Daniel, Reka; Pollmann, Stefan
2010-01-06
The dopaminergic system is known to play a central role in reward-based learning (Schultz, 2006), yet it was also observed to be involved when only cognitive feedback is given (Aron et al., 2004). Within the domain of information-integration category learning, in which information from several stimulus dimensions has to be integrated predecisionally (Ashby and Maddox, 2005), the importance of contingent feedback is well established (Maddox et al., 2003). We examined the common neural correlates of reward anticipation and prediction error in this task. Sixteen subjects performed two parallel information-integration tasks within a single event-related functional magnetic resonance imaging session but received a monetary reward only for one of them. Similar functional areas including basal ganglia structures were activated in both task versions. In contrast, a single structure, the nucleus accumbens, showed higher activation during monetary reward anticipation compared with the anticipation of cognitive feedback in information-integration learning. Additionally, this activation was predicted by measures of intrinsic motivation in the cognitive feedback task and by measures of extrinsic motivation in the rewarded task. Our results indicate that, although all other structures implicated in category learning are not significantly affected by altering the type of reward, the nucleus accumbens responds to the positive incentive properties of an expected reward depending on the specific type of the reward.
Williamson, Rebecca A.; Latzman, Robert D.; de Waal, Frans B. M.; Brosnan, Sarah F.
2014-01-01
Humans will, at times, act against their own economic self-interest, for example, in gambling situations. To explore the evolutionary roots of this behavior, we modified a traditional human gambling task, the Iowa Gambling Task (IGT), for use with chimpanzees, capuchin monkeys and humans. We expanded the traditional task to include two additional payoff structures to fully elucidate the ways in which these primate species respond to differing reward distributions versus overall quantities of rewards, a component often missing in the existing literature. We found that while all three species respond as typical humans do in the standard IGT payoff structure, species and individual differences emerge in our new payoff structures. Specifically, when variance avoidance and reward maximization conflicted, roughly equivalent numbers of apes maximized their rewards and avoided variance, indicating that the traditional payoff structure of the IGT is insufficient to disentangle these competing strategies. Capuchin monkeys showed little consistency in their choices. To determine whether this was a true species difference or an effect of task presentation, we replicated the experiment but increased the intertrial interval. In this case, several capuchin monkeys followed a reward maximization strategy, while chimpanzees retained the same strategy they had used previously. This suggests that individual differences in strategies for interacting with variance and reward maximization are present in apes, but not in capuchin monkeys. The primate gambling task presented here is a useful methodology for disentangling strategies of variance avoidance and reward maximization. PMID:24504555
Stereotype Threat Reinterpreted as a Regulatory Mismatch
Grimm, Lisa R.; Markman, Arthur B.; Maddox, W. Todd; Baldwin, Grant C.
2008-01-01
Research documents performance decrements resulting from the activation of a negative task-relevant stereotype. We combine a number of strands of work to identify causes of stereotype threat in a way that allows us to reverse the effects and improve the performance of individuals with negative task-relevant stereotypes. We draw on prior work suggesting that negative stereotypes induce a prevention focus, and other research suggesting that people exhibit greater flexibility when their regulatory focus matches the reward structure of the task. This work suggests that stereotype threat effects emerge from a prevention focus combined with tasks that have an explicit or implicit gains reward structure. We find flexible performance can be induced in individuals who have a negative task-relevant stereotype by using a losses reward structure. We demonstrate the interaction of stereotypes and the reward structure of the task using chronic stereotypes and GRE math problems (Experiment 1), and primed stereotypes and a category learning task (Experiments 2a and 2b). We discuss implications of this research for other work on stereotype threat. PMID:19159133
A comparison of the electrocortical response to monetary and social reward
Distefano, Amanda; Jackson, Felicia; Levinson, Amanda R; Infantolino, Zachary P; Jarcho, Johanna M; Nelson, Brady D
2018-01-01
Abstract Affective science research on reward processing has primarily focused on monetary rewards. There has been a growing interest in evaluating the neural basis of social decision-making and reward processing. The present study employed a within-subject design and compared the reward positivity (RewP), an event-related potential component that is present following favorable feedback and absent or reduced following unfavorable feedback, during monetary and social reward tasks. Specifically, 114 participants (75 females) completed a monetary reward task and a novel social reward task that were matched on trial structure, timing, and feedback stimuli in a counterbalanced order. Results indicated that the monetary and social RewP were of similar magnitude, positively correlated and demonstrated comparable psychometric properties, including reliability and dependability. Across both the monetary and social tasks, women demonstrated a greater RewP compared with men. This study provides a novel methodological approach toward examining the electrocortical response to social reward that is comparable to monetary reward. PMID:29373743
Richards, Jessica M.; Plate, Rista C.; Ernst, Monique
2013-01-01
The neural systems underlying reward-related behaviors across development have recently generated a great amount of interest. Yet, the neurodevelopmental literature on reward processing is marked by inconsistencies due to the heterogeneity of the reward paradigms used, the complexity of the behaviors being studied, and the developing brain itself as a moving target. The present review will examine task design as one source of variability across findings by compiling this literature along three dimensions: (1) task structures, (2) cognitive processes, and (3) neural systems. We start with the presentation of a heuristic neural systems model, the Triadic Model, as a way to provide a theoretical framework for the neuroscience research on motivated behaviors. We then discuss the principles guiding reward task development. Finally, we review the extant developmental neuroimaging literature on reward-related processing, organized by reward task type. We hope that this approach will help to clarify the literature on the functional neurodevelopment of reward-related neural systems, and to identify the role of the experimental parameters that significantly influence these findings. PMID:23518270
Richards, Jessica M; Plate, Rista C; Ernst, Monique
2013-06-01
The neural systems underlying reward-related behaviors across development have recently generated a great amount of interest. Yet, the neurodevelopmental literature on reward processing is marked by inconsistencies due to the heterogeneity of the reward paradigms used, the complexity of the behaviors being studied, and the developing brain itself as a moving target. The present review will examine task design as one source of variability across findings by compiling this literature along three dimensions: (1) task structures, (2) cognitive processes, and (3) neural systems. We start with the presentation of a heuristic neural systems model, the Triadic Model, as a way to provide a theoretical framework for the neuroscience research on motivated behaviors. We then discuss the principles guiding reward task development. Finally, we review the extant developmental neuroimaging literature on reward-related processing, organized by reward task type. We hope that this approach will help to clarify the literature on the functional neurodevelopment of reward-related neural systems, and to identify the role of the experimental parameters that significantly influence these findings. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Hall, Philip S.
2009-01-01
Using rewards to impact students' behavior has long been common practice. However, using reward systems to enhance student learning conveniently masks the larger and admittedly more difficult task of finding and implementing the structure and techniques that children with special needs require to learn. More important, rewarding the child for good…
Compositional clustering in task structure learning
Frank, Michael J.
2018-01-01
Humans are remarkably adept at generalizing knowledge between experiences in a way that can be difficult for computers. Often, this entails generalizing constituent pieces of experiences that do not fully overlap, but nonetheless share useful similarities with, previously acquired knowledge. However, it is often unclear how knowledge gained in one context should generalize to another. Previous computational models and data suggest that rather than learning about each individual context, humans build latent abstract structures and learn to link these structures to arbitrary contexts, facilitating generalization. In these models, task structures that are more popular across contexts are more likely to be revisited in new contexts. However, these models can only re-use policies as a whole and are unable to transfer knowledge about the transition structure of the environment even if only the goal has changed (or vice-versa). This contrasts with ecological settings, where some aspects of task structure, such as the transition function, will be shared between context separately from other aspects, such as the reward function. Here, we develop a novel non-parametric Bayesian agent that forms independent latent clusters for transition and reward functions, affording separable transfer of their constituent parts across contexts. We show that the relative performance of this agent compared to an agent that jointly clusters reward and transition functions depends environmental task statistics: the mutual information between transition and reward functions and the stochasticity of the observations. We formalize our analysis through an information theoretic account of the priors, and propose a meta learning agent that dynamically arbitrates between strategies across task domains to optimize a statistical tradeoff. PMID:29672581
Working-memory load and temporal myopia in dynamic decision making.
Worthy, Darrell A; Otto, A Ross; Maddox, W Todd
2012-11-01
We examined the role of working memory (WM) in dynamic decision making by having participants perform decision-making tasks under single-task or dual-task conditions. In 2 experiments participants performed dynamic decision-making tasks in which they chose 1 of 2 options on each trial. The decreasing option always gave a larger immediate reward but caused future rewards for both options to decrease. The increasing option always gave a smaller immediate reward but caused future rewards for both options to increase. In each experiment we manipulated the reward structure such that the decreasing option was the optimal choice in 1 condition and the increasing option was the optimal choice in the other condition. Behavioral results indicated that dual-task participants selected the immediately rewarding decreasing option more often, and single-task participants selected the increasing option more often, regardless of which option was optimal. Thus, dual-task participants performed worse on 1 type of task but better on the other type. Modeling results showed that single-task participants' data were most often best fit by a win-stay, lose-shift (WSLS) rule-based model that tracked differences across trials, and dual-task participants' data were most often best fit by a Softmax reinforcement learning model that tracked recency-weighted average rewards for each option. This suggests that manipulating WM load affects the degree to which participants focus on the immediate versus delayed consequences of their actions and whether they employ a rule-based WSLS strategy, but it does not necessarily affect how well people weigh the immediate versus delayed benefits when determining the long-term utility of each option.
Theory of choice in bandit, information sampling and foraging tasks.
Averbeck, Bruno B
2015-03-01
Decision making has been studied with a wide array of tasks. Here we examine the theoretical structure of bandit, information sampling and foraging tasks. These tasks move beyond tasks where the choice in the current trial does not affect future expected rewards. We have modeled these tasks using Markov decision processes (MDPs). MDPs provide a general framework for modeling tasks in which decisions affect the information on which future choices will be made. Under the assumption that agents are maximizing expected rewards, MDPs provide normative solutions. We find that all three classes of tasks pose choices among actions which trade-off immediate and future expected rewards. The tasks drive these trade-offs in unique ways, however. For bandit and information sampling tasks, increasing uncertainty or the time horizon shifts value to actions that pay-off in the future. Correspondingly, decreasing uncertainty increases the relative value of actions that pay-off immediately. For foraging tasks the time-horizon plays the dominant role, as choices do not affect future uncertainty in these tasks.
The role of uncertainty and reward on eye movements in a virtual driving task
Sullivan, Brian T.; Johnson, Leif; Rothkopf, Constantin A.; Ballard, Dana; Hayhoe, Mary
2012-01-01
Eye movements during natural tasks are well coordinated with ongoing task demands and many variables could influence gaze strategies. Sprague and Ballard (2003) proposed a gaze-scheduling model that uses a utility-weighted uncertainty metric to prioritize fixations on task-relevant objects and predicted that human gaze should be influenced by both reward structure and task-relevant uncertainties. To test this conjecture, we tracked the eye movements of participants in a simulated driving task where uncertainty and implicit reward (via task priority) were varied. Participants were instructed to simultaneously perform a Follow Task where they followed a lead car at a specific distance and a Speed Task where they drove at an exact speed. We varied implicit reward by instructing the participants to emphasize one task over the other and varied uncertainty in the Speed Task with the presence or absence of uniform noise added to the car's velocity. Subjects' gaze data were classified for the image content near fixation and segmented into looks. Gaze measures, including look proportion, duration and interlook interval, showed that drivers more closely monitor the speedometer if it had a high level of uncertainty, but only if it was also associated with high task priority or implicit reward. The interaction observed appears to be an example of a simple mechanism whereby the reduction of visual uncertainty is gated by behavioral relevance. This lends qualitative support for the primary variables controlling gaze allocation proposed in the Sprague and Ballard model. PMID:23262151
Simon, Joe J; Skunde, Mandy; Wu, Mudan; Schnell, Knut; Herpertz, Sabine C; Bendszus, Martin; Herzog, Wolfgang; Friederich, Hans-Christoph
2015-08-01
Food is an innate reward stimulus related to energy homeostasis and survival, whereas money is considered a more general reward stimulus that gains a rewarding value through learning experiences. Although the underlying neural processing for both modalities of reward has been investigated independently from one another, a more detailed investigation of neural similarities and/or differences between food and monetary reward is still missing. Here, we investigated the neural processing of food compared with monetary-related rewards in 27 healthy, normal-weight women using functional magnetic resonance imaging. We developed a task distinguishing between the anticipation and the receipt of either abstract food or monetary reward. Both tasks activated the ventral striatum during the expectation of a reward. Compared with money, greater food-related activations were observed in prefrontal, parietal and central midline structures during the anticipation and lateral orbitofrontal cortex (lOFC) during the receipt of food reward. Furthermore, during the receipt of food reward, brain activation in the secondary taste cortex was positively related to the body mass index. These results indicate that food-dependent activations encompass to a greater extent brain regions involved in self-control and self-reflection during the anticipation and phylogenetically older parts of the lOFC during the receipt of reward. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Cornelius, Jack R; Aizenstein, Howard J; Chung, Tammy A; Douaihy, Antoine; Hayes, Jeanine; Daley, Dennis; Salloum, Ihsan M
Reward behavior, including reward behavior involving drugs, has been shown to be mediated by the ventral striatum and related structures of the reward system. The aim of this study was to assess reward-related activity as shown by fMRI before and after treatment among youth with comorbid cannabis dependence and major depression. We hypothesized that the reward task (Delgado et al., 2003) would elicit activation in the reward system, and that the level of activation in response to reward would increase from the beginning to the end of the 12-week treatment study as levels of depressive symptoms and cannabis use decreased. Six subjects were recruited from a larger treatment study in which all received Cognitive Behavioral Therapy/Motivational Enhancement Therapy (CBT/MET), and also were randomized to receive either fluoxetine or placebo. Each of the six subjects completed an fMRI card- guessing/reward task both before and after the 12-week treatment study. As hypothesized, the expected activation was noted for the reward task in the insula, prefrontal, and striatal areas, both before and after treatment. However, the participants showed lower reward-related activation after treatment relative to pre-treatment, which is opposite of what would be expected in depressed subjects who did not demonstrate a comorbid substance use disorder. These paradoxical findings suggest that the expected increase in activity for reward associated with treatment for depression was overshadowed by a decrease in reward-related activation associated with treatment of pathological cannabis use in these comorbid youth. These findings emphasize the importance of comorbid disorders in fMRI studies.
Chronic Motivational State Interacts with Task Reward Structure in Dynamic Decision-Making
Cooper, Jessica A.; Worthy, Darrell A.; Maddox, W. Todd
2015-01-01
Research distinguishes between a habitual, model-free system motivated toward immediately rewarding actions, and a goal-directed, model-based system motivated toward actions that improve future state. We examined the balance of processing in these two systems during state-based decision-making. We tested a regulatory fit hypothesis (Maddox & Markman, 2010) that predicts that global trait motivation affects the balance of habitual- vs. goal-directed processing but only through its interaction with the task framing as gain-maximization or loss-minimization. We found support for the hypothesis that a match between an individual’s chronic motivational state and the task framing enhances goal-directed processing, and thus state-based decision-making. Specifically, chronic promotion-focused individuals under gain-maximization and chronic prevention-focused individuals under loss-minimization both showed enhanced state-based decision-making. Computational modeling indicates that individuals in a match between global chronic motivational state and local task reward structure engaged more goal-directed processing, whereas those in a mismatch engaged more habitual processing. PMID:26520256
Self-reflection modulates the outcome evaluation process: Evidence from an ERP study.
Zhu, Xiangru; Gu, Ruolei; Wu, Haiyan; Luo, Yuejia
2015-12-01
Recent research demonstrated structural overlap between reward and self processing, but the functional relationship that explains how self processing influences reward processing remains unclear. The present study used an experimentally constrained reflection task to investigate whether individuals' outcome evaluations in a gambling task are modulated by task-unrelated self- and other-reflection processes. The self- and other-reflection task contained descriptions of the self or others, and brain event-related potentials (ERPs) were recorded while 16 normal adults performed a gambling task. The ERP analysis focused on the feedback-related negativity (FRN) component. We found that the difference wave of FRN increased in the self-reflection condition compared with the other-reflection condition. The present findings provide direct evidence that self processing can influence reward processing. Copyright © 2015 Elsevier B.V. All rights reserved.
Richter, Michael
2010-05-01
Two experiments assessed the moderating impact of task context on the relationship between reward and cardiovascular response. Randomly assigned to the cells of a 2 (task context: reward vs. demand) x 2 (reward value: low vs. high) between-persons design, participants performed either a memory task with an unclear performance standard (Experiment 1) or a visual scanning task with an unfixed performance standard (Experiment 2). Before performing the task--where participants could earn either a low or a high reward--participants responded to questions about either task reward or task demand. In accordance with the theoretical predictions derived from Wright's (1996) integrative model, reactivity of pre-ejection period increased with reward value if participants had rated aspects of task reward before performing the task. If they had rated task demand, pre-ejection period did not differ as a function of reward. Copyright 2010 Elsevier B.V. All rights reserved.
Morie, K P; De Sanctis, P; Foxe, J J
2014-07-25
Task execution almost always occurs in the context of reward-seeking or punishment-avoiding behavior. As such, ongoing task-monitoring systems are influenced by reward anticipation systems. In turn, when a task has been executed either successfully or unsuccessfully, future iterations of that task will be re-titrated on the basis of the task outcome. Here, we examined the neural underpinnings of the task-monitoring and reward-evaluation systems to better understand how they govern reward-seeking behavior. Twenty-three healthy adult participants performed a task where they accrued points that equated to real world value (gift cards) by responding as rapidly as possible within an allotted timeframe, while success rate was titrated online by changing the duration of the timeframe dependent on participant performance. Informative cues initiated each trial, indicating the probability of potential reward or loss (four levels from very low to very high). We manipulated feedback by first informing participants of task success/failure, after which a second feedback signal indicated actual magnitude of reward/loss. High-density electroencephalography (EEG) recordings allowed for examination of event-related potentials (ERPs) to the informative cues and in turn, to both feedback signals. Distinct ERP components associated with reward cues, task-preparatory and task-monitoring processes, and reward feedback processes were identified. Unsurprisingly, participants displayed increased ERP amplitudes associated with task-preparatory processes following cues that predicted higher chances of reward. They also rapidly updated reward and loss prediction information dependent on task performance after the first feedback signal. Finally, upon reward receipt, initial reward probability was no longer taken into account. Rather, ERP measures suggested that only the magnitude of actual reward or loss was now processed. Reward and task-monitoring processes are clearly dissociable, but interact across very fast timescales to update reward predictions as information about task success or failure is accrued. Careful delineation of these processes will be useful in future investigations in clinical groups where such processes are suspected of having gone awry. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Morie, Kristen P.; De Sanctis, Pierfilippo; Foxe, John J.
2014-01-01
Task execution almost always occurs in the context of reward-seeking or punishment-avoiding behavior. As such, ongoing task monitoring systems are influenced by reward anticipation systems. In turn, when a task has been executed either successfully or unsuccessfully, future iterations of that task will be re-titrated on the basis of the task outcome. Here, we examined the neural underpinnings of the task-monitoring and reward-evaluation systems to better understand how they govern reward seeking behavior. Twenty-three healthy adult participants performed a task where they accrued points that equated to real world value (gift cards) by responding as rapidly as possible within an allotted timeframe, while success rate was titrated online by changing the duration of the timeframe dependent on participant performance. Informative cues initiated each trial, indicating the probability of potential reward or loss (four levels from very low to very high). We manipulated feedback by first informing participants of task success/failure, after which a second feedback signal indicated actual magnitude of reward/loss. High-density EEG recordings allowed for examination of event-related potentials (ERPs) to the informative cues and in turn, to both feedback signals. Distinct ERP components associated with reward cues, task preparatory and task monitoring processes, and reward feedback processes were identified. Unsurprisingly, participants displayed increased ERP amplitudes associated with task preparatory processes following cues that predicted higher chances of reward. They also rapidly updated reward and loss prediction information dependent on task performance after the first feedback signal. Finally, upon reward receipt, initial reward probability was no longer taken into account. Rather, ERP measures suggested that only the magnitude of actual reward or loss was now processed. Reward and task monitoring processes are clearly dissociable, but interact across very fast timescales to update reward predictions as information about task success or failure is accrued. Careful delineation of these processes will be useful in future investigations in clinical groups where such processes are suspected of having gone awry. PMID:24836852
Reward processing in neurodegenerative disease
Perry, David C.; Kramer, Joel H.
2015-01-01
Representation of reward value involves a distributed network including cortical and subcortical structures. Because neurodegenerative illnesses target specific anatomic networks that partially overlap with the reward circuit they would be predicted to have distinct impairments in reward processing. This review presents the existing evidence of reward processing changes in neurodegenerative diseases including mild cognitive impairment, Alzheimer's disease, frontotemporal dementia, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease, as well as in healthy aging. Carefully distinguishing the different aspects of reward processing (primary rewards, secondary rewards, reward-based learning, and reward-based decision-making) and using tasks that differentiate the stages of processing reward will lead to improved understanding of this fundamental process and clarify a contributing cause of behavioral change in these illnesses. PMID:24417286
Nurse practitioners: leadership behaviors and organizational climate.
Jones, L C; Guberski, T D; Soeken, K L
1990-01-01
The purpose of this article is to examine the relationships of individual nurse practitioners' perceptions of the leadership climate in their organizations and self-reported formal and informal leadership behaviors. The nine climate dimensions (Structure, Responsibility, Reward, Perceived Support of Risk Taking, Warmth, Support, Standard Setting, Conflict, and Identity) identified by Litwin and Stringer in 1968 were used to predict five leadership dimensions (Meeting Organizational Needs, Managing Resources, Leadership Competence, Task Accomplishment, and Communications). Demographic variables of age, educational level, and percent of time spent performing administrative functions were forced as a first step in each multiple regression analysis and used to explain a significant amount of variance in all but one analysis. All leadership dimensions were predicted by at least one organizational climate dimension: (1) Meeting Organizational Needs by Risk and Reward; (2) Managing Resources by Risk and Structure; (3) Leadership Competence by Risk and Standards; (4) Task Accomplishment by Structure, Risk, and Standards; and (5) Communication by Rewards.
Chronic motivational state interacts with task reward structure in dynamic decision-making.
Cooper, Jessica A; Worthy, Darrell A; Maddox, W Todd
2015-12-01
Research distinguishes between a habitual, model-free system motivated toward immediately rewarding actions, and a goal-directed, model-based system motivated toward actions that improve future state. We examined the balance of processing in these two systems during state-based decision-making. We tested a regulatory fit hypothesis (Maddox & Markman, 2010) that predicts that global trait motivation affects the balance of habitual- vs. goal-directed processing but only through its interaction with the task framing as gain-maximization or loss-minimization. We found support for the hypothesis that a match between an individual's chronic motivational state and the task framing enhances goal-directed processing, and thus state-based decision-making. Specifically, chronic promotion-focused individuals under gain-maximization and chronic prevention-focused individuals under loss-minimization both showed enhanced state-based decision-making. Computational modeling indicates that individuals in a match between global chronic motivational state and local task reward structure engaged more goal-directed processing, whereas those in a mismatch engaged more habitual processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Morie, Kristen P; De Sanctis, Pierfilippo; Garavan, Hugh; Foxe, John J
2016-03-01
We investigated anticipatory and consummatory reward processing in cocaine addiction. In addition, we set out to assess whether task-monitoring systems were appropriately recalibrated in light of variable reward schedules. We also examined neural measures of task-monitoring and reward processing as a function of hedonic tone, since anhedonia is a vulnerability marker for addiction that is obviously germane in the context of reward processing. High-density event-related potentials were recorded while participants performed a speeded response task that systematically varied anticipated probabilities of reward receipt. The paradigm dissociated feedback regarding task success (or failure) from feedback regarding the value of reward (or loss), so that task-monitoring and reward processing could be examined in partial isolation. Twenty-three active cocaine abusers and 23 age-matched healthy controls participated. Cocaine abusers showed amplified anticipatory responses to reward predictive cues, but crucially, these responses were not as strongly modulated by reward probability as in controls. Cocaine users also showed blunted responses to feedback about task success or failure and did not use this information to update predictions about reward. In turn, they showed clearly blunted responses to reward feedback. In controls and users, measures of anhedonia were associated with reward motivation. In cocaine users, anhedonia was also associated with diminished monitoring and reward feedback responses. Findings imply that reward anticipation and monitoring deficiencies in addiction are associated with increased responsiveness to reward cues but impaired ability to predict reward in light of task contingencies, compounded by deficits in responding to actual reward outcomes.
Promising high monetary rewards for future task performance increases intermediate task performance.
Zedelius, Claire M; Veling, Harm; Bijleveld, Erik; Aarts, Henk
2012-01-01
In everyday life contexts and work settings, monetary rewards are often contingent on future performance. Based on research showing that the anticipation of rewards causes improved task performance through enhanced task preparation, the present study tested the hypothesis that the promise of monetary rewards for future performance would not only increase future performance, but also performance on an unrewarded intermediate task. Participants performed an auditory Simon task in which they responded to two consecutive tones. While participants could earn high vs. low monetary rewards for fast responses to every second tone, their responses to the first tone were not rewarded. Moreover, we compared performance under conditions in which reward information could prompt strategic performance adjustments (i.e., when reward information was presented for a relatively long duration) to conditions preventing strategic performance adjustments (i.e., when reward information was presented very briefly). Results showed that high (vs. low) rewards sped up both rewarded and intermediate, unrewarded responses, and the effect was independent of the duration of reward presentation. Moreover, long presentation led to a speed-accuracy trade-off for both rewarded and unrewarded tones, whereas short presentation sped up responses to rewarded and unrewarded tones without this trade-off. These results suggest that high rewards for future performance boost intermediate performance due to enhanced task preparation, and they do so regardless whether people respond to rewards in a strategic or non-strategic manner.
Promising High Monetary Rewards for Future Task Performance Increases Intermediate Task Performance
Zedelius, Claire M.; Veling, Harm; Bijleveld, Erik; Aarts, Henk
2012-01-01
In everyday life contexts and work settings, monetary rewards are often contingent on future performance. Based on research showing that the anticipation of rewards causes improved task performance through enhanced task preparation, the present study tested the hypothesis that the promise of monetary rewards for future performance would not only increase future performance, but also performance on an unrewarded intermediate task. Participants performed an auditory Simon task in which they responded to two consecutive tones. While participants could earn high vs. low monetary rewards for fast responses to every second tone, their responses to the first tone were not rewarded. Moreover, we compared performance under conditions in which reward information could prompt strategic performance adjustments (i.e., when reward information was presented for a relatively long duration) to conditions preventing strategic performance adjustments (i.e., when reward information was presented very briefly). Results showed that high (vs. low) rewards sped up both rewarded and intermediate, unrewarded responses, and the effect was independent of the duration of reward presentation. Moreover, long presentation led to a speed-accuracy trade-off for both rewarded and unrewarded tones, whereas short presentation sped up responses to rewarded and unrewarded tones without this trade-off. These results suggest that high rewards for future performance boost intermediate performance due to enhanced task preparation, and they do so regardless whether people respond to rewards in a strategic or non-strategic manner. PMID:22905145
Prosocial Reward Learning in Children and Adolescents
Kwak, Youngbin; Huettel, Scott A.
2016-01-01
Adolescence is a period of increased sensitivity to social contexts. To evaluate how social context sensitivity changes over development—and influences reward learning—we investigated how children and adolescents perceive and integrate rewards for oneself and others during a dynamic risky decision-making task. Children and adolescents (N = 75, 8–16 years) performed the Social Gambling Task (SGT, Kwak et al., 2014) and completed a set of questionnaires measuring other-regarding behavior. In the SGT, participants choose amongst four card decks that have different payout structures for oneself and for a charity. We examined patterns of choices, overall decision strategies, and how reward outcomes led to trial-by-trial adjustments in behavior, as estimated using a reinforcement-learning model. Performance of children and adolescents was compared to data from a previously collected sample of adults (N = 102) performing the identical task. We found that that children/adolescents were not only more sensitive to rewards directed to the charity than self but also showed greater prosocial tendencies on independent measures of other-regarding behavior. Children and adolescents also showed less use of a strategy that prioritizes rewards for self at the expense of rewards for others. These results support the conclusion that, compared to adults, children and adolescents show greater sensitivity to outcomes for others when making decisions and learning about potential rewards. PMID:27761125
Yang, Xin-hua; Huang, Jia; Lan, Yong; Zhu, Cui-ying; Liu, Xiao-qun; Wang, Ye-fei; Cheung, Eric F C; Xie, Guang-rong; Chan, Raymond C K
2016-01-04
Anhedonia, the loss of interest or pleasure in reward processing, is a hallmark feature of major depressive disorder (MDD), but its underlying neurobiological mechanism is largely unknown. The present study aimed to examine the underlying neural mechanism of reward-related decision-making in patients with MDD. We examined behavioral and neural responses to rewards in patients with first-episode MDD (N=25) and healthy controls (N=25) using the Effort-Expenditure for Rewards Task (EEfRT). The task involved choices about possible rewards of varying magnitude and probability. We tested the hypothesis that individuals with MDD would exhibit a reduced neural response in reward-related brain structures involved in cost-benefit decision-making. Compared with healthy controls, patients with MDD showed significantly weaker responses in the left caudate nucleus when contrasting the 'high reward'-'low reward' condition, and blunted responses in the left superior temporal gyrus and the right caudate nucleus when contrasting high and low probabilities. In addition, hard tasks chosen during high probability trials were negatively correlated with superior temporal gyrus activity in MDD patients, while the same choices were negatively correlated with caudate nucleus activity in healthy controls. These results indicate that reduced caudate nucleus and superior temporal gyrus activation may underpin abnormal cost-benefit decision-making in MDD. Copyright © 2015 Elsevier Inc. All rights reserved.
van Hulst, Branko M; de Zeeuw, Patrick; Lupas, Kellina; Bos, Dienke J; Neggers, Sebastiaan F W; Durston, Sarah
2015-01-01
Reward processing has been implicated in developmental disorders. However, the classic task to probe reward anticipation, the monetary incentive delay task, has an abstract coding of reward and no storyline and may therefore be less appropriate for use with developmental populations. We modified the task to create a version appropriate for use with children. We investigated whether this child-friendly version could elicit ventral striatal activation during reward anticipation in typically developing children and young adolescents (aged 9.5-14.5). In addition, we tested whether our performance-based measure of reward sensitivity was associated with anticipatory activity in ventral striatum. Reward anticipation was related to activity in bilateral ventral striatum. Moreover, we found an association between individual reward sensitivity and activity in ventral striatum. We conclude that this task assesses ventral striatal activity in a child-friendly paradigm. The combination with a performance-based measure of reward sensitivity potentially makes the task a powerful tool for developmental imaging studies of reward processing.
A Quantitative Relationship between Signal Detection in Attention and Approach/Avoidance Behavior
Viswanathan, Vijay; Sheppard, John P.; Kim, Byoung W.; Plantz, Christopher L.; Ying, Hao; Lee, Myung J.; Raman, Kalyan; Mulhern, Frank J.; Block, Martin P.; Calder, Bobby; Lee, Sang; Mortensen, Dale T.; Blood, Anne J.; Breiter, Hans C.
2017-01-01
This study examines how the domains of reward and attention, which are often studied as independent processes, in fact interact at a systems level. We operationalize divided attention with a continuous performance task and variables from signal detection theory (SDT), and reward/aversion with a keypress task measuring approach/avoidance in the framework of relative preference theory (RPT). Independent experiments with the same subjects showed a significant association between one SDT and two RPT variables, visualized as a three-dimensional structure. Holding one of these three variables constant, further showed a significant relationship between a loss aversion-like metric from the approach/avoidance task, and the response bias observed during the divided attention task. These results indicate that a more liberal response bias under signal detection (i.e., a higher tolerance for noise, resulting in a greater proportion of false alarms) is associated with higher “loss aversion.” Furthermore, our functional model suggests a mechanism for processing constraints with divided attention and reward/aversion. Together, our results argue for a systematic relationship between divided attention and reward/aversion processing in humans. PMID:28270776
A Quantitative Relationship between Signal Detection in Attention and Approach/Avoidance Behavior.
Viswanathan, Vijay; Sheppard, John P; Kim, Byoung W; Plantz, Christopher L; Ying, Hao; Lee, Myung J; Raman, Kalyan; Mulhern, Frank J; Block, Martin P; Calder, Bobby; Lee, Sang; Mortensen, Dale T; Blood, Anne J; Breiter, Hans C
2017-01-01
This study examines how the domains of reward and attention, which are often studied as independent processes, in fact interact at a systems level. We operationalize divided attention with a continuous performance task and variables from signal detection theory (SDT), and reward/aversion with a keypress task measuring approach/avoidance in the framework of relative preference theory (RPT). Independent experiments with the same subjects showed a significant association between one SDT and two RPT variables, visualized as a three-dimensional structure. Holding one of these three variables constant, further showed a significant relationship between a loss aversion-like metric from the approach/avoidance task, and the response bias observed during the divided attention task. These results indicate that a more liberal response bias under signal detection (i.e., a higher tolerance for noise, resulting in a greater proportion of false alarms) is associated with higher "loss aversion." Furthermore, our functional model suggests a mechanism for processing constraints with divided attention and reward/aversion. Together, our results argue for a systematic relationship between divided attention and reward/aversion processing in humans.
Impaired Learning of Social Compared to Monetary Rewards in Autism
Lin, Alice; Rangel, Antonio; Adolphs, Ralph
2012-01-01
A leading hypothesis to explain the social dysfunction in people with autism spectrum disorders (ASD) is that they exhibit a deficit in reward processing and motivation specific to social stimuli. However, there have been few direct tests of this hypothesis to date. Here we used an instrumental reward learning task that contrasted learning with social rewards (pictures of positive and negative faces) against learning with monetary reward (winning and losing money). The two tasks were structurally identical except for the type of reward, permitting direct comparisons. We tested 10 high-functioning people with ASD (7M, 3F) and 10 healthy controls who were matched on gender, age, and education. We found no significant differences between the two groups in terms of overall ability behaviorally to discriminate positive from negative slot machines, reaction-times, and valence ratings, However, there was a specific impairment in the ASD group in learning to choose social rewards, compared to monetary rewards: they had a significantly lower cumulative number of choices of the most rewarding social slot machine, and had a significantly slower initial learning rate for the socially rewarding slot machine, compared to the controls. The findings show a deficit in reward learning in ASD that is greater for social rewards than for monetary rewards, and support the hypothesis of a disproportionate impairment in social reward processing in ASD. PMID:23060743
Cooperative Learning: We Can also Do It without Task Structure
ERIC Educational Resources Information Center
Serrano, Jose Manuel; Pons, Rosa Maria
2007-01-01
The present study focuses on the use of a cooperative methodology with university students during the last year of their degree programme. The task structure could be freely chosen, and there were no restraints on group decisions to deal with the classroom work. All the elements of cooperation were based on a reward structure. The results show…
Brain activity and infant attachment history in young men during loss and reward processing.
Quevedo, Karina; Waters, Theodore E A; Scott, Hannah; Roisman, Glenn I; Shaw, Daniel S; Forbes, Erika E
2017-05-01
There is now ample evidence that the quality of early attachment experiences shapes expectations for supportive and responsive care and ultimately serves to scaffold adaptation to the salient tasks of development. Nonetheless, few studies have identified neural mechanisms that might give rise to these associations. Using a moderately large sample of low-income male participants recruited during infancy (N = 171), we studied the predictive significance of attachment insecurity and disorganization at age 18 months (as measured in the Strange Situation Procedure) for patterns of neural activation to reward and loss at age 20 years (assessed during a reward-based task as part of a functional magnetic resonance imaging scan). Results indicated that individuals with a history of insecure attachment showed hyperactivity in (a) reward- and emotion-related (e.g., basal ganglia and amygdala) structures and (b) emotion regulation and self-referential processing (cortical midline structures) in response to positive and negative outcomes (and anticipation of those outcomes). Further, the neural activation of individuals with a history of disorganized attachment suggested that they had greater emotional reactivity in anticipation of reward and employed greater cognitive control when negative outcomes were encountered. Overall, results suggest that the quality of early attachments has lasting impacts on brain function and reward processing.
Smith, Bruce W; Mitchell, Derek G V; Hardin, Michael G; Jazbec, Sandra; Fridberg, Daniel; Blair, R James R; Ernst, Monique
2009-01-15
Economic decision-making involves the weighting of magnitude and probability of potential gains/losses. While previous work has examined the neural systems involved in decision-making, there is a need to understand how the parameters associated with decision-making (e.g., magnitude of expected reward, probability of expected reward and risk) modulate activation within these neural systems. In the current fMRI study, we modified the monetary wheel of fortune (WOF) task [Ernst, M., Nelson, E.E., McClure, E.B., Monk, C.S., Munson, S., Eshel, N., et al. (2004). Choice selection and reward anticipation: an fMRI study. Neuropsychologia 42(12), 1585-1597.] to examine in 25 healthy young adults the neural responses to selections of different reward magnitudes, probabilities, or risks. Selection of high, relative to low, reward magnitude increased activity in insula, amygdala, middle and posterior cingulate cortex, and basal ganglia. Selection of low-probability, as opposed to high-probability reward, increased activity in anterior cingulate cortex, as did selection of risky, relative to safe reward. In summary, decision-making that did not involve conflict, as in the magnitude contrast, recruited structures known to support the coding of reward values, and those that integrate motivational and perceptual information for behavioral responses. In contrast, decision-making under conflict, as in the probability and risk contrasts, engaged the dorsal anterior cingulate cortex whose role in conflict monitoring is well established. However, decision-making under conflict failed to activate the structures that track reward values per se. Thus, the presence of conflict in decision-making seemed to significantly alter the pattern of neural responses to simple rewards. In addition, this paradigm further clarifies the functional specialization of the cingulate cortex in processes of decision-making.
Pressure to cooperate: is positive reward interdependence really needed in cooperative learning?
Buchs, Céline; Gilles, Ingrid; Dutrévis, Marion; Butera, Fabrizio
2011-03-01
BACKGROUND. Despite extensive research on cooperative learning, the debate regarding whether or not its effectiveness depends on positive reward interdependence has not yet found clear evidence. AIMS. We tested the hypothesis that positive reward interdependence, as compared to reward independence, enhances cooperative learning only if learners work on a 'routine task'; if the learners work on a 'true group task', positive reward interdependence induces the same level of learning as reward independence. SAMPLE. The study involved 62 psychology students during regular workshops. METHOD. Students worked on two psychology texts in cooperative dyads for three sessions. The type of task was manipulated through resource interdependence: students worked on either identical (routine task) or complementary (true group task) information. Students expected to be assessed with a Multiple Choice Test (MCT) on the two texts. The MCT assessment type was introduced according to two reward interdependence conditions, either individual (reward independence) or common (positive reward interdependence). A follow-up individual test took place 4 weeks after the third session of dyadic work to examine individual learning. RESULTS. The predicted interaction between the two types of interdependence was significant, indicating that students learned more with positive reward interdependence than with reward independence when they worked on identical information (routine task), whereas students who worked on complementary information (group task) learned the same with or without reward interdependence. CONCLUSIONS. This experiment sheds light on the conditions under which positive reward interdependence enhances cooperative learning, and suggests that creating a real group task allows to avoid the need for positive reward interdependence. © 2010 The British Psychological Society.
Social Influences on Creativity: Interactive Effects of Reward and Choice.
ERIC Educational Resources Information Center
Amabile, Teresa M.
In a test of intrinsic motivation hypothesis of creativity, 60 undergraduate women did an artistic creativity task with either the expectation of receiving a reward or no expectation of reward. Reward was crossed with choice in task engagement, such that half of the reward Ss contracted to do the task in order to receive reward, and half simply…
Pornpattananangkul, Narun; Nusslock, Robin
2016-10-01
While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven individuals first completed a behavioral delay-discounting task. Then reward-processing EEG activity was assessed using a separate reward-learning task, called a reward time-estimation task. During this EEG task, participants were instructed to estimate time duration and were provided performance feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, enhanced EEG activity during both reward-anticipation (including, cued-locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and reward-outcome (including, feedback-locked delta, theta and beta power) stages. Moreover, all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting their essential roles in learning and adjusting performance to maximize winnings in a reward-learning situation. Importantly, enhanced EEG power during Reward trials, as reflected by stronger 1) pre-feedback alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta, was associated with a greater preference for larger-but-delayed rewards in a separate, behavioral delay-discounting task. Results highlight the association between a stronger preference toward larger-but-delayed rewards and enhanced reward-processing. Moreover, our reward-processing EEG indices detail the specific stages of reward-processing where these associations occur. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zou, Ying-min; Ni, Ke; Wang, Yang-yu; Yu, En-qing; Lui, Simon S. Y.; Cheung, Eric F. C.; Chan, Raymond C. K.
2017-01-01
Abstract Background: Deficits in reward processing, such as approaching motivation, reward learning and effort-based decision-making, have been observed in patients with schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). However, little is known about the nature of reward-processing deficits in these 3 diagnostic groups. The present study aimed to compare and contrast amotivation in these 3 diagnostic groups using an effort-based decision-making task. Methods: Sixty patients (19 SCZ patients, 18 BD patients and 23 MDD patients) and 27 healthy controls (HC) were recruited for the present study. The Effort Expenditure for Reward Task (EEfRT) was administered to evaluate their effort allocation pattern. This task required participants to choose easy or hard tasks in response to different levels of reward magnitude and reward probability. Results: Results showed that SCZ, BD, and MDD patients chose fewer hard tasks compared to HC. As reward magnitude increased, MDD patients made the least effort to gain reward compared to the other groups. When reward probability was intermediate, MDD patients chose fewer hard tasks than SCZ patients, whereas BD patients and HC chose more hard tasks than MDD and SCZ patients. When the reward probability was high, all 3 groups of patients tried fewer hard tasks than HC. Moreover, SCZ and MDD patients were less likely to choose hard tasks than BD patients and HC in the intermediate estimated value conditions. However, in the highest estimated value condition, there was no group difference in hard task choices between these 3 clinical groups, and they were all less motivated than HC. Conclusion: SCZ, BD, and MDD patients shared common deficits in gaining reward if the reward probability and estimated value were high. SCZ and MDD patients showed less motivation than BD patients in gaining reward when the reward probability and estimated value was intermediate.
2014-09-29
Framing Reinforcement Learning from Human Reward: Reward Positivity, Temporal Discounting, Episodicity , and Performance W. Bradley Knox...positive a trainer’s reward values are; temporal discounting, the extent to which future reward is discounted in value; episodicity , whether task...learning occurs in discrete learning episodes instead of one continuing session; and task performance, the agent’s performance on the task the trainer
Pornpattananangkul, Narun; Nusslock, Robin
2016-01-01
While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven individuals completed a behavioral delay-discounting task. Reward-processing EEG activity was assessed using a separate reward-learning task, called a reward time-estimation task. During this task, participants were instructed to estimate time duration and were provided performance feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, enhanced EEG activity during both reward-anticipation stage (including, cued-locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and at the reward-outcome stage (including, feedback-locked delta, theta and beta power). Moreover, all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting their essential roles in learning and adjusting performance to maximize winnings in a reward-learning situation. Importantly, enhanced EEG power during Reward trials for 1) pre-feedback alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta was associated with a greater preference for larger-but-delayed rewards. Results highlight the association between a stronger preference toward larger-but-delayed rewards and enhanced reward-processing. Moreover, our reward-processing EEG indices detail the specific stages of reward-processing where these associations occur. PMID:27477630
Pavlovian reward learning underlies value driven attentional capture.
Bucker, Berno; Theeuwes, Jan
2017-02-01
Recent evidence shows that distractors that signal high compared to low reward availability elicit stronger attentional capture, even when this is detrimental for task-performance. This suggests that simply correlating stimuli with reward administration, rather than their instrumental relationship with obtaining reward, produces value-driven attentional capture. However, in previous studies, reward delivery was never response independent, as only correct responses were rewarded, nor was it completely task-irrelevant, as the distractor signaled the magnitude of reward that could be earned on that trial. In two experiments, we ensured that associative reward learning was completely response independent by letting participants perform a task at fixation, while high and low rewards were automatically administered following the presentation of task-irrelevant colored stimuli in the periphery (Experiment 1) or at fixation (Experiment 2). In a following non-reward test phase, using the additional singleton paradigm, the previously reward signaling stimuli were presented as distractors to assess truly task-irrelevant value driven attentional capture. The results showed that high compared to low reward-value associated distractors impaired performance, and thus captured attention more strongly. This suggests that genuine Pavlovian conditioning of stimulus-reward contingencies is sufficient to obtain value-driven attentional capture. Furthermore, value-driven attentional capture can occur following associative reward learning of temporally and spatially task-irrelevant distractors that signal the magnitude of available reward (Experiment 1), and is independent of training spatial shifts of attention towards the reward signaling stimuli (Experiment 2). This confirms and strengthens the idea that Pavlovian reward learning underlies value driven attentional capture.
Incremental effects of reward on creativity.
Eisenberger, R; Rhoades, L
2001-10-01
The authors examined 2 ways reward might increase creativity. First, reward contingent on creativity might increase extrinsic motivation. Studies 1 and 2 found that repeatedly giving preadolescent students reward for creative performance in 1 task increased their creativity in subsequent tasks. Study 3 reported that reward promised for creativity increased college students' creative task performance. Second, expected reward for high performance might increase creativity by enhancing perceived self-determination and, therefore, intrinsic task interest. Study 4 found that employees' intrinsic job interest mediated a positive relationship between expected reward for high performance and creative suggestions offered at work. Study 5 found that employees' perceived self-determination mediated a positive relationship between expected reward for high performance and the creativity of anonymous suggestions for helping the organization.
Overlapping neural systems represent cognitive effort and reward anticipation.
Vassena, Eliana; Silvetti, Massimo; Boehler, Carsten N; Achten, Eric; Fias, Wim; Verguts, Tom
2014-01-01
Anticipating a potential benefit and how difficult it will be to obtain it are valuable skills in a constantly changing environment. In the human brain, the anticipation of reward is encoded by the Anterior Cingulate Cortex (ACC) and Striatum. Naturally, potential rewards have an incentive quality, resulting in a motivational effect improving performance. Recently it has been proposed that an upcoming task requiring effort induces a similar anticipation mechanism as reward, relying on the same cortico-limbic network. However, this overlapping anticipatory activity for reward and effort has only been investigated in a perceptual task. Whether this generalizes to high-level cognitive tasks remains to be investigated. To this end, an fMRI experiment was designed to investigate anticipation of reward and effort in cognitive tasks. A mental arithmetic task was implemented, manipulating effort (difficulty), reward, and delay in reward delivery to control for temporal confounds. The goal was to test for the motivational effect induced by the expectation of bigger reward and higher effort. The results showed that the activation elicited by an upcoming difficult task overlapped with higher reward prospect in the ACC and in the striatum, thus highlighting a pivotal role of this circuit in sustaining motivated behavior.
The impact of reward and punishment on skill learning depends on task demands
Steel, Adam; Silson, Edward H.; Stagg, Charlotte J.; Baker, Chris I.
2016-01-01
Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24–48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion. PMID:27786302
The impact of reward and punishment on skill learning depends on task demands.
Steel, Adam; Silson, Edward H; Stagg, Charlotte J; Baker, Chris I
2016-10-27
Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24-48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion.
Stott, Jeffrey J; Redish, A David
2014-11-05
Both orbitofrontal cortex (OFC) and ventral striatum (vStr) have been identified as key structures that represent information about value in decision-making tasks. However, the dynamics of how this information is processed are not yet understood. We recorded ensembles of cells from OFC and vStr in rats engaged in the spatial adjusting delay-discounting task, a decision-making task that involves a trade-off between delay to and magnitude of reward. Ventral striatal neural activity signalled information about reward before the rat's decision, whereas such reward-related signals were absent in OFC until after the animal had committed to its decision. These data support models in which vStr is directly involved in action selection, but OFC processes decision-related information afterwards that can be used to compare the predicted and actual consequences of behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Demurie, Ellen; Roeyers, Herbert; Baeyens, Dieter; Sonuga-Barke, Edmund
2012-12-01
The current study compared the effects of reward anticipation on task performance in children and adolescents (8-16 years old) using monetary and various social rewards. Eighty-five typically developing children undertook the Monetary Incentive Delay (MID) task. Of these 44 also undertook the Social Incentive Delay (SID-basic) task where social reward was operationalized as a smiling face and spoken compliments. Forty-one children participated in the SID-plus where points were added to a pictogram with written compliments. In a preparatory validation study participants were asked howmuch they liked the SID-basic rewards.Results showed that there was an effect of reward size on accuracy and RT in both the MID task and SID-plus, but not SID-basic. Subjective value of the SID-basic rewards was rated higher with hypothesized increasing reward intensity. In conclusion, although the social rewards in SID-basic were liked by children andadolescents in the validation study, they had no effect on the behaviour. Only when points were added (SID-plus), anticipated social reward affected task performance. Thus our results highlight (i) the difference between likeability andreinforcing quality and (ii) the need for a quantifiable element to rewards for themto be reinforcing for children. Copyright © 2012 John Wiley & Sons, Ltd.
MacLean, Mary H; Giesbrecht, Barry
2015-07-01
Task-relevant and physically salient features influence visual selective attention. In the present study, we investigated the influence of task-irrelevant and physically nonsalient reward-associated features on visual selective attention. Two hypotheses were tested: One predicts that the effects of target-defining task-relevant and task-irrelevant features interact to modulate visual selection; the other predicts that visual selection is determined by the independent combination of relevant and irrelevant feature effects. These alternatives were tested using a visual search task that contained multiple targets, placing a high demand on the need for selectivity, and that was data-limited and required unspeeded responses, emphasizing early perceptual selection processes. One week prior to the visual search task, participants completed a training task in which they learned to associate particular colors with a specific reward value. In the search task, the reward-associated colors were presented surrounding targets and distractors, but were neither physically salient nor task-relevant. In two experiments, the irrelevant reward-associated features influenced performance, but only when they were presented in a task-relevant location. The costs induced by the irrelevant reward-associated features were greater when they oriented attention to a target than to a distractor. In a third experiment, we examined the effects of selection history in the absence of reward history and found that the interaction between task relevance and selection history differed, relative to when the features had previously been associated with reward. The results indicate that under conditions that demand highly efficient perceptual selection, physically nonsalient task-irrelevant and task-relevant factors interact to influence visual selective attention.
Motivational Influences on Cognitive Performance in Children: Focus Over Fita
Worthy, Darrell A.; Brez, Caitlin C.; Markman, Arthur B.; Maddox, W. Todd
2010-01-01
Cognitive psychologists have begun to address how motivational factors influence adults’ performance on cognitive tasks. However, little research has examined how different motivational factors interact with one another to affect behavior across the lifespan. The current study examined how children perform on a classification task when placed in a regulatory fit or mismatch. Nine-year-old children performed a classification task in which they either gained or lost points for each response. Additionally, children were given either a global promotion focus (trying to earn a gift card) or a prevention focus (trying to avoid losing a gift card). Previous work indicates that adults in this task tend to perform better when there is a match (or fit) between the overall incentive to earn or avoid losing the incentive and the task reward structure to maximize points gained or minimize points lost. Unlike adults, nine-year-olds perform better in the promotion condition than in the prevention condition regardless of task reward structure. Possible explanations for the differences between adults’ and children’s performance are discussed as well as possible applications for academic settings. PMID:21552510
Differences in reward processing between putative cell types in primate prefrontal cortex
Fan, Hongwei; Wang, Rubin; Sakagami, Masamichi
2017-01-01
Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli. PMID:29261734
Differences in reward processing between putative cell types in primate prefrontal cortex.
Fan, Hongwei; Pan, Xiaochuan; Wang, Rubin; Sakagami, Masamichi
2017-01-01
Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli.
Beran, Michael J; James, Brielle T; Whitham, Will; Parrish, Audrey E
2016-10-01
The reverse-reward contingency task presents 2 food sets to an animal, and they are required to choose the smaller of the 2 sets in order to receive the larger food set. Intriguingly, the majority of species tested on the reverse-reward task fail to learn this contingency in the absence of large trial counts, correction trials, and punishment techniques. The unique difficulty of this seemingly simple task likely reflects a failure of inhibitory control which is required to point toward a smaller and less desirable reward rather than a larger and more desirable reward. This failure by chimpanzees and other primates to pass the reverse-reward task is striking given the self-control they exhibit in a variety of other paradigms. For example, chimpanzees have consistently demonstrated a high capacity for delay of gratification in order to maximize accumulating food rewards in which foods are added item-by-item to a growing set until the subject consumes the rewards. To study the mechanisms underlying success in the accumulation task and failure in the reverse-reward task, we presented chimpanzees with several combinations of these 2 tasks to determine when chimpanzees might succeed in pointing to smaller food sets over larger food sets and how the nature of the task might determine the animals' success or failure. Across experiments, 3 chimpanzees repeatedly failed to solve the reverse-reward task, whereas they accumulated nearly all food items across all instances of the accumulation self-control task, even when they had to point to small amounts of food to accumulate larger amounts. These data indicate that constraints of these 2 related but still different tasks of behavioral inhibition are dependent upon the animals' perceptions of the choice set, their sense of control over the contents of choice sets, and the nature of the task constraints. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Use of reward-penalty structures in human experimentation
NASA Technical Reports Server (NTRS)
Stein, A. C.; Allen, R. W.; Schwartz, S. H.
1978-01-01
The use of motivational techniques in human performance research is reviewed and an example study employing a reward-penalty structure to simulate the motivations inherent in a real-world situation is presented. Driver behavior in a decision-making driving scenario was studied. The task involved control of an instrumented car on a cooperative test course. Subjects were penalized monetarily for tickets and accidents and rewarded for saving driving time. Two groups were assigned different ticket penalties. The group with the highest penalties tended to drive more conservatively. However, the average total payoff to each group was the same, as the conservative drivers traded off slower driving times with lower ticket penalties.
Schevernels, Hanne; Krebs, Ruth M.; Santens, Patrick; Woldorff, Marty G.; Boehler, C. Nico
2013-01-01
Recently, attempts have been made to disentangle the neural underpinnings of preparatory processes related to reward and attention. Functional magnetic resonance imaging (fMRI) research showed that neural activity related to the anticipation of reward and to attentional demands invokes neural activity patterns featuring large-scale overlap, along with some differences and interactions. Due to the limited temporal resolution of fMRI, however, the temporal dynamics of these processes remain unclear. Here, we report an event-related potentials (ERP) study in which cued attentional demands and reward prospect were combined in a factorial design. Results showed that reward prediction dominated early cue processing, as well as the early and later parts of the contingent negative variation (CNV) slow-wave ERP component that has been associated with task-preparation processes. Moreover these reward-related electrophysiological effects correlated across participants with response-time speeding on reward-prospect trials. In contrast, cued attentional demands affected only the later part of the CNV, with the highest amplitudes following cues predicting high-difficulty potential-reward targets, thus suggesting maximal task preparation when the task requires it and entails reward prospect. Consequently, we suggest that task-preparation processes triggered by reward can arise earlier, and potentially more directly, than strategic top-down aspects of preparation based on attentional demands. PMID:24064071
Individual differences in the influence of task-irrelevant Pavlovian cues on human behavior.
Garofalo, Sara; di Pellegrino, Giuseppe
2015-01-01
Pavlovian-to-instrumental transfer (PIT) refers to the process of a Pavlovian reward-paired cue acquiring incentive motivational proprieties that drive choices. It represents a crucial phenomenon for understanding cue-controlled behavior, and it has both adaptive and maladaptive implications (i.e., drug-taking). In animals, individual differences in the degree to which such cues bias performance have been identified in two types of individuals that exhibit distinct Conditioned Responses (CR) during Pavlovian conditioning: Sign-Trackers (ST) and Goal-Trackers (GT). Using an appetitive PIT procedure with a monetary reward, the present study investigated, for the first time, the extent to which such individual differences might affect the influence of reward-paired cues in humans. In a first task, participants learned an instrumental response leading to reward; then, in a second task, a visual Pavlovian cue was associated with the same reward; finally, in a third task, PIT was tested by measuring the preference for the reward-paired instrumental response when the task-irrelevant reward-paired cue was presented, in the absence of the reward itself. In ST individuals, but not in GT individuals, reward-related cues biased behavior, resulting in an increased likelihood to perform the instrumental response independently paired with the same reward when presented with the task-irrelevant reward-paired cue, even if the reward itself was no longer available (i.e., stronger PIT effect). This finding has important implications for developing individualized treatment for maladaptive behaviors, such as addiction.
Individual differences in the influence of task-irrelevant Pavlovian cues on human behavior
Garofalo, Sara; di Pellegrino, Giuseppe
2015-01-01
Pavlovian-to-instrumental transfer (PIT) refers to the process of a Pavlovian reward-paired cue acquiring incentive motivational proprieties that drive choices. It represents a crucial phenomenon for understanding cue-controlled behavior, and it has both adaptive and maladaptive implications (i.e., drug-taking). In animals, individual differences in the degree to which such cues bias performance have been identified in two types of individuals that exhibit distinct Conditioned Responses (CR) during Pavlovian conditioning: Sign-Trackers (ST) and Goal-Trackers (GT). Using an appetitive PIT procedure with a monetary reward, the present study investigated, for the first time, the extent to which such individual differences might affect the influence of reward-paired cues in humans. In a first task, participants learned an instrumental response leading to reward; then, in a second task, a visual Pavlovian cue was associated with the same reward; finally, in a third task, PIT was tested by measuring the preference for the reward-paired instrumental response when the task-irrelevant reward-paired cue was presented, in the absence of the reward itself. In ST individuals, but not in GT individuals, reward-related cues biased behavior, resulting in an increased likelihood to perform the instrumental response independently paired with the same reward when presented with the task-irrelevant reward-paired cue, even if the reward itself was no longer available (i.e., stronger PIT effect). This finding has important implications for developing individualized treatment for maladaptive behaviors, such as addiction. PMID:26157371
Mechanisms of impulsive choice: III. The role of reward processes
Marshall, Andrew T.
2015-01-01
Two experiments examined the relationship between reward processing and impulsive choice. In Experiment 1, rats chose between a smaller-sooner (SS) reward (1 pellet, 10 s) and a larger-later (LL) reward (1, 2, and 4 pellets, 30 s). The rats then experienced concurrent variable-interval 30-s schedules with variations in reward magnitude to evaluate reward magnitude discrimination. LL choice behavior positively correlated with reward magnitude discrimination. In Experiment 2, rats chose between an SS reward (1 pellet, 10 s) and an LL reward (2 and 4 pellets, 30 s). The rats then received either a reward intervention which consisted of concurrent fixed-ratio schedules associated with different magnitudes to improve their reward magnitude discrimination, or a control task. All rats then experienced a post-intervention impulsive choice task followed by a reward magnitude discrimination task to assess intervention efficacy. The rats that received the intervention exhibited increases in post-intervention LL choice behavior, and made more responses for larger-reward magnitudes in the reward magnitude discrimination task, suggesting that the intervention heightened sensitivities to reward magnitude. The results suggest that reward magnitude discrimination plays a key role in individual differences in impulsive choice, and could be a potential target for further intervention developments. PMID:26506254
The Minimal Control Principle Predicts Strategy Shifts in the Abstract Decision Making Task
ERIC Educational Resources Information Center
Taatgen, Niels A.
2011-01-01
The minimal control principle (Taatgen, 2007) predicts that people strive for problem-solving strategies that require as few internal control states as possible. In an experiment with the Abstract Decision Making task (ADM task; Joslyn & Hunt, 1998) the reward structure was manipulated to make either a low-control strategy or a high-strategy…
Ivanov, Iliyan; Liu, Xun; Clerkin, Suzanne; Schulz, Kurt; Fan, Jin; Friston, Karl; London, Edythe D; Schwartz, Jeffrey; Newcorn, Jeffrey H
2014-06-01
Psychostimulants, such as methylphenidate, are thought to improve information processing in motivation-reward and attention-activation networks by enhancing the effects of more relevant signals and suppressing those of less relevant ones; however the nature of such reciprocal influences remains poorly understood. To explore this question, we tested the effect of methylphenidate on performance and associated brain activity in the Anticipation, Conflict, Reward (ACR) task. Sixteen healthy adult volunteers, ages 21-45, were scanned twice using functional magnetic resonance imaging (fMRI) as they performed the ACR task under placebo and methylphenidate conditions. A three-way repeated measures analysis of variance, with cue (reward vs. non-reward), target (congruent vs. incongruent) and medication condition (methylphenidate vs. placebo) as the factors, was used to analyze behaviors on the task. Blood oxygen level dependent (BOLD) signals, reflecting task-related neural activity, were evaluated using linear contrasts. Participants exhibited significantly greater accuracy in the methylphenidate condition than the placebo condition. Compared with placebo, the methylphenidate condition also was associated with lesser task-related activity in components of attention-activation systems irrespective of the reward cue, and less task-related activity in components of the reward-motivation system, particularly the insula, during reward trials irrespective of target difficulty. These results suggest that methylphenidate enhances task performance by improving efficiency of information processing in both reward-motivation and in attention-activation systems. Published by Elsevier B.V.
A test of the reward-value hypothesis.
Smith, Alexandra E; Dalecki, Stefan J; Crystal, Jonathon D
2017-03-01
Rats retain source memory (memory for the origin of information) over a retention interval of at least 1 week, whereas their spatial working memory (radial maze locations) decays within approximately 1 day. We have argued that different forgetting functions dissociate memory systems. However, the two tasks, in our previous work, used different reward values. The source memory task used multiple pellets of a preferred food flavor (chocolate), whereas the spatial working memory task provided access to a single pellet of standard chow-flavored food at each location. Thus, according to the reward-value hypothesis, enhanced performance in the source memory task stems from enhanced encoding/memory of a preferred reward. We tested the reward-value hypothesis by using a standard 8-arm radial maze task to compare spatial working memory accuracy of rats rewarded with either multiple chocolate or chow pellets at each location using a between-subjects design. The reward-value hypothesis predicts superior accuracy for high-valued rewards. We documented equivalent spatial memory accuracy for high- and low-value rewards. Importantly, a 24-h retention interval produced equivalent spatial working memory accuracy for both flavors. These data are inconsistent with the reward-value hypothesis and suggest that reward value does not explain our earlier findings that source memory survives unusually long retention intervals.
Measuring Social Motivation Using Signal Detection and Reward Responsiveness.
Chevallier, Coralie; Tonge, Natasha; Safra, Lou; Kahn, David; Kohls, Gregor; Miller, Judith; Schultz, Robert T
2016-01-01
Recent trends in psychiatry have emphasized the need for a shift from categorical to dimensional approaches. Of critical importance to this transformation is the availability of tools to objectively quantify behaviors dimensionally. The present study focuses on social motivation, a dimension of behavior that is central to a range of psychiatric conditions but for which a particularly small number of assays currently exist. In Study 1 (N = 48), healthy adults completed a monetary reward task and a social reward task, followed by completion of the Chapman Physical and Social Anhedonia Scales. In Study 2 (N = 26), an independent sample was recruited to assess the robustness of Study 1's findings. The reward tasks were analyzed using signal detection theory to quantify how much reward cues bias participants' responses. In both Study 1 and Study 2, social anhedonia scores were negatively correlated with change in response bias in the social reward task but not in the monetary reward task. A median split on social anhedonia scores confirmed that participants with high social anhedonia showed less change in response bias in the social reward task compared to participants with low social anhedonia. This study confirms that social anhedonia selectively affects how much an individual changes their behavior based on the presence of socially rewarding cues and establishes a tool to quantify social reward responsiveness dimensionally.
Cherniawsky, Avital S; Holroyd, Clay B
2013-03-01
Impulsivity is characterized in part by heightened sensitivity to immediate relative to future rewards. Although previous research has suggested that "high discounters" in intertemporal choice tasks tend to prefer immediate over future rewards because they devalue the latter, it remains possible that they instead overvalue immediate rewards. To investigate this question, we recorded the reward positivity, a component of the event-related brain potential (ERP) associated with reward processing, with participants engaged in a task in which they received both immediate and future rewards and nonrewards. The participants also completed a temporal discounting task without ERP recording. We found that immediate but not future rewards elicited the reward positivity. High discounters also produced larger reward positivities to immediate rewards than did low discounters, indicating that high discounters relatively overvalued immediate rewards. These findings suggest that high discounters may be more motivated than low discounters to work for monetary rewards, irrespective of the time of arrival of the incentives.
The Influence of Reward Associations on Conflict Processing in the Stroop Task
ERIC Educational Resources Information Center
Krebs, Ruth M.; Boehler, Carsten N.; Woldorff, Marty G.
2010-01-01
Performance in a behavioral task can be facilitated by associating stimulus properties with reward. In contrast, conflicting information is known to impede task performance. Here we investigated how reward associations influence the within-trial processing of conflicting information using a color-naming Stroop task in which a subset of ink colors…
State-based versus reward-based motivation in younger and older adults.
Worthy, Darrell A; Cooper, Jessica A; Byrne, Kaileigh A; Gorlick, Marissa A; Maddox, W Todd
2014-12-01
Recent decision-making work has focused on a distinction between a habitual, model-free neural system that is motivated toward actions that lead directly to reward and a more computationally demanding goal-directed, model-based system that is motivated toward actions that improve one's future state. In this article, we examine how aging affects motivation toward reward-based versus state-based decision making. Participants performed tasks in which one type of option provided larger immediate rewards but the alternative type of option led to larger rewards on future trials, or improvements in state. We predicted that older adults would show a reduced preference for choices that led to improvements in state and a greater preference for choices that maximized immediate reward. We also predicted that fits from a hybrid reinforcement-learning model would indicate greater model-based strategy use in younger than in older adults. In line with these predictions, older adults selected the options that maximized reward more often than did younger adults in three of the four tasks, and modeling results suggested reduced model-based strategy use. In the task where older adults showed similar behavior to younger adults, our model-fitting results suggested that this was due to the utilization of a win-stay-lose-shift heuristic rather than a more complex model-based strategy. Additionally, within older adults, we found that model-based strategy use was positively correlated with memory measures from our neuropsychological test battery. We suggest that this shift from state-based to reward-based motivation may be due to age related declines in the neural structures needed for more computationally demanding model-based decision making.
Stolyarova, Alexandra; Izquierdo, Alicia
2015-01-01
Adolescent behavior is typified by increased risk-taking, reward- and novelty-seeking, as well as an augmented need for social and environmental stimulation. This behavioral phenotype may result from alterations in outcome valuation or reward learning. In the present set of experiments, we directly compared adult and adolescent animals on tasks measuring both of these processes. Additionally, we examined developmental differences in dopamine D1-like receptor (D1R), dopamine D2-like receptor (D2R), and polysialylated neural cell adhesion molecule (PSA-NCAM) expression in animals that were trained on an effortful reward valuation task, given that these proteins play an important role in the functional development of the amygdala-prefrontocortical (PFC) circuit and mesocorticolimbic dopamine system. We found that adolescent animals were not different from adults in appetitive associative learning, but exhibited distinct pattern of responses to differences in outcome values, which was paralleled by an enhanced motivation to invest effort to obtain larger rewards. There were no differences in D2 receptor expression, but D1 receptor expression was significantly reduced in the striatum of animals that had experiences with reward learning during adolescence compared to animals that went through the same experiences in adulthood. We observed increased levels of PSA-NCAM expression in both PFC and amygdala of late adolescents compared to adults that were previously trained on an effortful reward valuation task. PSA-NCAM levels in PFC were strongly and positively associated with high effort/reward (HER) choices in adolescents, but not in adult animals. Increased levels of PSA-NCAM expression in adolescents may index increased structural plasticity and represent a neural correlate of a reward sensitive endophenotype. PMID:25999830
Social importance enhances prospective memory: evidence from an event-based task.
Walter, Stefan; Meier, Beat
2017-07-01
Prospective memory performance can be enhanced by task importance, for example by promising a reward. Typically, this comes at costs in the ongoing task. However, previous research has suggested that social importance (e.g., providing a social motive) can enhance prospective memory performance without additional monitoring costs in activity-based and time-based tasks. The aim of the present study was to investigate the influence of social importance in an event-based task. We compared four conditions: social importance, promising a reward, both social importance and promising a reward, and standard prospective memory instructions (control condition). The results showed enhanced prospective memory performance for all importance conditions compared to the control condition. Although ongoing task performance was slowed in all conditions with a prospective memory task when compared to a baseline condition with no prospective memory task, additional costs occurred only when both the social importance and reward were present simultaneously. Alone, neither social importance nor promising a reward produced an additional slowing when compared to the cost in the standard (control) condition. Thus, social importance and reward can enhance event-based prospective memory at no additional cost.
Hefer, Carmen; Dreisbach, Gesine
2017-10-01
Growing evidence suggests that reward prospect promotes cognitive stability in terms of increased context or cue maintenance. In 3 Experiments, using different versions of the AX-continuous performance task, we investigated whether this reward effect comes at the cost of decreased cognitive flexibility. Experiment 1 shows that the reward induced increase of cue maintenance perseverates even when reward is no longer available. Experiment 2 shows that this reward effect not only survives the withdrawal of reward but also delays the adaptation to changed task conditions that make cue usage maladaptive. And finally in Experiment 3, it is shown that this reduced flexibility to adapt is observed in a more demanding modified version of the AX-continuous performance task and is even stronger under conditions of sustained reward. Taken together, all 3 Experiments thus speak to the idea that the prospect of reward increases cue maintenance and thereby cognitive stability. This increased cognitive stability however comes at the cost of decreased flexibility in terms of delayed adaptation to new reward and task conditions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Reward Activates Stimulus-Specific and Task-Dependent Representations in Visual Association Cortices
Muller, Timothy; Yeung, Nick; Waszak, Florian
2014-01-01
Humans reliably learn which actions lead to rewards. One prominent question is how credit is assigned to environmental stimuli that are acted upon. Recent functional magnetic resonance imaging (fMRI) studies have provided evidence that representations of rewarded stimuli are activated upon reward delivery, providing possible eligibility traces for credit assignment. Our study sought evidence of postreward activation in sensory cortices satisfying two conditions of instrumental learning: postreward activity should reflect the stimulus category that preceded reward (stimulus specificity), and should occur only if the stimulus was acted on to obtain reward (task dependency). Our experiment implemented two tasks in the fMRI scanner. The first was a perceptual decision-making task on degraded face and house stimuli. Stimulus specificity was evident as rewards activated the sensory cortices associated with face versus house perception more strongly after face versus house decisions, respectively, particularly in the fusiform face area. Stimulus specificity was further evident in a psychophysiological interaction analysis wherein face-sensitive areas correlated with nucleus accumbens activity after face-decision rewards, whereas house-sensitive areas correlated with nucleus accumbens activity after house-decision rewards. The second task required participants to make an instructed response. The criterion of task dependency was fulfilled as rewards after face versus house responses activated the respective association cortices to a larger degree when faces and houses were relevant to the performed task. Our study is the first to show that postreward sensory cortex activity meets these two key criteria of credit assignment, and does so independently from bottom-up perceptual processing. PMID:25411489
Reward Motivation Enhances Task Coding in Frontoparietal Cortex
Etzel, Joset A.; Cole, Michael W.; Zacks, Jeffrey M.; Kay, Kendrick N.; Braver, Todd S.
2016-01-01
Reward motivation often enhances task performance, but the neural mechanisms underlying such cognitive enhancement remain unclear. Here, we used a multivariate pattern analysis (MVPA) approach to test the hypothesis that motivation-related enhancement of cognitive control results from improved encoding and representation of task set information. Participants underwent two fMRI sessions of cued task switching, the first under baseline conditions, and the second with randomly intermixed reward incentive and no-incentive trials. Information about the upcoming task could be successfully decoded from cue-related activation patterns in a set of frontoparietal regions typically associated with task control. More critically, MVPA classifiers trained on the baseline session had significantly higher decoding accuracy on incentive than non-incentive trials, with decoding improvement mediating reward-related enhancement of behavioral performance. These results strongly support the hypothesis that reward motivation enhances cognitive control, by improving the discriminability of task-relevant information coded and maintained in frontoparietal brain regions. PMID:25601237
Singh, Varsha
2013-01-01
The Iowa Gambling Task (IGT) is based on the assumption that a decision maker is equally motivated to seek reward and avoid punishment, and that decision making is governed solely by the intertemporal attribute (i.e., preference for an option that produces an immediate outcome instead of one that yields a delayed outcome is believed to reflect risky decision making and is considered a deficit). It was assumed in the present study that the emotion- and cognition-based processing dichotomy manifests in the IGT as reward and punishment frequency and the intertemporal attribute. It was further proposed that the delineation of emotion- and cognition-based processing is contingent upon reward and punishment as manifested in the frame of the task (variant type) and task motivation (instruction type). The effects of IGT variant type (reward vs. punishment) and instruction type (task motivation induced by instruction types: reward, punishment, reward and punishment, or no hint) on the intertemporal and frequency attributes of IGT decision-making were analyzed. Decision making in the reward variant was equally governed by both attributes, and significantly affected by instruction type, while decision making in the punishment variant was differentially affected by the two attributes and not significantly impacted by instruction type. These results suggest that reward and punishment manifested via task frame as well as the task motivation may facilitate the differentiation of emotion- and cognition-based processing in the IGT.
Singh, Varsha
2013-01-01
The Iowa Gambling Task (IGT) is based on the assumption that a decision maker is equally motivated to seek reward and avoid punishment, and that decision making is governed solely by the intertemporal attribute (i.e., preference for an option that produces an immediate outcome instead of one that yields a delayed outcome is believed to reflect risky decision making and is considered a deficit). It was assumed in the present study that the emotion- and cognition-based processing dichotomy manifests in the IGT as reward and punishment frequency and the intertemporal attribute. It was further proposed that the delineation of emotion- and cognition-based processing is contingent upon reward and punishment as manifested in the frame of the task (variant type) and task motivation (instruction type). The effects of IGT variant type (reward vs. punishment) and instruction type (task motivation induced by instruction types: reward, punishment, reward and punishment, or no hint) on the intertemporal and frequency attributes of IGT decision-making were analyzed. Decision making in the reward variant was equally governed by both attributes, and significantly affected by instruction type, while decision making in the punishment variant was differentially affected by the two attributes and not significantly impacted by instruction type. These results suggest that reward and punishment manifested via task frame as well as the task motivation may facilitate the differentiation of emotion- and cognition-based processing in the IGT. PMID:24381567
Reward Sensitivity and Waiting Impulsivity: Shift towards Reward Valuation away from Action Control
Mechelmans, Daisy J; Strelchuk, Daniela; Doñamayor, Nuria; Banca, Paula; Robbins, Trevor W; Baek, Kwangyeol
2017-01-01
Abstract Background Impulsivity and reward expectancy are commonly interrelated. Waiting impulsivity, measured using the rodent 5-Choice Serial Reaction Time task, predicts compulsive cocaine seeking and sign (or cue) tracking. Here, we assess human waiting impulsivity using a novel translational task, the 4-Choice Serial Reaction Time task, and the relationship with reward cues. Methods Healthy volunteers (n=29) performed the monetary incentive delay task as a functional MRI study where subjects observe a cue predicting reward (cue) and wait to respond for high (£5), low (£1), or no reward. Waiting impulsivity was tested with the 4-Choice Serial Reaction Time task. Results For high reward prospects (£5, no reward), greater waiting impulsivity on the 4-CSRT correlated with greater medial orbitofrontal cortex and lower supplementary motor area activity to cues. In response to high reward cues, greater waiting impulsivity was associated with greater subthalamic nucleus connectivity with orbitofrontal cortex and greater subgenual cingulate connectivity with anterior insula, but decreased connectivity with regions implicated in action selection and preparation. Conclusion These findings highlight a shift towards regions implicated in reward valuation and a shift towards compulsivity away from higher level motor preparation and action selection and response. We highlight the role of reward sensitivity and impulsivity, mechanisms potentially linking human waiting impulsivity with incentive approach and compulsivity, theories highly relevant to disorders of addiction. PMID:29020291
Pervasive negative effects of rewards on intrinsic motivation: The myth continues
Cameron, Judy; Banko, Katherine M.; Pierce, W. David
2001-01-01
A major concern in psychology and education is that rewards decrease intrinsic motivation to perform activities. Over the past 30 years, more than 100 experimental studies have been conducted on this topic. In 1994, Cameron and Pierce conducted a meta-analysis of this literature and concluded that negative effects of reward were limited and could be easily prevented in applied settings. A more recent meta-analysis of the literature by Deci, Koestner, and Ryan (1999) shows pervasive negative effects of reward. The purpose of the present article is to resolve differences in previous meta-analytic findings and to provide a meta-analysis of rewards and intrinsic motivation that permits tests of competing theoretical explanations. Our results suggest that in general, rewards are not harmful to motivation to perform a task. Rewards given for low-interest tasks enhance free-choice intrinsic motivation. On high-interest tasks, verbal rewards produce positive effects on free-choice motivation and self-reported task interest. Negative effects are found on high-interest tasks when the rewards are tangible, expected (offered beforehand), and loosely tied to level of performance. When rewards are linked to level of performance, measures of intrinsic motivation increase or do not differ from a nonrewarded control group. Overall, the pattern of results indicates that reward contingencies do not have pervasive negative effects on intrinsic motivation. Theoretical and practical implications of the findings are addressed. PMID:22478353
Pervasive negative effects of rewards on intrinsic motivation: The myth continues.
