought to understand how crowd workers can be used as a large pool of labor for a preliminary analysis of complex data. We compared the skill of the anonymous crowd workers from Amazon Mechanical Turk with that of civil engineering graduate students, making a first pass at analyzing wind simulation data. For the first phase, we posted analysis questions to Amazon crowd workers and to two groups of civil engineering graduate students. A second phase of our experiment instructed crowd workers and students to create simulations on our Virtual Wind Tunnel website to solve a more complex task. With a sufficiently comprehensive tutorial and compensation similar to typical crowd-sourcing wages, we were able to enlist crowd workers to effectively complete longer, more complex tasks with competence comparable to that of graduate students with more comprehensive, expert-level knowledge. Furthermore, more complex tasks require increased communication with the workers. As tasks become more complex, the employment relationship begins to become more akin to outsourcing than crowdsourcing. Through this investigation, we were able to stretch and explore the limits of crowdsourcing as a tool for solving complex problems.

  10. Lessons Learned from Crowdsourcing Complex Engineering Tasks

    PubMed Central

    Kijewski-Correa, Tracy; Thain, Douglas; Kareem, Ahsan; Madey, Gregory

    2015-01-01

    Crowdsourcing Crowdsourcing is the practice of obtaining needed ideas, services, or content by requesting contributions from a large group of people. Amazon Mechanical Turk is a web marketplace for crowdsourcing microtasks, such as answering surveys and image tagging. We explored the limits of crowdsourcing by using Mechanical Turk for a more complicated task: analysis and creation of wind simulations. Harnessing Crowdworkers for Engineering Our investigation examined the feasibility of using crowdsourcing for complex, highly technical tasks. This was done to determine if the benefits of crowdsourcing could be harnessed to accurately and effectively contribute to solving complex real world engineering problems. Of course, untrained crowds cannot be used as a mere substitute for trained expertise. Rather, we sought to understand how crowd workers can be used as a large pool of labor for a preliminary analysis of complex data. Virtual Wind Tunnel We compared the skill of the anonymous crowd workers from Amazon Mechanical Turk with that of civil engineering graduate students, making a first pass at analyzing wind simulation data. For the first phase, we posted analysis questions to Amazon crowd workers and to two groups of civil engineering graduate students. A second phase of our experiment instructed crowd workers and students to create simulations on our Virtual Wind Tunnel website to solve a more complex task. Conclusions With a sufficiently comprehensive tutorial and compensation similar to typical crowd-sourcing wages, we were able to enlist crowd workers to effectively complete longer, more complex tasks with competence comparable to that of graduate students with more comprehensive, expert-level knowledge. Furthermore, more complex tasks require increased communication with the workers. As tasks become more complex, the employment relationship begins to become more akin to outsourcing than crowdsourcing. Through this investigation, we were able to stretch and

  11. Balance training with multi-task exercises improves fall-related self-efficacy, gait, balance performance and physical function in older adults with osteoporosis: a randomized controlled trial.

    PubMed

    Halvarsson, Alexandra; Franzén, Erika; Ståhle, Agneta

    2015-04-01

    To evaluate the effects of a balance training program including dual- and multi-task exercises on fall-related self-efficacy, fear of falling, gait and balance performance, and physical function in older adults with osteoporosis with an increased risk of falling and to evaluate whether additional physical activity would further improve the effects. Randomized controlled trial, including three groups: two intervention groups (Training, or Training+Physical activity) and one Control group, with a 12-week follow-up. Stockholm County, Sweden. Ninety-six older adults, aged 66-87, with verified osteoporosis. A specific and progressive balance training program including dual- and multi-task three times/week for 12 weeks, and physical activity for 30 minutes, three times/week. Fall-related self-efficacy (Falls Efficacy Scale-International), fear of falling (single-item question - 'In general, are you afraid of falling?'), gait speed with and without a cognitive dual-task at preferred pace and fast walking (GAITRite®), balance performance tests (one-leg stance, and modified figure of eight), and physical function (Late-Life Function and Disability Instrument). Both intervention groups significantly improved their fall-related self-efficacy as compared to the controls (p ≤ 0.034, 4 points) and improved their balance performance. Significant differences over time and between groups in favour of the intervention groups were found for walking speed with a dual-task (p=0.003), at fast walking speed (p=0.008), and for advanced lower extremity physical function (p=0.034). This balance training program, including dual- and multi-task, improves fall-related self-efficacy, gait speed, balance performance, and physical function in older adults with osteoporosis. © The Author(s) 2014.

