English, Coralie; Hillier, Susan; Kaur, Gurpreet; Hundertmark, Laura
2014-03-01
Do people with stroke spend more time in active task practice during circuit class therapy sessions versus individual physiotherapy sessions? Do people with stroke practise different tasks during circuit class therapy sessions versus individual physiotherapy sessions? Prospective, observational study. Twenty-nine people with stroke in inpatient rehabilitation settings. Individual therapy sessions and circuit class therapy sessions provided within a larger randomised controlled trial. Seventy-nine therapy sessions were video-recorded and the footage was analysed for time spent engaged in various categories of activity. In a subsample of 28 videos, the number of steps taken by people with stroke per therapy session was counted. Circuit class therapy sessions were of a longer duration (mean difference 38.0minutes, 95% CI 29.9 to 46.1), and participants spent more time engaged in active task practice (mean difference 23.8minutes, 95% CI 16.1 to 31.4) compared with individual sessions. A greater percentage of time in circuit class therapy sessions was spent practising tasks in sitting (mean difference 5.3%, 95% CI 2.4 to 8.2) and in sit-to-stand practice (mean difference 2.7%, 95% CI 1.4 to 4.1), and a lower percentage of time in walking practice (mean difference 19.1%, 95% CI 10.0 to 28.1) compared with individual sessions. PARTICIPANTS took an average of 371 steps (SD 418) during therapy sessions and this did not differ significantly between group and individual sessions. People with stroke spent more time in active task practice, but a similar amount of time in walking practice when physiotherapy was offered in circuit class therapy sessions versus individual therapy sessions. There is a need for effective strategies to increase the amount of walking practice during physiotherapy sessions for people after stroke. Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
A task-oriented circuit training in multiple sclerosis: a feasibility study
2014-01-01
Background The aim of this study was to evaluate the safety, feasibility and preliminary effects of a high-intensity rehabilitative task-oriented circuit training (TOCT) in a sample of multiple sclerosis (MS) subjects on walking competency, mobility, fatigue and health-related quality of life (HRQoL). Methods 24 MS subjects (EDSS 4.89 ± 0.54, 17 female and 7 male, 52.58 ± 11.21 years, MS duration 15.21 ± 8.68 years) have been enrolled and randomly assigned to 2 treatment groups: (i) experimental group received 10 TOCT sessions over 2 weeks (2 hours/each session) followed by a 3 months home exercise program, whereas control group did not receive any specific rehabilitation intervention. A feasibility patient-reported questionnaire was administered after TOCT. Functional outcome measures were: walking endurance (Six Minute Walk Test), gait speed (10 Meter Walk Test), mobility (Timed Up and Go test) and balance (Dynamic Gait Index). Furthermore, self-reported questionnaire of motor fatigue (Fatigue Severity Scale), walking ability (Multiple Sclerosis Walking Scale – 12) and health-related quality of life (Multiple Sclerosis Impact Scale – 29) were included. Subjects’ assessments were delivered at baseline (T0), after TOCT (T1) and 3 months of home-based exercise program (T2). Results After TOCT subjects reported a positive global rating on the received treatment. At 3 months, we found a 58.33% of adherence to the home-exercise program. After TOCT, walking ability and health-related quality of life were improved (p < 0.05) with minor retention after 3 months. The control group showed no significant changes in any variables. Conclusions This two weeks high-intensity task-oriented circuit class training followed by a three months home-based exercise program seems feasible and safe in MS people with moderate mobility impairments; moreover it might improve walking abilities. Trial registration NCT01464749 PMID:24906545
ERIC Educational Resources Information Center
Safadi, Rafi'; Yerushalmi, Edit
2014-01-01
We compared the materialization of knowledge integration processes in class discussions that followed troubleshooting (TS) and problem-solving (PS) tasks and examined the impact of these tasks on students' conceptual understanding. The study was conducted in two sixth-grade classes taught by the same teacher, in six lessons that constituted a…
A high-efficiency low-voltage class-E PA for IoT applications in sub-1 GHz frequency range
NASA Astrophysics Data System (ADS)
Zhou, Chenyi; Lu, Zhenghao; Gu, Jiangmin; Yu, Xiaopeng
2017-10-01
We present and propose a complete and iterative integrated-circuit and electro-magnetic (EM) co-design methodology and procedure for a low-voltage sub-1 GHz class-E PA. The presented class-E PA consists of the on-chip power transistor, the on-chip gate driving circuits, the off-chip tunable LC load network and the off-chip LC ladder low pass filter. The design methodology includes an explicit design equation based circuit components values' analysis and numerical derivation, output power targeted transistor size and low pass filter design, and power efficiency oriented design optimization. The proposed design procedure includes the power efficiency oriented LC network tuning, the detailed circuit/EM co-simulation plan on integrated circuit level, package level and PCB level to ensure an accurate simulation to measurement match and first pass design success. The proposed PA is targeted to achieve more than 15 dBm output power delivery and 40% power efficiency at 433 MHz frequency band with 1.5 V low voltage supply. The LC load network is designed to be off-chip for the purpose of easy tuning and optimization. The same circuit can be extended to all sub-1 GHz applications with the same tuning and optimization on the load network at different frequencies. The amplifier is implemented in 0.13 μm CMOS technology with a core area occupation of 400 μm by 300 μm. Measurement results showed that it provided power delivery of 16.42 dBm at antenna with efficiency of 40.6%. A harmonics suppression of 44 dBc is achieved, making it suitable for massive deployment of IoT devices. Project supported by the National Natural Science Foundation of China (No. 61574125) and the Industry Innovation Project of Suzhou City of China (No. SYG201641).
The misnomer of attention-deficit hyperactivity disorder.
Wasserman, Theodore; Wasserman, Lori Drucker
2015-01-01
We propose that attention-deficit disorder represents an inefficiency of an integrated system designed to allocate working memory to designated tasks rather than the absence or dysfunction of a particular form of attention. A significant portion of this inefficiency in the allocation of working memory represents poor engagement of the reward circuit with distinct circuits of learning and performance that control instrumental conditioning (learning). Efficient attention requires the interaction of these circuits. For a significant percentage of individuals who present with attention-deficit disorder, their problems represent the engagement, or lack thereof, of the motivational and reward circuit as opposed to problems, or disorders of attention traditionally defined as problems with orienting, focusing, and sustaining. We demonstrate that there is an integrated system of working-memory allocation that responds by recruiting relevant aspects of both cortex and subcortex to the demands of the task being encountered. In this model, attention is viewed as a gating function determined by novelty, flight-or-fight response, and reward history/valence affecting motivation. We view the traditional models of attention, rather than describe specific types of attention per se, as representing the description of the behavioral output of this integrated orienting and engagement system designed to allocate working memory to task-specific stimuli.
Cervelló, Eduardo M; Jiménez, Ruth; del Villar, Fernando; Ramos, Luis; Santos-Rosa, Francisco J
2004-08-01
This study analyzes how dispositional goal orientations and perception of different motivational climates are related to the students' perception of sex-related egalitarian treatment and the appearance of disciplined or undisciplined behaviors in physical education classes. Analyses showed that ego orientation is a predictor of undisciplined behavior. Task orientation was positively associated to discipline. The perception of task-involving motivational climate is related to the students' perception of equal treatment. On the contrary, the perception of ego-involving climate has been linked positively to the prediction of the perception of sex discrimination in physical education classes and negatively to the perception of equality and the appearance of disciplined behavior. This study discusses the implications of these results related to teaching instructional actions in physical education classes.
Object-oriented sequence analysis: SCL--a C++ class library.
Vahrson, W; Hermann, K; Kleffe, J; Wittig, B
1996-04-01
SCL (Sequence Class Library) is a class library written in the C++ programming language. Designed using object-oriented programming principles, SCL consists of classes of objects performing tasks typically needed for analyzing DNA or protein sequences. Among them are very flexible sequence classes, classes accessing databases in various formats, classes managing collections of sequences, as well as classes performing higher-level tasks like calculating a pairwise sequence alignment. SCL also includes classes that provide general programming support, like a dynamically growing array, sets, matrices, strings, classes performing file input/output, and utilities for error handling. By providing these components, SCL fosters an explorative programming style: experimenting with algorithms and alternative implementations is encouraged rather than punished. A description of SCL's overall structure as well as an overview of its classes is given. Important aspects of the work with SCL are discussed in the context of a sample program.
Maintenance Operations in Mission Oriented Protective Posture Level IV (MOPPIV)
1987-10-01
Repair FADAC Printed Circuit Board ............. 6 3. Data Analysis Techniques ............................. 6 a. Multiple Linear Regression... ANALYSIS /DISCUSSION ............................... 12 1. Exa-ple of Regression Analysis ..................... 12 S2. Regression results for all tasks...6 * TABLE 9. Task Grouping for Analysis ........................ 7 "TABXLE 10. Remove/Replace H60A3 Power Pack................. 8 TABLE
Universality in the Evolution of Orientation Columns in the Visual Cortex
Kaschube, Matthias; Schnabel, Michael; Löwel, Siegrid; Coppola, David M.; White, Leonard E.; Wolf, Fred
2011-01-01
The brain’s visual cortex processes information concerning form, pattern, and motion within functional maps that reflect the layout of neuronal circuits. We analyzed functional maps of orientation preference in the ferret, tree shrew, and galago—three species separated since the basal radiation of placental mammals more than 65 million years ago—and found a common organizing principle. A symmetry-based class of models for the self-organization of cortical networks predicts all essential features of the layout of these neuronal circuits, but only if suppressive long-range interactions dominate development. We show mathematically that orientation-selective long-range connectivity can mediate the required interactions. Our results suggest that self-organization has canalized the evolution of the neuronal circuitry underlying orientation preference maps into a single common design. PMID:21051599
ERIC Educational Resources Information Center
Kilian, Britta; Hofer, Manfred; Kuhnle, Claudia
2013-01-01
Students in class are sometimes torn between following the lesson and engaging in off-task behavior. In this paper, instead of classifying it as a form of deviant behavior, off-task behavior is reconstructed as a manifestation of students multiple motivations in the classroom. The study examines whether parental monitoring, peer value…
ERIC Educational Resources Information Center
Hawkins, Katherine; Stewart, Robert A.
1991-01-01
Examines the impact of communication apprehension (CA) on perceptions of leadership and intragroup attraction in small task-oriented groups, using 68 undergraduates working on a class project. Finds high CA students were rated by themselves (and by others) to be lower in emerged leadership and social and task attraction than those with lower CA.…
NASA Astrophysics Data System (ADS)
Nightingale, James; Wang, Qi; Grecos, Christos
2015-02-01
In recent years video traffic has become the dominant application on the Internet with global year-on-year increases in video-oriented consumer services. Driven by improved bandwidth in both mobile and fixed networks, steadily reducing hardware costs and the development of new technologies, many existing and new classes of commercial and industrial video applications are now being upgraded or emerging. Some of the use cases for these applications include areas such as public and private security monitoring for loss prevention or intruder detection, industrial process monitoring and critical infrastructure monitoring. The use of video is becoming commonplace in defence, security, commercial, industrial, educational and health contexts. Towards optimal performances, the design or optimisation in each of these applications should be context aware and task oriented with the characteristics of the video stream (frame rate, spatial resolution, bandwidth etc.) chosen to match the use case requirements. For example, in the security domain, a task-oriented consideration may be that higher resolution video would be required to identify an intruder than to simply detect his presence. Whilst in the same case, contextual factors such as the requirement to transmit over a resource-limited wireless link, may impose constraints on the selection of optimum task-oriented parameters. This paper presents a novel, conceptually simple and easily implemented method of assessing video quality relative to its suitability for a particular task and dynamically adapting videos streams during transmission to ensure that the task can be successfully completed. Firstly we defined two principle classes of tasks: recognition tasks and event detection tasks. These task classes are further subdivided into a set of task-related profiles, each of which is associated with a set of taskoriented attributes (minimum spatial resolution, minimum frame rate etc.). For example, in the detection class, profiles for intruder detection will require different temporal characteristics (frame rate) from those used for detection of high motion objects such as vehicles or aircrafts. We also define a set of contextual attributes that are associated with each instance of a running application that include resource constraints imposed by the transmission system employed and the hardware platforms used as source and destination of the video stream. Empirical results are presented and analysed to demonstrate the advantages of the proposed schemes.
ERIC Educational Resources Information Center
Barson, John; And Others
1993-01-01
Describes collaborations of college French classes using electronic mail. Suggests that this type of task-oriented learning through distance-communication is applicable at many different course levels and has considerable merit as an approach to teaching and learning. (PR)
Individual differences in regulatory focus predict neural response to reward.