Cameron, J; Banko, K M; Pierce, W D
2001-01-01
A major concern in psychology and education is that rewards decrease intrinsic motivation to perform activities. Over the past 30 years, more than 100 experimental studies have been conducted on this topic. In 1994, Cameron and Pierce conducted a meta-analysis of this literature and concluded that negative effects of reward were limited and could be easily prevented in applied settings. A more recent meta-analysis of the literature by Deci, Koestner, and Ryan (1999) shows pervasive negative effects of reward. The purpose of the present article is to resolve differences in previous meta-analytic findings and to provide a meta-analysis of rewards and intrinsic motivation that permits tests of competing theoretical explanations. Our results suggest that in general, rewards are not harmful to motivation to perform a task. Rewards given for low-interest tasks enhance free-choice intrinsic motivation. On high-interest tasks, verbal rewards produce positive effects on free-choice motivation and self-reported task interest. Negative effects are found on high-interest tasks when the rewards are tangible, expected (offered beforehand), and loosely tied to level of performance. When rewards are linked to level of performance, measures of intrinsic motivation increase or do not differ from a nonrewarded control group. Overall, the pattern of results indicates that reward contingencies do not have pervasive negative effects on intrinsic motivation. Theoretical and practical implications of the findings are addressed.
Demurie, Ellen; Roeyers, Herbert; Wiersema, Jan R; Sonuga-Barke, Edmund
2016-04-01
Cognitive and motivational factors differentially affect individuals with mental health problems such as ADHD. Here we introduce a new task to disentangle the relative contribution of inhibitory control and reward anticipation on task performance in children with ADHD and/or autism spectrum disorders (ASD). Typically developing children, children with ADHD, ASD, or both disorders worked during separate sessions for monetary or social rewards in go/no-go tasks with varying inhibitory load levels. Participants also completed a monetary temporal discounting (TD) task. As predicted, task performance was sensitive to both the effects of anticipated reward amount and inhibitory load. Reward amount had different effects depending on inhibitory load level. TD correlated with inhibitory control in the ADHD group. The integration of the monetary incentive delay and go/no-go paradigms was successful. Surprisingly, there was no evidence of inhibitory control deficits or altered reward anticipation in the clinical groups. © The Author(s) 2013.
Caudate clues to rewarding cues.
Platt, Michael L
2002-01-31
Behavioral studies indicate that prior experience can influence discrimination of subsequent stimuli. The mechanisms responsible for highlighting a particular aspect of the stimulus, such as motion or color, as most relevant and thus deserving further scrutiny, however, remain poorly understood. In the current issue of Neuron, demonstrate that neurons in the caudate nucleus of the basal ganglia signal which dimension of a visual cue, either color or location, is associated with reward in an eye movement task. These findings raise the possibility that this structure participates in the reward-based control of visual attention.
Moustafa, Ahmed A; Gluck, Mark A; Herzallah, Mohammad M; Myers, Catherine E
2015-01-01
Previous research has shown that trial ordering affects cognitive performance, but this has not been tested using category-learning tasks that differentiate learning from reward and punishment. Here, we tested two groups of healthy young adults using a probabilistic category learning task of reward and punishment in which there are two types of trials (reward, punishment) and three possible outcomes: (1) positive feedback for correct responses in reward trials; (2) negative feedback for incorrect responses in punishment trials; and (3) no feedback for incorrect answers in reward trials and correct answers in punishment trials. Hence, trials without feedback are ambiguous, and may represent either successful avoidance of punishment or failure to obtain reward. In Experiment 1, the first group of subjects received an intermixed task in which reward and punishment trials were presented in the same block, as a standard baseline task. In Experiment 2, a second group completed the separated task, in which reward and punishment trials were presented in separate blocks. Additionally, in order to understand the mechanisms underlying performance in the experimental conditions, we fit individual data using a Q-learning model. Results from Experiment 1 show that subjects who completed the intermixed task paradoxically valued the no-feedback outcome as a reinforcer when it occurred on reinforcement-based trials, and as a punisher when it occurred on punishment-based trials. This is supported by patterns of empirical responding, where subjects showed more win-stay behavior following an explicit reward than following an omission of punishment, and more lose-shift behavior following an explicit punisher than following an omission of reward. In Experiment 2, results showed similar performance whether subjects received reward-based or punishment-based trials first. However, when the Q-learning model was applied to these data, there were differences between subjects in the reward-first and punishment-first conditions on the relative weighting of neutral feedback. Specifically, early training on reward-based trials led to omission of reward being treated as similar to punishment, but prior training on punishment-based trials led to omission of reward being treated more neutrally. This suggests that early training on one type of trials, specifically reward-based trials, can create a bias in how neutral feedback is processed, relative to those receiving early punishment-based training or training that mixes positive and negative outcomes.
Translational Assessment of Reward and Motivational Deficits in Psychiatric Disorders.
Der-Avakian, Andre; Barnes, Samuel A; Markou, Athina; Pizzagalli, Diego A
Deficits in reward and motivation are common symptoms characterizing several psychiatric and neurological disorders. Such deficits may include anhedonia, defined as loss of pleasure, as well as impairments in anticipatory pleasure, reward valuation, motivation/effort, and reward learning. This chapter describes recent advances in the development of behavioral tasks used to assess different aspects of reward processing in both humans and non-human animals. While earlier tasks were generally developed independently with limited cross-species correspondence, a newer generation of translational tasks has emerged that are theoretically and procedurally analogous across species and allow parallel testing, data analyses, and interpretation between human and rodent behaviors. Such enhanced conformity between cross-species tasks will facilitate investigation of the neurobiological mechanisms underlying discrete reward and motivated behaviors and is expected to improve our understanding and treatment of neuropsychiatric disorders characterized by reward and motivation deficits.
Translational Assessment of Reward and Motivational Deficits in Psychiatric Disorders
Der-Avakian, Andre; Barnes, Samuel A.
2016-01-01
Deficits in reward and motivation are common symptoms characterizing several psychiatric and neurological disorders. Such deficits may include anhedonia, defined as loss of pleasure, as well as impairments in anticipatory pleasure, reward valuation, motivation/effort, and reward learning. This chapter describes recent advances in the development of behavioral tasks used to assess different aspects of reward processing in both humans and non-human animals. While earlier tasks were generally developed independently with limited cross-species correspondence, a newer generation of translational tasks has emerged that are theoretically and procedurally analogous across species and allow parallel testing, data analyses, and interpretation between human and rodent behaviors. Such enhanced conformity between cross-species tasks will facilitate investigation of the neurobiological mechanisms underlying discrete reward and motivated behaviors and is expected to improve our understanding and treatment of neuropsychiatric disorders characterized by reward and motivation deficits. PMID:26873017
Scheres, Anouk; Dijkstra, Marianne; Ainslie, Eleanor; Balkan, Jaclyn; Reynolds, Brady; Sonuga-Barke, Edmund; Castellanos, F Xavier
2006-01-01
This study investigated whether age and ADHD symptoms affected choice preferences in children and adolescents when they chose between (1) small immediate rewards and larger delayed rewards and (2) small certain rewards and larger probabilistic uncertain rewards. A temporal discounting (TD) task and a probabilistic discounting (PD) task were used to measure the degree to which the subjective value of a large reward decreased as one had to wait longer for it (TD), and as the probability of obtaining it decreased (PD). Rewards used were small amounts of money. In the TD task, the large reward (10 cents) was delayed by between 0 and 30s, and the immediate reward varied in magnitude (0-10 cents). In the PD task, receipt of the large reward (10 cents) varied in likelihood, with probabilities of 0, 0.25, 0.5, 0.75, and 1.0 used, and the certain reward varied in magnitude (0-10 cents). Age and diagnostic group did not affect the degree of PD of rewards: All participants made choices so that total gains were maximized. As predicted, young children, aged 6-11 years (n = 25) demonstrated steeper TD of rewards than adolescents, aged 12-17 years (n = 21). This effect remained significant even when choosing the immediate reward did not shorten overall task duration. This, together with the lack of interaction between TD task version and age, suggests that steeper discounting in young children is driven by reward immediacy and not by delay aversion. Contrary to our predictions, participants with ADHD (n = 22) did not demonstrate steeper TD of rewards than controls (n = 24). These results raise the possibility that strong preferences for small immediate rewards in ADHD, as found in previous research, depend on factors such as total maximum gain and the use of fixed versus varied delay durations. The decrease in TD as observed in adolescents compared to children may be related to developmental changes in the (dorsolateral) prefrontal cortex. Future research needs to investigate these possibilities.
Schneider, S; Brassen, S; Bromberg, U; Banaschewski, T; Conrod, P; Flor, H; Gallinat, J; Garavan, Hugh; Heinz, A; Martinot, J-L; Nees, F; Rietschel, M; Smolka, M N; Ströhle, A; Struve, M; Schumann, G; Büchel, C
2012-01-01
Considerable animal and human research has been dedicated to the effects of parenting on structural brain development, focusing on hippocampal and prefrontal areas. Conversely, although functional imaging studies suggest that the neural reward circuitry is involved in parental affection, little is known about mothers' interpersonal qualities in relation to their children's brain structure and function. Moreover, gender differences concerning the effect of maternal qualities have rarely been investigated systematically. In 63 adolescents, we assessed structural and functional magnetic resonance imaging as well as interpersonal affiliation in their mothers. This allowed us to associate maternal affiliation with gray matter density and neural responses during different phases of the well-established Monetary Incentive Delay task. Maternal affiliation was positively associated with hippocampal and orbitofrontal gray matter density. Moreover, in the feedback of reward hit as compared with reward miss, an association with caudate activation was found. Although no significant gender effects were observed in these associations, during reward feedback as compared with baseline, maternal affiliation was significantly associated with ventral striatal and caudate activation only in females. Our findings demonstrate that maternal interpersonal affiliation is related to alterations in both the brain structure and reward-related activation in healthy adolescents. Importantly, the pattern is in line with typical findings in depression and post-traumatic stress disorder, suggesting that a lack of maternal affiliation might have a role in the genesis of mental disorders. PMID:23149446
The brain correlates of the effects of monetary and verbal rewards on intrinsic motivation.
Albrecht, Konstanze; Abeler, Johannes; Weber, Bernd; Falk, Armin
2014-01-01
Apart from everyday duties, such as doing the laundry or cleaning the house, there are tasks we do for pleasure and enjoyment. We do such tasks, like solving crossword puzzles or reading novels, without any external pressure or force; instead, we are intrinsically motivated: we do the tasks because we enjoy doing them. Previous studies suggest that external rewards, i.e., rewards from the outside, affect the intrinsic motivation to engage in a task: while performance-based monetary rewards are perceived as controlling and induce a business-contract framing, verbal rewards praising one's competence can enhance the perceived self-determination. Accordingly, the former have been shown to decrease intrinsic motivation, whereas the latter have been shown to increase intrinsic motivation. The present study investigated the neural processes underlying the effects of monetary and verbal rewards on intrinsic motivation in a group of 64 subjects applying functional magnetic resonance imaging (fMRI). We found that, when participants received positive performance feedback, activation in the anterior striatum and midbrain was affected by the nature of the reward; compared to a non-rewarded control group, activation was higher while monetary rewards were administered. However, we did not find a decrease in activation after reward withdrawal. In contrast, we found an increase in activation for verbal rewards: after verbal rewards had been withdrawn, participants showed a higher activation in the aforementioned brain areas when they received success compared to failure feedback. We further found that, while participants worked on the task, activation in the lateral prefrontal cortex was enhanced after the verbal rewards were administered and withdrawn.
The brain correlates of the effects of monetary and verbal rewards on intrinsic motivation
Albrecht, Konstanze; Abeler, Johannes; Weber, Bernd; Falk, Armin
2014-01-01
Apart from everyday duties, such as doing the laundry or cleaning the house, there are tasks we do for pleasure and enjoyment. We do such tasks, like solving crossword puzzles or reading novels, without any external pressure or force; instead, we are intrinsically motivated: we do the tasks because we enjoy doing them. Previous studies suggest that external rewards, i.e., rewards from the outside, affect the intrinsic motivation to engage in a task: while performance-based monetary rewards are perceived as controlling and induce a business-contract framing, verbal rewards praising one's competence can enhance the perceived self-determination. Accordingly, the former have been shown to decrease intrinsic motivation, whereas the latter have been shown to increase intrinsic motivation. The present study investigated the neural processes underlying the effects of monetary and verbal rewards on intrinsic motivation in a group of 64 subjects applying functional magnetic resonance imaging (fMRI). We found that, when participants received positive performance feedback, activation in the anterior striatum and midbrain was affected by the nature of the reward; compared to a non-rewarded control group, activation was higher while monetary rewards were administered. However, we did not find a decrease in activation after reward withdrawal. In contrast, we found an increase in activation for verbal rewards: after verbal rewards had been withdrawn, participants showed a higher activation in the aforementioned brain areas when they received success compared to failure feedback. We further found that, while participants worked on the task, activation in the lateral prefrontal cortex was enhanced after the verbal rewards were administered and withdrawn. PMID:25278834
The role of the striatum in effort-based decision-making in the absence of reward.
Schouppe, Nathalie; Demanet, Jelle; Boehler, Carsten N; Ridderinkhof, K Richard; Notebaert, Wim
2014-02-05
Decision-making involves weighing costs against benefits, for instance, in terms of the effort it takes to obtain a reward of a given magnitude. This evaluation process has been linked to the dorsal anterior cingulate cortex (dACC) and the striatum, with activation in these brain structures reflecting the discounting effect of effort on reward. Here, we investigate how cognitive effort influences neural choice processes in the absence of an extrinsic reward. Using functional magnetic resonance imaging in humans, we used an effort-based decision-making task in which participants were required to choose between two options for a subsequent flanker task that differed in the amount of cognitive effort. Cognitive effort was manipulated by varying the proportion of incongruent trials associated with each choice option. Choice-locked activation in the striatum was higher when participants chose voluntarily for the more effortful alternative but displayed the opposite trend on forced-choice trials. The dACC revealed a similar, yet only trend-level significant, activation pattern. Our results imply that activation levels in the striatum reflect a cost-benefit analysis, in which a balance is made between effort discounting and the intrinsic motivation to choose a cognitively challenging task. Moreover, our findings indicate that it matters whether this challenge is voluntarily chosen or externally imposed. As such, the present findings contrast with classical findings on effort discounting that found reductions in striatum activation for higher effort by finding enhancements of the same neural circuits when a cognitively challenging task is voluntarily selected and does not entail the danger of losing reward.
Schevernels, Hanne; Bombeke, Klaas; Van der Borght, Liesbet; Hopf, Jens-Max; Krebs, Ruth M; Boehler, C Nicolas
2015-11-01
Reward availability is known to facilitate various cognitive operations, which is usually studied in cue-based paradigms that allow for enhanced preparation in reward-related trials. However, recent research using tasks that signal reward availability via task-relevant stimuli suggests that reward can also rapidly promote performance independent of global strategic preparation. Notably, this effect was also observed in a reward-related stop-signal task, in which behavioral measures of inhibition speed were found to be shorter in trials signaling reward. Corresponding fMRI results implied that this effect relies on boosted reactive control as indicated by increased activity in the 'inhibition-related network' in the reward-related condition. Here, we used EEG to better characterize transient modulations of attentional processes likely preceding this ultimate implementation of response inhibition. Importantly, such modulations would probably reflect enhanced proactive control in the form of more top-down attention to reward-related features. Counter to the notion that behavioral benefits would rely purely on reactive control, we found increased stop-evoked attentional processing (larger N1 component) on reward-related trials. This effect was accompanied by enhanced frontal P3 amplitudes reflecting successful stopping, and earlier and larger ERP differences between successful and failed stop trials in the reward-related condition. Finally, more global proactive control processes in the form of a reward context modulation of reward-unrelated trials did not have an effect on stopping performance but did influence attentional processing of go stimuli. Together, these results suggest that proactive and reactive processes can interact to bring about stimulus-specific reward benefits when the task precludes differential global preparation. Copyright © 2015 Elsevier Inc. All rights reserved.
Reward Improves Cancellation and Restraint Inhibition Across Childhood and Adolescence
Sinopoli, Katia J.; Schachar, Russell; Dennis, Maureen
2011-01-01
Inhibitory control allows for the regulation of thought and action, and interacts with motivational variables, such as reward, to modify behavior adaptively as environments change. We examined the effects of reward on two distinct forms of inhibitory control, cancellation and restraint. Typically developing children and adolescents completed two versions of the stop signal task (cancellation and restraint) under three reward conditions (neutral, low reward, and high reward), where rewards were earned for successful inhibitory control. Rewards improved both cancellation and restraint inhibition, with similar effects of reward on each form of inhibitory control. Rewards did not alter the speed of response execution in either task, suggesting that rewards specifically altered inhibition processes without influencing processes related to response execution. Adolescents were faster and less variable than children when executing and inhibiting their responses. There were similar developmental effects of reward on the speed of inhibitory control, but group differences were found in terms of accuracy of inhibition in the restraint task. These results clarify how reward modulates two different forms of regulatory behavior in children and adolescents. PMID:21744952
Basolateral amygdala lesions abolish mutual reward preferences in rats.
Hernandez-Lallement, Julen; van Wingerden, Marijn; Schäble, Sandra; Kalenscher, Tobias
2016-01-01
In a recent study, we demonstrated that rats prefer mutual rewards in a Prosocial Choice Task. Here, employing the same task, we show that the integrity of basolateral amygdala was necessary for the expression of mutual reward preferences. Actor rats received bilateral excitotoxic (n=12) or sham lesions (n=10) targeting the basolateral amygdala and were subsequently tested in a Prosocial Choice Task where they could decide between rewarding ("Both Reward") or not rewarding a partner rat ("Own Reward"), either choice yielding identical reward to the actors themselves. To manipulate the social context and control for secondary reinforcement sources, actor rats were paired with either a partner rat (partner condition) or with an inanimate rat toy (toy condition). Sham-operated animals revealed a significant preference for the Both-Reward-option in the partner condition, but not in the toy condition. Amygdala-lesioned animals exhibited significantly lower Both-Reward preferences than the sham group in the partner but not in the toy condition, suggesting that basolateral amygdala was required for the expression of mutual reward preferences. Critically, in a reward magnitude discrimination task in the same experimental setup, both sham-operated and amygdala-lesioned animals preferred large over small rewards, suggesting that amygdala lesion effects were restricted to decision making in social contexts, leaving self-oriented behavior unaffected. Copyright © 2015 Elsevier Inc. All rights reserved.
Macoveanu, Julian; Fisher, Patrick M; Haahr, Mette E; Frokjaer, Vibe G; Knudsen, Gitte M; Siebner, Hartwig R
2014-10-01
Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are commonly prescribed antidepressant drugs targeting the dysfunctional serotonin (5-HT) system, yet little is known about the functional effects of prolonged serotonin reuptake inhibition in healthy individuals. Here we used functional MRI (fMRI) to investigate how a three-week fluoxetine intervention influences neural activity related to risk taking and reward processing. Employing a double-blinded parallel-group design, 29 healthy young males were randomly assigned to receive 3 weeks of a daily dose of 40 mg fluoxetine or placebo. Participants underwent task-related fMRI prior to and after the three-week intervention while performing a card gambling task. The task required participants to choose between two decks of cards. Choices were associated with different risk levels and potential reward magnitudes. Relative to placebo, the SSRI intervention did not alter individual risk-choice preferences, but modified neural activity during decision-making and reward processing: During the choice phase, SSRI reduced the neural response to increasing risk in lateral orbitofrontal cortex, a key structure for value-based decision-making. During the outcome phase, a midbrain region showed an independent decrease in the responsiveness to rewarding outcomes. This midbrain cluster included the raphe nuclei from which serotonergic modulatory projections originate to both cortical and subcortical regions. The findings corroborate the involvement of the normally functioning 5HT-system in decision-making under risk and processing of monetary rewards. The data suggest that prolonged SSRI treatment might reduce emotional engagement by reducing the impact of risk during decision-making or the impact of reward during outcome evaluation. Copyright © 2014 Elsevier Inc. All rights reserved.
I Don’t Want to Come Back Down: Undoing versus Maintaining of Reward Recovery in Older Adolescents
Gilbert, Kirsten E.; Nolen-Hoeksema, Susan; Gruber, June
2017-01-01
Adolescence is characterized by heightened and sometimes impairing reward sensitivity, yet less is known about how adolescents recover from highly arousing positive states. This is particularly important given high onset rates of psychopathology associated with reward sensitivity during late adolescence and early adulthood. The current study thus utilized a novel reward sensitivity task in order to examine potential ways in which older adolescent females (ages 18–21; N = 83) might recover from high arousal positive reward sensitive states. Participants underwent a fixed incentive reward sensitivity task and subsequently watched a neutral, sad, or a low approach-motivated positive emotional film clip during which subjective and physiological recovery was assessed. Results indicated that the positive and negative film conditions were associated with maintained physiological arousal while the neutral condition facilitated faster physiological recovery from the reward sensitivity task. Interestingly, individual differences in self-reported positive emotion during the reward task were associated with faster recovery in the neutral condition. Findings suggest elicited emotion (regardless of valence) may serve to maintain reward sensitivity while self-reported positive emotional experience may be a key ingredient facilitating physiological recovery or undoing. Understanding the nuances of reward recovery provides a critical step in understanding the etiology and persistence of reward dysregulation more generally. PMID:26595439
Samanez-Larkin, Gregory R; Levens, Sara M; Perry, Lee M; Dougherty, Robert F; Knutson, Brian
2012-04-11
Frontostriatal circuits have been implicated in reward learning, and emerging findings suggest that frontal white matter structural integrity and probabilistic reward learning are reduced in older age. This cross-sectional study examined whether age differences in frontostriatal white matter integrity could account for age differences in reward learning in a community life span sample of human adults. By combining diffusion tensor imaging with a probabilistic reward learning task, we found that older age was associated with decreased reward learning and decreased white matter integrity in specific pathways running from the thalamus to the medial prefrontal cortex and from the medial prefrontal cortex to the ventral striatum. Further, white matter integrity in these thalamocorticostriatal paths could statistically account for age differences in learning. These findings suggest that the integrity of frontostriatal white matter pathways critically supports reward learning. The findings also raise the possibility that interventions that bolster frontostriatal integrity might improve reward learning and decision making.
Samson, Rachel D.; Duarte, Leroy; Venkatesh, Anu
2017-01-01
Abstract Older adults tend to use strategies that differ from those used by young adults to solve decision-making tasks. MRI experiments suggest that altered strategy use during aging can be accompanied by a change in extent of activation of a given brain region, inter-hemispheric bilateralization or added brain structures. It has been suggested that these changes reflect compensation for less effective networks to enable optimal performance. One way that communication can be influenced within and between brain networks is through oscillatory events that help structure and synchronize incoming and outgoing information. It is unknown how aging impacts local oscillatory activity within the basolateral complex of the amygdala (BLA). The present study recorded local field potentials (LFPs) and single units in old and young rats during the performance of tasks that involve discrimination learning and probabilistic decision making. We found task- and age-specific increases in power selectively within the β range (15–30 Hz). The increased β power occurred after lever presses, as old animals reached the goal location. Periods of high-power β developed over training days in the aged rats, and was greatest in early trials of a session. β Power was also greater after pressing for the large reward option. These data suggest that aging of BLA networks results in strengthened synchrony of β oscillations when older animals are learning or deciding between rewards of different size. Whether this increased synchrony reflects the neural basis of a compensatory strategy change of old animals in reward-based decision-making tasks, remains to be verified. PMID:29034315
Moustafa, Ahmed A.; Gluck, Mark A.; Herzallah, Mohammad M.; Myers, Catherine E.
2015-01-01
Previous research has shown that trial ordering affects cognitive performance, but this has not been tested using category-learning tasks that differentiate learning from reward and punishment. Here, we tested two groups of healthy young adults using a probabilistic category learning task of reward and punishment in which there are two types of trials (reward, punishment) and three possible outcomes: (1) positive feedback for correct responses in reward trials; (2) negative feedback for incorrect responses in punishment trials; and (3) no feedback for incorrect answers in reward trials and correct answers in punishment trials. Hence, trials without feedback are ambiguous, and may represent either successful avoidance of punishment or failure to obtain reward. In Experiment 1, the first group of subjects received an intermixed task in which reward and punishment trials were presented in the same block, as a standard baseline task. In Experiment 2, a second group completed the separated task, in which reward and punishment trials were presented in separate blocks. Additionally, in order to understand the mechanisms underlying performance in the experimental conditions, we fit individual data using a Q-learning model. Results from Experiment 1 show that subjects who completed the intermixed task paradoxically valued the no-feedback outcome as a reinforcer when it occurred on reinforcement-based trials, and as a punisher when it occurred on punishment-based trials. This is supported by patterns of empirical responding, where subjects showed more win-stay behavior following an explicit reward than following an omission of punishment, and more lose-shift behavior following an explicit punisher than following an omission of reward. In Experiment 2, results showed similar performance whether subjects received reward-based or punishment-based trials first. However, when the Q-learning model was applied to these data, there were differences between subjects in the reward-first and punishment-first conditions on the relative weighting of neutral feedback. Specifically, early training on reward-based trials led to omission of reward being treated as similar to punishment, but prior training on punishment-based trials led to omission of reward being treated more neutrally. This suggests that early training on one type of trials, specifically reward-based trials, can create a bias in how neutral feedback is processed, relative to those receiving early punishment-based training or training that mixes positive and negative outcomes. PMID:26257616
Task relevance regulates the interaction between reward expectation and emotion.
Wei, Ping; Kang, Guanlan
2014-06-01
In the present study, we investigated the impact of reward expectation on the processing of emotional facial expression using a cue-target paradigm. A cue indicating the reward condition of each trial (incentive vs. non-incentive) was followed by the presentation of a picture of an emotional face, the target. Participants were asked to discriminate the emotional expression of the target face in Experiment 1, to discriminate the gender of the target face in Experiment 2, and to judge a number superimposed on the center of the target face as even or odd in Experiment 3, rendering the emotional expression of the target face as task relevant in Experiment 1 but task irrelevant in Experiments 2 and 3. Faster reaction times (RTs) were observed in the monetary incentive condition than in the non-incentive condition, demonstrating the effect of reward on facilitating task concentration. Moreover, the reward effect (i.e., RTs in non-incentive conditions versus incentive conditions) was larger for emotional faces than for neutral faces when emotional expression was task relevant but not when it was task irrelevant. The findings suggest that top-down incentive motivation biased attentional processing toward task-relevant stimuli, and that task relevance played an important role in regulating the influence of reward expectation on the processing of emotional stimuli.
Effects of monetary reward and punishment on information checking behaviour.
Li, Simon Y W; Cox, Anna L; Or, Calvin; Blandford, Ann
2016-03-01
Two experiments were conducted to examine whether checking one's own work can be motivated by monetary reward and punishment. Participants were randomly assigned to one of three conditions: a flat-rate payment for completing the task (Control); payment increased for error-free performance (Reward); payment decreased for error performance (Punishment). Experiment 1 (N = 90) was conducted with liberal arts students, using a general data-entry task. Experiment 2 (N = 90) replicated Experiment 1 with clinical students and a safety-critical 'cover story' for the task. In both studies, Reward and Punishment resulted in significantly fewer errors, more frequent and longer checking, than Control. No such differences were obtained between the Reward and Punishment conditions. It is concluded that error consequences in terms of monetary reward and punishment can result in more accurate task performance and more rigorous checking behaviour than errors without consequences. However, whether punishment is more effective than reward, or vice versa, remains inconclusive. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Wolosin, Sasha M.; Zeithamova, Dagmar; Preston, Alison R.
2012-01-01
Emerging evidence suggests that motivation enhances episodic memory formation through interactions between medial temporal lobe (MTL) structures and dopaminergic midbrain. In addition, recent theories propose that motivation specifically facilitates hippocampal associative binding processes, resulting in more detailed memories that are readily reinstated from partial input. Here, we used high-resolution functional magnetic resonance imaging to determine how motivation influences associative encoding and retrieval processes within human MTL subregions and dopaminergic midbrain. Participants intentionally encoded object associations under varying conditions of reward and performed a retrieval task during which studied associations were cued from partial input. Behaviorally, cued recall performance was superior for high-value relative to low-value associations; however, participants differed in the degree to which rewards influenced memory. The magnitude of behavioral reward modulation was associated with reward-related activation changes in dentate gyrus/CA2,3 during encoding and enhanced functional connectivity between dentate gyrus/CA2,3 and dopaminergic midbrain during both the encoding and retrieval phases of the task. These findings suggests that within the hippocampus, reward-based motivation specifically enhances dentate gyrus/CA2,3 associative encoding mechanisms through interactions with dopaminergic midbrain. Furthermore, within parahippocampal cortex and dopaminergic midbrain regions, activation associated with successful memory formation was modulated by reward across the group. During the retrieval phase, we also observed enhanced activation in hippocampus and dopaminergic midbrain for high-value associations that occurred in the absence of any explicit cues to reward. Collectively, these findings shed light on fundamental mechanisms through which reward impacts associative memory formation and retrieval through facilitation of MTL and VTA/SN processing. PMID:22524296
Parkinson's disease and dopaminergic therapy—differential effects on movement, reward and cognition
Hughes, L.; Ghosh, B. C. P.; Eckstein, D.; Williams-Gray, C. H.; Fallon, S.; Barker, R. A.; Owen, A. M.
2008-01-01
Cognitive deficits are very common in Parkinson's disease particularly for ‘executive functions’ associated with frontal cortico-striatal networks. Previous work has identified deficits in tasks that require attentional control like task-switching, and reward-based tasks like gambling or reversal learning. However, there is a complex relationship between the specific cognitive problems faced by an individual patient, their stage of disease and dopaminergic treatment. We used a bimodality continuous performance task during fMRI to examine how patients with Parkinson's disease represent the prospect of reward and switch between competing task rules accordingly. The task-switch was not separately cued but was based on the implicit reward relevance of spatial and verbal dimensions of successive compound stimuli. Nineteen patients were studied in relative ‘on’ and ‘off’ states, induced by dopaminergic medication withdrawal (Hoehn and Yahr stages 1–4). Patients were able to successfully complete the task and establish a bias to one or other dimension in order to gain reward. However the lateral prefrontal cortex and caudate nucleus showed a non-linear U-shape relationship between motor disease severity and regional brain activation. Dopaminergic treatment led to a shift in this U-shape function, supporting the hypothesis of differential neurodegeneration in separate motor and cognitive cortico–striato–thalamo–cortical circuits. In addition, anterior cingulate activation associated with reward expectation declined with more severe disease, whereas activation following actual rewards increased with more severe disease. This may facilitate a change in goal-directed behaviours from deferred predicted rewards to immediate actual rewards, particularly when on dopaminergic treatment. We discuss the implications for investigation and optimal treatment of this common condition at different stages of disease. PMID:18577547
Nees, Frauke; Vollstädt-Klein, Sabine; Fauth-Bühler, Mira; Steiner, Sabina; Mann, Karl; Poustka, Luise; Banaschewski, Tobias; Büchel, Christian; Conrod, Patricia J; Garavan, Hugh; Heinz, Andreas; Ittermann, Bernd; Artiges, Eric; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Smolka, Michael N; Struve, Maren; Loth, Eva; Schumann, Gunter; Flor, Herta
2012-11-01
Adolescence is a transition period that is assumed to be characterized by increased sensitivity to reward. While there is growing research on reward processing in adolescents, investigations into the engagement of brain regions under different reward-related conditions in one sample of healthy adolescents, especially in a target age group, are missing. We aimed to identify brain regions preferentially activated in a reaction time task (monetary incentive delay (MID) task) and a simple guessing task (SGT) in a sample of 14-year-old adolescents (N = 54) using two commonly used reward paradigms. Functional magnetic resonance imaging was employed during the MID with big versus small versus no win conditions and the SGT with big versus small win and big versus small loss conditions. Analyses focused on changes in blood oxygen level-dependent contrasts during reward and punishment processing in anticipation and feedback phases. We found clear magnitude-sensitive response in reward-related brain regions such as the ventral striatum during anticipation in the MID task, but not in the SGT. This was also true for reaction times. The feedback phase showed clear reward-related, but magnitude-independent, response patterns, for example in the anterior cingulate cortex, in both tasks. Our findings highlight neural and behavioral response patterns engaged in two different reward paradigms in one sample of 14-year-old healthy adolescents and might be important for reference in future studies investigating reward and punishment processing in a target age group.
Dogs are able to solve a means-end task
Range, Friederike; Hentrup, Marleen; Viranyi, Zsofia
2014-01-01
Dogs, although very skilled in social communicative tasks, have shown limited abilities in the domain of physical cognition. Consequently, several researchers hypothesized that domestication enhanced dogs’ cognitive abilities in the social realm, but relaxed selection on the physical one. For instance, dogs failed to demonstrate means-end understanding, an important form of relying on physical causal connection, when tested in a string-pulling task. Here, we tested dogs in an ‘on/off’ task using a novel approach. Thirty-two dogs were confronted with four different conditions in which they could choose between two boards one with a reward ‘on’ and another one with a reward ‘off’ (reward was placed next to the board). The dogs chose the correct board when 1) both rewards were placed at the same distance from the dog, when 2) the reward placed ‘on’ the board was closer to the dog, and 3) even when the reward placed ‘off’ the board was much closer to the dog and was food. Interestingly, in the latter case dogs did not perform above chance, if instead of a direct reward, the dogs had to retrieve an object placed on the board to get a food reward. In contrast to previous string pulling studies, our results show that dogs are able to solve a means-end task even if proximity of the unsupported reward is a confounding factor. PMID:21445577
Umemoto, Akina; Inzlicht, Michael; Holroyd, Clay B
2018-06-21
Successful execution of goal-directed behaviors often requires the deployment of cognitive control, which is thought to require cognitive effort. Recent theories have proposed that anterior cingulate cortex (ACC) regulates control levels by weighing the reward-related benefits of control against its effort-related costs. However, given that the sensations of cognitive effort and reward valuation are available only to introspection, this hypothesis is difficult to investigate empirically. We have proposed that two electrophysiological indices of ACC function, frontal midline theta and the reward positivity (RewP), provide objective measures of these functions. To explore this issue, we recorded the electroencephalogram (EEG) from participants engaged in an extended, cognitively-demanding task. Participants performed a time estimation task for 2 h in which they received reward and error feedback according to their task performance. We observed that the amplitude of the RewP, a feedback-locked component of the event related brain potential associated with reward processing, decreased with time-on-task. Conversely, frontal midline theta power, which consists of 4-8 Hz EEG oscillations associated with cognitive effort, increased with time-on-task. We also explored how these phenomena changed over time by conducting within-participant multi-level modeling analyses. Our results suggest that extended execution of a cognitively-demanding task is characterized by an early phase in which high control levels foster rapid improvements in task performance, and a later phase in which high control levels were necessary to maintain stable task performance, perhaps counteracting waning reward valuation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Reward abundance interferes with error-based learning in a visuomotor adaptation task
Oostwoud Wijdenes, Leonie; Rigterink, Tessa; Overvliet, Krista E.; Smeets, Joeren B. J.
2018-01-01
The brain rapidly adapts reaching movements to changing circumstances by using visual feedback about errors. Providing reward in addition to error feedback facilitates the adaptation but the underlying mechanism is unknown. Here, we investigate whether the proportion of trials rewarded (the ‘reward abundance’) influences how much participants adapt to their errors. We used a 3D multi-target pointing task in which reward alone is insufficient for motor adaptation. Participants (N = 423) performed the pointing task with feedback based on a shifted hand-position. On a proportion of trials we gave them rewarding feedback that their hand hit the target. Half of the participants only received this reward feedback. The other half also received feedback about endpoint errors. In different groups, we varied the proportion of trials that was rewarded. As expected, participants who received feedback about their errors did adapt, but participants who only received reward-feedback did not. Critically, participants who received abundant rewards adapted less to their errors than participants who received less reward. Thus, reward abundance negatively influences how much participants learn from their errors. Probably participants used a mechanism that relied more on the reward feedback when the reward was abundant. Because participants could not adapt to the reward, this interfered with adaptation to errors. PMID:29513681
Self-Control Assessments of Capuchin Monkeys With the Rotating Tray Task and the Accumulation Task
Beran, Michael J.; Perdue, Bonnie M.; Rossettie, Mattea S.; James, Brielle T.; Whitham, Will; Walker, Bradlyn; Futch, Sara E.; Parrish, Audrey E.
2016-01-01
Recent studies of delay of gratification in capuchin monkeys using a rotating tray (RT) task have shown improved self-control performance in these animals in comparison to the accumulation (AC) task. In this study, we investigated whether this improvement resulted from the difference in methods between the rotating tray task and previous tests, or whether it was the result of greater overall experience with delay of gratification tasks. Experiment 1 produced similar performance levels by capuchins monkeys in the RT and AC tasks when identical reward and temporal parameters were used. Experiment 2 demonstrated a similar result using reward amounts that were more similar to previous AC experiments with these monkeys. In Experiment 3, monkeys performed multiple versions of the AC task with varied reward and temporal parameters. Their self-control behavior was found to be dependent on the overall delay to reward consumption, rather than the overall reward amount ultimately consumed. These findings indicate that these capuchin monkeys’ self-control capacities were more likely to have improved across studies because of the greater experience they had with delay of gratification tasks. Experiment 4 and Experiment 5 tested new, task-naïve monkeys on both tasks, finding more limited evidence of self-control, and no evidence that one task was more beneficial than the other in promoting self-control. The results of this study suggest that future testing of this kind should focus on temporal parameters and reward magnitude parameters to establish accurate measures of delay of gratification capacity and development in this species and perhaps others. PMID:27298233
I don't want to come back down: Undoing versus maintaining of reward recovery in older adolescents.
Gilbert, Kirsten E; Nolen-Hoeksema, Susan; Gruber, June
2016-03-01
Adolescence is characterized by heightened and sometimes impairing reward sensitivity, yet less is known about how adolescents recover from highly arousing positive states. This is particularly important given high onset rates of psychopathology associated with reward sensitivity during late adolescence and early adulthood. The current study thus utilized a novel reward sensitivity task in order to examine potential ways in which older adolescent females (ages 18-21; N = 83) might recover from high arousal positive reward sensitive states. Participants underwent a fixed incentive reward sensitivity task and subsequently watched a neutral, sad, or a low approach-motivated positive emotional film clip during which subjective and physiological recovery was assessed. Results indicated that the positive and negative film conditions were associated with maintained physiological arousal while the neutral condition facilitated faster physiological recovery from the reward sensitivity task. It is interesting to note that individual differences in self-reported positive emotion during the reward task were associated with faster recovery in the neutral condition. Findings suggest elicited emotion (regardless of valence) may serve to maintain reward sensitivity whereas self-reported positive emotional experience may be a key ingredient facilitating physiological recovery or undoing. Understanding the nuances of reward recovery provides a critical step in understanding the etiology and persistence of reward dysregulation more generally. (c) 2016 APA, all rights reserved).
Reward Motivation Enhances Task Coding in Frontoparietal Cortex.
Etzel, Joset A; Cole, Michael W; Zacks, Jeffrey M; Kay, Kendrick N; Braver, Todd S
2016-04-01
Reward motivation often enhances task performance, but the neural mechanisms underlying such cognitive enhancement remain unclear. Here, we used a multivariate pattern analysis (MVPA) approach to test the hypothesis that motivation-related enhancement of cognitive control results from improved encoding and representation of task set information. Participants underwent two fMRI sessions of cued task switching, the first under baseline conditions, and the second with randomly intermixed reward incentive and no-incentive trials. Information about the upcoming task could be successfully decoded from cue-related activation patterns in a set of frontoparietal regions typically associated with task control. More critically, MVPA classifiers trained on the baseline session had significantly higher decoding accuracy on incentive than non-incentive trials, with decoding improvement mediating reward-related enhancement of behavioral performance. These results strongly support the hypothesis that reward motivation enhances cognitive control, by improving the discriminability of task-relevant information coded and maintained in frontoparietal brain regions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Salvetti, Beatrice; Morris, Richard G M; Wang, Szu-Han
2014-01-15
Many insignificant events in our daily life are forgotten quickly but can be remembered for longer when other memory-modulating events occur before or after them. This phenomenon has been investigated in animal models in a protocol in which weak memories persist longer if exploration in a novel context is introduced around the time of memory encoding. This study aims to understand whether other types of rewarding or novel tasks, such as rewarded learning in a T-maze and novel object recognition, can also be effective memory-modulating events. Rats were trained in a delayed matching-to-place task to encode and retrieve food locations in an event arena. Weak encoding with only one food pellet at the sample location induced memory encoding but forgetting over 24 h. When this same weak encoding was followed by a rewarded task in a T-maze, the memory persisted for 24 h. Moreover, the same persistence of memory over 24 h could be achieved by exploration in a novel box or by a rewarded T-maze task after a "non-rewarded" weak encoding. When the one-pellet weak encoding was followed by novel object exploration, the memory did not persist at 24 h. Together, the results confirm that place encoding is possible without explicit reward, and that rewarded learning in a separate task lacking novelty can be an effective memory-modulating event. The behavioral and neurobiological implications are discussed.
Explorative Function in Williams Syndrome Analyzed through a Large-Scale Task with Multiple Rewards
ERIC Educational Resources Information Center
Foti, F.; Petrosini, L.; Cutuli, D.; Menghini, D.; Chiarotti, F.; Vicari, S.; Mandolesi, L.
2011-01-01
This study aimed to evaluate spatial function in subjects with Williams syndrome (WS) by using a large-scale task with multiple rewards and comparing the spatial abilities of WS subjects with those of mental age-matched control children. In the present spatial task, WS participants had to explore an open space to search nine rewards placed in…
Relief as a Reward: Hedonic and Neural Responses to Safety from Pain
Leknes, Siri; Lee, Michael; Berna, Chantal; Andersson, Jesper; Tracey, Irene
2011-01-01
Relief fits the definition of a reward. Unlike other reward types the pleasantness of relief depends on the violation of a negative expectation, yet this has not been investigated using neuroimaging approaches. We hypothesized that the degree of negative expectation depends on state (dread) and trait (pessimism) sensitivity. Of the brain regions that are involved in mediating pleasure, the nucleus accumbens also signals unexpected reward and positive prediction error. We hypothesized that accumbens activity reflects the level of negative expectation and subsequent pleasant relief. Using fMRI and two purpose-made tasks, we compared hedonic and BOLD responses to relief with responses during an appetitive reward task in 18 healthy volunteers. We expected some similarities in task responses, reflecting common neural substrates implicated across reward types. However, we also hypothesized that relief responses would differ from appetitive rewards in the nucleus accumbens, since only relief pleasantness depends on negative expectations. The results confirmed these hypotheses. Relief and appetitive reward task activity converged in the ventromedial prefrontal cortex, which also correlated with appetitive reward pleasantness ratings. In contrast, dread and pessimism scores correlated with relief but not with appetitive reward hedonics. Moreover, only relief pleasantness covaried with accumbens activation. Importantly, the accumbens signal appeared to specifically reflect individual differences in anticipation of the adverse event (dread, pessimism) but was uncorrelated to appetitive reward hedonics. In conclusion, relief differs from appetitive rewards due to its reliance on negative expectations, the violation of which is reflected in relief-related accumbens activation. PMID:21490964
Veling, Harm; Bijleveld, Erik
2015-12-01
Valuable monetary rewards can boost human performance on various effortful tasks even when the value of the rewards is presented too briefly to allow for strategic decision making. However, the mechanism by which briefly-presented reward information influences performance has remained unclear. One possibility is that performance after briefly-presented reward information is primarily boosted via activation of the dopamine reward system, whereas performance after very visible reward information is driven more by strategic processes. To examine this hypothesis, we first presented participants with a task in which they could earn rewards of relatively low (1 cent) or high (10 cents) value, and the value information was presented either briefly (17 ms) or for an extended duration (300 ms). Furthermore, responsiveness of the dopamine system was indirectly estimated with a measure of risk taking, the Balloon Analogue Risk Task (BART). Results showed that performance after high- compared to low-value rewards was indeed related to the BART scores only when reward information was presented briefly. These results are suggestive of the possibility that brief presentation of reward information boosts performance directly via activating the dopamine system, whereas extended presentation of reward information leads to more strategic reward-driven behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Salama, Aallaa; Gründer, Gerhard; Spreckelmeyer, Katja N.
2014-01-01
Recent studies have reported inconsistent results regarding the loss of reward sensitivity in the aging brain. Although such an age effect might be due to a decline of physiological processes, it may also be a consequence of age-related changes in motivational preference for different rewards. Here, we examined whether the age effects on neural correlates of reward anticipation are modulated by the type of expected reward. Functional magnetic resonance images were acquired in 24 older (60–78 years) and 24 young participants (20–28 years) while they performed an incentive delay task offering monetary or social rewards. Anticipation of either reward type recruited brain structures associated with reward, including the nucleus accumbens (NAcc). Region of interest analysis revealed an interaction effect of reward type and age group in the right NAcc: enhanced activation to cues of social reward was detected in the older subsample while enhanced activation to cues of monetary reward was detected in the younger subsample. Our results suggest that neural sensitivity to reward-predicting cues does not generally decrease with age. Rather, neural responses in the NAcc appear to be modulated by the type of reward, presumably reflecting age-related changes in motivational value attributed to different types of reward. PMID:23547243
Barch, Deanna M; Treadway, Michael T; Schoen, Nathan
2014-05-01
One of the most debilitating aspects of schizophrenia is an apparent interest in or ability to exert effort for rewards. Such "negative symptoms" may prevent individuals from obtaining potentially beneficial outcomes in educational, occupational, or social domains. In animal models, dopamine abnormalities decrease willingness to work for rewards, implicating dopamine (DA) function as a candidate substrate for negative symptoms given that schizophrenia involves dysregulation of the dopamine system. We used the effort-expenditure for rewards task (EEfRT) to assess the degree to which individuals with schizophrenia were wiling to exert increased effort for either larger magnitude rewards or for rewards that were more probable. Fifty-nine individuals with schizophrenia and 39 demographically similar controls performed the EEfRT task, which involves making choices between "easy" and "hard" tasks to earn potential rewards. Individuals with schizophrenia showed less of an increase in effort allocation as either reward magnitude or probability increased. In controls, the frequency of choosing the hard task in high reward magnitude and probability conditions was negatively correlated with depression severity and anhedonia. In schizophrenia, fewer hard task choices were associated with more severe negative symptoms and worse community and work function as assessed by a caretaker. Consistent with patterns of disrupted dopamine functioning observed in animal models of schizophrenia, these results suggest that 1 mechanism contributing to impaired function and motivational drive in schizophrenia may be a reduced allocation of greater effort for higher magnitude or higher probability rewards.
Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task
2017-01-01
Neural networks with a single plastic layer employing reward modulated spike time dependent plasticity (STDP) are capable of learning simple foraging tasks. Here we demonstrate advanced pattern discrimination and continuous learning in a network of spiking neurons with multiple plastic layers. The network utilized both reward modulated and non-reward modulated STDP and implemented multiple mechanisms for homeostatic regulation of synaptic efficacy, including heterosynaptic plasticity, gain control, output balancing, activity normalization of rewarded STDP and hard limits on synaptic strength. We found that addition of a hidden layer of neurons employing non-rewarded STDP created neurons that responded to the specific combinations of inputs and thus performed basic classification of the input patterns. When combined with a following layer of neurons implementing rewarded STDP, the network was able to learn, despite the absence of labeled training data, discrimination between rewarding patterns and the patterns designated as punishing. Synaptic noise allowed for trial-and-error learning that helped to identify the goal-oriented strategies which were effective in task solving. The study predicts a critical set of properties of the spiking neuronal network with STDP that was sufficient to solve a complex foraging task involving pattern classification and decision making. PMID:28961245
Motivation versus aversive processing during perception.
Padmala, Srikanth; Pessoa, Luiz
2014-06-01
Reward facilitates performance and boosts cognitive performance across many tasks. At the same time, negative affective stimuli interfere with performance when they are not relevant to the task at hand. Yet, the investigation of how reward and negative stimuli impact perception and cognition has taken place in a manner that is largely independent of each other. How reward and negative emotion simultaneously contribute to behavioral performance is currently poorly understood. The aim of the present study was to investigate how the simultaneous manipulation of positive motivational processing (here manipulated via reward) and aversive processing (here manipulated via negative picture viewing) influence behavior during a perceptual task. We tested 2 competing hypotheses about the impact of reward on negative picture viewing. On the one hand, suggestions about the automaticity of emotional processing predict that negative picture interference would be relatively immune to reward. On the other, if affective visual processing is not obligatory, as we have argued in the past, reward may counteract the deleterious effect of more potent negative pictures. We found that reward counteracted the effect of potent, negative distracters during a visual discrimination task. Thus, when sufficiently motivated, participants were able to reduce the deleterious impact of bodily mutilation stimuli.
Steele, Catherine C.; Peterson, Jennifer R.; Marshall, Andrew T.; Stuebing, Sarah L.; Kirkpatrick, Kimberly
2017-01-01
The nucleus accumbens core (NAc) has long been recognized as an important contributor to the computation of reward value that is critical for impulsive choice behavior. Impulsive choice refers to choosing a smaller-sooner (SS) over a larger-later (LL) reward when the LL is more optimal in terms of the rate of reward delivery. Two experiments examined the role of the NAc in impulsive choice and its component processes of delay and magnitude processing. Experiment 1 delivered an impulsive choice task with manipulations of LL reward magnitude, followed by a reward magnitude discrimination task. Experiment 2 tested impulsive choice under manipulations of LL delay, followed by temporal bisection and progressive interval tasks. NAc lesions, in comparison to sham control lesions, produced suboptimal preferences that resulted in lower reward earning rates, and led to reduced sensitivity to magnitude and delay within the impulsive choice task. The secondary tasks revealed intact reward magnitude and delay discrimination abilities, but the lesion rats persisted in responding more as the progressive interval increased during the session. The results suggest that the NAc is most critical for demonstrating good sensitivity to magnitude and delay, and adjusting behavior accordingly. Ultimately, the NAc lesions induced suboptimal choice behavior rather than simply promoting impulsive choice, suggesting that an intact NAc is necessary for optimal decision making. PMID:29146281
Of goals and habits: age-related and individual differences in goal-directed decision-making.
Eppinger, Ben; Walter, Maik; Heekeren, Hauke R; Li, Shu-Chen
2013-01-01
In this study we investigated age-related and individual differences in habitual (model-free) and goal-directed (model-based) decision-making. Specifically, we were interested in three questions. First, does age affect the balance between model-based and model-free decision mechanisms? Second, are these age-related changes due to age differences in working memory (WM) capacity? Third, can model-based behavior be affected by manipulating the distinctiveness of the reward value of choice options? To answer these questions we used a two-stage Markov decision task in in combination with computational modeling to dissociate model-based and model-free decision mechanisms. To affect model-based behavior in this task we manipulated the distinctiveness of reward probabilities of choice options. The results show age-related deficits in model-based decision-making, which are particularly pronounced if unexpected reward indicates the need for a shift in decision strategy. In this situation younger adults explore the task structure, whereas older adults show perseverative behavior. Consistent with previous findings, these results indicate that older adults have deficits in the representation and updating of expected reward value. We also observed substantial individual differences in model-based behavior. In younger adults high WM capacity is associated with greater model-based behavior and this effect is further elevated when reward probabilities are more distinct. However, in older adults we found no effect of WM capacity. Moreover, age differences in model-based behavior remained statistically significant, even after controlling for WM capacity. Thus, factors other than decline in WM, such as deficits in the in the integration of expected reward value into strategic decisions may contribute to the observed impairments in model-based behavior in older adults.
Of goals and habits: age-related and individual differences in goal-directed decision-making
Eppinger, Ben; Walter, Maik; Heekeren, Hauke R.; Li, Shu-Chen
2013-01-01
In this study we investigated age-related and individual differences in habitual (model-free) and goal-directed (model-based) decision-making. Specifically, we were interested in three questions. First, does age affect the balance between model-based and model-free decision mechanisms? Second, are these age-related changes due to age differences in working memory (WM) capacity? Third, can model-based behavior be affected by manipulating the distinctiveness of the reward value of choice options? To answer these questions we used a two-stage Markov decision task in in combination with computational modeling to dissociate model-based and model-free decision mechanisms. To affect model-based behavior in this task we manipulated the distinctiveness of reward probabilities of choice options. The results show age-related deficits in model-based decision-making, which are particularly pronounced if unexpected reward indicates the need for a shift in decision strategy. In this situation younger adults explore the task structure, whereas older adults show perseverative behavior. Consistent with previous findings, these results indicate that older adults have deficits in the representation and updating of expected reward value. We also observed substantial individual differences in model-based behavior. In younger adults high WM capacity is associated with greater model-based behavior and this effect is further elevated when reward probabilities are more distinct. However, in older adults we found no effect of WM capacity. Moreover, age differences in model-based behavior remained statistically significant, even after controlling for WM capacity. Thus, factors other than decline in WM, such as deficits in the in the integration of expected reward value into strategic decisions may contribute to the observed impairments in model-based behavior in older adults. PMID:24399925
Self-control assessments of capuchin monkeys with the rotating tray task and the accumulation task.
Beran, Michael J; Perdue, Bonnie M; Rossettie, Mattea S; James, Brielle T; Whitham, Will; Walker, Bradlyn; Futch, Sara E; Parrish, Audrey E
2016-08-01
Recent studies of delay of gratification in capuchin monkeys using a rotating tray (RT) task have shown improved self-control performance in these animals in comparison to the accumulation (AC) task. In this study, we investigated whether this improvement resulted from the difference in methods between the rotating tray task and previous tests, or whether it was the result of greater overall experience with delay of gratification tasks. Experiment 1 produced similar performance levels by capuchins monkeys in the RT and AC tasks when identical reward and temporal parameters were used. Experiment 2 demonstrated a similar result using reward amounts that were more similar to previous AC experiments with these monkeys. In Experiment 3, monkeys performed multiple versions of the AC task with varied reward and temporal parameters. Their self-control behavior was found to be dependent on the overall delay to reward consumption, rather than the overall reward amount ultimately consumed. These findings indicate that these capuchin monkeys' self-control capacities were more likely to have improved across studies because of the greater experience they had with delay of gratification tasks. Experiment 4 and Experiment 5 tested new, task-naïve monkeys on both tasks, finding more limited evidence of self-control, and no evidence that one task was more beneficial than the other in promoting self-control. The results of this study suggest that future testing of this kind should focus on temporal parameters and reward magnitude parameters to establish accurate measures of delay of gratification capacity and development in this species and perhaps others. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterizing Impulsivity in Mania
Strakowski, Stephen M.; Fleck, David E.; DelBello, Melissa P.; Adler, Caleb M.; Shear, Paula K.; McElroy, Susan L.; Keck, Paul E.; Moss, Quinton; Cerullo, Michael A.; Kotwal, Renu; Arndt, Stephan
2008-01-01
Objective To determine whether specific aspects of impulsivity (response disinhibition, inability to delay gratification, inattention) differ between healthy and bipolar manic subjects, and whether these aspects of impulsivity were associated with each other and severity of affective symptoms. Methods Performance of 70 bipolar I manic or mixed patients was compared to that of 34 healthy subjects on three tasks specifically designed to study response inhibition, ability to delay gratification, and attention; namely a stop signal task, a delayed reward task, and a continuous performance task respectively. Correlations among tasks and with symptom ratings were also performed. Results Bipolar subjects demonstrated significant deficits on all three tasks as compared to healthy subjects. Performance on the three tasks was largely independent. Task performance was not significantly associated with the severity of affective symptom ratings. However, measures of response inhibition and attention were sensitive to medication effects. Differences in the delayed reward task were independent of medication effects or symptom ratings. During the delayed reward task, although bipolar patients made their choices more slowly than healthy subjects, they were significantly more likely to choose a smaller, but more quickly obtained reward. Moreover performance on this task was not associated with performance on the other impulsivity measures. Manic patients showed more impulsive responding than mixed patients. Conclusions Bipolar I manic patients demonstrate deficits on tests of various aspects of impulsivity as compared to healthy subjects. Some of these differences between groups may be mediated by medication effects. Findings suggested that inability to delay gratification (i.e., delayed reward task) was not simply a result of the speed of decision making or inattention, but rather that it reflected differences between bipolar and healthy subjects in the valuation of reward relative to delay. PMID:19133965
Capa, Rémi L; Bouquet, Cédric A; Dreher, Jean-Claude; Dufour, André
2013-01-01
Motivation is often thought to interact consciously with executive control, although recent studies have indicated that motivation can also be unconscious. To date, however, the effects of unconscious motivation on high-order executive control functions have not been explored. Only a few studies using subliminal stimuli (i.e., those not related to motivation, such as an arrow to prime a response) have reported short-lived effects on high-order executive control functions. Here, building on research on unconscious motivation, in which a behavior of perseverance is induced to attain a goal, we hypothesized that subliminal motivation can have long-lasting effects on executive control processes. We investigated the impact of unconscious/conscious monetary reward incentives on evoked potentials and neural activity dynamics during cued task-switching performance. Participants performed long runs of task-switching. At the beginning of each run, a reward (50 cents or 1 cent) was displayed, either subliminally or supraliminally. Participants earned the reward contingent upon their correct responses to each trial of the run. A higher percentage of runs was achieved with higher (conscious and unconscious) than lower rewards, indicating that unconscious high rewards have long-lasting behavioral effects. Event-related potential (ERP) results indicated that unconscious and conscious rewards influenced preparatory effort in task preparation, as suggested by a greater fronto-central contingent negative variation (CNV) starting at cue-onset. However, a greater parietal P3 associated with better reaction times (RTs) was observed only under conditions of conscious high reward, suggesting a larger amount of working memory invested during task performance. Together, these results indicate that unconscious and conscious motivations are similar at early stages of task-switching preparation but differ during task performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mehta, Mitul A; Gore-Langton, Emma; Golembo, Nicole; Colvert, Emma; Williams, Steven C R; Sonuga-Barke, Edmund
2010-10-01
Severe deprivation in the first few years of life is associated with multiple difficulties in cognition and behavior. However, the brain basis for these difficulties is poorly understood. Structural and functional neuroimaging studies have implicated limbic system structures as dysfunctional, and one functional imaging study in a heterogeneous group of maltreated individuals has confirmed the presence of abnormalities in the basal ganglia. Based on these studies and known dopaminergic abnormalities from studies in experimental animals using social isolation, we used a task of monetary reward anticipation to examine the functional integrity of brain regions previously shown to be implicated in reward processing. Our sample included a group of adolescents (n = 12) who had experienced global deprivation early in their lives in Romania prior to adoption into UK families. In contrast to a nonadopted comparison group (n = 11), the adoptees did not recruit the striatum during reward anticipation despite comparable performance accuracy and latency. These results show, for the first time, an association between early institutional deprivation and brain reward systems in humans and highlight potential neural vulnerabilities resulting from such exposures.
Neural evidence reveals the rapid effects of reward history on selective attention.
MacLean, Mary H; Giesbrecht, Barry
2015-05-05
Selective attention is often framed as being primarily driven by two factors: task-relevance and physical salience. However, factors like selection and reward history, which are neither currently task-relevant nor physically salient, can reliably and persistently influence visual selective attention. The current study investigated the nature of the persistent effects of irrelevant, physically non-salient, reward-associated features. These features affected one of the earliest reliable neural indicators of visual selective attention in humans, the P1 event-related potential, measured one week after the reward associations were learned. However, the effects of reward history were moderated by current task demands. The modulation of visually evoked activity supports the hypothesis that reward history influences the innate salience of reward associated features, such that even when no longer relevant, nor physically salient, these features have a rapid, persistent, and robust effect on early visual selective attention. Copyright © 2015 Elsevier B.V. All rights reserved.
Silverman, Merav H; Krueger, Robert F; Iacono, William G; Malone, Stephen M; Hunt, Ruskin H; Thomas, Kathleen M
2014-12-01
Although altered brain activation during reward tasks has been found in a number of heritable psychiatric disorders and health outcomes, the familial nature of reward-related brain activation remains unexplored. In this study, we investigated the degree to which the magnitude of mesocorticolimbic reward system signal intensities in anticipation of reward during the monetary incentive delay (MID) task was similar within 46 pairs of adolescent, monozygotic twins. Significant within-pair correlations in brain activation during anticipation of gain were found in one third of the 18 reward-related regions investigated. These regions were the right nucleus accumbens, left and right posterior caudate, right anterior caudate, left insula, and anterior cingulate cortex. This serves as evidence for a shared familial contribution to individual differences in reward related brain activity in certain key reward processing regions. Copyright © 2014 Elsevier B.V. All rights reserved.
Rewards modulate saccade latency but not exogenous spatial attention.
Dunne, Stephen; Ellison, Amanda; Smith, Daniel T
2015-01-01
The eye movement system is sensitive to reward. However, whilst the eye movement system is extremely flexible, the extent to which changes to oculomotor behavior induced by reward paradigms persist beyond the training period or transfer to other oculomotor tasks is unclear. To address these issues we examined the effects of presenting feedback that represented small monetary rewards to spatial locations on the latency of saccadic eye movements, the time-course of learning and extinction of the effects of rewarding saccades on exogenous spatial attention and oculomotor inhibition of return. Reward feedback produced a relative facilitation of saccadic latency in a stimulus driven saccade task which persisted for three blocks of extinction trials. However, this hemifield-specific effect failed to transfer to peripheral cueing tasks. We conclude that rewarding specific spatial locations is unlikely to induce long-term, systemic changes to the human oculomotor or attention systems.
Masunami, Taiji; Okazaki, Shinji; Maekawa, Hisao
2009-06-01
Earlier studies have demonstrated that attention-deficit hyperactivity disorder (ADHD) is associated with aberrant sensitivity to rewards and punishments. Although some studies have focused on real-life decision making in children with ADHD using the Iowa gambling task, the number of good deck choices, a frequently used index of decision-making ability in the gambling task, is insufficient for investigating the complex decision-making strategies in subjects. In the present study, we investigated decision-making strategies in ADHD children, analyzing T-patterns with rewards, with punishments, and without rewards and punishments during the gambling task, and examined the relationship between decision-making strategies and skin conductance responses (SCRs) to rewards and punishments. We hypothesized that ADHD children and normal children would employ different decision-making strategies depending on their sensitivity to rewards and punishments in the gambling task. Our results revealed that ADHD children had fewer T-patterns with punishments and exhibited a significant tendency to have many T-patterns with rewards, thus supporting our hypothesis. Moreover, in contrast to normal children, ADHD children failed to demonstrate differences between reward and punishment SCRs, supporting the idea that they had an aberrant sensitivity to rewards and punishments. Therefore, we concluded that ADHD children would be impaired in decision-making strategies depending on their aberrant sensitivity to rewards and punishments. However, we were unable to specify whether large reward SCRs or small punishment SCRs is generated in ADHD children.
Reward-based spatial crowdsourcing with differential privacy preservation
NASA Astrophysics Data System (ADS)
Xiong, Ping; Zhang, Lefeng; Zhu, Tianqing
2017-11-01
In recent years, the popularity of mobile devices has transformed spatial crowdsourcing (SC) into a novel mode for performing complicated projects. Workers can perform tasks at specified locations in return for rewards offered by employers. Existing methods ensure the efficiency of their systems by submitting the workers' exact locations to a centralised server for task assignment, which can lead to privacy violations. Thus, implementing crowsourcing applications while preserving the privacy of workers' location is a key issue that needs to be tackled. We propose a reward-based SC method that achieves acceptable utility as measured by task assignment success rates, while efficiently preserving privacy. A differential privacy model ensures rigorous privacy guarantee, and Laplace noise is introduced to protect workers' exact locations. We then present a reward allocation mechanism that adjusts each piece of the reward for a task using the distribution of the workers' locations. Through experimental results, we demonstrate that this optimised-reward method is efficient for SC applications.
Social comparison modulates reward-driven attentional capture.
Jiao, Jun; Du, Feng; He, Xiaosong; Zhang, Kan
2015-10-01
It is well established that attention can be captured by task irrelevant and non-salient objects associated with value through reward learning. However, it is unknown whether social comparison influences reward-driven attentional capture. The present study created four social contexts to examine whether different social comparisons modulate the reward-driven capture of attention. The results showed that reward-driven attentional capture varied with different social comparison conditions. Most prominently, reward-driven attentional capture is dramatically reduced in the disadvantageous social comparison context, in which an individual is informed that the other participant is earning more monetary reward for performing the same task. These findings suggest that social comparison can affect the reward-driven capture of attention.
Previous Cocaine Exposure Makes Rats Hypersensitive to Both Delay and Reward Magnitude
Roesch, Matthew R.; Takahashi, Yuji; Gugsa, Nishan; Bissonette, Gregory B.; Schoenbaum, Geoffrey
2008-01-01
Animals prefer an immediate over a delayed reward, just as they prefer a large over a small reward. Exposure to psychostimulants causes long-lasting changes in structures critical for this behavior and might disrupt normal time-discounting performance. To test this hypothesis, we exposed rats to cocaine daily for 2 weeks (30 mg/kg, i.p.). Approximately 6 weeks later, we tested them on a variant of a time-discounting task, in which the rats responded to one of two locations to obtain reward while we independently manipulated the delay to reward and reward magnitude. Performance did not differ between cocaine-treated and saline-treated (control) rats when delay lengths and reward magnitudes were equal at the two locations. However, cocaine-treated rats were significantly more likely to shift their responding when we increased the delay or reward size asymmetrically. Furthermore, they were slower to respond and made more errors when forced to the side associated with the lower value. We conclude that previous exposure to cocaine makes choice behavior hypersensitive to differences in the time to and size of available rewards, consistent with a general effect of cocaine exposure on reward valuation mechanisms. PMID:17202492
Previous cocaine exposure makes rats hypersensitive to both delay and reward magnitude.
Roesch, Matthew R; Takahashi, Yuji; Gugsa, Nishan; Bissonette, Gregory B; Schoenbaum, Geoffrey
2007-01-03
Animals prefer an immediate over a delayed reward, just as they prefer a large over a small reward. Exposure to psychostimulants causes long-lasting changes in structures critical for this behavior and might disrupt normal time-discounting performance. To test this hypothesis, we exposed rats to cocaine daily for 2 weeks (30 mg/kg, i.p.). Approximately 6 weeks later, we tested them on a variant of a time-discounting task, in which the rats responded to one of two locations to obtain reward while we independently manipulated the delay to reward and reward magnitude. Performance did not differ between cocaine-treated and saline-treated (control) rats when delay lengths and reward magnitudes were equal at the two locations. However, cocaine-treated rats were significantly more likely to shift their responding when we increased the delay or reward size asymmetrically. Furthermore, they were slower to respond and made more errors when forced to the side associated with the lower value. We conclude that previous exposure to cocaine makes choice behavior hypersensitive to differences in the time to and size of available rewards, consistent with a general effect of cocaine exposure on reward valuation mechanisms.
Choi, Boreum; Lee, Inseong; Choi, Dongseong; Kim, Jinwoo
2007-08-01
Today millions of players interact with one another in online games, especially massively multiplayer online role-playing games (MMORPGs). These games promote interaction among players by offering interdependency features, but to date few studies have asked what interdependency design factors of MMORPGs make them fun for players, produce experiences of flow, or enhance player performance. In this study, we focused on two game design features: task and reward interdependency. We conducted a controlled experiment that compared the interaction effects of low and high task-interdependency conditions and low and high reward-interdependency conditions on three dependent variables: fun, flow, and performance. We found that in a low task-interdependency condition, players had more fun, experienced higher levels of flow, and perceived better performance when a low reward-interdependency condition also obtained. In contrast, in a high task-interdependency condition, all of these measures were higher when a high reward-interdependency condition also obtained.
Landolt, Kathleen; O'Donnell, Emma; Hazi, Agnes; Dragano, Nico; Wright, Bradley J
2017-04-01
Effort-reward imbalance in the workplace is linked to a variety of negative health and organisational outcomes, but it has rarely been assessed experimentally. We manipulated reward (while keeping effort constant) in a within-subjects design with female participants (N=60) who were randomly assigned to high and standard reward conditions within a simulated office environment. Self-report, behavioural (task performance), and physiological (heart rate variability, salivary alpha amylase) measures assessed the impact of increased financial reward. Participants reported increased perceptions of reward, performed moderately better on the task, and were less physiologically reactive in the high reward versus the standard condition. These findings highlight the importance of assessing both subjective self-reports of stress together with objective physiological measures of stress, and suggest that increasing monetary rewards has the potential to decrease stress physiological reactivity, and in turn, reduce the risk of ill-health in employees, and may also positively influence task efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.
de Clauser, Larissa; Kasper, Hansjörg; Schwab, Martin E.
2016-01-01
Motor skills represent high-precision movements performed at optimal speed and accuracy. Such motor skills are learned with practice over time. Besides practice, effects of motivation have also been shown to influence speed and accuracy of movements, suggesting that fast movements are performed to maximize gained reward over time as noted in previous studies. In rodents, skilled motor performance has been successfully modeled with the skilled grasping task, in which animals use their forepaw to grasp for sugar pellet rewards through a narrow window. Using sugar pellets, the skilled grasping task is inherently tied to motivation processes. In the present study, we performed three experiments modulating animals’ motivation during skilled grasping by changing the motivational state, presenting different reward value ratios, and displaying Pavlovian stimuli. We found in all three studies that motivation affected the speed of skilled grasping movements, with the strongest effects seen due to motivational state and reward value. Furthermore, accuracy of the movement, measured in success rate, showed a strong dependence on motivational state as well. Pavlovian cues had only minor effects on skilled grasping, but results indicate an inverse Pavlovian-instrumental transfer effect on movement speed. These findings have broad implications considering the increasing use of skilled grasping in studies of motor system structure, function, and recovery after injuries. PMID:27194796
Cognitive Inflexibility in Gamblers is Primarily Present in Reward-Related Decision Making
Boog, Michiel; Höppener, Paul; v. d. Wetering, Ben J. M.; Goudriaan, Anna E.; Boog, Matthijs C.; Franken, Ingmar H. A.
2014-01-01
One hallmark of gambling disorder (GD) is the observation that gamblers have problems stopping their gambling behavior once it is initiated. On a neuropsychological level, it has been hypothesized that this is the result of a cognitive inflexibility. The present study investigated cognitive inflexibility in patients with GD using a task involving cognitive inflexibility with a reward element (i.e., reversal learning) and a task measuring general cognitive inflexibility without such a component (i.e., response perseveration). For this purpose, scores of a reward-based reversal learning task (probabilistic reversal learning task) and the Wisconsin card sorting task were compared between a group of treatment seeking patients with GD and a gender and age matched control group. The results show that pathological gamblers have impaired performance on the neurocognitive task measuring reward-based cognitive inflexibility. However, no difference between the groups is observed regarding non-reward-based cognitive inflexibility. This suggests that cognitive inflexibility in GD is the result of an aberrant reward-based learning, and not based on a more general problem with cognitive flexibility. The pattern of observed problems is suggestive of a dysfunction of the orbitofrontal cortex, the ventrolateral prefrontal cortex, and the ventral regions of the striatum in gamblers. Relevance for the neurocognition of problematic gambling is discussed. PMID:25165438
Behavioral consequences of selective damage to frontal pole and posterior cingulate cortices
Mansouri, Farshad A.; Buckley, Mark J.; Mahboubi, Majid; Tanaka, Keiji
2015-01-01
Frontal pole cortex (FPC) and posterior cingulate cortex (PCC) have close neuroanatomical connections, and imaging studies have shown coactivation or codeactivation of these brain regions during performance of certain tasks. However, they are among the least well-understood regions of the primate brain. One reason for this is that the consequences of selective bilateral lesions to either structure have not previously been studied in any primate species. We studied the effects of circumscribed bilateral lesions to FPC or PCC on monkeys’ ability to perform an analog of Wisconsin Card Sorting Test (WCST) and related tasks. In contrast to lesions in other prefrontal regions, neither posttraining FPC nor PCC lesions impaired animals’ abilities to follow the rule switches that frequently occurred within the WCST task. However, FPC lesions were not without effect, because they augmented the ability of animals to adjust cognitive control after experiencing high levels of conflict (whereas PCC lesions did not have any effect). In addition, FPC-lesioned monkeys were more successful than controls or PCC-lesioned animals at remembering the relevant rule across experimentally imposed distractions involving either an intervening secondary task or a surprising delivery of free reward. Although prefrontal cortex posterior to FPC is specialized for mediating efficient goal-directed behavior to maximally exploit reward opportunities from ongoing tasks, our data led us to suggest that FPC is, instead, specialized for disengaging executive control from the current task and redistributing it to novel sources of reward to explore new opportunities/goals. PMID:26150522
Affective and cognitive mechanisms of risky decision making.
Shimp, Kristy G; Mitchell, Marci R; Beas, B Sofia; Bizon, Jennifer L; Setlow, Barry
2015-01-01
The ability to make advantageous decisions under circumstances in which there is a risk of adverse consequences is an important component of adaptive behavior; however, extremes in risk taking (either high or low) can be maladaptive and are characteristic of a number of neuropsychiatric disorders. To better understand the contributions of various affective and cognitive factors to risky decision making, cohorts of male Long-Evans rats were trained in a "Risky Decision making Task" (RDT), in which they made discrete trial choices between a small, "safe" food reward and a large, "risky" food reward accompanied by varying probabilities of footshock. Experiment 1 evaluated the relative contributions of the affective stimuli (i.e., punishment vs. reward) to RDT performance by parametrically varying the magnitudes of the footshock and large reward. Varying the shock magnitude had a significant impact on choice of the large, "risky" reward, such that greater magnitudes were associated with reduced choice of the large reward. In contrast, varying the large, "risky" reward magnitude had minimal influence on reward choice. Experiment 2 compared individual variability in RDT performance with performance in an attentional set shifting task (assessing cognitive flexibility), a delayed response task (assessing working memory), and a delay discounting task (assessing impulsive choice). Rats characterized as risk averse in the RDT made more perseverative errors on the set shifting task than did their risk taking counterparts, whereas RDT performance was not related to working memory abilities or impulsive choice. In addition, rats that showed greater delay discounting (greater impulsive choice) showed corresponding poorer performance in the working memory task. Together, these results suggest that reward-related decision making under risk of punishment is more strongly influenced by the punishment than by the reward, and that risky and impulsive decision making are associated with distinct components of executive function. Copyright © 2014 Elsevier Inc. All rights reserved.