  12. Differences in shame and pride as a function of children's gender and task difficulty.

    PubMed

    Lewis, M; Alessandri, S M; Sullivan, M W

    1992-06-01

    3-year-old children were presented with easy and difficult tasks and their emotional responses of shame and pride were observed. No shame was shown when subjects succeeded on the tasks and no pride was shown when they failed. Significantly more shame was shown when subjects failed easy tasks than when they failed difficult tasks, and significantly more pride was shown when subjects succeeded on difficult than on easy tasks. While there were no sex differences in task failures, girls showed more shame than boys. There were no sex differences in pride when subjects succeeded.

  13. Predicting the practice effects on the blood oxygenation level-dependent (BOLD) function of fMRI in a symbolic manipulation task

    NASA Astrophysics Data System (ADS)

    Qin, Yulin; Sohn, Myeong-Ho; Anderson, John R.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Carter, Cameron S.

    2003-04-01

    Based on adaptive control of thought-rational (ACT-R), a cognitive architecture for cognitive modeling, researchers have developed an information-processing model to predict the blood oxygenation level-dependent (BOLD) response of functional MRI in symbol manipulation tasks. As an extension of this research, the current event-related functional MRI study investigates the effect of relatively extensive practice on the activation patterns of related brain regions. The task involved performing transformations on equations in an artificial algebra system. This paper shows that the base-level activation learning in the ACT-R theory can predict the change of the BOLD response in practice in a left prefrontal region reflecting retrieval of information. In contrast, practice has relatively little effect on the form of BOLD response in the parietal region reflecting imagined transformations to the equation or the motor region reflecting manual programming.

  14. Amygdala task-evoked activity and task-free connectivity independently contribute to feelings of arousal.

    PubMed

    Touroutoglou, Alexandra; Bickart, Kevin C; Barrett, Lisa Feldman; Dickerson, Bradford C

    2014-10-01

    Individual differences in the intensity of feelings of arousal while viewing emotional pictures have been associated with the magnitude of task-evoked blood-oxygen dependent (BOLD) response in the amygdala. Recently, we reported that individual differences in feelings of arousal are associated with task-free (resting state) connectivity within the salience network. There has not yet been an investigation of whether these two types of functional magnetic resonance imaging (MRI) measures are redundant or independent in their relationships to behavior. Here we tested the hypothesis that a combination of task-evoked amygdala activation and task-free amygdala connectivity within the salience network relate to individual differences in feelings of arousal while viewing of negatively potent images. In 25 young adults, results revealed that greater task-evoked amygdala activation and stronger task-free amygdala connectivity within the salience network each contributed independently to feelings of arousal, predicting a total of 45% of its variance. Individuals who had both increased task-evoked amygdala activation and stronger task-free amygdala connectivity within the salience network had the most heightened levels of arousal. Task-evoked amygdala activation and task-free amygdala connectivity within the salience network were not related to each other, suggesting that resting-state and task-evoked dynamic brain imaging measures may provide independent and complementary information about affective experience, and likely other kinds of behaviors as well. Copyright © 2014 Wiley Periodicals, Inc.

  15. Differences in lumbar spine and lower extremity kinematics during a step down functional task in people with and people without low back pain.