Scult, Matthew A; Knodt, Annchen R; Hanson, Jamie L; Ryoo, Minyoung; Adcock, R Alison; Hariri, Ahmad R; Strauman, Timothy J
2017-08-01
Although goal pursuit is related to both functioning of the brain's reward circuits and psychological factors, the literatures surrounding these concepts have often been separate. Here, we use the psychological construct of regulatory focus to investigate individual differences in neural response to reward. Regulatory focus theory proposes two motivational orientations for personal goal pursuit: (1) promotion, associated with sensitivity to potential gain, and (2) prevention, associated with sensitivity to potential loss. The monetary incentive delay task was used to manipulate reward circuit function, along with instructional framing corresponding to promotion and prevention in a within-subject design. We observed that the more promotion oriented an individual was, the lower their ventral striatum response to gain cues. Follow-up analyses revealed that greater promotion orientation was associated with decreased ventral striatum response even to no-value cues, suggesting that promotion orientation may be associated with relatively hypoactive reward system function. The findings are also likely to represent an interaction between the cognitive and motivational characteristics of the promotion system with the task demands. Prevention orientation did not correlate with ventral striatum response to gain cues, supporting the discriminant validity of regulatory focus theory. The results highlight a dynamic association between individual differences in self-regulation and reward system function.
ERIC Educational Resources Information Center
Subasi, Münevver; Tas, Yasemin
2016-01-01
This study aims to investigate coping strategies of middle school students in science classes in relation to students' goal orientations and motivating tasks conducted in the classroom environment. The study was conducted in spring semester of 2015-2016 academic year. Sample of the study consists of 316 middle school students receiving education…
Classical verification of quantum circuits containing few basis changes
NASA Astrophysics Data System (ADS)
Demarie, Tommaso F.; Ouyang, Yingkai; Fitzsimons, Joseph F.
2018-04-01
We consider the task of verifying the correctness of quantum computation for a restricted class of circuits which contain at most two basis changes. This contains circuits giving rise to the second level of the Fourier hierarchy, the lowest level for which there is an established quantum advantage. We show that when the circuit has an outcome with probability at least the inverse of some polynomial in the circuit size, the outcome can be checked in polynomial time with bounded error by a completely classical verifier. This verification procedure is based on random sampling of computational paths and is only possible given knowledge of the likely outcome.
ERIC Educational Resources Information Center
Kanis, Ira B.
1992-01-01
In 1985, participants in the Second International Science Study developed and evaluated hands-on problem-solving activities and gave students the opportunity to demonstrate mastery of science process skills. Six evaluation stations for fifth and sixth graders are presented: Blowing in a Liquid, Compare and Contrast, Electrical Circuit, Hot and…
Solving search problems by strongly simulating quantum circuits
Johnson, T. H.; Biamonte, J. D.; Clark, S. R.; Jaksch, D.
2013-01-01
Simulating quantum circuits using classical computers lets us analyse the inner workings of quantum algorithms. The most complete type of simulation, strong simulation, is believed to be generally inefficient. Nevertheless, several efficient strong simulation techniques are known for restricted families of quantum circuits and we develop an additional technique in this article. Further, we show that strong simulation algorithms perform another fundamental task: solving search problems. Efficient strong simulation techniques allow solutions to a class of search problems to be counted and found efficiently. This enhances the utility of strong simulation methods, known or yet to be discovered, and extends the class of search problems known to be efficiently simulable. Relating strong simulation to search problems also bounds the computational power of efficiently strongly simulable circuits; if they could solve all problems in P this would imply that all problems in NP and #P could be solved in polynomial time. PMID:23390585
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1975-01-01
STICAP (Stiff Circuit Analysis Program) is a FORTRAN 4 computer program written for the CDC-6400-6600 computer series and SCOPE 3.0 operating system. It provides the circuit analyst a tool for automatically computing the transient responses and frequency responses of large linear time invariant networks, both stiff and nonstiff (algorithms and numerical integration techniques are described). The circuit description and user's program input language is engineer-oriented, making simple the task of using the program. Engineering theories underlying STICAP are examined. A user's manual is included which explains user interaction with the program and gives results of typical circuit design applications. Also, the program structure from a systems programmer's viewpoint is depicted and flow charts and other software documentation are given.
Linguistic Characteristics of ESL Writing in Task-based E-mail Activities.
ERIC Educational Resources Information Center
Li, Yili
2000-01-01
Investigated the efficacy of integrating task-based e-mail activities into a process-oriented English-as-Second-Language (ESL) writing class. Particular focus was on the linguistic characteristics of 132 pieces of e-mail writing by ESL students in tasks that differed in terms of purpose, audience interaction, and task structure. Computerized text…
Effects of reading-oriented tasks on students' reading comprehension of geometry proof
NASA Astrophysics Data System (ADS)
Yang, Kai-Lin; Lin, Fou-Lai
2012-06-01
This study compared the effects of reading-oriented tasks and writing-oriented tasks on students' reading comprehension of geometry proof (RCGP). The reading-oriented tasks were designed with reading strategies and the idea of problem posing. The writing-oriented tasks were consistent with usual proof instruction for writing a proof and applying it. Twenty-two classes of ninth-grade students ( N = 683), aged 14 to 15 years, and 12 mathematics teachers participated in this quasi-experimental classroom study. While the experimental group was instructed to read and discuss the reading tasks in two 45-minute lessons, the control group was instructed to prove and apply the same propositions. Generalised estimating equation (GEE) method was used to compare the scores of the post-test and the delayed post-test with the pre-test scores as covariates. Results showed that the total scores of the delayed post-test of the experimental group were significantly higher than those of the control group. Furthermore, the scores of the experimental group on all facets of reading comprehension except the application facet were significantly higher than those of the control group for both the post-test and delayed post-test.
Howle, Timothy C; Dimmock, James A; Ntoumanis, Nikos; Chatzisarantis, Nikos L D; Sparks, Cassandra; Jackson, Ben
2017-12-01
We tested the effects of advertisements about a fictitious exercise class-derived using the theoretical constructs of agency and communion-on recipients' perceptions about, and interest in, the class. The final sample consisted of 150 adults (M age = 44.69, SD = 15.83). Results revealed that participants who received a communal-oriented message reported significantly greater exercise task self-efficacy and more positive affective attitudes relative to those who received an agentic-oriented message. Communal (relative to agentic) messages were also indirectly responsible for greater intentions to attend the class, via more positive self-efficacy beliefs and affective attitudes. These findings were obtained despite the use of another manipulation to orient participants to either agency or communion goals. The results indicate that the primacy of communion over agency for message recipients may extend to exercise settings and may occur irrespective of whether participants are situationally oriented toward agency or communion.
USDA-ARS?s Scientific Manuscript database
The purpose of this study was to determine if the use of structured self-reflection in community dance classes would influence achievement goal orientations, levels of intrinsic motivation, or perceived dance performance. The Task and Ego Orientation in Sport Questionnaire (TEOSQ) and the Intrinsic...
Learning to predict is spared in mild cognitive impairment due to Alzheimer's disease.
Baker, Rosalind; Bentham, Peter; Kourtzi, Zoe
2015-10-01
Learning the statistics of the environment is critical for predicting upcoming events. However, little is known about how we translate previous knowledge about scene regularities to sensory predictions. Here, we ask whether patients with mild cognitive impairment due to Alzheimer's disease (MCI-AD) that are known to have spared implicit but impaired explicit recognition memory are able to learn temporal regularities and predict upcoming events. We tested the ability of MCI-AD patients and age-matched controls to predict the orientation of a test stimulus following exposure to sequences of leftwards or rightwards oriented gratings. Our results demonstrate that exposure to temporal sequences without feedback facilitates the ability to predict an upcoming stimulus in both MCI-AD patients and controls. Further, we show that executive cognitive control may account for individual variability in predictive learning. That is, we observed significant positive correlations of performance in attentional and working memory tasks with post-training performance in the prediction task. Taken together, these results suggest a mediating role of circuits involved in cognitive control (i.e. frontal circuits) that may support the ability for predictive learning in MCI-AD.
A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation.
Yao, Lin; Sheng, Xinjun; Zhang, Dingguo; Jiang, Ning; Mrachacz-Kersting, Natalie; Zhu, Xiangyang; Farina, Dario
2017-09-01
Distinctive EEG signals from the motor and somatosensory cortex are generated during mental tasks of motor imagery (MI) and somatosensory attentional orientation (SAO). In this paper, we hypothesize that a combination of these two signal modalities provides improvements in a brain-computer interface (BCI) performance with respect to using the two methods separately, and generate novel types of multi-class BCI systems. Thirty two subjects were randomly divided into a Control-Group and a Hybrid-Group. In the Control-Group, the subjects performed left and right hand motor imagery (i.e., L-MI and R-MI). In the Hybrid-Group, the subjects performed the four mental tasks (i.e., L-MI, R-MI, L-SAO, and R-SAO). The results indicate that combining two of the tasks in a hybrid manner (such as L-SAO and R-MI) resulted in a significantly greater classification accuracy than when using two MI tasks. The hybrid modality reached 86.1% classification accuracy on average, with a 7.70% increase with respect to MI ( ), and 7.21% to SAO ( ) alone. Moreover, all 16 subjects in the hybrid modality reached at least 70% accuracy, which is considered the threshold for BCI illiteracy. In addition to the two-class results, the classification accuracy was 68.1% and 54.1% for the three-class and four-class hybrid BCI. Combining the induced brain signals from motor and somatosensory cortex, the proposed stimulus-independent hybrid BCI has shown improved performance with respect to individual modalities, reducing the portion of BCI-illiterate subjects, and provided novel types of multi-class BCIs.
ERIC Educational Resources Information Center
Organisation for Economic Cooperation and Development, Paris (France).
The document comprises three articles which analyze roles and tasks of teachers in innovative elementary schools in the United States, Netherlands, and England. Innovative schools are interpreted as schools which favor educational practices such as open classrooms, team teaching, parent involvement, nongraded classes, global orientation,…
The Hows and Whys of Studying: The Relationship of Goals to Strategies.
ERIC Educational Resources Information Center
Nolen, Susan Bobbitt
A correlational study of 62 8th grade, 60 11th grade, and 58 college students investigated developmental differences in learning goals, study strategy beliefs and their inter-relationship for science classes. Questionnaires measured levels of task orientation, ego orientation, and work avoidance, as well as belief in the utility of two types of…
The primary visual cortex in the neural circuit for visual orienting
NASA Astrophysics Data System (ADS)
Zhaoping, Li
The primary visual cortex (V1) is traditionally viewed as remote from influencing brain's motor outputs. However, V1 provides the most abundant cortical inputs directly to the sensory layers of superior colliculus (SC), a midbrain structure to command visual orienting such as shifting gaze and turning heads. I will show physiological, anatomical, and behavioral data suggesting that V1 transforms visual input into a saliency map to guide a class of visual orienting that is reflexive or involuntary. In particular, V1 receives a retinotopic map of visual features, such as orientation, color, and motion direction of local visual inputs; local interactions between V1 neurons perform a local-to-global computation to arrive at a saliency map that highlights conspicuous visual locations by higher V1 responses. The conspicuous location are usually, but not always, where visual input statistics changes. The population V1 outputs to SC, which is also retinotopic, enables SC to locate, by lateral inhibition between SC neurons, the most salient location as the saccadic target. Experimental tests of this hypothesis will be shown. Variations of the neural circuit for visual orienting across animal species, with more or less V1 involvement, will be discussed. Supported by the Gatsby Charitable Foundation.
ERIC Educational Resources Information Center
Barak, Moshe; Assal, Muhammad
2018-01-01
This study presents the case of development and evaluation of a STEM-oriented 30-h robotics course for junior high school students (n = 32). Class activities were designed according to the P3 Task Taxonomy, which included: (1) practice-basic closed-ended tasks and exercises; (2) problem solving--small-scale open-ended assignments in which the…
Salvi, Carola; Cristofori, Irene; Grafman, Jordan; Beeman, Mark
2016-01-01
Previous studies showed that liberals and conservatives differ in cognitive style. Liberals are more flexible, and tolerant of complexity and novelty, whereas conservatives are more rigid, are more resistant to change, and prefer clear answers. We administered a set of compound remote associate problems, a task extensively used to differentiate problem-solving styles (via insight or analysis). Using this task, several researches have proven that self-reports, which differentiate between insight and analytic problem-solving, are reliable and are associated with two different neural circuits. In our research we found that participants self-identifying with distinct political orientations demonstrated differences in problem-solving strategy. Liberals solved significantly more problems via insight instead of in a step-by-step analytic fashion. Our findings extend previous observations that self-identified political orientations reflect differences in cognitive styles. More specifically, we show that type of political orientation is associated with problem-solving strategy. The data converge with previous neurobehavioural and cognitive studies indicating a link between cognitive style and the psychological mechanisms that mediate political beliefs. PMID:26810954
Salvi, Carola; Cristofori, Irene; Grafman, Jordan; Beeman, Mark
2016-01-01
Previous studies showed that liberals and conservatives differ in cognitive style. Liberals are more flexible, and tolerant of complexity and novelty, whereas conservatives are more rigid, are more resistant to change, and prefer clear answers. We administered a set of compound remote associate problems, a task extensively used to differentiate problem-solving styles (via insight or analysis). Using this task, several researches have proven that self-reports, which differentiate between insight and analytic problem-solving, are reliable and are associated with two different neural circuits. In our research we found that participants self-identifying with distinct political orientations demonstrated differences in problem-solving strategy. Liberals solved significantly more problems via insight instead of in a step-by-step analytic fashion. Our findings extend previous observations that self-identified political orientations reflect differences in cognitive styles. More specifically, we show that type of political orientation is associated with problem-solving strategy. The data converge with previous neurobehavioural and cognitive studies indicating a link between cognitive style and the psychological mechanisms that mediate political beliefs.