Striatal dopamine transmission in healthy humans during a passive monetary reward task.
Hakyemez, Hélène S; Dagher, Alain; Smith, Stephen D; Zald, David H
2008-02-15
Research on dopamine (DA) transmission has emphasized the importance of increased phasic DA cell firing in the presence of unpredictable rewards. Using [(11)C]raclopride PET, we previously reported that DA transmission was both suppressed and enhanced in different regions of the striatum during an unpredictable reward task [Zald, D.H., Boileau, I., El Dearedy, W., Gunn, R., McGlone, F., Dichter, G.S. et al. (2004). Dopamine transmission in the human striatum during monetary reward tasks. J. Neurosci. 24, 4105-4112]. However, it was unclear if reductions in DA release during this task reflected a response to the high proportion of nonrewarding trials, and whether the behavioral demands of the task influenced the observed response. To test these issues, we presented 10 healthy subjects with an automated (passive) roulette wheel game in which the amount of reward and its timing were unpredictable and the rewarding trials greatly outnumbered the nonrewarding ones. As in the previous study, DA transmission in the putamen was significantly suppressed relative to a predictable control condition. A similar suppression occurred when subjects were presented with temporally unpredictable novel pictures and sounds. At present, models of DA functioning during reward do not account for this suppression, but given that it has been observed in two different studies using different reward paradigms, this phenomenon warrants attention. Neither the unpredictable reward nor the novelty conditions produced consistent increases in striatal DA transmission. These data suggest that active behavioral engagement may be necessary to observe robust statewise increases in DA release in the striatum.
Boedecker, Joschka; Lampe, Thomas; Riedmiller, Martin
2013-01-01
A common assumption in psychology, economics, and other fields holds that higher performance will result if extrinsic rewards (such as money) are offered as an incentive. While this principle seems to work well for tasks that require the execution of the same sequence of steps over and over, with little uncertainty about the process, in other cases, especially where creative problem solving is required due to the difficulty in finding the optimal sequence of actions, external rewards can actually be detrimental to task performance. Furthermore, they have the potential to undermine intrinsic motivation to do an otherwise interesting activity. In this work, we extend a computational model of the dorsomedial and dorsolateral striatal reinforcement learning systems to account for the effects of extrinsic and intrinsic rewards. The model assumes that the brain employs both a goal-directed and a habitual learning system, and competition between both is based on the trade-off between the cost of the reasoning process and value of information. The goal-directed system elicits internal rewards when its models of the environment improve, while the habitual system, being model-free, does not. Our results account for the phenomena that initial extrinsic reward leads to reduced activity after extinction compared to the case without any initial extrinsic rewards, and that performance in complex task settings drops when higher external rewards are promised. We also test the hypothesis that external rewards bias the competition in favor of the computationally efficient, but cruder and less flexible habitual system, which can negatively influence intrinsic motivation and task performance in the class of tasks we consider.
Pediatric functional magnetic resonance neuroimaging: tactics for encouraging task compliance.
Schlund, Michael W; Cataldo, Michael F; Siegle, Greg J; Ladouceur, Cecile D; Silk, Jennifer S; Forbes, Erika E; McFarland, Ashley; Iyengar, Satish; Dahl, Ronald E; Ryan, Neal D
2011-05-06
Neuroimaging technology has afforded advances in our understanding of normal and pathological brain function and development in children and adolescents. However, noncompliance involving the inability to remain in the magnetic resonance imaging (MRI) scanner to complete tasks is one common and significant problem. Task noncompliance is an especially significant problem in pediatric functional magnetic resonance imaging (fMRI) research because increases in noncompliance produces a greater risk that a study sample will not be representative of the study population. In this preliminary investigation, we describe the development and application of an approach for increasing the number of fMRI tasks children complete during neuroimaging. Twenty-eight healthy children ages 9-13 years participated. Generalization of the approach was examined in additional fMRI and event-related potential investigations with children at risk for depression, children with anxiety and children with depression (N=120). Essential features of the approach include a preference assessment for identifying multiple individualized rewards, increasing reinforcement rates during imaging by pairing tasks with chosen rewards and presenting a visual 'road map' listing tasks, rewards and current progress. Our results showing a higher percentage of fMRI task completion by healthy children provides proof of concept data for the recommended tactics. Additional support was provided by results showing our approach generalized to several additional fMRI and event-related potential investigations and clinical populations. We proposed that some forms of task noncompliance may emerge from less than optimal reward protocols. While our findings may not directly support the effectiveness of the multiple reward compliance protocol, increased attention to how rewards are selected and delivered may aid cooperation with completing fMRI tasks. The proposed approach contributes to the pediatric neuroimaging literature by providing a useful way to conceptualize and measure task noncompliance and by providing simple cost effective tactics for improving the effectiveness of common reward-based protocols.
Pediatric functional magnetic resonance neuroimaging: tactics for encouraging task compliance
2011-01-01
Background Neuroimaging technology has afforded advances in our understanding of normal and pathological brain function and development in children and adolescents. However, noncompliance involving the inability to remain in the magnetic resonance imaging (MRI) scanner to complete tasks is one common and significant problem. Task noncompliance is an especially significant problem in pediatric functional magnetic resonance imaging (fMRI) research because increases in noncompliance produces a greater risk that a study sample will not be representative of the study population. Method In this preliminary investigation, we describe the development and application of an approach for increasing the number of fMRI tasks children complete during neuroimaging. Twenty-eight healthy children ages 9-13 years participated. Generalization of the approach was examined in additional fMRI and event-related potential investigations with children at risk for depression, children with anxiety and children with depression (N = 120). Essential features of the approach include a preference assessment for identifying multiple individualized rewards, increasing reinforcement rates during imaging by pairing tasks with chosen rewards and presenting a visual 'road map' listing tasks, rewards and current progress. Results Our results showing a higher percentage of fMRI task completion by healthy children provides proof of concept data for the recommended tactics. Additional support was provided by results showing our approach generalized to several additional fMRI and event-related potential investigations and clinical populations. Discussion We proposed that some forms of task noncompliance may emerge from less than optimal reward protocols. While our findings may not directly support the effectiveness of the multiple reward compliance protocol, increased attention to how rewards are selected and delivered may aid cooperation with completing fMRI tasks Conclusion The proposed approach contributes to the pediatric neuroimaging literature by providing a useful way to conceptualize and measure task noncompliance and by providing simple cost effective tactics for improving the effectiveness of common reward-based protocols. PMID:21548928
Does general motivation energize financial reward-seeking behavior? Evidence from an effort task.
Chumbley, Justin; Fehr, Ernst
2014-01-01
We aimed to predict how hard subjects work for financial rewards from their general trait and state reward-motivation. We specifically asked 1) whether individuals high in general trait "reward responsiveness" work harder 2) whether task-irrelevant cues can make people work harder, by increasing general motivation. Each trial of our task contained a 1 second earning interval in which male subjects earned money for each button press. This was preceded by one of three predictive cues: an erotic picture of a woman, a man, or a geometric figure. We found that individuals high in trait "reward responsiveness" worked harder and earned more, irrespective of the predictive cue. Because female predictive cues are more rewarding, we expected them to increase general motivation in our male subjects and invigorate work, but found a more complex pattern.
Reward-Guided Learning with and without Causal Attribution
Jocham, Gerhard; Brodersen, Kay H.; Constantinescu, Alexandra O.; Kahn, Martin C.; Ianni, Angela M.; Walton, Mark E.; Rushworth, Matthew F.S.; Behrens, Timothy E.J.
2016-01-01
Summary When an organism receives a reward, it is crucial to know which of many candidate actions caused this reward. However, recent work suggests that learning is possible even when this most fundamental assumption is not met. We used novel reward-guided learning paradigms in two fMRI studies to show that humans deploy separable learning mechanisms that operate in parallel. While behavior was dominated by precise contingent learning, it also revealed hallmarks of noncontingent learning strategies. These learning mechanisms were separable behaviorally and neurally. Lateral orbitofrontal cortex supported contingent learning and reflected contingencies between outcomes and their causal choices. Amygdala responses around reward times related to statistical patterns of learning. Time-based heuristic mechanisms were related to activity in sensorimotor corticostriatal circuitry. Our data point to the existence of several learning mechanisms in the human brain, of which only one relies on applying known rules about the causal structure of the task. PMID:26971947
van Honk, Jack; Schutter, Dennis J L G; Hermans, Erno J; Putman, Peter; Tuiten, Adriaan; Koppeschaar, Hans
2004-08-01
Animal research has demonstrated reductions in punishment sensitivity and enhanced reward dependency after testosterone administration. In humans, elevated levels of testosterone have been associated with violent and antisocial behavior. Interestingly, extreme forms of violent and antisocial behavior can be observed in the psychopath. Moreover, it has been argued that reduced punishment sensitivity and heightened reward dependency are crucially involved in the etiology and maintenance of psychopathy. A task that has been proven to be capable of simulating punishment-reward contingencies is the IOWA gambling task. Decisions to choose from decks of cards become motivated by punishment and reward schedules inherent in the task. Importantly, clinical and subclinical psychopaths demonstrate a risky, disadvantageous pattern of decision-making in the task, indicating motivational imbalance (insensitivity for punishment and enhanced reward dependency). Here, in a double-blind placebo-controlled crossover design (n = 12), whether a single administration of testosterone would shift the motivational balance between the sensitivity for punishment and reward towards this tendency to choose disadvantageously was investigated. As hypothesized, subjects showed a more disadvantageous pattern of decision-making after testosterone compared to placebo administration. These findings not only provide the first direct evidence for the effects of testosterone on punishment-reward contingencies in humans, but they also give further insights into the hypothetical link between testosterone and psychopathy.
Two facets of patience in young children: Waiting with and without an explicit reward.
Barragan-Jason, Gladys; Atance, Cristina; Kopp, Leia; Hopfensitz, Astrid
2018-07-01
Patience, or the ability to tolerate delay, is typically studied using delay of gratification (DoG) tasks. However, among other factors (e.g., type of reward), the use of a reward to test patience is affected by an individual's motivation to obtain the reward (e.g., degree of preference for the small vs. large reward). In addition, DoG tasks do not assess the extent to which an individual can wait in the absence of an explicit reward-or what we term "patience as a virtue." Accordingly, the current study used a new measure of patience-the "pure waiting paradigm"-in which 3- to 5-year-old children waited 3 min with nothing to do and with no explicit reward. We then examined the relation between performance on this task (as assessed by children's spontaneous patient behaviors) and performance on two DoG tasks (candy and video rewards). Significant correlations were found between DoG performance and patient behaviors in the pure waiting paradigm, especially when controlling for motivation. These results and methodology show for the first time a direct link between patience as a virtue and DoG performance and also provide new insights about the study of patience in children. Copyright © 2018 Elsevier Inc. All rights reserved.
Mattfeld, Aaron T.; Gluck, Mark A.; Stark, Craig E.L.
2011-01-01
The goal of the present study was to elucidate the role of the human striatum in learning via reward and punishment during an associative learning task. Previous studies have identified the striatum as a critical component in the neural circuitry of reward-related learning. It remains unclear, however, under what task conditions, and to what extent, the striatum is modulated by punishment during an instrumental learning task. Using high-resolution functional magnetic resonance imaging (fMRI) during a reward- and punishment-based probabilistic associative learning task, we observed activity in the ventral putamen for stimuli learned via reward regardless of whether participants were correct or incorrect (i.e., outcome). In contrast, activity in the dorsal caudate was modulated by trials that received feedback—either correct reward or incorrect punishment trials. We also identified an anterior/posterior dissociation reflecting reward and punishment prediction error estimates. Additionally, differences in patterns of activity that correlated with the amount of training were identified along the anterior/posterior axis of the striatum. We suggest that unique subregions of the striatum—separated along both a dorsal/ventral and anterior/posterior axis— differentially participate in the learning of associations through reward and punishment. PMID:22021252
Lee, D Y; Syrnyk, R
1977-01-01
Self-perception theory predicts that the introduction of extrinsic rewards for behavior that was intrinsically rewarding may decrease rather than enhance overall motivation. This hypothesis was tested on a group of institutionalized mentally retarded adolescents (34 boys, 10 girls). Intrinsic (high and low task interest) and extrinsic (high- and low-incentive objects) motivation were both manipulated as independent variables, and the dependent variable was task persistence during a free-play period. Results indicated that for a high intrinsically interesting task, the task persistence was greater under the external reward of low- rather than high-incentive value conditions. The opposite trend was revealed for the low intrinsically interesting task. The results provided some evidence that the greater the amount of the reward for an interesting activity, the greater the degree to which the intrinsic interest is undermined.
Rademacher, Lena; Salama, Aallaa; Gründer, Gerhard; Spreckelmeyer, Katja N
2014-06-01
Recent studies have reported inconsistent results regarding the loss of reward sensitivity in the aging brain. Although such an age effect might be due to a decline of physiological processes, it may also be a consequence of age-related changes in motivational preference for different rewards. Here, we examined whether the age effects on neural correlates of reward anticipation are modulated by the type of expected reward. Functional magnetic resonance images were acquired in 24 older (60-78 years) and 24 young participants (20-28 years) while they performed an incentive delay task offering monetary or social rewards. Anticipation of either reward type recruited brain structures associated with reward, including the nucleus accumbens (NAcc). Region of interest analysis revealed an interaction effect of reward type and age group in the right NAcc: enhanced activation to cues of social reward was detected in the older subsample while enhanced activation to cues of monetary reward was detected in the younger subsample. Our results suggest that neural sensitivity to reward-predicting cues does not generally decrease with age. Rather, neural responses in the NAcc appear to be modulated by the type of reward, presumably reflecting age-related changes in motivational value attributed to different types of reward. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Reusable Reinforcement Learning via Shallow Trails.
Yu, Yang; Chen, Shi-Yong; Da, Qing; Zhou, Zhi-Hua
2018-06-01
Reinforcement learning has shown great success in helping learning agents accomplish tasks autonomously from environment interactions. Meanwhile in many real-world applications, an agent needs to accomplish not only a fixed task but also a range of tasks. For this goal, an agent can learn a metapolicy over a set of training tasks that are drawn from an underlying distribution. By maximizing the total reward summed over all the training tasks, the metapolicy can then be reused in accomplishing test tasks from the same distribution. However, in practice, we face two major obstacles to train and reuse metapolicies well. First, how to identify tasks that are unrelated or even opposite with each other, in order to avoid their mutual interference in the training. Second, how to characterize task features, according to which a metapolicy can be reused. In this paper, we propose the MetA-Policy LEarning (MAPLE) approach that overcomes the two difficulties by introducing the shallow trail. It probes a task by running a roughly trained policy. Using the rewards of the shallow trail, MAPLE automatically groups similar tasks. Moreover, when the task parameters are unknown, the rewards of the shallow trail also serve as task features. Empirical studies on several controlling tasks verify that MAPLE can train metapolicies well and receives high reward on test tasks.
Monetary rewards modulate inhibitory control
Herrera, Paula M.; Speranza, Mario; Hampshire, Adam; Bekinschtein, Tristán A.
2014-01-01
The ability to override a dominant response, often referred to as behavioral inhibition, is considered a key element of executive cognition. Poor behavioral inhibition is a defining characteristic of several neurological and psychiatric populations. Recently, there has been increasing interest in the motivational dimension of behavioral inhibition, with some experiments incorporating emotional contingencies in classical inhibitory paradigms such as the Go/NoGo and Stop Signal Tasks (SSTs). Several studies have reported a positive modulatory effect of reward on performance in pathological conditions such as substance abuse, pathological gambling, and Attention Deficit Hyperactive Disorder (ADHD). However, experiments that directly investigate the modulatory effects of reward magnitudes on the performance of inhibitory tasks are scarce and little is known about the finer grained relationship between motivation and inhibitory control. Here we probed the effect of reward magnitude and context on behavioral inhibition with three modified versions of the widely used SST. The pilot study compared inhibition performance during six blocks alternating neutral feedback, low, medium, and high monetary rewards. Study One compared increasing vs. decreasing rewards, with low, high rewards, and neutral feedback; whilst Study Two compared low and high reward magnitudes alone also in an increasing and decreasing reward design. The reward magnitude effect was not demonstrated in the pilot study, probably due to a learning effect induced by practice in this lengthy task. The reward effect per se was weak but the context (order of reward) was clearly suggested in Study One, and was particularly strongly confirmed in study two. In addition, these findings revealed a “kick start effect” over global performance measures. Specifically, there was a long lasting improvement in performance throughout the task when participants received the highest reward magnitudes at the beginning of the protocol. These results demonstrate a dynamical behavioral inhibition capacity in humans, as illustrated by the reward magnitude modulation and initial reward history effects. PMID:24860469
Reward for food odors: an fMRI study of liking and wanting as a function of metabolic state and BMI
Jiang, Tao; Soussignan, Robert; Schaal, Benoist
2015-01-01
Brain reward systems mediate liking and wanting for food reward. Here, we explore the differential involvement of the following structures for these two components: the ventral and dorsal striatopallidal area, orbitofrontal cortex (OFC), anterior insula and anterior cingulate. Twelve healthy female participants were asked to rate pleasantness (liking of food and non-food odors) and the desire to eat (wanting of odor-evoked food) during event-related functional magnetic resonance imaging (fMRI). The subjective ratings and fMRI were performed in hunger and satiety states. Activations of regions of interest were compared as a function of task (liking vs wanting), odor category (food vs non-food) and metabolic state (hunger vs satiety). We found that the nucleus accumbens and ventral pallidum were differentially involved in liking or wanting during the hunger state, which suggests a reciprocal inhibitory influence between these structures. Neural activation of OFC subregions was correlated with either liking or wanting ratings, suggesting an OFC role in reward processing magnitude. Finally, during the hunger state, participants with a high body mass index exhibited less activation in neural structures underlying food reward processing. Our results suggest that food liking and wanting are two separable psychological constructs and may be functionally segregated within the cortico-striatopallidal circuit. PMID:24948157
Reward associations impact both iconic and visual working memory.
Infanti, Elisa; Hickey, Clayton; Turatto, Massimo
2015-02-01
Reward plays a fundamental role in human behavior. A growing number of studies have shown that stimuli associated with reward become salient and attract attention. The aim of the present study was to extend these results into the investigation of iconic memory and visual working memory. In two experiments we asked participants to perform a visual-search task where different colors of the target stimuli were paired with high or low reward. We then tested whether the pre-established feature-reward association affected performance on a subsequent visual memory task, in which no reward was provided. In this test phase participants viewed arrays of 8 objects, one of which had unique color that could match the color associated with reward during the previous visual-search task. A probe appeared at varying intervals after stimulus offset to identify the to-be-reported item. Our results suggest that reward biases the encoding of visual information such that items characterized by a reward-associated feature interfere with mnemonic representations of other items in the test display. These results extend current knowledge regarding the influence of reward on early cognitive processes, suggesting that feature-reward associations automatically interact with the encoding and storage of visual information, both in iconic memory and visual working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sakuragi, Sokichi; Sugiyama, Yoshiki
2009-06-01
The effects of reward and punishment are different, and there are individual differences in sensitivity to reward and punishment. The purpose of this study was to investigate the effects of reward and punishment on task performance, mood, and autonomic nervous function, along with the interaction with personality. Twenty-one healthy female subjects volunteered for the experiment. The task performance was evaluated by required time and total errors while performing a Wisconsin Card Sorting Test. We assessed their personalities using the Minnesota Multiphasic Personality Inventory (MMPI) questionnaire, and mood states by a profile of mood states. Autonomic nervous function was estimated by a spectral analysis of heart rate variability, baroreflex sensitivity, and blood pressure. Repeated measures analysis of variance (ANOVA) revealed significant interaction of condition x time course on mood and autonomic nervous activity, which would indicate a less stressed state under the rewarding condition, but revealed no significant interaction of condition x time course on the task performance. The interactions with personality were further analyzed by repeated measures ANOVA applying the clinical scales of MMPI as independent variables, and significant interactions of condition x time course x Pt (psychasthenia) on task performance, mood, and blood pressure, were revealed. That is, the high Pt group, whose members tend to be sensitive and prone to worry, showed gradual improvement of task performance under the punishing situation with slight increase in systolic blood pressure, while showed no improvement under the rewarding situation with fatigue sense attenuation. In contrast, the low Pt group, whose members tend to be adaptive and self-confident, showed gradual improvement under the rewarding situation. Therefore, we should carefully choose the strategy of reward or punishment, considering the interaction with personality as well as the context in which it is given.
The Function of Verbal Rewards in the Science Classroom.
ERIC Educational Resources Information Center
Lawlor, Francis Xavier
Contained is a review of the research done on the use of verbal rewards in the classroom. Some verbal rewards are tasks rewards, other rewards are more personal; and still other verbal rewards are impersonal. Verbal rewards, therefore, have both intellectual and emotional implications. Research literature indicates that "verbal reward"…
Reward, Task Motivation, Creativity and Teaching: Towards a Cross-Cultural Examination
ERIC Educational Resources Information Center
Hennessey, Beth A.
2015-01-01
Background: Extrinsic incentives and constraints to learning, such as the promise of a reward or the expectation of an evaluation, have long been used by educators to motivate students. Previous research has consistently found that expected reward consistently undermines intrinsic task motivation and creativity of products and performance in…
Delay of Gratification by Chimpanzees (Pan troglodytes) in Working and Waiting Situations
Beran, Michael J.; Evans, Theodore A.
2009-01-01
We tested four chimpanzees in a self-control task in which food rewards accumulated as long as they were not eaten. In one condition, the chimpanzees had to perform a computer task that directly led to the delivery of the food rewards. In another condition, working on the computerized task was not required and any such work was not linked to the delivery of rewards. The third condition offered no computerized task (chimpanzees simply waited for food rewards to be delivered). Three of four chimpanzees showed no effect of the work scenario on delay of gratification. The one chimpanzee that showed an influence of work scenario on self-control was the overall poorest performing animal. This animal delayed gratification the longest, however, when work was required and reward delivery was directly linked to that work. Therefore, although there is little evidence linking delay of gratification to work requirements in chimpanzees, chimpanzees with lower overall self-control might benefit from having some work available if reward accumulation is contingent on performing that work. PMID:19084581
I endeavor to make it: effort increases valuation of subsequent monetary reward.
Ma, Qingguo; Meng, Liang; Wang, Lei; Shen, Qiang
2014-03-15
Although it is commonly accepted that the amount of effort we put into accomplishing a task would exert an influence on subsequent reward processing and outcome evaluation, whether effort is incorporated as a cost or it would increase the valuation of concomitant reward is still under debate. In this study, EEGs were recorded while subjects performed calculation tasks that required different amount of effort, correct responses of which were followed by either no reward or fixed compensation. Results showed that high effort induced larger differentiated FRN responses to the reward and non-reward discrepancy across two experimental conditions. Furthermore, P300 manifested valence effect during reward feedback, with more positive amplitudes for reward than for non-reward only in the high effort condition. These results suggest that effort might increase subjective evaluation toward subsequent reward. Copyright © 2013 Elsevier B.V. All rights reserved.
Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict.
van den Berg, Berry; Krebs, Ruth M; Lorist, Monicque M; Woldorff, Marty G
2014-06-01
The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive task performance. In this task, the cue indicated whether or not the participant needed to prepare for an upcoming Stroop stimulus and, if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued attention and cued reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (contingent negative variation [CNV]) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted shorter versus longer response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across participants with the degree to which reward-prospect both facilitated overall task performance (shorter RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information.
Boedecker, Joschka; Lampe, Thomas; Riedmiller, Martin
2013-01-01
A common assumption in psychology, economics, and other fields holds that higher performance will result if extrinsic rewards (such as money) are offered as an incentive. While this principle seems to work well for tasks that require the execution of the same sequence of steps over and over, with little uncertainty about the process, in other cases, especially where creative problem solving is required due to the difficulty in finding the optimal sequence of actions, external rewards can actually be detrimental to task performance. Furthermore, they have the potential to undermine intrinsic motivation to do an otherwise interesting activity. In this work, we extend a computational model of the dorsomedial and dorsolateral striatal reinforcement learning systems to account for the effects of extrinsic and intrinsic rewards. The model assumes that the brain employs both a goal-directed and a habitual learning system, and competition between both is based on the trade-off between the cost of the reasoning process and value of information. The goal-directed system elicits internal rewards when its models of the environment improve, while the habitual system, being model-free, does not. Our results account for the phenomena that initial extrinsic reward leads to reduced activity after extinction compared to the case without any initial extrinsic rewards, and that performance in complex task settings drops when higher external rewards are promised. We also test the hypothesis that external rewards bias the competition in favor of the computationally efficient, but cruder and less flexible habitual system, which can negatively influence intrinsic motivation and task performance in the class of tasks we consider. PMID:24137146
Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict
van den Berg, Berry; Krebs, Ruth M.; Lorist, Monicque M.; Woldorff, Marty G.
2015-01-01
The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus-conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive-task performance. In this task the cue indicated whether or not the subject needed to prepare for an upcoming Stroop stimulus, and if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued-attention and cued-reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (CNV) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted faster versus slower response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across-subjects with the degree to which reward-prospect both facilitated overall task performance (faster RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information. PMID:24820263
Yarosh, Haley L.; Hyatt, Christopher J.; Meda, Shashwath A.; Jiantonio-Kelly, Rachel; Potenza, Marc N.; Assaf, Michal; D.Pearlson, Godfrey
2014-01-01
Background Individuals with a positive family history for alcoholism (FHP) have shown differences from family-history-negative (FHN) individuals in the neural correlates of reward processing. FHP, compared to FHN individuals, demonstrate relatively diminished ventral striatal activation during anticipation of monetary rewards, and the degree of ventral striatal activation shows an inverse correlation with specific impulsivity measures in alcohol-dependent individuals. Rewards in socially interactive contexts relate importantly to addictive propensities, yet have not been examined with respect to how their neural underpinnings relate to impulsivity-related measures. Here we describe impulsivity measures in FHN and FHP individuals as they relate to a socially interactive functional magnetic resonance imaging (fMRI) task. Methods Forty FHP and 29 FHN subjects without histories of Axis-I disorders completed a socially interactive Domino task during functional magnetic resonance imaging and completed self-report and behavioral impulsivity-related assessments. Results FHP compared to FHN individuals showed higher scores (p = .004) on one impulsivity-related factor relating to both compulsivity (Padua Inventory) and reward/punishment sensitivity (Sensitivity to Punishment/Sensitivity to Reward Questionnaire). Multiple regression analysis within a reward-related network revealed a correlation between risk-taking (involving another impulsivity-related factor, the Balloon Analog Risk Task (BART)) and right ventral striatum activation under reward >punishment contrast (p<0.05 FWE corrected) in the social task. Conclusions Behavioral risk-taking scores may be more closely associated with neural correlates of reward responsiveness in socially interactive contexts than are FH status or impulsivity-related self-report measures. These findings suggest that risk-taking assessments be examined further in socially interactive settings relevant to addictive behaviors. PMID:24505424
Exposure to bright light biases effort-based decisions.
Bijleveld, Erik; Knufinke, Melanie
2018-06-01
Secreted in the evening and the night, melatonin suppresses activity of the mesolimbic dopamine pathway, a brain pathway involved in reward processing. However, exposure to bright light diminishes-or even prevents-melatonin secretion. Thus, we hypothesized that reward processing, in the evening, is more pronounced in bright light (vs. dim light). Healthy human participants carried out three tasks that tapped into various aspects of reward processing (effort expenditure for rewards task [EEfRT]; two-armed bandit task [2ABT]; balloon analogue risk task [BART). Brightness was manipulated within-subjects (bright vs. dim light), in separate evening sessions. During the EEfRT, participants used reward-value information more strongly when they were exposed to bright light (vs. dim light). This finding supported our hypothesis. However, exposure to bright light did not significantly affect task behavior on the 2ABT and the BART. While future research is necessary (e.g., to zoom in on working mechanisms), these findings have potential implications for the design of physical work environments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Hosaka, Hiromi; Aoyagi, Kakuro; Kaga, Yoshimi; Kanemura, Hideaki; Sugita, Kanji; Aihara, Masao
2017-08-01
Autonomic nervous system activity is recognized as a major component of emotional responses. Future reward/punishment expectations depend upon the process of decision making in the frontal lobe, which is considered to play an important role in executive function. The aim of this study was to investigate the relationship between autonomic responses and decision making during reinforcement tasks using sympathetic skin responses (SSR). Nine adult and 9 juvenile (mean age, 10.2years) volunteers were enrolled in this study. SSRs were measured during the Markov decision task (MDT), which is a reinforcement task. In this task, subjects must endure a small immediate loss to ultimately get a large reward. The subjects had to undergo three sets of tests and their scores in these tests were assessed and evaluated. All adults showed gradually increasing scores for the MDT from the first to third set. As the trial progressed from the first to second set in adults, SSR appearance ratios remarkably increased for both punishment and reward expectations. In comparison with adults, children showed decreasing scores from the first to second set. There were no significant inter-target differences in the SSR appearance ratio in the first and second set in children. In the third set, the SSR appearance ratio for reward expectations was higher than that in the neutral condition. In reinforcement tasks, such as MDT, autonomic responses play an important role in decision making. We assume that SSRs are elicited during efficient decision making tasks associated with future reward/punishment expectations, which demonstrates the importance of autonomic function. In contrast, in children around the age of 10years, the autonomic system does not react as an organized response specific to reward/punishment expectations. This suggests the immaturity of the future reward/punishment expectations process in children. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Mulcahy, Nicholas J; Call, Josep; Dunbar, Robin I M
2005-02-01
Two important elements in problem solving are the abilities to encode relevant task features and to combine multiple actions to achieve the goal. The authors investigated these 2 elements in a task in which gorillas (Gorilla gorilla) and orangutans (Pongo pygmaeus) had to use a tool to retrieve an out-of-reach reward. Subjects were able to select tools of an appropriate length to reach the reward even when the position of the reward and tools were not simultaneously visible. When presented with tools that were too short to retrieve the reward, subjects were more likely to refuse to use them than when tools were the appropriate length. Subjects were proficient at using tools in sequence to retrieve the reward.
Parrish, Audrey E.; Perdue, Bonnie M.; Evans, Theodore A.; Beran, Michael J.
2013-01-01
There has been extensive research investigating self-control in humans and nonhuman animals, yet we know surprisingly little about how one’s social environment influences self-control. The present study examined the self-control of chimpanzees in a task that required active engagement with conspecifics. The task consisted of transferring a token back and forth with a partner animal in order to accumulate food rewards, one item per token transfer. Self-control was required because at any point in the trial, either chimpanzee could obtain their accumulated rewards, but doing so discontinued the food accumulation and ended the trial for both individuals. Chimpanzees readily engaged the task and accumulated the majority of available rewards before ending each trial, and they did so across a number of conditions that varied the identity of the partner, the presence/absence of the experimenter, and the means by which they could obtain rewards. A second experiment examined chimpanzees’ self-control when given the choice between immediately available food items and a potentially larger amount of rewards that could be obtained by engaging the token transfer task with a partner. Chimpanzees were flexible in their decision-making in this test, typically choosing the option representing the largest amount of food, even if it involved delayed accumulation of the rewards via the token transfer task. These results demonstrate that chimpanzees can exhibit self-control in situations involving social interactions, and they encourage further research into this important aspect of the self-control scenario. PMID:23381691
Anhedonia in schizophrenia: Deficits in both motivation and hedonic capacity.
Wang, Jiao; Huang, Jia; Yang, Xin-Hua; Lui, Simon S Y; Cheung, Eric F C; Chan, Raymond C K
2015-10-01
Anhedonia is one of the core negative symptoms of schizophrenia that affect the ultimate outcome of this disorder. It is unclear whether the motivational or the hedonic component of anhedonia is impaired in patients with schizophrenia. This study examined the deficits in motivation and hedonic capacity in patients with schizophrenia using an Effort-based pleasure experience task (E-pet). Twenty-two schizophrenia patients with prominent negative symptoms, 18 schizophrenia patients without prominent negative symptoms and 29 healthy controls participated in the present study. All of them were administered the E-pet task, which required the participants to make decisions on whether to choose a hard or easy task based on probability and reward magnitude. When making the grip effort allocation decision, schizophrenia patients with prominent negative symptoms were significantly less likely to choose a hard task than healthy controls. As the reward magnitude and the estimated reward value increased, unlike healthy controls, schizophrenia patients with prominent negative symptoms did not increase their hard task choices. They were also significantly less likely to choose a hard task than healthy controls in medium and high probability conditions. When anticipating potential rewards, these patients reported significantly less anticipatory pleasure than healthy controls, even when reward probability and magnitude increased. The pleasure experience rating after obtaining the actual reward was positively correlated with two pleasure experience scales in schizophrenia patients. In conclusion, patients with schizophrenia, especially those with prominent negative symptoms, showed deficits in both reward motivation and anticipatory pleasure experience. Copyright © 2015 Elsevier B.V. All rights reserved.
Rewards and creative performance: a meta-analytic test of theoretically derived hypotheses.
Byron, Kris; Khazanchi, Shalini
2012-07-01
Although many scholars and practitioners are interested in understanding how to motivate individuals to be more creative, whether and how rewards affect creativity remain unclear. We argue that the conflicting evidence may be due to differences between studies in terms of reward conditions and the context in which rewards are offered. Specifically, we examine 5 potential moderators of the rewards-creative performance relationship: (a) the reward contingency, (b) the extent to which participants are provided information about their past or current creative performance, (c) the extent to which the reward and context offer choice or impose control, (d) the extent to which the context serves to enhance task engagement, and (e) the extent to which the performance tasks are complex. Using random-effects models, we meta-analyzed 60 experimental and nonexperimental studies (including 69 independent samples) that examined the rewards-creativity relationship with children or adults. Our results suggest that creativity-contingent rewards tend to increase creative performance-and are more positively related to creative performance when individuals are given more positive, contingent, and task-focused performance feedback and are provided more choice (and are less controlled). In contrast, performance-contingent or completion-contingent rewards tend to have a slight negative effect on creative performance.
Chiew, Kimberly S.; Braver, Todd S.
2013-01-01
Motivational manipulations, such as the presence of performance-contingent reward incentives, can have substantial influences on cognitive control. Previous evidence suggests that reward incentives may enhance cognitive performance specifically through increased preparatory, or proactive, control processes. The present study examined reward influences on cognitive control dynamics in the AX-Continuous Performance Task (AX-CPT), using high-resolution pupillometry. In the AX-CPT, contextual cues must be actively maintained over a delay in order to appropriately respond to ambiguous target probes. A key feature of the task is that it permits dissociable characterization of preparatory, proactive control processes (i.e., utilization of context) and reactive control processes (i.e., target-evoked interference resolution). Task performance profiles suggested that reward incentives enhanced proactive control (context utilization). Critically, pupil dilation was also increased on reward incentive trials during context maintenance periods, suggesting trial-specific shifts in proactive control, particularly when context cues indicated the need to overcome the dominant target response bias. Reward incentives had both transient (i.e., trial-by-trial) and sustained (i.e., block-based) effects on pupil dilation, which may reflect distinct underlying processes. The transient pupillary effects were present even when comparing against trials matched in task performance, suggesting a unique motivational influence of reward incentives. These results suggest that pupillometry may be a useful technique for investigating reward motivational signals and their dynamic influence on cognitive control. PMID:23372557
When, What, and How Much to Reward in Reinforcement Learning-Based Models of Cognition
ERIC Educational Resources Information Center
Janssen, Christian P.; Gray, Wayne D.
2012-01-01
Reinforcement learning approaches to cognitive modeling represent task acquisition as learning to choose the sequence of steps that accomplishes the task while maximizing a reward. However, an apparently unrecognized problem for modelers is choosing when, what, and how much to reward; that is, when (the moment: end of trial, subtask, or some other…
Simen, Patrick; Contreras, David; Buck, Cara; Hu, Peter; Holmes, Philip; Cohen, Jonathan D
2009-12-01
The drift-diffusion model (DDM) implements an optimal decision procedure for stationary, 2-alternative forced-choice tasks. The height of a decision threshold applied to accumulating information on each trial determines a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of human performance in speeded response tasks. However, little is known about how participants settle on particular tradeoffs. One possibility is that they select SATs that maximize a subjective rate of reward earned for performance. For the DDM, there exist unique, reward-rate-maximizing values for its threshold and starting point parameters in free-response tasks that reward correct responses (R. Bogacz, E. Brown, J. Moehlis, P. Holmes, & J. D. Cohen, 2006). These optimal values vary as a function of response-stimulus interval, prior stimulus probability, and relative reward magnitude for correct responses. We tested the resulting quantitative predictions regarding response time, accuracy, and response bias under these task manipulations and found that grouped data conformed well to the predictions of an optimally parameterized DDM.
Elevated Striatal Reactivity Across Monetary and Social Rewards in Bipolar I Disorder
Dutra, Sunny J.; Cunningham, William A.; Kober, Hedy; Gruber, June
2016-01-01
Bipolar disorder (BD) is associated with increased reactivity to rewards and heightened positive affectivity. It is less clear to what extent this heightened reward sensitivity is evident across contexts and what the associated neural mechanisms might be. The present investigation employed both a monetary and social incentive delay task among adults with remitted BD type I (N=24) and a healthy non-psychiatric control group (HC; N=25) using fMRI. Both whole-brain and region-of-interest analyses revealed elevated ventral and dorsal striatal reactivity across monetary and social reward receipt, but not anticipation, in the BD group. Post-hoc analyses further suggested that greater striatal reactivity to reward receipt across monetary and social reward tasks predicted decreased self-reported positive affect when anticipating subsequent rewards in the HC, but not BD, group. Results point toward elevated striatal reactivity to reward receipt as a potential neural mechanism of reward reactivity. PMID:26390194
Affective and cognitive mechanisms of risky decision making
Shimp, Kristy G.; Mitchell, Marci R.; Beas, B. Sofia; Bizon, Jennifer L.; Setlow, Barry
2014-01-01
The ability to make advantageous decisions under circumstances in which there is a risk of adverse consequences is an important component of adaptive behavior; however, extremes in risk taking (either high or low) can be maladaptive and are characteristic of a number of neuropsychiatric disorders. To better understand the contributions of various affective and cognitive factors to risky decision making, cohorts of male Long-Evans rats were trained in a “Risky Decision making Task” (RDT), in which they made discrete trial choices between a small, “safe” food reward and a large, “risky” food reward accompanied by varying probabilities of footshock. Experiment 1 evaluated the relative contributions of the affective stimuli (i.e., punishment vs. reward) to RDT performance by parametrically varying the magnitudes of the footshock and large reward. Varying the shock magnitude had a significant impact on choice of the large, “risky” reward, such that greater magnitudes were associated with reduced choice of the large reward. In contrast, varying the large, “risky” reward magnitude had minimal influence on reward choice. Experiment 2 compared individual variability in RDT performance with performance in an attentional set shifting task (assessing cognitive flexibility), a delayed response task (assessing working memory), and a delay discounting task (assessing impulsive choice). Rats characterized as risk averse in the RDT made more perseverative errors on the set shifting task than did their risk taking counterparts, whereas RDT performance was not related to working memory abilities or impulsive choice. In addition, rats that showed greater delay discounting (greater impulsive choice) showed corresponding poorer performance in the working memory task. Together, these results suggest that reward-related decision making under risk of punishment is more strongly influenced by the punishment than by the reward, and that risky and impulsive decision making are associated with distinct components of executive function. PMID:24642448
Stimulus discriminability may bias value-based probabilistic learning.
Schutte, Iris; Slagter, Heleen A; Collins, Anne G E; Frank, Michael J; Kenemans, J Leon
2017-01-01
Reinforcement learning tasks are often used to assess participants' tendency to learn more from the positive or more from the negative consequences of one's action. However, this assessment often requires comparison in learning performance across different task conditions, which may differ in the relative salience or discriminability of the stimuli associated with more and less rewarding outcomes, respectively. To address this issue, in a first set of studies, participants were subjected to two versions of a common probabilistic learning task. The two versions differed with respect to the stimulus (Hiragana) characters associated with reward probability. The assignment of character to reward probability was fixed within version but reversed between versions. We found that performance was highly influenced by task version, which could be explained by the relative perceptual discriminability of characters assigned to high or low reward probabilities, as assessed by a separate discrimination experiment. Participants were more reliable in selecting rewarding characters that were more discriminable, leading to differences in learning curves and their sensitivity to reward probability. This difference in experienced reinforcement history was accompanied by performance biases in a test phase assessing ability to learn from positive vs. negative outcomes. In a subsequent large-scale web-based experiment, this impact of task version on learning and test measures was replicated and extended. Collectively, these findings imply a key role for perceptual factors in guiding reward learning and underscore the need to control stimulus discriminability when making inferences about individual differences in reinforcement learning.
Adolescent neural response to reward is related to participant sex and task motivation
Alarcón, Gabriela; Cservenka, Anita; Nagel, Bonnie J.
2017-01-01
Risky decision making is prominent during adolescence, perhaps contributed to by heightened sensation seeking and ongoing maturation of reward and dopamine systems in the brain, which are, in part, modulated by sex hormones. In this study, we examined sex differences in the neural substrates of reward sensitivity during a risky decision-making task and hypothesized that compared with girls, boys would show heightened brain activation in reward-relevant regions, particularly the nucleus accumbens, during reward receipt. Further, we hypothesized that testosterone and estradiol levels would mediate this sex difference. Moreover, we predicted boys would make more risky choices on the task. While boys showed increased nucleus accumbens blood oxygen level-dependent (BOLD) response relative to girls, sex hormones did not mediate this effect. As predicted, boys made a higher percentage of risky decisions during the task. Interestingly, boys also self-reported more motivation to perform well and earn money on the task, while girls self-reported higher state anxiety prior to the scan session. Motivation to earn money partially mediated the effect of sex on nucleus accumbens activity during reward. Previous research shows that increased motivation and salience of reinforcers is linked with more robust striatal BOLD response, therefore psychosocial factors, in addition to sex, may play an important role in reward sensitivity. Elucidating neurobiological mechanisms that support adolescent sex differences in risky decision making has important implications for understanding individual differences that lead to advantageous and adverse behaviors that affect health outcomes. PMID:27816780
Monetary rewards influence retrieval orientations.
Halsband, Teresa M; Ferdinand, Nicola K; Bridger, Emma K; Mecklinger, Axel
2012-09-01
Reward anticipation during learning is known to support memory formation, but its role in retrieval processes is so far unclear. Retrieval orientations, as a reflection of controlled retrieval processing, are one aspect of retrieval that might be modulated by reward. These processes can be measured using the event-related potentials (ERPs) elicited by retrieval cues from tasks with different retrieval requirements, such as via changes in the class of targeted memory information. To determine whether retrieval orientations of this kind are modulated by reward during learning, we investigated the effects of high and low reward expectancy on the ERP correlates of retrieval orientation in two separate experiments. The reward manipulation at study in Experiment 1 was associated with later memory performance, whereas in Experiment 2, reward was directly linked to accuracy in the study task. In both studies, the participants encoded mixed lists of pictures and words preceded by high- or low-reward cues. After 24 h, they performed a recognition memory exclusion task, with words as the test items. In addition to a previously reported material-specific effect of retrieval orientation, a frontally distributed, reward-associated retrieval orientation effect was found in both experiments. These findings suggest that reward motivation during learning leads to the adoption of a reward-associated retrieval orientation to support the retrieval of highly motivational information. Thus, ERP retrieval orientation effects not only reflect retrieval processes related to the sought-for materials, but also relate to the reward conditions with which items were combined during encoding.
Parkinson's Disease and Dopaminergic Therapy--Differential Effects on Movement, Reward and Cognition
ERIC Educational Resources Information Center
Rowe, J. B.; Hughes, L.; Ghosh, B. C. P.; Eckstein, D.; Williams-Gray, C. H.; Fallon, S.; Barker, R. A.; Owen, A. M.
2008-01-01
Cognitive deficits are very common in Parkinson's disease particularly for "executive functions" associated with frontal cortico-striatal networks. Previous work has identified deficits in tasks that require attentional control like task-switching, and reward-based tasks like gambling or reversal learning. However, there is a complex…
Neural correlates of reward processing in healthy siblings of patients with schizophrenia
Hanssen, Esther; van der Velde, Jorien; Gromann, Paula M.; Shergill, Sukhi S.; de Haan, Lieuwe; Bruggeman, Richard; Krabbendam, Lydia; Aleman, André; van Atteveldt, Nienke
2015-01-01
Deficits in motivational behavior and psychotic symptoms often observed in schizophrenia (SZ) may be driven by dysfunctional reward processing (RP). RP can be divided in two different stages; reward anticipation and reward consumption. Aberrant processing during reward anticipation seems to be related to SZ. Studies in patients with SZ have found less activation in the ventral striatum (VS) during anticipation of reward, but these findings do not provide information on effect of the genetic load on reward processing. Therefore, this study investigated RP in healthy first-degree relatives of SZ patients. The sample consisted of 94 healthy siblings of SZ patients and 57 healthy controls. Participants completed a classic RP task, the Monetary Incentive Delay task, during functional magnetic resonance imaging (fMRI). As expected, there were no behavioral differences between groups. In contrast to our expectations, we found no differences in any of the anticipatory reward related brain areas (region of interest analyses). Whole-brain analyses did reveal group differences during both reward anticipation and reward consumption; during reward anticipation siblings showed less deactivation in the insula, posterior cingulate cortex (PCC) and medial frontal gyrus (MFG) than controls. During reward consumption siblings showed less deactivation in the PCC and the right MFG compared to controls and activation in contrast to deactivation in controls in the precuneus and the left MFG. Exclusively in siblings, MFG activity correlated positively with subclinical negative symptoms. These regions are typically associated with the default mode network (DMN), which normally shows decreases in activation during task-related cognitive processes. Thus, in contrast to prior literature in patients with SZ, the results do not point to altered brain activity in classical RP brain areas, such as the VS. However, the weaker deactivation found outside the reward-related network in siblings could indicate reduced task-related suppression (i.e., hyperactivation) of the DMN. The presence of DMN hyperactivation during reward anticipation and reward consumption might indicate that siblings of patients with SZ have a higher baseline level of DMN activation and possible abnormal network functioning. PMID:26441601
Verdejo-Román, Juan; Fornito, Alex; Soriano-Mas, Carles; Vilar-López, Raquel; Verdejo-García, Antonio
2017-02-01
Overvaluation of palatable food is a primary driver of obesity, and is associated with brain regions of the reward system. However, it remains unclear if this network is specialized in food reward, or generally involved in reward processing. We used functional magnetic resonance imaging (fMRI) to characterize functional connectivity during processing of food and monetary rewards. Thirty-nine adults with excess weight and 37 adults with normal weight performed the Willingness to Pay for Food task and the Monetary Incentive Delay task in the fMRI scanner. A data-driven graph approach was applied to compare whole-brain, task-related functional connectivity between groups. Excess weight was associated with decreased functional connectivity during the processing of food rewards in a network involving primarily frontal and striatal areas, and increased functional connectivity during the processing of monetary rewards in a network involving principally frontal and parietal areas. These two networks were topologically and anatomically distinct, and were independently associated with BMI. The processing of food and monetary rewards involve segregated neural networks, and both are altered in individuals with excess weight. Copyright © 2016 Elsevier Inc. All rights reserved.
McMurray, Matthew S; Conway, Sineadh M; Roitman, Jamie D
2017-01-01
Animal models of decision-making rely on an animal's motivation to decide and its ability to detect differences among various alternatives. Food reinforcement, although commonly used, is associated with problematic confounds, especially satiety. Here, we examined the use of brain stimulation reward (BSR) as an alternative reinforcer in rodent models of decision-making and compared it with the effectiveness of sugar pellets. The discriminability of various BSR frequencies was compared to differing numbers of sugar pellets in separate free-choice tasks. We found that BSR was more discriminable and motivated greater task engagement and more consistent preference for the larger reward. We then investigated whether rats prefer BSR of varying frequencies over sugar pellets. We found that animals showed either a clear preference for sugar reward or no preference between reward modalities, depending on the frequency of the BSR alternative and the size of the sugar reward. Overall, these results suggest that BSR is an effective reinforcer in rodent decision-making tasks, removing food-related confounds and resulting in more accurate, consistent, and reliable metrics of choice.
Zedelius, Claire M.; Veling, Harm; Aarts, Henk
2012-01-01
Research has shown that high vs. low value rewards improve cognitive task performance independent of whether they are perceived consciously or unconsciously. However, efficient performance in response to high value rewards also depends on whether or not rewards are attainable. This raises the question of whether unconscious reward processing enables people to take into account such attainability information. Building on a theoretical framework according to which conscious reward processing is required to enable higher level cognitive processing, the present research tested the hypothesis that conscious but not unconscious reward processing enables integration of reward value with attainability information. In two behavioral experiments, participants were exposed to mask high and low value coins serving as rewards on a working memory (WM) task. The likelihood for conscious processing was manipulated by presenting the coins relatively briefly (17 ms) or long and clearly visible (300 ms). Crucially, rewards were expected to be attainable or unattainable. Requirements to integrate reward value with attainability information varied across experiments. Results showed that when integration of value and attainability was required (Experiment 1), long reward presentation led to efficient performance, i.e., selectively improved performance for high value attainable rewards. In contrast, in the short presentation condition, performance was increased for high value rewards even when these were unattainable. This difference between the effects of long and short presentation time disappeared when integration of value and attainability information was not required (Experiment 2). Together these findings suggest that unconsciously processed reward information is not integrated with attainability expectancies, causing inefficient effort investment. These findings are discussed in terms of a unique role of consciousness in efficient allocation of effort to cognitive control processes. PMID:22848198
Byrne, Jamie E M; Murray, Greg
2017-01-01
A range of evidence suggests that human reward functioning is partly driven by the endogenous circadian system, generating 24-hour rhythms in behavioural measures of reward activation. Reward functioning is multifaceted but literature to date is largely limited to measures of self-reported positive mood states. The aim of this study was to advance the field by testing for hypothesised diurnal variation in previously unexplored components of psychological reward: 'wanting', liking, and learning using subjective and behavioural measures. Risky decision making (automatic Balloon Analogue Risk Task), affective responsivity to positive images (International Affective Pictures System), uncued self-reported discrete emotions, and learning-contingent reward (Iowa Gambling Task) were measured at 10.00 hours, 14.00 hours, and 19.00 hours in a counterbalanced repeated measures design with 50 healthy male participants (aged 18-30). As hypothesised, risky decision making (unconscious 'wanting') and ratings of arousal towards positive images (conscious wanting) exhibited a diurnal waveform with indices highest at 14.00 hours. No diurnal rhythm was observed for liking (pleasure ratings to positive images, discrete uncued positive emotions) or in a learning-contingent reward task. Findings reaffirm that diurnal variation in human reward functioning is most pronounced in the motivational 'wanting' components of reward.
Balodis, Iris M; Potenza, Marc N
2015-03-01
Advances in brain imaging techniques have allowed neurobiological research to temporally analyze signals coding for the anticipation of reward. In addicted populations, both hyporesponsiveness and hyperresponsiveness of brain regions (e.g., ventral striatum) implicated in drug effects and reward system processing have been reported during anticipation of generalized reward. We discuss the current state of knowledge of reward processing in addictive disorders from a widely used and validated task: the monetary incentive delay task. Only studies applying the monetary incentive delay task in addicted and at-risk adult populations are reviewed, with a focus on anticipatory processing and striatal regions activated during task performance as well as the relationship of these regions with individual difference (e.g., impulsivity) and treatment outcome variables. We further review drug influences in challenge studies as a means to examine acute influences on reward processing in abstinent, recreationally using, and addicted populations. Generalized reward processing in addicted and at-risk populations is often characterized by divergent anticipatory signaling in the ventral striatum. Although methodologic and task variations may underlie some discrepant findings, anticipatory signaling in the ventral striatum may also be influenced by smoking status, drug metabolites, and treatment status in addicted populations. Divergent results across abstinent, recreationally using, and addicted populations demonstrate complexities in interpreting findings. Future studies would benefit from focusing on characterizing how impulsivity and other addiction-related features relate to anticipatory striatal signaling over time. Additionally, identifying how anticipatory signals recover or adjust after protracted abstinence will be important in understanding recovery processes. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Morey, Candice Coker; Cowan, Nelson; Morey, Richard D; Rouder, Jeffery N
2011-02-01
Prominent roles for general attention resources are posited in many models of working memory, but the manner in which these can be allocated differs between models or is not sufficiently specified. We varied the payoffs for correct responses in two temporally-overlapping recognition tasks, a visual array comparison task and a tone sequence comparison task. In the critical conditions, an increase in reward for one task corresponded to a decrease in reward for the concurrent task, but memory load remained constant. Our results show patterns of interference consistent with a trade-off between the tasks, suggesting that a shared resource can be flexibly divided, rather than only fully allotted to either of the tasks. Our findings support a role for a domain-general resource in models of working memory, and furthermore suggest that this resource is flexibly divisible.
A novel operant task to assess social reward and motivation in rodents.
Borland, Johnathan M; Frantz, Kyle J; Aiani, Lauren M; Grantham, Kymberly N; Song, Zhimin; Albers, H Elliott
2017-08-01
Social reward plays a critical role in the development of beneficial social relationships, and disorders of the mechanisms controlling social reward are involved in the etiology of many psychiatric diseases. We present a novel operant social preference task to quantify social reward in rodents using an apparatus with three chambers separated by one-way vertical-swing doors. The experimental animal is placed in the larger chamber while the two smaller chambers either remain empty or contain a stimulus animal or other potential reward stimulus. Adding weights to the door can alter effort required for rewards. Hamsters (Mesocricetus auratus) entered the chamber containing a stimulus hamster significantly more frequently than an empty chamber. When the reinforcing effects of social interactions were compared to food reward under progressive cost requirements, the reinforcing effects of social interaction and sunflower seeds were similar. Progressively increasing the door weight decreased number of entries, but increased time spent attempting to open the doors. The quantification of the rewarding properties of social interactions has almost exclusively used the conditioned place preference (CPP) paradigm. Although robust and reliable, CPP includes a memory component, because it relies on the association of place with the social interaction while the operant task presented here does not. This task allows for detailed and direct assessment of social and non-social rewards that may serve as effective behavioral reinforcers in this operant conditioning model, and it can be used to investigate the neural mechanisms regulating motivation. Copyright © 2017 Elsevier B.V. All rights reserved.
Humans Can Adopt Optimal Discounting Strategy under Real-Time Constraints
Schweighofer, N; Shishida, K; Han, C. E; Okamoto, Y; Tanaka, S. C; Yamawaki, S; Doya, K
2006-01-01
Critical to our many daily choices between larger delayed rewards, and smaller more immediate rewards, are the shape and the steepness of the function that discounts rewards with time. Although research in artificial intelligence favors exponential discounting in uncertain environments, studies with humans and animals have consistently shown hyperbolic discounting. We investigated how humans perform in a reward decision task with temporal constraints, in which each choice affects the time remaining for later trials, and in which the delays vary at each trial. We demonstrated that most of our subjects adopted exponential discounting in this experiment. Further, we confirmed analytically that exponential discounting, with a decay rate comparable to that used by our subjects, maximized the total reward gain in our task. Our results suggest that the particular shape and steepness of temporal discounting is determined by the task that the subject is facing, and question the notion of hyperbolic reward discounting as a universal principle. PMID:17096592
Rewards boost sustained attention through higher effort: A value-based decision making approach.
Massar, Stijn A A; Lim, Julian; Sasmita, Karen; Chee, Michael W L
2016-10-01
Maintaining sustained attention over time is an effortful process limited by finite cognitive resources. Recent theories describe the role of motivation in the allocation of such resources as a decision process: the costs of effortful performance are weighed against its gains. We examined this hypothesis by combining methods from attention research and decision neuroscience. Participants first performed a sustained attention task at different levels of reward. They then performed a reward-discounting task, measuring the subjective costs of performance. Results demonstrated that higher rewards led to improved performance (Exp 1-3), and enhanced attentional effort (i.e. pupil diameter; Exp 2 & 3). Moreover, discounting curves constructed from the choice task indicated that subjects devalued rewards that came at the cost of staying vigilant for a longer duration (Exp 1 & 2). Motivation can thus boost sustained attention through increased effort, while sustained performance is regarded as a cost against which rewards are discounted. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Reward for food odors: an fMRI study of liking and wanting as a function of metabolic state and BMI.
Jiang, Tao; Soussignan, Robert; Schaal, Benoist; Royet, Jean-Pierre
2015-04-01
Brain reward systems mediate liking and wanting for food reward. Here, we explore the differential involvement of the following structures for these two components: the ventral and dorsal striatopallidal area, orbitofrontal cortex (OFC), anterior insula and anterior cingulate. Twelve healthy female participants were asked to rate pleasantness (liking of food and non-food odors) and the desire to eat (wanting of odor-evoked food) during event-related functional magnetic resonance imaging (fMRI). The subjective ratings and fMRI were performed in hunger and satiety states. Activations of regions of interest were compared as a function of task (liking vs wanting), odor category (food vs non-food) and metabolic state (hunger vs satiety). We found that the nucleus accumbens and ventral pallidum were differentially involved in liking or wanting during the hunger state, which suggests a reciprocal inhibitory influence between these structures. Neural activation of OFC subregions was correlated with either liking or wanting ratings, suggesting an OFC role in reward processing magnitude. Finally, during the hunger state, participants with a high body mass index exhibited less activation in neural structures underlying food reward processing. Our results suggest that food liking and wanting are two separable psychological constructs and may be functionally segregated within the cortico-striatopallidal circuit. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Kirk, Ulrich; Brown, Kirk Warren; Downar, Jonathan
2015-05-01
Reward seeking is ubiquitous and adaptive in humans. But excessive reward seeking behavior, such as chasing monetary rewards, may lead to diminished subjective well-being. This study examined whether individuals trained in mindfulness meditation show neural evidence of lower susceptibility to monetary rewards. Seventy-eight participants (34 meditators, 44 matched controls) completed the monetary incentive delay task while undergoing functional magnetic resonance imaging. The groups performed equally on the task, but meditators showed lower neural activations in the caudate nucleus during reward anticipation, and elevated bilateral posterior insula activation during reward anticipation. Meditators also evidenced reduced activations in the ventromedial prefrontal cortex during reward receipt compared with controls. Connectivity parameters between the right caudate and bilateral anterior insula were attenuated in meditators during incentive anticipation. In summary, brain regions involved in reward processing-both during reward anticipation and receipt of reward-responded differently in mindfulness meditators than in nonmeditators, indicating that the former are less susceptible to monetary incentives. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Activity of striatal neurons reflects social action and own reward.
Báez-Mendoza, Raymundo; Harris, Christopher J; Schultz, Wolfram
2013-10-08
Social interactions provide agents with the opportunity to earn higher benefits than when acting alone and contribute to evolutionary stable strategies. A basic requirement for engaging in beneficial social interactions is to recognize the actor whose movement results in reward. Despite the recent interest in the neural basis of social interactions, the neurophysiological mechanisms identifying the actor in social reward situations are unknown. A brain structure well suited for exploring this issue is the striatum, which plays a role in movement, reward, and goal-directed behavior. In humans, the striatum is involved in social processes related to reward inequity, donations to charity, and observational learning. We studied the neurophysiology of social action for reward in rhesus monkeys performing a reward-giving task. The behavioral data showed that the animals distinguished between their own and the conspecific's reward and knew which individual acted. Striatal neurons coded primarily own reward but rarely other's reward. Importantly, the activations occurred preferentially, and in approximately similar fractions, when either the own or the conspecific's action was followed by own reward. Other striatal neurons showed social action coding without reward. Some of the social action coding disappeared when the conspecific's role was simulated by a computer, confirming a social rather than observational relationship. These findings demonstrate a role of striatal neurons in identifying the social actor and own reward in a social setting. These processes may provide basic building blocks underlying the brain's function in social interactions.
Planning activity for internally generated reward goals in monkey amygdala neurons
Schultz, Wolfram
2015-01-01
The best rewards are often distant and can only be achieved by planning and decision-making over several steps. We designed a multi-step choice task in which monkeys followed internal plans to save rewards towards self-defined goals. During this self-controlled behavior, amygdala neurons showed future-oriented activity that reflected the animal’s plan to obtain specific rewards several trials ahead. This prospective activity encoded crucial components of the animal’s plan, including value and length of the planned choice sequence. It began on initial trials when a plan would be formed, reappeared step-by-step until reward receipt, and readily updated with a new sequence. It predicted performance, including errors, and typically disappeared during instructed behavior. Such prospective activity could underlie the formation and pursuit of internal plans characteristic for goal-directed behavior. The existence of neuronal planning activity in the amygdala suggests an important role for this structure in guiding behavior towards internally generated, distant goals. PMID:25622146
The impact of Parkinson's disease and subthalamic deep brain stimulation on reward processing.
Evens, Ricarda; Stankevich, Yuliya; Dshemuchadse, Maja; Storch, Alexander; Wolz, Martin; Reichmann, Heinz; Schlaepfer, Thomas E; Goschke, Thomas; Lueken, Ulrike
2015-08-01
Due to its position in cortico-subthalamic and cortico-striatal pathways, the subthalamic nucleus (STN) is considered to play a crucial role not only in motor, but also in cognitive and motivational functions. In the present study we aimed to characterize how different aspects of reward processing are affected by disease and deep brain stimulation of the STN (DBS-STN) in patients with idiopathic Parkinson's disease (PD). We compared 33 PD patients treated with DBS-STN under best medical treatment (DBS-on, medication-on) to 33 PD patients without DBS, but optimized pharmacological treatment and 34 age-matched healthy controls. We then investigated DBS-STN effects using a postoperative stimulation-on/ -off design. The task set included a delay discounting task, a task to assess changes in incentive salience attribution, and the Iowa Gambling Task. The presence of PD was associated with increased incentive salience attribution and devaluation of delayed rewards. Acute DBS-STN increased risky choices in the Iowa Gambling Task under DBS-on condition, but did not further affect incentive salience attribution or the evaluation of delayed rewards. Findings indicate that acute DBS-STN affects specific aspects of reward processing, including the weighting of gains and losses, while larger-scale effects of disease or medication are predominant in others reward-related functions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Irrelevant learned reward associations disrupt voluntary spatial attention.
MacLean, Mary H; Diaz, Gisella K; Giesbrecht, Barry
2016-10-01
Attention can be guided involuntarily by physical salience and by non-salient, previously learned reward associations that are currently task-irrelevant. Attention can be guided voluntarily by current goals and expectations. The current study examined, in two experiments, whether irrelevant reward associations could disrupt current, goal-driven, voluntary attention. In a letter-search task, attention was directed voluntarily (i.e., cued) on half the trials by a cue stimulus indicating the hemifield in which the target letter would appear with 100 % accuracy. On the other half of the trials, a cue stimulus was presented, but it did not provide information about the target hemifield (i.e., uncued). On both cued and uncued trials, attention could be involuntarily captured by the presence of a task-irrelevant, and physically non-salient, color, either within the cued or the uncued hemifield. Importantly, one week prior to the letter search task, the irrelevant color had served as a target feature that was predictive of reward in a separate training task. Target identification accuracy was better on cued compared to uncued trials. However, this effect was reduced when the irrelevant, and physically non-salient, reward-associated feature was present in the uncued hemifield. This effect was not observed in a second, control experiment in which the irrelevant color was not predictive of reward during training. Our results indicate that involuntary, value-driven capture can disrupt the voluntary control of spatial attention.
The role of reward in word learning and its implications for language acquisition.
Ripollés, Pablo; Marco-Pallarés, Josep; Hielscher, Ulrike; Mestres-Missé, Anna; Tempelmann, Claus; Heinze, Hans-Jochen; Rodríguez-Fornells, Antoni; Noesselt, Toemme
2014-11-03
The exact neural processes behind humans' drive to acquire a new language--first as infants and later as second-language learners--are yet to be established. Recent theoretical models have proposed that during human evolution, emerging language-learning mechanisms might have been glued to phylogenetically older subcortical reward systems, reinforcing human motivation to learn a new language. Supporting this hypothesis, our results showed that adult participants exhibited robust fMRI activation in the ventral striatum (VS)--a core region of reward processing--when successfully learning the meaning of new words. This activation was similar to the VS recruitment elicited using an independent reward task. Moreover, the VS showed enhanced functional and structural connectivity with neocortical language areas during successful word learning. Together, our results provide evidence for the neural substrate of reward and motivation during word learning. We suggest that this strong functional and anatomical coupling between neocortical language regions and the subcortical reward system provided a crucial advantage in humans that eventually enabled our lineage to successfully acquire linguistic skills. Copyright © 2014 Elsevier Ltd. All rights reserved.
Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder.
Wilbertz, Gregor; van Elst, Ludger Tebartz; Delgado, Mauricio R; Maier, Simon; Feige, Bernd; Philipsen, Alexandra; Blechert, Jens
2012-03-01
Impulsivity symptoms of adult attention deficit hyperactivity disorder (ADHD) such as increased risk taking have been linked with impaired reward processing. Previous studies have focused on reward anticipation or on rewarded executive functioning tasks and have described a striatal hyporesponsiveness and orbitofrontal alterations in adult and adolescent ADHD. Passive reward delivery and its link to behavioral impulsivity are less well understood. To study this crucial aspect of reward processing we used functional magnetic resonance imaging (fMRI) combined with electrodermal assessment in male and female adult ADHD patients (N=28) and matched healthy control participants (N=28) during delivery of monetary and non-monetary rewards. Further, two behavioral tasks assessed risky decision making (game of dice task) and delay discounting. Results indicated that both groups activated ventral and dorsal striatum and the medial orbitofrontal cortex (mOFC) in response to high-incentive (i.e. monetary) rewards. A similar, albeit less strong activation pattern was found for low-incentive (i.e. non-monetary) rewards. Group differences emerged when comparing high and low incentive rewards directly: activation in the mOFC coded for the motivational change in reward delivery in healthy controls, but not ADHD patients. Additionally, this dysfunctional mOFC activity in patients correlated with risky decision making and delay discounting and was paralleled by physiological arousal. Together, these results suggest that the mOFC codes reward value and type in healthy individuals whereas this function is deficient in ADHD. The brain-behavior correlations suggest that this deficit might be related to behavioral impulsivity. Reward value processing difficulties in ADHD should be considered when assessing reward anticipation and emotional learning in research and applied settings. Copyright © 2011 Elsevier Inc. All rights reserved.
Strategic attention deployment for delay of gratification in working and waiting situations.
Peake, Philip K; Mischel, Walter; Hebl, Michelle
2002-03-01
Two studies examined whether the detrimental effects of attention to rewards on delay of gratification in waiting situations holds-or reverses-in working situations. In Study 1, preschoolers waited or worked for desired delayed rewards. Delay times increased when children worked in the presence of rewards but, as predicted, this increase was due to the distraction provided by the work itself. not because attention to rewards motivated children to sustain work. Analysis of spontaneous attention deployment showed that attending to rewards reduces delay time regardless of the working or waiting nature of the task. Fixing attention on rewards was a particularly detrimental strategy regardless of the type of task. Study 2 showed that when the work is not engaging, however, attention to rewards can motivate instrumental work and facilitate delay of gratification as long as attention deployment does not become fixed on the rewards.
Joussemet, Mireille; Koestner, Richard; Lekes, Natasha; Houlfort, Nathalie
2004-02-01
Two experiments compared rewards and autonomy support as methods to promote children's self-regulation for an uninteresting vigilance task. Dependent measures were ratings of positive affect, perception of the task's value, and free-choice engagement. ANOVA results revealed some positive effects associated with autonomy support, whereas no effect for rewards was found in either study. The outcomes of most interest were correlations between free-choice behavior and self-reported measures of affect and value, reflecting the level of integration in self-regulation. As predicted by self-determination theory (Deci & Ryan, 1985, 1991, 2000), rewards were associated with behaviors incongruent from affect and value, whereas autonomy support led to integrated self-regulation. This finding was first detected in Study 1 and later replicated in Study 2. Together, these results point to autonomy support as a beneficial alternative to the common use of rewards.
Anticipatory Reward Processing in Addicted Populations: A Focus on the Monetary Incentive Delay Task
Balodis, Iris M.; Potenza, Marc N.
2014-01-01
Advances in brain imaging techniques have allowed neurobiological research to temporally analyze signals coding for the anticipation of rewards. In addicted populations, both hypo- and hyper-responsiveness of brain regions (e.g., ventral striatum) implicated in drug effects and reward system processing have been reported during anticipation of generalized reward. Here, we discuss the current state of knowledge of reward processing in addictive disorders from a widely used and validated task: the Monetary Incentive Delay Task (MIDT). The current paper constrains review to those studies applying the MIDT in addicted and at-risk adult populations, with a focus on anticipatory processing and striatal regions activated during task performance, as well as the relationship of these regions with individual difference (e.g., impulsivity) and treatment outcome variables. We further review drug influences in challenge studies as a means to examine acute influences on reward processing in abstinent, recreationally using and addicted populations. Here, we discuss that generalized reward processing in addicted and at-risk populations is often characterized by divergent anticipatory signaling in the ventral striatum. Although methodological/task variations may underlie some discrepant findings, anticipatory signaling in the ventral striatum may also be influenced by smoking status, drug metabolites and treatment status in addicted populations. Divergent results across abstinent, recreationally using and addicted populations demonstrate complexities in interpreting findings. Future studies will benefit from focusing on characterizing how impulsivity and other addiction-related features relate to anticipatory striatal signaling over time. Additionally, identifying how anticipatory signals recover/adjust following protracted abstinence will be important in understanding recovery processes. PMID:25481621
Adolescent neural response to reward is related to participant sex and task motivation.
Alarcón, Gabriela; Cservenka, Anita; Nagel, Bonnie J
2017-02-01
Risky decision making is prominent during adolescence, perhaps contributed to by heightened sensation seeking and ongoing maturation of reward and dopamine systems in the brain, which are, in part, modulated by sex hormones. In this study, we examined sex differences in the neural substrates of reward sensitivity during a risky decision-making task and hypothesized that compared with girls, boys would show heightened brain activation in reward-relevant regions, particularly the nucleus accumbens, during reward receipt. Further, we hypothesized that testosterone and estradiol levels would mediate this sex difference. Moreover, we predicted boys would make more risky choices on the task. While boys showed increased nucleus accumbens blood oxygen level-dependent (BOLD) response relative to girls, sex hormones did not mediate this effect. As predicted, boys made a higher percentage of risky decisions during the task. Interestingly, boys also self-reported more motivation to perform well and earn money on the task, while girls self-reported higher state anxiety prior to the scan session. Motivation to earn money partially mediated the effect of sex on nucleus accumbens activity during reward. Previous research shows that increased motivation and salience of reinforcers is linked with more robust striatal BOLD response, therefore psychosocial factors, in addition to sex, may play an important role in reward sensitivity. Elucidating neurobiological mechanisms that support adolescent sex differences in risky decision making has important implications for understanding individual differences that lead to advantageous and adverse behaviors that affect health outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Moreno-López, Laura; Soriano-Mas, Carles; Delgado-Rico, Elena; Rio-Valle, Jacqueline S; Verdejo-García, Antonio
2012-01-01
Neuroscience evidence suggests that adolescent obesity is linked to brain dysfunctions associated with enhanced reward and somatosensory processing and reduced impulse control during food processing. Comparatively less is known about the role of more stable brain structural measures and their link to personality traits and neuropsychological factors on the presentation of adolescent obesity. Here we aimed to investigate regional brain anatomy in adolescents with excess weight vs. lean controls. We also aimed to contrast the associations between brain structure and personality and cognitive measures in both groups. Fifty-two adolescents (16 with normal weight and 36 with excess weight) were scanned using magnetic resonance imaging and completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ), the UPPS-P scale, and the Stroop task. Voxel-based morphometry (VBM) was used to assess possible between-group differences in regional gray matter (GM) and to measure the putative differences in the way reward and punishment sensitivity, impulsivity and inhibitory control relate to regional GM volumes, which were analyzed using both region of interest (ROI) and whole brain analyses. The ROIs included areas involved in reward/somatosensory processing (striatum, somatosensory cortices) and motivation/impulse control (hippocampus, prefrontal cortex). Excess weight adolescents showed increased GM volume in the right hippocampus. Voxel-wise volumes of the second somatosensory cortex (SII) were correlated with reward sensitivity and positive urgency in lean controls, but this association was missed in excess weight adolescents. Moreover, Stroop performance correlated with dorsolateral prefrontal cortex volumes in controls but not in excess weight adolescents. Adolescents with excess weight have structural abnormalities in brain regions associated with somatosensory processing and motivation.
Wang, Shuai; Hu, Shan-Hu; Shi, Yi; Li, Bao-Ming
2017-03-01
It has been shown that the anterior cingulate cortex (ACC) and its dopamine system are crucial for decision making that requires physical/emotional effort, but not for all forms of cost-benefit decision making. Previous studies had mostly employed behavioral tasks with two competing cost-reward options that were preset by the experimenters. However, few studies have been conducted using scenarios in which the subjects have full control over the energy/time expenditure required to obtain a proportional reward. Here, we assessed the roles of the ACC and its dopamine system in cost-benefit decision making by utilizing a "do more get more" (DMGM) task and a time-reward trade-off (TRTO) task, wherein the animals were able to self-determine how much effort or time to expend at a nosepoke operandum for a proportional reward. Our results showed that (1) ACC inactivation severely impaired DMGM task performance, with a reduction in the rate of correct responses and a decrease in the effort expended, but did not affect the TRTO task; and (2) blocking ACC D2 receptors had no impact on DMGM task performance in the baseline cost-benefit scenario, but it significantly reduced the attempts to invest increased effort for a large reward when the benefit-cost ratio was reduced by half. In contrast, blocking ACC D1 receptors had no effect on DMGM task performance. These findings suggest that the ACC is required for self-paced effort-based but not for time-reward trade-off decision making. Furthermore, ACC dopamine D2 but not D1 receptors are involved in DMGM decision making.
Hedging Your Bets by Learning Reward Correlations in the Human Brain
Wunderlich, Klaus; Symmonds, Mkael; Bossaerts, Peter; Dolan, Raymond J.
2011-01-01
Summary Human subjects are proficient at tracking the mean and variance of rewards and updating these via prediction errors. Here, we addressed whether humans can also learn about higher-order relationships between distinct environmental outcomes, a defining ecological feature of contexts where multiple sources of rewards are available. By manipulating the degree to which distinct outcomes are correlated, we show that subjects implemented an explicit model-based strategy to learn the associated outcome correlations and were adept in using that information to dynamically adjust their choices in a task that required a minimization of outcome variance. Importantly, the experimentally generated outcome correlations were explicitly represented neuronally in right midinsula with a learning prediction error signal expressed in rostral anterior cingulate cortex. Thus, our data show that the human brain represents higher-order correlation structures between rewards, a core adaptive ability whose immediate benefit is optimized sampling. PMID:21943609
Neural basis of the undermining effect of monetary reward on intrinsic motivation
Murayama, Kou; Matsumoto, Madoka; Izuma, Keise; Matsumoto, Kenji
2010-01-01
Contrary to the widespread belief that people are positively motivated by reward incentives, some studies have shown that performance-based extrinsic reward can actually undermine a person's intrinsic motivation to engage in a task. This “undermining effect” has timely practical implications, given the burgeoning of performance-based incentive systems in contemporary society. It also presents a theoretical challenge for economic and reinforcement learning theories, which tend to assume that monetary incentives monotonically increase motivation. Despite the practical and theoretical importance of this provocative phenomenon, however, little is known about its neural basis. Herein we induced the behavioral undermining effect using a newly developed task, and we tracked its neural correlates using functional MRI. Our results show that performance-based monetary reward indeed undermines intrinsic motivation, as assessed by the number of voluntary engagements in the task. We found that activity in the anterior striatum and the prefrontal areas decreased along with this behavioral undermining effect. These findings suggest that the corticobasal ganglia valuation system underlies the undermining effect through the integration of extrinsic reward value and intrinsic task value. PMID:21078974
Neural basis of the undermining effect of monetary reward on intrinsic motivation.