    PubMed

    Hernandez, Alejandra; Gross, Karlie; Gombatto, Sara

    2017-08-01

    When functional movements are impaired in people with low back pain, they may be a contributing factor to chronicity and recurrence. The purpose of the current study was to examine lumbar spine, pelvis, and lower extremity kinematics during a step down functional task between people with and without a history of low back pain. A 3-dimensional motion capture system was used to analyze kinematics during a step down task. Total excursion of the lumbar spine, pelvis, and lower extremity segments in each plane were calculated from the start to end of the task. Separate analysis of variance tests (α=0.05) were conducted to determine the effect of independent variables of group and plane on lumbar spine, pelvis, and lower extremity kinematics. An exploratory analysis was conducted to examine kinematic differences among movement-based low back pain subgroups. Subjects with low back pain displayed less lumbar spine movement than controls across all three planes of movement (P-values=0.001-0.043). This group difference was most pronounced in the sagittal plane. For the lower extremity, subjects with low back pain displayed more frontal and axial plane knee movement than controls (P-values=0.001). There were no significant differences in kinematics among movement-based low back pain subgroups. People with low back pain displayed less lumbar region movement in the sagittal plane and more off-plane knee movements than the control group during a step down task. Clinicians can use this information when assessing lumbar spine and lower extremity movement during functional tasks, with the goal of developing movement-based interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Lack of sex effect on brain activity during a visuomotor response task: functional MR imaging study.

    PubMed

    Mikhelashvili-Browner, Nina; Yousem, David M; Wu, Colin; Kraut, Michael A; Vaughan, Christina L; Oguz, Kader Karli; Calhoun, Vince D

    2003-03-01

    As more individuals are enrolled in clinical functional MR imaging (fMRI) studies, an understanding of how sex may influence fMRI-measured brain activation is critical. We used fixed- and random-effects models to study the influence of sex on fMRI patterns of brain activation during a simple visuomotor reaction time task in the group of 26 age-matched men and women. We evaluated the right visual, left visual, left primary motor, left supplementary motor, and left anterior cingulate areas. Volumes of activations did not significantly differ between the groups in any defined regions. Analysis of variance failed to show any significant correlations between sex and volumes of brain activation in any location studied. Mean percentage signal-intensity changes for all locations were similar between men and women. A two-way t test of brain activation in men and women, performed as a part of random-effects modeling, showed no significant difference at any site. Our results suggest that sex seems to have little influence on fMRI brain activation when we compared performance on the simple reaction-time task. The need to control for sex effects is not critical in the analysis of this task with fMRI.

  17. Atypical activation during the Embedded Figures Task as a functional magnetic resonance imaging endophenotype of autism

    PubMed Central

    Holt, Rosemary J.; Chura, Lindsay R.; Calder, Andrew J.; Suckling, John; Bullmore, Edward T.; Baron-Cohen, Simon

    2012-01-01

    Atypical activation during the Embedded Figures Task has been demonstrated in autism, but has not been investigated in siblings or related to measures of clinical severity. We identified atypical activation during the Embedded Figures Task in participants with autism and unaffected siblings compared with control subjects in a number of temporal and frontal brain regions. Autism and sibling groups, however, did not differ in terms of activation during this task. This suggests that the pattern of atypical activation identified may represent a functional endophenotype of autism, related to familial risk for the condition shared between individuals with autism and their siblings. We also found that reduced activation in autism relative to control subjects in regions including associative visual and face processing areas was strongly correlated with the clinical severity of impairments in reciprocal social interaction. Behavioural performance was intact in autism and sibling groups. Results are discussed in terms of atypical information processing styles or of increased activation in temporal and frontal regions in autism and the broader phenotype. By separating the aspects of atypical activation as markers of familial risk for the condition from those that are autism-specific, our findings offer new insight into the factors that might cause the expression of autism in families, affecting some children but not others. PMID:23065480

  18. Computer task performance by subjects with Duchenne muscular dystrophy.

    PubMed

    Malheiros, Silvia Regina Pinheiro; da Silva, Talita Dias; Favero, Francis Meire; de Abreu, Luiz Carlos; Fregni, Felipe; Ribeiro, Denise Cardoso; de Mello Monteiro, Carlos Bandeira