The Pentagonal Principle for Self-Oriented Classes.
ERIC Educational Resources Information Center
Ball, Jerald T.
Under the pentagonal principle, a class is divided into groups of five (or six) to complete a discrete learning task, which is divided into five bits. Students take turns presenting the bits; if one fails, the group takes over. In this rotation, each student leads at least once in the session; the group verifies all steps. The instructor acts…
ERIC Educational Resources Information Center
Talbot, Gilles L.
This paper suggests that the processes one would have college teachers use to motivate students closely parallel those that should be used to gain the cooperation, commitment, and preparation of teachers for this task. It discusses the "learning orientation" versus "grading orientation" of students, along with "class-side manners" that college…
Designing Class Methods from Dataflow Diagrams
NASA Astrophysics Data System (ADS)
Shoval, Peretz; Kabeli-Shani, Judith
A method for designing the class methods of an information system is described. The method is part of FOOM - Functional and Object-Oriented Methodology. In the analysis phase of FOOM, two models defining the users' requirements are created: a conceptual data model - an initial class diagram; and a functional model - hierarchical OO-DFDs (object-oriented dataflow diagrams). Based on these models, a well-defined process of methods design is applied. First, the OO-DFDs are converted into transactions, i.e., system processes that supports user task. The components and the process logic of each transaction are described in detail, using pseudocode. Then, each transaction is decomposed, according to well-defined rules, into class methods of various types: basic methods, application-specific methods and main transaction (control) methods. Each method is attached to a proper class; messages between methods express the process logic of each transaction. The methods are defined using pseudocode or message charts.
Moreno-Murcia, Juan A.; Sicilia, Alvaro; Cervelló, Eduardo; Huéscar, Elisa; Dumitru, Delia C.
2011-01-01
The purpose of this study was to test a motivational model on the links between situational and dispositional motivation and self-reported indiscipline/discipline based on the achievement goals theory. The model postulates that a task-involving motivational climate facilitates self-reported discipline, either directly or mediated by task orientation. In contrast, an ego-involving motivational climate favors self-reported indiscipline, either directly or by means of ego orientation. An additional purpose was to examine gender differences according to the motivational model proposed. Children (n = 565) from a large Spanish metropolitan school district were participants in this study and completed questionnaires assessing goal orientations, motivational climates and self-reported discipline. The results from the analysis of structural equation model showed the direct effect of motivational climates on self-reported discipline and provided support to the model. Furthermore, the gender differences found in self-reported discipline were associated with the differences found in the students’ dispositional and situational motivation pursuant to the model tested. The implications of these results with regard to teaching instructional actions in physical education classes are discussed. Key points A task-involving motivational climate predicts self-reported discipline behaviors, either directly or mediated by task orientation. An ego-involving motivational climate favors self-reported undisciplined, either directly or mediated by ego orientation. A significant gender difference was found in the motivational disposition perceived climate and self-reported discipline. PMID:24149304
ERIC Educational Resources Information Center
Roorda, Gerrit; Vos, Pauline; Goedhart, Martin J.
2015-01-01
This article reports on a longitudinal observation study about students' development in their use of procedures to calculate instantaneous rate of change. Different procedures for solving tasks on rate of change are taught in mathematics and physics classes, and together they form a repertoire. Our study took an actor-oriented perspective, which…
Efficient quantum walk on a quantum processor
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-01-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471
Italian version of the Task and Ego Orientation in physical education questionnaire.
Bortoli, Laura; Robazza, Claudio
2005-12-01
The 1992 Task and Ego Orientation in Sport Questionnaire developed by Duda and Nicholls was modified by Walling and Duda in 1995 to assess task and ego orientation in physical education. The modified version was translated into Italian and administered to 1,547 students, 786 girls and 761 boys ages 14 to 19 years, to examine the factor structure. To evaluate the goodness of fit of the expected two-factor solution as in the original questionnaire, confirmatory factor analysis was conducted on four samples of boys and girls of two classes of age (14-16 and 17-19 years). Across sex and age, chi-squared/df ratios were less than 5.0, fit indices (GFI, NNFI, and CFI) not less than .90, and root mean square error of approximation (RMSEA) below .10. Thus, the two-factor solution of the questionnaire was supported. In the total sample, the two scales showed good internal consistency, with Cronbach alpha values of .92 for the Ego factor and .83 for the Task factor. The Ego factor accounted for 34.1% of variance and the Task factor accounted for 21.0% of variance.
English, Coralie; Bernhardt, Julie; Hillier, Susan
2014-10-01
The optimum model of physiotherapy service delivery for maximizing active task practice during rehabilitation after stroke is unknown. The purpose of the study was to examine the relative effectiveness of 2 alternative models of physiotherapy service delivery against a usual care control with regard to increasing patient activity. Substudy within a large 3-armed randomized controlled trial, which compared 3 different models of physiotherapy service delivery, was provided for 4 weeks during subacute, inpatient rehabilitation (n=283). The duration of all physiotherapy sessions was recorded. In addition, 32 participants were observed at 10-minute intervals for 1 weekday and 1 weekend day between 8:00 am and 4:30 pm. At each observation, we recorded physical activity, location, and people present. Participants receiving 7-day-week and circuit class therapy received an additional 3 hours and 22 hours of physiotherapy time, respectively, when compared with usual care. Participants were standing or walking for a median of 8.2% of observations. On weekdays, circuit class therapy participants spent more time in therapy-related activity (10.2% of observations) when compared with usual care participants (6.1% of observations). On weekends, 7-day therapy participants spent more time in therapy-related activity (4.2% of observations) when compared with both usual care and circuit class therapy participants (0% of observations for both groups). Activity levels outside of therapy sessions did not differ between groups. A greater dosage of physiotherapy time did not translate into meaningful increases in physical activity across the day. http://www.anzctr.org.au/. Unique identifier: ACTRN12610000096055. © 2014 American Heart Association, Inc.
Yonge, K. A.
1965-01-01
While closed-circuit television has been used in medical schools in the United States for some 12 years, its use for teaching diagnostic and psychotherapeutic interviewing to medical students has not previously been reported in Canada. The procedure involved a class of 64 students in their second year for a total of 38 hours. Concurrently with the demonstration interviews, the students were supervised in individual practice interviews with patients. The principles of psychotherapy had to be carefully related to the rest of the medical curriculum which essentially is biologically oriented. Three basic principles of health and healing were adopted because they were as applicable psychologically as physically. Evaluation of the program was undertaken by polling the students by means of a questionnaire. The general conclusion was that the use of closed-circuit television for these purposes far surpasses any other technique and has no major drawbacks. PMID:14278028
First-Year Athletes' Student Development and Their University Residence.
ERIC Educational Resources Information Center
Saidla, Debie D.; And Others
1994-01-01
Investigated relationships between aspects of student athletes' psychosocial development and perceptions of university residence environment. Student athletes (n=53) enrolled in first-year orientation class completed Student Developmental Task and Lifestyle Inventory and University Residence Environment Scale. Findings revealed that student…
The computational worm: spatial orientation and its neuronal basis in C. elegans.
Lockery, Shawn R
2011-10-01
Spatial orientation behaviors in animals are fundamental for survival but poorly understood at the neuronal level. The nematode Caenorhabditis elegans orients to a wide range of stimuli and has a numerically small and well-described nervous system making it advantageous for investigating the mechanisms of spatial orientation. Recent work by the C. elegans research community has identified essential computational elements of the neural circuits underlying two orientation strategies that operate in five different sensory modalities. Analysis of these circuits reveals novel motifs including simple circuits for computing temporal derivatives of sensory input and for integrating sensory input with behavioral state to generate adaptive behavior. These motifs constitute hypotheses concerning the identity and functionality of circuits controlling spatial orientation in higher organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.
How an active-learning class influences physics self-efficacy in pre-service teachers
NASA Astrophysics Data System (ADS)
Gaffney, Jon D. H.; Housley Gaffney, Amy L.; Usher, Ellen L.; Mamaril, Natasha A.
2013-01-01
Education majors in an inquiry-based physics content course were asked to reflect on the ways the course affected their self-efficacy for completing physics tasks, such as creating a circuit. Responses were coded according to the contributor of the influence and whether that influence was positive or negative. The group learning structure, hands-on activities in the class, and the constructed repertoire of science knowledge, processes, and activities, were all reported to be positive influences on self-efficacy, whereas the influence of the instructor was mixed. Overall, students' responses indicated both a desire for more guidance and lecture and an appreciation for their ability to construct their own understanding through the class activities.
Petruno, Sarah K; Clark, Robert E; Reinagel, Pamela
2013-01-01
The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.
Serotonergic Suppression of Mouse Prefrontal Circuits Implicated in Task Attention
2016-01-01
Serotonin (5-HT) regulates attention by neurobiological mechanisms that are not well understood. Layer 6 (L6) pyramidal neurons of prefrontal cortex play an important role in attention and express 5-HT receptors, but the serotonergic modulation of this layer and its excitatory output is not known. Here, we performed whole-cell recordings and pharmacological manipulations in acute brain slices from wild-type and transgenic mice expressing either eGFP or eGFP-channelrhodopsin in prefrontal L6 pyramidal neurons. Excitatory circuits between L6 pyramidal neurons and L5 GABAergic interneurons, including a population of interneurons essential for task attention, were investigated using optogenetic techniques. Our experiments show that prefrontal L6 pyramidal neurons are subject to strong serotonergic inhibition and demonstrate direct 5-HT–sensitive connections between prefrontal L6 pyramidal neurons and two classes of L5 interneurons. This work helps to build a neurobiological framework to appreciate serotonergic disruption of task attention and yields insight into the disruptions of attention observed in psychiatric disorders with altered 5-HT receptors and signaling. PMID:27844060
Monetary rewards influence retrieval orientations.
Halsband, Teresa M; Ferdinand, Nicola K; Bridger, Emma K; Mecklinger, Axel
2012-09-01
Reward anticipation during learning is known to support memory formation, but its role in retrieval processes is so far unclear. Retrieval orientations, as a reflection of controlled retrieval processing, are one aspect of retrieval that might be modulated by reward. These processes can be measured using the event-related potentials (ERPs) elicited by retrieval cues from tasks with different retrieval requirements, such as via changes in the class of targeted memory information. To determine whether retrieval orientations of this kind are modulated by reward during learning, we investigated the effects of high and low reward expectancy on the ERP correlates of retrieval orientation in two separate experiments. The reward manipulation at study in Experiment 1 was associated with later memory performance, whereas in Experiment 2, reward was directly linked to accuracy in the study task. In both studies, the participants encoded mixed lists of pictures and words preceded by high- or low-reward cues. After 24 h, they performed a recognition memory exclusion task, with words as the test items. In addition to a previously reported material-specific effect of retrieval orientation, a frontally distributed, reward-associated retrieval orientation effect was found in both experiments. These findings suggest that reward motivation during learning leads to the adoption of a reward-associated retrieval orientation to support the retrieval of highly motivational information. Thus, ERP retrieval orientation effects not only reflect retrieval processes related to the sought-for materials, but also relate to the reward conditions with which items were combined during encoding.
Jackson, Jade; Rich, Anina N; Williams, Mark A; Woolgar, Alexandra
2017-02-01
Human cognition is characterized by astounding flexibility, enabling us to select appropriate information according to the objectives of our current task. A circuit of frontal and parietal brain regions, often referred to as the frontoparietal attention network or multiple-demand (MD) regions, are believed to play a fundamental role in this flexibility. There is evidence that these regions dynamically adjust their responses to selectively process information that is currently relevant for behavior, as proposed by the "adaptive coding hypothesis" [Duncan, J. An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2, 820-829, 2001]. Could this provide a neural mechanism for feature-selective attention, the process by which we preferentially process one feature of a stimulus over another? We used multivariate pattern analysis of fMRI data during a perceptually challenging categorization task to investigate whether the representation of visual object features in the MD regions flexibly adjusts according to task relevance. Participants were trained to categorize visually similar novel objects along two orthogonal stimulus dimensions (length/orientation) and performed short alternating blocks in which only one of these dimensions was relevant. We found that multivoxel patterns of activation in the MD regions encoded the task-relevant distinctions more strongly than the task-irrelevant distinctions: The MD regions discriminated between stimuli of different lengths when length was relevant and between the same objects according to orientation when orientation was relevant. The data suggest a flexible neural system that adjusts its representation of visual objects to preferentially encode stimulus features that are currently relevant for behavior, providing a neural mechanism for feature-selective attention.
Computer calculation of device, circuit, equipment, and system reliability.
NASA Technical Reports Server (NTRS)
Crosby, D. R.