Murayama, Kou; Matsumoto, Madoka; Izuma, Keise; Matsumoto, Kenji
2010-12-07
Contrary to the widespread belief that people are positively motivated by reward incentives, some studies have shown that performance-based extrinsic reward can actually undermine a person's intrinsic motivation to engage in a task. This "undermining effect" has timely practical implications, given the burgeoning of performance-based incentive systems in contemporary society. It also presents a theoretical challenge for economic and reinforcement learning theories, which tend to assume that monetary incentives monotonically increase motivation. Despite the practical and theoretical importance of this provocative phenomenon, however, little is known about its neural basis. Herein we induced the behavioral undermining effect using a newly developed task, and we tracked its neural correlates using functional MRI. Our results show that performance-based monetary reward indeed undermines intrinsic motivation, as assessed by the number of voluntary engagements in the task. We found that activity in the anterior striatum and the prefrontal areas decreased along with this behavioral undermining effect. These findings suggest that the corticobasal ganglia valuation system underlies the undermining effect through the integration of extrinsic reward value and intrinsic task value.
Faraji, Jamshid; Lehmann, Hugo; Metz, Gerlinde A; Sutherland, Robert J
2008-05-16
Spatial tasks are widely used to determine the function of limbic system structures in rats. The present study used a new task designed to evaluate spatial behavior, the ziggurat task (ZT), to examine the performance of rats with widespread hippocampal damage induced by N-methyl-d-aspartic acid (NMDA). The task consisted of an open field containing 16 identical ziggurats (pyramid shaped towers) arranged at equal distances. One of the ziggurats was baited with a food reward. The task required rats to navigate through the open field by using a combination of distal and/or proximal cues in order to locate the food reward. The ability to acquire and recall the location of the goal (baited) ziggurat was tested in consecutive training sessions of eight trials per day for 10 days. The location of the goal ziggurat was changed every second day, requiring the rats to learn a total of five different locations. Several parameters, including latency to find the target, distance traveled, the number of visits to non-baited ziggurats (errors), and the number of returns were used as indices of learning and memory. Control rats showed a significant decrease in distance traveled and reduced latency in locating the goal ziggurat across trials and days, suggesting that they learned and remembered the location of the goal ziggurat. Interestingly, the hippocampal-damaged group moved significantly faster, and traveled longer distances compared to the control group. Significant differences were observed between these groups with respect to the number of errors and returns on test days. Day 11 served as probe day, in which no food reward was given. The controls spent more time searching for the food in the previous training quadrant compared to the hippocampal group. The findings demonstrate that the ZT is a sensitive and efficient dry task for measuring hippocampus-dependent spatial performance in rats requiring little training and not associated with some of the disadvantages of water tasks.
Elevated striatal reactivity across monetary and social rewards in bipolar I disorder.
Dutra, Sunny J; Cunningham, William A; Kober, Hedy; Gruber, June
2015-11-01
Bipolar disorder (BD) is associated with increased reactivity to rewards and heightened positive affectivity. It is less clear to what extent this heightened reward sensitivity is evident across contexts and what the associated neural mechanisms might be. The present investigation used both a monetary and social incentive delay task among adults with remitted BD Type I (n = 24) and a healthy nonpsychiatric control group (HC; n = 25) using fMRI. Both whole-brain and region-of-interest analyses revealed elevated reactivity to reward receipt in the striatum, a region implicated in incentive sensitivity, in the BD group. Post hoc analyses revealed that greater striatal reactivity to reward receipt, across monetary and social reward tasks, predicted decreased self-reported positive affect when anticipating subsequent rewards in the HC but not in the BD group. Results point toward elevated striatal reactivity to reward receipt as a potential neural mechanism of persistent reward pursuit in BD. (c) 2015 APA, all rights reserved).
Saccade selection when reward probability is dynamically manipulated using Markov chains
Lovejoy, Lee P.; Krauzlis, Richard J.
2012-01-01
Markov chains (stochastic processes where probabilities are assigned based on the previous outcome) are commonly used to examine the transitions between behavioral states, such as those that occur during foraging or social interactions. However, relatively little is known about how well primates can incorporate knowledge about Markov chains into their behavior. Saccadic eye movements are an example of a simple behavior influenced by information about probability, and thus are good candidates for testing whether subjects can learn Markov chains. In addition, when investigating the influence of probability on saccade target selection, the use of Markov chains could provide an alternative method that avoids confounds present in other task designs. To investigate these possibilities, we evaluated human behavior on a task in which stimulus reward probabilities were assigned using a Markov chain. On each trial, the subject selected one of four identical stimuli by saccade; after selection, feedback indicated the rewarded stimulus. Each session consisted of 200–600 trials, and on some sessions, the reward magnitude varied. On sessions with a uniform reward, subjects (n = 6) learned to select stimuli at a frequency close to reward probability, which is similar to human behavior on matching or probability classification tasks. When informed that a Markov chain assigned reward probabilities, subjects (n = 3) learned to select the greatest reward probability more often, bringing them close to behavior that maximizes reward. On sessions where reward magnitude varied across stimuli, subjects (n = 6) demonstrated preferences for both greater reward probability and greater reward magnitude, resulting in a preference for greater expected value (the product of reward probability and magnitude). These results demonstrate that Markov chains can be used to dynamically assign probabilities that are rapidly exploited by human subjects during saccade target selection. PMID:18330552
Saccade selection when reward probability is dynamically manipulated using Markov chains.
Nummela, Samuel U; Lovejoy, Lee P; Krauzlis, Richard J
2008-05-01
Markov chains (stochastic processes where probabilities are assigned based on the previous outcome) are commonly used to examine the transitions between behavioral states, such as those that occur during foraging or social interactions. However, relatively little is known about how well primates can incorporate knowledge about Markov chains into their behavior. Saccadic eye movements are an example of a simple behavior influenced by information about probability, and thus are good candidates for testing whether subjects can learn Markov chains. In addition, when investigating the influence of probability on saccade target selection, the use of Markov chains could provide an alternative method that avoids confounds present in other task designs. To investigate these possibilities, we evaluated human behavior on a task in which stimulus reward probabilities were assigned using a Markov chain. On each trial, the subject selected one of four identical stimuli by saccade; after selection, feedback indicated the rewarded stimulus. Each session consisted of 200-600 trials, and on some sessions, the reward magnitude varied. On sessions with a uniform reward, subjects (n = 6) learned to select stimuli at a frequency close to reward probability, which is similar to human behavior on matching or probability classification tasks. When informed that a Markov chain assigned reward probabilities, subjects (n = 3) learned to select the greatest reward probability more often, bringing them close to behavior that maximizes reward. On sessions where reward magnitude varied across stimuli, subjects (n = 6) demonstrated preferences for both greater reward probability and greater reward magnitude, resulting in a preference for greater expected value (the product of reward probability and magnitude). These results demonstrate that Markov chains can be used to dynamically assign probabilities that are rapidly exploited by human subjects during saccade target selection.
Age Differences in the Impact of Peers on Adolescents’ and Adults’ Neural Response to Reward
Smith, Ashley R.; Steinberg, Laurence; Strang, Nicole; Chein, Jason
2014-01-01
Prior research suggests that increased adolescent risk-taking in the presence of peers may be linked to the influence of peers on the valuation and processing of rewards during decision-making. The current study explores this idea by examining how peer observation impacts the processing of rewards when such processing is isolated from other facets of risky decision-making (e.g. risk-perception and preference, inhibitory processing, etc.). In an fMRI paradigm, a sample of adolescents (ages 14–19) and adults (ages 25–35) completed a modified High/Low Card Guessing Task that included rewarded and un-rewarded trials. Social context was manipulated by having participants complete the task both alone and while being observed by two, same-age, same-sex peers. Results indicated an interaction of age and social context on the activation of reward circuitry during the receipt of reward; when observed by peers adolescents exhibited greater ventral striatal activation than adults, but no age-related differences were evinced when the task was completed alone. These findings suggest that, during adolescence, peers influence recruitment of reward-related regions even when they are engaged outside of the context of risk-taking. Implications for engagement in prosocial, as well as risky, behaviors during adolescence are discussed. PMID:25280778
Reward modulates perception in binocular rivalry.
Marx, Svenja; Einhäuser, Wolfgang
2015-01-14
Our perception does not provide us with an exact imprint of the outside world, but is continuously adapted to our internal expectations, task sets, and behavioral goals. Although effects of reward-or value in general-on perception therefore seem likely, how valuation modulates perception and how such modulation relates to attention is largely unknown. We probed effects of reward on perception by using a binocular-rivalry paradigm. Distinct gratings drifting in opposite directions were presented to each observer's eyes. To objectify their subjective perceptual experience, the optokinetic nystagmus was used as measure of current perceptual dominance. In a first experiment, one of the percepts was either rewarded or attended. We found that reward and attention similarly biased perception. In a second experiment, observers performed an attentionally demanding task either on the rewarded stimulus, the other stimulus, or both. We found that-on top of an attentional effect on perception-at each level of attentional load, reward still modulated perception by increasing the dominance of the rewarded percept. Similarly, penalizing one percept increased dominance of the other at each level of attentional load. In turn, rewarding-and similarly nonpunishing-a percept yielded performance benefits that are typically associated with selective attention. In conclusion, our data show that value modulates perception in a similar way as the volitional deployment of attention, even though the relative effect of value is largely unaffected by an attention task. © 2015 ARVO.
Geier, Charles F; Sweitzer, Maggie M; Denlinger, Rachel; Sparacino, Gina; Donny, Eric C
2014-08-30
Chronic smoking may result in reduced sensitivity to non-drug rewards (e.g., money), a phenomenon particularly salient during abstinence. During a quit attempt, this effect may contribute to biased decision-making (smoking>alternative reinforcers) and relapse. Although relevant for quitting, characterization of reduced reward function in abstinent smokers remains limited. Moreover, how attenuated reward function affects other brain systems supporting decision-making has not been established. Here, we use a rewarded antisaccade (rAS) task to characterize non-drug reward processing and its influence on inhibitory control, key elements underlying decision-making, in abstinent smokers vs. non-smokers. Abstinent (12-hours) adult daily smokers (N=23) and non-smokers (N=11) underwent fMRI while performing the rAS. Behavioral performances improved on reward vs. neutral trials. Smokers showed attenuated activation in ventral striatum during the reward cue and in superior precentral sulcus and posterior parietal cortex during response preparation, but greater responses during the saccade response in posterior cingulate and parietal cortices. Smokers' attenuated anticipatory responses suggest reduced motivation from monetary reward, while heightened activation during the saccade response suggests that additional circuitry may be engaged later to enhance inhibitory task performance. Overall, this preliminary study highlights group differences in decision-making components and the utility of the rAS to characterize these effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Rats prefer mutual rewards in a prosocial choice task.
Hernandez-Lallement, Julen; van Wingerden, Marijn; Marx, Christine; Srejic, Milan; Kalenscher, Tobias
2014-01-01
Pro-sociality, i.e., the preference for outcomes that produce benefits for other individuals, is ubiquitous in humans. Recently, cross-species comparisons of social behavior have offered important new insights into the evolution of pro-sociality. Here, we present a rodent analog of the Pro-social Choice Task that controls strategic components, de-confounds other-regarding choice motives from the animals' natural tendencies to maximize own food access and directly tests the effect of social context on choice allocation. We trained pairs of rats-an actor and a partner rat-in a double T-maze task where actors decided between two alternatives only differing in the reward delivered to the partner. The "own reward" choice yielded a reward only accessible to the actor whereas the "both reward" choice produced an additional reward for a partner (partner condition) or an inanimate toy (toy Condition), located in an adjacent compartment. We found that actors chose "both reward" at levels above chance and more often in the partner than in the toy condition. Moreover, we show that this choice pattern adapts to the current social context and that the observed behavior is stable over time.
Reward-based contextual learning supported by anterior cingulate cortex.
Umemoto, Akina; HajiHosseini, Azadeh; Yates, Michael E; Holroyd, Clay B
2017-06-01
The anterior cingulate cortex (ACC) is commonly associated with cognitive control and decision making, but its specific function is highly debated. To explore a recent theory that the ACC learns the reward values of task contexts (Holroyd & McClure in Psychological Review, 122, 54-83, 2015; Holroyd & Yeung in Trends in Cognitive Sciences, 16, 122-128, 2012), we recorded the event-related brain potentials (ERPs) from participants as they played a novel gambling task. The participants were first required to select from among three games in one "virtual casino," and subsequently they were required to select from among three different games in a different virtual casino; unbeknownst to them, the payoffs for the games were higher in one casino than in the other. Analysis of the reward positivity, an ERP component believed to reflect reward-related signals carried to the ACC by the midbrain dopamine system, revealed that the ACC is sensitive to differences in the reward values associated with both the casinos and the games inside the casinos, indicating that participants learned the values of the contexts in which rewards were delivered. These results highlight the importance of the ACC in learning the reward values of task contexts in order to guide action selection.
ERIC Educational Resources Information Center
Mattfeld, Aaron T.; Gluck, Mark A.; Stark, Craig E. L.
2011-01-01
The goal of the present study was to elucidate the role of the human striatum in learning via reward and punishment during an associative learning task. Previous studies have identified the striatum as a critical component in the neural circuitry of reward-related learning. It remains unclear, however, under what task conditions, and to what…
Age differences in default and reward networks during processing of personally relevant information.
Grady, Cheryl L; Grigg, Omer; Ng, Charisa
2012-06-01
We recently found activity in default mode and reward-related regions during self-relevant tasks in young adults. Here we examine the effect of aging on engagement of the default network (DN) and reward network (RN) during these tasks. Previous studies have shown reduced engagement of the DN and reward areas in older adults, but the influence of age on these circuits during self-relevant tasks has not been examined. The tasks involved judging personality traits about one's self or a well known other person. There were no age differences in reaction time on the tasks but older adults had more positive Self and Other judgments, whereas younger adults had more negative judgments. Both groups had increased DN and RN activity during the self-relevant tasks, relative to non-self tasks, but this increase was reduced in older compared to young adults. Functional connectivity of both networks during the tasks was weaker in the older relative to younger adults. Intrinsic functional connectivity, measured at rest, also was weaker in the older adults in the DN, but not in the RN. These results suggest that, in younger adults, the processing of personally relevant information involves robust activation of and functional connectivity within these two networks, in line with current models that emphasize strong links between the self and reward. The finding that older adults had more positive judgments, but weaker engagement and less consistent functional connectivity in these networks, suggests potential brain mechanisms for the "positivity bias" with aging. Copyright © 2012 Elsevier Ltd. All rights reserved.
Parker, Richard M.A.; Paul, Elizabeth S.; Burman, Oliver H.P.; Browne, William J.; Mendl, Michael
2014-01-01
Decision-making under ambiguity in cognitive bias tasks is a promising new indicator of affective valence in animals. Rat studies support the hypothesis that animals in a negative affective state evaluate ambiguous cues negatively. Prior automated operant go/go judgement bias tasks have involved training rats that an auditory cue of one frequency predicts a Reward and a cue of a different frequency predicts a Punisher (RP task), and then measuring whether ambiguous cues of intermediate frequency are judged as predicting reward (‘optimism’) or punishment (‘pessimism’). We investigated whether an automated Reward–Reward (RR) task yielded similar results to, and was faster to train than, RP tasks. We also introduced a new ambiguity test (simultaneous presentation of the two training cues) alongside the standard single ambiguous cue test. Half of the rats experienced an unpredictable housing treatment (UHT) designed to induce a negative state. Control rats were relatively ‘pessimistic’, whilst UHT rats were quicker, but no less accurate, in their responses in the RR test, and showed less anxiety-like behaviour in independent tests. A possible reason for these findings is that rats adapted to and were stimulated by UHT, whilst control rats in a predictable environment were more sensitive to novelty and change. Responses in the new ambiguity test correlated positively with those in single ambiguous cue tests, and may provide a measure of attention bias. The RR task was quicker to train than previous automated RP tasks. Together, they could be used to disentangle how reward and punishment processes underpin affect-induced cognitive biases. PMID:25106739
Age differences in default and reward networks during processing of personally relevant information
Grady, Cheryl L.; Grigg, Omer; Ng, Charisa
2013-01-01
We recently found activity in default mode and reward-related regions during self-relevant tasks in young adults. Here we examine the effect of aging on engagement of the default network (DN) and reward network (RN) during these tasks. Previous studies have shown reduced engagement of the DN and reward areas in older adults, but the influence of age on these circuits during self-relevant tasks has not been examined. The tasks involved judging personality traits about one’s self or a well known other person. There were no age differences in reaction time on the tasks but older adults had more positive Self and Other judgments, whereas younger adults had more negative judgments. Both groups had increased DN and RN activity during the self-relevant tasks, relative to non-self tasks, but this increase was reduced in older compared to young adults. Functional connectivity of both networks during the tasks was weaker in the older relative to younger adults. Intrinsic functional connectivity, measured at rest, also was weaker in the older adults in the DN, but not in the RN. These results suggest that, in younger adults, the processing of personally relevant information involves robust activation of and functional connectivity within these two networks, in line with current models that emphasize strong links between the self and reward. The finding that older adults had more positive judgments, but weaker engagement and less consistent functional connectivity in these networks, suggests potential brain mechanisms for the “positivity bias” with aging. PMID:22484520
Maximizing Total QoS-Provisioning of Image Streams with Limited Energy Budget
NASA Astrophysics Data System (ADS)
Lee, Wan Yeon; Kim, Kyong Hoon; Ko, Young Woong
To fully utilize the limited battery energy of mobile electronic devices, we propose an adaptive adjustment method of processing quality for multiple image stream tasks running with widely varying execution times. This adjustment method completes the worst-case executions of the tasks with a given budget of energy, and maximizes the total reward value of processing quality obtained during their executions by exploiting the probability distribution of task execution times. The proposed method derives the maximum reward value for the tasks being executable with arbitrary processing quality, and near maximum value for the tasks being executable with a finite number of processing qualities. Our evaluation on a prototype system shows that the proposed method achieves larger reward values, by up to 57%, than the previous method.
Interference and Shaping in Sensorimotor Adaptations with Rewards
Darshan, Ran; Leblois, Arthur; Hansel, David
2014-01-01
When a perturbation is applied in a sensorimotor transformation task, subjects can adapt and maintain performance by either relying on sensory feedback, or, in the absence of such feedback, on information provided by rewards. For example, in a classical rotation task where movement endpoints must be rotated to reach a fixed target, human subjects can successfully adapt their reaching movements solely on the basis of binary rewards, although this proves much more difficult than with visual feedback. Here, we investigate such a reward-driven sensorimotor adaptation process in a minimal computational model of the task. The key assumption of the model is that synaptic plasticity is gated by the reward. We study how the learning dynamics depend on the target size, the movement variability, the rotation angle and the number of targets. We show that when the movement is perturbed for multiple targets, the adaptation process for the different targets can interfere destructively or constructively depending on the similarities between the sensory stimuli (the targets) and the overlap in their neuronal representations. Destructive interferences can result in a drastic slowdown of the adaptation. As a result of interference, the time to adapt varies non-linearly with the number of targets. Our analysis shows that these interferences are weaker if the reward varies smoothly with the subject's performance instead of being binary. We demonstrate how shaping the reward or shaping the task can accelerate the adaptation dramatically by reducing the destructive interferences. We argue that experimentally investigating the dynamics of reward-driven sensorimotor adaptation for more than one sensory stimulus can shed light on the underlying learning rules. PMID:24415925
Reward inference by primate prefrontal and striatal neurons.
Pan, Xiaochuan; Fan, Hongwei; Sawa, Kosuke; Tsuda, Ichiro; Tsukada, Minoru; Sakagami, Masamichi
2014-01-22
The brain contains multiple yet distinct systems involved in reward prediction. To understand the nature of these processes, we recorded single-unit activity from the lateral prefrontal cortex (LPFC) and the striatum in monkeys performing a reward inference task using an asymmetric reward schedule. We found that neurons both in the LPFC and in the striatum predicted reward values for stimuli that had been previously well experienced with set reward quantities in the asymmetric reward task. Importantly, these LPFC neurons could predict the reward value of a stimulus using transitive inference even when the monkeys had not yet learned the stimulus-reward association directly; whereas these striatal neurons did not show such an ability. Nevertheless, because there were two set amounts of reward (large and small), the selected striatal neurons were able to exclusively infer the reward value (e.g., large) of one novel stimulus from a pair after directly experiencing the alternative stimulus with the other reward value (e.g., small). Our results suggest that although neurons that predict reward value for old stimuli in the LPFC could also do so for new stimuli via transitive inference, those in the striatum could only predict reward for new stimuli via exclusive inference. Moreover, the striatum showed more complex functions than was surmised previously for model-free learning.
Reward Inference by Primate Prefrontal and Striatal Neurons
Pan, Xiaochuan; Fan, Hongwei; Sawa, Kosuke; Tsuda, Ichiro; Tsukada, Minoru
2014-01-01
The brain contains multiple yet distinct systems involved in reward prediction. To understand the nature of these processes, we recorded single-unit activity from the lateral prefrontal cortex (LPFC) and the striatum in monkeys performing a reward inference task using an asymmetric reward schedule. We found that neurons both in the LPFC and in the striatum predicted reward values for stimuli that had been previously well experienced with set reward quantities in the asymmetric reward task. Importantly, these LPFC neurons could predict the reward value of a stimulus using transitive inference even when the monkeys had not yet learned the stimulus–reward association directly; whereas these striatal neurons did not show such an ability. Nevertheless, because there were two set amounts of reward (large and small), the selected striatal neurons were able to exclusively infer the reward value (e.g., large) of one novel stimulus from a pair after directly experiencing the alternative stimulus with the other reward value (e.g., small). Our results suggest that although neurons that predict reward value for old stimuli in the LPFC could also do so for new stimuli via transitive inference, those in the striatum could only predict reward for new stimuli via exclusive inference. Moreover, the striatum showed more complex functions than was surmised previously for model-free learning. PMID:24453328
Paralimbic system and striatum are involved in motivational behavior.
Nishimura, Masahiko; Yoshii, Yoshihiko; Watanabe, Jobu; Ishiuchi, Shogo
2009-10-28
Goal-directed rewarded behavior and goal-directed non-rewarded behavior are concerned with motivation. However, the neural substrates involved in goal-directed non-rewarded behaviors are unknown. Using functional magnetic resonance imaging, we investigated the brain activities of healthy individuals during a novel tool use (turning a screwdriver) to elucidate the relationship between the brain mechanism relevant to goal-directed non-rewarded behavior and motivation. We found that our designed behavioral task evoked activities in the orbitofrontal cortex, striatum, anterior insula, lateral prefrontal cortex, and anterior cingulate cortex compared with a meaningless task. These results suggest that activation in these cerebral regions play important roles in motivational behavior without tangible rewards.
Investigating Inhibitory Control in Children with Epilepsy: An fMRI Study
Triplett, Regina L.; Velanova, Katerina; Luna, Beatriz; Padmanabhan, Aarthi; Gaillard, William D.; Asato, Miya R.
2014-01-01
SUMMARY Objective Deficits in executive function are increasingly noted in children with epilepsy and have been associated with poor academic and psychosocial outcomes. Impaired inhibitory control contributes to executive dysfunction in children with epilepsy; however, its neuroanatomic basis has not yet been investigated. We used functional Magnetic Resonance Imaging (fMRI) to probe the integrity of activation in brain regions underlying inhibitory control in children with epilepsy. Methods This cross-sectional study consisted of 34 children aged 8 to 17 years: 17 with well-controlled epilepsy and 17 age-and sex-matched controls. Participants performed the antisaccade (AS) task, representative of inhibitory control, during fMRI scanning. We compared AS performance during neutral and reward task conditions and evaluated task-related blood-oxygen level dependent (BOLD) activation. Results Children with epilepsy demonstrated impaired AS performance compared to controls during both neutral (non-reward) and reward trials, but exhibited significant task improvement during reward trials. Post-hoc analysis revealed that younger patients made more errors than older patients and all controls. fMRI results showed preserved activation in task-relevant regions in patients and controls, with the exception of increased activation in the left posterior cingulate gyrus in patients specifically with generalized epilepsy across neutral and reward trials. Significance Despite impaired inhibitory control, children with epilepsy accessed typical neural pathways as did their peers without epilepsy. Children with epilepsy showed improved behavioral performance in response to the reward condition, suggesting potential benefits of the use of incentives in cognitive remediation. PMID:25223606
Interactions between Learner Characteristics and Optimal Instruction. Report No. 75-17.
ERIC Educational Resources Information Center
Brophy, Jere E.
Possible implications of individual and group differences for educational research and practice are discussed. Differences include preference for cooperative versus competitive tasks; for working alone versus in a group; for structured versus unstructured learning situations; or for individual versus group reward contingencies; social class and…
Inferior frontal cortex activity is modulated by reward sensitivity and performance variability.
Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Costumero, Víctor; Ventura-Campos, Noelia; Bustamante, Juan Carlos; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso
2016-02-01
High reward sensitivity has been linked with motivational and cognitive disorders related with prefrontal and striatal brain function during inhibitory control. However, few studies have analyzed the interaction among reward sensitivity, task performance and neural activity. Participants (N=57) underwent fMRI while performing a Go/No-go task with Frequent-go (77.5%), Infrequent-go (11.25%) and No-go (11.25%) stimuli. Task-associated activity was found in inhibition-related brain regions, with different activity patterns for right and left inferior frontal gyri (IFG): right IFG responded more strongly to No-go stimuli, while left IFG responded similarly to all infrequent stimuli. Reward sensitivity correlated with omission errors in Go trials and reaction time (RT) variability, and with increased activity in right and left IFG for No-go and Infrequent-go stimuli compared with Frequent-go. Bilateral IFG activity was associated with RT variability, with reward sensitivity mediating this association. These results suggest that reward sensitivity modulates behavior and brain function during executive control. Copyright © 2016 Elsevier B.V. All rights reserved.
Sensitivity to value-driven attention is predicted by how we learn from value.
Jahfari, Sara; Theeuwes, Jan
2017-04-01
Reward learning is known to influence the automatic capture of attention. This study examined how the rate of learning, after high- or low-value reward outcomes, can influence future transfers into value-driven attentional capture. Participants performed an instrumental learning task that was directly followed by an attentional capture task. A hierarchical Bayesian reinforcement model was used to infer individual differences in learning from high or low reward. Results showed a strong relationship between high-reward learning rates (or the weight that is put on learning after a high reward) and the magnitude of attentional capture with high-reward colors. Individual differences in learning from high or low rewards were further related to performance differences when high- or low-value distractors were present. These findings provide novel insight into the development of value-driven attentional capture by showing how information updating after desired or undesired outcomes can influence future deployments of automatic attention.
Mendez, I A; Damborsky, J C; Winzer-Serhan, U H; Bizon, J L; Setlow, B
2013-01-29
Nicotinic receptors have been linked to a wide range of cognitive and behavioral functions, but surprisingly little is known about their involvement in cost benefit decision making. The goal of these experiments was to determine how nicotinic acetylcholine receptor (nAChR) expression is related to two forms of cost benefit decision making. Male Long Evans rats were tested in probability- and delay-discounting tasks, which required discrete trial choices between a small reward and a large reward associated with varying probabilities of omission and varying delays to reward delivery, respectively. Following testing, radioligand binding to α4β2 and α7 nAChR subtypes in brain regions implicated in cost benefit decision making was examined. Significant linear relationships were observed between choice of the large delayed reward in the delay discounting task and α4β2 receptor binding in both the dorsal and ventral hippocampus. Additionally, trends were found suggesting that choice of the large costly reward in both discounting tasks was inversely related to α4β2 receptor binding in the medial prefrontal cortex and nucleus accumbens shell. Similar trends suggested that choice of the large delayed reward in the delay discounting task was inversely related to α4β2 receptor binding in the orbitofrontal cortex, nucleus accumbens core, and basolateral amygdala, as well as to α7 receptor binding in the basolateral amygdala. These data suggest that nAChRs (particularly α4β2) play both unique and common roles in decisions that require consideration of different types of reward costs. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Bechara, A; Tranel, D; Damasio, H
2000-11-01
On a gambling task that models real-life decisions, patients with bilateral lesions of the ventromedial prefrontal cortex (VM) opt for choices that yield high immediate gains in spite of higher future losses. In this study, we addressed three possibilities that may account for this behaviour: (i) hypersensitivity to reward; (ii) insensitivity to punishment; and (iii) insensitivity to future consequences, such that behaviour is always guided by immediate prospects. For this purpose, we designed a variant of the original gambling task in which the advantageous decks yielded high immediate punishment but even higher future reward. The disadvantageous decks yielded low immediate punishment but even lower future reward. We measured the skin conductance responses (SCRs) of subjects after they had received a reward or punishment. Patients with VM lesions opted for the disadvantageous decks in both the original and variant versions of the gambling task. The SCRs of VM lesion patients after they had received a reward or punishment were not significantly different from those of controls. In a second experiment, we investigated whether increasing the delayed punishment in the disadvantageous decks of the original task or decreasing the delayed reward in the disadvantageous decks of the variant task would shift the behaviour of VM lesion patients towards an advantageous strategy. Both manipulations failed to shift the behaviour of VM lesion patients away from the disadvantageous decks. These results suggest that patients with VM lesions are insensitive to future consequences, positive or negative, and are primarily guided by immediate prospects. This 'myopia for the future' in VM lesion patients persists in the face of severe adverse consequences, i.e. rising future punishment or declining future reward.
Jokisch, Daniel; Roser, Patrik; Juckel, Georg; Daum, Irene; Bellebaum, Christian
2014-07-01
Excessive alcohol consumption has been linked to structural and functional brain changes associated with cognitive, emotional, and behavioral impairments. It has been suggested that neural processing in the reward system is also affected by alcoholism. The present study aimed at further investigating reward-based associative learning and reversal learning in detoxified alcohol-dependent patients. Twenty-one detoxified alcohol-dependent patients and 26 healthy control subjects participated in a probabilistic learning task using monetary and alcohol-associated rewards as feedback stimuli indicating correct responses. Performance during acquisition and reversal learning in the different feedback conditions was analyzed. Alcohol-dependent patients and healthy control subjects showed an increase in learning performance over learning blocks during acquisition, with learning performance being significantly lower in alcohol-dependent patients. After changing the contingencies, alcohol-dependent patients exhibited impaired reversal learning and showed, in contrast to healthy controls, different learning curves for different types of rewards with no increase in performance for high monetary and alcohol-associated feedback. The present findings provide evidence that dysfunctional processing in the reward system in alcohol-dependent patients leads to alterations in reward-based learning resulting in a generally reduced performance. In addition, the results suggest that alcohol-dependent patients are, in particular, more impaired in changing an established behavior originally reinforced by high rewards. Copyright © 2014 by the Research Society on Alcoholism.
Event-related EEG responses to anticipation and delivery of monetary and social reward.
Flores, Amanda; Münte, Thomas F; Doñamayor, Nuria
2015-07-01
Monetary and a social incentive delay tasks were used to characterize reward anticipation and delivery with electroencephalography. During reward anticipation, N1, P2 and P3 components were modulated by both prospective reward value and incentive type (monetary or social), suggesting distinctive allocation of attentional and motivational resources depending not only on whether rewards or non-rewards were cued, but also on the monetary and social nature of the prospective outcomes. In the delivery phase, P2, FRN and P3 components were also modulated by levels of reward value and incentive type, illustrating how distinctive affective and cognitive processes were attached to the different outcomes. Our findings imply that neural processing of both reward anticipation and delivery can be specific to incentive type, which might have implications for basic as well as translational research. These results are discussed in the light of previous electrophysiological and neuroimaging work using similar tasks. Copyright © 2015 Elsevier B.V. All rights reserved.
Psychometric properties of neural responses to monetary and social rewards across development.
Ethridge, Paige; Weinberg, Anna
2018-02-02
Reward-related event-related potentials (ERPs) are often used to index individual differences that signal the presence or predict the onset of psychopathology. However, relatively little research has explored the psychometric properties of reward-related ERPs. Without understanding their psychometric properties, the value of using ERPs as biomarkers for psychopathology is limited. The present study, therefore, sought to establish the internal consistency reliability and convergent validity of the reward positivity (RewP) and feedback negativity (FN) elicited by two types of incentives commonly used in individual differences research - monetary and social rewards. A large, developmentally-diverse sample completed a forced-choice guessing task in which they won or lost money, as well as a social interaction task in which they received acceptance and rejection feedback. Data were analyzed at both Cz and at a frontocentral region of interest (ROI) using techniques derived from classical test theory and generalizability theory. Results demonstrated good to excellent internal consistency of the RewP and FN within 20 trials in both tasks, in addition to convergent validity between the two tasks. Results from a regression-based approach to isolating activity specific to a single response demonstrated acceptable to good internal consistency within 20 trials in both tasks, while a subtraction-based approach (∆RewP) did not achieve acceptable internal consistency in either task. Internal consistency was not moderated by age and did not differ between Cz and the frontocentral ROI; however, the magnitudes of the RewP and FN were significantly associated with age at Cz but not at the ROI. This work replicates previous studies demonstrating good psychometric properties of the monetary RewP/FN and provides novel information about the psychometric properties of the social RewP/FN. These data support the use of reward-related ERPs elicited by multiple reward types in studies of biomarkers of psychopathology. Copyright © 2018 Elsevier B.V. All rights reserved.
Heritage, Allan J; Long, Laura J; Woodman, Geoffrey F; Zald, David H
2018-02-01
Individuals differ greatly in their sensitivity to rewards and punishments. In the extreme, these differences are implicated in a range of psychiatric disorders from addiction to depression. However, it is unclear how these differences influence the recruitment of attention, working memory, and long-term memory when responding to potential rewards. Here, we used a rewarded memory-guided visual search task and ERPs to examine the influence of individual differences in self-reported reward/punishment sensitivity, as measured by the Behavioral Inhibition System (BIS)/Behavioral Activation System (BAS) scales, on the recruitment of cognitive mechanisms in conditions of potential reward. Select subscales of the BAS, including the fun seeking and reward responsiveness scales, showed unique relationships with context updating to reward cues and working memory maintenance of potentially rewarded stimuli. In contrast, BIS scores showed unique relationships with deployment of attention at different points in the task. These results suggest that sensitivity to rewards (i.e., BAS) and to punishment (i.e., BIS) may play an important role in the recruitment of specific and distinct cognitive mechanisms in conditions of potential rewards. © 2017 Society for Psychophysiological Research.
High monetary reward rates and caloric rewards decrease temporal persistence
Bode, Stefan; Murawski, Carsten
2017-01-01
Temporal persistence refers to an individual's capacity to wait for future rewards, while forgoing possible alternatives. This requires a trade-off between the potential value of delayed rewards and opportunity costs, and is relevant to many real-world decisions, such as dieting. Theoretical models have previously suggested that high monetary reward rates, or positive energy balance, may result in decreased temporal persistence. In our study, 50 fasted participants engaged in a temporal persistence task, incentivised with monetary rewards. In alternating blocks of this task, rewards were delivered at delays drawn randomly from distributions with either a lower or higher maximum reward rate. During some blocks participants received either a caloric drink or water. We used survival analysis to estimate participants' probability of quitting conditional on the delay distribution and the consumed liquid. Participants had a higher probability of quitting in blocks with the higher reward rate. Furthermore, participants who consumed the caloric drink had a higher probability of quitting than those who consumed water. Our results support the predictions from the theoretical models, and importantly, suggest that both higher monetary reward rates and physiologically relevant rewards can decrease temporal persistence, which is a crucial determinant for survival in many species. PMID:28228517
High monetary reward rates and caloric rewards decrease temporal persistence.
Fung, Bowen J; Bode, Stefan; Murawski, Carsten
2017-02-22
Temporal persistence refers to an individual's capacity to wait for future rewards, while forgoing possible alternatives. This requires a trade-off between the potential value of delayed rewards and opportunity costs, and is relevant to many real-world decisions, such as dieting. Theoretical models have previously suggested that high monetary reward rates, or positive energy balance, may result in decreased temporal persistence. In our study, 50 fasted participants engaged in a temporal persistence task, incentivised with monetary rewards. In alternating blocks of this task, rewards were delivered at delays drawn randomly from distributions with either a lower or higher maximum reward rate. During some blocks participants received either a caloric drink or water. We used survival analysis to estimate participants' probability of quitting conditional on the delay distribution and the consumed liquid. Participants had a higher probability of quitting in blocks with the higher reward rate. Furthermore, participants who consumed the caloric drink had a higher probability of quitting than those who consumed water. Our results support the predictions from the theoretical models, and importantly, suggest that both higher monetary reward rates and physiologically relevant rewards can decrease temporal persistence, which is a crucial determinant for survival in many species. © 2017 The Authors.
Vaidya, Avinash R; Fellows, Lesley K
2015-09-16
Adaptively interacting with our environment requires extracting information that will allow us to successfully predict reward. This can be a challenge, particularly when there are many candidate cues, and when rewards are probabilistic. Recent work has demonstrated that visual attention is allocated to stimulus features that have been associated with reward on previous trials. The ventromedial frontal lobe (VMF) has been implicated in learning in dynamic environments of this kind, but the mechanism by which this region influences this process is not clear. Here, we hypothesized that the VMF plays a critical role in guiding attention to reward-predictive stimulus features based on feedback. We tested the effects of VMF damage in human subjects on a visual search task in which subjects were primed to attend to task-irrelevant colors associated with different levels of reward, incidental to the search task. Consistent with previous work, we found that distractors had a greater influence on reaction time when they appeared in colors associated with high reward in the previous trial compared with colors associated with low reward in healthy control subjects and patients with prefrontal damage sparing the VMF. However, this reward modulation of attentional priming was absent in patients with VMF damage. Thus, an intact VMF is necessary for directing attention based on experience with cue-reward associations. We suggest that this region plays a role in selecting reward-predictive cues to facilitate future learning. There has been a swell of interest recently in the ventromedial frontal cortex (VMF), a brain region critical to associative learning. However, the underlying mechanism by which this region guides learning is not well understood. Here, we tested the effects of damage to this region in humans on a task in which rewards were linked incidentally to visual features, resulting in trial-by-trial attentional priming. Controls and subjects with prefrontal damage sparing the VMF showed normal reward priming, but VMF-damaged patients did not. This work sheds light on a potential mechanism through which this region influences behavior. We suggest that the VMF is necessary for directing attention to reward-predictive visual features based on feedback, facilitating future learning and decision-making. Copyright © 2015 the authors 0270-6474/15/3512813-11$15.00/0.
Johnson, Patricia L; Potts, Geoffrey F; Sanchez-Ramos, Juan; Cimino, Cynthia R
2017-09-01
Few studies have directly investigated impulsivity in Huntington's disease (HD) despite known changes in dopaminergic and frontal functioning, changes that have been associated with impulsivity in other disorders and in the normal population. This study sought to further categorize impulsivity in HD through examining differences in self-reported impulsivity between community controls and HD patients, the relationship between executive dysfunction and impulsivity, and the relationship of a reward/punishment behavioral inhibition task in relation to these self-report measures. It was expected that HD patients would report higher impulsivity and executive dysfunction and that these measures would relate to a reward/punishment behavioral inhibition task. The Barratt Impulsivity Scale (BIS-11) and Behavioral Inhibition/Behavioral Activation Scale (BIS/BAS) were completed, and the Mini-Mental State Examination (MMSE) and a reward-based flanker task with punishing and rewarding conditions were administered to 22 HD patients and 14 control participants. HD patients reported higher trait impulsivity (BIS-11) and executive dysfunction (Frontal Systems Behavior Scale, FrSBE) but not increased impulsivity on the BIS/BAS relative to controls. Higher BIS-11 scores were related to increased self-reported executive dysfunction and the attention/working memory factor of the MMSE. On a reward/punishment behavioral inhibition task, BAS was uniquely related to increased accuracy on rewarding trials of the flanker task, but was not related to punishing trials in HD patients. The relationships found suggest that trait impulsivity is reported higher in HD and may not be driven by altered reward evaluation and the appetitive nature of stimuli but rather by increased executive dysfunction and lack of sensitivity to punishment. Impulsivity in HD may represent a combination of trait impulsivity, altered dopaminergic circuitry, and executive dysfunction. Understanding impulsivity in HD is important as it is related to increased risk to the patient and difficult behaviors for the caregiver, and sheds light on the disease process.
Rewarded visual items capture attention only in heterogeneous contexts.
Feldmann-Wüstefeld, Tobias; Brandhofer, Ruben; Schubö, Anna
2016-07-01
Reward is known to affect visual search performance. Rewarding targets can increase search performance, whereas rewarding distractors can decrease search performance. We used subcomponents of the N2pc in the event-related EEG, the NT (target negativity) and ND /PD (distractor negativity/positivity), in a visual search task to disentangle target and distractor processing related to reward. The visual search task comprised homogeneous and heterogeneous contexts in which a target and a colored distractor were embedded. After each correct trial, participants were given a monetary reward that depended on the color of the distractor. We found longer response times for displays with high-reward distractors compared to displays with low-reward distractors, indicating reward-induced interference, however, only for heterogeneous contexts. The NT component, indicative of attention deployment to the target, showed that target selection was impaired by high-reward distractors, regardless of the context homogeneity. Processing of distractors was not affected by reward in homogeneous contexts. In heterogeneous contexts, however, high-reward distractors were more likely to capture attention (ND ) and required more effort to be suppressed (PD ) than low-reward distractors. In sum the results showed that, despite the fact that target selection is impaired by high-reward distractors in both homogeneous and heterogeneous background contexts, high-reward distractors capture attention only in scenarios that foster attentional capture. © 2016 Society for Psychophysiological Research.
Within-subject neural reactivity to reward and threat is inverted in young adolescents.
Thomason, M E; Marusak, H A
2017-07-01
As children mature, they become increasingly independent and less reliant on caregiver support. Changes in brain systems are likely to stimulate and guide this process. One mechanistic hypothesis suggests that changes in neural systems that process reward and threat support the increase in exploratory behavior observed in the transition to adolescence. This study examines the basic tenets of this hypothesis by performing functional magnetic resonance imaging (fMRI) during well-established reward and threat processing tasks in 40 children and adolescents, aged 9-15 years. fMRI responses in the striatum and amygdala are fit to a model predicting that striatal reward and amygdala threat-responses will be unrelated in younger participants (aged 9-12 years), while older participants (aged 13-15 years) will differentially engage these structures. Our data are consistent with this model. Activity in the striatum and amygdala are comparable in younger children, but in older children, they are inversely related; those more responsive to reward show a reduced threat-response. Analyses testing age as a continuous variable yield consistent results. In addition, the proportion of threat to reward-response relates to self-reported approach behavior in older but not younger youth, exposing behavioral relevance in the relative level of activity in these structures. Results are consistent with the notion that both individual and developmental differences drive reward-seeking behavior in adolescence. While these response patterns may serve adaptive functions in the shift to independence, skew in these systems may relate to increased rates of emotional psychopathology and risk-taking observed in adolescence.
The Iowa Gambling Task and the three fallacies of dopamine in gambling disorder
Linnet, Jakob
2013-01-01
Gambling disorder sufferers prefer immediately larger rewards despite long term losses on the Iowa Gambling Task (IGT), and these impairments are associated with dopamine dysfunctions. Dopamine is a neurotransmitter linked with temporal and structural dysfunctions in substance use disorder, which has supported the idea of impaired decision-making and dopamine dysfunctions in gambling disorder. However, evidence from substance use disorders cannot be directly transferred to gambling disorder. This article focuses on three hypotheses of dopamine dysfunctions in gambling disorder, which appear to be “fallacies,” i.e., have not been supported in a series of positron emission tomography (PET) studies. The first “fallacy” suggests that gambling disorder sufferers have lower dopamine receptor availability, as seen in substance use disorders. However, no evidence supported this hypothesis. The second “fallacy” suggests that maladaptive decision-making in gambling disorder is associated with higher dopamine release during gambling. No evidence supported the hypothesis, and the literature on substance use disorders offers limited support for this hypothesis. The third “fallacy” suggests that maladaptive decision-making in gambling disorder is associated with higher dopamine release during winning. The evidence did not support this hypothesis either. Instead, dopaminergic coding of reward prediction and uncertainty might better account for dopamine dysfunctions in gambling disorder. Studies of reward prediction and reward uncertainty show a sustained dopamine response toward stimuli with maximum uncertainty, which may explain the continued dopamine release and gambling despite losses in gambling disorder. The findings from the studies presented here are consistent with the notion of dopaminergic dysfunctions of reward prediction and reward uncertainty signals in gambling disorder. PMID:24115941
Dopamine Depletion Reduces Food-Related Reward Activity Independent of BMI
Frank, Sabine; Veit, Ralf; Sauer, Helene; Enck, Paul; Friederich, Hans-Christoph; Unholzer, Theresa; Bauer, Ute-Maria; Linder, Katarzyna; Heni, Martin; Fritsche, Andreas; Preissl, Hubert
2016-01-01
Reward sensitivity and possible alterations in the dopaminergic-reward system are associated with obesity. We therefore aimed to investigate the influence of dopamine depletion on food-reward processing. We investigated 34 female subjects in a randomized placebo-controlled, within-subject design (body mass index (BMI)=27.0 kg/m2 ±4.79 SD; age=28 years ±4.97 SD) using an acute phenylalanine/tyrosine depletion drink representing dopamine depletion and a balanced amino acid drink as the control condition. Brain activity was measured with functional magnetic resonance imaging during a ‘wanting' and ‘liking' rating of food items. Eating behavior-related traits and states were assessed on the basis of questionnaires. Dopamine depletion resulted in reduced activation in the striatum and higher activation in the superior frontal gyrus independent of BMI. Brain activity during the wanting task activated a more distributed network than during the liking task. This network included gustatory, memory, visual, reward, and frontal regions. An interaction effect of dopamine depletion and the wanting/liking task was observed in the hippocampus. The interaction with the covariate BMI was significant in motor and control regions but not in the striatum. Our results support the notion of altered brain activity in the reward and prefrontal network with blunted dopaminergic action during food-reward processing. This effect is, however, independent of BMI, which contradicts the reward-deficiency hypothesis. This hints to the hypothesis suggesting a different or more complex mechanism underlying the dopaminergic reward function in obesity. PMID:26450814
Temporal Discounting and Inter-Temporal Choice in Rhesus Monkeys
Hwang, Jaewon; Kim, Soyoun; Lee, Daeyeol
2009-01-01
Humans and animals are more likely to take an action leading to an immediate reward than actions with delayed rewards of similar magnitudes. Although such devaluation of delayed rewards has been almost universally described by hyperbolic discount functions, the rate of this temporal discounting varies substantially among different animal species. This might be in part due to the differences in how the information about reward is presented to decision makers. In previous animal studies, reward delays or magnitudes were gradually adjusted across trials, so the animals learned the properties of future rewards from the rewards they waited for and consumed previously. In contrast, verbal cues have been used commonly in human studies. In the present study, rhesus monkeys were trained in a novel inter-temporal choice task in which the magnitude and delay of reward were indicated symbolically using visual cues and varied randomly across trials. We found that monkeys could extract the information about reward delays from visual symbols regardless of the number of symbols used to indicate the delay. The rate of temporal discounting observed in the present study was comparable to the previous estimates in other mammals, and the animal's choice behavior was largely consistent with hyperbolic discounting. Our results also suggest that the rate of temporal discounting might be influenced by contextual factors, such as the novelty of the task. The flexibility furnished by this new inter-temporal choice task might be useful for future neurobiological investigations on inter-temporal choice in non-human primates. PMID:19562091
Age differences in the impact of peers on adolescents' and adults' neural response to reward.
Smith, Ashley R; Steinberg, Laurence; Strang, Nicole; Chein, Jason
2015-02-01
Prior research suggests that increased adolescent risk-taking in the presence of peers may be linked to the influence of peers on the valuation and processing of rewards during decision-making. The current study explores this idea by examining how peer observation impacts the processing of rewards when such processing is isolated from other facets of risky decision-making (e.g. risk-perception and preference, inhibitory processing, etc.). In an fMRI paradigm, a sample of adolescents (ages 14-19) and adults (ages 25-35) completed a modified High/Low Card Guessing Task that included rewarded and un-rewarded trials. Social context was manipulated by having participants complete the task both alone and while being observed by two, same-age, same-sex peers. Results indicated an interaction of age and social context on the activation of reward circuitry during the receipt of reward; when observed by peers adolescents exhibited greater ventral striatal activation than adults, but no age-related differences were evinced when the task was completed alone. These findings suggest that, during adolescence, peers influence recruitment of reward-related regions even when they are engaged outside of the context of risk-taking. Implications for engagement in prosocial, as well as risky, behaviors during adolescence are discussed. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Chung, Tammy; Geier, Charles; Luna, Beatriz; Pajtek, Stefan; Terwilliger, Robert; Thatcher, Dawn; Clark, Duncan
2010-01-01
Effective response inhibition is a key component of recovery from addiction. Some research suggests that response inhibition can be enhanced through reward contingencies. We examined the effect of monetary incentive on response inhibition among adolescents with and without substance use disorder (SUD) using a fast event-related fMRI antisaccade reward task. The fMRI task permits investigation of how reward (monetary incentive) might modulate inhibitory control during three task phases: cue presentation (reward or neutral trial), response preparation, and response execution. Adolescents with lifetime SUD (n=12; 100% marijuana use disorder) were gender and age-matched to healthy controls (n=12). Monetary incentive facilitated inhibitory control for SUD adolescents; for healthy controls, the difference in error rate for neutral and reward trials was not significant. There were no significant differences in behavioral performance between groups across reward and neutral trials, however, group differences in regional brain activation were identified. During the response preparation phase of reward trials, SUD adolescents, compared to controls, showed increased activation of prefrontal and oculomotor control (e.g., frontal eye field) areas, brain regions that have been associated with effective response inhibition. Results indicate differences in brain activation between SUD and control youth when preparing to inhibit a prepotent response in the context of reward, and support a possible role for incentives in enhancing response inhibition among youth with SUD. PMID:21115229
Kobayakawa, Mutsutaka; Tsuruya, Natsuko; Kawamura, Mitsuru
2010-08-01
Studies using the Iowa gambling task (IGT) have shown that patients with Parkinson's disease (PD) make disadvantageous choices characterized by immediate large rewards and delayed larger punishments. These results can be interpreted in two ways: either PD patients are hypersensitive to immediate outcomes and/or insensitive to delayed consequences or PD patients are hypersensitive to rewards and/or insensitive to punishments. In this study, we used a modified IGT in which selection of cards from the disadvantageous decks leads to immediate, small punishments and delayed, smaller rewards and selection of cards from the advantageous decks leads to immediate, large punishments and delayed larger rewards. We then compared the results obtained using this modified IGT with those obtained using the original IGT. If the PD patients were hypersensitive to the immediate outcomes of decisions, they would make disadvantageous choices in both the original and the modified IGTs. Differences between the results of the original and modified tasks would indicate impairments in balancing reward and punishment. In our analysis, PD patients selected advantageous decks and gained as much as normal subjects during the modified IGT, but they selected disadvantageous decks during the original IGT. These results indicate that the decision-making difficulties of PD patients are caused by their inability to balance reward and punishment and their hypersensitivity to reward and/or insensitivity to punishment.
Wiesner, Christian D.; Molzow, Ina; Prehn-Kristensen, Alexander; Baving, Lioba
2017-01-01
Children suffering from attention-deficit hyperactivity disorder (ADHD) often also display impaired learning and memory. Previous research has documented aberrant reward processing in ADHD as well as impaired sleep-dependent consolidation of declarative memory. We investigated whether sleep also fosters the consolidation of behavior learned by probabilistic reward and whether ADHD patients with a comorbid disorder of social behavior show deficits in this memory domain, too. A group of 17 ADHD patients with comorbid disorders of social behavior aged 8–12 years and healthy controls matched for age, IQ, and handedness took part in the experiment. During the encoding task, children worked on a probabilistic learning task acquiring behavioral preferences for stimuli rewarded most often. After a 12-hr retention interval of either sleep at night or wakefulness during the day, a reversal task was presented where the contingencies were reversed. Consolidation of rewarded behavior is indicated by greater resistance to reversal learning. We found that healthy children consolidate rewarded behavior better during a night of sleep than during a day awake and that the sleep-dependent consolidation of rewarded behavior by trend correlates with non-REM sleep but not with REM sleep. In contrast, children with ADHD and comorbid disorders of social behavior do not show sleep-dependent consolidation of rewarded behavior. Moreover, their consolidation of rewarded behavior does not correlate with sleep. The results indicate that dysfunctional sleep in children suffering from ADHD and disorders of social behavior might be a crucial factor in the consolidation of behavior learned by reward. PMID:28228742
Power, Yuri; Goodyear, Bradley; Crockford, David
2012-12-01
The Iowa Gambling Task (IGT) involves exploratory learning via rewards and penalties, where most advantageous task performance requires subjects to forego potential large immediate rewards for small longer-term rewards to avoid larger punishments. Pathological gambling (PG) subjects perform worse on the IGT compared to controls, relating to their persistence at high risk decisions involving the continued choice of potential large immediate rewards despite experiencing larger punishments. We wished to determine if neural processing of risk and reward within striatal and frontal cortex is associated with this behaviour observed in PG. Functional magnetic resonance imaging (fMRI) was used to assess brain activity in response to a computerized version of the IGT. Thirteen male PG subjects with no active comorbidities were compared to 13 demographically matched control subjects. In agreement with previous behavioural studies, PG subjects performed worse on the IGT and made more high-risk choices compared to controls, particularly after experiencing wins and losses. During high-risk gambling decisions, fMRI demonstrated that PG subjects exhibited relatively increased frontal lobe and basal ganglia activation, particularly involving the orbitofrontal cortex (OFC), caudate and amygdala. Increased activation of regions encompassing the extended reward pathway in PG subjects during high risk choices suggests that the persistence of PG may be due to the increased salience of immediate and greater potential monetary rewards relative to lower monetary rewards or potential future losses. Whether this over activation of the reward pathway is associated with the development of PG warrants further investigation.
Observed Parenting Behavior with Teens: Measurement Invariance and Predictive Validity Across Race
Skinner, Martie L.; MacKenzie, Elizabeth P.; Haggerty, Kevin P.; Hill, Karl G.; Roberson, Kendra C.
2011-01-01
Previous reports supporting measurement equality between European American and African American families have often focused on self-reported risk factors or observed parent behavior with young children. This study examines equality of measurement of observer ratings of parenting behavior with adolescents during structured tasks; mean levels of observed parenting; and predictive validity of teen self-reports of antisocial behaviors and beliefs using a sample of 163 African American and 168 European American families. Multiple-group confirmatory factor analyses supported measurement invariance across ethnic groups for 4 measures of observed parenting behavior: prosocial rewards, psychological costs, antisocial rewards, and problem solving. Some mean-level differences were found: African American parents exhibited lower levels of prosocial rewards, higher levels of psychological costs, and lower problem solving when compared to European Americans. No significant mean difference was found in rewards for antisocial behavior. Multigroup structural equation models suggested comparable relationships across race (predictive validity) between parenting constructs and youth antisocial constructs (i.e., drug initiation, positive drug attitudes, antisocial attitudes, problem behaviors) in all but one of the tested relationships. This study adds to existing evidence that family-based interventions targeting parenting behaviors can be generalized to African American families. PMID:21787057
Rao, Uma; Sidhartha, Tanuj; Harker, Karen R.; Bidesi, Anup S.; Chen, Li-Ann; Ernst, Monique
2010-01-01
Purpose The goal of the study was to assess individual differences in risk-taking behavior among adolescents in the laboratory. A second aim was to evaluate whether the laboratory-based risk-taking behavior is associated with other behavioral and psychological measures associated with risk-taking behavior. Methods Eighty-two adolescents with no personal history of psychiatric disorder completed a computerized decision-making task, the Wheel of Fortune (WOF). By offering choices between clearly defined probabilities and real monetary outcomes, this task assesses risk preferences when participants are confronted with potential rewards and losses. The participants also completed a variety of behavioral and psychological measures associated with risk-taking behavior. Results Performance on the task varied based on the probability and anticipated outcomes. In the winning sub-task, participants selected low probability-high magnitude reward (high-risk choice) less frequently than high probability-low magnitude reward (low-risk choice). In the losing sub-task, participants selected low probability-high magnitude loss more often than high probability-low magnitude loss. On average, the selection of probabilistic rewards was optimal and similar to performance in adults. There were, however, individual differences in performance, and one-third of the adolescents made high-risk choice more frequently than low-risk choice while selecting a reward. After controlling for sociodemographic and psychological variables, high-risk choice on the winning task predicted “real-world” risk-taking behavior and substance-related problems. Conclusions These findings highlight individual differences in risk-taking behavior. Preliminary data on face validity of the WOF task suggest that it might be a valuable laboratory tool for studying behavioral and neurobiological processes associated with risk-taking behavior in adolescents. PMID:21257113
Wei, Ping; Wang, Di; Ji, Liyan
2016-02-01
We investigated the effect of reward expectation on the processing of emotional words in two experiments using event-related potentials (ERPs). A cue indicating the reward condition of each trial (incentive vs non-incentive) was followed by the presentation of a negative or neutral word, the target. Participants were asked to discriminate the emotional content of the target word in Experiment 1 and to discriminate the color of the target word in Experiment 2, rendering the emotionality of the target word task-relevant in Experiment 1, but task-irrelevant in Experiment 2. The negative bias effect, in terms of the amplitude difference between ERPs for negative and neutral targets, was modulated by the task-set. In Experiment 1, P31 and early posterior negativity revealed a larger negative bias effect in the incentive condition than that in the non-incentive condition. However, in Experiment 2, P31 revealed a diminished negative bias effect in the incentive condition compared with that in the non-incentive condition. These results indicate that reward expectation improves top-down attentional concentration to task-relevant information, with enhanced sensitivity to the emotional content of target words when emotionality is task-relevant, but with reduced differential brain responses to emotional words when their content is task-irrelevant. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Patel, Krishna T; Stevens, Michael C; Meda, Shashwath A; Muska, Christine; Thomas, Andre D; Potenza, Marc N; Pearlson, Godfrey D
2013-10-01
Abnormal function in reward circuitry in cocaine addiction could predate drug use as a risk factor, follow drug use as a consequence of substance-induced alterations, or both. We used a functional magnetic resonance imaging monetary incentive delay task (MIDT) to investigate reward-loss neural response differences among 42 current cocaine users, 35 former cocaine users, and 47 healthy subjects who also completed psychological measures and tasks related to impulsivity and reward. We found various reward processing-related group differences in several MIDT phases. Across task phases we found a control > current user > former user activation pattern, except for loss outcome, where former compared with current cocaine users activated ventral tegmental area more robustly. We also found regional prefrontal activation differences during loss anticipation between cocaine-using groups. Both groups of cocaine users scored higher than control subjects on impulsivity, compulsivity and reward-punishment sensitivity factors. In addition, impulsivity-related factors correlated positively with activation in amygdala and negatively with anterior cingulate activation during loss anticipation. Compared with healthy subjects, both former and current users displayed abnormal brain activation patterns during MIDT performance. Both cocaine groups differed similarly from healthy subjects, but differences between former and current users were localized to the ventral tegmental area during loss outcome and to prefrontal regions during loss anticipation, suggesting that long-term cocaine abstinence does not normalize most reward circuit abnormalities. Elevated impulsivity-related factors that relate to loss processing in current and former users suggest that these tendencies and relationships may pre-exist cocaine addiction. © 2013 Society of Biological Psychiatry.
Zeeb, Fiona D; Winstanley, Catharine A
2013-04-10
An inability to adjust choice preferences in response to changes in reward value may underlie key symptoms of many psychiatric disorders, including chemical and behavioral addictions. We developed the rat gambling task (rGT) to investigate the neurobiology underlying complex decision-making processes. As in the Iowa Gambling task, the optimal strategy is to avoid choosing larger, riskier rewards and to instead favor options associated with smaller rewards but less loss and, ultimately, greater long-term gain. Given the demonstrated importance of the orbitofrontal cortex (OFC) and basolateral amygdala (BLA) in acquisition of the rGT and Iowa Gambling task, we used a contralateral disconnection lesion procedure to assess whether functional connectivity between these regions is necessary for optimal decision-making. Disrupting the OFC-BLA pathway retarded acquisition of the rGT. Devaluing the reinforcer by inducing sensory-specific satiety altered decision-making in control groups. In contrast, disconnected rats did not update their choice preference following reward devaluation, either when the devalued reward was still delivered or when animals needed to rely on stored representations of reward value (i.e., during extinction). However, all rats exhibited decreased premature responding and slower response latencies after satiety manipulations. Hence, disconnecting the OFC and BLA did not affect general behavioral changes caused by reduced motivation, but instead prevented alterations in the value of a specific reward from contributing appropriately to cost-benefit decision-making. These results highlight the role of the OFC-BLA pathway in the decision-making process and suggest that communication between these areas is vital for the appropriate assessment of reward value to influence choice.
Karcher, Nicole R; Bartholow, Bruce D; Martin, Elizabeth A; Kerns, John G
2017-01-01
Both positive psychotic symptoms and anhedonia are associated with striatal functioning, but few studies have linked risk for psychotic disorders to a neural measure evoked during a striatal dopamine-related reward and punishment-based learning task, such as a reversal learning task (RLT; Cools et al, 2009). The feedback-related negativity (FRN) is a neural response that in part reflects striatal dopamine functioning. We recorded EEG during the RLT in three groups: (a) people with psychotic experiences (PE; n=20) at increased risk for psychotic disorders; (b) people with extremely elevated social anhedonia (SocAnh; n=22); and (c) controls (n=20). Behaviorally, consistent with increased striatal dopamine, the PE group exhibited better behavioral learning (ie, faster responses) after unexpected reward than after unexpected punishment. Moreover, although the control and SocAnh groups showed a larger FRN to punishment than reward, the PE group showed similar FRNs to punishment and reward, with a numerically larger FRN to reward than punishment (with similar results on these trials also found for a P3a component). These results are among the first to link a neural response evoked by a reward and punishment-based learning task specifically with elevated psychosis risk. PMID:27629367
Neural signature of reward-modulated unconscious inhibitory control.
Diao, Liuting; Qi, Senqing; Xu, Mengsi; Li, Zhiai; Ding, Cody; Chen, Antao; Zheng, Yan; Yang, Dong
2016-09-01
Consciously initiated cognitive control is generally determined by motivational incentives (e.g., monetary reward). Recent studies have revealed that human cognitive control processes can nevertheless operate without awareness. However, whether monetary reward can impinge on unconscious cognitive control remains unclear. To clarify this issue, a task consisting of several runs was designed to combine a modified version of the reward-priming paradigm with an unconscious version of the Go/No-Go task. At the beginning of each run, participants were exposed to a high- or low-value coin, followed by the modified Go/No-Go task. Participants could earn the coin only if they responded correctly to each trial of the run. Event-related potential (ERP) results indicated that high-value rewards (vs. low-value rewards) induced a greater centro-parietal P3 component associated with conscious and unconscious inhibitory control. Moreover, the P3 amplitude correlated positively with the magnitude of reaction time slowing reflecting the intensity of activation of unconscious inhibitory control in the brain. These findings suggest that high-value reward may facilitate human higher-order inhibitory processes that are independent of conscious awareness, which provides insights into the brain processes that underpin motivational modulation of cognitive control. Copyright © 2016 Elsevier B.V. All rights reserved.
Duprat, Romain; Wu, Guo-Rong; De Raedt, Rudi; Baeken, Chris
2017-08-09
Accelerated intermittent theta-burst stimulation (aiTBS) anti-depressive working mechanisms are still unclear. Because aiTBS may work through modulating the reward system and the level of anhedonia may influence this modulation, we investigated the effect of aiTBS on reward responsiveness in high and low anhedonic MDD patients. In this registered RCT (NCT01832805), 50 MDD patients were randomised to a sham-controlled cross-over aiTBS treatment protocol over the left dorsolateral prefrontal cortex (DLPFC). Patients performed a probabilistic learning task in fMRI before and after each week of stimulation. Task performance analyses did not show any significant effects of aiTBS on reward responsiveness, nor differences between both groups of MDD patients. However, at baseline, low anhedonic patients displayed higher neural activity in the caudate and putamen. After the first week of aiTBS treatment, in low anhedonic patients we found a decreased neural activity within the reward system, in contrast to an increased activity observed in high anhedonic patients. No changes were observed in reward related neural regions after the first week of sham stimulation. Although both MDD groups showed no differences in task performance, our brain imaging findings suggest that left DLPFC aiTBS treatment modulates the reward system differently according to anhedonia severity.
Karcher, Nicole R; Bartholow, Bruce D; Martin, Elizabeth A; Kerns, John G
2017-03-01
Both positive psychotic symptoms and anhedonia are associated with striatal functioning, but few studies have linked risk for psychotic disorders to a neural measure evoked during a striatal dopamine-related reward and punishment-based learning task, such as a reversal learning task (RLT; Cools et al, 2009). The feedback-related negativity (FRN) is a neural response that in part reflects striatal dopamine functioning. We recorded EEG during the RLT in three groups: (a) people with psychotic experiences (PE; n=20) at increased risk for psychotic disorders; (b) people with extremely elevated social anhedonia (SocAnh; n=22); and (c) controls (n=20). Behaviorally, consistent with increased striatal dopamine, the PE group exhibited better behavioral learning (ie, faster responses) after unexpected reward than after unexpected punishment. Moreover, although the control and SocAnh groups showed a larger FRN to punishment than reward, the PE group showed similar FRNs to punishment and reward, with a numerically larger FRN to reward than punishment (with similar results on these trials also found for a P3a component). These results are among the first to link a neural response evoked by a reward and punishment-based learning task specifically with elevated psychosis risk.
Fam, Justine; Westbrook, Fred; Arabzadeh, Ehsan
2016-01-01
Identifying similarities and differences in choice behavior across species is informative about how basic mechanisms give rise to more complex processes. In the present study, we compared pre- and post-choice latencies between rats and humans under two paradigms. In Experiment 1, we used a cued choice paradigm where subjects were presented with a cue that directed them as to which of two options to respond for rewards. In Experiment 2, subjects were free to choose between two options in order to procure rewards. In both Experiments rewards were delivered with distinct probabilities. The trial structure used in these experiments allowed the choice process to be decomposed into pre- and post-choice processes. Overall, post-choice latencies reflected the difference in reward probability between the two options, where latencies for the option with higher probability of reward were longer than those for the option with lower probability of reward. An interesting difference between rats and humans was observed: the choice behavior for humans, but not rats, was sensitive to the free-choice aspect of the tasks, such that in free-choice trials post-choice latencies no longer reflected the difference in reward probabilities between the two options. PMID:26862000
Reward-dependent learning in neuronal networks for planning and decision making.
Dehaene, S; Changeux, J P
2000-01-01
Neuronal network models have been proposed for the organization of evaluation and decision processes in prefrontal circuitry and their putative neuronal and molecular bases. The models all include an implementation and simulation of an elementary reward mechanism. Their central hypothesis is that tentative rules of behavior, which are coded by clusters of active neurons in prefrontal cortex, are selected or rejected based on an evaluation by this reward signal, which may be conveyed, for instance, by the mesencephalic dopaminergic neurons with which the prefrontal cortex is densely interconnected. At the molecular level, the reward signal is postulated to be a neurotransmitter such as dopamine, which exerts a global modulatory action on prefrontal synaptic efficacies, either via volume transmission or via targeted synaptic triads. Negative reinforcement has the effect of destabilizing the currently active rule-coding clusters; subsequently, spontaneous activity varies again from one cluster to another, giving the organism the chance to discover and learn a new rule. Thus, reward signals function as effective selection signals that either maintain or suppress currently active prefrontal representations as a function of their current adequacy. Simulations of this variation-selection have successfully accounted for the main features of several major tasks that depend on prefrontal cortex integrity, such as the delayed-response test, the Wisconsin card sorting test, the Tower of London test and the Stroop test. For the more complex tasks, we have found it necessary to supplement the external reward input with a second mechanism that supplies an internal reward; it consists of an auto-evaluation loop which short-circuits the reward input from the exterior. This allows for an internal evaluation of covert motor intentions without actualizing them as behaviors, by simply testing them covertly by comparison with memorized former experiences. This element of architecture gives access to enhanced rates of learning via an elementary process of internal or covert mental simulation. We have recently applied these ideas to a new model, developed with M. Kerszberg, which hypothesizes that prefrontal cortex and its reward-related connections contribute crucially to conscious effortful tasks. This model distinguishes two main computational spaces within the human brain: a unique global workspace composed of distributed and heavily interconnected neurons with long-range axons, and a set of specialized and modular perceptual, motor, memory, evaluative and attentional processors. We postulate that workspace neurons are mobilized in effortful tasks for which the specialized processors do not suffice; they selectively mobilize or suppress, through descending connections, the contribution of specific processor neurons. In the course of task performance, workspace neurons become spontaneously co-activated, forming discrete though variable spatio-temporal patterns subject to modulation by vigilance signals and to selection by reward signals. A computer simulation of the Stroop task shows workspace activation to increase during acquisition of a novel task, effortful execution, and after errors. This model makes predictions concerning the spatio-temporal activation patterns during brain imaging of cognitive tasks, particularly concerning the conditions of activation of dorsolateral prefrontal cortex and anterior cingulate, their relation to reward mechanisms, and their specific reaction during error processing.
ERIC Educational Resources Information Center
Firestone, Philip; Douglas, Virginia I.
1977-01-01
Impulsive and reflective children performed in a discrimination learning task which included four reinforcement conditions: verbal-reward, verbal-punishment, material-reward, and material-punishment. (SB)
Intrinsic Motivation and Rewards: What Sustains Young Children's Engagement with Text?
ERIC Educational Resources Information Center
Marinak, Barbara A.; Gambrell, Linda B.
2008-01-01
This study investigated the effects of reward proximity and choice of reward on the reading motivation of third-grade students as measured by indicators of task persistence. The major finding from this study was that students who were given a book as a reward and students who received no reward were more motivated to engage in subsequent reading…
Caudate responses to reward anticipation associated with delay discounting behavior in healthy youth
Benningfield, Margaret M.; Blackford, Jennifer U.; Ellsworth, Melissa E.; Samanez-Larkin, Gregory R.; Martin, Peter R.; Cowan, Ronald L.; Zald, David H.
2014-01-01
Background Choices requiring delay of gratification made during adolescence can have significant impact on life trajectory. Willingness to delay gratification can be measured using delay discounting tasks that require a choice between a smaller immediate reward and a larger delayed reward. Individual differences in the subjective value of delayed rewards are associated with risk for development of psychopathology including substance abuse. The neurobiological underpinnings related to these individual differences early in life are not fully understood. Using functional magnetic resonance imaging (fMRI), we tested the hypothesis that individual differences in delay discounting behavior in healthy youth are related to differences in responsiveness to potential reward. Method Nineteen 10 to 14 year-olds performed a monetary incentive delay task to assess neural sensitivity to potential reward and a questionnaire to measure discounting of future monetary rewards. Results Left ventromedial caudate activation during anticipation of potential reward was negatively correlated with delay discounting behavior. There were no regions where brain responses during notification of reward outcome were associated with discounting behavior. Conclusions Brain activation during anticipation of potential reward may serve as a marker for individual differences in ability or willingness to delay gratification in healthy youth. PMID:24309299
Functional requirements for reward-modulated spike-timing-dependent plasticity.
Frémaux, Nicolas; Sprekeler, Henning; Gerstner, Wulfram
2010-10-06
Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity is conditioned on a global modulatory factor signaling reward. We show that all learning rules in this class can be separated into a term that captures the covariance of neuronal firing and reward and a second term that presents the influence of unsupervised learning. The unsupervised term, which is, in general, detrimental for reward-based learning, can be suppressed if the neuromodulatory signal encodes the difference between the reward and the expected reward-but only if the expected reward is calculated for each task and stimulus separately. If several tasks are to be learned simultaneously, the nervous system needs an internal critic that is able to predict the expected reward for arbitrary stimuli. We show that, with a critic, reward-modulated spike-timing-dependent plasticity is capable of learning motor trajectories with a temporal resolution of tens of milliseconds. The relation to temporal difference learning, the relevance of block-based learning paradigms, and the limitations of learning with a critic are discussed.
Young, Jared W.; Markou, Athina
2015-01-01
Amotivation and reward-processing deficits have long been described in patients with schizophrenia and considered large contributors to patients’ inability to integrate well in society. No effective treatments exist for these symptoms, partly because the neuromechanisms mediating such symptoms are poorly understood. Here, we propose a translational neuroscientific approach that can be used to assess reward/motivational deficits related to the negative symptoms of schizophrenia using behavioral paradigms that can also be conducted in experimental animals. By designing and using objective laboratory behavioral tools that are parallel in their parameters in rodents and humans, the neuromechanisms underlying behaviors with relevance to these symptoms of schizophrenia can be investigated. We describe tasks that measure the motivation of rodents to expend physical and cognitive effort to gain rewards, as well as probabilistic learning tasks that assess both reward learning and feedback-based decision making. The latter tasks are relevant because of demonstrated links of performance deficits correlating with negative symptoms in patients with schizophrenia. These tasks utilize operant techniques in order to investigate neural circuits targeting a specific domain across species. These tasks therefore enable the development of insights into altered mechanisms leading to negative symptom-relevant behaviors in patients with schizophrenia. Such findings will then enable the development of targeted treatments for these altered neuromechanisms and behaviors seen in schizophrenia. PMID:26194891
Teams-Games-Tournament: A Final Report on the Research. Report No. 217.
ERIC Educational Resources Information Center
DeVries, David L.; Slavin, Robert E.
This report describes a series of ten research experiments over a four-year period on the Teams-Games-Tournament (TGT) instructional process. Chapter I explores reward and task structures used in traditional classrooms, examining their benefits and liabilities, and concludes by proposing alternatives that might provide students with more…
Baranes, Adrien F; Oudeyer, Pierre-Yves; Gottlieb, Jacqueline
2014-01-01
Devising efficient strategies for exploration in large open-ended spaces is one of the most difficult computational problems of intelligent organisms. Because the available rewards are ambiguous or unknown during the exploratory phase, subjects must act in intrinsically motivated fashion. However, a vast majority of behavioral and neural studies to date have focused on decision making in reward-based tasks, and the rules guiding intrinsically motivated exploration remain largely unknown. To examine this question we developed a paradigm for systematically testing the choices of human observers in a free play context. Adult subjects played a series of short computer games of variable difficulty, and freely choose which game they wished to sample without external guidance or physical rewards. Subjects performed the task in three distinct conditions where they sampled from a small or a large choice set (7 vs. 64 possible levels of difficulty), and where they did or did not have the possibility to sample new games at a constant level of difficulty. We show that despite the absence of external constraints, the subjects spontaneously adopted a structured exploration strategy whereby they (1) started with easier games and progressed to more difficult games, (2) sampled the entire choice set including extremely difficult games that could not be learnt, (3) repeated moderately and high difficulty games much more frequently than was predicted by chance, and (4) had higher repetition rates and chose higher speeds if they could generate new sequences at a constant level of difficulty. The results suggest that intrinsically motivated exploration is shaped by several factors including task difficulty, novelty and the size of the choice set, and these come into play to serve two internal goals-maximize the subjects' knowledge of the available tasks (exploring the limits of the task set), and maximize their competence (performance and skills) across the task set.