    2016-01-01

    Two specific objectives were established to quantify computer task performance among people with Duchenne muscular dystrophy (DMD). First, we compared simple computational task performance between subjects with DMD and age-matched typically developing (TD) subjects. Second, we examined correlations between the ability of subjects with DMD to learn the computational task and their motor functionality, age, and initial task performance. The study included 84 individuals (42 with DMD, mean age of 18±5.5 years, and 42 age-matched controls). They executed a computer maze task; all participants performed the acquisition (20 attempts) and retention (five attempts) phases, repeating the same maze. A different maze was used to verify transfer performance (five attempts). The Motor Function Measure Scale was applied, and the results were compared with maze task performance. In the acquisition phase, a significant decrease was found in movement time (MT) between the first and last acquisition block, but only for the DMD group. For the DMD group, MT during transfer was shorter than during the first acquisition block, indicating improvement from the first acquisition block to transfer. In addition, the TD group showed shorter MT than the DMD group across the study. DMD participants improved their performance after practicing a computational task; however, the difference in MT was present in all attempts among DMD and control subjects. Computational task improvement was positively influenced by the initial performance of individuals with DMD. In turn, the initial performance was influenced by their distal functionality but not their age or overall functionality.

  19. Interactive Block Games for Assessing Children's Cognitive Skills: Design and Preliminary Evaluation.

    PubMed

    Lee, Kiju; Jeong, Donghwa; Schindler, Rachael C; Hlavaty, Laura E; Gross, Susan I; Short, Elizabeth J

    2018-01-01

    Background: This paper presents design and results from preliminary evaluation of Tangible Geometric Games (TAG-Games) for cognitive assessment in young children. The TAG-Games technology employs a set of sensor-integrated cube blocks, called SIG-Blocks, and graphical user interfaces for test administration and real-time performance monitoring. TAG-Games were administered to children from 4 to 8 years of age for evaluating preliminary efficacy of this new technology-based approach. Methods: Five different sets of SIG-Blocks comprised of geometric shapes, segmented human faces, segmented animal faces, emoticons, and colors, were used for three types of TAG-Games, including Assembly, Shape Matching, and Sequence Memory. Computational task difficulty measures were defined for each game and used to generate items with varying difficulty. For preliminary evaluation, TAG-Games were tested on 40 children. To explore the clinical utility of the information assessed by TAG-Games, three subtests of the age-appropriate Wechsler tests (i.e., Block Design, Matrix Reasoning, and Picture Concept) were also administered. Results: Internal consistency of TAG-Games was evaluated by the split-half reliability test. Weak to moderate correlations between Assembly and Block Design, Shape Matching and Matrix Reasoning, and Sequence Memory and Picture Concept were found. The computational measure of task complexity for each TAG-Game showed a significant correlation with participants' performance. In addition, age-correlations on TAG-Game scores were found, implying its potential use for assessing children's cognitive skills autonomously.

  20. Interactive Block Games for Assessing Children's Cognitive Skills: Design and Preliminary Evaluation

    PubMed Central

    Lee, Kiju; Jeong, Donghwa; Schindler, Rachael C.; Hlavaty, Laura E.; Gross, Susan I.; Short, Elizabeth J.

    2018-01-01

    Background: This paper presents design and results from preliminary evaluation of Tangible Geometric Games (TAG-Games) for cognitive assessment in young children. The TAG-Games technology employs a set of sensor-integrated cube blocks, called SIG-Blocks, and graphical user interfaces for test administration and real-time performance monitoring. TAG-Games were administered to children from 4 to 8 years of age for evaluating preliminary efficacy of this new technology-based approach. Methods: Five different sets of SIG-Blocks comprised of geometric shapes, segmented human faces, segmented animal faces, emoticons, and colors, were used for three types of TAG-Games, including Assembly, Shape Matching, and Sequence Memory. Computational task difficulty measures were defined for each game and used to generate items with varying difficulty. For preliminary evaluation, TAG-Games were tested on 40 children. To explore the clinical utility of the information assessed by TAG-Games, three subtests of the age-appropriate Wechsler tests (i.e., Block Design, Matrix Reasoning, and Picture Concept) were also administered. Results: Internal consistency of TAG-Games was evaluated by the split-half reliability test. Weak to moderate correlations between Assembly and Block Design, Shape Matching and Matrix Reasoning, and Sequence Memory and Picture Concept were found. The computational measure of task complexity for each TAG-Game showed a significant correlation with participants' performance. In addition, age-correlations on TAG-Game scores were found, implying its potential use for assessing children's cognitive skills autonomously. PMID:29868520