1972-01-01
A grouping into four classes is proposed for all reliability computations that are related to electronic equipment. Examples are presented of reliability computations in three of these four classes. Each of the three specific reliability tasks described was originally undertaken to satisfy an engineering need for reliability data. The form and interpretation of the print-out of the specific reliability computations is presented. The justification for the costs of these computations is indicated. The skills of the personnel used to conduct the analysis, the interfaces between the personnel, and the timing of the projects is discussed.
NASA Technical Reports Server (NTRS)
Barry, Matthew R.
2006-01-01
The X-Windows Socket Widget Class ("Class" is used here in the object-oriented-programming sense of the word) was devised to simplify the task of implementing network connections for graphical-user-interface (GUI) computer programs. UNIX Transmission Control Protocol/Internet Protocol (TCP/IP) socket programming libraries require many method calls to configure, operate, and destroy sockets. Most X Windows GUI programs use widget sets or toolkits to facilitate management of complex objects. The widget standards facilitate construction of toolkits and application programs. The X-Windows Socket Widget Class encapsulates UNIX TCP/IP socket-management tasks within the framework of an X Windows widget. Using the widget framework, X Windows GUI programs can treat one or more network socket instances in the same manner as that of other graphical widgets, making it easier to program sockets. Wrapping ISP socket programming libraries inside a widget framework enables a programmer to treat a network interface as though it were a GUI.
Two integrator loop quadrature oscillators: A review.
Soliman, Ahmed M
2013-01-01
A review of the two integrator loop oscillator circuits providing two quadrature sinusoidal output voltages is given. All the circuits considered employ the minimum number of capacitors namely two except one circuit which uses three capacitors. The circuits considered are classified to four different classes. The first class includes floating capacitors and floating resistors and the active building blocks realizing these circuits are the Op Amp or the OTRA. The second class employs grounded capacitors and includes floating resistors and the active building blocks realizing these circuits are the DCVC or the unity gain cells or the CFOA. The third class employs grounded capacitors and grounded resistors and the active building blocks realizing these circuits are the CCII. The fourth class employs grounded capacitors and no resistors and the active building blocks realizing these circuits are the TA. Transformation methods showing the generation of different classes from each other is given in details and this is one of the main objectives of this paper.
Indoor and Outdoor Play in Preschool Programs
ERIC Educational Resources Information Center
Kroeker, Julia
2017-01-01
The purpose of this study was to explain children's indoor and outdoor play in preschool programs in terms of teacher interaction, peer interaction and task orientation. Children's indoor and outdoor play behaviors were compared using the Individualized Classroom Assessment Scoring System (inCLASS). Findings included significant differences on…
Functional design criteria for interim stabilization safety class 1 trip circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, R.E., Westinghouse Hanford
1996-06-10
This Functional Design Criteria document outlines the basic requirements for the Safety Class 1 Trip Circuit. The objective of the Safety Class 1 Trip Circuit is to isolate the power circuitry to the Class 1 Division 2, Group B or lesser grade electrically fed loads located in the pump pit. The electrically fed load circuits need to have power isolated to them upon receipt of the following conditions, loss of flammable gases being released (above a predetermined threshold), and seismic(greater than 0.12g acceleration) activity. The two circuits requiring power isolation are the pump and heat trace power circuits. The Safetymore » Class 1 Trip Circuit will be used to support salt well pumping in SST`s containing potentially flammable gas-bearing / gas-producing radioactive waste.« less
Johnson, Jeffrey D; Rugg, Michael D
2006-02-03
Retrieval orientation refers to the differential processing of retrieval cues according to the type of information sought from memory (e.g., words vs. pictures). In the present study, event-related potentials (ERPs) were employed to investigate whether the neural correlates of differential retrieval orientations are sensitive to the specificity of the retrieval demands of the test task. In separate study-test phases, subjects encoded lists of intermixed words and pictures, and then undertook one of two retrieval tests, in both of which the retrieval cues were exclusively words. In the recognition test, subjects performed 'old/new' discriminations on the test items, and old items corresponded to only one class of studied material (words or pictures). In the exclusion test, old items corresponded to both classes of study material, and subjects were required to respond 'old' only to test items corresponding to a designated class of material. Thus, demands for retrieval specificity were greater in the exclusion test than during recognition. ERPs elicited by correctly classified new items in the two types of test were contrasted according to whether words or pictures were the sought-for material. Material-dependent ERP effects were evident in both tests, but the effects onset earlier and offset later in the exclusion test. The findings suggest that differential processing of retrieval cues, and hence the adoption of differential retrieval orientations, varies according to the specificity of the retrieval goal.
HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.
Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B
2017-07-01
This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.
Device-level and module-level three-dimensional integrated circuits created using oblique processing
NASA Astrophysics Data System (ADS)
Burckel, D. Bruce
2016-07-01
This paper demonstrates that another class of three-dimensional integrated circuits (3-D-ICs) exists, distinct from through-silicon-via-centric and monolithic 3-D-ICs. Furthermore, it is possible to create devices that are 3-D "at the device level" (i.e., with active channels oriented in each of the three coordinate axes), by performing standard CMOS fabrication operations at an angle with respect to the wafer surface into high aspect ratio silicon substrates using membrane projection lithography (MPL). MPL requires only minimal fixturing changes to standard CMOS equipment, and no change to current state-of-the-art lithography. Eliminating the constraint of two-dimensional planar device architecture enables a wide range of interconnect topologies which could help reduce interconnect resistance/capacitance, and potentially improve performance.
Hanakawa, Takashi; Goldfine, Andrew M; Hallett, Mark
2017-01-01
Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson's disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy ( A base ) and "agility" (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved A base for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine.
2017-01-01
Abstract Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson’s disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy (Abase) and “agility” (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved Abase for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine. PMID:29379873
Analytical design equations for self-tuned Class-E power amplifier.
Hu, Zhe; Troyk, Philip
2011-01-01
For many emerging neural prosthesis designs that are powered by inductive coupling, their small physical size requires large current in the extracorporeal transmitter coil, and the Class-E power amplifier topology is often used for the transmitter design. Tuning of Class-E circuits for efficient operation is difficult and a self-tuned circuit can facilitate the tuning. The coil current is sensed and used to tune the switching of the transistor switch in the Class-E circuit in order to maintain its high-efficiency operation. Although mathematically complex, the analysis and design procedure for the self-tuned Class-E circuit can be simplified due to the current feedback control, which makes the phase angle between the switching pulse and the coil current predetermined. In this paper explicit analytical design equations are derived and a detailed design procedure is presented and compared with the conventional Class-E design approaches.
Enhancing Self-Awareness: Integrating Himalayan Art in a Career Planning Class
ERIC Educational Resources Information Center
Wang, Michelle
2013-01-01
The dilemma for many college students' job search process is their overwhelming desire to locate any job rather than to satisfy their true passions. Thus, a job search can become a highly instrumental, task-oriented process, preventing students' opportunity to discover themselves and their life's purpose. Self-awareness, however, is a central…
Ikeda, Akitsu; Miyamoto, Jun J; Usui, Nobuo; Taira, Masato; Moriyama, Keiji
2018-01-01
Based on the theory of incentive sensitization, the exposure to food stimuli sensitizes the brain's reward circuits and enhances attentional bias toward food. Therefore, reducing attentional bias to food could possibly be beneficial in preventing impulsive eating. The importance of chewing has been increasingly implicated as one of the methods for reducing appetite, however, no studies to investigate the effect of chewing on attentional bias to food. In this study, we investigated whether chewing stimulation (i.e., chewing tasteless gum) reduces attentional bias to food as well as an actual feeding (i.e., ingesting a standardized meal) does. We measured reaction time, gaze direction and gaze duration to assess attentional bias toward food images in pairs of food and non-food images that were presented in a visual probe task (Experiment 1, n = 21) and/or eye-tracking task (Experiment 2, n = 20). We also measured appetite ratings using visual analog scale. In addition, we conducted a control study in which the same number of participants performed the identical tasks to Experiments 1 and 2, but the participants did not perform sham feeding with gum-chewing/actual feeding between tasks and they took a rest. Two-way ANOVA revealed that after actual feeding, subjective ratings of hunger, preoccupation with food, and desire to eat significantly decreased, whereas fullness significantly increased. Sham feeding showed the same trends, but to a lesser degree. Results of the visual probe task in Experiment 1 showed that both sham feeding and actual feeding reduced reaction time bias significantly. Eye-tracking data showed that both sham and actual feeding resulted in significant reduction in gaze direction bias, indexing initial attentional orientation. Gaze duration bias was unaffected. In both control experiments, one-way ANOVAs showed no significant differences between immediately before and after the resting state for any of the appetite ratings, reaction time bias, gaze direction bias, or gaze duration bias. In conclusion, chewing stimulation reduced subjective appetite and attentional bias to food, particularly initial attentional orientation to food. These findings suggest that chewing stimulation, even without taste, odor, or ingestion, may affect reward circuits and help prevent impulsive eating.
Ikeda, Akitsu; Miyamoto, Jun J.; Usui, Nobuo; Taira, Masato; Moriyama, Keiji
2018-01-01
Based on the theory of incentive sensitization, the exposure to food stimuli sensitizes the brain’s reward circuits and enhances attentional bias toward food. Therefore, reducing attentional bias to food could possibly be beneficial in preventing impulsive eating. The importance of chewing has been increasingly implicated as one of the methods for reducing appetite, however, no studies to investigate the effect of chewing on attentional bias to food. In this study, we investigated whether chewing stimulation (i.e., chewing tasteless gum) reduces attentional bias to food as well as an actual feeding (i.e., ingesting a standardized meal) does. We measured reaction time, gaze direction and gaze duration to assess attentional bias toward food images in pairs of food and non-food images that were presented in a visual probe task (Experiment 1, n = 21) and/or eye-tracking task (Experiment 2, n = 20). We also measured appetite ratings using visual analog scale. In addition, we conducted a control study in which the same number of participants performed the identical tasks to Experiments 1 and 2, but the participants did not perform sham feeding with gum-chewing/actual feeding between tasks and they took a rest. Two-way ANOVA revealed that after actual feeding, subjective ratings of hunger, preoccupation with food, and desire to eat significantly decreased, whereas fullness significantly increased. Sham feeding showed the same trends, but to a lesser degree. Results of the visual probe task in Experiment 1 showed that both sham feeding and actual feeding reduced reaction time bias significantly. Eye-tracking data showed that both sham and actual feeding resulted in significant reduction in gaze direction bias, indexing initial attentional orientation. Gaze duration bias was unaffected. In both control experiments, one-way ANOVAs showed no significant differences between immediately before and after the resting state for any of the appetite ratings, reaction time bias, gaze direction bias, or gaze duration bias. In conclusion, chewing stimulation reduced subjective appetite and attentional bias to food, particularly initial attentional orientation to food. These findings suggest that chewing stimulation, even without taste, odor, or ingestion, may affect reward circuits and help prevent impulsive eating. PMID:29472880
Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits
Yavorska, Iryna; Wehr, Michael
2016-01-01
Cortical inhibitory neurons exhibit remarkable diversity in their morphology, connectivity, and synaptic properties. Here, we review the function of somatostatin-expressing (SOM) inhibitory interneurons, focusing largely on sensory cortex. SOM neurons also comprise a number of subpopulations that can be distinguished by their morphology, input and output connectivity, laminar location, firing properties, and expression of molecular markers. Several of these classes of SOM neurons show unique dynamics and characteristics, such as facilitating synapses, specific axonal projections, intralaminar input, and top-down modulation, which suggest possible computational roles. SOM cells can be differentially modulated by behavioral state depending on their class, sensory system, and behavioral paradigm. The functional effects of such modulation have been studied with optogenetic manipulation of SOM cells, which produces effects on learning and memory, task performance, and the integration of cortical activity. Different classes of SOM cells participate in distinct disinhibitory circuits with different inhibitory partners and in different cortical layers. Through these disinhibitory circuits, SOM cells help encode the behavioral relevance of sensory stimuli by regulating the activity of cortical neurons based on subcortical and intracortical modulatory input. Associative learning leads to long-term changes in the strength of connectivity of SOM cells with other neurons, often influencing the strength of inhibitory input they receive. Thus despite their heterogeneity and variability across cortical areas, current evidence shows that SOM neurons perform unique neural computations, forming not only distinct molecular but also functional subclasses of cortical inhibitory interneurons. PMID:27746722
An object-oriented class library for medical software development.
O'Kane, K C; McColligan, E E
1996-12-01
The objective of this research is the development of a Medical Object Library (MOL) consisting of reusable, inheritable, portable, extendable C++ classes that facilitate rapid development of medical software at reduced cost and increased functionality. The result of this research is a library of class objects that range in function from string and hierarchical file handling entities to high level, procedural agents that perform increasingly complex, integrated tasks. A system built upon these classes is compatible with any other system similarly constructed with respect to data definitions, semantics, data organization and storage. As new objects are built, they can be added to the class library for subsequent use. The MOL is a toolkit of software objects intended to support a common file access methodology, a unified medical record structure, consistent message processing, standard graphical display facilities and uniform data collection procedures. This work emphasizes the relationship that potentially exists between the structure of a hierarchical medical record and procedural language components by means of a hierarchical class library and tree structured file access facility. In doing so, it attempts to establish interest in and demonstrate the practicality of the hierarchical medical record model in the modern context of object oriented programming.