Younger, Jarred; Aron, Arthur; Parke, Sara; Chatterjee, Neil; Mackey, Sean
2010-10-13
The early stages of a new romantic relationship are characterized by intense feelings of euphoria, well-being, and preoccupation with the romantic partner. Neuroimaging research has linked those feelings to activation of reward systems in the human brain. The results of those studies may be relevant to pain management in humans, as basic animal research has shown that pharmacologic activation of reward systems can substantially reduce pain. Indeed, viewing pictures of a romantic partner was recently demonstrated to reduce experimental thermal pain. We hypothesized that pain relief evoked by viewing pictures of a romantic partner would be associated with neural activations in reward-processing centers. In this functional magnetic resonance imaging (fMRI) study, we examined fifteen individuals in the first nine months of a new, romantic relationship. Participants completed three tasks under periods of moderate and high thermal pain: 1) viewing pictures of their romantic partner, 2) viewing pictures of an equally attractive and familiar acquaintance, and 3) a word-association distraction task previously demonstrated to reduce pain. The partner and distraction tasks both significantly reduced self-reported pain, although only the partner task was associated with activation of reward systems. Greater analgesia while viewing pictures of a romantic partner was associated with increased activity in several reward-processing regions, including the caudate head, nucleus accumbens, lateral orbitofrontal cortex, amygdala, and dorsolateral prefrontal cortex--regions not associated with distraction-induced analgesia. The results suggest that the activation of neural reward systems via non-pharmacologic means can reduce the experience of pain.
The dark side of monetary incentive: how does extrinsic reward crowd out intrinsic motivation.
Ma, Qingguo; Jin, Jia; Meng, Liang; Shen, Qiang
2014-02-12
It was widely believed that incentives could effectively enhance the motivation of both students and employees. However, psychologists reported that extrinsic reward actually could undermine individuals' intrinsic motivation to a given interesting task, which challenged viewpoints from traditional incentive theories. Numerous studies have been carried out to test and explain the undermining effect; however, the neural basis of this effect is still elusive. Here, we carried out an electrophysiological study with a simple but interesting stopwatch task to explore to what extent the performance-based monetary reward undermines individuals' intrinsic motivation toward the task. The electrophysiological data showed that the differentiated feedback-related negativity amplitude toward intrinsic success failure divergence was prominently reduced once the extrinsic reward was imposed beforehand. However, such a difference was not observed in the control group, in which no extrinsic reward was provided throughout the experiment. Furthermore, such a pattern was not observed for P300 amplitude. Therefore, the current results indicate that extrinsic reward demotivates the intrinsic response of individuals toward success-failure outcome, which was reflected in the corresponding reduced motivational-related differentiated feedback-related negativity, but not in amplitude of P300.
Modulation of spatial attention by goals, statistical learning, and monetary reward.
Jiang, Yuhong V; Sha, Li Z; Remington, Roger W
2015-10-01
This study documented the relative strength of task goals, visual statistical learning, and monetary reward in guiding spatial attention. Using a difficult T-among-L search task, we cued spatial attention to one visual quadrant by (i) instructing people to prioritize it (goal-driven attention), (ii) placing the target frequently there (location probability learning), or (iii) associating that quadrant with greater monetary gain (reward-based attention). Results showed that successful goal-driven attention exerted the strongest influence on search RT. Incidental location probability learning yielded a smaller though still robust effect. Incidental reward learning produced negligible guidance for spatial attention. The 95 % confidence intervals of the three effects were largely nonoverlapping. To understand these results, we simulated the role of location repetition priming in probability cuing and reward learning. Repetition priming underestimated the strength of location probability cuing, suggesting that probability cuing involved long-term statistical learning of how to shift attention. Repetition priming provided a reasonable account for the negligible effect of reward on spatial attention. We propose a multiple-systems view of spatial attention that includes task goals, search habit, and priming as primary drivers of top-down attention.
Modulation of spatial attention by goals, statistical learning, and monetary reward
Sha, Li Z.; Remington, Roger W.
2015-01-01
This study documented the relative strength of task goals, visual statistical learning, and monetary reward in guiding spatial attention. Using a difficult T-among-L search task, we cued spatial attention to one visual quadrant by (i) instructing people to prioritize it (goal-driven attention), (ii) placing the target frequently there (location probability learning), or (iii) associating that quadrant with greater monetary gain (reward-based attention). Results showed that successful goal-driven attention exerted the strongest influence on search RT. Incidental location probability learning yielded a smaller though still robust effect. Incidental reward learning produced negligible guidance for spatial attention. The 95 % confidence intervals of the three effects were largely nonoverlapping. To understand these results, we simulated the role of location repetition priming in probability cuing and reward learning. Repetition priming underestimated the strength of location probability cuing, suggesting that probability cuing involved long-term statistical learning of how to shift attention. Repetition priming provided a reasonable account for the negligible effect of reward on spatial attention. We propose a multiple-systems view of spatial attention that includes task goals, search habit, and priming as primary drivers of top-down attention. PMID:26105657
Persistence of Value-Driven Attentional Capture
ERIC Educational Resources Information Center
Anderson, Brian A.; Yantis, Steven
2013-01-01
Stimuli that have previously been associated with the delivery of reward involuntarily capture attention when presented as unrewarded and task-irrelevant distractors in a subsequent visual search task. It is unknown how long such effects of reward learning on attention persist. One possibility is that value-driven attentional biases are plastic…
Medial Frontal Event-Related Potentials and Reward Prediction: Do Responses Matter?
ERIC Educational Resources Information Center
Martin, Laura E.; Potts, Geoffrey F.
2011-01-01
Medial frontal event-related potentials (ERPs) following rewarding feedback index outcome evaluation. The majority of studies examining the feedback related medial frontal negativity (MFN) employ active tasks during which participants' responses impact their feedback, however, the MFN has been elicited during passive tasks. Many of the studies…
Gatzke-Kopp, Lisa M.; Beauchaine, Theodore P.; Shannon, Katherine E.; Chipman, Jane; Fleming, Andrew P.; Crowell, Sheila E.; Liang, Olivia; Aylward, Elizabeth; Johnson, L. Clark
2009-01-01
Opposing theories of striatal hyper- and hypodopaminergic functioning have been suggested in the pathophysiology of externalizing behavior disorders. To test these competing theories, the authors used functional MRI to evaluate neural activity during a simple reward task in 12- to 16-year-old boys with attention-deficit/hyperactivity disorder and/or conduct disorder (n = 19) and in controls with no psychiatric condition (n = 11). The task proceeded in blocks during which participants received either (a) monetary incentives for correct responses or (b) no rewards for correct responses. Controls exhibited striatal activation only during reward, shifting to anterior cingulate activation during nonreward. In contrast, externalizing adolescents exhibited striatal activation during both reward and nonreward. Externalizing psychopathology appears to be characterized by deficits in processing the omission of predicted reward, which may render behaviors that are acquired through environmental contingencies difficult to extinguish when those contingencies change. PMID:19222326
Paying for performance: Performance incentives increase desire for the reward object.
Hur, Julia D; Nordgren, Loran F
2016-09-01
The current research examines how exposure to performance incentives affects one's desire for the reward object. We hypothesized that the flexible nature of performance incentives creates an attentional fixation on the reward object (e.g., money), which leads people to become more desirous of the rewards. Results from 5 laboratory experiments and 1 large-scale field study provide support for this prediction. When performance was incentivized with monetary rewards, participants reported being more desirous of money (Study 1), put in more effort to earn additional money in an ensuing task (Study 2), and were less willing to donate money to charity (Study 4). We replicated the result with nonmonetary rewards (Study 5). We also found that performance incentives increased attention to the reward object during the task, which in part explains the observed effects (Study 6). A large-scale field study replicated these findings in a real-world setting (Study 7). One laboratory experiment failed to replicate (Study 3). (PsycINFO Database Record (c) 2016 APA, all rights reserved).
BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations.
Costumero, Víctor; Barrós-Loscertales, Alfonso; Fuentes, Paola; Rosell-Negre, Patricia; Bustamante, Juan Carlos; Ávila, César
2016-09-01
According to the Reinforcement Sensitivity Theory, behavioral studies have found that individuals with stronger reward sensitivity easily detect cues of reward and establish faster associations between instrumental responses and reward. Neuroimaging studies have shown that processing anticipatory cues of reward is accompanied by stronger ventral striatum activity in individuals with stronger reward sensitivity. Even though establishing response-outcome contingencies has been consistently associated with dorsal striatum, individual differences in this process are poorly understood. Here, we aimed to study the relation between reward sensitivity and brain activity while processing response-reward contingencies. Forty-five participants completed the BIS/BAS questionnaire and performed a gambling task paradigm in which they received monetary rewards or punishments. Overall, our task replicated previous results that have related processing high reward outcomes with activation of striatum and medial frontal areas, whereas processing high punishment outcomes was associated with stronger activity in insula and middle cingulate. As expected, the individual differences in the activity of dorsomedial striatum correlated positively with BAS-Drive. Our results agree with previous studies that have related the dorsomedial striatum with instrumental performance, and suggest that the individual differences in this area may form part of the neural substrate responsible for modulating instrumental conditioning by reward sensitivity.
Effects of alexithymia and empathy on the neural processing of social and monetary rewards.
Goerlich, Katharina Sophia; Votinov, Mikhail; Lammertz, Sarah E; Winkler, Lina; Spreckelmeyer, Katja N; Habel, Ute; Gründer, Gerhard; Gossen, Anna
2017-07-01
Empathy has been found to affect the neural processing of social and monetary rewards. Alexithymia, a subclinical condition showing a close inverse relationship with empathy is linked to dysfunctions of socio-emotional processing in the brain. Whether alexithymia alters the neural processing of rewards, which is currently unknown. Here, we investigated the influence of both alexithymia and empathy on reward processing using a social incentive delay (SID) task and a monetary incentive delay (MID) task in 45 healthy men undergoing functional magnetic resonance imaging. Controlling for temperament-character dimensions and rejection sensitivity, the relationship of alexithymia and empathy with neural activity in several a priori regions of interest (ROIs) was examined by means of partial correlations, while participants anticipated and received social and monetary rewards. Results were considered significant if they survived Holm-Bonferroni correction for multiple comparisons. Alexithymia modulated neural activity in several ROIs of the emotion and reward network, both during the anticipation of social and monetary rewards and in response to the receipt of monetary rewards. In contrast, empathy did not affect reward anticipation and modulated ROI activity only in response to the receipt of social rewards. These results indicate a significant influence of alexithymia on the processing of social and monetary rewards in the healthy brain.
Unconscious Reward Cues Increase Invested Effort, but Do Not Change Speed-Accuracy Tradeoffs
ERIC Educational Resources Information Center
Bijleveld, Erik; Custers, Ruud; Aarts, Henk
2010-01-01
While both conscious and unconscious reward cues enhance effort to work on a task, previous research also suggests that conscious rewards may additionally affect speed-accuracy tradeoffs. Based on this idea, two experiments explored whether reward cues that are presented above (supraliminal) or below (subliminal) the threshold of conscious…
Effect of failure/success feedback and the moderating influence of personality on reward motivation.
Anand, Deepika; Oehlberg, Katherine A; Treadway, Michael T; Nusslock, Robin
2016-01-01
While motivation to pursue goals is often assumed to be a trait-like characteristic, it is influenced by a variety of situational factors. In particular, recent experiences of success or failure, as well as cognitive responses to these outcomes, may shape subsequent willingness to expend effort for future rewards. To date, however, these effects have not been explicitly tested. In the present study, 131 healthy individuals received either failure or success feedback on a cognitive task. They were then instructed to either ruminate or distract themselves from their emotions. Finally, they completed the Effort Expenditure for Rewards Task, a laboratory measure of reward motivation. Results indicate that participants who received failure feedback relied more strongly on the reward magnitude when choosing whether to exert greater effort to obtain larger rewards, though this effect only held under conditions of significant uncertainty about whether the effort would be rewarded. Further, participants with high levels of trait inhibition were less responsive to reward value and probability when choosing whether to expend greater effort, results that echo past studies of effort-based decision-making in psychological disorders.
Katz, Andrea C.; Sarapas, Casey; Bishop, Jeffrey R.; Patel, Shitalben R.; Shankman, Stewart A.
2014-01-01
The Val158Met rs4680 polymorphism in the COMT gene regulates dopamine catabolism in the prefrontal cortex (PFC). Dopamine’s involvement in reward experience suggests those with the Met variant may exhibit trait-level sensitivity to reward due to more post-synaptic dopamine in the PFC. A physiological mediator of this association may be greater relative left asymmetry in the PFC, a putative biomarker for trait positive emotionality. Electroencephalograms of 120 participants were measured during a task that assesses two aspects of reward processing: pre-reward anticipation and post-reward consummatory affect. Participants provided genetics samples and completed the Temporal Experience of Pleasure Scale, which assesses trait-level anticipatory and consummatory positive affect. Met carriers had higher TEPS-Consummatory scores. This effect was mediated by greater relative left activation in the post-reward phase of the task. No effects were observed for the pre-reward phase. Results suggest that frontal asymmetry is an endophenotype between COMT genotype and trait reward responsivity. PMID:25195915
A Frontal Dopamine System for Reflective Exploratory Behavior
Blanco, Nathaniel J.; Love, Bradley C.; Cooper, Jessica A.; McGeary, John E.; Knopik, Valerie S.; Maddox, W. Todd
2015-01-01
The COMT gene modulates dopamine levels in prefrontal cortex with Met allele carriers having lower COMT enzyme activity and, therefore, higher dopamine levels compared to Val/Val homozygotes. Concordantly, Val/Val homozygotes tend to perform worse and display increased (interpreted as inefficient) frontal activation in certain cognitive tasks. In a sample of 209 participants, we test the hypothesis that Met carriers will be advantaged in a decision-making task that demands sequencing exploratory and exploitive choices to minimize uncertainty about the reward structure in the environment. Previous work suggests that optimal performance depends on limited cognitive resources supported by prefrontal systems. If so, Met carriers should outperform Val/Val homozygotes, particularly under dual-task conditions that tax limited cognitive resources. In accord with these a priori predictions, Met carriers were more resilient in the face of cognitive load, continuing to explore in a sophisticated manner. We fit computational models that embody sophisticated reflective and simple reflexive strategies to further evaluate participants' exploration behavior. The Ideal Actor model reflectively updates beliefs and plans ahead, taking into account the information gained by each choice and making choices that maximize long-term payoffs. In contrast, the Naïve Reinforcement Learning (RL) model instantiates the reflexive account of choice, in which the values of actions are based only on the rewards experienced so far. Its beliefs are updated reflexively in response to observed changes in rewards. Converging with standard analyses, Met carriers were best characterized by the Ideal Actor model, whereas Val/Val homozygotes were best characterized by the Naive RL model, particularly under dual-task conditions. PMID:26004676
Finger, Elizabeth C; Marsh, Abigail A; Blair, Karina S; Reid, Marguerite E; Sims, Courtney; Ng, Pamela; Pine, Daniel S; Blair, R James R
2011-02-01
Dysfunction in the amygdala and orbitofrontal cortex has been reported in youths and adults with psychopathic traits. The specific nature of the functional irregularities within these structures remains poorly understood. The authors used a passive avoidance task to examine the responsiveness of these systems to early stimulus-reinforcement exposure, when prediction errors are greatest and learning maximized, and to reward in youths with psychopathic traits and comparison youths. While performing the passive avoidance learning task, 15 youths with conduct disorder or oppositional defiant disorder plus a high level of psychopathic traits and 15 healthy subjects completed a 3.0-T fMRI scan. Relative to the comparison youths, the youths with a disruptive behavior disorder plus psychopathic traits showed less orbitofrontal responsiveness both to early stimulus-reinforcement exposure and to rewards, as well as less caudate response to early stimulus-reinforcement exposure. There were no group differences in amygdala responsiveness to these two task measures, but amygdala responsiveness throughout the task was lower in the youths with psychopathic traits. Compromised sensitivity to early reinforcement information in the orbitofrontal cortex and caudate and to reward outcome information in the orbitofrontal cortex of youths with conduct disorder or oppositional defiant disorder plus psychopathic traits suggests that the integrated functioning of the amygdala, caudate, and orbitofrontal cortex may be disrupted. This provides a functional neural basis for why such youths are more likely to repeat disadvantageous decisions. New treatment possibilities are raised, as pharmacologic modulations of serotonin and dopamine can affect this form of learning.
The Impact of Selective Dopamine D2, D3 and D4 Ligands on the Rat Gambling Task.
Di Ciano, Patricia; Pushparaj, Abhiram; Kim, Aaron; Hatch, Jessica; Masood, Talal; Ramzi, Abby; Khaled, Maram A T M; Boileau, Isabelle; Winstanley, Catherine A; Le Foll, Bernard
2015-01-01
Gambling is an addictive disorder with serious societal and personal costs. To-date, there are no approved pharmacological treatments for gambling disorder. Evidence suggests a role for dopamine in gambling disorder and thus may provide a therapeutic target. The present study therefore aimed to investigate the effects of selective antagonists and agonists of D2, D3 and D4 receptors in a rodent analogue of the Iowa gambling task used clinically. In this rat gambling task (rGT), animals are trained to associate different response holes with different magnitudes and probabilities of food pellet rewards and punishing time-out periods. As in the Iowa gambling task, the optimal strategy is to avoid the tempting high-risk high-reward options, and instead favor those linked to smaller per-trial rewards but also lower punishments, thereby maximizing the amount of reward earned over time. Administration of those selective ligands did not affect decision making under the rGT. Only the D4 drug had modest effects on latency measures suggesting that D4 may contribute in some ways to decision making under this task.
Reward and attentional control in visual search.
Yantis, Steven; Anderson, Brian A; Wampler, Emma K; Laurent, Patryk A
2012-01-01
It has long been known that the control of attention in visual search depends both on voluntary, top-down deployment according to context-specific goals, and on involuntary, stimulus-driven capture based on the physical conspicuity of perceptual objects. Recent evidence suggests that pairing target stimuli with reward can modulate the voluntary deployment of attention, but there is little evidence that reward modulates the involuntary deployment of attention to task-irrelevant distractors. We report several experiments that investigate the role of reward learning on attentional control. Each experiment involved a training phase and a test phase. In the training phase, different colors were associated with different amounts of monetary reward. In the test phase, color was not task-relevant and participants searched for a shape singleton; in most experiments no reward was delivered in the test phase. We first show that attentional capture by physically salient distractors is magnified by a previous association with reward. In subsequent experiments we demonstrate that physically inconspicuous stimuli previously associated with reward capture attention persistently during extinction--even several days after training. Furthermore, vulnerability to attentional capture by high-value stimuli is negatively correlated across individuals with working memory capacity and positively correlated with trait impulsivity. An analysis of intertrial effects reveals that value-driven attentional capture is spatially specific. Finally, when reward is delivered at test contingent on the task-relevant shape feature, recent reward history modulates value-driven attentional capture by the irrelevant color feature. The influence of learned value on attention may provide a useful model of clinical syndromes characterized by similar failures of cognitive control, including addiction, attention-deficit/hyperactivity disorder, and obesity.
Reward and Attentional Control in Visual Search
Anderson, Brian A.; Wampler, Emma K.; Laurent, Patryk A.
2015-01-01
It has long been known that the control of attention in visual search depends both on voluntary, top-down deployment according to context-specific goals, and on involuntary, stimulus-driven capture based on the physical conspicuity of perceptual objects. Recent evidence suggests that pairing target stimuli with reward can modulate the voluntary deployment of attention, but there is little evidence that reward modulates the involuntary deployment of attention to task-irrelevant distractors. We report several experiments that investigate the role of reward learning on attentional control. Each experiment involved a training phase and a test phase. In the training phase, different colors were associated with different amounts of monetary reward. In the test phase, color was not task-relevant and participants searched for a shape singleton; in most experiments no reward was delivered in the test phase. We first show that attentional capture by physically salient distractors is magnified by a previous association with reward. In subsequent experiments we demonstrate that physically inconspicuous stimuli previously associated with reward capture attention persistently during extinction—even several days after training. Furthermore, vulnerability to attentional capture by high-value stimuli is negatively correlated across individuals with working memory capacity and positively correlated with trait impulsivity. An analysis of intertrial effects reveals that value-driven attentional capture is spatially specific. Finally, when reward is delivered at test contingent on the task-relevant shape feature, recent reward history modulates value-driven attentional capture by the irrelevant color feature. The influence of learned value on attention may provide a useful model of clinical syndromes characterized by similar failures of cognitive control, including addiction, attention-deficit/hyperactivity disorder, and obesity. PMID:23437631
Voon, V; Baek, K; Enander, J; Worbe, Y; Morris, L S; Harrison, N A; Robbins, T W; Rück, C; Daw, N
2015-11-03
Our decisions are based on parallel and competing systems of goal-directed and habitual learning, systems which can be impaired in pathological behaviours. Here we focus on the influence of motivation and compare reward and loss outcomes in subjects with obsessive-compulsive disorder (OCD) on model-based goal-directed and model-free habitual behaviours using the two-step task. We further investigate the relationship with acquisition learning using a one-step probabilistic learning task. Forty-eight OCD subjects and 96 healthy volunteers were tested on a reward and 30 OCD subjects and 53 healthy volunteers on the loss version of the two-step task. Thirty-six OCD subjects and 72 healthy volunteers were also tested on a one-step reversal task. OCD subjects compared with healthy volunteers were less goal oriented (model-based) and more habitual (model-free) to reward outcomes with a shift towards greater model-based and lower habitual choices to loss outcomes. OCD subjects also had enhanced acquisition learning to loss outcomes on the one-step task, which correlated with goal-directed learning in the two-step task. OCD subjects had greater stay behaviours or perseveration in the one-step task irrespective of outcome. Compulsion severity was correlated with habitual learning in the reward condition. Obsession severity was correlated with greater switching after loss outcomes. In healthy volunteers, we further show that greater reward magnitudes are associated with a shift towards greater goal-directed learning further emphasizing the role of outcome salience. Our results highlight an important influence of motivation on learning processes in OCD and suggest that distinct clinical strategies based on valence may be warranted.
McAuley, J Devin; Henry, Molly J; Wedd, Alan; Pleskac, Timothy J; Cesario, Joseph
2012-02-01
Two experiments investigated the effects of musicality and motivational orientation on auditory category learning. In both experiments, participants learned to classify tone stimuli that varied in frequency and duration according to an initially unknown disjunctive rule; feedback involved gaining points for correct responses (a gains reward structure) or losing points for incorrect responses (a losses reward structure). For Experiment 1, participants were told at the start that musicians typically outperform nonmusicians on the task, and then they were asked to identify themselves as either a "musician" or a "nonmusician." For Experiment 2, participants were given either a promotion focus prime (a performance-based opportunity to gain entry into a raffle) or a prevention focus prime (a performance-based criterion that needed to be maintained to avoid losing an entry into a raffle) at the start of the experiment. Consistent with a regulatory-fit hypothesis, self-identified musicians and promotion-primed participants given a gains reward structure made more correct tone classifications and were more likely to discover the optimal disjunctive rule than were musicians and promotion-primed participants experiencing losses. Reward structure (gains vs. losses) had inconsistent effects on the performance of nonmusicians, and a weaker regulatory-fit effect was found for the prevention focus prime. Overall, the findings from this study demonstrate a regulatory-fit effect in the domain of auditory category learning and show that motivational orientation may contribute to musician performance advantages in auditory perception.
Acetylcholine-modulated plasticity in reward-driven navigation: a computational study.
Zannone, Sara; Brzosko, Zuzanna; Paulsen, Ole; Clopath, Claudia
2018-06-21
Neuromodulation plays a fundamental role in the acquisition of new behaviours. In previous experimental work, we showed that acetylcholine biases hippocampal synaptic plasticity towards depression, and the subsequent application of dopamine can retroactively convert depression into potentiation. We also demonstrated that incorporating this sequentially neuromodulated Spike-Timing-Dependent Plasticity (STDP) rule in a network model of navigation yields effective learning of changing reward locations. Here, we employ computational modelling to further characterize the effects of cholinergic depression on behaviour. We find that acetylcholine, by allowing learning from negative outcomes, enhances exploration over the action space. We show that this results in a variety of effects, depending on the structure of the model, the environment and the task. Interestingly, sequentially neuromodulated STDP also yields flexible learning, surpassing the performance of other reward-modulated plasticity rules.
Differences in delay discounting between smokers and nonsmokers remain when both rewards are delayed
Mitchell, Suzanne H.; Wilson, Vanessa B.
2013-01-01
Rationale When offered a choice between a small monetary reward available immediately (SmallNow) versus a larger reward available after a delay (LargeLater), smokers select the SmallNow alternative more than nonsmokers. That is, smokers discount the value of the LargeLater reward more than nonsmokers. Objectives To investigate whether this group difference was due to smokers overweighing the value of rewards available immediately compared with nonsmokers, we examined whether the group difference was also seen when both alternatives were delayed, i.e., when choosing between a SmallSoon reward and a LargeLater reward. Methods In Experiment 1, smokers and nonsmokers completed a task including SmallNow versus LargeLater choices and SmallSoon versus LargeLater choices. In Experiment 2, smokers and nonsmokers completed the same task but with hypothetical choices. Results Analyses using hyperbolic and double exponential (β-δ) models replicate prior findings that smokers discount the LargeLater reward more than nonsmokers when the smaller reward is available immediately. The smoker-nonsmoker difference was also seen when the smaller reward was slightly delayed, though this effect was primarily driven by heightened discounting in male smokers. However, for potentially real rewards only, this smoker-nonsmoker difference was significantly reduced when the smaller reward was delayed. Conclusions The smoker-nonsmoker difference in discounting is not confined to situations involving immediate rewards. Differences associated with potentially real vs. hypothetical rewards and gender underscore the complexity of the smoking-delay discounting relationship. PMID:21983917
No costly prosociality among related long-tailed macaques (Macaca fascicularis).
Sterck, Elisabeth H M; Olesen, Caroline U; Massen, Jorg J M
2015-08-01
Altruism, benefiting another at a cost to the donor, may be achieved through prosocial behavior. Studies of nonhuman animals typically investigate prosocial behavior with paradigms in which the donor can choose to give a recipient a food item, and the choice does not affect the donor's reward (which is either present or absent). In such tasks, long-tailed macaques (Macaca fascicularis) show prosocial behavior, especially toward kin. Here, we tested captive long-tailed macaques with related recipients in an alternative task, in which the donor had to give up a preferred reward to benefit the recipient; that is, they had to choose a lower valued reward for themselves to provide food to their kin. Overall, the macaques did not provide their kin with food. The task forced the donor to balance its prosocial behavior with its selfish choice for a higher value reward, a balance that turned out to favor selfish motives. Consequently, our study shows that a prosocial tendency is not sufficient to elicit costly prosocial behavior in long-tailed macaques. Subsequently, we feel that tasks in which the donor must choose a lower value reward to benefit another individual may allow the titration of the strength of prosocial behavior, and thus provides interesting possibilities for future comparative studies. (c) 2015 APA, all rights reserved).
Gonzalez-Gadea, Maria Luz; Sigman, Mariano; Rattazzi, Alexia; Lavin, Claudio; Rivera-Rei, Alvaro; Marino, Julian; Manes, Facundo; Ibanez, Agustin
2016-07-28
Recent theories of decision making propose a shared value-related brain mechanism for encoding monetary and social rewards. We tested this model in children with Attention-Deficit/Hyperactivity Disorder (ADHD), children with Autism Spectrum Disorder (ASD) and control children. We monitored participants' brain dynamics using high density-electroencephalography while they played a monetary and social reward tasks. Control children exhibited a feedback Error-Related Negativity (fERN) modulation and Anterior Cingulate Cortex (ACC) source activation during both tasks. Remarkably, although cooperation resulted in greater losses for the participants, the betrayal options generated greater fERN responses. ADHD subjects exhibited an absence of fERN modulation and reduced ACC activation during both tasks. ASD subjects exhibited normal fERN modulation during monetary choices and inverted fERN/ACC responses in social options than did controls. These results suggest that in neurotypicals, monetary losses and observed disloyal social decisions induced similar activity in the brain value system. In ADHD children, difficulties in reward processing affected early brain signatures of monetary and social decisions. Conversely, ASD children showed intact neural markers of value-related monetary mechanisms, but no brain modulation by prosociality in the social task. These results offer insight into the typical and atypical developments of neural correlates of monetary and social reward processing.
The human orbitofrontal cortex monitors outcomes even when no reward is at stake.
Schnider, Armin; Treyer, Valerie; Buck, Alfred
2005-01-01
The orbitofrontal cortex (OFC) processes the occurrence or omission of anticipated rewards, but clinical evidence suggests that it might serve as a generic outcome monitoring system, independent of tangible reward. In this positron emission tomography (PET) study, normal human subjects performed a series of tasks in which they simply had to predict behind which one of two colored rectangles a drawing of an object was hidden. While all tasks involved anticipation in that they had an expectation phase between the subject's prediction and the presentation of the outcome, they varied with regards to the uncertainty of outcome. No comment on the correctness of the prediction, no record of ongoing performance, and no reward, not even a score, was provided. Nonetheless, we found strong activation of the OFC: in comparison with a baseline task, the left anterior medial OFC showed activation in all conditions, indicating a basic role in anticipation; the left posterior OFC was activated in all tasks with some uncertainty of outcome, suggesting a role in the monitoring of outcomes; the right medial OFC showed activation exclusively during guessing. The data indicate a generic role of the human OFC, with some topical specificity, in the generation of hypotheses and processing of outcomes, independent of the presence of explicit reward.
Popoviç, M; Biessels, G J; Isaacson, R L; Gispen, W H
2001-08-01
Diabetes mellitus is associated with disturbances of cognitive functioning. The aim of this study was to examine cognitive functioning in diabetic rats using the 'Can test', a novel spatial/object learning and memory task, without the use of aversive stimuli. Rats were trained to select a single rewarded can from seven cans. Mild water deprivation provided the motivation to obtain the reward (0.3 ml of water). After 5 days of baseline training, in which the rewarded can was marked by its surface and position in an open field, the animals were divided into two groups. Diabetes was induced in one group, by an intravenous injection of streptozotocin. Retention of baseline training was tested at 2-weekly intervals for 10 weeks. Next, two adapted versions of the task were used, with 4 days of training in each version. The rewarded can was a soft-drink can with coloured print. In a 'simple visual task' the soft-drink can was placed among six white cans, whereas in a 'complex visual task' it was placed among six soft-drink cans from different brands with distinct prints. In diabetic rats the number of correct responses was lower and number of reference and working memory errors higher than in controls in the various versions of the test. Switches between tasks and increases in task complexity accentuated the performance deficits, which may reflect an inability of diabetic rats to adapt behavioural strategies to the demands of the tasks.
Bjork, James M; Smith, Ashley R; Chen, Gang; Hommer, Daniel W
2012-09-01
Aberrant sensitivity of incentive neurocircuitry to nondrug rewards has been suggested as either a risk factor for or consequence of drug addiction. Using functional magnetic resonance imaging, we tested whether alcohol-dependent patients (ADP: n = 29) showed altered recruitment of ventral striatal (VS) incentive neurocircuitry compared to controls (n = 23) by: (1) cues to respond for monetary rewards, (2) post-response anticipation of rewards, or (3) delivery of rewards. Using an instrumental task with two-stage presentation of reward-predictive information, subjects saw cues signaling opportunities to win $0, $1, or $10 for responding to a target. Following this response, subjects were notified whether their success would be indicated by a lexical notification (“Hit?”) or by delivery of a monetary reward (“Win?”). After a variable interval, subjects then viewed the trial outcome. We found no significant group differences in voxelwise activation by task contrasts, or in signal change extracted from VS. Both ADP and controls showed significant VS and other limbic recruitment by pre-response reward anticipation. In addition, controls also showed VS recruitment by post-response reward-anticipation, and ADP had appreciable subthreshold VS activation. Both groups also showed similar mesolimbic responses to reward deliveries. Across all subjects, a questionnaire measure of “hot” impulsivity correlated with VS recruitment by post-response anticipation of low rewards and with VS recruitment by delivery of low rewards. These findings indicate that incentive-motivational processing of nondrug rewards is substantially maintained in recovering alcoholics, and that reward-elicited VS recruitment correlates more with individual differences in trait impulsivity irrespective of addiction.
Walsh, Erin; Carl, Hannah; Eisenlohr-Moul, Tory; Minkel, Jared; Crowther, Andrew; Moore, Tyler; Gibbs, Devin; Petty, Chris; Bizzell, Josh; Smoski, Moria J; Dichter, Gabriel S
2017-03-01
There are few reliable predictors of response to antidepressant treatments. In the present investigation, we examined pretreatment functional brain connectivity during reward processing as a potential predictor of response to Behavioral Activation Treatment for Depression (BATD), a validated psychotherapy that promotes engagement with rewarding stimuli and reduces avoidance behaviors. Thirty-three outpatients with major depressive disorder (MDD) and 20 matched controls completed two runs of the monetary incentive delay task during functional magnetic resonance imaging after which participants with MDD received up to 15 sessions of BATD. Seed-based generalized psychophysiological interaction analyses focused on task-based connectivity across task runs, as well as the attenuation of connectivity from the first to the second run of the task. The average change in Beck Depression Inventory-II scores due to treatment was 10.54 points, a clinically meaningful response. Groups differed in seed-based functional connectivity among multiple frontostriatal regions. Hierarchical linear modeling revealed that improved treatment response to BATD was predicted by greater connectivity between the left putamen and paracingulate gyrus during reward anticipation. In addition, MDD participants with greater attenuation of connectivity between several frontostriatal seeds, and midline subcallosal cortex and left paracingulate gyrus demonstrated improved response to BATD. These findings indicate that pretreatment frontostriatal functional connectivity during reward processing is predictive of response to a psychotherapy modality that promotes improving approach-related behaviors in MDD. Furthermore, connectivity attenuation among reward-processing regions may be a particularly powerful endophenotypic predictor of response to BATD in MDD.
The Impact of Financial Reward Contingencies on Cognitive Function Profiles in Adult ADHD
Marx, Ivo; Höpcke, Cornelia; Berger, Christoph; Wandschneider, Roland; Herpertz, Sabine C.
2013-01-01
Objectives Although it is well established that cognitive performance in children with attention-deficit/hyperactivity disorder (ADHD) is affected by reward and that key deficits associated with the disorder may thereby be attenuated or even compensated, this phenomenon in adults with ADHD has thus far not been addressed. Therefore, the aim of the present study was to examine the motivating effect of financial reward on task performance in adults with ADHD by focusing on the domains of executive functioning, attention, time perception, and delay aversion. Methods We examined male and female adults aged 18–40 years with ADHD (n = 38) along with a matched control group (n = 40) using six well-established experimental paradigms. Results Impaired performance in the ADHD group was observed for stop-signal omission errors, n-back accuracy, reaction time variability in the continuous performance task, and time reproduction accuracy, and reward normalized time reproduction accuracy. Furthermore, when rewarded, subjects with ADHD exhibited longer reaction times and fewer false positives in the continuous performance task, which suggests the use of strategies to prevent impulsivity errors. Conclusions Taken together, our results support the existence of both cognitive and motivational mechanisms for the disorder, which is in line with current models of ADHD. Furthermore, our data suggest cognitive strategies of “stopping and thinking” as a possible underlying mechanism for task improvement that seems to be mediated by reward, which highlights the importance of the interaction between motivation and cognition in adult ADHD. PMID:23840573
Richards, J S; Arias Vásquez, A; von Rhein, D; van der Meer, D; Franke, B; Hoekstra, P J; Heslenfeld, D J; Oosterlaan, J; Faraone, S V; Buitelaar, J K; Hartman, C A
2016-01-01
Little is known about the causes of individual differences in reward sensitivity. We investigated gene–environment interactions (GxE) on behavioral and neural measures of reward sensitivity, in light of the differential susceptibility theory. This theory states that individuals carrying plasticity gene variants will be more disadvantaged in negative, but more advantaged in positive environments. Reward responses were assessed during a monetary incentive delay task in 178 participants with and 265 without attention-deficit/hyperactivity disorder (ADHD), from N=261 families. We examined interactions between variants in candidate plasticity genes (DAT1, 5-HTT and DRD4) and social environments (maternal expressed emotion and peer affiliation). HTTLPR short allele carriers showed the least reward speeding when exposed to high positive peer affiliation, but the most when faced with low positive peer affiliation or low maternal warmth. DAT1 10-repeat homozygotes displayed similar GxE patterns toward maternal warmth on general task performance. At the neural level, DRD4 7-repeat carriers showed the least striatal activation during reward anticipation when exposed to high maternal warmth, but the most when exposed to low warmth. Findings were independent of ADHD severity. Our results partially confirm the differential susceptibility theory and indicate the importance of positive social environments in reward sensitivity and general task performance for persons with specific genotypes. PMID:27045841
Place and direction learning in a spatial T-maze task by neonatal piglets
Elmore, Monica R. P.; Dilger, Ryan N.; Johnson, Rodney W.
2013-01-01
Pigs are a valuable animal model for studying neurodevelopment in humans due to similarities in brain structure and growth. The development and validation of behavioral tests to assess learning and memory in neonatal piglets are needed. The present study evaluated the capability of 2-wk old piglets to acquire a novel place and direction learning spatial T-maze task. Validity of the task was assessed by the administration of scopolamine, an anti-cholinergic drug that acts on the hippocampus and other related structures, to impair spatial memory. During acquisition, piglets were trained to locate a milk reward in a constant place in space, as well as direction (east or west), in a plus-shaped maze using extra-maze visual cues. Following acquisition, reward location was reversed and piglets were re-tested to assess learning and working memory. The performance of control piglets in the maze improved over time (P < 0.0001), reaching performance criterion (80% correct) on day 5 of acquisition. Correct choices decreased in the reversal phase (P < 0.0001), but improved over time. In a separate study, piglets were injected daily with either phosphate buffered saline (PBS; control) or scopolamine prior to testing. Piglets administered scopolamine showed impaired performance in the maze compared to controls (P = 0.03), failing to reach performance criterion after 6 days of acquisition testing. Collectively, these data demonstrate that neonatal piglets can be tested in a spatial T-maze task to assess hippocampal-dependent learning and memory. PMID:22526690
Kohls, Gregor; Peltzer, Judith; Herpertz-Dahlmann, Beate; Konrad, Kerstin
2009-07-01
An important issue in the field of clinical and developmental psychopathology is whether cognitive control processes, such as response inhibition, can be specifically enhanced by motivation. To determine whether non-social (i.e. monetary) and social (i.e. positive facial expressions) rewards are able to differentially improve response inhibition accuracy in typically developing children and adolescents, an 'incentive' go/no-go task was applied with reward contingencies for successful inhibition. In addition, the impact of children's personality traits (such as reward seeking and empathy) on monetary and social reward responsiveness was assessed in 65 boys, ages 8 to 12 years. All subjects were tested twice: At baseline, inhibitory control was assessed without reward, and then subjects were pseudorandomly assigned to one of four experimental conditions, including (1) social reward only, (2) monetary reward only, (3) mixed social and monetary reward, or (4) a retest condition without reward. Both social and non-social reward significantly improved task performance, although larger effects were observed for monetary reward. The higher the children scored on reward seeking scales, the larger was their improvement in response inhibition, but only if monetary reward was used. In addition, there was a tendency for an association between empathic skills and benefits from social reward. These data suggest that social incentives do not have an equally strong reinforcing value as compared to financial incentives. However, different personality traits seem to determine to what extent a child profits from different types of reward. Clinical implications regarding probable hyposensitivity to social reward in subjects with autism and dysregulated reward-seeking behaviour in children with attention-deficit/hyperactivity disorder (ADHD) are discussed.
ERIC Educational Resources Information Center
Enzle, Michael E.; Ross, June M.
1978-01-01
University students worked puzzles and were given a high or low value cash award, contingent on simple task completion or on attainment of a performance level, or noncontingent and unexpected. Interest in the task after reward was analyzed. Results provided substantial support for Deci's cognitive evaluation theory. (Author/SJL)
Stress and reward processing in bipolar disorder: an fMRI study
Berghorst, Lisa H; Kumar, Poornima; Greve, Doug N; Deckersbach, Thilo; Ongur, Dost; Dutra, Sunny; Pizzagalli, Diego A
2016-01-01
Objectives A link between negative life stress and the onset of mood episodes in bipolar disorder (BD) has been established, but processes underlying such a link remain unclear. Growing evidence suggests that stress can negatively affect reward processing and related neurobiological substrates, indicating that a dysregulated reward system may provide a partial explanation. The aim of this study was to test the impact of stress on reward-related neural functioning in BD. Methods Thirteen euthymic or mildly depressed individuals with BD and 15 controls performed a Monetary Incentive Delay task while undergoing functional magnetic resonance imaging during no-stress and stress (negative psychosocial stressor involving poor performance feedback and threat of monetary deductions) conditions. Results In hypothesis-driven region-of- interest-based analyses, a significant group by condition interaction emerged in the amygdala during reward anticipation. Relative to controls, while anticipating a potential reward, subjects with BD were characterized by amygdalar hyperactivation in the no-stress condition but hypoactivation during stress. Moreover, relative to controls, subjects with BD had significantly larger amygdala volumes. After controlling for structural differences, the effects of stress on amygdalar function remained, whereas groups no longer differed during the no-stress condition. During reward consumption, a group by condition interaction emerged in the putamen due to increased putamen activation to rewards in participants with BD during stress, but an opposite pattern in controls. Conclusions Overall, findings highlight possible impairments in using reward-predicting cues to adaptively engage in goal-directed actions in BD, combined with stress-induced hypersensitivity to reward consumption. Potential clinical implications are discussed. PMID:27870507
Li, Li; MaBouDi, HaDi; Egertová, Michaela; Elphick, Maurice R.
2017-01-01
Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee (Bombus terrestris) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory. PMID:28978727
Li, Li; MaBouDi, HaDi; Egertová, Michaela; Elphick, Maurice R; Chittka, Lars; Perry, Clint J
2017-10-11
Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee ( Bombus terrestris ) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory. © 2017 The Authors.
Vythilingam, Meena; Nelson, Eric E.; Scaramozza, Matthew; Waldeck, Tracy; Hazlett, Gary; Southwick, Steven M.; Pine, Daniel S.; Drevets, Wayne; Charney, Dennis S.; Ernst, Monique
2008-01-01
Enhanced brain reward function could contribute to resilience to trauma. Reward circuitry in active duty, resilient special forces (SF) soldiers was evaluated using fMRI during a monetary incentive delay task. Findings in this group of resilient individuals revealed unique patterns of activation during expectation of reward in the subgenual prefrontal cortex and nucleus accumbens area; regions pivotal to reward processes. PMID:19243926
Fidelity of the representation of value in decision-making
Dowding, Ben A.
2017-01-01
The ability to make optimal decisions depends on evaluating the expected rewards associated with different potential actions. This process is critically dependent on the fidelity with which reward value information can be maintained in the nervous system. Here we directly probe the fidelity of value representation following a standard reinforcement learning task. The results demonstrate a previously-unrecognized bias in the representation of value: extreme reward values, both low and high, are stored significantly more accurately and precisely than intermediate rewards. The symmetry between low and high rewards pertained despite substantially higher frequency of exposure to high rewards, resulting from preferential exploitation of more rewarding options. The observed variation in fidelity of value representation retrospectively predicted performance on the reinforcement learning task, demonstrating that the bias in representation has an impact on decision-making. A second experiment in which one or other extreme-valued option was omitted from the learning sequence showed that representational fidelity is primarily determined by the relative position of an encoded value on the scale of rewards experienced during learning. Both variability and guessing decreased with the reduction in the number of options, consistent with allocation of a limited representational resource. These findings have implications for existing models of reward-based learning, which typically assume defectless representation of reward value. PMID:28248958
Kasanova, Zuzana; Ceccarini, Jenny; Frank, Michael J; Amelsvoort, Thérèse van; Booij, Jan; Heinzel, Alexander; Mottaghy, Felix; Myin-Germeys, Inez
2017-07-01
Much human behavior is driven by rewards. Preclinical neurophysiological and clinical positron emission tomography (PET) studies have implicated striatal phasic dopamine (DA) release as a primary modulator of reward processing. However, the relationship between experimental reward-induced striatal DA release and responsiveness to naturalistic rewards, and therefore functional relevance of these findings, has been elusive. We therefore combined, for the first time, a DA D 2/3 receptor [ 18 F]fallypride PET during a probabilistic reinforcement learning (RL) task with a six day ecological momentary assessments (EMA) of reward-related behavior in the everyday life of 16 healthy volunteers. We detected significant reward-induced DA release in the bilateral putamen, caudate nucleus and ventral striatum, the extent of which was associated with better behavioral performance on the RL task across all regions. Furthermore, individual variability in the extent of reward-induced DA release in the right caudate nucleus and ventral striatum modulated the tendency to be actively engaged in a behavior if the active engagement was previously deemed enjoyable. This study suggests a link between striatal reward-related DA release and ecologically relevant reward-oriented behavior, suggesting an avenue for the inquiry into the DAergic basis of optimal and impaired motivational drive. Copyright © 2017 Elsevier B.V. All rights reserved.
Anticipation of Monetary Reward Can Attenuate the Vigilance Decrement
Grosso, Mallory; Liu, Guanyu; Mitko, Alex; Morris, Rachael; DeGutis, Joseph
2016-01-01
Motivation and reward can have differential effects on separate aspects of sustained attention. We previously demonstrated that continuous reward/punishment throughout a sustained attention task improves overall performance, but not vigilance decrements. One interpretation of these findings is that vigilance decrements are due to resource depletion, which is not overcome by increasing overall motivation. However, an alternative explanation is that as one performs a continuously rewarded task there are less potential gains/losses as the task progresses, which could decrease motivation over time, producing a vigilance decrement. This would predict that keeping future gains/losses consistent throughout the task would reduce the vigilance decrement. In the current study, we examined this possibility by comparing two versions (continuous-small loss vs. anticipate-large loss) of a 10-minute gradual onset continuous performance task (gradCPT), a challenging go/no-go sustained attention task. Participants began each task with the potential to keep $18. In the continuous-small-loss version, small monetary losses were accrued continuously throughout the task for each error. However, in the anticipate-large-loss version, participants lost all $18 if they erroneously responded to one target that always appeared toward the end of the vigil. Typical vigilance decrements were observed in the continuous-small-loss condition. In the anticipate-large-loss condition, vigilance decrements were reduced, particularly when the anticipate-large loss condition was completed second. This suggests that the looming possibility of a large loss can attenuate the vigilance decrement and that this attenuation may occur most consistently after sufficient task experience. We discuss these results in the context of current theories of sustained attention. PMID:27472785
Negative reinforcement impairs overnight memory consolidation.
Stamm, Andrew W; Nguyen, Nam D; Seicol, Benjamin J; Fagan, Abigail; Oh, Angela; Drumm, Michael; Lundt, Maureen; Stickgold, Robert; Wamsley, Erin J
2014-11-01
Post-learning sleep is beneficial for human memory. However, it may be that not all memories benefit equally from sleep. Here, we manipulated a spatial learning task using monetary reward and performance feedback, asking whether enhancing the salience of the task would augment overnight memory consolidation and alter its incorporation into dreaming. Contrary to our hypothesis, we found that the addition of reward impaired overnight consolidation of spatial memory. Our findings seemingly contradict prior reports that enhancing the reward value of learned information augments sleep-dependent memory processing. Given that the reward followed a negative reinforcement paradigm, consolidation may have been impaired via a stress-related mechanism. © 2014 Stamm et al.; Published by Cold Spring Harbor Laboratory Press.
Visual perceptual learning by operant conditioning training follows rules of contingency.
Kim, Dongho; Seitz, Aaron R; Watanabe, Takeo
2015-01-01
Visual perceptual learning (VPL) can occur as a result of a repetitive stimulus-reward pairing in the absence of any task. This suggests that rules that guide Conditioning, such as stimulus-reward contingency (e.g. that stimulus predicts the likelihood of reward), may also guide the formation of VPL. To address this question, we trained subjects with an operant conditioning task in which there were contingencies between the response to one of three orientations and the presence of reward. Results showed that VPL only occurred for positive contingencies, but not for neutral or negative contingencies. These results suggest that the formation of VPL is influenced by similar rules that guide the process of Conditioning.
Visual perceptual learning by operant conditioning training follows rules of contingency
Kim, Dongho; Seitz, Aaron R; Watanabe, Takeo
2015-01-01
Visual perceptual learning (VPL) can occur as a result of a repetitive stimulus-reward pairing in the absence of any task. This suggests that rules that guide Conditioning, such as stimulus-reward contingency (e.g. that stimulus predicts the likelihood of reward), may also guide the formation of VPL. To address this question, we trained subjects with an operant conditioning task in which there were contingencies between the response to one of three orientations and the presence of reward. Results showed that VPL only occurred for positive contingencies, but not for neutral or negative contingencies. These results suggest that the formation of VPL is influenced by similar rules that guide the process of Conditioning. PMID:26028984
ERIC Educational Resources Information Center
Hefer, Carmen; Dreisbach, Gesine
2017-01-01
Growing evidence suggests that reward prospect promotes cognitive stability in terms of increased context or cue maintenance. In 3 Experiments, using different versions of the AX-continuous performance task, we investigated whether this reward effect comes at the cost of decreased cognitive flexibility. Experiment 1 shows that the reward induced…
Goldstone, Anthony P; Miras, Alexander D; Scholtz, Samantha; Jackson, Sabrina; Neff, Karl J; Pénicaud, Luc; Geoghegan, Justin; Chhina, Navpreet; Durighel, Giuliana; Bell, Jimmy D; Meillon, Sophie; le Roux, Carel W
2016-02-01
Roux-en-Y gastric bypass (RYGB) surgery is an effective long-term intervention for weight loss maintenance, reducing appetite, and also food reward, via unclear mechanisms. To investigate the role of elevated satiety gut hormones after RYGB, we examined food hedonic-reward responses after their acute post-prandial suppression. These were randomized, placebo-controlled, double-blind, crossover experimental medicine studies. Two groups, more than 5 months after RYGB for obesity (n = 7-11), compared with nonobese controls (n = 10), or patients after gastric banding (BAND) surgery (n = 9) participated in the studies. Studies were performed after acute administration of the somatostatin analog octreotide or saline. In one study, patients after RYGB, and nonobese controls, performed a behavioral progressive ratio task for chocolate sweets. In another study, patients after RYGB, and controls after BAND surgery, performed a functional magnetic resonance imaging food picture evaluation task. Octreotide increased both appetitive food reward (breakpoint) in the progressive ratio task (n = 9), and food appeal (n = 9) and reward system blood oxygen level-dependent signal (n = 7) in the functional magnetic resonance imaging task, in the RYGB group, but not in the control groups. Octreotide suppressed postprandial plasma peptide YY, glucagon-like peptide-1, and fibroblast growth factor-19 after RYGB. The reduction in plasma peptide YY with octreotide positively correlated with the increase in brain reward system blood oxygen level-dependent signal in RYGB/BAND subjects, with a similar trend for glucagon-like peptide-1. Enhanced satiety gut hormone responses after RYGB may be a causative mechanism by which anatomical alterations of the gut in obesity surgery modify behavioral and brain reward responses to food.
Zeuner, Kirsten E; Knutzen, Arne; Granert, Oliver; Sablowsky, Simone; Götz, Julia; Wolff, Stephan; Jansen, Olav; Dressler, Dirk; Schneider, Susanne A; Klein, Christine; Deuschl, Günther; van Eimeren, Thilo; Witt, Karsten
2016-01-01
Previous receptor binding studies suggest dopamine function is altered in the basal ganglia circuitry in task-specific dystonia, a condition characterized by contraction of agonist and antagonist muscles while performing specific tasks. Dopamine plays a role in reward-based learning. Using fMRI, this study compared 31 right-handed writer's cramp patients to 35 controls in reward-based learning of a probabilistic reversal-learning task. All subjects chose between two stimuli and indicated their response with their left or right index finger. One stimulus response was rewarded 80%, the other 20%. After contingencies reversal, the second stimulus response was rewarded in 80%. We further linked the DRD2/ANKK1-TaqIa polymorphism, which is associated with 30% reduction of the striatal dopamine receptor density with reward-based learning and assumed impaired reversal learning in A + subjects. Feedback learning in patients was normal. Blood-oxygen level dependent (BOLD) signal in controls increased with negative feedback in the insula, rostral cingulate cortex, middle frontal gyrus and parietal cortex (pFWE < 0.05). In comparison to controls, patients showed greater increase in BOLD activity following negative feedback in the dorsal anterior cingulate cortex (BA32). The genetic status was not correlated with the BOLD activity. The Brodmann area 32 (BA32) is part of the dorsal anterior cingulate cortex (dACC) that plays an important role in coordinating and integrating information to guide behavior and in reward-based learning. The dACC is connected with the basal ganglia-thalamo-loop modulated by dopaminergic signaling. This finding suggests disturbed integration of reinforcement history in decision making and implicate that the reward system might contribute to the pathogenesis in writer's cramp.
Reward loss and the basolateral amygdala: A function in reward comparisons.
Kawasaki, Katsuyoshi; Annicchiarico, Iván; Glueck, Amanda C; Morón, Ignacio; Papini, Mauricio R
2017-07-28
The neural circuitry underlying behavior in reward loss situations is poorly understood. We considered two such situations: reward devaluation (from large to small rewards) and reward omission (from large rewards to no rewards). There is evidence that the central nucleus of the amygdala (CeA) plays a role in the negative emotion accompanying reward loss. However, little is known about the function of the basolateral nucleus (BLA) in reward loss. Two hypotheses of BLA function in reward loss, negative emotion and reward comparisons, were tested in an experiment involving pretraining excitotoxic BLA lesions followed by training in four tasks: consummatory successive negative contrast (cSNC), autoshaping (AS) acquisition and extinction, anticipatory negative contrast (ANC), and open field testing (OF). Cell counts in the BLA (but not in the CeA) were significantly lower in animals with lesions vs. shams. BLA lesions eliminated cSNC and ANC, and accelerated extinction of lever pressing in AS. BLA lesions had no effect on OF testing: higher activity in the periphery than in the central area. This pattern of results provides support for the hypothesis that BLA neurons are important for reward comparison. The three affected tasks (cSNC, ANC, and AS extinction) involve reward comparisons. However, ANC does not seem to involve negative emotions and it was affected, whereas OF activity is known to involve negative emotion, but it was not affected. It is hypothesized that a circuit involving the thalamus, insular cortex, and BLA is critically involved in the mechanism comparing current and expected rewards. Copyright © 2017 Elsevier B.V. All rights reserved.
Oldham, Stuart; Murawski, Carsten; Fornito, Alex; Youssef, George; Yücel, Murat; Lorenzetti, Valentina
2018-04-25
The processing of rewards and losses are crucial to everyday functioning. Considerable interest has been attached to investigating the anticipation and outcome phases of reward and loss processing, but results to date have been inconsistent. It is unclear if anticipation and outcome of a reward or loss recruit similar or distinct brain regions. In particular, while the striatum has widely been found to be active when anticipating a reward, whether it activates in response to the anticipation of losses as well remains ambiguous. Furthermore, concerning the orbitofrontal/ventromedial prefrontal regions, activation is often observed during reward receipt. However, it is unclear if this area is active during reward anticipation as well. We ran an Activation Likelihood Estimation meta-analysis of 50 fMRI studies, which used the Monetary Incentive Delay Task (MIDT), to identify which brain regions are implicated in the anticipation of rewards, anticipation of losses, and the receipt of reward. Anticipating rewards and losses recruits overlapping areas including the striatum, insula, amygdala and thalamus, suggesting that a generalised neural system initiates motivational processes independent of valence. The orbitofrontal/ventromedial prefrontal regions were recruited only during the reward outcome, likely representing the value of the reward received. Our findings help to clarify the neural substrates of the different phases of reward and loss processing, and advance neurobiological models of these processes. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Gheza, Davide; De Raedt, Rudi; Baeken, Chris; Pourtois, Gilles
2018-06-01
Effort expenditure has an aversive connotation and it can lower hedonic feelings. In this study, we explored the electrophysiological correlates of the complex interplay of reward processing with cost anticipation. To this aim, healthy adult participants performed a gambling task where the outcome (monetary reward vs. no-reward) and its expectancy were manipulated on a trial by trial basis while 64-channel EEG was recorded. Crucially, on some trials, the no-reward outcome could be transformed to a rewarding one, pending effort expenditure by means of an orthogonal dot clicking task, enabling us to compare at the electrophysiological level reward processing when cost was anticipated or not. We extracted and compared different markers of reward processing at the feedback level using both classical ERPs and EEG spectral perturbations in specific bands (theta, delta and beta-gamma). At the behavioral level, participants reported enhanced pleasure and relief when the outcome was rewarding but effort expenditure could be avoided, relative to a control condition where the outcome was rewarding but no extra effort was anticipated. In this condition, EEG results showed a larger Reward Positivity ERP component and increased power in the Delta and Beta-gamma bands. By comparison, cost anticipation did not influence the processing of the no-reward outcome at the FRN and frontal midline theta levels. All together, these neurophysiological results suggest that effort avoidance is associated with increased reward processing. Copyright © 2018 Elsevier Inc. All rights reserved.
Cerebellar granule cells encode the expectation of reward
Wagner, Mark J; Kim, Tony Hyun; Savall, Joan; Schnitzer, Mark J; Luo, Liqun
2017-01-01
The human brain contains ~60 billion cerebellar granule cells1, which outnumber all other neurons combined. Classical theories posit that a large, diverse population of granule cells allows for highly detailed representations of sensorimotor context, enabling downstream Purkinje cells to sense fine contextual changes2–6. Although evidence suggests a role for cerebellum in cognition7–10, granule cells are known to encode only sensory11–13 and motor14 context. Using two-photon calcium imaging in behaving mice, here we show that granule cells convey information about the expectation of reward. Mice initiated voluntary forelimb movements for delayed water reward. Some granule cells responded preferentially to reward or reward omission, whereas others selectively encoded reward anticipation. Reward responses were not restricted to forelimb movement, as a Pavlovian task evoked similar responses. Compared to predictable rewards, unexpected rewards elicited markedly different granule cell activity despite identical stimuli and licking responses. In both tasks, reward signals were widespread throughout multiple cerebellar lobules. Tracking the same granule cells over several days of learning revealed that cells with reward-anticipating responses emerged from those that responded at the start of learning to reward delivery, whereas reward omission responses grew stronger as learning progressed. The discovery of predictive, non-sensorimotor encoding in granule cells is a major departure from current understanding of these neurons and dramatically enriches contextual information available to postsynaptic Purkinje cells, with important implications for cognitive processing in the cerebellum. PMID:28321129
Striatal dysfunction during reversal learning in unmedicated schizophrenia patients☆
Schlagenhauf, Florian; Huys, Quentin J.M.; Deserno, Lorenz; Rapp, Michael A.; Beck, Anne; Heinze, Hans-Joachim; Dolan, Ray; Heinz, Andreas
2014-01-01
Subjects with schizophrenia are impaired at reinforcement-driven reversal learning from as early as their first episode. The neurobiological basis of this deficit is unknown. We obtained behavioral and fMRI data in 24 unmedicated, primarily first episode, schizophrenia patients and 24 age-, IQ- and gender-matched healthy controls during a reversal learning task. We supplemented our fMRI analysis, focusing on learning from prediction errors, with detailed computational modeling to probe task solving strategy including an ability to deploy an internal goal directed model of the task. Patients displayed reduced functional activation in the ventral striatum (VS) elicited by prediction errors. However, modeling task performance revealed that a subgroup did not adjust their behavior according to an accurate internal model of the task structure, and these were also the more severely psychotic patients. In patients who could adapt their behavior, as well as in controls, task solving was best described by cognitive strategies according to a Hidden Markov Model. When we compared patients and controls who acted according to this strategy, patients still displayed a significant reduction in VS activation elicited by informative errors that precede salient changes of behavior (reversals). Thus, our study shows that VS dysfunction in schizophrenia patients during reward-related reversal learning remains a core deficit even when controlling for task solving strategies. This result highlights VS dysfunction is tightly linked to a reward-related reversal learning deficit in early, unmedicated schizophrenia patients. PMID:24291614
Autistic Traits Moderate the Impact of Reward Learning on Social Behaviour.
Panasiti, Maria Serena; Puzzo, Ignazio; Chakrabarti, Bhismadev
2016-04-01
A deficit in empathy has been suggested to underlie social behavioural atypicalities in autism. A parallel theoretical account proposes that reduced social motivation (i.e., low responsivity to social rewards) can account for the said atypicalities. Recent evidence suggests that autistic traits modulate the link between reward and proxy metrics related to empathy. Using an evaluative conditioning paradigm to associate high and low rewards with faces, a previous study has shown that individuals high in autistic traits show reduced spontaneous facial mimicry of faces associated with high vs. low reward. This observation raises the possibility that autistic traits modulate the magnitude of evaluative conditioning. To test this, we investigated (a) if autistic traits could modulate the ability to implicitly associate a reward value to a social stimulus (reward learning/conditioning, using the Implicit Association Task, IAT); (b) if the learned association could modulate participants' prosocial behaviour (i.e., social reciprocity, measured using the cyberball task); (c) if the strength of this modulation was influenced by autistic traits. In 43 neurotypical participants, we found that autistic traits moderated the relationship of social reward learning on prosocial behaviour but not reward learning itself. This evidence suggests that while autistic traits do not directly influence social reward learning, they modulate the relationship of social rewards with prosocial behaviour. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research.
Encoding of reward expectation by monkey anterior insular neurons
Mizuhiki, Takashi; Richmond, Barry J.
2012-01-01
The insula, a cortical brain region that is known to encode information about autonomic, visceral, and olfactory functions, has recently been shown to encode information during reward-seeking tasks in both single neuronal recording and functional magnetic resonance imaging studies. To examine the reward-related activation, we recorded from 170 single neurons in anterior insula of 2 monkeys during a multitrial reward schedule task, where the monkeys had to complete a schedule of 1, 2, 3, or 4 trials to earn a reward. In one block of trials a visual cue indicated whether a reward would or would not be delivered in the current trial after the monkey successfully detected that a red spot turned green, and in other blocks the visual cue was random with respect to reward delivery. Over one-quarter of 131 responsive neurons were activated when the current trial would (certain or uncertain) be rewarded if performed correctly. These same neurons failed to respond in trials that were certain, as indicated by the cue, to be unrewarded. Another group of neurons responded when the reward was delivered, similar to results reported previously. The dynamics of population activity in anterior insula also showed strong signals related to knowing when a reward is coming. The most parsimonious explanation is that this activity codes for a type of expected outcome, where the expectation encompasses both certain and uncertain rewards. PMID:22402653
Spetter, Maartje S; Feld, Gordon B; Thienel, Matthias; Preissl, Hubert; Hege, Maike A; Hallschmid, Manfred
2018-02-09
The hypothalamic neurohormone oxytocin decreases food intake via largely unexplored mechanisms. We investigated the central nervous mediation of oxytocin's hypophagic effect in comparison to its impact on the processing of generalized rewards. Fifteen fasted normal-weight, young men received intranasal oxytocin (24 IU) or placebo before functional magnetic resonance imaging (fMRI) measurements of brain activity during exposure to food stimuli and a monetary incentive delay task (MID). Subsequently, ad-libitum breakfast intake was assessed. Oxytocin compared to placebo increased activity in the ventromedial prefrontal cortex, supplementary motor area, anterior cingulate, and ventrolateral prefrontal cortices in response to high- vs. low-calorie food images in the fasted state, and reduced calorie intake by 12%. During anticipation of monetary rewards, oxytocin compared to placebo augmented striatal, orbitofrontal and insular activity without altering MID performance. We conclude that during the anticipation of generalized rewards, oxytocin stimulates dopaminergic reward-processing circuits. In contrast, oxytocin restrains food intake by enhancing the activity of brain regions that exert cognitive control, while concomitantly increasing the activity of structures that process food reward value. This pattern points towards a specific role of oxytocin in the regulation of eating behaviour in humans that might be of relevance for potential clinical applications.
Bryant, Jessica; Winer, E Samuel; Salem, Taban; Nadorff, Michael R
2017-01-01
Anhedonia, or the loss of interest and/or pleasure, is a core symptom of depression. Individuals experiencing anhedonia have difficulty motivating themselves to pursue rewarding stimuli, which can result in dysfunction. Action orientation is a motivational factor that might interact with anhedonia to potentially buffer against this dysfunction, as action-oriented individuals upregulate positive affect to quickly motivate themselves to complete goals in the face of stress. The Effort-Expenditure for Rewards Task (EEfRT) is a promising new method for examining differences in motivation in individuals experiencing anhedonia. In the EEfRT, participants choose either easier tasks associated with smaller monetary rewards or harder tasks associated with larger monetary rewards. We examined the relationship between action orientation and EEfRT performance following a negative mood induction in a sample with varying levels of anhedonia. There were two competing hypotheses: (1) action orientation would act as a buffer against anhedonia such that action-oriented individuals, regardless of anhedonic symptoms, would be motivated to pursue greater rewards despite stress, or (2) anhedonia would act as a debilitating factor such that individuals with elevated anhedonic symptoms, regardless of action orientation, would not pursue greater rewards. We examined these hypotheses via Generalized Estimating Equations and found an interaction between anhedonia and action orientation. At low levels of anhedonia, action orientation was associated with effort for reward, but this relationship was not present at high levels of anhedonia. Thus, at low levels of anhedonia, action orientation acted as a buffer against stress, but at high levels, anhedonia debilitated action orientation so that it was no longer a promotive factor.
Effects of reward and punishment on learning from errors in smokers.
Duehlmeyer, Leonie; Levis, Bianca; Hester, Robert
2018-04-30
Punishing errors facilitates adaptation in healthy individuals, while aberrant reward and punishment sensitivity in drug-dependent individuals may change this impact. Many societies have institutions that use the concept of punishing drug use behavior, making it important to understand how drug dependency mediates the effects of negative feedback for influencing adaptive behavior. Using an associative learning task, we investigated differences in error correction rates of dependent smokers, compared with controls. Two versions of the task were administered to different participant samples: One assessed the effect of varying monetary contingencies to task performance, the other, the presence of reward as compared to avoidance of punishment for correct performance. While smokers recalled associations that were rewarded with a higher value 11% more often than lower rewarded locations, they did not correct higher punished locations more often. Controls exhibited the opposite pattern. The three-way interaction between magnitude, feedback type and group was significant, F(1,48) = 5.288, p =0.026, ɳ 2 p =0.099. Neither participant group corrected locations offering reward more often than those offering avoidances of punishment. The interaction between group and feedback condition was not significant, F(1,58) = 0.0, p =0.99, ɳ 2 p =0.001. The present results suggest that smokers have poorer learning from errors when receiving negative feedback. Moreover, larger rewards reinforce smokers' behavior stronger than smaller rewards, whereas controls made no distinction. These findings support the hypothesis that dependent smokers may respond to positively framed and rewarded anti-smoking programs when compared to those relying on negative feedback or punishment. Copyright © 2018 Elsevier B.V. All rights reserved.
Evans, Theodore A; Perdue, Bonnie M; Parrish, Audrey E; Beran, Michael J
2014-03-01
Self-control is typically defined as choosing a greater, delayed reward over a lesser, more immediate reward. However, in nature, there are other costs besides delay associated with obtaining the greatest outcome including increased effort, potential punishment, and low probability of reward. Effort is an interesting case because it sometimes impairs self-control, by acting as an additional cost, and at other times facilitates self-control, by distracting one from impulsive options. Additionally, different species may perform differently in effortful self-control tasks, based on their natural ecology. To gain insight into these aspects of self-control behavior, we examined capuchin monkeys' and rhesus monkeys' self-control in separate working and waiting choice tasks. We hypothesized that capuchins would show greater self-control in the working task, given their naturally higher activity level, whereas rhesus would perform similarly in both tasks. Rhesus performed as predicted, whereas contrary to our hypothesis, capuchins exhibited lesser performance in the working task. Nonetheless, these results may still stem from inherent species differences interacting with details of the methodology. Capuchins, being highly energetic and social monkeys, may have divided their energy and attention between the working task and other elements of the test environment such as visible group mates or manipulanda. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Lawlor, Francis X.
1970-01-01
Indicates that the use of verbal rewards which are not congruent with behavior will result in less efficient problem-solving than either a neutral, no-reward situation, or the use of rewards which are congruent with the problem-solving behavior. The giving of congruent rewards improved the problem-solving efficiency of girls but not of boys. (LS)
Stimulus-Response-Outcome Coding in the Pigeon Nidopallium Caudolaterale
Starosta, Sarah; Güntürkün, Onur; Stüttgen, Maik C.
2013-01-01
A prerequisite for adaptive goal-directed behavior is that animals constantly evaluate action outcomes and relate them to both their antecedent behavior and to stimuli predictive of reward or non-reward. Here, we investigate whether single neurons in the avian nidopallium caudolaterale (NCL), a multimodal associative forebrain structure and a presumed analogue of mammalian prefrontal cortex, represent information useful for goal-directed behavior. We subjected pigeons to a go-nogo task, in which responding to one visual stimulus (S+) was partially reinforced, responding to another stimulus (S–) was punished, and responding to test stimuli from the same physical dimension (spatial frequency) was inconsequential. The birds responded most intensely to S+, and their response rates decreased monotonically as stimuli became progressively dissimilar to S+; thereby, response rates provided a behavioral index of reward expectancy. We found that many NCL neurons' responses were modulated in the stimulus discrimination phase, the outcome phase, or both. A substantial fraction of neurons increased firing for cues predicting non-reward or decreased firing for cues predicting reward. Interestingly, the same neurons also responded when reward was expected but not delivered, and could thus provide a negative reward prediction error or, alternatively, signal negative value. In addition, many cells showed motor-related response modulation. In summary, NCL neurons represent information about the reward value of specific stimuli, instrumental actions as well as action outcomes, and therefore provide signals useful for adaptive behavior in dynamically changing environments. PMID:23437383
Ohyama, Kaoru; Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Shidara, Munetaka; Sato, Chikara
2012-11-28
Acquiring the significance of events based on reward-related information is critical for animals to survive and to conduct social activities. The importance of the perirhinal cortex for reward-related information processing has been suggested. To examine whether or not neurons in this cortex represent reward information flexibly when a visual stimulus indicates either a rewarded or unrewarded outcome, neuronal activity in the macaque perirhinal cortex was examined using a conditional-association cued-reward task. The task design allowed us to study how the neuronal responses depended on the animal's prediction of whether it would or would not be rewarded. Two visual stimuli, a color stimulus as Cue1 followed by a pattern stimulus as Cue2, were sequentially presented. Each pattern stimulus was conditionally associated with both rewarded and unrewarded outcomes depending on the preceding color stimulus. We found an activity depending upon the two reward conditions during Cue2, i.e., pattern stimulus presentation. The response appeared after the response dependent upon the image identity of Cue2. The response delineating a specific cue sequence also appeared between the responses dependent upon the identity of Cue2 and reward conditions. Thus, when Cue1 sets the context for whether or not Cue2 indicates a reward, this region represents the meaning of Cue2, i.e., the reward conditions, independent of the identity of Cue2. These results suggest that neurons in the perirhinal cortex do more than associate a single stimulus with a reward to achieve flexible representations of reward information.
Overt and covert attention to location-based reward.
McCoy, Brónagh; Theeuwes, Jan
2018-01-01
Recent research on the impact of location-based reward on attentional orienting has indicated that reward factors play an influential role in spatial priority maps. The current study investigated whether and how reward associations based on spatial location translate from overt eye movements to covert attention. If reward associations can be tied to locations in space, and if overt and covert attention rely on similar overlapping neuronal populations, then both overt and covert attentional measures should display similar spatial-based reward learning. Our results suggest that location- and reward-based changes in one attentional domain do not lead to similar changes in the other. Specifically, although we found similar improvements at differentially rewarded locations during overt attentional learning, this translated to the least improvement at a highly rewarded location during covert attention. We interpret this as the result of an increased motivational link between the high reward location and the trained eye movement response acquired during learning, leading to a relative slowing during covert attention when the eyes remained fixated and the saccade response was suppressed. In a second experiment participants were not required to keep fixated during the covert attention task and we no longer observed relative slowing at the high reward location. Furthermore, the second experiment revealed no covert spatial priority of rewarded locations. We conclude that the transfer of location-based reward associations is intimately linked with the reward-modulated motor response employed during learning, and alternative attentional and task contexts may interfere with learned spatial priorities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Differential reward coding in the subdivisions of the primate caudate during an oculomotor task.
Nakamura, Kae; Santos, Gustavo S; Matsuzaki, Ryuichi; Nakahara, Hiroyuki
2012-11-07
The basal ganglia play a pivotal role in reward-oriented behavior. The striatum, an input channel of the basal ganglia, is composed of subdivisions that are topographically connected with different cortical and subcortical areas. To test whether reward information is differentially processed in the different parts of the striatum, we compared reward-related neuronal activity along the dorsolateral-ventromedial axis in the caudate nucleus of monkeys performing an asymmetrically rewarded oculomotor task. In a given block, a target in one position was associated with a large reward, whereas the other target was associated with a small reward. The target position-reward value contingency was switched between blocks. We found the following: (1) activity that reflected the block-wise reward contingency emerged before the appearance of a visual target, and it was more prevalent in the dorsal, rather than central and ventral, caudate; (2) activity that was positively related to the reward size of the current trial was evident, especially after reward delivery, and it was more prevalent in the ventral and central, rather than dorsal, caudate; and (3) activity that was modulated by the memory of the outcomes of the previous trials was evident in the dorsal and central caudate. This multiple reward information, together with the target-direction information, was represented primarily by individual caudate neurons, and the different reward information was represented in caudate subpopulations with distinct electrophysiological properties, e.g., baseline firing and spike width. These results suggest parallel processing of different reward information by the basal ganglia subdivisions defined by extrinsic connections and intrinsic properties.
Brain Regions Involved in the Learning and Application of Reward Rules in a Two-Deck Gambling Task
ERIC Educational Resources Information Center
Hartstra, E.; Oldenburg, J. F. E.; Van Leijenhorst, L.; Rombouts, S. A. R. B.; Crone, E. A.
2010-01-01
Decision-making involves the ability to choose between competing actions that are associated with uncertain benefits and penalties. The Iowa Gambling Task (IGT), which mimics real-life decision-making, involves learning a reward-punishment rule over multiple trials. Patients with damage to ventromedial prefrontal cortex (VMPFC) show deficits…
Interactive Impact of Intrinsic Motivators and Extrinsic Rewards on Behavior and Motivation Outcomes
ERIC Educational Resources Information Center
Xiang, Ping; Bruene, April; Chen, Ang
2005-01-01
In this study we examined the interrelationship among extrinsic rewards and achievement goals (including a work-avoidance goal), competence beliefs, and task values associated with health-enhancing running tasks over a school year. A group of elementary school students (n = 119) from a program that promoted running for running's sake and another…
Nicotine Withdrawal Induces Neural Deficits in Reward Processing.