Visual orientation and navigation in nocturnal arthropods.
Warrant, Eric; Dacke, Marie
2010-01-01
With their highly sensitive visual systems, the arthropods have evolved a remarkable capacity to orient and navigate at night. Whereas some navigate under the open sky, and take full advantage of the celestial cues available there, others navigate in more difficult conditions, such as through the dense understory of a tropical rainforest. Four major classes of orientation are performed by arthropods at night, some of which involve true navigation (i.e. travel to a distant goal that lies beyond the range of direct sensory contact): (1) simple straight-line orientation, typically for escape purposes; (2) nightly short-distance movements relative to a shoreline, typically in the context of feeding; (3) long-distance nocturnal migration at high altitude in the quest to locate favorable feeding or breeding sites, and (4) nocturnal excursions to and from a fixed nest or food site (i.e. homing), a task that in most species involves path integration and/or the learning and recollection of visual landmarks. These four classes of orientation--and their visual basis--are reviewed here, with special emphasis given to the best-understood animal systems that are representative of each. 2010 S. Karger AG, Basel.
The neurobiological basis of orientation in insects: insights from the silkmoth mating dance.
Namiki, Shigehiro; Kanzaki, Ryohei
2016-06-01
Counterturning is a common movement pattern during orientation behavior in insects. Once male moths sense sex pheromones and then lose the input, they demonstrate zigzag movements, alternating between left and right turns, to increase the probability to contact with the pheromone plume. We summarize the anatomy and function of the neural circuit involved in pheromone orientation in the silkmoth. A neural circuit, the lateral accessory lobe (LAL), serves a role as the circuit module for zigzag movements and controls this operation using a flip-flop neural switch. Circuit design of the LAL is well conserved across species. We hypothesize that this zigzag module is utilized in a wide range of insect behavior. We introduce two examples of the potential use: orientation flight and the waggle dance in bees. Copyright © 2016 Elsevier Inc. All rights reserved.
Enhanced attentional gain as a mechanism for generalized perceptual learning in human visual cortex.
Byers, Anna; Serences, John T
2014-09-01
Learning to better discriminate a specific visual feature (i.e., a specific orientation in a specific region of space) has been associated with plasticity in early visual areas (sensory modulation) and with improvements in the transmission of sensory information from early visual areas to downstream sensorimotor and decision regions (enhanced readout). However, in many real-world scenarios that require perceptual expertise, observers need to efficiently process numerous exemplars from a broad stimulus class as opposed to just a single stimulus feature. Some previous data suggest that perceptual learning leads to highly specific neural modulations that support the discrimination of specific trained features. However, the extent to which perceptual learning acts to improve the discriminability of a broad class of stimuli via the modulation of sensory responses in human visual cortex remains largely unknown. Here, we used functional MRI and a multivariate analysis method to reconstruct orientation-selective response profiles based on activation patterns in the early visual cortex before and after subjects learned to discriminate small offsets in a set of grating stimuli that were rendered in one of nine possible orientations. Behavioral performance improved across 10 training sessions, and there was a training-related increase in the amplitude of orientation-selective response profiles in V1, V2, and V3 when orientation was task relevant compared with when it was task irrelevant. These results suggest that generalized perceptual learning can lead to modified responses in the early visual cortex in a manner that is suitable for supporting improved discriminability of stimuli drawn from a large set of exemplars. Copyright © 2014 the American Physiological Society.
ERIC Educational Resources Information Center
Applis, Stefan
2016-01-01
The educational standards in geography in the German-speaking world separately refer to the areas of competence of judgment and evaluation and thus attach outstanding importance to reflective value orientation in geography classes. The tasks and challenges that arise from that for geography teachers will be investigated in a…
Brain networks of temporal preparation: A multiple regression analysis of neuropsychological data.
Triviño, Mónica; Correa, Ángel; Lupiáñez, Juan; Funes, María Jesús; Catena, Andrés; He, Xun; Humphreys, Glyn W
2016-11-15
There are only a few studies on the brain networks involved in the ability to prepare in time, and most of them followed a correlational rather than a neuropsychological approach. The present neuropsychological study performed multiple regression analysis to address the relationship between both grey and white matter (measured by magnetic resonance imaging in patients with brain lesion) and different effects in temporal preparation (Temporal orienting, Foreperiod and Sequential effects). Two versions of a temporal preparation task were administered to a group of 23 patients with acquired brain injury. In one task, the cue presented (a red versus green square) to inform participants about the time of appearance (early versus late) of a target stimulus was blocked, while in the other task the cue was manipulated on a trial-by-trial basis. The duration of the cue-target time intervals (400 versus 1400ms) was always manipulated within blocks in both tasks. Regression analysis were conducted between either the grey matter lesion size or the white matter tracts disconnection and the three temporal preparation effects separately. The main finding was that each temporal preparation effect was predicted by a different network of structures, depending on cue expectancy. Specifically, the Temporal orienting effect was related to both prefrontal and temporal brain areas. The Foreperiod effect was related to right and left prefrontal structures. Sequential effects were predicted by both parietal cortex and left subcortical structures. These findings show a clear dissociation of brain circuits involved in the different ways to prepare in time, showing for the first time the involvement of temporal areas in the Temporal orienting effect, as well as the parietal cortex in the Sequential effects. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Wilson, T. G.; Lee, F. C. Y.; Burns, W. W., III; Owen, H. A., Jr.
1974-01-01
A procedure is developed for classifying dc-to-square-wave two-transistor parallel inverters used in power conditioning applications. The inverters are reduced to equivalent RLC networks and are then grouped with other inverters with the same basic equivalent circuit. Distinction between inverter classes is based on the topology characteristics of the equivalent circuits. Information about one class can then be extended to another class using the basic oscillation theory and the concept of duality. Oscillograms from test circuits confirm the validity of the procedure adopted.
Matin, L; Li, W
2001-10-01
An individual line or a combination of lines viewed in darkness has a large influence on the elevation to which an observer sets a target so that it is perceived to lie at eye level (VPEL). These influences are systematically related to the orientation of pitched-from-vertical lines on pitched plane(s) and to the lengths of the lines, as well as to the orientations of lines of 'equivalent pitch' that lie on frontoparallel planes. A three-stage model processes the visual influence: The first stage parallel processes the orientations of the lines utilizing 2 classes of orientation-sensitive neural units in each hemisphere, with the two classes sensitive to opposing ranges of orientations; the signal delivered by each class is of opposite sign in the two hemispheres. The second stage generates the total visual influence from the parallel combination of inputs delivered by the 4 groups of the first stage, and a third stage combines the total visual influence from the second stage with signals from the body-referenced mechanism that contains information about the position and orientation of the eyes, head, and body. The circuit equation describing the combined influence of n separate inputs from stage 1 on the output of the stage 2 integrating neuron is derived for n stimulus lines which possess any combination of orientations and lengths; Each of the n lines is assumed to stimulate one of the groups of orientation-sensitive units in visual cortex (stage 1) whose signals converge on to a dendrite of the integrating neuron (stage 2), and to produce changes in postsynaptic membrane conductance (g(i)) and potential (V(i)) there. The net current from the n dendrites results in a voltage change (V(A)) at the initial segment of the axon of the integrating neuron. Nerve impulse frequency proportional to this voltage change signals the total visual influence on perceived elevation of the visual field. The circuit equation corresponding to the total visual influence for n equal length inducing lines is V(A)= sum V(i)/[n+(g(A)/g(S))], where the potential change due to line i, V(i), is proportional to line orientation, g(A) is the conductance at the axon's summing point, and g(S)=g(i) for each i for the equal length case; the net conductance change due to a line is proportional to the line's length. The circuit equation is interpreted as a basis for quantitative predictions from the model that can be compared to psychophysical measurements of the elevation of VPEL. The interpretation provides the predicted relation for the visual influence on VPEL, V, by n inducing lines each with length l: thus, V=a+[k(i) sum theta(i)/n+(k(2)/l)], where theta(i) is the orientation of line i, a is the effect of the body-referenced mechanism, and k(1) and k(2) are constants. The model's output is fitted to the results of five sets of experiments in which the elevation of VPEL measured with a small target in the median plane is systematically influenced by distantly located 1-line or 2-line inducing stimuli varying in orientation and length and viewed in otherwise total darkness with gaze restricted to the median plane; each line is located at either 25 degrees eccentricity to the left or right of the median plane. The model predicts the negatively accelerated growth of VPEL with line length for each orientation and the change of slope constant of the linear combination rule among lines from 1.00 (linear summation; short lines) to 0.61 (near-averaging; long lines). Fits to the data are obtained over a range of orientations from -30 degrees to +30 degrees of pitch for 1-line visual fields from lengths of 3 degrees to 64 degrees, for parallel 2-line visual fields over the same range of lengths and orientations, for short and long 2-line combinations in which each of the two members may have any orientation (parallel or nonparallel pairs), and for the well-illuminated and fully structured pitchroom. In addition, similar experiments with 2-line stimuli of equivalent pitch in the frontoparallel plane were also fitted to the model. The model accounts for more than 98% of the variance of the results in each case.
Separating OR, SUM, and XOR Circuits.
Find, Magnus; Göös, Mika; Järvisalo, Matti; Kaski, Petteri; Koivisto, Mikko; Korhonen, Janne H
2016-08-01
Given a boolean n × n matrix A we consider arithmetic circuits for computing the transformation x ↦ Ax over different semirings. Namely, we study three circuit models: monotone OR-circuits, monotone SUM-circuits (addition of non-negative integers), and non-monotone XOR-circuits (addition modulo 2). Our focus is on separating OR-circuits from the two other models in terms of circuit complexity: We show how to obtain matrices that admit OR-circuits of size O ( n ), but require SUM-circuits of size Ω( n 3/2 /log 2 n ).We consider the task of rewriting a given OR-circuit as a XOR-circuit and prove that any subquadratic-time algorithm for this task violates the strong exponential time hypothesis.
A study of the conceptual comprehension of electric circuits that engineer freshmen display
NASA Astrophysics Data System (ADS)
Chang, Wheijen; Shieh, Ruey S.
2018-07-01
The purpose of this study was to examine the extent of students’ conceptual comprehension of electric circuits obtained during their high school years, as opposed to in recent class lectures. A total of 201 first-year university students majoring in Engineering in four introductory physics classes were involved in the study. A lecture demonstration of electric circuits was designed to achieve the study purpose. After observing the demonstration, the students were required to identify the associated phenomena and then explain the underlying physical laws. The students’ reasoning performance was used to examine their conceptual comprehension. Two instructional strategies, group discussion without prior lecture and individual reasoning with prior lecture, were implemented to assess student performance. The findings disclosed that although the students had studied the topic previously, most of them could only identify the key phenomena involving simple principles, but failed to identify those involving profound ones. The models most of them adopted were scientifically acceptable but inappropriate in the given context. The students who engaged in group discussion appeared to have a higher phenomenon identification rate than that of the individual-reasoning group. Contrarily, the individual-reasoning group was found to have adopted the valid principles more effectively than the discussion group, probably due to the prior instruction received in the current class. The topics recently lectured seemed to have guided the students’ cognitive orientations toward selecting principles, regardless of their validity. The study findings reveal that the concepts the students had acquired from their earlier learning were rather limited. That is, sophisticated instructional design is always pivotal, regardless of students’ prior learning experiences. Moreover, when adopting demonstration as a teaching tool, explicit instructional guidance is also crucial.
X-Windows Information Sharing Protocol Widget Class
NASA Technical Reports Server (NTRS)
Barry, Matthew R.
2006-01-01
The X-Windows Information Sharing Protocol (ISP) Widget Class ("Class") is used here in the object-oriented-programming sense of the word) was devised to simplify the task of implementing ISP graphical-user-interface (GUI) computer programs. ISP programming tasks require many method calls to identify, query, and interpret the connections and messages exchanged between a client and an ISP server. Most X-Windows GUI programs use widget sets or toolkits to facilitate management of complex objects. The widget standards facilitate construction of toolkits and application programs. The X-Windows Information Sharing Protocol (ISP) Widget Class encapsulates the client side of the ISP programming libraries within the framework of an X-Windows widget. Using the widget framework, X-Windows GUI programs can interact with ISP services in an abstract way and in the same manner as that of other graphical widgets, making it easier to write ISP GUI client programs. Wrapping ISP client services inside a widget framework enables a programmer to treat an ISP server interface as though it were a GUI. Moreover, an alternate subclass could implement another communication protocol in the same sort of widget.
Yanovich, Polina; Isenhower, Robert W.; Sage, Jacob; Torres, Elizabeth B.
2013-01-01
Background Often in Parkinson’s disease (PD) motor-related problems overshadow latent non-motor deficits as it is difficult to dissociate one from the other with commonly used observational inventories. Here we ask if the variability patterns of hand speed and acceleration would be revealing of deficits in spatial-orientation related decisions as patients performed a familiar reach-to-grasp task. To this end we use spatial-orientation priming which normally facilitates motor-program selection and asked whether in PD spatial-orientation priming helps or hinders performance. Methods To dissociate spatial-orientation- and motor-related deficits participants performed two versions of the task. The biomechanical version (DEFAULT) required the same postural- and hand-paths as the orientation-priming version (primed-UP). Any differences in the patients here could not be due to motor issues as the tasks were biomechanically identical. The other priming version (primed-DOWN) however required additional spatial and postural processing. We assessed in all three cases both the forward segment deliberately aimed towards the spatial-target and the retracting segment, spontaneously bringing the hand to rest without an instructed goal. Results and Conclusions We found that forward and retracting segments belonged in two different statistical classes according to the fluctuations of speed and acceleration maxima. Further inspection revealed conservation of the forward (voluntary) control of speed but in PD a discontinuity of this control emerged during the uninstructed retractions which was absent in NC. Two PD groups self-emerged: one group in which priming always affected the retractions and the other in which only the more challenging primed-DOWN condition was affected. These PD-groups self-formed according to the speed variability patterns, which systematically changed along a gradient that depended on the priming, thus dissociating motor from spatial-orientation issues. Priming did not facilitate the motor task in PD but it did reveal a breakdown in the spatial-orientation decision that was independent of the motor-postural path. PMID:23843963
Separating OR, SUM, and XOR Circuits☆
Find, Magnus; Göös, Mika; Järvisalo, Matti; Kaski, Petteri; Koivisto, Mikko; Korhonen, Janne H.
2017-01-01
Given a boolean n × n matrix A we consider arithmetic circuits for computing the transformation x ↦ Ax over different semirings. Namely, we study three circuit models: monotone OR-circuits, monotone SUM-circuits (addition of non-negative integers), and non-monotone XOR-circuits (addition modulo 2). Our focus is on separating OR-circuits from the two other models in terms of circuit complexity: We show how to obtain matrices that admit OR-circuits of size O(n), but require SUM-circuits of size Ω(n3/2/log2n).We consider the task of rewriting a given OR-circuit as a XOR-circuit and prove that any subquadratic-time algorithm for this task violates the strong exponential time hypothesis. PMID:28529379
Orientation-Selective Retinal Circuits in Vertebrates
Antinucci, Paride; Hindges, Robert
2018-01-01
Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such ‘orientation-selective’ neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates. PMID:29467629
Orientation-Selective Retinal Circuits in Vertebrates.
Antinucci, Paride; Hindges, Robert
2018-01-01
Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such 'orientation-selective' neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates.
Negative Difference Resistance and Its Application to Construct Boolean Logic Circuits
NASA Astrophysics Data System (ADS)
Nikodem, Maciej; Bawiec, Marek A.; Surmacz, Tomasz R.
Electronic circuits based on nanodevices and quantum effect are the future of logic circuits design. Today's technology allows constructing resonant tunneling diodes, quantum cellular automata and nanowires/nanoribbons that are the elementary components of threshold gates. However, synthesizing a threshold circuit for an arbitrary logic function is still a challenging task where no efficient algorithms exist. This paper focuses on Generalised Threshold Gates (GTG), giving the overview of threshold circuit synthesis methods and presenting an algorithm that considerably simplifies the task in case of GTG circuits.
Exploring biased attention towards body-related stimuli and its relationship with body awareness.
Salvato, Gerardo; De Maio, Gabriele; Bottini, Gabriella
2017-12-08
Stimuli of great social relevance exogenously capture attention. Here we explored the impact of body-related stimuli on endogenous attention. Additionally, we investigate the influence of internal states on biased attention towards this class of stimuli. Participants were presented with a body, face, or chair cue to hold in memory (Memory task) or to merely attend (Priming task) and, subsequently, they were asked to find a circle in an unrelated visual search task. In the valid condition, the circle was flanked by the cue. In the invalid condition, the pre-cued picture re-appeared flanking the distracter. In the neutral condition, the cue item did not re-appear in the search display. We found that although bodies and faces benefited from a general faster visual processing compared to chairs, holding them in memory did not produce any additional advantage on attention compared to when they are merely attended. Furthermore, face cues generated larger orienting effect compared to body and chairs cues in both Memory and Priming task. Importantly, results showed that individual sensitivity to internal bodily responses predicted the magnitude of the memory-based orienting of attention to bodies, shedding new light on the relationship between body awareness and visuo-spatial attention.
Mento, Giovanni
2017-12-01
A main distinction has been proposed between voluntary and automatic mechanisms underlying temporal orienting (TO) of selective attention. Voluntary TO implies the endogenous directing of attention induced by symbolic cues. Conversely, automatic TO is exogenously instantiated by the physical properties of stimuli. A well-known example of automatic TO is sequential effects (SEs), which refer to the adjustments in participants' behavioral performance as a function of the trial-by-trial sequential distribution of the foreperiod between two stimuli. In this study a group of healthy adults underwent a cued reaction time task purposely designed to assess both voluntary and automatic TO. During the task, both post-cue and post-target event-related potentials (ERPs) were recorded by means of a high spatial resolution EEG system. In the results of the post-cue analysis, the P3a and P3b were identified as two distinct ERP markers showing distinguishable spatiotemporal features and reflecting automatic and voluntary a priori expectancy generation, respectively. The brain source reconstruction further revealed that distinct cortical circuits supported these two temporally dissociable components. Namely, the voluntary P3b was supported by a left sensorimotor network, while the automatic P3a was generated by a more distributed frontoparietal circuit. Additionally, post-cue contingent negative variation (CNV) and post-target P3 modulations were observed as common markers of voluntary and automatic expectancy implementation and response selection, although partially dissociable neural networks subserved these two mechanisms. Overall, these results provide new electrophysiological evidence suggesting that distinct neural substrates can be recruited depending on the voluntary or automatic cognitive nature of the cognitive mechanisms subserving TO. Copyright © 2017 Elsevier Ltd. All rights reserved.
Romo, Tod D.; Leioatts, Nicholas; Grossfield, Alan
2014-01-01
LOOS (Lightweight Object-Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 120 pre-built tools, including suites of tools for analyzing simulation convergence, 3D histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only 4 core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. PMID:25327784
Romo, Tod D; Leioatts, Nicholas; Grossfield, Alan
2014-12-15
LOOS (Lightweight Object Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 140 prebuilt tools, including suites of tools for analyzing simulation convergence, three-dimensional histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only four core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. © 2014 Wiley Periodicals, Inc.
Employing lighting techniques during on-orbit operations
NASA Technical Reports Server (NTRS)
Wheelwright, Charles D.; Toole, Jennifer R.
1991-01-01
As a result of past space missions and evaluations, many procedures have been established and shown to be prudent applications for use in present and future space environment scenarios. However, recent procedures to employ the use of robotics to assist crewmembers in performing tasks which require viewing remote and obstructed locations have led to a need to pursue alternative methods to assist in these operations. One of those techniques which is under development entails incorporating the use of suitable lighting aids/techniques with a closed circuit television (CCTV) camera/monitor system to supervise the robotics operations. The capability to provide adequate lighting during grappling, deploying, docking and berthing operations under all on-orbit illumination conditions is essential to a successful mission. Using automated devices such as the Remote Manipulator System (RMS) to dock and berth a vehicle during payload retrieval, under nighttime, earthshine, solar, or artificial illumination conditions can become a cumbersome task without first incorporating lighting techniques that provide the proper target illumination, orientation, and alignment cues. Studies indicate that the use of visual aids such as the CCTV with a pretested and properly oriented lighting system can decrease the time necessary to accomplish grappling tasks. Evaluations have been and continue to be performed to assess the various on-orbit conditions in order to predict and determine the appropriate lighting techniques and viewing angles necessary to assist crewmembers in payload operations.
Employing lighting techniques during on-orbit operations
NASA Astrophysics Data System (ADS)
Wheelwright, Charles D.; Toole, Jennifer R.
As a result of past space missions and evaluations, many procedures have been established and shown to be prudent applications for use in present and future space environment scenarios. However, recent procedures to employ the use of robotics to assist crewmembers in performing tasks which require viewing remote and obstructed locations have led to a need to pursue alternative methods to assist in these operations. One of those techniques which is under development entails incorporating the use of suitable lighting aids/techniques with a closed circuit television (CCTV) camera/monitor system to supervise the robotics operations. The capability to provide adequate lighting during grappling, deploying, docking and berthing operations under all on-orbit illumination conditions is essential to a successful mission. Using automated devices such as the Remote Manipulator System (RMS) to dock and berth a vehicle during payload retrieval, under nighttime, earthshine, solar, or artificial illumination conditions can become a cumbersome task without first incorporating lighting techniques that provide the proper target illumination, orientation, and alignment cues. Studies indicate that the use of visual aids such as the CCTV with a pretested and properly oriented lighting system can decrease the time necessary to accomplish grappling tasks. Evaluations have been and continue to be performed to assess the various on-orbit conditions in order to predict and determine the appropriate lighting techniques and viewing angles necessary to assist crewmembers in payload operations.
Anomalous neural circuit function in schizophrenia during a virtual Morris water task.
Folley, Bradley S; Astur, Robert; Jagannathan, Kanchana; Calhoun, Vince D; Pearlson, Godfrey D
2010-02-15
Previous studies have reported learning and navigation impairments in schizophrenia patients during virtual reality allocentric learning tasks. The neural bases of these deficits have not been explored using functional MRI despite well-explored anatomic characterization of these paradigms in non-human animals. Our objective was to characterize the differential distributed neural circuits involved in virtual Morris water task performance using independent component analysis (ICA) in schizophrenia patients and controls. Additionally, we present behavioral data in order to derive relationships between brain function and performance, and we have included a general linear model-based analysis in order to exemplify the incremental and differential results afforded by ICA. Thirty-four individuals with schizophrenia and twenty-eight healthy controls underwent fMRI scanning during a block design virtual Morris water task using hidden and visible platform conditions. Independent components analysis was used to deconstruct neural contributions to hidden and visible platform conditions for patients and controls. We also examined performance variables, voxel-based morphometry and hippocampal subparcellation, and regional BOLD signal variation. Independent component analysis identified five neural circuits. Mesial temporal lobe regions, including the hippocampus, were consistently task-related across conditions and groups. Frontal, striatal, and parietal circuits were recruited preferentially during the visible condition for patients, while frontal and temporal lobe regions were more saliently recruited by controls during the hidden platform condition. Gray matter concentrations and BOLD signal in hippocampal subregions were associated with task performance in controls but not patients. Patients exhibited impaired performance on the hidden and visible conditions of the task, related to negative symptom severity. While controls showed coupling between neural circuits, regional neuroanatomy, and behavior, patients activated different task-related neural circuits, not associated with appropriate regional neuroanatomy. GLM analysis elucidated several comparable regions, with the exception of the hippocampus. Inefficient allocentric learning and memory in patients may be related to an inability to recruit appropriate task-dependent neural circuits. Copyright 2009 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Zacharia, Zacharias C.; de Jong, Ton
2014-01-01
This study investigates whether Virtual Manipulatives (VM) within a Physical Manipulatives (PM)-oriented curriculum affect conceptual understanding of electric circuits and related experimentation processes. A pre-post comparison study randomly assigned 194 undergraduates in an introductory physics course to one of five conditions: three…
Network Communication as a Service-Oriented Capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, William; Johnston, William; Metzger, Joe
2008-01-08
In widely distributed systems generally, and in science-oriented Grids in particular, software, CPU time, storage, etc., are treated as"services" -- they can be allocated and used with service guarantees that allows them to be integrated into systems that perform complex tasks. Network communication is currently not a service -- it is provided, in general, as a"best effort" capability with no guarantees and only statistical predictability. In order for Grids (and most types of systems with widely distributed components) to be successful in performing the sustained, complex tasks of large-scale science -- e.g., the multi-disciplinary simulation of next generation climate modelingmore » and management and analysis of the petabytes of data that will come from the next generation of scientific instrument (which is very soon for the LHC at CERN) -- networks must provide communication capability that is service-oriented: That is it must be configurable, schedulable, predictable, and reliable. In order to accomplish this, the research and education network community is undertaking a strategy that involves changes in network architecture to support multiple classes of service; development and deployment of service-oriented communication services, and; monitoring and reporting in a form that is directly useful to the application-oriented system so that it may adapt to communications failures. In this paper we describe ESnet's approach to each of these -- an approach that is part of an international community effort to have intra-distributed system communication be based on a service-oriented capability.« less
Attention and normalization circuits in macaque V1
Sanayei, M; Herrero, J L; Distler, C; Thiele, A
2015-01-01