Oliver, Jason A; Evans, David E; Addicott, Merideth A; Potts, Geoffrey F; Brandon, Thomas H; Drobes, David J
2017-06-01
Nicotine withdrawal reduces neurobiological responses to nonsmoking rewards. Insight into these reward deficits could inform the development of targeted interventions. This study examined the effect of withdrawal on neural and behavioral responses during a reward prediction task. Smokers (N = 48) attended two laboratory sessions following overnight abstinence. Withdrawal was manipulated by having participants smoke three regular nicotine (0.6 mg yield; satiation) or very low nicotine (0.05 mg yield; withdrawal) cigarettes. Electrophysiological recordings of neural activity were obtained while participants completed a reward prediction task that involved viewing four combinations of predictive and reward-determining stimuli: (1) Unexpected Reward; (2) Predicted Reward; (3) Predicted Punishment; (4) Unexpected Punishment. The task evokes a medial frontal negativity that mimics the phasic pattern of dopaminergic firing in ventral tegmental regions associated with reward prediction errors. Nicotine withdrawal decreased the amplitude of the medial frontal negativity equally across all trial types (p < .001). Exploratory analyses indicated withdrawal increased time to initiate the next trial following unexpected punishment trials (p < .001) and response time on reward trials during withdrawal was positively related to nicotine dependence (p < .001). Nicotine withdrawal had equivocal impact across trial types, suggesting reward processing deficits are unlikely to stem from changes in phasic dopaminergic activity during prediction errors. Effects on tonic activity may be more pronounced. Pharmacological interventions directly targeting the dopamine system and behavioral interventions designed to increase reward motivation and responsiveness (eg, behavioral activation) may aid in mitigating withdrawal symptoms and potentially improving smoking cessation outcomes. Findings from this study indicate nicotine withdrawal impacts reward processing signals that are observable in smokers' neural activity. This may play a role in the subjective aversive experience of nicotine withdrawal and potentially contribute to smoking relapse. Interventions that address abnormal responding to both pleasant and unpleasant stimuli may be particularly effective for alleviating nicotine withdrawal. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mechanisms of Habitual Approach
Anderson, Brian A.; Folk, Charles L.; Garrison, Rebecca; Rogers, Leeland
2016-01-01
Reward learning has a powerful influence on the attention system, causing previously reward-associated stimuli to automatically capture attention. Difficulty ignoring stimuli associated with drug reward has been linked to addiction relapse, and the attention system of drug-dependent patients seems especially influenced by reward history. This and other evidence suggests that value-driven attention has consequences for behavior and decision-making, facilitating a bias to approach and consume the previously reward-associated stimulus even when doing so runs counter to current goals and priorities. Yet, a mechanism linking value-driven attention to behavioral responding and a general approach bias is lacking. Here we show that previously reward-associated stimuli escape inhibitory processing in a go/no-go task. Control experiments confirmed that this value-dependent failure of goal-directed inhibition could not be explained by search history or residual motivation, but depended specifically on the learned association between particular stimuli and reward outcome. When a previously high-value stimulus is encountered, the response codes generated by that stimulus are automatically afforded high priority, bypassing goal-directed cognitive processes involved in suppressing task-irrelevant behavior. PMID:27054684
Luijten, Maartje; O'Connor, David A; Rossiter, Sarah; Franken, Ingmar H A; Hester, Robert
2013-11-01
Susceptibility to use of addictive substances may result, in part, from a greater preference for an immediate small reward relative to a larger delayed reward or relative insensitivity to punishment. This functional magnetic resonance imaging (fMRI) study examined the neural basis of inhibiting an immediately rewarding stimulus to obtain a larger delayed reward in smokers. We also investigated whether punishment could modulate inhibitory control. The Monetary Incentive Go/NoGo (MI-Go/NoGo) task was administered that provided three types of reward outcomes contingent upon inhibitory control performance over rewarding stimuli: inhibition failure was either followed by no monetary reward (neutral condition), a small monetary reward with immediate feedback (reward condition) or immediate monetary punishment (punishment condition). In the reward and punishment conditions, successful inhibitory control resulted in larger delayed rewards. Community sample of smokers in the Melbourne (Australia) area. Nineteen smokers were compared with 17 demographically matched non-smoking controls. Accuracy, reaction times and brain activation associated with the MI-Go/NoGo task. Smokers showed hyperactivation in the right insula (P < 0.01), inferior and middle frontal gyrus (P < 0.01), dorsolateral prefrontal cortex (P = 0.001) and inferior parietal lobe (P < 0.01) both during inhibition of an immediately rewarding stimulus to obtain a larger delayed reward, and during inhibition of neutral stimuli. Group differences in brain activity were not significant in the punishment condition in the right insula and dorsolateral prefrontal cortex, most probably as a result of increased activation in non-smoking controls. Compared with non-smokers, smokers showed increased neural activation when resisting immediately rewarding stimuli and may be less sensitive to punishment as a strategy to increase control over rewarding stimuli. © 2013 Society for the Study of Addiction.
Bjork, James M.; Smith, Ashley R.; Chen, Gang; Hommer, Daniel W.
2011-01-01
Aberrant sensitivity of incentive neurocircuitry to nondrug rewards has been suggested as either a risk factor for or consequence of drug addiction. Using functional magnetic resonance imaging, we tested whether alcohol-dependent patients (ADP: n = 29) showed altered recruitment of ventral striatal (VS) incentive neurocircuitry compared to controls (n = 23) by: 1) cues to respond for monetary rewards, 2) post-response anticipation of rewards, or 3) delivery of rewards. Using an instrumental task with two-stage presentation of reward-predictive information, subjects saw cues signaling opportunities to win $0, $1, or $10 for responding to a target. Following this response, subjects were notified whether their success would be indicated by a lexical notification (“Hit?”) or by delivery of a monetary reward (“Win?”). After a variable interval, subjects then viewed the trial outcome. We found no significant group differences in voxelwise activation by task contrasts, or in signal change extracted from VS. Both ADP and controls showed significant VS and other limbic recruitment by pre-response reward anticipation. In addition, controls also showed VS recruitment by post-response reward-anticipation, and ADP had appreciable subthreshold VS activation. Both groups also showed similar mesolimbic responses to reward deliveries. Across all subjects, a questionnaire measure of “hot” impulsivity correlated with VS recruitment by post-response anticipation of low rewards and with VS recruitment by delivery of low rewards. These findings indicate that incentive-motivational processing of nondrug rewards is substantially maintained in recovering alcoholics, and that reward-elicited VS recruitment correlates more with individual differences in trait impulsivity irrespective of addiction. PMID:22281932
Effects of motivation on reward and attentional networks: an fMRI study.
Ivanov, Iliyan; Liu, Xun; Clerkin, Suzanne; Schulz, Kurt; Friston, Karl; Newcorn, Jeffrey H; Fan, Jin
2012-11-01
Existing evidence suggests that reward and attentional networks function in concert and that activation in one system influences the other in a reciprocal fashion; however, the nature of these influences remains poorly understood. We therefore developed a three-component task to assess the interaction effects of reward anticipation and conflict resolution on the behavioral performance and the activation of brain reward and attentional systems. Sixteen healthy adult volunteers aged 21-45 years were scanned with functional magnetic resonance imaging (fMRI) while performing the task. A two-way repeated measures analysis of variance (ANOVA) with cue (reward vs. non-reward) and target (congruent vs. incongruent) as within-subjects factors was used to test for main and interaction effects. Neural responses to anticipation, conflict, and reward outcomes were tested. Behaviorally there were main effects of both reward cue and target congruency on reaction time. Neuroimaging results showed that reward anticipation and expected reward outcomes activated components of the attentional networks, including the inferior parietal and occipital cortices, whereas surprising non-rewards activated the frontoinsular cortex bilaterally and deactivated the ventral striatum. In turn, conflict activated a broad network associated with cognitive control and motor functions. Interaction effects showed decreased activity in the thalamus, anterior cingulated gyrus, and middle frontal gyrus bilaterally when difficult conflict trials (e.g., incongruent targets) were preceded by reward cues; in contrast, the ventral striatum and orbitofrontal cortex showed greater activation during congruent targets preceded by reward cues. These results suggest that reward anticipation is associated with lower activation in attentional networks, possibly due to increased processing efficiency, whereas more difficult, conflict trials are associated with lower activity in regions of the reward system, possibly because such trials are experienced as less rewarding.
Mendez, Ian A.; Gilbert, Ryan J.; Bizon, Jennifer L.
2012-01-01
Rationale Alterations in cost–benefit decision making accompany numerous neuropsychiatric conditions, including schizophrenia, attention deficit hyperactivity disorder, and addiction. Central cholinergic systems have been linked to the etiology and/or treatment of many of these conditions, but little is known about the role of cholinergic signaling in cost–benefit decision making. Objectives The goal of these experiments was to determine how cholinergic signaling is involved in cost–benefit decision making, using a behavioral pharmacological approach. Methods Male Long-Evans rats were trained in either “probability discounting” or “delay discounting” tasks, in which rats made discrete-trial choices between a small food reward and a large food reward associated with either varying probabilities of omission or varying delays to delivery, respectively. The effects of acute administration of different doses of nicotinic and muscarinic acetylcholine receptor agonists and antagonists were assessed in each task. Results In the probability discounting task, acute nicotine administration (1.0 mg/kg) significantly increased choice of the large risky reward, and control experiments suggested that this was due to robust nicotine-induced impairments in behavioral flexibility. In the delay discounting task, the muscarinic antagonists scopolamine (0.03, 0.1, and 0.3 mg/kg) and atropine (0.3 mg/kg) both significantly increased choice of the small immediate reward. Neither mecamylamine nor oxotremorine produced reliable effects on either of the decision making tasks. Conclusions These data suggest that cholinergic receptors play multiple roles in decision making contexts which include consideration of reward delay or probability. These roles should be considered when targeting these receptors for therapeutic purposes. PMID:22760484
Mendez, Ian A; Gilbert, Ryan J; Bizon, Jennifer L; Setlow, Barry
2012-12-01
Alterations in cost-benefit decision making accompany numerous neuropsychiatric conditions, including schizophrenia, attention deficit hyperactivity disorder, and addiction. Central cholinergic systems have been linked to the etiology and/or treatment of many of these conditions, but little is known about the role of cholinergic signaling in cost-benefit decision making. The goal of these experiments was to determine how cholinergic signaling is involved in cost-benefit decision making, using a behavioral pharmacological approach. Male Long-Evans rats were trained in either "probability discounting" or "delay discounting" tasks, in which rats made discrete-trial choices between a small food reward and a large food reward associated with either varying probabilities of omission or varying delays to delivery, respectively. The effects of acute administration of different doses of nicotinic and muscarinic acetylcholine receptor agonists and antagonists were assessed in each task. In the probability discounting task, acute nicotine administration (1.0 mg/kg) significantly increased choice of the large risky reward, and control experiments suggested that this was due to robust nicotine-induced impairments in behavioral flexibility. In the delay discounting task, the muscarinic antagonists scopolamine (0.03, 0.1, and 0.3 mg/kg) and atropine (0.3 mg/kg) both significantly increased choice of the small immediate reward. Neither mecamylamine nor oxotremorine produced reliable effects on either of the decision making tasks. These data suggest that cholinergic receptors play multiple roles in decision making contexts which include consideration of reward delay or probability. These roles should be considered when targeting these receptors for therapeutic purposes.
Reward Modulates Adaptations to Conflict
ERIC Educational Resources Information Center
Braem, Senne; Verguts, Tom; Roggeman, Chantal; Notebaert, Wim
2012-01-01
Both cognitive conflict (e.g. Verguts & Notebaert, 2009) and reward signals (e.g. Waszak & Pholulamdeth, 2009) have been proposed to enhance task-relevant associations. Bringing these two notions together, we predicted that reward modulates conflict-based sequential adaptations in cognitive control. This was tested combining either a single…
Acute stress selectively reduces reward sensitivity
Berghorst, Lisa H.; Bogdan, Ryan; Frank, Michael J.; Pizzagalli, Diego A.
2013-01-01
Stress may promote the onset of psychopathology by disrupting reward processing. However, the extent to which stress impairs reward processing, rather than incentive processing more generally, is unclear. To evaluate the specificity of stress-induced reward processing disruption, 100 psychiatrically healthy females were administered a probabilistic stimulus selection task (PSST) that enabled comparison of sensitivity to reward-driven (Go) and punishment-driven (NoGo) learning under either “no stress” or “stress” (threat-of-shock) conditions. Cortisol samples and self-report measures were collected. Contrary to hypotheses, the groups did not differ significantly in task performance or cortisol reactivity. However, further analyses focusing only on individuals under “stress” who were high responders with regard to both cortisol reactivity and self-reported negative affect revealed reduced reward sensitivity relative to individuals tested in the “no stress” condition; importantly, these deficits were reward-specific. Overall, findings provide preliminary evidence that stress-reactive individuals show diminished sensitivity to reward, but not punishment, under stress. While such results highlight the possibility that stress-induced anhedonia might be an important mechanism linking stress to affective disorders, future studies are necessary to confirm this conjecture. PMID:23596406
Pearson, Daniel; Osborn, Raphaella; Whitford, Thomas J; Failing, Michel; Theeuwes, Jan; Le Pelley, Mike E
2016-10-01
Recent research has shown that reward learning can modulate oculomotor and attentional capture by physically salient and task-irrelevant distractor stimuli, even when directing gaze to those stimuli is directly counterproductive to receiving reward. This value-modulated oculomotor capture effect may reflect biased competition in the oculomotor system, such that the relationship between a stimulus feature and reward enhances that feature's representation on an internal priority map. However, it is also possible that this effect is a result of reward reducing the threshold for a saccade to be made to salient items. Here, we demonstrate value-modulated oculomotor capture when two reward-associated distractor stimuli are presented simultaneously in the same search display. The influence of reward on oculomotor capture is found to be most prominent at the shortest saccade latencies. We conclude that the value-modulated oculomotor capture effect is a consequence of biased competition on the saccade priority map and cannot be explained by a general reduction in saccadic threshold.
Park, Junchol
2017-01-01
Actions motivated by rewards are often associated with risk of punishment. Little is known about the neural representation of punishment risk during reward-seeking behavior. We modeled this circumstance in rats by designing a task where actions were consistently rewarded but probabilistically punished. Spike activity and local field potentials were recorded during task performance simultaneously from VTA and mPFC, two reciprocally connected regions implicated in reward-seeking and aversive behaviors. At the single unit level, we found that ensembles of putative dopamine and non-dopamine VTA neurons and mPFC neurons encode the relationship between action and punishment. At the network level, we found that coherent theta oscillations synchronize VTA and mPFC in a bottom-up direction, effectively phase-modulating the neuronal spike activity in the two regions during punishment-free actions. This synchrony declined as a function of punishment probability, suggesting that during reward-seeking actions, risk of punishment diminishes VTA-driven neural synchrony between the two regions. PMID:29058673
OPPORTUNITY COSTS OF REWARD DELAYS AND THE DISCOUNTING OF HYPOTHETICAL MONEY AND CIGARETTES
Johnson, Patrick S.; Herrmann, Evan S.; Johnson, Matthew W.
2015-01-01
Humans are reported to discount delayed rewards at lower rates than nonhumans. However, nonhumans are studied in tasks that restrict reinforcement during delays, whereas humans are typically studied in tasks that do not restrict reinforcement during delays. In nonhuman tasks, the opportunity cost of restricted reinforcement during delays may increase delay discounting rates. The present within-subjects study used online crowdsourcing (Amazon Mechanical Turk, or MTurk) to assess the discounting of hypothetical delayed money (and cigarettes in smokers) under four hypothetical framing conditions differing in the availability of reinforcement during delays. At one extreme, participants were free to leave their computer without returning, and engage in any behavior during reward delays (modeling typical human tasks). At the opposite extreme, participants were required to stay at their computer and engage in little other behavior during reward delays (modeling typical nonhuman tasks). Discounting rates increased as an orderly function of opportunity cost. Results also indicated predominantly hyperbolic discounting, the “magnitude effect,” steeper discounting of cigarettes than money, and positive correlations between discounting rates of these commodities. This is the first study to test the effects of opportunity costs on discounting, and suggests that procedural differences may partially account for observed species differences in discounting. PMID:25388973
Opportunity costs of reward delays and the discounting of hypothetical money and cigarettes.
Johnson, Patrick S; Herrmann, Evan S; Johnson, Matthew W
2015-01-01
Humans are reported to discount delayed rewards at lower rates than nonhumans. However, nonhumans are studied in tasks that restrict reinforcement during delays, whereas humans are typically studied in tasks that do not restrict reinforcement during delays. In nonhuman tasks, the opportunity cost of restricted reinforcement during delays may increase delay discounting rates. The present within-subjects study used online crowdsourcing (Amazon Mechanical Turk, or MTurk) to assess the discounting of hypothetical delayed money (and cigarettes in smokers) under four hypothetical framing conditions differing in the availability of reinforcement during delays. At one extreme, participants were free to leave their computer without returning, and engage in any behavior during reward delays (modeling typical human tasks). At the opposite extreme, participants were required to stay at their computer and engage in little other behavior during reward delays (modeling typical nonhuman tasks). Discounting rates increased as an orderly function of opportunity cost. Results also indicated predominantly hyperbolic discounting, the "magnitude effect," steeper discounting of cigarettes than money, and positive correlations between discounting rates of these commodities. This is the first study to test the effects of opportunity costs on discounting, and suggests that procedural differences may partially account for observed species differences in discounting. © Society for the Experimental Analysis of Behavior.
Motivation and effort in individuals with social anhedonia
McCarthy, Julie M.; Treadway, Michael T.; Blanchard, Jack J.
2015-01-01
It has been proposed that anhedonia may, in part, reflect difficulties in reward processing and effortful decision-making. The current study aimed to replicate previous findings of effortful decision-making deficits associated with elevated anhedonia and expand upon these findings by investigating whether these decision-making deficits are specific to elevated social anhedonia or are also associated with elevated positive schizotypy characteristics. The current study compared controls (n = 40) to individuals elevated on social anhedonia (n = 30), and individuals elevated on perceptual aberration/magical ideation (n = 30) on the Effort Expenditure for Rewards Task (EEfRT). Across groups, participants chose a higher proportion of hard tasks with increasing probability of reward and reward magnitude, demonstrating sensitivity to probability and reward values. Contrary to our expectations, when the probability of reward was most uncertain (50% probability), at low and medium reward values, the social anhedonia group demonstrated more effortful decision-making than either individuals high in positive schizotypy or controls. The positive schizotypy group only differed from controls (making less effortful choices than controls) when reward probability was lowest (12%) and the magnitude of reward was the smallest. Our results suggest that social anhedonia is related to intact motivation and effort for monetary rewards, but that individuals with this characteristic display a unique and perhaps inefficient pattern of effort allocation when the probability of reward is most uncertain. Future research is needed to better understand effortful decision-making and the processing of reward across a range of individual difference characteristics. PMID:25888337
Funamizu, Akihiro; Ito, Makoto; Doya, Kenji; Kanzaki, Ryohei; Takahashi, Hirokazu
2015-01-01
Because humans and animals encounter various situations, the ability to adaptively decide upon responses to any situation is essential. To date, however, decision processes and the underlying neural substrates have been investigated under specific conditions; thus, little is known about how various conditions influence one another in these processes. In this study, we designed a binary choice task with variable- and fixed-reward conditions and investigated neural activities of the prelimbic cortex and dorsomedial striatum in rats. Variable- and fixed-reward conditions induced flexible and inflexible behaviors, respectively; one of the two conditions was randomly assigned in each trial for testing the possibility of condition interference. Rats were successfully conditioned such that they could find the better reward holes of variable-reward-condition and fixed-reward-condition trials. A learning interference model, which updated expected rewards (i.e., values) used in variable-reward-condition trials on the basis of combined experiences of both conditions, better fit choice behaviors than conventional models which updated values in each condition independently. Thus, although rats distinguished the trial condition, they updated values in a condition-interference manner. Our electrophysiological study suggests that this interfering value-updating is mediated by the prelimbic cortex and dorsomedial striatum. First, some prelimbic cortical and striatal neurons represented the action-reward associations irrespective of trial conditions. Second, the striatal neurons kept tracking the values of variable-reward condition even in fixed-reward-condition trials, such that values were possibly interferingly updated even in the fixed-reward condition.
Involvement of the endocannabinoid system in reward processing in the human brain.
van Hell, Hendrika H; Jager, Gerry; Bossong, Matthijs G; Brouwer, Annelies; Jansma, J Martijn; Zuurman, Lineke; van Gerven, Joop; Kahn, René S; Ramsey, Nick F
2012-02-01
Disturbed reward processing in humans has been associated with a number of disorders, such as depression, addiction, and attention-deficit hyperactivity disorder. The endocannabinoid (eCB) system has been implicated in reward processing in animals, but in humans, the relation between eCB functioning and reward is less clear. The current study uses functional magnetic resonance imaging (fMRI) to investigate the role of the eCB system in reward processing in humans by examining the effect of the eCB agonist Δ(9)-tetrahydrocannabinol (THC) on reward-related brain activity. Eleven healthy males participated in a randomized placebo-controlled pharmacological fMRI study with administration of THC to challenge the eCB system. We compared anticipatory and feedback-related brain activity after placebo and THC, using a monetary incentive delay task. In this task, subjects are notified before each trial whether a correct response is rewarded ("reward trial") or not ("neutral trial"). Subjects showed faster reaction times during reward trials compared to neutral trials, and this effect was not altered by THC. THC induced a widespread attenuation of the brain response to feedback in reward trials but not in neutral trials. Anticipatory brain activity was not affected. These results suggest a role for the eCB system in the appreciation of rewards. The involvement of the eCB system in feedback processing may be relevant for disorders in which appreciation of natural rewards may be affected such as addiction.
Yu, Xue; Sonuga-Barke, Edmund
2016-07-28
Individuals with ADHD have been shown to prefer smaller sooner over larger later rewards. This has been explained in terms of abnormally steeper discounting of the value of delayed reinforcers. Evidence for this comes from different experimental paradigms. In some, participants experience delay in the laboratory (real-time delay tasks; R-TD), in others they imagine the delay to reinforcers (hypothetical delay tasks; HD). We directly contrasted the performance of 7- to 12-year-old children with ADHD (n = 23) and matched controls (n = 23) on R-TD and HD tasks with monetary rewards. Children with ADHD displayed steeper temporal discounting on the R-TD, but not the HD tasks. These findings suggest that the experience of waiting prior to the delivery of rewards is an important determinant of heightened temporal discounting in ADHD-a finding consistent with models that emphasize the aversive nature of delay for children. © The Author(s) 2016.
Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso
2015-01-01
Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.
Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso
2015-01-01
Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640
Can a near win kindle motivation? The impact of nearly winning on motivation for unrelated rewards.
Wadhwa, Monica; Kim, JeeHye Christine
2015-06-01
Common intuition and research suggest that winning is more motivating than losing. However, we propose that just failing to obtain a reward (i.e., nearly winning it) in one task leads to broader, positive motivational effects on subsequent unrelated tasks relative to clearly losing or actually obtaining the reward. We manipulated a near-win experience using a game app in Experiments 1 through 3 and a lottery in Experiment 4. Our findings showed that nearly winning in one task subsequently led participants to walk faster to get to a chocolate bar (Experiment 1), salivate more for money (Experiment 2), and increase their effort to earn money in a card-sorting task (Experiment 3). A field study (Experiment 4) demonstrated that nearly winning led people to subsequently spend more money on desirable consumer products. Finally, our findings showed that when the activated motivational state was dampened in an intervening task, the nearly-winning effect was attenuated. © The Author(s) 2015.
Rapid target foraging with reach or gaze: The hand looks further ahead than the eye
2017-01-01
Real-world tasks typically consist of a series of target-directed actions and often require choices about which targets to act on and in what order. Such choice behavior can be assessed from an optimal foraging perspective whereby target selection is shaped by a balance between rewards and costs. Here we evaluated such decision-making in a rapid movement foraging task. On a given trial, participants were presented with 15 targets of varying size and value and were instructed to harvest as much reward as possible by either moving a handle to the targets (hand task) or by briefly fixating them (eye task). The short trial duration enabled participants to harvest about half the targets, ensuring that total reward was due to choice behavior. We developed a probabilistic model to predict target-by-target harvesting choices that considered the rewards and movement-related costs (i.e., target distance and size) associated with the current target as well as future targets. In the hand task, in comparison to the eye task, target choice was more strongly influenced by movement-related costs and took into account a greater number of future targets, consistent with the greater costs associated with arm movement. In both tasks, participants exhibited near-optimal behaviour and in a constrained version of the hand task in which choices could only be based on target positions, participants consistently chose among the shortest movement paths. Our results demonstrate that people can rapidly and effectively integrate values and movement-related costs associated with current and future targets when sequentially harvesting targets. PMID:28683138
Balancing Risk and Reward: A Rat Model of Risky Decision-Making
Simon, Nicholas W.; Gilbert, Ryan J.; Mayse, Jeffrey D.; Bizon, Jennifer L.; Setlow, Barry
2009-01-01
We developed a behavioral task in rats to assess the influence of risk of punishment on decision-making. Male Long-Evans rats were given choices between pressing a lever to obtain a small, “safe” food reward and a large food reward associated with risk of punishment (footshock). Each test session consisted of 5 blocks of 10 choice trials, with punishment risk increasing with each consecutive block (0, 25, 50, 75, 100%). Preference for the large, “risky” reward declined with both increased probability and increased magnitude of punishment, and reward choice was not affected by the level of satiation or the order of risk presentation. Performance in this risky decision-making task was correlated with the degree to which the rats discounted the value of probabilistic rewards, but not delayed rewards. Finally, the acute effects of different doses of amphetamine and cocaine on risky decision-making were assessed. Systemic amphetamine administration caused a dose-dependent decrease in choice of the large risky reward (i.e. – it made rats more risk-averse). Cocaine did not cause a shift in reward choice, but instead impaired rats’ sensitivity to changes in punishment risk. These results should prove useful for investigating neuropsychiatric disorders in which risk taking is a prominent feature, such as attention deficit/hyperactivity disorder and addiction. PMID:19440192
Music models aberrant rule decoding and reward valuation in dementia
Clark, Camilla N; Golden, Hannah L; McCallion, Oliver; Nicholas, Jennifer M; Cohen, Miriam H; Slattery, Catherine F; Paterson, Ross W; Fletcher, Phillip D; Mummery, Catherine J; Rohrer, Jonathan D; Crutch, Sebastian J; Warren, Jason D
2018-01-01
Abstract Aberrant rule- and reward-based processes underpin abnormalities of socio-emotional behaviour in major dementias. However, these processes remain poorly characterized. Here we used music to probe rule decoding and reward valuation in patients with frontotemporal dementia (FTD) syndromes and Alzheimer’s disease (AD) relative to healthy age-matched individuals. We created short melodies that were either harmonically resolved (‘finished’) or unresolved (‘unfinished’); the task was to classify each melody as finished or unfinished (rule processing) and rate its subjective pleasantness (reward valuation). Results were adjusted for elementary pitch and executive processing; neuroanatomical correlates were assessed using voxel-based morphometry. Relative to healthy older controls, patients with behavioural variant FTD showed impairments of both musical rule decoding and reward valuation, while patients with semantic dementia showed impaired reward valuation but intact rule decoding, patients with AD showed impaired rule decoding but intact reward valuation and patients with progressive non-fluent aphasia performed comparably to healthy controls. Grey matter associations with task performance were identified in anterior temporal, medial and lateral orbitofrontal cortices, previously implicated in computing diverse biological and non-biological rules and rewards. The processing of musical rules and reward distils cognitive and neuroanatomical mechanisms relevant to complex socio-emotional dysfunction in major dementias. PMID:29186630
Balancing risk and reward: a rat model of risky decision making.
Simon, Nicholas W; Gilbert, Ryan J; Mayse, Jeffrey D; Bizon, Jennifer L; Setlow, Barry
2009-09-01
We developed a behavioral task in rats to assess the influence of risk of punishment on decision making. Male Long-Evans rats were given choices between pressing a lever to obtain a small, 'safe' food reward and a large food reward associated with risk of punishment (footshock). Each test session consisted of 5 blocks of 10 choice trials, with punishment risk increasing with each consecutive block (0, 25, 50, 75, 100%). Preference for the large, 'risky' reward declined with both increased probability and increased magnitude of punishment, and reward choice was not affected by the level of satiation or the order of risk presentation. Performance in this risky decision-making task was correlated with the degree to which the rats discounted the value of probabilistic rewards, but not delayed rewards. Finally, the acute effects of different doses of amphetamine and cocaine on risky decision making were assessed. Systemic amphetamine administration caused a dose-dependent decrease in choice of the large risky reward (ie, it made rats more risk averse). Cocaine did not cause a shift in reward choice, but instead impaired the rats' sensitivity to changes in punishment risk. These results should prove useful for investigating neuropsychiatric disorders in which risk taking is a prominent feature, such as attention deficit/hyperactivity disorder and addiction.
Carl, Hannah; Walsh, Erin; Eisenlohr-Moul, Tory; Minkel, Jared; Crowther, Andrew; Moore, Tyler; Gibbs, Devin; Petty, Chris; Bizzell, Josh; Dichter, Gabriel S; Smoski, Moria J
2016-10-01
The purpose of the present investigation was to evaluate whether pre-treatment neural activation in response to rewards is a predictor of clinical response to Behavioral Activation Therapy for Depression (BATD), an empirically validated psychotherapy that decreases depressive symptoms by increasing engagement with rewarding stimuli and reducing avoidance behaviors. Participants were 33 outpatients with major depressive disorder (MDD) and 20 matched controls. We examined group differences in activation, and the capacity to sustain activation, across task runs using functional magnetic resonance imaging (fMRI) and the monetary incentive delay (MID) task. Hierarchical linear modeling was used to investigate whether pre-treatment neural responses predicted change in depressive symptoms over the course of BATD treatment. MDD and Control groups differed in sustained activation during reward outcomes in the right nucleus accumbens, such that the MDD group experienced a significant decrease in activation in this region from the first to second task run relative to controls. Pretreatment anhedonia severity and pretreatment task-related reaction times were predictive of response to treatment. Furthermore, sustained activation in the anterior cingulate cortex during reward outcomes predicted response to psychotherapy; patients with greater sustained activation in this region were more responsive to BATD treatment. The current study only included a single treatment condition, thus it unknown whether these predictors of treatment response are specific to BATD or psychotherapy in general. Findings add to the growing body of literature suggesting that the capacity to sustain neural responses to rewards may be a critical endophenotype of MDD. Copyright © 2016 Elsevier B.V. All rights reserved.
Toda, Koji; Sugase-Miyamoto, Yasuko; Mizuhiki, Takashi; Inaba, Kiyonori; Richmond, Barry J; Shidara, Munetaka
2012-01-01
The value of a predicted reward can be estimated based on the conjunction of both the intrinsic reward value and the length of time to obtain it. The question we addressed is how the two aspects, reward size and proximity to reward, influence the responses of neurons in rostral anterior cingulate cortex (rACC), a brain region thought to play an important role in reward processing. We recorded from single neurons while two monkeys performed a multi-trial reward schedule task. The monkeys performed 1-4 sequential color discrimination trials to obtain a reward of 1-3 liquid drops. There were two task conditions, a valid cue condition, where the number of trials and reward amount were associated with visual cues, and a random cue condition, where the cue was picked from the cue set at random. In the valid cue condition, the neuronal firing is strongly modulated by the predicted reward proximity during the trials. Information about the predicted reward amount is almost absent at those times. In substantial subpopulations, the neuronal responses decreased or increased gradually through schedule progress to the predicted outcome. These two gradually modulating signals could be used to calculate the effect of time on the perception of reward value. In the random cue condition, little information about the reward proximity or reward amount is encoded during the course of the trial before reward delivery, but when the reward is actually delivered the responses reflect both the reward proximity and reward amount. Our results suggest that the rACC neurons encode information about reward proximity and amount in a manner that is dependent on utility of reward information. The manner in which the information is represented could be used in the moment-to-moment calculation of the effect of time and amount on predicted outcome value.
Gonzalez-Gadea, Maria Luz; Sigman, Mariano; Rattazzi, Alexia; Lavin, Claudio; Rivera-Rei, Alvaro; Marino, Julian; Manes, Facundo; Ibanez, Agustin
2016-01-01
Recent theories of decision making propose a shared value-related brain mechanism for encoding monetary and social rewards. We tested this model in children with Attention-Deficit/Hyperactivity Disorder (ADHD), children with Autism Spectrum Disorder (ASD) and control children. We monitored participants’ brain dynamics using high density-electroencephalography while they played a monetary and social reward tasks. Control children exhibited a feedback Error-Related Negativity (fERN) modulation and Anterior Cingulate Cortex (ACC) source activation during both tasks. Remarkably, although cooperation resulted in greater losses for the participants, the betrayal options generated greater fERN responses. ADHD subjects exhibited an absence of fERN modulation and reduced ACC activation during both tasks. ASD subjects exhibited normal fERN modulation during monetary choices and inverted fERN/ACC responses in social options than did controls. These results suggest that in neurotypicals, monetary losses and observed disloyal social decisions induced similar activity in the brain value system. In ADHD children, difficulties in reward processing affected early brain signatures of monetary and social decisions. Conversely, ASD children showed intact neural markers of value-related monetary mechanisms, but no brain modulation by prosociality in the social task. These results offer insight into the typical and atypical developments of neural correlates of monetary and social reward processing. PMID:27464551
Humans Integrate Monetary and Liquid Incentives to Motivate Cognitive Task Performance
Yee, Debbie M.; Krug, Marie K.; Allen, Ariel Z.; Braver, Todd S.
2016-01-01
It is unequivocal that a wide variety of incentives can motivate behavior. However, few studies have explicitly examined whether and how different incentives are integrated in terms of their motivational influence. The current study examines the combined effects of monetary and liquid incentives on cognitive processing, and whether appetitive and aversive incentives have distinct influences. We introduce a novel task paradigm, in which participants perform cued task-switching for monetary rewards that vary parametrically across trials, with liquid incentives serving as post-trial performance feedback. Critically, the symbolic meaning of the liquid was held constant (indicating successful reward attainment), while liquid valence was blocked. In the first experiment, monetary rewards combined additively with appetitive liquid feedback to improve subject task performance. Aversive liquid feedback counteracted monetary reward effects in low monetary reward trials, particularly in a subset of participants who tended to avoid responding under these conditions. Self-report motivation ratings predicted behavioral performance above and beyond experimental effects. A follow-up experiment replicated the predictive power of motivation ratings even when only appetitive liquids were used, suggesting that ratings reflect idiosyncratic subjective values of, rather than categorical differences between, the liquid incentives. Together, the findings indicate an integrative relationship between primary and secondary incentives and potentially dissociable influences in modulating motivational value, while informing hypotheses regarding candidate neural mechanisms. PMID:26834668
Sethi, Arjun; Voon, Valerie; Critchley, Hugo D; Cercignani, Mara; Harrison, Neil A
2018-05-01
Computational models of reinforcement learning have helped dissect discrete components of reward-related function and characterize neurocognitive deficits in psychiatric illnesses. Stimulus novelty biases decision-making, even when unrelated to choice outcome, acting as if possessing intrinsic reward value to guide decisions toward uncertain options. Heightened novelty seeking is characteristic of attention deficit hyperactivity disorder, yet how this influences reward-related decision-making is computationally encoded, or is altered by stimulant medication, is currently uncertain. Here we used an established reinforcement-learning task to model effects of novelty on reward-related behaviour during functional MRI in 30 adults with attention deficit hyperactivity disorder and 30 age-, sex- and IQ-matched control subjects. Each participant was tested on two separate occasions, once ON and once OFF stimulant medication. OFF medication, patients with attention deficit hyperactivity disorder showed significantly impaired task performance (P = 0.027), and greater selection of novel options (P = 0.004). Moreover, persistence in selecting novel options predicted impaired task performance (P = 0.025). These behavioural deficits were accompanied by a significantly lower learning rate (P = 0.011) and heightened novelty signalling within the substantia nigra/ventral tegmental area (family-wise error corrected P < 0.05). Compared to effects in controls, stimulant medication improved attention deficit hyperactivity disorder participants' overall task performance (P = 0.011), increased reward-learning rates (P = 0.046) and enhanced their ability to differentiate optimal from non-optimal novel choices (P = 0.032). It also reduced substantia nigra/ventral tegmental area responses to novelty. Preliminary cross-sectional evidence additionally suggested an association between long-term stimulant treatment and a reduction in the rewarding value of novelty. These data suggest that aberrant substantia nigra/ventral tegmental area novelty processing plays an important role in the suboptimal reward-related decision-making characteristic of attention deficit hyperactivity disorder. Compared to effects in controls, abnormalities in novelty processing and reward-related learning were improved by stimulant medication, suggesting that they may be disorder-specific targets for the pharmacological management of attention deficit hyperactivity disorder symptoms.
Reward acts on the pFC to enhance distractor resistance of working memory representations.
Fallon, Sean James; Cools, Roshan
2014-12-01
Working memory and reward processing are often thought to be separate, unrelated processes. However, most daily activities involve integrating these two types of information, and the two processes rarely, if ever, occur in isolation. Here, we show that working memory and reward interact in a task-dependent manner and that this task-dependent interaction involves modulation of the pFC by the ventral striatum. Specifically, BOLD signal during gains relative to losses in the ventral striatum and pFC was associated not only with enhanced distractor resistance but also with impairment in the ability to update working memory representations. Furthermore, the effect of reward on working memory was accompanied by differential coupling between the ventral striatum and ignore-related regions in the pFC. Together, these data demonstrate that reward-related signals modulate the balance between cognitive stability and cognitive flexibility by altering functional coupling between the ventral striatum and the pFC.
FMRQ-A Multiagent Reinforcement Learning Algorithm for Fully Cooperative Tasks.
Zhang, Zhen; Zhao, Dongbin; Gao, Junwei; Wang, Dongqing; Dai, Yujie
2017-06-01
In this paper, we propose a multiagent reinforcement learning algorithm dealing with fully cooperative tasks. The algorithm is called frequency of the maximum reward Q-learning (FMRQ). FMRQ aims to achieve one of the optimal Nash equilibria so as to optimize the performance index in multiagent systems. The frequency of obtaining the highest global immediate reward instead of immediate reward is used as the reinforcement signal. With FMRQ each agent does not need the observation of the other agents' actions and only shares its state and reward at each step. We validate FMRQ through case studies of repeated games: four cases of two-player two-action and one case of three-player two-action. It is demonstrated that FMRQ can converge to one of the optimal Nash equilibria in these cases. Moreover, comparison experiments on tasks with multiple states and finite steps are conducted. One is box-pushing and the other one is distributed sensor network problem. Experimental results show that the proposed algorithm outperforms others with higher performance.
Teles-Grilo Ruivo, Leonor M; Baker, Keeley L; Conway, Michael W; Kinsley, Peter J; Gilmour, Gary; Phillips, Keith G; Isaac, John T R; Lowry, John P; Mellor, Jack R
2017-01-24
Cholinergic neurotransmission throughout the neocortex and hippocampus regulates arousal, learning, and attention. However, owing to the poorly characterized timing and location of acetylcholine release, its detailed behavioral functions remain unclear. Using electrochemical biosensors chronically implanted in mice, we made continuous measurements of the spatiotemporal dynamics of acetylcholine release across multiple behavioral states. We found that tonic levels of acetylcholine release were coordinated between the prefrontal cortex and hippocampus and maximal during training on a rewarded working memory task. Tonic release also increased during REM sleep but was contingent on subsequent wakefulness. In contrast, coordinated phasic acetylcholine release occurred only during the memory task and was strongly localized to reward delivery areas without being contingent on trial outcome. These results show that coordinated acetylcholine release between the prefrontal cortex and hippocampus is associated with reward and arousal on distinct timescales, providing dual mechanisms to support learned behavior acquisition during cognitive task performance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Brain structure, executive function and appetitive traits in adolescent obesity.
de Groot, C J; van den Akker, E L T; Rings, E H H M; Delemarre-van de Waal, H A; van der Grond, J
2017-08-01
Children with obesity show differences in brain structure, executive function and appetitive traits when compared with lean peers. Little is known on the relationship between brain structure and these traits. To investigate the relationship between differences in brain structure and executive function and appetitive traits, in obese and lean adolescents. MRI was used to measure cortical thickness and subcortical volumes. Executive function was measured by a Stop Signal-and a Choice Delay Task. Appetitive traits were measured using the Child Eating Behaviour Questionnaire. Adolescents with obesity had greater volumes of the pallidum; 1.78 mL (SE 0.03, p=0.014), when compared with controls; 1.65 mL (SE 0.02). In the group with obesity, greater pallidum volume was positively associated with the ability to delay reward in the Choice Delay Task (p=0.012). The association between pallidum volumes and Choice Delay Task in obese adolescents supports the hypothesis that the pallidum plays an important role in executive dysfunction in obese children. © 2016 World Obesity Federation.
A frontal dopamine system for reflective exploratory behavior.
Blanco, Nathaniel J; Love, Bradley C; Cooper, Jessica A; McGeary, John E; Knopik, Valerie S; Maddox, W Todd
2015-09-01
The COMT gene modulates dopamine levels in prefrontal cortex with Met allele carriers having lower COMT enzyme activity and, therefore, higher dopamine levels compared to Val/Val homozygotes. Concordantly, Val/Val homozygotes tend to perform worse and display increased (interpreted as inefficient) frontal activation in certain cognitive tasks. In a sample of 209 participants, we test the hypothesis that Met carriers will be advantaged in a decision-making task that demands sequencing exploratory and exploitive choices to minimize uncertainty about the reward structure in the environment. Previous work suggests that optimal performance depends on limited cognitive resources supported by prefrontal systems. If so, Met carriers should outperform Val/Val homozygotes, particularly under dual-task conditions that tax limited cognitive resources. In accord with these a priori predictions, Met carriers were more resilient in the face of cognitive load, continuing to explore in a sophisticated manner. We fit computational models that embody sophisticated reflective and simple reflexive strategies to further evaluate participants' exploration behavior. The Ideal Actor model reflectively updates beliefs and plans ahead, taking into account the information gained by each choice and making choices that maximize long-term payoffs. In contrast, the Naïve Reinforcement Learning (RL) model instantiates the reflexive account of choice, in which the values of actions are based only on the rewards experienced so far. Its beliefs are updated reflexively in response to observed changes in rewards. Converging with standard analyses, Met carriers were best characterized by the Ideal Actor model, whereas Val/Val homozygotes were best characterized by the Naive RL model, particularly under dual-task conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
Diuk, Carlos; Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew; Niv, Yael
2013-03-27
Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously.
Minamimoto, Takafumi; La Camera, Giancarlo; Richmond, Barry J
2009-01-01
Motivation is usually inferred from the likelihood or the intensity with which behavior is carried out. It is sensitive to external factors (e.g., the identity, amount, and timing of a rewarding outcome) and internal factors (e.g., hunger or thirst). We trained macaque monkeys to perform a nonchoice instrumental task (a sequential red-green color discrimination) while manipulating two external factors: reward size and delay-to-reward. We also inferred the state of one internal factor, level of satiation, by monitoring the accumulated reward. A visual cue indicated the forthcoming reward size and delay-to-reward in each trial. The fraction of trials completed correctly by the monkeys increased linearly with reward size and was hyperbolically discounted by delay-to-reward duration, relations that are similar to those found in free operant and choice tasks. The fraction of correct trials also decreased progressively as a function of the satiation level. Similar (albeit noiser) relations were obtained for reaction times. The combined effect of reward size, delay-to-reward, and satiation level on the proportion of correct trials is well described as a multiplication of the effects of the single factors when each factor is examined alone. These results provide a quantitative account of the interaction of external and internal factors on instrumental behavior, and allow us to extend the concept of subjective value of a rewarding outcome, usually confined to external factors, to account also for slow changes in the internal drive of the subject.
Minamimoto, Takafumi; La Camera, Giancarlo; Richmond, Barry J.
2009-01-01
Motivation is usually inferred from the likelihood or the intensity with which behavior is carried out. It is sensitive to external factors (e.g., the identity, amount, and timing of a rewarding outcome) and internal factors (e.g., hunger or thirst). We trained macaque monkeys to perform a nonchoice instrumental task (a sequential red-green color discrimination) while manipulating two external factors: reward size and delay-to-reward. We also inferred the state of one internal factor, level of satiation, by monitoring the accumulated reward. A visual cue indicated the forthcoming reward size and delay-to-reward in each trial. The fraction of trials completed correctly by the monkeys increased linearly with reward size and was hyperbolically discounted by delay-to-reward duration, relations that are similar to those found in free operant and choice tasks. The fraction of correct trials also decreased progressively as a function of the satiation level. Similar (albeit noiser) relations were obtained for reaction times. The combined effect of reward size, delay-to-reward, and satiation level on the proportion of correct trials is well described as a multiplication of the effects of the single factors when each factor is examined alone. These results provide a quantitative account of the interaction of external and internal factors on instrumental behavior, and allow us to extend the concept of subjective value of a rewarding outcome, usually confined to external factors, to account also for slow changes in the internal drive of the subject. PMID:18987119
The rewarding value of good motor performance in the context of monetary incentives.
Lutz, Kai; Pedroni, Andreas; Nadig, Karin; Luechinger, Roger; Jäncke, Lutz
2012-07-01
Whether an agent receives positive task feedback or a monetary reward, neural activity in their striatum increases. In the latter case striatal activity reflects extrinsic reward processing, while in the former, striatal activity reflects the intrinsically rewarding effects of performing well. There can be a "hidden cost of reward", which is a detrimental effect of extrinsic on intrinsic reward value. This raises the question how these two types of reward interact. To address this, we applied a monetary incentive delay task: in all trials participants received feedback depending on their performance. In half of the trials they could additionally receive monetary reward if they performed well. This resulted in high performance trials, which were monetarily rewarded and high performance trials that were not. This made it possible to dissociate the neural correlates of performance feedback from the neural correlates of monetary reward that comes with high performance. Performance feedback alone elicits activation increases in the ventral striatum. This activation increases due to additional monetary reward. Neural response in the dorsal striatum on the other hand is only significantly increased by feedback when a monetary incentive is present. The quality of performance does not significantly influence dorsal striatum activity. In conclusion, our results indicate that the dorsal striatum is primarily sensitive to optional or actually received external rewards, whereas the ventral striatum may be coding intrinsic reward due to positive performance feedback. Thus the ventral striatum is suggested to be involved in the processing of intrinsically motivated behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.
Perry, David C; Datta, Samir; Sturm, Virginia E; Wood, Kristie A; Zakrzewski, Jessica; Seeley, William W; Miller, Bruce L; Kramer, Joel H; Rosen, Howard J
2017-12-01
During reward processing individuals weigh positive and negative features of a stimulus to determine whether they will pursue or avoid it. Though patients with behavioural variant frontotemporal dementia display changes in their pursuit of rewards, such as food, alcohol, money, and sex, the basis for these shifts is not clearly established. In particular, it is unknown whether patients' behaviour results from excessive focus on rewards, insensitivity to punishment, or to dysfunction in a particular stage of reward processing, such as anticipation, consumption, or action selection. Our goal was to determine the nature of the reward deficit in behavioural variant frontotemporal dementia and its underlying anatomy. We devised a series of tasks involving pleasant, unpleasant, and neutral olfactory stimuli, designed to separate distinct phases of reward processing. In a group of 25 patients with behavioural variant frontotemporal dementia and 21 control subjects, diagnosis by valence interactions revealed that patients with behavioural variant frontotemporal dementia rated unpleasant odours as less aversive than did controls and displayed lower skin conductance responses when anticipating an upcoming aversive odour. Subjective pleasantness ratings and skin conductance responses did not differ between behavioural variant frontotemporal dementia and controls for pleasant or neutral smells. In a task designed to measure the effort subjects would expend to smell or avoid smelling a stimulus, patients with behavioural variant frontotemporal dementia were less motivated, and therefore less successful than control subjects, at avoiding what they preferred not to smell, but had equivalent success at obtaining stimuli they found rewarding. Voxel-based morphometry of patients with behavioural variant frontotemporal dementia revealed that the inability to subjectively differentiate the valence of pleasant and unpleasant odours correlated with atrophy in right ventral mid-insula and right amygdala. High pleasantness ratings of unpleasant stimuli correlated with left dorsal anterior insula and frontal pole atrophy. These findings indicate that insensitivity to negative information may be a key component of the reward-seeking behaviours in behavioural variant frontotemporal dementia, and may relate to degeneration of structures that are involved in representing the emotional salience of sensory information. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Faja, Susan; Murias, Michael; Beauchaine, Theodore P.; Dawson, Geraldine
2014-01-01
In this study, we explore reward-based decision making and electrodermal responding (EDR) among children with autism spectrum disorder (ASD) during a children’s gambling task. In addition, we examine whether individual behavioral and EDR responses predict social communication, repetitive symptoms, parent reports of executive function, and behavioral challenges. The ability to form advantageous strategies for long-term gain is of interest for children with ASDs, who exhibit both difficulty with executive function and atypical responses to reward. Twenty-one children ages 6–7 years with ASD and no intellectual disability and 21 age- and IQ-matched typically developing children participated. Both groups exhibited a similar pattern of gambling selections, but children with ASD showed less knowledge of the reward contingencies of the decks after playing. In addition, although EDR was similar between groups in anticipation of selections, children with ASD exhibited greater EDR during feedback about rewards as the task progressed. Children with ASD who exhibited the greatest increases in EDR were more likely to exhibit repetitive symptoms, particularly rituals and the need for sameness, as well as internalizing behaviors and reduced executive function in other settings. PMID:23893954
Young, Jared W; Markou, Athina
2015-09-01
Amotivation and reward-processing deficits have long been described in patients with schizophrenia and considered large contributors to patients' inability to integrate well in society. No effective treatments exist for these symptoms, partly because the neuromechanisms mediating such symptoms are poorly understood. Here, we propose a translational neuroscientific approach that can be used to assess reward/motivational deficits related to the negative symptoms of schizophrenia using behavioral paradigms that can also be conducted in experimental animals. By designing and using objective laboratory behavioral tools that are parallel in their parameters in rodents and humans, the neuromechanisms underlying behaviors with relevance to these symptoms of schizophrenia can be investigated. We describe tasks that measure the motivation of rodents to expend physical and cognitive effort to gain rewards, as well as probabilistic learning tasks that assess both reward learning and feedback-based decision making. The latter tasks are relevant because of demonstrated links of performance deficits correlating with negative symptoms in patients with schizophrenia. These tasks utilize operant techniques in order to investigate neural circuits targeting a specific domain across species. These tasks therefore enable the development of insights into altered mechanisms leading to negative symptom-relevant behaviors in patients with schizophrenia. Such findings will then enable the development of targeted treatments for these altered neuromechanisms and behaviors seen in schizophrenia. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Stress and reward processing in bipolar disorder: a functional magnetic resonance imaging study.
Berghorst, Lisa H; Kumar, Poornima; Greve, Doug N; Deckersbach, Thilo; Ongur, Dost; Dutra, Sunny J; Pizzagalli, Diego A
2016-11-01
A link between negative life stress and the onset of mood episodes in bipolar disorder (BD) has been established, but processes underlying such a link remain unclear. Growing evidence suggests that stress can negatively affect reward processing and related neurobiological substrates, indicating that a dysregulated reward system may provide a partial explanation. The aim of this study was to test the impact of stress on reward-related neural functioning in BD. Thirteen euthymic or mildly depressed individuals with BD and 15 controls performed a Monetary Incentive Delay (MID) task while undergoing functional magnetic resonance imaging during no-stress and stress (negative psychosocial stressor involving poor performance feedback and threat of monetary deductions) conditions. In hypothesis-driven region-of-interest analyses, a significant group-by-condition interaction emerged in the amygdala during reward anticipation. Relative to controls, while anticipating a potential reward, subjects with BD were characterized by amygdalar hyperactivation in the no-stress condition but hypoactivation during stress. Moreover, relative to controls, subjects with BD had significantly larger amygdala volumes. After controlling for structural differences, the effects of stress on amygdalar function remained, whereas groups no longer differed during the no-stress condition. During reward consumption, a group-by-condition interaction emerged in the putamen due to increased putamen activation in response to rewards in participants with BD during stress, but an opposite pattern in controls. Overall, findings highlight possible impairments in using reward-predicting cues to adaptively engage in goal-directed actions in BD, combined with stress-induced hypersensitivity to reward consumption. Potential clinical implications are discussed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ross, Shani E; Lehmann Levin, Emily; Itoga, Christy A; Schoen, Chelsea B; Selmane, Romeissa; Aldridge, J Wayne
2016-10-01
We investigated the potential of deep brain stimulation (DBS) in the central nucleus of the amygdala (CeA) in rats to modulate functional reward mechanisms. The CeA is the major output of the amygdala with direct connections to the hypothalamus and gustatory brainstem, and indirect connections with the nucleus accumbens. Further, the CeA has been shown to be involved in learning, emotional integration, reward processing, and regulation of feeding. We hypothesized that DBS, which is used to treat movement disorders and other brain dysfunctions, might block reward motivation. In rats performing a lever-pressing task to obtain sugar pellet rewards, we stimulated the CeA and control structures, and compared stimulation parameters. During CeA stimulation, animals stopped working for rewards and rejected freely available rewards. Taste reactivity testing during DBS exposed aversive reactions to normally liked sucrose tastes and even more aversive taste reactions to normally disliked quinine tastes. Interestingly, given the opportunity, animals implanted in the CeA would self-stimulate with 500 ms trains of stimulation at the same frequency and current parameters as continuous stimulation that would stop reward acquisition. Neural recordings during DBS showed that CeA neurons were still active and uncovered inhibitory-excitatory patterns after each stimulus pulse indicating possible entrainment of the neural firing with DBS. In summary, DBS modulation of CeA may effectively usurp normal neural activity patterns to create an 'information lesion' that not only decreased motivational 'wanting' of food rewards, but also blocked 'liking' of rewards. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Vaquero, Lucía; Cámara, Estela; Sampedro, Frederic; Pérez de Los Cobos, José; Batlle, Francesca; Fabregas, Josep Maria; Sales, Joan Artur; Cervantes, Mercè; Ferrer, Xavier; Lazcano, Gerardo; Rodríguez-Fornells, Antoni; Riba, Jordi
2017-05-01
Cocaine addiction has been associated with increased sensitivity of the human reward circuit to drug-related stimuli. However, the capacity of non-drug incentives to engage this network is poorly understood. Here, we characterized the functional sensitivity to monetary incentives and the structural integrity of the human reward circuit in abstinent cocaine-dependent (CD) patients and their matched controls. We assessed the BOLD response to monetary gains and losses in 30 CD patients and 30 healthy controls performing a lottery task in a magnetic resonance imaging scanner. We measured brain gray matter volume (GMV) using voxel-based morphometry and white matter microstructure using voxel-based fractional anisotropy (FA). Functional data showed that, after monetary incentives, CD patients exhibited higher activation in the ventral striatum than controls. Furthermore, we observed an inverted BOLD response pattern in the prefrontal cortex, with activity being highest after unexpected high gains and lowest after losses. Patients showed increased GMV in the caudate and the orbitofrontal cortex, increased white matter FA in the orbito-striatal pathway but decreased FA in antero-posterior association bundles. Abnormal activation in the prefrontal cortex correlated with GMV and FA increases in the orbitofrontal cortex. While functional abnormalities in the ventral striatum were inversely correlated with abstinence duration, structural alterations were not. In conclusion, results suggest abnormal incentive processing in CD patients with high salience for rewards and punishments in subcortical structures but diminished prefrontal control after adverse outcomes. They further suggest that hypertrophy and hyper-connectivity within the reward circuit, to the expense of connectivity outside this network, characterize cocaine addiction. © 2016 Society for the Study of Addiction.
Ryu, Vin; Ha, Ra Yeon; Lee, Su Jin; Ha, Kyooseob; Cho, Hyun-Sang
2017-03-01
Bipolar disorder is characterized by behavioral changes such as risk-taking and increasing goal-directed activities, which may result from altered reward processing. Patients with bipolar disorder show impaired reward learning in situations that require the integration of reinforced feedback over time. In this study, we examined the behavioral and electrophysiological characteristics of reward learning in manic and euthymic patients with bipolar disorder using a probabilistic reward task. Twenty-four manic and 20 euthymic patients with bipolar I disorder and 24 healthy control subjects performed the probabilistic reward task. We assessed response bias (RB) as a preference for the stimulus paired with the more frequent reward and feedback-related negativity (FRN) to correct identification of the rich stimulus. Both manic and euthymic patients showed significantly lower RB scores in the early learning stage (block 1) in comparison with the late learning stage (block 2 or block 3) of the task, as well as significantly lower RB scores in the early stage compared to healthy subjects. Relatively more negative FRN amplitude is elicited by no presentation of an expected reward, compared to that elicited by presentation of expected feedback. The FRN became significantly more negative from the early (block 1) to the later stages (blocks 2 and 3) in both manic and euthymic patients, but not in healthy subjects. Changes in RB scores and FRN amplitudes between blocks 2 and 3 and block 1 correlated positively in healthy controls, but correlated negatively in manic and euthymic patients. The severity of manic symptoms correlated positively with reward learning scores and negatively with the FRN. These findings suggest that patients with bipolar disorder during euthymic or manic states have behavioral and electrophysiological alterations in reward learning compared to healthy subjects. This dysfunctional reward processing may be related to the abnormal decision-making or altered goal-directed activities frequently seen in patients with bipolar disorder. © 2017 John Wiley & Sons Ltd.
Decision-making impairments in the context of intact reward sensitivity in schizophrenia.
Heerey, Erin A; Bell-Warren, Kimberly R; Gold, James M
2008-07-01
Deficits in motivated behavior and decision-making figure prominently in the behavioral syndrome that characterizes schizophrenia and are difficult both to treat and to understand. One explanation for these deficits is that schizophrenia decreases sensitivity to rewards in the environment. An alternate explanation is that sensitivity to rewards is intact but that poor integration of affective with cognitive information impairs the ability to use this information to guide behavior. We tested reward sensitivity with a modified version of an existing signal detection task with asymmetric reinforcement and decision-making with a probabilistic decision-making task in 40 participants with schizophrenia and 26 healthy participants. Results showed normal sensitivity to reward in participants with schizophrenia but differences in choice patterns on the decision-making task. A logistic regression model of the decision-making data showed that participants with schizophrenia differed from healthy participants in the ability to weigh potential outcomes, specifically potential losses, when choosing between competing response options. Deficits in working memory ability accounted for group differences in ability to use potential outcomes during decision-making. These results suggest that the implicit mechanisms that drive reward-based learning are surprisingly intact in schizophrenia but that poor ability to integrate cognitive and affective information when calculating the value of possible choices might hamper the ability to use such information during explicit decision-making.
Claes, Nathalie; Vlaeyen, Johan W S; Crombez, Geert
2016-09-01
Previous research shows that goal-directed behavior might be modulated by cues that predict (dis)similar outcomes. However, the literature investigating this modulation with pain outcomes is scarce. Therefore, this experiment investigated whether environmental cues predicting pain or reward modulate defensive pain responding. Forty-eight healthy participants completed a joystick movement task with two different movement orientations. Performing one movement was associated with a painful stimulus, whereas performance of another movement was associated with reward, i.e. lottery tickets. In a subsequent task, participants learned to associate three different cues withpain, reward, or neither of the two. Next, these cues were integrated in the movement task. This study demonstrates that in general, aversive cues enhance and appetitive cues reduce pain-related fear. Furthermore, we found that incongruence between the outcomes predicted by the movement and the cue results in more oscillatory behavior, i.e., participants were more willing to perform a painful movement when a cue predicting reward was simultaneously presented, and vice versa. Similarly, when given a choice, participants preferred to perform the reward movement, unless there was an incongruence between the outcomes predicted by the movements and cues. Taken together, these results provide experimental evidence that environmental cues are capable of modulating pain-related fear and avoidance behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.
Preference conditioning in healthy individuals: correlates with hazardous drinking.
Balodis, Iris M; Lockwood, Kathleen P; Magrys, Sylvia A; Olmstead, Mary C
2010-06-01
Conditioned reward is a classic measure of drug-induced brain changes in animal models of addiction. The process can be examined in humans using the Conditioned Pattern Preference (CPP) task, in which participants associate nonverbal cues with reward but demonstrate low awareness of this conditioning. Previously, we reported that alcohol intoxication does not affect CPP acquisition in humans, but our data indicated that prior drug use may impact conditioning scores. To test this possibility, the current study examined the relationship between self-reported alcohol use and preference conditioning in the CPP task. Working memory was assessed during conditioning by asking participants to count the cues that appeared at each location on a computer screen. Participants (69 female and 23 male undergraduate students) completed the Alcohol Use Disorders Identification Test (AUDIT) and the Rutgers Alcohol Problem Index (RAPI) as measures of hazardous drinking. Self-reported hazardous drinking was significantly correlated with preference conditioning in that individuals who scored higher on these scales exhibited an increased preference for the reward-paired cues. In contrast, hazardous drinking did not affect working memory errors on the CPP task. These findings support evidence that repeated drug use sensitizes neural pathways mediating conditioned reward and point to a neurocognitive disposition linking substance misuse and responses to reward-paired stimuli. The relationship between hazardous drinking and conditioned reward is independent of changes in cognitive function, such as working memory.
Bauer, A S; Timpe, J; Edmonds, E C; Bechara, A; Tranel, D; Denburg, N L
2013-02-01
It has been shown that older adults perform less well than younger adults on the Iowa Gambling Task (IGT), a real-world type decision-making task that factors together reward, punishment, and uncertainty. To explore the reasons behind this age-related decrement, we administered to an adult life span sample of 265 healthy participants (Mdn age = 62.00 +/- 16.17 years; range [23-88]) 2 versions of the IGT, which have different contingencies for successful performance: A'B'C'D' requires choosing lower immediate reward (paired with lower delayed punishment); E'F'G'H' requires choosing higher immediate punishment (paired with higher delayed reward). There was a significant negative correlation between age and performance on the A'B'C'D' version of the IGT (r = -.16, p = .01), while there was essentially no correlation between age and performance on the E'F'G'H' version (r = -.07, p = .24). In addition, the rate of impaired performance in older participants was significantly higher for the A'B'C'D' version (23%) compared with the E'F'G'H' version (13%). A parsimonious account of these findings is an age-related increase in hypersensitivity to reward, whereby the decisions of older adults are disproportionately influenced by prospects of receiving reward, irrespective of the presence or degree of punishment. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Epstein, Jeffery N.; Langberg, Joshua M.; Rosen, Paul J.; Graham, Amanda; Narad, Megan E.; Antonini, Tanya N.; Brinkman, William B.; Froehlich, Tanya; Simon, John O.; Altaye, Mekibib
2012-01-01
Objective The purpose of the research study was to examine the manifestation of variability in reaction times (RT) in children with Attention Deficit Hyperactivity Disorder (ADHD) and to examine whether RT variability presented differently across a variety of neuropsychological tasks, was present across the two most common ADHD subtypes, and whether it was affected by reward and event rate (ER) manipulations. Method Children with ADHD-Combined Type (n=51), ADHD-Predominantly Inattentive Type (n=53) and 47 controls completed five neuropsychological tasks (Choice Discrimination Task, Child Attentional Network Task, Go/No-Go task, Stop Signal Task, and N-back task), each allowing trial-by-trial assessment of reaction times. Multiple indicators of RT variability including RT standard deviation, coefficient of variation and ex-Gaussian tau were used. Results Children with ADHD demonstrated greater RT variability than controls across all five tasks as measured by the ex-Gaussian indicator tau. There were minimal differences in RT variability across the ADHD subtypes. Children with ADHD also had poorer task accuracy than controls across all tasks except the Choice Discrimination task. Although ER and reward manipulations did affect children’s RT variability and task accuracy, these manipulations largely did not differentially affect children with ADHD compared to controls. RT variability and task accuracy were highly correlated across tasks. Removing variance attributable to RT variability from task accuracy did not appreciably affect between-group differences in task accuracy. Conclusions High RT variability is a ubiquitous and robust phenomenon in children with ADHD. PMID:21463041
Kamarajan, Chella; Rangaswamy, Madhavi; Manz, Niklas; Chorlian, David B; Pandey, Ashwini K; Roopesh, Bangalore N; Porjesz, Bernice
2012-05-01
Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol-dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task, which involved outcomes of either loss or gain of an amount (10 or 50¢) that was bet. Event-related theta band (3.0-7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200-500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current source density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition when compared with controls who manifested stronger and focused midline sources. Furthermore, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing, and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control. Copyright © 2011 Wiley-Liss, Inc.
Effects of emotion on prospection during decision-making.
Worthy, Darrell A; Byrne, Kaileigh A; Fields, Sherecce
2014-01-01
In two experiments we examined the role of emotion, specifically worry, anxiety, and mood, on prospection during decision-making. Worry is a particularly relevant emotion to study in the context of prospection because high levels of worry may make individuals more aversive toward the uncertainty associated with the prospect of obtaining future improvements in rewards or states. Thus, high levels of worry might lead to reduced prospection during decision-making and enhance preference for immediate over delayed rewards. In Experiment 1 participants performed a two-choice dynamic decision-making task where they were required to choose between one option (the decreasing option) which provided larger immediate rewards but declines in future states, and another option (the increasing option) which provided smaller immediate rewards but improvements in future states, making it the optimal choice. High levels of worry were associated with poorer performance in the task. Additionally, fits of a sophisticated reinforcement-learning model that incorporated both reward-based and state-based information suggested that individuals reporting high levels of worry gave greater weight to the immediate rewards they would receive on each trial than to the degree to which each action would lead to improvements in their future state. In Experiment 2 we found that high levels of worry were associated with greater delay discounting using a standard delay discounting task. Combined, the results suggest that high levels of worry are associated with reduced prospection during decision-making. We attribute these results to high worriers' aversion toward the greater uncertainty associated with attempting to improve future rewards than to maximize immediate reward. These results have implications for researchers interested in the effects of emotion on cognition, and suggest that emotion strongly affects the focus on temporal outcomes during decision-making.
Kamarajan, Chella; Rangaswamy, Madhavi; Manz, Niklas; Chorlian, David B.; Pandey, Ashwini K.; Roopesh, Bangalore N.; Porjesz, Bernice
2013-01-01
Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task which involved outcomes of either loss or gain of an amount (10¢ or 50¢) that was bet. Event-related theta band (3.0–7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200–500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current Source Density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition as compared to controls who manifested stronger and focused midline sources. Further, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control. PMID:21520344
Amygdala Signaling during Foraging in a Hazardous Environment.
Amir, Alon; Lee, Seung-Chan; Headley, Drew B; Herzallah, Mohammad M; Pare, Denis
2015-09-23
We recorded basolateral amygdala (BL) neurons in a seminaturalistic foraging task. Rats had to leave their nest to retrieve food in an elongated arena inhabited by a mechanical predator. There were marked trial-to-trial variations in behavior. After poking their head into the foraging arena and waiting there for a while, rats either retreated to their nest or initiated foraging. Before initiating foraging, rats waited longer on trials that followed failed than successful trials indicating that prior experience influenced behavior. Upon foraging initiation, most principal cells (Type-1) reduced their firing rate, while in a minority (Type-2) it increased. When rats aborted foraging, Type-1 cells increased their firing rates, whereas in Type-2 cells it did not change. Surprisingly, the opposite activity profiles of Type-1 and Type-2 units were also seen in control tasks devoid of explicit threats or rewards. The common correlate of BL activity across these tasks was movement velocity, although an influence of position was also observed. Thus depending on whether rats initiated movement or not, the activity of BL neurons decreased or increased, regardless of whether threat or rewards were present. Therefore, BL activity not only encodes threats or rewards, but is closely related to behavioral output. We propose that higher order cortical areas determine task-related changes in BL activity as a function of reward/threat expectations and internal states. Because Type-1 and Type-2 cells likely form differential connections with the central amygdala (controlling freezing), this process would determine whether movement aimed at attaining food or exploration is suppressed or facilitated. Significance statement: For decades, amygdala research has been dominated by pavlovian and operant conditioning paradigms. This work has led to the view that amygdala neurons signal threats or rewards, in turn causing defensive or approach behaviors. However, the artificial circumstances of conditioning studies bear little resemblance to normal life. In natural conditions, subjects are simultaneously presented with potential threats and rewards, forcing them to engage in a form of risk assessment. We examined this process using a seminaturalistic foraging task. In constant conditions of threats and rewards, amygdala activity could be high or low, depending on the rats' decisions on a given trial. Therefore, amygdala activity does not only encode threats or rewards but is also closely related to behavioral output. Copyright © 2015 the authors 0270-6474/15/3512994-12$15.00/0.
Quesque, François; Gigliotti, Maria-Francesca; Ott, Laurent; Bruyelle, Jean-Luc
2018-01-01
Peripersonal space is a multisensory representation of the environment around the body in relation to the motor system, underlying the interactions with the physical and social world. Although changing body properties and social context have been shown to alter the functional processing of space, little is known about how changing the value of objects influences the representation of peripersonal space. In two experiments, we tested the effect of modifying the spatial distribution of reward-yielding targets on manual reaching actions and peripersonal space representation. Before and after performing a target-selection task consisting of manually selecting a set of targets on a touch-screen table, participants performed a two-alternative forced-choice reachability-judgment task. In the target-selection task, half of the targets were associated with a reward (change of colour from grey to green, providing 1 point), the other half being associated with no reward (change of colour from grey to red, providing no point). In Experiment 1, the target-selection task was performed individually with the aim of maximizing the point count, and the distribution of the reward-yielding targets was either 50%, 25% or 75% in the proximal and distal spaces. In Experiment 2, the target-selection task was performed in a social context involving cooperation between two participants to maximize the point count, and the distribution of the reward-yielding targets was 50% in the proximal and distal spaces. Results showed that changing the distribution of the reward-yielding targets or introducing the social context modified concurrently the amplitude of self-generated manual reaching actions and the representation of peripersonal space. Moreover, a decrease of the amplitude of manual reaching actions caused a reduction of peripersonal space when resulting from the distribution of reward-yielding targets, while this effect was not observed in a social interaction context. In that case, the decreased amplitude of manual reaching actions was accompanied by an increase of peripersonal space representation, which was not due to the mere presence of a confederate (control experiment). We conclude that reward-dependent modulation of objects values in the environment modifies the representation of peripersonal space, when resulting from either self-generated motor actions or observation of motor actions performed by a confederate. PMID:29771982
Coello, Yann; Quesque, François; Gigliotti, Maria-Francesca; Ott, Laurent; Bruyelle, Jean-Luc
2018-01-01
Peripersonal space is a multisensory representation of the environment around the body in relation to the motor system, underlying the interactions with the physical and social world. Although changing body properties and social context have been shown to alter the functional processing of space, little is known about how changing the value of objects influences the representation of peripersonal space. In two experiments, we tested the effect of modifying the spatial distribution of reward-yielding targets on manual reaching actions and peripersonal space representation. Before and after performing a target-selection task consisting of manually selecting a set of targets on a touch-screen table, participants performed a two-alternative forced-choice reachability-judgment task. In the target-selection task, half of the targets were associated with a reward (change of colour from grey to green, providing 1 point), the other half being associated with no reward (change of colour from grey to red, providing no point). In Experiment 1, the target-selection task was performed individually with the aim of maximizing the point count, and the distribution of the reward-yielding targets was either 50%, 25% or 75% in the proximal and distal spaces. In Experiment 2, the target-selection task was performed in a social context involving cooperation between two participants to maximize the point count, and the distribution of the reward-yielding targets was 50% in the proximal and distal spaces. Results showed that changing the distribution of the reward-yielding targets or introducing the social context modified concurrently the amplitude of self-generated manual reaching actions and the representation of peripersonal space. Moreover, a decrease of the amplitude of manual reaching actions caused a reduction of peripersonal space when resulting from the distribution of reward-yielding targets, while this effect was not observed in a social interaction context. In that case, the decreased amplitude of manual reaching actions was accompanied by an increase of peripersonal space representation, which was not due to the mere presence of a confederate (control experiment). We conclude that reward-dependent modulation of objects values in the environment modifies the representation of peripersonal space, when resulting from either self-generated motor actions or observation of motor actions performed by a confederate.
Elucidating Poor Decision-Making in a Rat Gambling Task
Seriès, Peggy; Marchand, Alain R.; Dellu-Hagedorn, Françoise
2013-01-01
Although poor decision-making is a hallmark of psychiatric conditions such as attention deficit/hyperactivity disorder, pathological gambling or substance abuse, a fraction of healthy individuals exhibit similar poor decision-making performances in everyday life and specific laboratory tasks such as the Iowa Gambling Task. These particular individuals may provide information on risk factors or common endophenotypes of these mental disorders. In a rodent version of the Iowa gambling task – the Rat Gambling Task (RGT), we identified a population of poor decision makers, and assessed how these rats scored for several behavioral traits relevant to executive disorders: risk taking, reward seeking, behavioral inflexibility, and several aspects of impulsivity. First, we found that poor decision-making could not be well predicted by single behavioral and cognitive characteristics when considered separately. By contrast, a combination of independent traits in the same individual, namely risk taking, reward seeking, behavioral inflexibility, as well as motor impulsivity, was highly predictive of poor decision-making. Second, using a reinforcement-learning model of the RGT, we confirmed that only the combination of extreme scores on these traits could induce maladaptive decision-making. Third, the model suggested that a combination of these behavioral traits results in an inaccurate representation of rewards and penalties and inefficient learning of the environment. Poor decision-making appears as a consequence of the over-valuation of high-reward-high-risk options in the task. Such a specific psychological profile could greatly impair clinically healthy individuals in decision-making tasks and may predispose to mental disorders with similar symptoms. PMID:24339988
Elucidating poor decision-making in a rat gambling task.
Rivalan, Marion; Valton, Vincent; Seriès, Peggy; Marchand, Alain R; Dellu-Hagedorn, Françoise
2013-01-01
Although poor decision-making is a hallmark of psychiatric conditions such as attention deficit/hyperactivity disorder, pathological gambling or substance abuse, a fraction of healthy individuals exhibit similar poor decision-making performances in everyday life and specific laboratory tasks such as the Iowa Gambling Task. These particular individuals may provide information on risk factors or common endophenotypes of these mental disorders. In a rodent version of the Iowa gambling task--the Rat Gambling Task (RGT), we identified a population of poor decision makers, and assessed how these rats scored for several behavioral traits relevant to executive disorders: risk taking, reward seeking, behavioral inflexibility, and several aspects of impulsivity. First, we found that poor decision-making could not be well predicted by single behavioral and cognitive characteristics when considered separately. By contrast, a combination of independent traits in the same individual, namely risk taking, reward seeking, behavioral inflexibility, as well as motor impulsivity, was highly predictive of poor decision-making. Second, using a reinforcement-learning model of the RGT, we confirmed that only the combination of extreme scores on these traits could induce maladaptive decision-making. Third, the model suggested that a combination of these behavioral traits results in an inaccurate representation of rewards and penalties and inefficient learning of the environment. Poor decision-making appears as a consequence of the over-valuation of high-reward-high-risk options in the task. Such a specific psychological profile could greatly impair clinically healthy individuals in decision-making tasks and may predispose to mental disorders with similar symptoms.
Grimm, Oliver; Heinz, Andreas; Walter, Henrik; Kirsch, Peter; Erk, Susanne; Haddad, Leila; Plichta, Michael M; Romanczuk-Seiferth, Nina; Pöhland, Lydia; Mohnke, Sebastian; Mühleisen, Thomas W; Mattheisen, Manuel; Witt, Stephanie H; Schäfer, Axel; Cichon, Sven; Nöthen, Markus; Rietschel, Marcella; Tost, Heike; Meyer-Lindenberg, Andreas
2014-05-01
Attenuated ventral striatal response during reward anticipation is a core feature of schizophrenia that is seen in prodromal, drug-naive, and chronic schizophrenic patients. Schizophrenia is highly heritable, raising the possibility that this phenotype is related to the genetic risk for the disorder. To examine a large sample of healthy first-degree relatives of schizophrenic patients and compare their neural responses to reward anticipation with those of carefully matched controls without a family psychiatric history. To further support the utility of this phenotype, we studied its test-retest reliability, its potential brain structural contributions, and the effects of a protective missense variant in neuregulin 1 (NRG1) linked to schizophrenia by meta-analysis (ie, rs10503929). Examination of a well-established monetary reward anticipation paradigm during functional magnetic resonance imaging at a university hospital; voxel-based morphometry; test-retest reliability analysis of striatal activations in an independent sample of 25 healthy participants scanned twice with the same task; and imaging genetics analysis of the control group. A total of 54 healthy first-degree relatives of schizophrenic patients and 80 controls matched for demographic, psychological, clinical, and task performance characteristics were studied. Blood oxygen level-dependent response during reward anticipation, analysis of intraclass correlations of functional contrasts, and associations between striatal gray matter volume and NRG1 genotype. Compared with controls, healthy first-degree relatives showed a highly significant decrease in ventral striatal activation during reward anticipation (familywise error-corrected P < .03 for multiple comparisons across the whole brain). Supplemental analyses confirmed that the identified systems-level functional phenotype is reliable (with intraclass correlation coefficients of 0.59-0.73), independent of local gray matter volume (with no corresponding group differences and no correlation to function, and with all uncorrected P values >.05), and affected by the NRG1 genotype (higher striatal responses in controls with the protective rs10503929 C allele; familywise error-corrected P < .03 for ventral striatal response). Healthy first-degree relatives of schizophrenic patients show altered striatal activation during reward anticipation in a directionality and localization consistent with prior patient findings. This provides evidence for a functional neural system mechanism related to familial risk. The phenotype can be assessed reliably, is independent of alterations in striatal structure, and is influenced by a schizophrenia candidate gene variant in NRG1. These data encourage us to further investigate the genetic and molecular contributions to this phenotype.
Optimized in vivo detection of dopamine release using 18F-fallypride PET.
Ceccarini, Jenny; Vrieze, Elske; Koole, Michel; Muylle, Tom; Bormans, Guy; Claes, Stephan; Van Laere, Koen
2012-10-01
The high-affinity D(2/3) PET radioligand (18)F-fallypride offers the possibility of measuring both striatal and extrastriatal dopamine release during activation paradigms. When a single (18)F-fallypride scanning protocol is used, task timing is critical to the ability to explore both striatal and extrastriatal dopamine release simultaneously. We evaluated the sensitivity and optimal timing of task administration for a single (18)F-fallypride PET protocol and the linearized simplified reference region kinetic model in detecting both striatal and extrastriatal reward-induced dopamine release, using human and simulation studies. Ten healthy volunteers underwent a single-bolus (18)F-fallypride PET protocol. A reward responsiveness learning task was initiated at 100 min after injection. PET data were analyzed using the linearized simplified reference region model, which accounts for time-dependent changes in (18)F-fallypride displacement. Voxel-based statistical maps, reflecting task-induced D(2/3) ligand displacement, and volume-of-interest-based analysis were performed to localize areas with increased ligand displacement after task initiation, thought to be proportional to changes in endogenous dopamine release (γ parameter). Simulated time-activity curves for baseline and hypothetical dopamine release functions (different peak heights of dopamine and task timings) were generated using the enhanced receptor-binding kinetic model to investigate γ as a function of these parameters. The reward task induced increased ligand displacement in extrastriatal regions of the reward circuit, including the medial orbitofrontal cortex, ventromedial prefrontal cortex, and dorsal anterior cingulate cortex. For task timing of 100 min, ligand displacement was found for the striatum only when peak height of dopamine was greater than 240 nM, whereas for frontal regions, γ was always positive for all task timings and peak heights of dopamine. Simulation results for a peak height of dopamine of 200 nM showed that an effect of striatal ligand displacement could be detected only when task timing was greater than 120 min. The prefrontal and anterior cingulate cortices are involved in reward responsiveness that can be measured using (18)F-fallypride PET in a single scanning session. To measure both striatal and extrastriatal dopamine release, the height of dopamine released and task timing need to be considered in designing activation studies depending on regional D(2/3) density.
Motivation and effort in individuals with social anhedonia.
McCarthy, Julie M; Treadway, Michael T; Blanchard, Jack J
2015-06-01
It has been proposed that anhedonia may, in part, reflect difficulties in reward processing and effortful decision making. The current study aimed to replicate previous findings of effortful decision making deficits associated with elevated anhedonia and expand upon these findings by investigating whether these decision making deficits are specific to elevated social anhedonia or are also associated with elevated positive schizotypy characteristics. The current study compared controls (n=40) to individuals elevated on social anhedonia (n=30), and individuals elevated on perceptual aberration/magical ideation (n=30) on the Effort Expenditure for Rewards Task (EEfRT). Across groups, participants chose a higher proportion of hard tasks with increasing probability of reward and reward magnitude, demonstrating sensitivity to probability and reward values. Contrary to our expectations, when the probability of reward was most uncertain (50% probability), at low and medium reward values, the social anhedonia group demonstrated more effortful decision making than either individuals high in positive schizotypy or controls. The positive schizotypy group only differed from controls (making less effortful choices than controls) when reward probability was lowest (12%) and the magnitude of reward was the smallest. Our results suggest that social anhedonia is related to intact motivation and effort for monetary rewards, but that individuals with this characteristic display a unique and perhaps inefficient pattern of effort allocation when the probability of reward is most uncertain. Future research is needed to better understand effortful decision making and the processing of reward across a range of individual difference characteristics. Copyright © 2015 Elsevier B.V. All rights reserved.
A universal role of the ventral striatum in reward-based learning: Evidence from human studies
Daniel, Reka; Pollmann, Stefan
2014-01-01
Reinforcement learning enables organisms to adjust their behavior in order to maximize rewards. Electrophysiological recordings of dopaminergic midbrain neurons have shown that they code the difference between actual and predicted rewards, i.e., the reward prediction error, in many species. This error signal is conveyed to both the striatum and cortical areas and is thought to play a central role in learning to optimize behavior. However, in human daily life rewards are diverse and often only indirect feedback is available. Here we explore the range of rewards that are processed by the dopaminergic system in human participants, and examine whether it is also involved in learning in the absence of explicit rewards. While results from electrophysiological recordings in humans are sparse, evidence linking dopaminergic activity to the metabolic signal recorded from the midbrain and striatum with functional magnetic resonance imaging (fMRI) is available. Results from fMRI studies suggest that the human ventral striatum (VS) receives valuation information for a diverse set of rewarding stimuli. These range from simple primary reinforcers such as juice rewards over abstract social rewards to internally generated signals on perceived correctness, suggesting that the VS is involved in learning from trial-and-error irrespective of the specific nature of provided rewards. In addition, we summarize evidence that the VS can also be implicated when learning from observing others, and in tasks that go beyond simple stimulus-action-outcome learning, indicating that the reward system is also recruited in more complex learning tasks. PMID:24825620
Individual differences in impulsive and risky choice: effects of environmental rearing conditions.
Kirkpatrick, Kimberly; Marshall, Andrew T; Smith, Aaron P; Koci, Juraj; Park, Yoonseong
2014-08-01
The present experiment investigated early-rearing environment modulation of individual differences in impulsive and risky choice. Rats were reared in an isolated condition (IC; n=12), in which they lived alone without novel stimuli, or an enriched condition (EC; n=11), in which they lived among conspecifics with novel stimuli. The impulsive choice task involved choices between smaller-sooner (SS) versus larger-later (LL) rewards. The risky choice task involved choices between certain-smaller (C-S) versus uncertain-larger (U-L) rewards. Following choice testing, incentive motivation to work for food was measured using a progressive ratio task and correlated with choice behavior. HPLC analyses were conducted to determine how monoamine concentrations within the prefrontal cortex (PFC) and nucleus accumbens (NAC) related to behavior in different tasks. IC rats were more impulsive than EC rats, but they did not differ in risky choice behavior. However, choice behavior across tasks was significantly correlated (i.e., the more impulsive rats were also riskier). There were no group differences in monoamine levels, but noradrenergic and serotonergic concentrations were significantly correlated with impulsive and risky choice. Furthermore, serotonin and norepinephrine concentrations in the NAC significantly correlated with incentive motivation and the timing of the reward delays within the choice tasks. These results suggest a role for domain general processes in impulsive and risky choice and indicate the importance of the NAC and/or PFC in timing, reward processing, and choice behavior. Copyright © 2014 Elsevier B.V. All rights reserved.
Individual differences in impulsive and risky choice: Effects of environmental rearing conditions
Kirkpatrick, Kimberly; Marshall, Andrew T.; Smith, Aaron P.; Koci, Juraj; Park, Yoonseong
2014-01-01
The present experiment investigated early-rearing environment modulation of individual differences in impulsive and risky choice. Rats were reared in an isolated condition (IC; n = 12), in which they lived alone without novel stimuli, or an enriched condition (EC; n = 12), in which they lived among conspecifics with novel stimuli. The impulsive choice task involved choices between smaller-sooner (SS) versus larger-later (LL) rewards. The risky choice task involved choices between certain-smaller (C-S) versus uncertain-larger (U-L) rewards. Following choice testing, incentive motivation to work for food was measured using a progressive ratio task and correlated with choice behavior. HPLC analyses were conducted to determine how monoamine concentrations within the prefrontal cortex (PFC) and nucleus accumbens (NAC) related to behavior in different tasks. IC rats were more impulsive than EC rats, but they did not differ in risky choice behavior. However, choice behavior across tasks was significantly correlated (i.e., the more impulsive rats were also riskier). There were no group differences in monoamine levels, but noradrenergic and serotonergic concentrations were significantly correlated with impulsive and risky choice. Furthermore, serotonin and norepinephrine concentrations in the NAC significantly correlated with incentive motivation and the timing of the reward delays within the choice tasks. These results suggest a role for domain general processes in impulsive and risky choice and indicate the importance of the NAC and/or PFC in timing, reward processing, and choice behavior. PMID:24769268
Newman, Lori A; Scavuzzo, Claire J; Gold, Paul E; Korol, Donna L
2017-01-01
Recent evidence suggests that astrocytes convert glucose to lactate, which is released from the astrocytes and supports learning and memory. This report takes a multiple memory perspective to test the role of astrocytes in cognition using real-time lactate measurements during learning and memory. Extracellular lactate levels in the hippocampus or striatum were determined with lactate biosensors while rats were learning place (hippocampus-sensitive) or response (striatum-sensitive) versions of T-mazes. In the first experiment, rats were trained on the place and response tasks to locate a food reward. Extracellular lactate levels in the hippocampus increased beyond those of feeding controls during place training but not during response training. However, striatal lactate levels did not increase beyond those of controls when rats were trained on either the place or the response version of the maze. Because food ingestion itself increased blood glucose and brain lactate levels, the contribution of feeding may have confounded the brain lactate measures. Therefore, we conducted a second similar experiment using water as the reward. A very different pattern of lactate responses to training emerged when water was used as the task reward. First, provision of water itself did not result in large increases in either brain or blood lactate levels. Moreover, extracellular lactate levels increased in the striatum during response but not place learning, whereas extracellular lactate levels in the hippocampus did not differ across tasks. The findings from the two experiments suggest that the relative engagement of the hippocampus and striatum dissociates not only by task but also by reward type. The divergent lactate responses of the hippocampus and striatum in place and response tasks under different reward conditions may reflect ethological constraints tied to foraging for food and water. Copyright © 2016 Elsevier Inc. All rights reserved.
The date-delay framing effect in temporal discounting depends on substance abuse.
Klapproth, Florian
2012-07-01
In the present study, individuals with substance use disorders (n=30) and non-addicted controls (n=30) were presented with a delay-discounting task with time being described either as dates or as temporal intervals. Three main results were obtained. First, in both groups reward size had a large impact on discounting future rewards, with discount rates becoming larger with smaller reward sizes. Second, participants discounted future rewards less strongly when their time of delivery was presented as a date instead of a temporal distance. Third, whereas discount rates of individuals with substance use disorders varied substantially with regard to the presentation of time in the task, the controls changed their choices depending on time presentation only slightly. Copyright © 2012 Elsevier B.V. All rights reserved.
General functioning predicts reward and punishment learning in schizophrenia.
Somlai, Zsuzsanna; Moustafa, Ahmed A; Kéri, Szabolcs; Myers, Catherine E; Gluck, Mark A
2011-04-01
Previous studies investigating feedback-driven reinforcement learning in patients with schizophrenia have provided mixed results. In this study, we explored the clinical predictors of reward and punishment learning using a probabilistic classification learning task. Patients with schizophrenia (n=40) performed similarly to healthy controls (n=30) on the classification learning task. However, more severe negative and general symptoms were associated with lower reward-learning performance, whereas poorer general psychosocial functioning was correlated with both lower reward- and punishment-learning performances. Multiple linear regression analyses indicated that general psychosocial functioning was the only significant predictor of reinforcement learning performance when education, antipsychotic dose, and positive, negative and general symptoms were included in the analysis. These results suggest a close relationship between reinforcement learning and general psychosocial functioning in schizophrenia. Published by Elsevier B.V.
Disentangling reward anticipation with simultaneous pupillometry / fMRI.
Schneider, Max; Leuchs, Laura; Czisch, Michael; Sämann, Philipp G; Spoormaker, Victor I
2018-05-05
The reward system may provide an interesting intermediate phenotype for anhedonia in affective disorders. Reward anticipation is characterized by an increase in arousal, and previous studies have linked the anterior cingulate cortex (ACC) to arousal responses such as dilation of the pupil. Here, we examined pupil dynamics during a reward anticipation task in forty-six healthy human subjects and evaluated its neural correlates using functional magnetic resonance imaging (fMRI). Pupil size showed a strong increase during monetary reward anticipation, a moderate increase during verbal reward anticipation and a decrease during control trials. For fMRI analyses, average pupil size and pupil change were computed in 1-s time bins during the anticipation phase. Activity in the ventral striatum was inversely related to the pupil size time course, indicating an early onset of activation and a role in reward prediction processing. Pupil dilations were linked to increased activity in the salience network (dorsal ACC and bilateral insula), which likely triggers an increase in arousal to enhance task performance. Finally, increased pupil size preceding the required motor response was associated with activity in the ventral attention network. In sum, pupillometry provides an effective tool for disentangling different phases of reward anticipation, with relevance for affective symptomatology. Copyright © 2018 Elsevier Inc. All rights reserved.
Competition between learned reward and error outcome predictions in anterior cingulate cortex.
Alexander, William H; Brown, Joshua W
2010-02-15
The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.
A test of the reward-contrast hypothesis.
Dalecki, Stefan J; Panoz-Brown, Danielle E; Crystal, Jonathon D
2017-12-01
Source memory, a facet of episodic memory, is the memory of the origin of information. Whereas source memory in rats is sustained for at least a week, spatial memory degraded after approximately a day. Different forgetting functions may suggest that two memory systems (source memory and spatial memory) are dissociated. However, in previous work, the two tasks used baiting conditions consisting of chocolate and chow flavors; notably, the source memory task used the relatively better flavor. Thus, according to the reward-contrast hypothesis, when chocolate and chow were presented within the same context (i.e., within a single radial maze trial), the chocolate location was more memorable than the chow location because of contrast. We tested the reward-contrast hypothesis using baiting configurations designed to produce reward-contrast. The reward-contrast hypothesis predicts that under these conditions, spatial memory will survive a 24-h retention interval. We documented elimination of spatial memory performance after a 24-h retention interval using a reward-contrast baiting pattern. These data suggest that reward contrast does not explain our earlier findings that source memory survives unusually long retention intervals. Copyright © 2017 Elsevier B.V. All rights reserved.
Venturella, Irene; Finocchiaro, Roberta
2017-01-01
The present research explored rewarding bias and attentional deficits in Internet addiction (IA) based on the IAT (Internet Addiction Test) construct, during an attentional inhibitory task (Go/NoGo task). Event-related Potentials (ERPs) effects (Feedback Related Negativity (FRN) and P300) were monitored in concomitance with Behavioral Activation System (BAS) modulation. High-IAT young participants showed specific responses to IA-related cues (videos representing online gambling and videogames) in terms of cognitive performance (decreased Response Times, RTs; and Error Rates, ERs) and ERPs modulation (decreased FRN and increased P300). Consistent reward and attentional biases was adduced to explain the cognitive “gain” effect and the anomalous response in terms of both feedback behavior (FRN) and attentional (P300) mechanisms in high-IAT. In addition, BAS and BAS-Reward subscales measures were correlated with both IAT and ERPs variations. Therefore, high sensitivity to IAT may be considered as a marker of dysfunctional reward processing (reduction of monitoring) and cognitive control (higher attentional values) for specific IA-related cues. More generally, a direct relationship among reward-related behavior, Internet addiction and BAS attitude was suggested. PMID:28704978
A Flexible Mechanism of Rule Selection Enables Rapid Feature-Based Reinforcement Learning
Balcarras, Matthew; Womelsdorf, Thilo
2016-01-01
Learning in a new environment is influenced by prior learning and experience. Correctly applying a rule that maps a context to stimuli, actions, and outcomes enables faster learning and better outcomes compared to relying on strategies for learning that are ignorant of task structure. However, it is often difficult to know when and how to apply learned rules in new contexts. In our study we explored how subjects employ different strategies for learning the relationship between stimulus features and positive outcomes in a probabilistic task context. We test the hypothesis that task naive subjects will show enhanced learning of feature specific reward associations by switching to the use of an abstract rule that associates stimuli by feature type and restricts selections to that dimension. To test this hypothesis we designed a decision making task where subjects receive probabilistic feedback following choices between pairs of stimuli. In the task, trials are grouped in two contexts by blocks, where in one type of block there is no unique relationship between a specific feature dimension (stimulus shape or color) and positive outcomes, and following an un-cued transition, alternating blocks have outcomes that are linked to either stimulus shape or color. Two-thirds of subjects (n = 22/32) exhibited behavior that was best fit by a hierarchical feature-rule model. Supporting the prediction of the model mechanism these subjects showed significantly enhanced performance in feature-reward blocks, and rapidly switched their choice strategy to using abstract feature rules when reward contingencies changed. Choice behavior of other subjects (n = 10/32) was fit by a range of alternative reinforcement learning models representing strategies that do not benefit from applying previously learned rules. In summary, these results show that untrained subjects are capable of flexibly shifting between behavioral rules by leveraging simple model-free reinforcement learning and context-specific selections to drive responses. PMID:27064794
Nemirovsky, Sergio I; Avale, M Elena; Brunner, Daniela; Rubinstein, Marcelo
2009-11-01
The dopamine D4 receptor (D4R) is predominantly expressed in the prefrontal cortex, a brain area that integrates motor, rewarding, and cognitive information. Because participation of D4Rs in executive learning is largely unknown, we challenged D4R knockout mice (Drd4(-/-)) and their wild-type (WT) littermates, neonatally treated with 6-hydroxydopamine (6-OHDA; icv) or vehicle in two operant learning paradigms. A continuous reinforcement task, in which one food-pellet was delivered after every lever press, showed that 6-OHDA-treated mice (hypodopaminergic) WT mice pressed the reinforcing lever at much lower rates than normodopaminergic WT mice. In contrast, Drd4(-/-) mice displayed increased lever pressing rates, regardless of their dopamine content. In another study, mice were trained to solve an operant two-choice task in which a first showing lever was coupled to the delivery of one food pellet only after a second lever emerged. Interval between presentation of both levers was initially 12 s and progressively shortened to 6, 2, and finally 0.5 s. Normodopaminergic WT mice obtained a pellet reward in more than 75% of the trials at 12, 6, and 2 s, whereas hypodopaminergic WT mice were severely impaired to select the reward-paired lever. Absence of D4Rs was not detrimental in this task. Moreover, hypodopaminergic Drd4(-/-) mice were as efficient as their normodopaminergic Drd4(-/-) siblings in selecting the reward-paired lever. In summary, hypodopaminergic mice exhibit severe impairments to retrieve rewards in two operant positive reinforcement tasks, but these deleterious effects are totally prevented in the absence of functional D4Rs.
Intrinsic motivation and attentional capture from gamelike features in a visual search task.
Miranda, Andrew T; Palmer, Evan M
2014-03-01
In psychology research studies, the goals of the experimenter and the goals of the participants often do not align. Researchers are interested in having participants who take the experimental task seriously, whereas participants are interested in earning their incentive (e.g., money or course credit) as quickly as possible. Creating experimental methods that are pleasant for participants and that reward them for effortful and accurate data generation, while not compromising the scientific integrity of the experiment, would benefit both experimenters and participants alike. Here, we explored a gamelike system of points and sound effects that rewarded participants for fast and accurate responses. We measured participant engagement at both cognitive and perceptual levels and found that the point system (which invoked subtle, anonymous social competition between participants) led to positive intrinsic motivation, while the sound effects (which were pleasant and arousing) led to attentional capture for rewarded colors. In a visual search task, points were awarded after each trial for fast and accurate responses, accompanied by short, pleasant sound effects. We adapted a paradigm from Anderson, Laurent, and Yantis (Proceedings of the National Academy of Sciences 108(25):10367-10371, 2011b), in which participants completed a training phase during which red and green targets were probabilistically associated with reward (a point bonus multiplier). During a test phase, no points or sounds were delivered, color was irrelevant to the task, and previously rewarded targets were sometimes presented as distractors. Significantly longer response times on trials in which previously rewarded colors were present demonstrated attentional capture, and positive responses to a five-question intrinsic-motivation scale demonstrated participant engagement.
Threats, rewards, and attention deployment in anxious youth and adults: An eye tracking study.
Shechner, Tomer; Jarcho, Johanna M; Wong, Stuart; Leibenluft, Ellen; Pine, Daniel S; Nelson, Eric E
2017-01-01
The current study examines anxiety and age associations with attention allocation and physiological response to threats and rewards. Twenty-two healthy-adults, 20 anxious-adults, 26 healthy-youth, and 19 anxious-youth completed two eye-tracking tasks. In the Visual Scene Task (VST), participants' fixations were recorded while they viewed a central neutral image flanked by two threatening or two rewarding stimuli. In the Negative Words Task (NWT), physiological response was measured by means of pupil diameter change while negative and neutral words were presented. For both tasks, no interaction was found between anxiety and age-group. In the VST, anxious participants avoided the threatening images when groups were collapsed across age. Similarly, adults but not adolescents avoided the threatening images when collapsed across anxiety. No differences were found for rewarding images. In NWT, all subjects demonstrated increase in pupil dilation after word presentation. Only main effect of age emerged with stronger pupil dilation in adults than children. Finally, maximum pupil change was correlated with threat avoidance bias in the scene task. Gaze patterns and pupil dilation show that anxiety and age are associated with attention allocation to threats. The relations between attention and autonomic arousal point to a complex interaction between bottom-up and top-down processes as they relate to attention allocation. Copyright © 2015 Elsevier B.V. All rights reserved.
Lipopolysaccharide Alters Motivated Behavior in a Monetary Reward Task: a Randomized Trial.
Lasselin, Julie; Treadway, Michael T; Lacourt, Tamara E; Soop, Anne; Olsson, Mats J; Karshikoff, Bianka; Paues-Göranson, Sofie; Axelsson, John; Dantzer, Robert; Lekander, Mats
2017-03-01
Inflammation-induced sickness is associated with a large set of behavioral alterations; however, its motivational aspects remain poorly explored in humans. The present study assessed the effect of lipopolysaccharide (LPS) administration at a dose of 2 ng/kg of body weight on motivation in 21 healthy human subjects in a double-blinded, placebo (saline)-controlled, cross-over design. Incentive motivation and reward sensitivity were measured using the Effort Expenditure for Rewards Task (EEfRT), in which motivation for high-effort/high-reward trials vs low-effort/low-reward trials are manipulated by variations in reward magnitude and probability to win. Because of the strong interactions between sleepiness and motivation, the role of sleepiness was also determined. As expected, the probability to win predicted the choice to engage in high-effort/high-reward trials; however, this occurred at a greater extent after LPS than after saline administration. This effect was related to the level of sleepiness. Sleepiness increased motivation to choose the high-effort/high-reward mode of response, but only when the probability to win was the highest. LPS had no effect on reward sensitivity either directly or via sleepiness. These results indicate that systemic inflammation induced by LPS administration causes motivational changes in young healthy subjects, which are associated with sleepiness. Thus, despite its association with energy-saving behaviors, sickness allows increased incentive motivation when the effort is deemed worthwhile.
Chung, Tammy; Paulsen, David J.; Geier, Charles F.; Luna, Beatriz; Clark, Duncan B.
2015-01-01
This preliminary study examined the extent to which regional brain activation during a reward cue antisaccade (AS) task was associated with 6-month treatment outcome in adolescent substance users. Antisaccade performance provides a sensitive measure of executive function and cognitive control, and generally improves with reward cues. We hypothesized that when preparing to execute an AS, greater activation in regions associated with cognitive and oculomotor control supporting AS, particularly during reward cue trials, would be associated with lower substance use severity at 6-month follow-up. Adolescents (n=14, ages 14-18) recruited from community-based outpatient treatment completed an fMRI reward cue AS task (reward and neutral conditions), and provided follow-up data. Results indicated that AS errors decreased in reward, compared to neutral, trials. AS behavioral performance, however, was not associated with treatment outcome. As hypothesized, activation in regions of interest (ROIs) associated with cognitive (e.g., ventrolateral prefrontal cortex) and oculomotor control (e.g., supplementary eye field) during reward trials were inversely correlated with marijuana problem severity at 6-months. ROI activation during neutral trials was not associated with outcomes. Results support the role of motivational (reward cue) factors to enhance cognitive control processes, and suggest a potential brain-based correlate of youth treatment outcome. PMID:26026506
Gu, Xiaosi; Kirk, Ulrich; Lohrenz, Terry M; Montague, P Read
2014-08-01
Computational models of reward processing suggest that foregone or fictive outcomes serve as important information sources for learning and augment those generated by experienced rewards (e.g. reward prediction errors). An outstanding question is how these learning signals interact with top-down cognitive influences, such as cognitive reappraisal strategies. Using a sequential investment task and functional magnetic resonance imaging, we show that the reappraisal strategy selectively attenuates the influence of fictive, but not reward prediction error signals on investment behavior; such behavioral effect is accompanied by changes in neural activity and connectivity in the anterior insular cortex, a brain region thought to integrate subjective feelings with high-order cognition. Furthermore, individuals differ in the extent to which their behaviors are driven by fictive errors versus reward prediction errors, and the reappraisal strategy interacts with such individual differences; a finding also accompanied by distinct underlying neural mechanisms. These findings suggest that the variable interaction of cognitive strategies with two important classes of computational learning signals (fictive, reward prediction error) represent one contributing substrate for the variable capacity of individuals to control their behavior based on foregone rewards. These findings also expose important possibilities for understanding the lack of control in addiction based on possibly foregone rewarding outcomes. Copyright © 2013 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
Lipopolysaccharide Alters Motivated Behavior in a Monetary Reward Task: a Randomized Trial
Lasselin, Julie; Treadway, Michael T; Lacourt, Tamara E; Soop, Anne; Olsson, Mats J; Karshikoff, Bianka; Paues-Göranson, Sofie; Axelsson, John; Dantzer, Robert; Lekander, Mats
2017-01-01
Inflammation-induced sickness is associated with a large set of behavioral alterations; however, its motivational aspects remain poorly explored in humans. The present study assessed the effect of lipopolysaccharide (LPS) administration at a dose of 2 ng/kg of body weight on motivation in 21 healthy human subjects in a double-blinded, placebo (saline)-controlled, cross-over design. Incentive motivation and reward sensitivity were measured using the Effort Expenditure for Rewards Task (EEfRT), in which motivation for high-effort/high-reward trials vs low-effort/low-reward trials are manipulated by variations in reward magnitude and probability to win. Because of the strong interactions between sleepiness and motivation, the role of sleepiness was also determined. As expected, the probability to win predicted the choice to engage in high-effort/high-reward trials; however, this occurred at a greater extent after LPS than after saline administration. This effect was related to the level of sleepiness. Sleepiness increased motivation to choose the high-effort/high-reward mode of response, but only when the probability to win was the highest. LPS had no effect on reward sensitivity either directly or via sleepiness. These results indicate that systemic inflammation induced by LPS administration causes motivational changes in young healthy subjects, which are associated with sleepiness. Thus, despite its association with energy-saving behaviors, sickness allows increased incentive motivation when the effort is deemed worthwhile. PMID:27620550
Völlm, Birgit; Richardson, Paul; McKie, Shane; Elliott, Rebecca; Dolan, Mairead; Deakin, Bill
2007-11-15
Decision making is guided by the likely consequences of behavioural choices. Neuronal correlates of financial reward have been described in a number of functional imaging studies in humans. Areas implicated in reward include ventral striatum, dopaminergic midbrain, amygdala and orbitofrontal cortex. Response to loss has not been as extensively studied but may involve prefrontal and medial temporal cortices. It has been proposed that increased sensitivity to reward and reduced sensitivity to punishment underlie some of the psychopathology in impulsive personality disordered individuals. However, few imaging studies using reinforcement tasks have been conducted in this group. In this fMRI study, we investigate the effects of positive (monetary reward) and negative (monetary loss) outcomes on BOLD responses in two target selection tasks. The experimental group comprised eight people with Cluster B (antisocial and borderline) personality disorder, whilst the control group contained fourteen healthy participants. A key finding was the absence of prefrontal responses and reduced BOLD signal in the subcortical reward system in the PD group during positive reinforcement. Impulsivity scores correlated negatively with prefrontal responses in the PD but not the control group during both, reward and loss. Our results suggest dysfunctional responses to rewarding and aversive stimuli in Cluster B personality disordered individuals but do not support the notion of hypersensitivity to reward and hyposensitivity to loss.
de Leeuw, Max; Kahn, René S.; Vink, Matthijs
2015-01-01
Schizophrenia is a psychiatric disorder that is associated with impaired functioning of the fronto-striatal network, in particular during reward processing. However, it is unclear whether this dysfunction is related to the illness itself or whether it reflects a genetic vulnerability to develop schizophrenia. Here, we examined reward processing in unaffected siblings of schizophrenia patients using functional magnetic resonance imaging. Brain activity was measured during reward anticipation and reward outcome in 27 unaffected siblings of schizophrenia patients and 29 healthy volunteers using a modified monetary incentive delay task. Task performance was manipulated online so that all subjects won the same amount of money. Despite equal performance, siblings showed reduced activation in the ventral striatum, insula, and supplementary motor area (SMA) during reward anticipation compared to controls. Decreased ventral striatal activation in siblings was correlated with sub-clinical negative symptoms. During the outcome of reward, siblings showed increased activation in the ventral striatum and orbitofrontal cortex compared to controls. Our finding of decreased activity in the ventral striatum during reward anticipation and increased activity in this region during receiving reward may indicate impaired cue processing in siblings. This is consistent with the notion of dopamine dysfunction typically associated with schizophrenia. Since unaffected siblings share on average 50% of their genes with their ill relatives, these deficits may be related to the genetic vulnerability for schizophrenia. PMID:25368371
Abuse Pattern of Toluene Exposure Alters Mouse Behavior in a Waiting-for-Reward Operant Task
Bowen, Scott E.; McDonald, Phillip
2009-01-01
Inhaling solvents for recreational purposes continues to be a world-wide public health concern. Toluene, a volatile solvent in many abused products, adversely affects the central nervous system. However, the long-term neurobehavioral effects of exposure to high-concentration, binge patterns typical of toluene abuse remain understudied. We studied the behavioral effects of repeated toluene exposure on cognitive function following binge toluene exposure on behavioral impulse control in Swiss Webster mice using a “wait-for-reward” operant task. Mice were trained on a fixed-ratio (FR) schedule using sweetened milk as a reward. Upon achieving FR15, a wait component was added which delivered free rewards in the absence of responses at increasing time intervals (2 sec, 4 sec, 6 sec, etc…). Mice continued to receive free rewards until they pressed a lever that reinstated the FR component (FR Reset). Once proficient in the FR-Wait task, mice were exposed to either 1,000 ppm, 3,600 ppm or 6,000 ppm toluene, or 0 ppm (air controls) for 30 min per day for 40 days. To avoid acute effects of toluene exposure, behavior was assessed 23 hours later. Repeated toluene exposure decreased response rates, the number of FR resets, and increased mean wait time, resulting in a higher response-to-reinforcer ratio than exhibited by controls. Mice receiving the higher exposure level (6,000 ppm) showed a dramatic decrease in the number of rewards received, which was reversed when toluene exposure ceased. Mice receiving the lower exposure level (1,000 ppm) showed little change in the number of rewards. These results indicate that repeated binge exposures to high concentrations of toluene can significantly interfere with performance as measured by a waiting-for-reward task, suggesting a significant impact on cognitive and/or psychomotor function. PMID:18832024
Novak, Keisha D; Foti, Dan
2015-11-01
The monetary incentive delay (MID) task has been widely used in fMRI studies to investigate the neural networks involved in anticipatory and consummatory reward processing. Previous efforts to adapt the MID task for use with ERPs, however, have had limited success. Here, we sought to further decompose reward dynamics using a comprehensive set of anticipatory (cue-N2, cue-P3, contingent negative variation [CNV]) and consummatory ERPs (feedback negativity [FN], feedback P3 [fb-P3]). ERP data was recorded during adapted versions of the MID task across two experiments. Unlike previous studies, monetary incentive cues modulated the cue-N2, cue-P3, and CNV; however, cue-related ERPs and the CNV were uncorrelated with one another, indicating distinct anticipatory subprocesses. With regard to consummatory processing, FN amplitude primarily tracked outcome valence (reward vs. nonreward), whereas fb-P3 amplitude primarily tracked outcome salience (uncertain vs. certain). Independent modulation of the cue-P3 and fb-P3 was observed, indicating that these two P3 responses may uniquely capture the allocation of attention during anticipatory and consummatory reward processing, respectively. Overall, across two samples, consistent evidence of both anticipatory and consummatory ERP activity was observed on an adapted version of the MID paradigm, demonstrating for the first time how these ERP components may be integrated with one another to more fully characterize the time course of reward processing. This ERP-MID paradigm is well suited to parsing reward dynamics, and can be applied to both healthy and clinical populations. © 2015 Society for Psychophysiological Research.
Costa Dias, Taciana G.; Wilson, Vanessa B.; Bathula, Deepti R.; Iyer, Swathi P.; Mills, Kathryn L.; Thurlow, Bria L.; Stevens, Corinne A.; Musser, Erica D.; Carpenter, Samuel D.; Grayson, David S.; Mitchell, Suzanne H.; Nigg, Joel T.; Fair, Damien A.
2012-01-01
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent psychiatric disorder that has poor long-term outcomes and remains a major public health concern. Recent theories have proposed that ADHD arises from alterations in multiple neural pathways. Alterations in reward circuits are hypothesized as one core dysfunction, leading to altered processing of anticipated rewards. The nucleus accumbens (NAcc) is particularly important for reward processes; task-based fMRI studies have found atypical activation of this region while the participants performed a reward task. Understanding how reward circuits are involved with ADHD may be further enhanced by considering how the NAcc interacts with other brain regions. Here we used the technique of resting-state functional connectivity MRI (rs-fcMRI) to examine the alterations in the NAcc interactions and how they relate to impulsive decision making in ADHD. Using rs-fcMRI, this study: examined differences in functional connectivity of the NAcc between children with ADHD and control children; correlated the functional connectivity of NAcc with impulsivity, as measured by a delay discounting task; and combined these two initial segments to identify the atypical NAcc connections that were associated with impulsive decision making in ADHD. We found that functional connectivity of NAcc was atypical in children with ADHD and the ADHD-related increased connectivity between NAcc and the prefrontal cortex was associated with greater impulsivity (steeper delayed-reward discounting). These findings are consistent with the hypothesis that atypical signaling of the NAcc to the prefrontal cortex in ADHD may lead to excessive approach and failure in estimating future consequences; thus, leading to impulsive behavior. PMID:23206930
Heinrich, Angela; Lourdusamy, Anbarasu; Tzschoppe, Jelka; Vollstädt-Klein, Sabine; Bühler, Mira; Steiner, Sabina; Bach, Christiane; Poustka, Luise; Banaschewski, Tobias; Barker, Gareth; Büchel, Christian; Conrod, Patricia; Garavan, Hugh; Gallinat, Jürgen; Heinz, Andreas; Ittermann, Bernd; Loth, Eva; Mann, Karl; Martinot, Jean-Luc; Paus, Tomáš; Pausova, Zdenka; Smolka, Michael; Ströhle, Andreas; Struve, Maren; Witt, Stephanie; Flor, Herta; Schumann, Gunter; Rietschel, Marcella; Nees, Frauke
2013-06-01
Bipolar disorder is a severe mood disorder, which normally begins during adolescence or early adulthood and has a heritability of up to 80%. The largest genome-wide association analysis of bipolar disorder recently identified a new genome-wide associated variant in OZD4 (rs12576775). The aim of the present study was to further elucidate the role of this risk variant in the disease process using an imaging genetics approach. As increased amygdala and striatal responses during the processing of reward and emotion are characteristic for bipolar disorder patients, it was tested whether the risk variant has an influence on this endophenotype in healthy adolescents. We examined the impact of the risk variant rs12576775 on functional magnetic resonance imaging data in an adolescent sample (N = 485). Differential activation between carriers of the risk allele (G-allele) and homozygous A-allele carriers in the amygdala and the striatum during a modification of the monetary incentive delay task (examining reward) and a face task (examining emotion) was analyzed. Carriers of the risk allele showed an increased blood oxygen level-dependent response in the amygdala during reward sensitivity (p = 0.05) and reward expectation (p < 0.05) but not during the face task. No significant group differences were found in the striatum during both reward and emotion processing. Our results indicate that the ODZ4 risk variant influences reward processing in the amygdala. Alterations in the processing of emotion may have different underlying mechanisms and need to be further examined. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Incidental Learning of Rewarded Associations Bolsters Learning on an Associative Task
ERIC Educational Resources Information Center
Freedberg, Michael; Schacherer, Jonathan; Hazeltine, Eliot
2016-01-01
Reward has been shown to change behavior as a result of incentive learning (by motivating the individual to increase their effort) and instrumental learning (by increasing the frequency of a particular behavior). However, Palminteri et al. (2011) demonstrated that reward can also improve the incidental learning of a motor skill even when…
When Rewards Go Wrong: A Tale of Five Motivational Misdirects
ERIC Educational Resources Information Center
Steel, Piers; MacDonnell, Rhiannon
2012-01-01
At the heart of most performance management systems is a reward program. However, even when we are doing everything else right, rewards can go wrong. Here, we explore five ways that external incentives can damage performance, from destroying altruistic behavior to distracting people from the task. Fortunately, most of these downfalls are…
Neural correlates of specific musical anhedonia
Martínez-Molina, Noelia; Mas-Herrero, Ernest; Rodríguez-Fornells, Antoni; Zatorre, Robert J.
2016-01-01
Although music is ubiquitous in human societies, there are some people for whom music holds no reward value despite normal perceptual ability and preserved reward-related responses in other domains. The study of these individuals with specific musical anhedonia may be crucial to understand better the neural correlates underlying musical reward. Previous neuroimaging studies have shown that musically induced pleasure may arise from the interaction between auditory cortical networks and mesolimbic reward networks. If such interaction is critical for music-induced pleasure to emerge, then those individuals who do not experience it should show alterations in the cortical-mesolimbic response. In the current study, we addressed this question using fMRI in three groups of 15 participants, each with different sensitivity to music reward. We demonstrate that the music anhedonic participants showed selective reduction of activity for music in the nucleus accumbens (NAcc), but normal activation levels for a monetary gambling task. Furthermore, this group also exhibited decreased functional connectivity between the right auditory cortex and ventral striatum (including the NAcc). In contrast, individuals with greater than average response to music showed enhanced connectivity between these structures. Thus, our results suggest that specific musical anhedonia may be associated with a reduction in the interplay between the auditory cortex and the subcortical reward network, indicating a pivotal role of this interaction for the enjoyment of music. PMID:27799544
Temporal dynamics of reward anticipation in the human brain.
Zhang, Yuanyuan; Li, Qi; Wang, Zhao; Liu, Xun; Zheng, Ya
2017-09-01
Reward anticipation is a complex process including cue evaluation, motor preparation, and feedback anticipation. The present study investigated whether these psychological processes were dissociable on neural dynamics in terms of incentive valence and approach motivation. We recorded EEG when participants were performing a monetary incentive delay task, and found a cue-P3 during the cue-evaluation stage, a contingent negative variation (CNV) during the motor-preparation stage, and a stimulus-preceding negativity (SPN) during the feedback-anticipation stage. Critically, both the cue-P3 and SPN exhibited an enhanced sensitivity to gain versus loss anticipation, which was not observed for the CNV. Moreover, both the cue-P3 and SPN, instead of the CNV, for gain anticipation selectively predicted the participants' approach motivation as measured in a following effort expenditure for rewards task, particularly when reward uncertainty was maximal. Together, these results indicate that reward anticipation consists of several sub-stages, each with distinct functional significance, thus providing implications for neuropsychiatric diseases characterized by dysfunction in anticipatory reward processing. Copyright © 2017 Elsevier B.V. All rights reserved.
Rodent models of adaptive decision making.
Izquierdo, Alicia; Belcher, Annabelle M
2012-01-01
Adaptive decision making affords the animal the ability to respond quickly to changes in a dynamic environment: one in which attentional demands, cost or effort to procure the reward, and reward contingencies change frequently. The more flexible the organism is in adapting choice behavior, the more command and success the organism has in navigating its environment. Maladaptive decision making is at the heart of much neuropsychiatric disease, including addiction. Thus, a better understanding of the mechanisms that underlie normal, adaptive decision making helps achieve a better understanding of certain diseases that incorporate maladaptive decision making as a core feature. This chapter presents three general domains of methods that the experimenter can manipulate in animal decision-making tasks: attention, effort, and reward contingency. Here, we present detailed methods of rodent tasks frequently employed within these domains: the Attentional Set-Shift Task, Effortful T-maze Task, and Visual Discrimination Reversal Learning. These tasks all recruit regions within the frontal cortex and the striatum, and performance is heavily modulated by the neurotransmitter dopamine, making these assays highly valid measures in the study of psychostimulant addiction.
Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease.
Muñoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe
2018-02-07
Animal models of Alzheimer's disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain connectivity at an early stage (5 months of age) before a significant concentration of β-amyloid plaques is present. Cognitive abilities were assessed by a delayed nonmatch-to-sample (DNMS) task preceded by a training phase where the animals learned the task. The number of training sessions required to achieve a learning criterion was recorded and evaluated. After DNMS, MRI acquisition was performed, including diffusion-weighted MRI and resting-state functional MRI, which were processed to obtain the structural and functional connectomes, respectively. Global and regional graph metrics were computed to evaluate network organization in both transgenic and control rats. The results pointed to a delay in learning the working memory-related task in the AD rats, which also completed a lower number of trials in the DNMS task. Regarding connectivity properties, less efficient organization of the structural brain networks of the transgenic rats with respect to controls was observed. Specific regional differences in connectivity were identified in both structural and functional networks. In addition, a strong correlation was observed between cognitive performance and brain networks, including whole-brain structural connectivity as well as functional and structural network metrics of regions related to memory and reward processes. In this study, connectivity and neurocognitive impairments were identified in TgF344-AD rats at a very early stage of the disease when most of the pathological hallmarks have not yet been detected. Structural and functional network metrics of regions related to reward, memory, and sensory performance were strongly correlated with the cognitive outcome. The use of animal models is essential for the early identification of these alterations and can contribute to the development of early biomarkers of the disease based on MRI connectomics.
Aberg, Kristoffer C; Müller, Julia; Schwartz, Sophie
2017-01-01
Anticipation and delivery of rewards improves memory formation, but little effort has been made to disentangle their respective contributions to memory enhancement. Moreover, it has been suggested that the effects of reward on memory are mediated by dopaminergic influences on hippocampal plasticity. Yet, evidence linking memory improvements to actual reward computations reflected in the activity of the dopaminergic system, i.e., prediction errors and expected values, is scarce and inconclusive. For example, different previous studies reported that the magnitude of prediction errors during a reinforcement learning task was a positive, negative, or non-significant predictor of successfully encoding simultaneously presented images. Individual sensitivities to reward and punishment have been found to influence the activation of the dopaminergic reward system and could therefore help explain these seemingly discrepant results. Here, we used a novel associative memory task combined with computational modeling and showed independent effects of reward-delivery and reward-anticipation on memory. Strikingly, the computational approach revealed positive influences from both reward delivery, as mediated by prediction error magnitude, and reward anticipation, as mediated by magnitude of expected value, even in the absence of behavioral effects when analyzed using standard methods, i.e., by collapsing memory performance across trials within conditions. We additionally measured trait estimates of reward and punishment sensitivity and found that individuals with increased reward (vs. punishment) sensitivity had better memory for associations encoded during positive (vs. negative) prediction errors when tested after 20 min, but a negative trend when tested after 24 h. In conclusion, modeling trial-by-trial fluctuations in the magnitude of reward, as we did here for prediction errors and expected value computations, provides a comprehensive and biologically plausible description of the dynamic interplay between reward, dopamine, and associative memory formation. Our results also underline the importance of considering individual traits when assessing reward-related influences on memory.
Reward- and attention-related biasing of sensory selection in visual cortex.
Buschschulte, Antje; Boehler, Carsten N; Strumpf, Hendrik; Stoppel, Christian; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Hopf, Jens-Max
2014-05-01
Attention to task-relevant features leads to a biasing of sensory selection in extrastriate cortex. Features signaling reward seem to produce a similar bias, but how modulatory effects due to reward and attention relate to each other is largely unexplored. To address this issue, it is critical to separate top-down settings defining reward relevance from those defining attention. To this end, we used a visual search paradigm in which the target's definition (attention to color) was dissociated from reward relevance by delivering monetary reward on search frames where a certain task-irrelevant color was combined with the target-defining color to form the target object. We assessed the state of neural biasing for the attended and reward-relevant color by analyzing the neuromagnetic brain response to asynchronously presented irrelevant distractor probes drawn in the target-defining color, the reward-relevant color, and a completely irrelevant color as a reference. We observed that for the prospect of moderate rewards, the target-defining color but not the reward-relevant color produced a selective enhancement of the neuromagnetic response between 180 and 280 msec in ventral extrastriate visual cortex. Increasing reward prospect caused a delayed attenuation (220-250 msec) of the response to reward probes, which followed a prior (160-180 msec) response enhancement in dorsal ACC. Notably, shorter latency responses in dorsal ACC were associated with stronger attenuation in extrastriate visual cortex. Finally, an analysis of the brain response to the search frames revealed that the presence of the reward-relevant color in search distractors elicited an enhanced response that was abolished after increasing reward size. The present data together indicate that when top-down definitions of reward relevance and attention are separated, the behavioral significance of reward-associated features is still rapidly coded in higher-level cortex areas, thereby commanding effective top-down inhibitory control to counter a selection bias for those features in extrastriate visual cortex.
Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew
2013-01-01
Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously. PMID:23536092
Linke, Julia; Wessa, Michèle
2017-09-01
High reward sensitivity and wanting of rewarding stimuli help to identify and motivate repetition of pleasant activities. This behavioral activation is thought to increase positive emotions. Therefore, both mechanisms are highly relevant for resilience against depressive symptoms. Yet, these mechanisms have not been targeted by psychotherapeutic interventions. In the present study, we tested a mental imagery training comprising eight 10-minute sessions every second day and delivered via the Internet to healthy volunteers (N = 30, 21 female, mean age of 23.8 years, Caucasian) who were preselected for low reward sensitivity. Participants were paired according to age, sex, reward sensitivity, and mental imagery ability. Then, members of each pair were randomly assigned to either the intervention or wait condition. Ratings of wanting and response bias toward probabilistic reward cues (Probabilistic Reward Task) served as primary outcomes. We further tested whether training effects extended to approach behavior (Approach Avoidance Task) and depressive symptoms (Beck Depression Inventory). The intervention led to an increase in wanting (p < .001, η 2 p = .45) and reward sensitivity (p = .004, η 2 p = .27). Further, the training group displayed faster approach toward positive edibles and activities (p = .025, η 2 p = .18) and reductions in depressive symptoms (p = .028, η 2 p = .16). Results extend existing literature by showing that mental imagery training can increase wanting of rewarding stimuli and reward sensitivity. Further, the training appears to reduce depressive symptoms and thus may foster the successful implementation of exsiting treatments for depression such as behavioral activation and could also increase resilience against depressive symptoms. Copyright © 2017. Published by Elsevier Ltd.
Foulkes, Lucy; McCrory, Eamon J.; Neumann, Craig S.; Viding, Essi
2014-01-01
Individuals with high levels of psychopathic traits tend to undervalue long-term, affiliative relationships, but it remains unclear what motivates them to engage in social interactions at all. Their experience of social reward may provide an important clue. In Study 1 of this paper, a large sample of participants (N = 505) completed a measure of psychopathic traits (Self-Report Psychopathy Scale Short-Form) and a measure of social reward value (Social Reward Questionnaire) to explore what aspects of social reward are associated with psychopathic traits. In Study 2 (N = 110), the same measures were administered to a new group of participants along with two experimental tasks investigating monetary and social reward value. Psychopathic traits were found to be positively correlated with the enjoyment of callous treatment of others and negatively associated with the enjoyment of positive social interactions. This indicates a pattern of ‘inverted’ social reward in which being cruel is enjoyable and being kind is not. Interpersonal psychopathic traits were also positively associated with the difference between mean reaction times (RTs) in the monetary and social experimental reward tasks; individuals with high levels of these traits responded comparatively faster to social than monetary reward. We speculate that this may be because social approval/admiration has particular value for these individuals, who have a tendency to use and manipulate others. Together, these studies provide evidence that the self-serving and cruel social behaviour seen in psychopathy may in part be explained by what these individuals find rewarding. PMID:25162519
Reward Pays the Cost of Noise Reduction in Motor and Cognitive Control.
Manohar, Sanjay G; Chong, Trevor T-J; Apps, Matthew A J; Batla, Amit; Stamelou, Maria; Jarman, Paul R; Bhatia, Kailash P; Husain, Masud
2015-06-29
Speed-accuracy trade-off is an intensively studied law governing almost all behavioral tasks across species. Here we show that motivation by reward breaks this law, by simultaneously invigorating movement and improving response precision. We devised a model to explain this paradoxical effect of reward by considering a new factor: the cost of control. Exerting control to improve response precision might itself come at a cost--a cost to attenuate a proportion of intrinsic neural noise. Applying a noise-reduction cost to optimal motor control predicted that reward can increase both velocity and accuracy. Similarly, application to decision-making predicted that reward reduces reaction times and errors in cognitive control. We used a novel saccadic distraction task to quantify the speed and accuracy of both movements and decisions under varying reward. Both faster speeds and smaller errors were observed with higher incentives, with the results best fitted by a model including a precision cost. Recent theories consider dopamine to be a key neuromodulator in mediating motivational effects of reward. We therefore examined how Parkinson's disease (PD), a condition associated with dopamine depletion, alters the effects of reward. Individuals with PD showed reduced reward sensitivity in their speed and accuracy, consistent in our model with higher noise-control costs. Including a cost of control over noise explains how reward may allow apparent performance limits to be surpassed. On this view, the pattern of reduced reward sensitivity in PD patients can specifically be accounted for by a higher cost for controlling noise. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cáceres, Pablo; San Martín, René
2017-01-01
Many advances have been made over the last decades in describing, on the one hand, the link between reward-based learning and decision-making, and on the other hand, the link between impulsivity and decision-making. However, the association between reward-based learning and impulsivity remains poorly understood. In this study, we evaluated the association between individual differences in loss-minimizing and gain-maximizing behavior in a learning-based probabilistic decision-making task and individual differences in cognitive impulsivity. We found that low cognitive impulsivity was associated both with a better performance minimizing losses and maximizing gains during the task. These associations remained significant after controlling for mathematical skills and gender as potential confounders. We discuss potential mechanisms through which cognitive impulsivity might interact with reward-based learning and decision-making. PMID:28261137
Cáceres, Pablo; San Martín, René
2017-01-01
Many advances have been made over the last decades in describing, on the one hand, the link between reward-based learning and decision-making, and on the other hand, the link between impulsivity and decision-making. However, the association between reward-based learning and impulsivity remains poorly understood. In this study, we evaluated the association between individual differences in loss-minimizing and gain-maximizing behavior in a learning-based probabilistic decision-making task and individual differences in cognitive impulsivity. We found that low cognitive impulsivity was associated both with a better performance minimizing losses and maximizing gains during the task. These associations remained significant after controlling for mathematical skills and gender as potential confounders. We discuss potential mechanisms through which cognitive impulsivity might interact with reward-based learning and decision-making.
Motivation enhances control of positive and negative emotional distractions.
Walsh, Amy T; Carmel, David; Harper, David; Grimshaw, Gina M
2018-01-03
Using cognitive control to ignore distractions is essential for successfully achieving our goals. In emotionally-neutral contexts, motivation can reduce interference from irrelevant stimuli by enhancing cognitive control. However, attention is commonly biased towards emotional stimuli, making them potent distractors. Can motivation aid control of emotional distractions, and does it do so similarly for positive and negative stimuli? Here, we examined how task motivation influences control of distraction from positive, negative, and neutral scenes. Participants completed a simple perceptual task while attempting to ignore task-irrelevant images. One group received monetary reward for fast and accurate task performance; another (control) group did not. Overall, both negative (mutilation) and positive (erotic) images caused greater slowing of responses than neutral images of people, but emotional distraction was reduced with reward. Crucially, despite the different motivational directions associated with negative and positive stimuli, reward reduced negative and positive distraction equally. Our findings suggest that motivation may encourage the use of a sustained proactive control strategy that can effectively reduce the impact of emotional distraction.
Johnston, Derek; Bell, Cheryl; Jones, Martyn; Farquharson, Barbara; Allan, Julia; Schofield, Patricia; Ricketts, Ian; Johnston, Marie
2016-04-01
Stress in health care professionals may reflect both the work and appraisal of work and impacts on the individuals, their patients, colleagues and managers. The purpose of the present study is to examine physiological and psychological effects of stressors (tasks) and theory-based perceptions of work stressors within and between nurses in real time. During two work shifts, 100 nurses rated experienced stress, affect, fatigue, theory-based measures of work stress and nursing tasks on electronic diaries every 90 min, whereas heart rate and activity were measured continuously. Heart rate was associated with both demand and effort. Experienced stress was related to demand, control, effort and reward. Effort and reward interacted as predicted (but only within people). Results were unchanged when allowance was made for work tasks. Real-time appraisals were more important than actual tasks in predicting both psychological and physiological correlates of stress. At times when effort was high, perceived reward reduced stress.
Persistence motives in irrational decisions to complete a boring task.
Halkjelsvik, Torleif; Rise, Jostein
2015-01-01
We explored a novel task paradigm where participants from the online work marketplace Amazon Mechanical Turk were given the choice to quit or continue an unfinished boring task for identical economic rewards. In Studies 1a and 1b, about half the participants chose to continue (corresponding to an average of 55 and 35 cents in foregone earnings). Participants' self-reported reasons for continuing involved various types of persistence motives, reflecting a desire to persist or complete per se. Studies 2, 3a, 3b, and 3c ruled out the possibility that people continued because they enjoyed the task or believed there were additional rewards for continuing. Study 4 showed that the choice to quit/continue was associated with the manner in which the choice was presented (persistence test vs. decision-making test) and individual differences in dispositional persistence motives. The present data indicate that motivational forces independent of the focal reward may affect intertemporal decisions. © 2014 by the Society for Personality and Social Psychology, Inc.
Russell, Avery L.; Morrison, Sarah J.; Moschonas, Eleni H.; Papaj, Daniel R.
2017-01-01
The ecological success of social insects is frequently ascribed to improvements in task performance due to division of labour amongst workers. While much research has focused on improvements associated with lifetime task specialization, members of colonies can specialize on a given task over shorter time periods. Eusocial bees in particular must collect pollen and nectar rewards to survive, but most workers appear to mix collection of both rewards over their lifetimes. We asked whether bumblebees specialize over timescales shorter than their lifetime. We also explored factors that govern such patterns, and asked whether reward specialists made more foraging bouts than generalists. In particular, we described antennal morphology and size of all foragers in a single colony and related these factors to each forager’s complete foraging history, obtained using radio frequency identification (RFID). Only a small proportion of foragers were lifetime specialists; nevertheless, >50% of foragers specialized daily on a given reward. Contrary to expectations, daily and lifetime reward specialists were not better foragers (being neither larger nor making more bouts); larger bees with more antennal olfactory sensilla made more bouts, but were not more specialized. We discuss causes and functions of short and long-term patterns of specialization for bumblebee colonies. PMID:28181584
The impact of cognitive load on reward evaluation.
Krigolson, Olave E; Hassall, Cameron D; Satel, Jason; Klein, Raymond M
2015-11-19
The neural systems that afford our ability to evaluate rewards and punishments are impacted by a variety of external factors. Here, we demonstrate that increased cognitive load reduces the functional efficacy of a reward processing system within the human medial-frontal cortex. In our paradigm, two groups of participants used performance feedback to estimate the exact duration of one second while electroencephalographic (EEG) data was recorded. Prior to performing the time estimation task, both groups were instructed to keep their eyes still and avoid blinking in line with well established EEG protocol. However, during performance of the time-estimation task, one of the two groups was provided with trial-to-trial-feedback about their performance on the time-estimation task and their eye movements to induce a higher level of cognitive load relative to participants in the other group who were solely provided with feedback about the accuracy of their temporal estimates. In line with previous work, we found that the higher level of cognitive load reduced the amplitude of the feedback-related negativity, a component of the human event-related brain potential associated with reward evaluation within the medial-frontal cortex. Importantly, our results provide further support that increased cognitive load reduces the functional efficacy of a neural system associated with reward processing. Copyright © 2015 Elsevier B.V. All rights reserved.
Striatal hyper-sensitivity during stress in remitted individuals with recurrent depression
Admon, Roee; Holsen, Laura M.; Aizley, Harlyn; Remington, Anne; Whitfield-Gabrieli, Susan; Goldstein, Jill M.; Pizzagalli, Diego A.
2014-01-01
Background Increased sensitivity to stress and dysfunctional reward processing are two primary characteristics of Major Depressive Disorder (MDD) that may persist following remission. Preclinical work has established the pivotal role of the striatum in mediating both stress and reward responses. Human neuroimaging studies have corroborated these preclinical findings and highlighted striatal dysfunction in MDD in response to reward, but have yet to investigate striatal function during stress, in particular in individuals with recurrent depression. Methods Thirty three remitted individuals with a history of recurrent MDD (rMDD) and 35 matched healthy controls underwent a validated mild psychological stress task involving viewing of negative stimuli during fMRI. Cortisol and anxiety levels were assessed throughout scanning. Stress-related activation was investigated in three striatal regions: caudate, nucleus accumbens (Nacc), and putamen. Psychophysiological interaction (PPI) analyses probed connectivity of those regions with central structures of the neural stress circuitry, the amygdala and hippocampus. Results The task increased cortisol and anxiety levels, although to a greater extent in rMDD than healthy controls. In response to the negative stimuli, rMDD individuals, but not controls, also exhibited significantly potentiated caudate, Nacc, and putamen activations, as well as increased caudate-amygdala and caudate-hippocampus connectivity. Conclusions Findings highlight striatal hyper-sensitivity in response to a mild psychological stress in rMDD, as manifested by hyper-activation and hyper-connectivity with the amygdala and hippocampus. Striatal hyper-sensitivity during stress might thus constitute a trait mark of depression, providing a potential neural substrate for the interaction between stress and reward dysfunction in MDD. PMID:25483401
Executive functions, information sampling, and decision making in narcolepsy with cataplexy.
Delazer, Margarete; Högl, Birgit; Zamarian, Laura; Wenter, Johanna; Gschliesser, Viola; Ehrmann, Laura; Brandauer, Elisabeth; Cevikkol, Zehra; Frauscher, Birgit
2011-07-01
Narcolepsy with cataplexy (NC) affects neurotransmitter systems regulating emotions and cognitive functions. This study aimed to assess executive functions, information sampling, reward processing, and decision making in NC. Twenty-one NC patients and 58 healthy participants performed an extensive neuropsychological test battery. NC patients scored as controls in executive function tasks assessing set shifting, reversal learning, working memory, and planning. Group differences appeared in a task measuring information sampling and reward sensitivity. NC patients gathered less information, tolerated a higher level of uncertainty, and were less influenced by reward contingencies than controls. NC patients also showed reduced learning in decision making and had significantly lower scores than controls in the fifth block of the IOWA gambling task. No correlations were found with measures of sleepiness. NC patients may achieve high performance in several neuropsychological domains, including executive functions. Specific differences between NC patients and controls highlight the importance of the hypocretin system in reward processing and decision making and are in line with previous neuroimaging and neurophysiological studies. PsycINFO Database Record (c) 2011 APA, all rights reserved.
The effect of REM sleep deprivation on motivation for food reward.
Hanlon, Erin C; Andrzejewski, Matthew E; Harder, Bridgette K; Kelley, Ann E; Benca, Ruth M
2005-08-30
Prolonged sleep deprivation in rats produces a characteristic syndrome consisting of an increase in food intake yet a decrease in weight. Moreover, the increase in food intake generally precedes the weight loss, suggesting that sleep deprivation may affect appetitive behaviors. Using the multiple platform method to produce rapid eye movement (REM) sleep deprivation, we investigated the effect of REM sleep deprivation (REMSD) on motivation for food reward utilizing food-reinforced operant tasks. In acquisition or maintenance of an operant task, REM sleep-deprived rats, with or without simultaneous food restriction, decreased responding for sucrose pellet reward in comparison to controls, despite the fact that all REM sleep-deprived rats lost weight. Furthermore, the overall response deficit of the REM sleep-deprived rats was due to a within-session decline in responding. REM sleep-deprived rats showed evidence of understanding the contingency of the task comparable to controls throughout deprivation period, suggesting that the decrements in responding were not primarily related to deficits in learning or memory. Rather, REM sleep deprivation appears to alter systems involved in motivational processes, reward, and/or attention.
Neural correlates of reward and loss sensitivity in psychopathy.
Pujara, Maia; Motzkin, Julian C; Newman, Joseph P; Kiehl, Kent A; Koenigs, Michael
2014-06-01
Psychopathy is a personality disorder associated with callous and impulsive behavior and criminal recidivism. It has long been theorized that psychopaths have deficits in processing reward and punishment. Here, we use structural and functional magnetic resonance imaging to examine the neural correlates of reward and loss sensitivity in a group of criminal psychopaths. Forty-one adult male prison inmates (n = 18 psychopaths and n = 23 non-psychopaths) completed a functional magnetic resonance imaging task involving the gain or loss of money. Across the entire sample of participants, monetary gains elicited robust activation within the ventral striatum (VS). Although psychopaths and non-psychopaths did not significantly differ with respect to overall levels of VS response to reward vs loss, we observed significantly different correlations between VS responses and psychopathy severity within each group. Volumetric analyses of striatal subregions revealed a similar pattern of correlations, specifically for the right accumbens area within VS. In a separate sample of inmates (n = 93 psychopaths and n = 117 non-psychopaths) who completed a self-report measure of appetitive motivation, we again found that the correlation with psychopathy severity differed between groups. These convergent results offer novel insight into the neural substrates of reward and loss processing in psychopathy. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Gratitude intervention modulates P3 amplitude in a temporal discounting task.
Patalano, Andrea L; Lolli, Sydney L; Sanislow, Charles A
2018-06-23
Gratitude has been shown to reduce economic impatience. In particular, individuals induced to experience heightened gratitude are more willing to choose delayed larger rewards over immediate smaller rewards (i.e., they have lower discounting rates) than those in a neutral condition. Using the event-related potential (ERP) method, we investigated the relation between gratitude level and neurophysiological correlates. Of interest was motivated information processing, as indexed by the P3 component. Participants were administered a gratitude or a neutral mood induction followed by a temporal discounting task (choosing between a fixed immediate reward versus a future reward that varied across trials) while electroencephalogram (EEG) activity was recorded. Individuals in the gratitude condition had greater P3 amplitude, suggesting greater attention to the future-reward option (the choice option that varied across trials), even when this option was not selected, and providing the first evidence of gratitude-induced changes in electrophysiological activity. Copyright © 2018. Published by Elsevier B.V.
Serotonergic neurons signal reward and punishment on multiple timescales
Cohen, Jeremiah Y; Amoroso, Mackenzie W; Uchida, Naoshige
2015-01-01
Serotonin's function in the brain is unclear. One challenge in testing the numerous hypotheses about serotonin's function has been observing the activity of identified serotonergic neurons in animals engaged in behavioral tasks. We recorded the activity of dorsal raphe neurons while mice experienced a task in which rewards and punishments varied across blocks of trials. We ‘tagged’ serotonergic neurons with the light-sensitive protein channelrhodopsin-2 and identified them based on their responses to light. We found three main features of serotonergic neuron activity: (1) a large fraction of serotonergic neurons modulated their tonic firing rates over the course of minutes during reward vs punishment blocks; (2) most were phasically excited by punishments; and (3) a subset was phasically excited by reward-predicting cues. By contrast, dopaminergic neurons did not show firing rate changes across blocks of trials. These results suggest that serotonergic neurons signal information about reward and punishment on multiple timescales. DOI: http://dx.doi.org/10.7554/eLife.06346.001 PMID:25714923
Reward-based training of recurrent neural networks for cognitive and value-based tasks
Song, H Francis; Yang, Guangyu R; Wang, Xiao-Jing
2017-01-01
Trained neural network models, which exhibit features of neural activity recorded from behaving animals, may provide insights into the circuit mechanisms of cognitive functions through systematic analysis of network activity and connectivity. However, in contrast to the graded error signals commonly used to train networks through supervised learning, animals learn from reward feedback on definite actions through reinforcement learning. Reward maximization is particularly relevant when optimal behavior depends on an animal’s internal judgment of confidence or subjective preferences. Here, we implement reward-based training of recurrent neural networks in which a value network guides learning by using the activity of the decision network to predict future reward. We show that such models capture behavioral and electrophysiological findings from well-known experimental paradigms. Our work provides a unified framework for investigating diverse cognitive and value-based computations, and predicts a role for value representation that is essential for learning, but not executing, a task. DOI: http://dx.doi.org/10.7554/eLife.21492.001 PMID:28084991
McGonigle, John; Murphy, Anna; Paterson, Louise M; Reed, Laurence J; Nestor, Liam; Nash, Jonathan; Elliott, Rebecca; Ersche, Karen D; Flechais, Remy SA; Newbould, Rexford; Orban, Csaba; Smith, Dana G; Taylor, Eleanor M; Waldman, Adam D; Robbins, Trevor W; Deakin, JF William; Nutt, David J; Lingford-Hughes, Anne R; Suckling, John
2016-01-01
Objectives: We aimed to set up a robust multi-centre clinical fMRI and neuropsychological platform to investigate the neuropharmacology of brain processes relevant to addiction – reward, impulsivity and emotional reactivity. Here we provide an overview of the fMRI battery, carried out across three centres, characterizing neuronal response to the tasks, along with exploring inter-centre differences in healthy participants. Experimental design: Three fMRI tasks were used: monetary incentive delay to probe reward sensitivity, go/no-go to probe impulsivity and an evocative images task to probe emotional reactivity. A coordinate-based activation likelihood estimation (ALE) meta-analysis was carried out for the reward and impulsivity tasks to help establish region of interest (ROI) placement. A group of healthy participants was recruited from across three centres (total n=43) to investigate inter-centre differences. Principle observations: The pattern of response observed for each of the three tasks was consistent with previous studies using similar paradigms. At the whole brain level, significant differences were not observed between centres for any task. Conclusions: In developing this platform we successfully integrated neuroimaging data from three centres, adapted validated tasks and applied whole brain and ROI approaches to explore and demonstrate their consistency across centres. PMID:27703042
Utsumi, Daniel Augusto; Miranda, Mônica Carolina; Muszkat, Mauro
2016-12-30
Temporal Discounting (TD) reflects a tendency to discount a reward more deeply the longer its delivery is delayed. TD tasks and behavioral scales have been used to investigate 'hot' executive functions in ADHD. The present study analyzed TD task performance shown by ADHD and control groups for correlations with emotional self-regulation metrics from two scales, the Behavior Rating Inventory of Executive Functions (BRIEF) and the Child Behavior Checklist (CBCL). Children (ages 8-12) with ADHD (n=25) and controls (n=24) were assessed using material rewards (toys) for three types of task: Hypothetical (H); Hypothetical with temporal expectation (HTE); and Real (R). Between-group differences were found for the HTE task, on which the ADHD group showed a higher rate of discounting their favorite toy over time, especially at 10s and 20s. This was the only task on which performance significantly correlated with BRIEF metrics, thus suggesting associations between impulsivity and low emotional self-regulation, but no task was correlated with CBCL score. The conclusion is that tasks involving toys and HTE in particular may be used to investigate TD in children with ADHD and as a means of evaluating the interface between the reward system and emotional self-regulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Modulating Reward Induces Differential Neurocognitive Approaches to Sustained Attention.
Esterman, Michael; Poole, Victoria; Liu, Guanyu; DeGutis, Joseph
2017-08-01
Reward and motivation have powerful effects on cognition and brain activity, yet it remains unclear how they affect sustained cognitive performance. We have recently shown that a variety of motivators improve accuracy and reduce variability during sustained attention. In the current study, we investigate how neural activity in task-positive networks supports these sustained attention improvements. Participants performed the gradual-onset continuous performance task with alternating motivated (rewarded) and unmotivated (unrewarded) blocks. During motivated blocks, we observed increased sustained neural recruitment of task-positive regions, which interacted with fluctuations in task performance. Specifically, during motivated blocks, participants recruited these regions in preparation for upcoming targets, and this activation predicted accuracy. In contrast, during unmotivated blocks, no such advanced preparation was observed. Furthermore, during motivated blocks, participants had similar activation levels during both optimal (in-the-zone) and suboptimal (out-of-the-zone) epochs of performance. In contrast, during unmotivated blocks, task-positive regions were only engaged to a similar degree as motivated blocks during suboptimal (out-of-the-zone) periods. These data support a framework in which motivated individuals act as "cognitive investors," engaging task-positive resources proactively and consistently during sustaining attention. When unmotivated, however, the same individuals act as "cognitive misers," engaging maximal task-positive resources only during periods of struggle. Published by Oxford University Press 2016.
McGonigle, John; Murphy, Anna; Paterson, Louise M; Reed, Laurence J; Nestor, Liam; Nash, Jonathan; Elliott, Rebecca; Ersche, Karen D; Flechais, Remy Sa; Newbould, Rexford; Orban, Csaba; Smith, Dana G; Taylor, Eleanor M; Waldman, Adam D; Robbins, Trevor W; Deakin, Jf William; Nutt, David J; Lingford-Hughes, Anne R; Suckling, John
2017-01-01
We aimed to set up a robust multi-centre clinical fMRI and neuropsychological platform to investigate the neuropharmacology of brain processes relevant to addiction - reward, impulsivity and emotional reactivity. Here we provide an overview of the fMRI battery, carried out across three centres, characterizing neuronal response to the tasks, along with exploring inter-centre differences in healthy participants. Three fMRI tasks were used: monetary incentive delay to probe reward sensitivity, go/no-go to probe impulsivity and an evocative images task to probe emotional reactivity. A coordinate-based activation likelihood estimation (ALE) meta-analysis was carried out for the reward and impulsivity tasks to help establish region of interest (ROI) placement. A group of healthy participants was recruited from across three centres (total n=43) to investigate inter-centre differences. Principle observations: The pattern of response observed for each of the three tasks was consistent with previous studies using similar paradigms. At the whole brain level, significant differences were not observed between centres for any task. In developing this platform we successfully integrated neuroimaging data from three centres, adapted validated tasks and applied whole brain and ROI approaches to explore and demonstrate their consistency across centres.
Addessi, Elsa; Paglieri, Fabio; Beran, Michael J.; Evans, Theodore A.; Macchitella, Luigi; De Petrillo, Francesca; Focaroli, Valentina
2013-01-01
Delaying gratification involves two components: (i) delay choice (selecting a delayed reward over an immediate one), and (ii) delay maintenance (sustaining the decision to delay gratification even if the immediate reward is available during the delay). In primates, two tasks most commonly have explored these components, the Intertemporal choice task and the Accumulation task. It is unclear whether these tasks provide equivalent measures of delay of gratification. Here, we compared the performance of the same capuchin monkeys, belonging to two study populations, between these tasks. We found only limited evidence of a significant correlation in performance. Consequently, in contrast to what is often assumed, our data provide only partial support to the hypothesis that these tasks provide equivalent measures of delay of gratification. PMID:23544770
ERIC Educational Resources Information Center
Butera, Lisa M.; Giacone, Maria V.; Wagner, Kelly A.
2008-01-01
The purpose of this action research project report was to decrease off-task behavior through a dot/point reward system and portfolio reflections. Students involved in this research were in second, fifth, and sixth grade. There were a total of 85 student participants and 35 teacher participants. The dates of this research began on September 4, 2007…
De Bellis, Michael D; Wang, Lihong; Bergman, Sara R; Yaxley, Richard H; Hooper, Stephen R; Huettel, Scott A
2013-11-01
Neural mechanisms of decision-making and reward response in adolescent cannabis use disorder (CUD) are underexplored. Three groups of male adolescents were studied: CUD in full remission (n=15); controls with psychopathology without substance use disorder history (n=23); and healthy controls (n=18). We investigated neural processing of decision-making and reward under conditions of varying risk and uncertainty with the Decision-Reward Uncertainty Task while participants were scanned using functional magnetic resonance imaging. Abstinent adolescents with CUD compared to controls with psychopathology showed hyperactivation in one cluster that spanned left superior parietal lobule/left lateral occipital cortex/precuneus while making risky decisions that involved uncertainty, and hypoactivation in left orbitofrontal cortex to rewarded outcomes compared to no-reward after making risky decisions. Post hoc region of interest analyses revealed that both control groups significantly differed from the CUD group (but not from each other) during both the decision-making and reward outcome phase of the Decision-Reward Uncertainty Task. In the CUD group, orbitofrontal activations to reward significantly and negatively correlated with total number of individual drug classes the CUD patients experimented with prior to treatment. CUD duration significantly and negatively correlated with orbitofrontal activations to no-reward. The adolescent CUD group demonstrated distinctly different activation patterns during risky decision-making and reward processing (after risky decision-making) compared to both the controls with psychopathology and healthy control groups. These findings suggest that neural differences in risky decision-making and reward processes are present in adolescent addiction, persist after remission from first CUD treatment, and may contribute to vulnerability for adolescent addiction. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
I Plan Therefore I Choose: Free-Choice Bias Due to Prior Action-Probability but Not Action-Value
Suriya-Arunroj, Lalitta; Gail, Alexander
2015-01-01
According to an emerging view, decision-making, and motor planning are tightly entangled at the level of neural processing. Choice is influenced not only by the values associated with different options, but also biased by other factors. Here we test the hypothesis that preliminary action planning can induce choice biases gradually and independently of objective value when planning overlaps with one of the potential action alternatives. Subjects performed center-out reaches obeying either a clockwise or counterclockwise cue-response rule in two tasks. In the probabilistic task, a pre-cue indicated the probability of each of the two potential rules to become valid. When the subsequent rule-cue unambiguously indicated which of the pre-cued rules was actually valid (instructed trials), subjects responded faster to rules pre-cued with higher probability. When subjects were allowed to choose freely between two equally rewarded rules (choice trials) they chose the originally more likely rule more often and faster, despite the lack of an objective advantage in selecting this target. In the amount task, the pre-cue indicated the amount of potential reward associated with each rule. Subjects responded faster to rules pre-cued with higher reward amount in instructed trials of the amount task, equivalent to the more likely rule in the probabilistic task. Yet, in contrast, subjects showed hardly any choice bias and no increase in response speed in favor of the original high-reward target in the choice trials of the amount task. We conclude that free-choice behavior is robustly biased when predictability encourages the planning of one of the potential responses, while prior reward expectations without action planning do not induce such strong bias. Our results provide behavioral evidence for distinct contributions of expected value and action planning in decision-making and a tight interdependence of motor planning and action selection, supporting the idea that the underlying neural mechanisms overlap. PMID:26635565
Karimi, Sara; Mesdaghinia, Azam; Farzinpour, Zahra; Hamidi, Gholamali; Haghparast, Abbas
2017-11-01
The Lateral hypothalamus (LH) is an important component of the networks underlying the control of feeding and other motivated behaviors. Cost-benefit decision-making is mediated largely by the prefrontal cortex (PFC) which strongly innervates the LH. Therefore, in the current study, we conducted a series of experiments to elucidate the role of the perifornical area of the lateral hypothalamus (PeF-LH) in effort and/or delay-based decision-making. We trained different groups of rats in a delay-based and/or an effort-based form of cost-benefit T-maze decision- making task in which they could either choose to pay the cost to obtain a high reward in one arm or could obtain a low reward in the other arm with no cost. During test days, the rats received local injections of either vehicle or lidocaine4% (0.5 μl/side), in the PeF-LH. In an effort-based decision task, PeF-LH inactivation led to decrease in high reward choice. Similarly, in a delay-based decision task animals' preference changed to a low but immediately available reward. This was not caused by a spatial memory or motor deficit. PeF-LH inactivation modified decision behavior. The results imply that PeF-LH is important for allowing the animal to pay a cost to acquire greater rewards. Copyright © 2017 Elsevier Inc. All rights reserved.