Attention affects neuronal processing and improves behavioural performance. In extrastriate visual cortex these effects have been explained by normalization models, which assume that attention influences the circuit that mediates surround suppression. While normalization models have been able to explain attentional effects, their validity has rarely been tested against alternative models. Here we investigate how attention and surround/mask stimuli affect neuronal firing rates and orientation tuning in macaque V1. Surround/mask stimuli provide an estimate to what extent V1 neurons are affected by normalization, which was compared against effects of spatial top down attention. For some attention/surround effect comparisons, the strength of attentional modulation was correlated with the strength of surround modulation, suggesting that attention and surround/mask stimulation (i.e. normalization) might use a common mechanism. To explore this in detail, we fitted multiplicative and additive models of attention to our data. In one class of models, attention contributed to normalization mechanisms, whereas in a different class of models it did not. Model selection based on Akaike's and on Bayesian information criteria demonstrated that in most cells the effects of attention were best described by models where attention did not contribute to normalization mechanisms. This demonstrates that attentional influences on neuronal responses in primary visual cortex often bypass normalization mechanisms. PMID:25757941
Genetic dissection of GABAergic neural circuits in mouse neocortex
Taniguchi, Hiroki
2014-01-01
Diverse and flexible cortical functions rely on the ability of neural circuits to perform multiple types of neuronal computations. GABAergic inhibitory interneurons significantly contribute to this task by regulating the balance of activity, synaptic integration, spiking, synchrony, and oscillation in a neural ensemble. GABAergic interneurons display a high degree of cellular diversity in morphology, physiology, connectivity, and gene expression. A considerable number of subtypes of GABAergic interneurons diversify modes of cortical inhibition, enabling various types of information processing in the cortex. Thus, comprehensively understanding fate specification, circuit assembly, and physiological function of GABAergic interneurons is a key to elucidate the principles of cortical wiring and function. Recent advances in genetically encoded molecular tools have made a breakthrough to systematically study cortical circuitry at the molecular, cellular, circuit, and whole animal levels. However, the biggest obstacle to fully applying the power of these to analysis of GABAergic circuits was that there were no efficient and reliable methods to express them in subtypes of GABAergic interneurons. Here, I first summarize cortical interneuron diversity and current understanding of mechanisms, by which distinct classes of GABAergic interneurons are generated. I then review recent development in genetically encoded molecular tools for neural circuit research, and genetic targeting of GABAergic interneuron subtypes, particularly focusing on our recent effort to develop and characterize Cre/CreER knockin lines. Finally, I highlight recent success in genetic targeting of chandelier cells, the most unique and distinct GABAergic interneuron subtype, and discuss what kind of questions need to be addressed to understand development and function of cortical inhibitory circuits. PMID:24478631
Changes in the Spinal Neural Circuits are Dependent on the Movement Speed of the Visuomotor Task
Kubota, Shinji; Hirano, Masato; Koizume, Yoshiki; Tanabe, Shigeo; Funase, Kozo
2015-01-01
Previous studies have shown that spinal neural circuits are modulated by motor skill training. However, the effects of task movement speed on changes in spinal neural circuits have not been clarified. The aim of this research was to investigate whether spinal neural circuits were affected by task movement speed. Thirty-eight healthy subjects participated in this study. In experiment 1, the effects of task movement speed on the spinal neural circuits were examined. Eighteen subjects performed a visuomotor task involving ankle muscle slow (nine subjects) or fast (nine subjects) movement speed. Another nine subjects performed a non-visuomotor task (controls) in fast movement speed. The motor task training lasted for 20 min. The amounts of D1 inhibition and reciprocal Ia inhibition were measured using H-relfex condition-test paradigm and recorded before, and at 5, 15, and 30 min after the training session. In experiment 2, using transcranial magnetic stimulation (TMS), the effects of corticospinal descending inputs on the presynaptic inhibitory pathway were examined before and after performing either a visuomotor (eight subjects) or a control task (eight subjects). All measurements were taken under resting conditions. The amount of D1 inhibition increased after the visuomotor task irrespective of movement speed (P < 0.01). The amount of reciprocal Ia inhibition increased with fast movement speed conditioning (P < 0.01), but was unchanged by slow movement speed conditioning. These changes lasted up to 15 min in D1 inhibition and 5 min in reciprocal Ia inhibition after the training session. The control task did not induce changes in D1 inhibition and reciprocal Ia inhibition. The TMS conditioned inhibitory effects of presynaptic inhibitory pathways decreased following visuomotor tasks (P < 0.01). The size of test H-reflex was almost the same size throughout experiments. The results suggest that supraspinal descending inputs for controlling joint movement are responsible for changes in the spinal neural circuits, and that task movement speed is one of the critical factors for inducing plastic changes in reciprocal Ia inhibition. PMID:26696873
Synaptic Effects of Electric Fields
NASA Astrophysics Data System (ADS)
Rahman, Asif
Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits. Moreover, stimulation polarity has asymmetric effects on synaptic strength making it easier to enhance ongoing plasticity. These results suggest that the susceptibility of brain networks to an electric field depends on the state of synaptic activity. Combining a training task, which activates specific circuits, with TES may lead to functionally-specific effects. Given the simplicity of TES and the complexity of brain function, understanding the mechanisms leading to specificity is fundamental to the rational advancement of TES.
Task-oriented rehabilitation robotics.
Schweighofer, Nicolas; Choi, Younggeun; Winstein, Carolee; Gordon, James
2012-11-01
Task-oriented training is emerging as the dominant and most effective approach to motor rehabilitation of upper extremity function after stroke. Here, the authors propose that the task-oriented training framework provides an evidence-based blueprint for the design of task-oriented robots for the rehabilitation of upper extremity function in the form of three design principles: skill acquisition of functional tasks, active participation training, and individualized adaptive training. The previous robotic systems that incorporate elements of task-oriented trainings are then reviewed. Finally, the authors critically analyze their own attempt to design and test the feasibility of a TOR robot, ADAPT (Adaptive and Automatic Presentation of Tasks), which incorporates the three design principles. Because of its task-oriented training-based design, ADAPT departs from most other current rehabilitation robotic systems: it presents realistic functional tasks in which the task goal is constantly adapted, so that the individual actively performs doable but challenging tasks without physical assistance. To maximize efficacy for a large clinical population, the authors propose that future task-oriented robots need to incorporate yet-to-be developed adaptive task presentation algorithms that emphasize acquisition of fine motor coordination skills while minimizing compensatory movements.
Histopathological Image Classification using Discriminative Feature-oriented Dictionary Learning
Vu, Tiep Huu; Mousavi, Hojjat Seyed; Monga, Vishal; Rao, Ganesh; Rao, UK Arvind
2016-01-01
In histopathological image analysis, feature extraction for classification is a challenging task due to the diversity of histology features suitable for each problem as well as presence of rich geometrical structures. In this paper, we propose an automatic feature discovery framework via learning class-specific dictionaries and present a low-complexity method for classification and disease grading in histopathology. Essentially, our Discriminative Feature-oriented Dictionary Learning (DFDL) method learns class-specific dictionaries such that under a sparsity constraint, the learned dictionaries allow representing a new image sample parsimoniously via the dictionary corresponding to the class identity of the sample. At the same time, the dictionary is designed to be poorly capable of representing samples from other classes. Experiments on three challenging real-world image databases: 1) histopathological images of intraductal breast lesions, 2) mammalian kidney, lung and spleen images provided by the Animal Diagnostics Lab (ADL) at Pennsylvania State University, and 3) brain tumor images from The Cancer Genome Atlas (TCGA) database, reveal the merits of our proposal over state-of-the-art alternatives. Moreover, we demonstrate that DFDL exhibits a more graceful decay in classification accuracy against the number of training images which is highly desirable in practice where generous training is often not available. PMID:26513781
Seegers, Gerard; van Putten, Cornelis M; de Brabander, Cornelis J
2002-09-01
In earlier studies, it has been found that students' domain-specific cognitions and personal learning goals (goal orientation) influence task-specific appraisals of actual learning tasks. The relations between domain-specific and task-specific variables have been specified in the model of adaptive learning. In this study, additional influences, i.e., perceived task outcome on a former occasion and variations in task demands, were investigated. The purpose of this study was to identify personality and situational variables that mediate students' attitude when confronted with a mathematics task. Students worked on a mathematics task in two subsequent sessions. Effects of perceived task outcome at the first session on students' attitude at the second session were investigated. In addition, we investigated how differences in task demands influenced students' attitude. Variations in task demands were provoked by different conditions in task-instruction. In one condition, students were told that the result on the test would add to their mark on mathematics. This outcome orienting condition was contrasted with a task-orienting condition where students were told that the results on the test would not be used to give individual grades. Participants were sixth grade students (N = 345; aged 11-12 years) from 14 primary schools. Multivariate and univariate analyses of (co)variance were applied to the data. Independent variables were goal orientation, task demands, and perceived task outcome, with task-specific variables (estimated competence for the task, task attraction, task relevance, and willingness to invest effort) as the dependent variables. The results showed that previous perceived task outcome had a substantial impact on students' attitude. Additional but smaller effects were found for variation in task demands. Furthermore, effects of previous perceived task outcome and task demands were related to goal orientation. The resulting pattern confirmed that, in general, performance-oriented learning goals emphasised the negative impact of failure experiences, whereas task-oriented learning goals had a strengthening effect on how success experiences influenced students' attitude.
Yokoi, Isao; Komatsu, Hidehiko
2010-09-01
Visual grouping of discrete elements is an important function for object recognition. We recently conducted an experiment to study neural correlates of visual grouping. We recorded neuronal activities while monkeys performed a grouping detection task in which they discriminated visual patterns composed of discrete dots arranged in a cross and detected targets in which dots with the same contrast were aligned horizontally or vertically. We found that some neurons in the lateral bank of the intraparietal sulcus exhibit activity related to visual grouping. In the present study, we analyzed how different types of neurons contribute to visual grouping. We classified the recorded neurons as putative pyramidal neurons or putative interneurons, depending on the duration of their action potentials. We found that putative pyramidal neurons exhibited selectivity for the orientation of the target, and this selectivity was enhanced by attention to a particular target orientation. By contrast, putative interneurons responded more strongly to the target stimuli than to the nontargets, regardless of the orientation of the target. These results suggest that different classes of parietal neurons contribute differently to the grouping of discrete elements.
Ardid, Salva; Wang, Xiao-Jing
2013-12-11
A hallmark of executive control is the brain's agility to shift between different tasks depending on the behavioral rule currently in play. In this work, we propose a "tweaking hypothesis" for task switching: a weak rule signal provides a small bias that is dramatically amplified by reverberating attractor dynamics in neural circuits for stimulus categorization and action selection, leading to an all-or-none reconfiguration of sensory-motor mapping. Based on this principle, we developed a biologically realistic model with multiple modules for task switching. We found that the model quantitatively accounts for complex task switching behavior: switch cost, congruency effect, and task-response interaction; as well as monkey's single-neuron activity associated with task switching. The model yields several testable predictions, in particular, that category-selective neurons play a key role in resolving sensory-motor conflict. This work represents a neural circuit model for task switching and sheds insights in the brain mechanism of a fundamental cognitive capability.
I(CES)-cubes: a modular self-reconfigurable bipartite robotic system
NASA Astrophysics Data System (ADS)
Unsal, Cem; Kiliccote, Han; Khosla, Pradeep K.
1999-08-01
In this manuscript, we introduce I(CES)-Cubes, a class of 3D modular robotic system that is capable of reconfiguring itself in order to adapt to its environment. This is a bipartite system, i.e. a collection of (i) active elements capable of actuation, and (ii) passive elements acting as connectors between actuated elements. Active elements, called links, are 3-DOF manipulators that are capable of attaching/detaching themselves to/from the passive elements. The cubes can then be positioned and oriented using links, which are independent mechatronic elements. Self- reconfiguration property enables the system to performed locomotion tasks over difficult terrain. For example, the system would be capable of moving over obstacles and climbing stairs. These task are performed by positing and orienting cubes and links to form a 3D network with required shape and position. This paper describes the design of the passive and active elements, the attachment mechanics, and several reconfiguration scenarios. Specifics of the hardware implementation and result of experiments with current prototypes are also given.
Simplified Design Equations for Class-E Neural Prosthesis Transmitters
Troyk, Philip; Hu, Zhe
2013-01-01
Extreme miniaturization of implantable electronic devices is recognized as essential for the next generation of neural prostheses, owing to the need for minimizing the damage and disruption of the surrounding neural tissue. Transcutaneous power and data transmission via a magnetic link remains the most effective means of powering and controlling implanted neural prostheses. Reduction in the size of the coil, within the neural prosthesis, demands the generation of a high-intensity radio frequency magnetic field from the extracoporeal transmitter. The Class-E power amplifier circuit topology has been recognized as a highly effective means of producing large radio frequency currents within the transmitter coil. Unfortunately, design of a Class-E circuit is most often fraught by the need to solve a complex set of equations so as to implement both the zero-voltage-switching and zero-voltage-derivative-switching conditions that are required for efficient operation. This paper presents simple explicit design equations for designing the Class-E circuit topology. Numerical design examples are presented to illustrate the design procedure. PMID:23292784
Orienting Task Effects on Text Recall in Adulthood.