Disruption of model-based behavior and learning by cocaine self-administration in rats.
Wied, Heather M; Jones, Joshua L; Cooch, Nisha K; Berg, Benjamin A; Schoenbaum, Geoffrey
2013-10-01
Addiction is characterized by maladaptive decision-making, in which individuals seem unable to use adverse outcomes to modify their behavior. Adverse outcomes are often infrequent, delayed, and even rare events, especially when compared to the reliable rewarding drug-associated outcomes. As a result, recognizing and using information about their occurrence put a premium on the operation of so-called model-based systems of behavioral control, which allow one to mentally simulate outcomes of different courses of action based on knowledge of the underlying associative structure of the environment. This suggests that addiction may reflect, in part, drug-induced dysfunction in these systems. Here, we tested this hypothesis. This study aimed to test whether cocaine causes deficits in model-based behavior and learning independent of requirements for response inhibition or perception of costs or punishment. We trained rats to self-administer sucrose or cocaine for 2 weeks. Four weeks later, the rats began training on a sensory preconditioning and inferred value blocking task. Like devaluation, normal performance on this task requires representations of the underlying task structure; however, unlike devaluation, it does not require either response inhibition or adapting behavior to reflect aversive outcomes. Rats trained to self-administer cocaine failed to show conditioned responding or blocking to the preconditioned cue. These deficits were not observed in sucrose-trained rats nor did they reflect any changes in responding to cues paired directly with reward. These results imply that cocaine disrupts the operation of neural circuits that mediate model-based behavioral control.
The source of dual-task limitations: Serial or parallel processing of multiple response selections?
Marois, René
2014-01-01
Although it is generally recognized that the concurrent performance of two tasks incurs costs, the sources of these dual-task costs remain controversial. The serial bottleneck model suggests that serial postponement of task performance in dual-task conditions results from a central stage of response selection that can only process one task at a time. Cognitive-control models, by contrast, propose that multiple response selections can proceed in parallel, but that serial processing of task performance is predominantly adopted because its processing efficiency is higher than that of parallel processing. In the present study, we empirically tested this proposition by examining whether parallel processing would occur when it was more efficient and financially rewarded. The results indicated that even when parallel processing was more efficient and was incentivized by financial reward, participants still failed to process tasks in parallel. We conclude that central information processing is limited by a serial bottleneck. PMID:23864266
ERIC Educational Resources Information Center
Fröber, Kerstin; Dreisbach, Gesine
2016-01-01
There is much evidence that the prospect of reward modulates cognitive control in terms of more stable behavior. Increases in expected reward magnitude, however, have been suggested to increase flexible behavior as evidenced by reduced switch costs. In a series of experiments, the authors provide evidence that this increased cognitive flexibility…
The neuroscience of investing: fMRI of the reward system.
Peterson, Richard L
2005-11-15
Functional magnetic resonance imaging (fMRI) has proven a useful tool for observing neural BOLD signal changes during complex cognitive and emotional tasks. Yet the meaning and applicability of the fMRI data being gathered is still largely unknown. The brain's reward system underlies the fundamental neural processes of goal evaluation, preference formation, positive motivation, and choice behavior. fMRI technology allows researchers to dynamically visualize reward system processes. Experimenters can then correlate reward system BOLD activations with experimental behavior from carefully controlled experiments. In the SPAN lab at Stanford University, directed by Brian Knutson Ph.D., researchers have been using financial tasks during fMRI scanning to correlate emotion, behavior, and cognition with the reward system's fundamental neural activations. One goal of the SPAN lab is the development of predictive models of behavior. In this paper we extrapolate our fMRI results toward understanding and predicting individual behavior in the uncertain and high-risk environment of the financial markets. The financial market price anomalies of "value versus glamour" and "momentum" may be real-world examples of reward system activation biasing collective behavior. On the individual level, the investor's bias of overconfidence may similarly be related to reward system activation. We attempt to understand selected "irrational" investor behaviors and anomalous financial market price patterns through correlations with findings from fMRI research of the reward system.
von Rhein, Daniel; Cools, Roshan; Zwiers, Marcel P; van der Schaaf, Marieke; Franke, Barbara; Luman, Marjolein; Oosterlaan, Jaap; Heslenfeld, Dirk J; Hoekstra, Pieter J; Hartman, Catharina A; Faraone, Stephen V; van Rooij, Daan; van Dongen, Eelco V; Lojowska, Maria; Mennes, Maarten; Buitelaar, Jan
2015-05-01
Attention-deficit/hyperactivity disorder (ADHD) is a heritable neuropsychiatric disorder associated with abnormal reward processing. Limited and inconsistent data exist about the neural mechanisms underlying this abnormality. Furthermore, it is not known whether reward processing is abnormal in unaffected siblings of participants with ADHD. We used event-related functional magnetic resonance imaging (fMRI) to investigate brain responses during reward anticipation and receipt with an adapted monetary incentive delay task in a large sample of adolescents and young adults with ADHD (n = 150), their unaffected siblings (n = 92), and control participants (n = 108), all of the same age. Participants with ADHD showed, relative to control participants, increased responses in the anterior cingulate, anterior frontal cortex, and cerebellum during reward anticipation, and in the orbitofrontal, occipital cortex and ventral striatum. Responses of unaffected siblings were increased in these regions as well, except for the cerebellum during anticipation and ventral striatum during receipt. ADHD in adolescents and young adults is associated with enhanced neural responses in frontostriatal circuitry to anticipation and receipt of reward. The findings support models emphasizing aberrant reward processing in ADHD, and suggest that processing of reward is subject to familial influences. Future studies using standard monetary incentive delay task parameters are needed to replicate our findings. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
When theory and biology differ: The relationship between reward prediction errors and expectancy.
Williams, Chad C; Hassall, Cameron D; Trska, Robert; Holroyd, Clay B; Krigolson, Olave E
2017-10-01
Comparisons between expectations and outcomes are critical for learning. Termed prediction errors, the violations of expectancy that occur when outcomes differ from expectations are used to modify value and shape behaviour. In the present study, we examined how a wide range of expectancy violations impacted neural signals associated with feedback processing. Participants performed a time estimation task in which they had to guess the duration of one second while their electroencephalogram was recorded. In a key manipulation, we varied task difficulty across the experiment to create a range of different feedback expectancies - reward feedback was either very expected, expected, 50/50, unexpected, or very unexpected. As predicted, the amplitude of the reward positivity, a component of the human event-related brain potential associated with feedback processing, scaled inversely with expectancy (e.g., unexpected feedback yielded a larger reward positivity than expected feedback). Interestingly, the scaling of the reward positivity to outcome expectancy was not linear as would be predicted by some theoretical models. Specifically, we found that the amplitude of the reward positivity was about equivalent for very expected and expected feedback, and for very unexpected and unexpected feedback. As such, our results demonstrate a sigmoidal relationship between reward expectancy and the amplitude of the reward positivity, with interesting implications for theories of reinforcement learning. Copyright © 2017 Elsevier B.V. All rights reserved.
Working memory and reward association learning impairments in obesity.
Coppin, Géraldine; Nolan-Poupart, Sarah; Jones-Gotman, Marilyn; Small, Dana M
2014-12-01
Obesity has been associated with impaired executive functions including working memory. Less explored is the influence of obesity on learning and memory. In the current study we assessed stimulus reward association learning, explicit learning and memory and working memory in healthy weight, overweight and obese individuals. Explicit learning and memory did not differ as a function of group. In contrast, working memory was significantly and similarly impaired in both overweight and obese individuals compared to the healthy weight group. In the first reward association learning task the obese, but not healthy weight or overweight participants consistently formed paradoxical preferences for a pattern associated with a negative outcome (fewer food rewards). To determine if the deficit was specific to food reward a second experiment was conducted using money. Consistent with Experiment 1, obese individuals selected the pattern associated with a negative outcome (fewer monetary rewards) more frequently than healthy weight individuals and thus failed to develop a significant preference for the most rewarded patterns as was observed in the healthy weight group. Finally, on a probabilistic learning task, obese compared to healthy weight individuals showed deficits in negative, but not positive outcome learning. Taken together, our results demonstrate deficits in working memory and stimulus reward learning in obesity and suggest that obese individuals are impaired in learning to avoid negative outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Richter, Anja; Gruber, Oliver
2018-02-01
It is argued that the mesolimbic system has a more general function in processing all salient events, including and extending beyond rewards. Saliency was defined as an event that is unexpected due to its frequency of occurrence and elicits an attentional-behavioral switch. Using functional magnetic resonance imaging (fMRI), signals were measured in response to the modulation of salience of rewarding and nonrewarding events during a reward-based decision making task, the so called desire-reason dilemma paradigm (DRD). Replicating previous findings, both frequent and infrequent, and therefore salient, reward stimuli elicited reliable activation of the ventral tegmental area (VTA) and ventral striatum (vStr). When immediate reward desiring contradicted the superordinate task-goal, we found an increased activation of the VTA and vStr when the salient reward stimuli were presented compared to the nonsalient reward stimuli, indicating a boosting of activation in these brain regions. Furthermore, we found a significantly increased functional connectivity between the VTA and vStr, confirming the boosting of vStr activation via VTA input. Moreover, saliency per se without a reward association led to an increased activation of brain regions in the mesolimbic reward system as well as the orbitofrontal cortex (OFC), inferior frontal gyrus (IFG), and anterior cingulate cortex (ACC). Finally, findings uncovered multiple increased functional interactions between cortical saliency-processing brain areas and the VTA and vStr underlying detection and processing of salient events and adaptive decision making. © 2017 Wiley Periodicals, Inc.
Kennerley, Steven W.
2009-01-01
Several lines of research indicate that emotional and motivational information may be useful in guiding the allocation of attentional resources. Two areas of the frontal lobe that are particularly implicated in the encoding of motivational information are the orbital prefrontal cortex (PFo) and the dorsomedial region of prefrontal cortex, specifically the anterior cingulate sulcus (PFcs). However, it remains unclear whether these areas use this information to influence spatial attention. We used single-unit neurophysiology to examine whether, at the level of individual neurons, there was evidence for integration between reward information and spatial attention. We trained two subjects to perform a task that required them to attend to a spatial location across a delay under different expectancies of reward for correct performance. We balanced the order of presentation of spatial and reward information so we could assess the neuronal encoding of the two pieces of information independently and conjointly. We found little evidence for encoding of the spatial location in either PFo or PFcs. In contrast, both areas encoded the expected reward. Furthermore, PFo consistently encoded reward more quickly than PFcs, although reward encoding was subsequently more prevalent and stronger in PFcs. These results suggest a differential contribution of PFo and PFcs to reward encoding, with PFo potentially more important for initially determining the value of rewards predicted by sensory stimuli. They also suggest that neither PFo nor PFcs play a direct role in the control of spatial attention. PMID:19776363
Reward-related decision making in older adults: relationship to clinical presentation of depression.
McGovern, Amanda R; Alexopoulos, George S; Yuen, Genevieve S; Morimoto, Sarah Shizuko; Gunning-Dixon, Faith M
2014-11-01
Impairment in reward processes has been found in individuals with depression and in the aging population. The purpose of this study was twofold: (1) to use an affective neuroscience probe to identify abnormalities in reward-related decision making in late-life depression; and (2) to examine the relationship of reward-related decision making abnormalities in depressed, older adults to the clinical expression of apathy in depression. We hypothesized that relative to older, healthy subjects, depressed, older patients would exhibit impaired decision making and that apathetic, depressed patients would show greater impairment in decision making than non-apathetic, depressed patients. We used the Iowa Gambling Task to examine reward-related decision making in 60 non-demented, older patients with non-psychotic major depression and 36 older, psychiatrically healthy participants. Apathy was quantified using the Apathy Evaluation Scale. Of those with major depression, 18 individuals reported clinically significant apathy, whereas 42 participants did not have apathy. Older adults with depression and healthy comparison participants did not differ in their performance on the Iowa Gambling Task. However, apathetic, depressed older adults adopted an advantageous strategy and selected cards from the conservative decks compared with non-apathetic, depressed older adults. Non-apathetic, depressed patients showed a failure to adopt a conservative strategy and persisted in making risky decisions throughout the task. This study indicates that apathy in older, depressed adults is associated with a conservative response style on a behavioral probe of the systems involved in reward-related decision making. This conservative response style may be the result of reduced sensitivity to rewards in apathetic individuals. Copyright © 2014 John Wiley & Sons, Ltd.
Reward history but not search history explains value-driven attentional capture.
Marchner, Janina R; Preuschhof, Claudia
2018-04-19
In past years, an extensive amount of research has focused on how past experiences guide future attention. Humans automatically attend to stimuli previously associated with reward and stimuli that have been experienced during visual search, even when it is disadvantageous in present situations. Recently, the relationship between "reward history" and "search history" has been discussed critically. We review results from research on value-driven attentional capture (VDAC) with a focus on these two experience-based attentional selection processes and their distinction. To clarify inconsistencies, we examined VDAC within a design that allows a direct comparison with other mechanisms of attentional selection. Eighty-four healthy adults were trained to incidentally associate colors with reward (10 cents, 2 cents) or with no reward. In a subsequent visual search task, distraction by reward-associated and unrewarded stimuli was contrasted. In the training phase, reward signals facilitated performance. When these value-signaling stimuli appeared as distractors in the test phase, they continuously shaped attentional selection, despite their task irrelevance. Our findings clearly cannot be attributed to a history of target search. We conclude that once an association is established, value signals guide attention automatically in new situations, which can be beneficial or not, depending on the congruency with current goals.
Giordano, Louis A; Bickel, Warren K; Loewenstein, George; Jacobs, Eric A; Marsch, Lisa; Badger, Gary J
2002-09-01
A growing literature suggests that excessive temporal discounting of delayed rewards may be a contributing factor in the etiology of substance abuse problems. Little is known, however, about how drug deprivation may affect temporal discounting of delayed rewards by drug-dependent individuals. To examine the extent to which opioid deprivation affects how opioid-dependent individuals discount small, medium and large quantities of delayed heroin and money. Thirteen opioid-dependent individuals maintained on buprenorphine completed a hypothetical choice task in which they choose between a constant delayed reward amount and an immediate reward amount that was adjusted until they expressed indifference between both outcomes. The task was completed for three values of heroin and money rewards during eight sessions under conditions of opioid deprivation (four sessions) and satiation (four sessions). Across conditions, hyperbolic functions provided a good fit for the discounting data. Degree of discounting was significantly higher when subjects were opioid deprived. Consistent with previous findings, degree of discounting was higher for heroin than money and inversely related to the magnitude of the reward. Opioid deprivation increased the degree to which dependent individuals discounted delayed heroin and money. Understanding the conditions that affect how drug-dependent individuals discount delayed rewards might help us understand the myopic choices made by such individuals and help improve treatment outcomes.
Sensitivity of Locus Ceruleus Neurons to Reward Value for Goal-Directed Actions
Richmond, Barry J.
2015-01-01
The noradrenergic nucleus locus ceruleus (LC) is associated classically with arousal and attention. Recent data suggest that it might also play a role in motivation. To study how LC neuronal responses are related to motivational intensity, we recorded 121 single neurons from two monkeys while reward size (one, two, or four drops) and the manner of obtaining reward (passive vs active) were both manipulated. The monkeys received reward under three conditions: (1) releasing a bar when a visual target changed color; (2) passively holding a bar; or (3) touching and releasing a bar. In the first two conditions, a visual cue indicated the size of the upcoming reward, and, in the third, the reward was constant through each block of 25 trials. Performance levels and lipping intensity (an appetitive behavior) both showed that the monkeys' motivation in the task was related to the predicted reward size. In conditions 1 and 2, LC neurons were activated phasically in relation to cue onset, and this activation strengthened with increasing expected reward size. In conditions 1 and 3, LC neurons were activated before the bar-release action, and the activation weakened with increasing expected reward size but only in task 1. These effects evolved as monkeys progressed through behavioral sessions, because increasing fatigue and satiety presumably progressively decreased the value of the upcoming reward. These data indicate that LC neurons integrate motivationally relevant information: both external cues and internal drives. The LC might provide the impetus to act when the predicted outcome value is low. PMID:25740528
Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis
2013-01-01
Background Depression is characterised partly by blunted reactions to reward. However, tasks probing this deficiency have not distinguished insensitivity to reward from insensitivity to the prediction errors for reward that determine learning and are putatively reported by the phasic activity of dopamine neurons. We attempted to disentangle these factors with respect to anhedonia in the context of stress, Major Depressive Disorder (MDD), Bipolar Disorder (BPD) and a dopaminergic challenge. Methods Six behavioural datasets involving 392 experimental sessions were subjected to a model-based, Bayesian meta-analysis. Participants across all six studies performed a probabilistic reward task that used an asymmetric reinforcement schedule to assess reward learning. Healthy controls were tested under baseline conditions, stress or after receiving the dopamine D2 agonist pramipexole. In addition, participants with current or past MDD or BPD were evaluated. Reinforcement learning models isolated the contributions of variation in reward sensitivity and learning rate. Results MDD and anhedonia reduced reward sensitivity more than they affected the learning rate, while a low dose of the dopamine D2 agonist pramipexole showed the opposite pattern. Stress led to a pattern consistent with a mixed effect on reward sensitivity and learning rate. Conclusion Reward-related learning reflected at least two partially separable contributions. The first related to phasic prediction error signalling, and was preferentially modulated by a low dose of the dopamine agonist pramipexole. The second related directly to reward sensitivity, and was preferentially reduced in MDD and anhedonia. Stress altered both components. Collectively, these findings highlight the contribution of model-based reinforcement learning meta-analysis for dissecting anhedonic behavior. PMID:23782813
Moses-Kolko, Eydie L; Forbes, Erika E; Stepp, Stephanie; Fraser, David; Keenan, Kate E; Guyer, Amanda E; Chase, Henry W; Phillips, Mary L; Zevallos, Carlos R; Guo, Chaohui; Hipwell, Alison E
2016-04-01
Given the association between maternal caregiving behavior and heightened neural reward activity in experimental animal studies, the present study examined whether motherhood in humans positively modulates reward-processing neural circuits, even among mothers exposed to various life stressors and depression. Subjects were 77 first-time mothers and 126 nulliparous young women from the Pittsburgh Girls Study, a longitudinal study beginning in childhood. Subjects underwent a monetary reward task during functional magnetic resonance imaging in addition to assessment of current depressive symptoms. Life stress was measured by averaging data collected between ages 8-15 years. Using a region-of-interest approach, we conducted hierarchical regression to examine the relationship of psychosocial factors (life stress and current depression) and motherhood with extracted ventral striatal (VST) response to reward anticipation. Whole-brain regression analyses were performed post-hoc to explore non-striatal regions associated with reward anticipation in mothers vs nulliparous women. Anticipation of monetary reward was associated with increased neural activity in expected regions including caudate, orbitofrontal, occipital, superior and middle frontal cortices. There was no main effect of motherhood nor motherhood-by-psychosocial factor interaction effect on VST response during reward anticipation. Depressive symptoms were associated with increased VST activity across the entire sample. In exploratory whole brain analysis, motherhood was associated with increased somatosensory cortex activity to reward (FWE cluster forming threshold p<0.001). These findings indicate that motherhood is not associated with reward anticipation-related VST activity nor does motherhood modulate the impact of depression or life stress on VST activity. Future studies are needed to evaluate whether earlier postpartum assessment of reward function, inclusion of mothers with more severe depressive symptoms, and use of reward tasks specific for social reward might reveal an impact of motherhood on reward system activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Di Ciano, Patricia; Le Foll, Bernard
2016-01-01
Gambling Disorder has serious consequences and no medications are currently approved for the treatment of this disorder. One factor that may make medication development difficult is the lack of animal models of gambling that would allow for the pre-clinical screening of efficacy. Despite this, there is evidence from clinical trials that opiate antagonists, in particular naltrexone, may be useful in treating gambling disorder. To-date, the effects of naltrexone on pre-clinical models of gambling have not been evaluated. The purpose of the present study was to evaluate the effects of naltrexone in an animal model of gambling, the rat gambling task (rGT), to determine whether this model has some predictive validity. The rGT is a model in which rats are given a choice of making either a response that produces a large reward or a small reward. The larger the reward, the greater the punishment, and thus this task requires that the animal inhibit the 'tempting' choice, as the smaller reward option produces overall the most number of rewards per session. People with gambling disorder chose the tempting option more, thus the rGT may provide a model of problem gambling. It was found that naltrexone improved performance on this task in a subset of animals that chose the 'tempting', disadvantageous choice, more at baseline. Thus, the results of this study suggest that the rGT should be further investigated as a pre-clinical model of gambling disorder and that further investigation into whether opioid antagonists are effective in treating Gambling Disorder may be warranted.
Barrus, Michael M; Winstanley, Catharine A
2016-01-20
Similar to other addiction disorders, the cues inherent in many gambling procedures are thought to play an important role in mediating their addictive nature. Animal models of gambling-related behavior, while capturing dimensions of economic decision making, have yet to address the impact that these salient cues may have in promoting maladaptive choice. Here, we determined whether adding win-associated audiovisual cues to a rat gambling task (rGT) would influence decision making. Thirty-two male Long-Evans rats were tested on either the cued or uncued rGT. In these tasks, animals chose between four options associated with different magnitudes and frequencies of reward and punishing time-out periods. As in the Iowa Gambling Task, favoring options associated with smaller per-trial rewards but smaller losses and avoiding the tempting "high-risk, high-reward" decks maximized profits. Although the reinforcement contingencies were identical in both task versions, rats' choice of the disadvantageous risky options was significantly greater on the cued task. Furthermore, a D3 receptor agonist increased choice of the disadvantageous options, whereas a D3 antagonist had the opposite effects, only on the cued task. These findings are consistent with the reported role of D3 receptors in mediating the facilitatory effects of cues in addiction. Collectively, these results indicate that the cued rGT is a valuable model with which to study the mechanism by which salient cues can invigorate maladaptive decision making, an important and understudied component of both gambling and substance use disorders. Significance statement: We used a rodent analog of the Iowa Gambling Task to determine whether the addition of audiovisual cues would affect choice preferences. Adding reward-concurrent cues significantly increased risky choice. This is the first clear demonstration that reward-paired cues can bias cost/benefit decision making against a subject's best interests in a manner concordant with elevated addiction susceptibility. Choice on the cued task was uniquely sensitive to modulation by D3 receptor ligands, yet these drugs did not alter decision making on the uncued task. The relatively unprecedented sensitivity of choice on the cued task to D3-receptor-mediated neurotransmission data suggest that similar neurobiological processes underlie the ability of cues to both bias animals toward risky options and facilitate drug addiction. Copyright © 2016 the authors 0270-6474/16/360785-10$15.00/0.
Beran, Michael J.; Perdue, Bonnie M.; Futch, Sara E.; Smith, J. David; Evans, Theodore A.; Parrish, Audrey E.
2015-01-01
Three chimpanzees performed a computerized memory task in which auditory feedback about the accuracy of each response was delayed. The delivery of food rewards for correct responses was also delayed and occurred in a separate location from the response. Crucially, if the chimpanzees did not move to the reward-delivery site before food was dispensed, the reward was lost and could not be recovered. Chimpanzees were significantly more likely to move to the dispenser on trials they had completed correctly than on those they had completed incorrectly, and these movements occurred before any external feedback about the outcome of their responses. Thus, chimpanzees moved (or not) on the basis of their confidence in their responses, and these confidence movements aligned closely with objective task performance. These untrained, spontaneous confidence judgments demonstrated that chimpanzees monitored their own states of knowing and not knowing and adjusted their behavior accordingly. PMID:26057831
Mediodorsal thalamus is required for discrete phases of goal-directed behavior in macaques.
Wicker, Evan; Turchi, Janita; Malkova, Ludise; Forcelli, Patrick Alexander
2018-05-31
Reward contingencies are dynamic: outcomes that were valued at one point may subsequently lose value. Action selection in the face of dynamic reward associations requires several cognitive processes: registering a change in value of the primary reinforcer, adjusting the value of secondary reinforcers to reflect the new value of the primary reinforcer, and guiding action selection to optimal choices. Flexible responding has been evaluated extensively using reinforcer devaluation tasks. Performance on this task relies upon amygdala, Areas 11 and 13 of orbitofrontal cortex (OFC), and mediodorsal thalamus (MD). Differential contributions of amygdala and Areas 11 and 13 of OFC to specific sub-processes have been established, but the role of MD in these sub-processes is unknown. Pharmacological inactivation of the macaque MD during specific phases of this task revealed that MD is required for reward valuation and action selection. This profile is unique, differing from both amygdala and subregions of the OFC.
Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment
Burgos-Robles, Anthony; Kimchi, Eyal Y.; Izadmehr, Ehsan M.; Porzenheim, Mary Jane; Ramos-Guasp, William A.; Nieh, Edward H.; Felix-Ortiz, Ada C.; Namburi, Praneeth; Leppla, Christopher A.; Presbrey, Kara N.; Anandalingam, Kavitha K.; Pagan-Rivera, Pablo A.; Anahtar, Melodi; Beyeler, Anna; Tye, Kay M.
2017-01-01
Orchestrating appropriate behavioral responses in the face of competing signals that predict either rewards or threats in the environment is crucial for survival. The basolateral amygdala (BLA) and prelimbic (PL) medial prefrontal cortex (mPFC) have been implicated in reward-seeking and fear-related responses, but how information flows between these reciprocally-connected structures to coordinate behavior is unknown. We recorded neuronal activity from the BLA and PL while rats performed a task where in shock- and sucrose-predictive cues were simultaneously presented to induce competition. The correlated firing primarily displayed a BLA→PL directionality during the shock-associated cue. Furthermore, the majority of optogenetically-identified PL-projecting BLA neurons recorded encoded the shock-associated cue, and more accurately predicted behavioral responses during competition than unidentified BLA neurons. Finally, BLA→PL photostimulation increased freezing, whereas both chemogenetic and optogenetic inhibition reduced freezing. The BLA→PL circuit plays a critical role in governing the selection of behavioral responses in the face of competing signals. PMID:28436980
Altered reward system reactivity for personalized circumscribed interests in autism.
Kohls, Gregor; Antezana, Ligia; Mosner, Maya G; Schultz, Robert T; Yerys, Benjamin E
2018-01-01
Neurobiological research in autism spectrum disorders (ASD) has paid little attention on brain mechanisms that cause and maintain restricted and repetitive behaviors and interests (RRBIs). Evidence indicates an imbalance in the brain's reward system responsiveness to social and non-social stimuli may contribute to both social deficits and RRBIs. Thus, this study's central aim was to compare brain responsiveness to individual RRBI (i.e., circumscribed interests), with social rewards (i.e., social approval), in youth with ASD relative to typically developing controls (TDCs). We conducted a 3T functional magnetic resonance imaging (fMRI) study to investigate the blood-oxygenation-level-dependent effect of personalized circumscribed interest rewards versus social rewards in 39 youth with ASD relative to 22 TDC. To probe the reward system, we employed short video clips as reinforcement in an instrumental incentive delay task. This optimization increased the task's ecological validity compared to still pictures that are often used in this line of research. Compared to TDCs, youth with ASD had stronger reward system responses for CIs mostly within the non-social realm (e.g., video games) than social rewards (e.g., approval). Additionally, this imbalance within the caudate nucleus' responsiveness was related to greater social impairment. The current data support the idea of reward system dysfunction that may contribute to enhanced motivation for RRBIs in ASD, accompanied by diminished motivation for social engagement. If a dysregulated reward system indeed supports the emergence and maintenance of social and non-social symptoms of ASD, then strategically targeting the reward system in future treatment endeavors may allow for more efficacious treatment practices that help improve outcomes for individuals with ASD and their families.
Jia, Zhiru; Worhunsky, Patrick D; Carroll, Kathleen M; Rounsaville, Bruce J; Stevens, Michael C; Pearlson, Godfrey D; Potenza, Marc N
2011-09-15
Although cocaine dependence (CD) involves abnormalities in drug-related, reward-based decision making, it is not well understood whether these abnormalities generalize to nondrug-related cues and rewards and how neural functions underlying reward processing in cocaine abusers relate to treatment outcome. Twenty CD patients before treatment and 20 matched healthy control (HC) subjects participated in functional magnetic resonance imaging while performing a monetary incentive delay task. Outcomes through 8 weeks were assessed via percent cocaine-negative urine toxicology, self-reported cocaine abstinence, and treatment retention. Among the whole sample, anticipation of working for monetary reward (i.e., reward anticipation) was associated with activation in the ventral striatum (VS), medial frontal gyrus, thalamus, right subcallosal gyrus, right insula, and left amygdala. Cocaine dependence compared with HC participants exhibited greater activation during notification of rewarding outcome (i.e., reward receipt) in left and right VS, right caudate, and right insula. In CD participants during reward anticipation, activation in left and right thalamus and right caudate correlated negatively with percent cocaine-negative urine toxicology, activation in thalamus bilaterally correlated negatively with self-reported abstinence measures, and activation in left amygdala and parahippocampal gyrus correlated negatively with treatment retention. During reward notification, activation in right thalamus, right VS, and left culmen correlated negatively with abstinence and with urine toxicology. These findings suggest that in treatment-seeking CD participants, corticolimbic reward circuitry is relatively overactivated during monetary incentive delay task performance and specific regional activations related to reward processing may predict aspects of treatment outcome and represent important targets for treatment development in CD. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Oyama, Kei; Tateyama, Yukina; Hernádi, István; Tobler, Philippe N; Iijima, Toshio; Tsutsui, Ken-Ichiro
2015-11-01
To investigate how the striatum integrates sensory information with reward information for behavioral guidance, we recorded single-unit activity in the dorsal striatum of head-fixed rats participating in a probabilistic Pavlovian conditioning task with auditory conditioned stimuli (CSs) in which reward probability was fixed for each CS but parametrically varied across CSs. We found that the activity of many neurons was linearly correlated with the reward probability indicated by the CSs. The recorded neurons could be classified according to their firing patterns into functional subtypes coding reward probability in different forms such as stimulus value, reward expectation, and reward prediction error. These results suggest that several functional subgroups of dorsal striatal neurons represent different kinds of information formed through extensive prior exposure to CS-reward contingencies. Copyright © 2015 the American Physiological Society.
Oyama, Kei; Tateyama, Yukina; Hernádi, István; Tobler, Philippe N.; Iijima, Toshio
2015-01-01
To investigate how the striatum integrates sensory information with reward information for behavioral guidance, we recorded single-unit activity in the dorsal striatum of head-fixed rats participating in a probabilistic Pavlovian conditioning task with auditory conditioned stimuli (CSs) in which reward probability was fixed for each CS but parametrically varied across CSs. We found that the activity of many neurons was linearly correlated with the reward probability indicated by the CSs. The recorded neurons could be classified according to their firing patterns into functional subtypes coding reward probability in different forms such as stimulus value, reward expectation, and reward prediction error. These results suggest that several functional subgroups of dorsal striatal neurons represent different kinds of information formed through extensive prior exposure to CS-reward contingencies. PMID:26378201
Neurons in Anterior Cingulate Cortex Multiplex Information about Reward and Action
Hayden, Benjamin Y.; Platt, Michael L.
2010-01-01
The dorsal anterior cingulate cortex (dACC) is thought to play a critical role in forming associations between rewards and actions. Currently available physiological data, however, remain inconclusive regarding the question of whether dACC neurons carry information linking particular actions to reward or, instead, encode abstract reward information independent of specific actions. Here we show that firing rates of a majority of dACC neurons in a population studied in an eight-option variably rewarded choice task were sensitive to both saccade direction and reward value. Furthermore, the influences of reward and saccade direction on neuronal activity were roughly equal in magnitude over the range of rewards tested and were statistically independent. Our results indicate that dACC neurons multiplex information about both reward and action, endorsing the idea that this area links motivational outcomes to behavior and undermining the notion that its neurons solely contribute to reward processing in the abstract. PMID:20203193
The Effects of Methylphenidate on Discounting of Delayed Rewards in ADHD
Shiels, Keri; Hawk, Larry W.; Reynolds, Brady; Mazzullo, Rebecca; Rhodes, Jessica; Pelham, William E.; Waxmonsky, James G.; Gangloff, Brian P.
2010-01-01
Impulsivity is a central component of attention-deficit/hyperactivity disorder (ADHD). Delay discounting, or a preference for smaller, immediate rewards over larger, delayed rewards is considered an important aspect of impulsivity, and delay-related impulsivity has been emphasized in etiological models of ADHD. The current study examined whether stimulant medication, an effective treatment for ADHD, reduces discounting of delayed experiential and hypothetical rewards among 49 children (age 9–12 years) with ADHD. Following a practice day, participants completed a 3-day double-blind placebo-controlled acute medication assessment. Active doses were long-acting methylphenidate (Concerta), with the nearest equivalents of 0.3 and 0.6 mg/kg TID immediate-release methylphenidate. On each testing day, participants completed experiential (real-world money in real time) and hypothetical discounting tasks. Relative to placebo, methylphenidate reduced discounting of delayed experiential rewards, but not hypothetical rewards. Broadly consistent with etiological models that emphasize delay-related impulsivity among children with ADHD, these findings provide initial evidence that stimulant medication reduces delay discounting among those with the disorder. The present results also draw attention to task parameters that may influence the sensitivity of various delay discounting measures to medication effects. PMID:19803628
The attention habit: how reward learning shapes attentional selection.
Anderson, Brian A
2016-04-01
There is growing consensus that reward plays an important role in the control of attention. Until recently, reward was thought to influence attention indirectly by modulating task-specific motivation and its effects on voluntary control over selection. Such an account was consistent with the goal-directed (endogenous) versus stimulus-driven (exogenous) framework that had long dominated the field of attention research. Now, a different perspective is emerging. Demonstrations that previously reward-associated stimuli can automatically capture attention even when physically inconspicuous and task-irrelevant challenge previously held assumptions about attentional control. The idea that attentional selection can be value driven, reflecting a distinct and previously unrecognized control mechanism, has gained traction. Since these early demonstrations, the influence of reward learning on attention has rapidly become an area of intense investigation, sparking many new insights. The result is an emerging picture of how the reward system of the brain automatically biases information processing. Here, I review the progress that has been made in this area, synthesizing a wealth of recent evidence to provide an integrated, up-to-date account of value-driven attention and some of its broader implications. © 2015 New York Academy of Sciences.
Segarra, Nuria; Metastasio, Antonio; Ziauddeen, Hisham; Spencer, Jennifer; Reinders, Niels R; Dudas, Robert B; Arrondo, Gonzalo; Robbins, Trevor W; Clark, Luke; Fletcher, Paul C; Murray, Graham K
2016-07-01
Alterations in reward processes may underlie motivational and anhedonic symptoms in depression and schizophrenia. However it remains unclear whether these alterations are disorder-specific or shared, and whether they clearly relate to symptom generation or not. We studied brain responses to unexpected rewards during a simulated slot-machine game in 24 patients with depression, 21 patients with schizophrenia, and 21 healthy controls using functional magnetic resonance imaging. We investigated relationships between brain activation, task-related motivation, and questionnaire rated anhedonia. There was reduced activation in the orbitofrontal cortex, ventral striatum, inferior temporal gyrus, and occipital cortex in both depression and schizophrenia in comparison with healthy participants during receipt of unexpected reward. In the medial prefrontal cortex both patient groups showed reduced activation, with activation significantly more abnormal in schizophrenia than depression. Anterior cingulate and medial frontal cortical activation predicted task-related motivation, which in turn predicted anhedonia severity in schizophrenia. Our findings provide evidence for overlapping hypofunction in ventral striatal and orbitofrontal regions in depression and schizophrenia during unexpected reward receipt, and for a relationship between unexpected reward processing in the medial prefrontal cortex and the generation of motivational states.
The Role of Extrinsic Rewards and Cue-Intention Association in Prospective Memory in Young Children.
Sheppard, Daniel Patrick; Kretschmer, Anett; Knispel, Elisa; Vollert, Bianka; Altgassen, Mareike
2015-01-01
The current study examined, for the first time, the effect of cue-intention association, as well as the effects of promised extrinsic rewards, on prospective memory in young children, aged 5-years-old (n = 39) and 7-years-old (n = 40). Children were asked to name pictures for a toy mole, whilst also having to remember to respond differently to certain target pictures (prospective memory task). The level to which the target picture was associated with the intention was manipulated across two conditions (low- or high-association) for all participants, whilst half of the participants were promised a reward for good prospective memory performance. Results showed a main effect of age, with the 7-year-olds outperforming the 5-year-olds. Furthermore, there was a main effect of reward, with those promised a reward performing better than those who were not. No effect was found for cue-association, with the participants of both age groups performing equally well in both association conditions. No significant interactions were found between any of the variables. The potentially important role of reward in young children's everyday prospective memory tasks, and possible reasons for the lack of a reflexive-associative effect, are discussed.
Segarra, Nuria; Metastasio, Antonio; Ziauddeen, Hisham; Spencer, Jennifer; Reinders, Niels R; Dudas, Robert B; Arrondo, Gonzalo; Robbins, Trevor W; Clark, Luke; Fletcher, Paul C; Murray, Graham K
2016-01-01
Alterations in reward processes may underlie motivational and anhedonic symptoms in depression and schizophrenia. However it remains unclear whether these alterations are disorder-specific or shared, and whether they clearly relate to symptom generation or not. We studied brain responses to unexpected rewards during a simulated slot-machine game in 24 patients with depression, 21 patients with schizophrenia, and 21 healthy controls using functional magnetic resonance imaging. We investigated relationships between brain activation, task-related motivation, and questionnaire rated anhedonia. There was reduced activation in the orbitofrontal cortex, ventral striatum, inferior temporal gyrus, and occipital cortex in both depression and schizophrenia in comparison with healthy participants during receipt of unexpected reward. In the medial prefrontal cortex both patient groups showed reduced activation, with activation significantly more abnormal in schizophrenia than depression. Anterior cingulate and medial frontal cortical activation predicted task-related motivation, which in turn predicted anhedonia severity in schizophrenia. Our findings provide evidence for overlapping hypofunction in ventral striatal and orbitofrontal regions in depression and schizophrenia during unexpected reward receipt, and for a relationship between unexpected reward processing in the medial prefrontal cortex and the generation of motivational states. PMID:26708106
Opposing effects of reward and punishment on human vigor
Griffiths, Benjamin; Beierholm, Ulrik R.
2017-01-01
The vigor with which humans and animals engage in a task is often a determinant of the likelihood of the task’s success. An influential theoretical model suggests that the speed and rate at which responses are made should depend on the availability of rewards and punishments. While vigor facilitates the gathering of rewards in a bountiful environment, there is an incentive to slow down when punishments are forthcoming so as to decrease the rate of punishments, in conflict with the urge to perform fast to escape punishment. Previous experiments confirmed the former, leaving the latter unanswered. We tested the influence of punishment in an experiment involving economic incentives and contrasted this with reward related behavior on the same task. We found that behavior corresponded with the theoretical model; while instantaneous threat of punishment caused subjects to increase the vigor of their response, subjects’ response times would slow as the overall rate of punishment increased. We quantitatively show that this is in direct contrast to increases in vigor in the face of increased overall reward rates. These results highlight the opposed effects of rewards and punishments and provide further evidence for their roles in the variety of types of human decisions. PMID:28205567
People newly in love are more responsive to positive feedback.
Brown, Cassandra L; Beninger, Richard J
2012-06-01
Passionate love is associated with increased activity in dopamine-rich regions of the brain. Increased dopamine in these regions is associated with a greater tendency to learn from reward in trial-and-error learning tasks. This study examined the prediction that individuals who were newly in love would be better at responding to reward (positive feedback). In test trials, people who were newly in love selected positive outcomes significantly more often than their single (not in love) counterparts but were no better at the task overall. This suggests that people who are newly in love show a bias toward responding to positive feedback, which may reflect a general bias towards reward-seeking.
Winer, E. Samuel; Salem, Taban
2015-01-01
Cognitive theories of depression and anxiety have traditionally emphasized the role of attentional biases in the processing of negative information. The dot-probe task has been widely used to study this phenomenon. Recent findings suggest that biased processing of positive information might also be an important aspect of developing psychopathological symptoms. However, despite some evidence suggesting persons with symptoms of depression and anxiety may avoid positive information, many dot-probe studies have produced null findings. The present review used conventional and novel meta-analytic methods to evaluate dot-probe attentional biases away from positive information and, for comparison, toward negative information, in depressed and anxious individuals. Results indicated that avoidance of positive information is a real effect exhibiting substantial evidential value among persons experiencing psychopathology, with individuals evidencing primary symptoms of depression clearly demonstrating this effect. Different theoretical explanations for these findings are evaluated, including those positing threat-processing structures, even-handedness, self-regulation, and reward devaluation, with the novel theory of reward devaluation emphasized and expanded. These novel findings and theory suggest that avoidance of prospective reward helps to explain the cause and sustainability of depressed states. Suggestions for future research and methodological advances are discussed. PMID:26619211
A reservoir of time constants for memory traces in cortical neurons
Bernacchia, Alberto; Seo, Hyojung; Lee, Daeyeol; Wang, Xiao-Jing
2011-01-01
According to reinforcement learning theory of decision making, reward expectation is computed by integrating past rewards with a fixed timescale. By contrast, we found that a wide range of time constants is available across cortical neurons recorded from monkeys performing a competitive game task. By recognizing that reward modulates neural activity multiplicatively, we found that one or two time constants of reward memory can be extracted for each neuron in prefrontal, cingulate, and parietal cortex. These timescales ranged from hundreds of milliseconds to tens of seconds, according to a power-law distribution, which is consistent across areas and reproduced by a “reservoir” neural network model. These neuronal memory timescales were weakly but significantly correlated with those of monkey's decisions. Our findings suggest a flexible memory system, where neural subpopulations with distinct sets of long or short memory timescales may be selectively deployed according to the task demands. PMID:21317906
de Water, Erik; Cillessen, Antonius H N; Scheres, Anouk
2014-01-01
Age-related differences in temporal discounting (TD) and risk taking, and their association, were examined in adolescents and young adults (n = 337) aged 12-27 years. Since monetary rewards are typically used in TD and risk-taking tasks, the association between monetary reward valuation and age and decision making in these tasks was explored as well. TD declined linearly with age, with a particularly sharp decline from 15 to 16 years. In contrast, risk taking was not correlated with age and TD. Reward valuation was not associated with TD and risk taking, and age-related differences in TD remained significant after controlling for reward valuation. Together, these findings suggest that risk taking and TD are two separate constructs with distinct age-related differences in adolescence and young adulthood. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.
Exchanging the liquidity hypothesis: Delay discounting of money and self-relevant non-money rewards
Stuppy-Sullivan, Allison M.; Tormohlen, Kayla N.; Yi, Richard
2015-01-01
Evidence that primary rewards (e.g., food and drugs of abuse) are discounted more than money is frequently attributed to money's high degree of liquidity, or exchangeability for many commodities. The present study provides some evidence against this liquidity hypothesis by contrasting delay discounting of monetary rewards (liquid) and non-monetary commodities (non-liquid) that are self-relevant and utility-matched. Ninety-seven (97) undergraduate students initially completed a conventional binary-choice delay discounting of money task. Participants returned one week later and completed a self-relevant commodity delay discounting task. Both conventional hypothesis testing and more-conservative tests of statistical equivalence revealed correspondence in rate of delay discounting of money and self-relevant commodities, and in one magnitude condition, less discounting for the latter. The present results indicate that liquidity of money cannot fully account for the lower rate of delay discounting compared to non-money rewards. PMID:26556504
Dopamine neurons share common response function for reward prediction error
Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige
2016-01-01
Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803
Peckham, Andrew D.; Johnson, Sheri L.
2015-01-01
Extensive research supports the role of striatal dopamine in pursuing and responding to reward, and that eye-blink rate is a valid indicator of striatal dopamine. This study tested whether phasic changes in blink rate could provide an index of reward pursuit. This hypothesis was tested in people with bipolar I disorder (BD; a population with aberrations in reward responsivity), and in those without BD. Thirty-one adults with BD and 28 control participants completed a laboratory task involving effort towards monetary reward. Blink rate was recorded using eye-tracking at baseline, reward anticipation, and post-reward. Those in the BD group completed self-report measures relating to reward and ambition. Results showed that across all participants, blink rates increased from reward anticipation to post-reward. In the BD group, reward-relevant measures were strongly correlated with variation in blink rate. These findings provide validation for phasic changes in blink rate as an index of reward response. PMID:27274949
Greene, R K; Spanos, M; Alderman, C; Walsh, E; Bizzell, J; Mosner, M G; Kinard, J L; Stuber, G D; Chandrasekhar, T; Politte, L C; Sikich, L; Dichter, G S
2018-03-27
Intranasal oxytocin (OT) has been shown to improve social communication functioning of individuals with autism spectrum disorder (ASD) and, thus, has received considerable interest as a potential ASD therapeutic agent. Although preclinical research indicates that OT modulates the functional output of the mesocorticolimbic dopamine system that processes rewards, no clinical brain imaging study to date has examined the effects of OT on this system using a reward processing paradigm. To address this, we used an incentive delay task to examine the effects of a single dose of intranasal OT, versus placebo (PLC), on neural responses to social and nonsocial rewards in children with ASD. In this placebo-controlled double-blind study, 28 children and adolescents with ASD (age: M = 13.43 years, SD = 2.36) completed two fMRI scans, one after intranasal OT administration and one after PLC administration. During both scanning sessions, participants completed social and nonsocial incentive delay tasks. Task-based neural activation and connectivity were examined to assess the impact of OT relative to PLC on mesocorticolimbic brain responses to social and nonsocial reward anticipation and outcomes. Central analyses compared the OT and PLC conditions. During nonsocial reward anticipation, there was greater activation in the right nucleus accumbens (NAcc), left anterior cingulate cortex (ACC), bilateral orbital frontal cortex (OFC), left superior frontal cortex, and right frontal pole (FP) during the OT condition relative to PLC. Alternatively, during social reward anticipation and outcomes, there were no significant increases in brain activation during the OT condition relative to PLC. A Treatment Group × Reward Condition interaction revealed relatively greater activation in the right NAcc, right caudate nucleus, left ACC, and right OFC during nonsocial relative to social reward anticipation during the OT condition relative to PLC. Additionally, these analyses revealed greater activation during nonsocial reward outcomes during the OT condition relative to PLC in the right OFC and left FP. Finally, functional connectivity analyses generally revealed changes in frontostriatal connections during the OT condition relative to PLC in response to nonsocial, but not social, rewards. The effects of intranasal OT administration on mesocorticolimbic brain systems that process rewards in ASD were observable primarily during the processing of nonsocial incentive salience stimuli. These findings have implications for understanding the effects of OT on neural systems that process rewards, as well as for experimental trials of novel ASD treatments developed to ameliorate social communication impairments in ASD.
Dynamics of positive emotion regulation: associations with youth depressive symptoms.
Fussner, Lauren M; Luebbe, Aaron M; Bell, Debora J
2015-04-01
Depression is frequently considered a disorder of impaired affect regulation with deficits across both positive and negative affective systems. However, where deficits in emotion regulation occur in youth, specifically regarding regulation of positive emotions, is relatively unknown. The current study tested whether deficits in broad (felt and expressed) and specific (up-regulation and maintenance) positive emotion processes are associated with youth depressive symptoms. Adolescents (n = 134; 65 girls) in grades 7 to 9 completed a self-report measure of depressive symptoms prior to participating in two parent-child interactions tasks, a rewarding trivia task and a problem-solving conflict task. During the interaction tasks, adolescent's overall self-reported experience and observed expression of positive affect (PA) was examined. Following the reward task, youth's ability to up-regulate PA (PA response) and maintain PA while buffering against NA (PA persistence) was explored observationally. Results suggested that reduced experience and expression of PA was associated with depression symptoms, but only in a context that elicited negative emotions. No association was found between PA response and depression symptoms; however, shorter PA persistence was associated with elevated depressive symptoms. Youth higher in depressive symptoms appear able to respond similarly to rewarding events, but fail to maintain PA and ward off NA when transitioning from a positive to negative task.
Iowa Gambling Task (IGT): twenty years after – gambling disorder and IGT
Brevers, Damien; Bechara, Antoine; Cleeremans, Axel; Noël, Xavier
2013-01-01
The Iowa Gambling Task (IGT) involves probabilistic learning via monetary rewards and punishments, where advantageous task performance requires subjects to forego potential large immediate rewards for small longer-term rewards to avoid larger losses. Pathological gamblers (PG) perform worse on the IGT compared to controls, relating to their persistent preference toward high, immediate, and uncertain rewards despite experiencing larger losses. In this contribution, we review studies that investigated processes associated with poor IGT performance in PG. Findings from these studies seem to fit with recent neurocognitive models of addiction, which argue that the diminished ability of addicted individuals to ponder short-term against long-term consequences of a choice may be the product of an hyperactive automatic attentional and memory system for signaling the presence of addiction-related cues (e.g., high uncertain rewards associated with disadvantageous decks selection during the IGT) and for attributing to such cues pleasure and excitement. This incentive-salience associated with gambling-related choice in PG may be so high that it could literally “hijack” resources [“hot” executive functions (EFs)] involved in emotional self-regulation and necessary to allow the enactment of further elaborate decontextualized problem-solving abilities (“cool” EFs). A framework for future research is also proposed, which highlights the need for studies examining how these processes contribute specifically to the aberrant choice profile displayed by PG on the IGT. PMID:24137138
Aarts, Esther; van Holstein, Mieke; Hoogman, Martine; Onnink, Marten; Kan, Cornelis; Franke, Barbara; Buitelaar, Jan; Cools, Roshan
2015-02-01
Attention-deficit/hyperactivity disorder (ADHD) is accompanied by impairments in cognitive control, such as task-switching deficits. We investigated whether such problems, and their remediation by medication, reflect abnormal reward motivation and associated striatal dopamine transmission in ADHD. We used functional genetic neuroimaging to assess the effects of dopaminergic medication and reward motivation on task-switching and striatal BOLD signal in 23 adults with ADHD, ON and OFF methylphenidate, and 26 healthy controls. Critically, we took into account interindividual variability in striatal dopamine by exploiting a common genetic polymorphism (3'-UTR VNTR) in the DAT1 gene coding for the dopamine transporter. The results showed a highly significant group by genotype interaction in the striatum. This was because a subgroup of patients with ADHD showed markedly exaggerated effects of reward on the striatal BOLD signal during task-switching when they were OFF their dopaminergic medication. Specifically, patients carrying the 9R allele showed a greater striatal signal than healthy controls carrying this allele, whereas no effect of diagnosis was observed in 10R homozygotes. Aberrant striatal responses were normalized when 9R-carrying patients with ADHD were ON medication. These pilot data indicate an important role for aberrant reward motivation, striatal dopamine and interindividual genetic differences in cognitive processes in adult ADHD.
Aarts, Esther; Hoogman, Martine; Onnink, Marten; Kan, Cornelis; Franke, Barbara; Buitelaar, Jan; Cools, Roshan
2015-01-01
Attention-deficit/hyperactivity disorder (ADHD) is accompanied by impairments in cognitive control, such as task-switching deficits. We investigated whether such problems, and their remediation by medication, reflect abnormal reward motivation and associated striatal dopamine transmission in ADHD. We used functional genetic neuroimaging to assess the effects of dopaminergic medication and reward motivation on task-switching and striatal BOLD signal in 23 adults with ADHD, ON and OFF methylphenidate, and 26 healthy controls. Critically, we took into account interindividual variability in striatal dopamine by exploiting a common genetic polymorphism (3′-UTR VNTR) in the DAT1 gene coding for the dopamine transporter. The results showed a highly significant group by genotype interaction in the striatum. This was because a subgroup of patients with ADHD showed markedly exaggerated effects of reward on the striatal BOLD signal during task-switching when they were OFF their dopaminergic medication. Specifically, patients carrying the 9R allele showed a greater striatal signal than healthy controls carrying this allele, whereas no effect of diagnosis was observed in 10R homozygotes. Aberrant striatal responses were normalized when 9R-carrying patients with ADHD were ON medication. These pilot data indicate an important role for aberrant reward motivation, striatal dopamine and interindividual genetic differences in cognitive processes in adult ADHD. PMID:25485641
Training Rats Using Water Rewards Without Water Restriction
Reinagel, Pamela
2018-01-01
High-throughput behavioral training of rodents has been a transformative development for systems neuroscience. Water or food restriction is typically required to motivate task engagement. We hypothesized a gap between physiological water need and hedonic water satiety that could be leveraged to train rats for water rewards without water restriction. We show that when Citric Acid (CA) is added to water, female rats drink less, yet consume enough to maintain long term health. With 24 h/day access to a visual task with water rewards, rats with ad lib CA water performed 84% ± 18% as many trials as in the same task under water restriction. In 2-h daily sessions, rats with ad lib CA water performed 68% ± 13% as many trials as under water restriction. Using reward sizes <25 μl, rats with ad lib CA performed 804 ± 285 trials/day in live-in sessions or 364 ± 82 trials/day in limited duration daily sessions. The safety of CA water amendment was previously shown for male rats, and the gap between water need and satiety was similar to what we observed in females. Therefore, it is likely that this method will generalize to male rats, though this remains to be shown. We conclude that at least in some contexts rats can be trained using water rewards without water restriction, benefitting both animal welfare and scientific productivity. PMID:29773982
Piantadosi, Patrick T; Yeates, Dylan C M; Wilkins, Mathew; Floresco, Stan B
2017-04-01
The involvement of different nodes within meso-cortico-limbic-striatal circuitry in mediating reward-seeking has been well described, yet comparatively less is known about how such circuitry may regulate appetitively-motivated behaviors that may be punished. The basolateral amygdala (BLA) is one nucleus that has been implicated in suppressing punished reward-seeking, and this structure can modulate goal-directed behavior via projections to subregions of the nucleus accumbens (NAc). Here, we examined the effects of reversible inactivations of the BLA, NAc Shell (NAcS), and core (NAcC) on performance of a "Conflict" task where rats pressed a lever for sucrose reinforcement during three distinct 5min phases. During the first and last phases of a session, rats lever-pressed for food reward delivered on a VI-15/FR5 schedule. In between these phases was a signaled "Conflict" period, where each lever-press yielded food, but 50% of presses were also punished with foot-shock. Under control conditions, well-trained rats responded vigorously during the two "safe" VI-15/FR5 periods, but reduced responding during the punished Conflict period. Inactivation of either the BLA or the NAcS via infusions of baclofen/muscimol disinhibited punished seeking, increasing lever-pressing during the conflict period, while attenuating pressing during VI-15/FR5 phases. In contrast, NAcC inactivation markedly decreased responding across all three phases. Similar inactivation of the BLA or NAcS did not alter responding in a separate control experiment where rats pressed for food on schedules identical to the Conflict task in the absence of any punishment, while NAcC inactivation again suppressed responding. These results imply that BLA and NAcS are part of a circuit that suppresses reward-seeking in the face of danger, which in turn may have implications for disorders characterized by punishment resistance, including substance abuse and obsessive-compulsive disorder. Copyright © 2017 Elsevier Inc. All rights reserved.
Schwager, Andrea L; Haack, Andrew K; Taha, Sharif A
2014-10-01
Stress-induced disruption of decision making has been hypothesized to contribute to drug-seeking behaviors and addiction. Noradrenergic signaling plays a central role in mediating stress responses. However, the effects of acute stress on decision making, and the role of noradrenergic signaling in regulating these effects, have not been well characterized. To characterize changes in decision making caused by acute pharmacological stress, the effects of yohimbine (an α2-adrenergic antagonist) were examined in a delay discounting task. Noradrenergic contributions to decision making were further characterized by examining the effects of propranolol (a β antagonist), prazosin (an α1 antagonist), and guanfacine (an α2 agonist). Sprague-Dawley rats were administered drugs prior to performance on a delay discounting task, in which the delay preceding the large reward increased within each session (ascending delays). To dissociate drug-induced changes in delay sensitivity from behavioral inflexibility, drug effects were subsequently tested in a modified version of the discounting task, in which the delay preceding the large reward decreased within each session (descending delays). Yohimbine increased choice of the large reward when tested with ascending delays but decreased choice of the same large reward when tested with descending delays, suggesting that drug effects could be attributed to perseverative choice of the lever preferred at the beginning of the session. Propranolol increased choice of the large reward when tested with ascending delays. Prazosin and guanfacine had no effect on reward choice. The stress-like effects of yohimbine administration may impair decision making by causing inflexible, perseverative behavior.
Pornpattananangkul, Narun; Nadig, Ajay; Heidinger, Storm; Walden, Keegan; Nusslock, Robin
2017-06-01
Although waiting for a reward reduces or discounts its value, some people have a stronger tendency to wait for larger rewards and forgo smaller-but-immediate rewards. This ability to delay gratification is captured by individual differences in so-called intertemporal choices in which individuals are asked to choose between larger-but-delayed versus smaller-but-immediate rewards. The current study used event-related potentials (ERPs) to examine whether enhancement in two neurocognitive processes, outcome anticipation and outcome evaluation, modulate individual variability in intertemporal responses. After completing a behavioral intertemporal choice task, 34 participants performed an ERP gambling task. From this ERP task, we separately examined individual differences in outcome anticipation (stimulus-preceding negativity; SPN), early outcome valuation (feedback-related negativity; FRN), and late outcome evaluation (P3). We observed that both elevated outcome-anticipation (SPN) and late outcome-evaluation (P3) neural processes predicted a stronger preference toward larger-but-delayed rewards. No relationship was observed between intertemporal responses and early outcome evaluation (FRN), indicating that the relationship between outcome evaluation and intertemporal responses was specific to the late outcome-evaluation processing stream. Moreover, multiple regression analyses indicated that the SPN and P3 independently modulate individual differences in intertemporal responses, suggesting separate mechanisms underlie the relationship between these two neurocognitive processes and intertemporal responses. Accordingly, we identify two potential neurocognitive modulators of individual variability in intertemporal responses. We discuss the mechanisms underlying these modulators in terms of anticipation-related processing (SPN) and a saliency bias toward gain (compared to loss) outcomes (P3).
Reward sensitivity in Parkinson's patients with binge eating.
Terenzi, Damiano; Rumiati, Raffaella I; Catalan, Mauro; Antonutti, Lucia; Furlanis, Giovanni; Garlasco, Paolo; Polverino, Paola; Bertolotti, Claudio; Manganotti, Paolo; Aiello, Marilena
2018-06-01
Parkinson's disease (PD) patients who are treated with dopamine replacement therapy are at risk of developing impulse control disorders (ICDs) (such as gambling, binge eating, and others). According to recent evidence, compulsive reward seeking in ICDs may arise from an excessive attribution of incentive salience (or 'wanting') to rewards. In this study, we tested this hypothesis in patients with PD who developed binge eating (BE). Patients with BE, patients without BE, and healthy controls performed different experimental tasks assessing food liking and wanting. Participants first rated the degree of liking and wanting for different foods using explicit self-report measures. They then performed an affective priming task that measured participants' affective reactions towards foods (liking), and a grip-force task that assessed their motivation for food rewards (wanting). All participants also completed several questionnaires assessing impulsivity, reward sensitivity, anxiety and depression, and underwent a neuropsychological evaluation. Patients with BE displayed an altered liking for sweet foods compared to controls but not to patients without BE. Furthermore, this difference emerged only when implicit measures were used. Importantly, an increased wanting was not associated with binge eating even if wanting, but not liking scores significantly correlated with LED levodopa, confirming the hypothesis of a distinction between the two components of rewards. Lastly, binge eating was associated with depression and lower working memory scores. Take together these results suggest that binge eating in PD is associated with cognitive abnormalities, and to lesser extent affective abnormalities, but not with an increased incentive salience. Copyright © 2018 Elsevier Ltd. All rights reserved.
Myers, Catherine E; Sheynin, Jony; Balsdon, Tarryn; Luzardo, Andre; Beck, Kevin D; Hogarth, Lee; Haber, Paul; Moustafa, Ahmed A
2016-01-01
Addiction is the continuation of a habit in spite of negative consequences. A vast literature gives evidence that this poor decision-making behavior in individuals addicted to drugs also generalizes to laboratory decision making tasks, suggesting that the impairment in decision-making is not limited to decisions about taking drugs. In the current experiment, opioid-addicted individuals and matched controls with no history of illicit drug use were administered a probabilistic classification task that embeds both reward-based and punishment-based learning trials, and a computational model of decision making was applied to understand the mechanisms describing individuals' performance on the task. Although behavioral results showed that opioid-addicted individuals performed as well as controls on both reward- and punishment-based learning, the modeling results suggested subtle differences in how decisions were made between the two groups. Specifically, the opioid-addicted group showed decreased tendency to repeat prior responses, meaning that they were more likely to "chase reward" when expectancies were violated, whereas controls were more likely to stick with a previously-successful response rule, despite occasional expectancy violations. This tendency to chase short-term reward, potentially at the expense of developing rules that maximize reward over the long term, may be a contributing factor to opioid addiction. Further work is indicated to better understand whether this tendency arises as a result of brain changes in the wake of continued opioid use/abuse, or might be a pre-existing factor that may contribute to risk for addiction. Copyright © 2015 Elsevier B.V. All rights reserved.
Distinct processing of social and monetary rewards in late adolescents with trait anhedonia.
Chan, Raymond C K; Li, Zhi; Li, Ke; Zeng, Ya-Wei; Xie, Wei-Zhen; Yan, Chao; Cheung, Eric F C; Jin, Zhen
2016-03-01
Anticipatory and consummatory dissociation of hedonic experience may manifest as trait anhedonia in healthy and clinical populations. It is still unclear whether the underlying neural mechanisms of the monetary-based and affect-based incentive delay paradigms are distinct from each other. The present study aimed to examine the similarities and differences between the Affect Incentive Delay (AID) and the Monetary Incentive Delay (MID) imaging paradigms in relation to brain activations. We administered the AID and the MID imaging tasks to 28 adolescent participants. A cue signaling the type of forthcoming feedback (reward or punishment) was displayed to the participants, followed by a target-hit task with corresponding reward or punishment. The striatal and limbic regions were activated during the anticipatory phase of MID, while there was no brain activation during the anticipatory phase of AID. In the consummatory phase, the MID task activated the medial frontal cortex, while the AID task activated the frontal and dorsal limbic regions. We further found that the anhedonic group exhibited significant hypoactivation than the nonanhedonic group at the left pulvinar, the left claustrum and the left insula to positive cues in the anticipatory phase of the AID task. The results suggest that the AID and the MID tasks have unique activation patterns. Our findings also suggest that the AID task may be more sensitive in detecting anhedonia in people with trait anhedonia. (c) 2016 APA, all rights reserved).
Dynamic Sensor Tasking for Space Situational Awareness via Reinforcement Learning
NASA Astrophysics Data System (ADS)
Linares, R.; Furfaro, R.
2016-09-01
This paper studies the Sensor Management (SM) problem for optical Space Object (SO) tracking. The tasking problem is formulated as a Markov Decision Process (MDP) and solved using Reinforcement Learning (RL). The RL problem is solved using the actor-critic policy gradient approach. The actor provides a policy which is random over actions and given by a parametric probability density function (pdf). The critic evaluates the policy by calculating the estimated total reward or the value function for the problem. The parameters of the policy action pdf are optimized using gradients with respect to the reward function. Both the critic and the actor are modeled using deep neural networks (multi-layer neural networks). The policy neural network takes the current state as input and outputs probabilities for each possible action. This policy is random, and can be evaluated by sampling random actions using the probabilities determined by the policy neural network's outputs. The critic approximates the total reward using a neural network. The estimated total reward is used to approximate the gradient of the policy network with respect to the network parameters. This approach is used to find the non-myopic optimal policy for tasking optical sensors to estimate SO orbits. The reward function is based on reducing the uncertainty for the overall catalog to below a user specified uncertainty threshold. This work uses a 30 km total position error for the uncertainty threshold. This work provides the RL method with a negative reward as long as any SO has a total position error above the uncertainty threshold. This penalizes policies that take longer to achieve the desired accuracy. A positive reward is provided when all SOs are below the catalog uncertainty threshold. An optimal policy is sought that takes actions to achieve the desired catalog uncertainty in minimum time. This work trains the policy in simulation by letting it task a single sensor to "learn" from its performance. The proposed approach for the SM problem is tested in simulation and good performance is found using the actor-critic policy gradient method.
Successful acquisition of an olfactory discrimination test by Asian elephants, Elephas maximus.
Arvidsson, Josefin; Amundin, Mats; Laska, Matthias
2012-02-01
The present study demonstrates that Asian elephants, Elephas maximus, can successfully be trained to cooperate in an olfactory discrimination test based on a food-rewarded two-alternative instrumental conditioning procedure. The animals learned the basic principle of the test within only 60 trials and readily mastered intramodal stimulus transfer tasks. Further, they were capable of distinguishing between structurally related odor stimuli and remembered the reward value of previously learned odor stimuli after 2, 4, 8, and 16 weeks of recess without any signs of forgetting. The precision and consistency of the elephants' performance in tests of odor discrimination ability and long-term odor memory demonstrate the suitability of this method for assessing olfactory function in this proboscid species. An across-species comparison of several measures of olfactory learning capabilities such as speed of initial task acquisition and ability to master intramodal stimulus transfer tasks shows that Asian elephants are at least as good in their performance as mice, rats, and dogs, and clearly superior to nonhuman primates and fur seals. The results support the notion that Asian elephants may use olfactory cues for social communication and food selection and that the sense of smell may play an important role in the control of their behavior. Copyright © 2011 Elsevier Inc. All rights reserved.
Van Leijenhorst, Linda; Westenberg, P Michiel; Crone, Eveline A
2008-01-01
Decision making, or the process of choosing between competing courses of actions, is highly sensitive to age-related change, showing development throughout adolescence. In this study, we tested whether the development of decision making under risk is related to changes in risk-estimation abilities. Participants (N = 93) between ages 8-30 performed a child friendly gambling task, the Cake Gambling task, which was inspired by the Cambridge Gambling Task (Rogers et al., 1999), which has previously been shown to be sensitive to orbitofrontal cortex (OFC) damage. The task allowed comparisons of the contributions to risk perception of (1) the ability to estimate probabilities and (2) evaluate rewards. Adult performance patterns were highly similar to those found in previous reports, showing increased risk taking with increases in the probability of winning and the magnitude of potential reward. Behavioral patterns in children and adolescents did not differ from adult patterns, showing a similar ability for probability estimation and reward evaluation. These data suggest that participants 8 years and older perform like adults in a gambling task, previously shown to depend on the OFC in which all the information needed to make an advantageous decision is given on each trial and no information needs to be inferred from previous behavior. Interestingly, at all ages, females were more risk-averse than males. These results suggest that the increase in real-life risky behavior that is seen in adolescence is not a consequence of changes in risk perception abilities. The findings are discussed in relation to theories about the protracted development of the prefrontal cortex.
Human-robot skills transfer interfaces for a flexible surgical robot.
Calinon, Sylvain; Bruno, Danilo; Malekzadeh, Milad S; Nanayakkara, Thrishantha; Caldwell, Darwin G
2014-09-01
In minimally invasive surgery, tools go through narrow openings and manipulate soft organs to perform surgical tasks. There are limitations in current robot-assisted surgical systems due to the rigidity of robot tools. The aim of the STIFF-FLOP European project is to develop a soft robotic arm to perform surgical tasks. The flexibility of the robot allows the surgeon to move within organs to reach remote areas inside the body and perform challenging procedures in laparoscopy. This article addresses the problem of designing learning interfaces enabling the transfer of skills from human demonstration. Robot programming by demonstration encompasses a wide range of learning strategies, from simple mimicking of the demonstrator's actions to the higher level imitation of the underlying intent extracted from the demonstrations. By focusing on this last form, we study the problem of extracting an objective function explaining the demonstrations from an over-specified set of candidate reward functions, and using this information for self-refinement of the skill. In contrast to inverse reinforcement learning strategies that attempt to explain the observations with reward functions defined for the entire task (or a set of pre-defined reward profiles active for different parts of the task), the proposed approach is based on context-dependent reward-weighted learning, where the robot can learn the relevance of candidate objective functions with respect to the current phase of the task or encountered situation. The robot then exploits this information for skills refinement in the policy parameters space. The proposed approach is tested in simulation with a cutting task performed by the STIFF-FLOP flexible robot, using kinesthetic demonstrations from a Barrett WAM manipulator. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Finding intrinsic rewards by embodied evolution and constrained reinforcement learning.
Uchibe, Eiji; Doya, Kenji
2008-12-01
Understanding the design principle of reward functions is a substantial challenge both in artificial intelligence and neuroscience. Successful acquisition of a task usually requires not only rewards for goals, but also for intermediate states to promote effective exploration. This paper proposes a method for designing 'intrinsic' rewards of autonomous agents by combining constrained policy gradient reinforcement learning and embodied evolution. To validate the method, we use Cyber Rodent robots, in which collision avoidance, recharging from battery packs, and 'mating' by software reproduction are three major 'extrinsic' rewards. We show in hardware experiments that the robots can find appropriate 'intrinsic' rewards for the vision of battery packs and other robots to promote approach behaviors.
Firestone, P; Douglas, V
1975-01-01
The performance of hyperactive and control children was compared on a delayed reaction time task under three reinforcement conditions: reward, punishment, and reward plus punishment. Hyperactives had slower and more variable reaction times, suggesting an attentional deficit. Although each of the three reinforcement conditons was successful in improving reaction times for both subject groups, reward led to a significant increase in impulsive responses in the hyperactive children. Autonomic data revealed that reward also increased arousal to a greater extent than punishment or reward plus punishment. Although resting skin conductance was not different in the two groups of subjects, hyperactives produced fewer specific autonomic responses to signal stimuli.
Kable, Joseph W; Caulfield, M Kathleen; Falcone, Mary; McConnell, Mairead; Bernardo, Leah; Parthasarathi, Trishala; Cooper, Nicole; Ashare, Rebecca; Audrain-McGovern, Janet; Hornik, Robert; Diefenbach, Paul; Lee, Frank J; Lerman, Caryn
2017-08-02
Increased preference for immediate over delayed rewards and for risky over certain rewards has been associated with unhealthy behavioral choices. Motivated by evidence that enhanced cognitive control can shift choice behavior away from immediate and risky rewards, we tested whether training executive cognitive function could influence choice behavior and brain responses. In this randomized controlled trial, 128 young adults (71 male, 57 female) participated in 10 weeks of training with either a commercial web-based cognitive training program or web-based video games that do not specifically target executive function or adapt the level of difficulty throughout training. Pretraining and post-training, participants completed cognitive assessments and functional magnetic resonance imaging during performance of the following validated decision-making tasks: delay discounting (choices between smaller rewards now vs larger rewards in the future) and risk sensitivity (choices between larger riskier rewards vs smaller certain rewards). Contrary to our hypothesis, we found no evidence that cognitive training influences neural activity during decision-making; nor did we find effects of cognitive training on measures of delay discounting or risk sensitivity. Participants in the commercial training condition improved with practice on the specific tasks they performed during training, but participants in both conditions showed similar improvement on standardized cognitive measures over time. Moreover, the degree of improvement was comparable to that observed in individuals who were reassessed without any training whatsoever. Commercial adaptive cognitive training appears to have no benefits in healthy young adults above those of standard video games for measures of brain activity, choice behavior, or cognitive performance. SIGNIFICANCE STATEMENT Engagement of neural regions and circuits important in executive cognitive function can bias behavioral choices away from immediate rewards. Activity in these regions may be enhanced through adaptive cognitive training. Commercial brain training programs claim to improve a broad range of mental processes; however, evidence for transfer beyond trained tasks is mixed. We undertook the first randomized controlled trial of the effects of commercial adaptive cognitive training (Lumosity) on neural activity and decision-making in young adults ( N = 128) compared with an active control (playing on-line video games). We found no evidence for relative benefits of cognitive training with respect to changes in decision-making behavior or brain response, or for cognitive task performance beyond those specifically trained. Copyright © 2017 the authors 0270-6474/17/377390-13$15.00/0.
Caulfield, M. Kathleen; McConnell, Mairead; Bernardo, Leah; Parthasarathi, Trishala; Cooper, Nicole; Ashare, Rebecca; Audrain-McGovern, Janet; Lee, Frank J.; Lerman, Caryn
2017-01-01
Increased preference for immediate over delayed rewards and for risky over certain rewards has been associated with unhealthy behavioral choices. Motivated by evidence that enhanced cognitive control can shift choice behavior away from immediate and risky rewards, we tested whether training executive cognitive function could influence choice behavior and brain responses. In this randomized controlled trial, 128 young adults (71 male, 57 female) participated in 10 weeks of training with either a commercial web-based cognitive training program or web-based video games that do not specifically target executive function or adapt the level of difficulty throughout training. Pretraining and post-training, participants completed cognitive assessments and functional magnetic resonance imaging during performance of the following validated decision-making tasks: delay discounting (choices between smaller rewards now vs larger rewards in the future) and risk sensitivity (choices between larger riskier rewards vs smaller certain rewards). Contrary to our hypothesis, we found no evidence that cognitive training influences neural activity during decision-making; nor did we find effects of cognitive training on measures of delay discounting or risk sensitivity. Participants in the commercial training condition improved with practice on the specific tasks they performed during training, but participants in both conditions showed similar improvement on standardized cognitive measures over time. Moreover, the degree of improvement was comparable to that observed in individuals who were reassessed without any training whatsoever. Commercial adaptive cognitive training appears to have no benefits in healthy young adults above those of standard video games for measures of brain activity, choice behavior, or cognitive performance. SIGNIFICANCE STATEMENT Engagement of neural regions and circuits important in executive cognitive function can bias behavioral choices away from immediate rewards. Activity in these regions may be enhanced through adaptive cognitive training. Commercial brain training programs claim to improve a broad range of mental processes; however, evidence for transfer beyond trained tasks is mixed. We undertook the first randomized controlled trial of the effects of commercial adaptive cognitive training (Lumosity) on neural activity and decision-making in young adults (N = 128) compared with an active control (playing on-line video games). We found no evidence for relative benefits of cognitive training with respect to changes in decision-making behavior or brain response, or for cognitive task performance beyond those specifically trained. PMID:28694338
Rats prefer mutual rewards in a prosocial choice task
Hernandez-Lallement, Julen; van Wingerden, Marijn; Marx, Christine; Srejic, Milan; Kalenscher, Tobias
2015-01-01
Pro-sociality, i.e., the preference for outcomes that produce benefits for other individuals, is ubiquitous in humans. Recently, cross-species comparisons of social behavior have offered important new insights into the evolution of pro-sociality. Here, we present a rodent analog of the Pro-social Choice Task that controls strategic components, de-confounds other-regarding choice motives from the animals' natural tendencies to maximize own food access and directly tests the effect of social context on choice allocation. We trained pairs of rats—an actor and a partner rat—in a double T-maze task where actors decided between two alternatives only differing in the reward delivered to the partner. The “own reward” choice yielded a reward only accessible to the actor whereas the “both reward” choice produced an additional reward for a partner (partner condition) or an inanimate toy (toy Condition), located in an adjacent compartment. We found that actors chose “both reward” at levels above chance and more often in the partner than in the toy condition. Moreover, we show that this choice pattern adapts to the current social context and that the observed behavior is stable over time. PMID:25642162