ERIC Educational Resources Information Center
Simon, Elliott W.; And Others
1982-01-01
Examined the effects of orienting task-controlled processing on text recall of younger, middle-aged, and older adults. Younger adults recalled more when recall was intentional or when preceded by a deep-orienting task. Middle-aged and older adults recalled more when recall was intentional regardless of depth of orienting task. (Author)
Orienting task effects on text recall in adulthood.
Simon, E W; Dixon, R A; Nowak, C A; Hultsch, D F
1982-09-01
This investigation examined the effects of orienting task-controlled processing on the text recall of younger (18 to 32 years), middle-aged (39 to 51 years), and older (59 to 76 years) adults. The participants were presented with a 500-word narrative text. Three groups performed orienting tasks (syntactic, stylistic, advice) within an incidental memory paradigm. A fourth group was asked for intentional recall. Analysis indicated a significant age by orienting task interaction. Younger adults recalled more propositions when recall was intentional or when it was preceded by a deep-orienting task than when it was preceded by a shallow-orienting task. Middle-aged and older adults recalled more propositions when recall was intentional than when it was incidental, regardless of the depth of the orienting task. There were no significant differences in intentional recall. In addition, a significant age x orienting task x propositional level interaction indicated that younger adults recalled more of the main ideas of the text following deep processing, whereas the middle-aged and older adults recalled more of these ideas following intentional processing.
Probing the attentional control theory in social anxiety: an emotional saccade task.
Wieser, Matthias J; Pauli, Paul; Mühlberger, Andreas
2009-09-01
Volitional attentional control has been found to rely on prefrontal neuronal circuits. According to the attentional control theory of anxiety, impairment in the volitional control of attention is a prominent feature in anxiety disorders. The present study investigated this assumption in socially anxious individuals using an emotional saccade task with facial expressions (happy, angry, fearful, sad, neutral). The gaze behavior of participants was recorded during the emotional saccade task, in which participants performed either pro- or antisaccades in response to peripherally presented facial expressions. The results show that socially anxious persons have difficulties in inhibiting themselves to reflexively attend to facial expressions: They made more erratic prosaccades to all facial expressions when an antisaccade was required. Thus, these findings indicate impaired attentional control in social anxiety. Overall, the present study shows a deficit of socially anxious individuals in attentional control-for example, in inhibiting the reflexive orienting to neutral as well as to emotional facial expressions. This result may be due to a dysfunction in the prefrontal areas being involved in attentional control.
Differences in perceptual learning transfer as a function of training task.
Green, C Shawn; Kattner, Florian; Siegel, Max H; Kersten, Daniel; Schrater, Paul R
2015-01-01
A growing body of research--including results from behavioral psychology, human structural and functional imaging, single-cell recordings in nonhuman primates, and computational modeling--suggests that perceptual learning effects are best understood as a change in the ability of higher-level integration or association areas to read out sensory information in the service of particular decisions. Work in this vein has argued that, depending on the training experience, the "rules" for this read-out can either be applicable to new contexts (thus engendering learning generalization) or can apply only to the exact training context (thus resulting in learning specificity). Here we contrast learning tasks designed to promote either stimulus-specific or stimulus-general rules. Specifically, we compare learning transfer across visual orientation following training on three different tasks: an orientation categorization task (which permits an orientation-specific learning solution), an orientation estimation task (which requires an orientation-general learning solution), and an orientation categorization task in which the relevant category boundary shifts on every trial (which lies somewhere between the two tasks above). While the simple orientation-categorization training task resulted in orientation-specific learning, the estimation and moving categorization tasks resulted in significant orientation learning generalization. The general framework tested here--that task specificity or generality can be predicted via an examination of the optimal learning solution--may be useful in building future training paradigms with certain desired outcomes.
Probing molecular orientation of P3HT nanofibers in fiber-based organic solar cells
NASA Astrophysics Data System (ADS)
Yoon, Sangcheol; Han, Yaeeun; Hwang, Inchan
2018-01-01
Molecular orientation of conjugated polymers plays a key role in exciton generation/separation and charge transport, and thus significantly influence photovoltaic devices. Herein, we fabricated fiber-based organic solar cells and investigated the photovoltaic parameters with different diameters of fibers and PCBM diffusion. The open-circuit voltage that varies with molecular orientation whether it is face-on or edge-on was observed to differ. The investigation of the open-circuit voltage dependence reveals that thick fibers have core/shell like structures with different orientations. Thick fibers have face-on in the core and edge-on orientations in the shell. The face-on orientations are not preferentially formed in thin fibers, but the PCBM diffusion can induce face-on orientations that exist within the intermixed phase. Our results may shed a light on better understanding on fiber-based solar cells and suggest a way toward improving photovoltaic efficiency. [Figure not available: see fulltext.
29 CFR 1910.307 - Hazardous (classified) locations.
Code of Federal Regulations, 2013 CFR
2013-07-01
...; conductor insulation, flexible cords, sealing and drainage, transformers, capacitors, switches, circuit... following are acceptable protection techniques for electric and electronic equipment in hazardous...) Nonincendive circuit. This protection technique is permitted for equipment in Class I, Division 2; Class II...
29 CFR 1910.307 - Hazardous (classified) locations.
Code of Federal Regulations, 2012 CFR
2012-07-01
...; conductor insulation, flexible cords, sealing and drainage, transformers, capacitors, switches, circuit... following are acceptable protection techniques for electric and electronic equipment in hazardous...) Nonincendive circuit. This protection technique is permitted for equipment in Class I, Division 2; Class II...
29 CFR 1910.307 - Hazardous (classified) locations.
Code of Federal Regulations, 2014 CFR
2014-07-01
...; conductor insulation, flexible cords, sealing and drainage, transformers, capacitors, switches, circuit... following are acceptable protection techniques for electric and electronic equipment in hazardous...) Nonincendive circuit. This protection technique is permitted for equipment in Class I, Division 2; Class II...
Qualitative-Modeling-Based Silicon Neurons and Their Networks
Kohno, Takashi; Sekikawa, Munehisa; Li, Jing; Nanami, Takuya; Aihara, Kazuyuki
2016-01-01
The ionic conductance models of neuronal cells can finely reproduce a wide variety of complex neuronal activities. However, the complexity of these models has prompted the development of qualitative neuron models. They are described by differential equations with a reduced number of variables and their low-dimensional polynomials, which retain the core mathematical structures. Such simple models form the foundation of a bottom-up approach in computational and theoretical neuroscience. We proposed a qualitative-modeling-based approach for designing silicon neuron circuits, in which the mathematical structures in the polynomial-based qualitative models are reproduced by differential equations with silicon-native expressions. This approach can realize low-power-consuming circuits that can be configured to realize various classes of neuronal cells. In this article, our qualitative-modeling-based silicon neuron circuits for analog and digital implementations are quickly reviewed. One of our CMOS analog silicon neuron circuits can realize a variety of neuronal activities with a power consumption less than 72 nW. The square-wave bursting mode of this circuit is explained. Another circuit can realize Class I and II neuronal activities with about 3 nW. Our digital silicon neuron circuit can also realize these classes. An auto-associative memory realized on an all-to-all connected network of these silicon neurons is also reviewed, in which the neuron class plays important roles in its performance. PMID:27378842
Attention and normalization circuits in macaque V1.
Sanayei, M; Herrero, J L; Distler, C; Thiele, A
2015-04-01
Attention affects neuronal processing and improves behavioural performance. In extrastriate visual cortex these effects have been explained by normalization models, which assume that attention influences the circuit that mediates surround suppression. While normalization models have been able to explain attentional effects, their validity has rarely been tested against alternative models. Here we investigate how attention and surround/mask stimuli affect neuronal firing rates and orientation tuning in macaque V1. Surround/mask stimuli provide an estimate to what extent V1 neurons are affected by normalization, which was compared against effects of spatial top down attention. For some attention/surround effect comparisons, the strength of attentional modulation was correlated with the strength of surround modulation, suggesting that attention and surround/mask stimulation (i.e. normalization) might use a common mechanism. To explore this in detail, we fitted multiplicative and additive models of attention to our data. In one class of models, attention contributed to normalization mechanisms, whereas in a different class of models it did not. Model selection based on Akaike's and on Bayesian information criteria demonstrated that in most cells the effects of attention were best described by models where attention did not contribute to normalization mechanisms. This demonstrates that attentional influences on neuronal responses in primary visual cortex often bypass normalization mechanisms. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
An integration of minimum local feature representation methods to recognize large variation of foods
NASA Astrophysics Data System (ADS)
Razali, Mohd Norhisham bin; Manshor, Noridayu; Halin, Alfian Abdul; Mustapha, Norwati; Yaakob, Razali
2017-10-01
Local invariant features have shown to be successful in describing object appearances for image classification tasks. Such features are robust towards occlusion and clutter and are also invariant against scale and orientation changes. This makes them suitable for classification tasks with little inter-class similarity and large intra-class difference. In this paper, we propose an integrated representation of the Speeded-Up Robust Feature (SURF) and Scale Invariant Feature Transform (SIFT) descriptors, using late fusion strategy. The proposed representation is used for food recognition from a dataset of food images with complex appearance variations. The Bag of Features (BOF) approach is employed to enhance the discriminative ability of the local features. Firstly, the individual local features are extracted to construct two kinds of visual vocabularies, representing SURF and SIFT. The visual vocabularies are then concatenated and fed into a Linear Support Vector Machine (SVM) to classify the respective food categories. Experimental results demonstrate impressive overall recognition at 82.38% classification accuracy based on the challenging UEC-Food100 dataset.
Mental-orientation: A new approach to assessing patients across the Alzheimer's disease spectrum.
Peters-Founshtein, Gregory; Peer, Michael; Rein, Yanai; Kahana Merhavi, Shlomzion; Meiner, Zeev; Arzy, Shahar
2018-05-21
This study aims to assess the role of mental-orientation in the diagnosis of mild cognitive impairment and Alzheimer's disease using a novel task. A behavioral study (Experiment 1) compared the mental-orientation task to standard neuropsychological tests in patients across the Alzheimer's disease spectrum. A functional MRI study (Experiment 2) in young adults compared activations evoked by the mental-orientation and standard-orientation tasks as well as their overlap with brain regions susceptible to Alzheimer's disease pathology. The mental-orientation task differentiated mild cognitively impaired and healthy controls at 95% accuracy, while the Addenbrooke's Cognitive Examination, Mini-Mental State Examination and standard-orientation achieved 74%, 70% and 50% accuracy, respectively. Functional MRI revealed the mental-orientation task to preferentially recruit brain regions exhibiting early Alzheimer's-related atrophy, unlike the standard-orientation test. Mental-orientation is suggested to play a key role in Alzheimer's disease, and consequently in early detection and follow-up of patients along the Alzheimer's disease spectrum. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Situational Interest in Engineering Design Activities
NASA Astrophysics Data System (ADS)
Bonderup Dohn, Niels
2013-08-01
The aim of the present mixed-method study was to investigate task-based situational interest of sixth grade students (n = 46), between 12 and 14 years old, during an eight-week engineering design programme in a Science & Technology-class. Students' interests were investigated by means of a descriptive interpretative analysis of qualitative data from classroom observations and informal interviews. The analysis was complemented by a self-report survey to validate findings and determine prevalence. The analysis revealed four main sources of interest: designing inventions, trial-and-error experimentation, achieved functionality of invention, and collaboration. These sources differ in terms of stimuli factors, such as novelty, autonomy (choice), social involvement, self-generation of interest, and task goal orientation. The study shows that design tasks stimulated interest, but only to the extent that students were able to self-regulate their learning strategies.
Treacy, Daniel; Howard, Kirsten; Hayes, Alison; Hassett, Leanne; Schurr, Karl; Sherrington, Catherine
2018-01-01
Among people admitted for inpatient rehabilitation, is usual care plus standing balance circuit classes more cost-effective than usual care alone? Cost-effectiveness study embedded within a randomised controlled trial with concealed allocation, assessor blinding and intention-to-treat analysis. 162 rehabilitation inpatients from a metropolitan hospital in Sydney, Australia. The experimental group received a 1-hour standing balance circuit class, delivered three times a week for 2 weeks, in addition to usual therapy. The circuit classes were supervised by one physiotherapist and one physiotherapy assistant for up to eight patients. The control group received usual therapy alone. Costs were estimated from routinely collected hospital use data in the 3 months after randomisation. The functional outcome measure was mobility measured at 3 months using the Short Physical Performance Battery administered by a blinded assessor. An incremental analysis was conducted and the joint probability distribution of costs and outcomes was examined using bootstrapping. The median cost savings for the intervention group was AUD4,741 (95% CI 137 to 9,372) per participant; 94% of bootstraps showed that the intervention was both effective and cost saving. Two weeks of additional standing balance circuit classes delivered in addition to usual therapy resulted in decreased healthcare costs at 3 months in hospital inpatients admitted for rehabilitation. There is a high probability that this intervention is both cost saving and effective. ACTRN12611000412932. [Treacy D, Howard K, Hayes A, Hassett L, Schurr K, Sherrington C (2018) Two weeks of additional standing balance circuit classes during inpatient rehabilitation are cost saving and effective: an economic evaluation. Journal of Physiotherapy 64: 41-47]. Copyright © 2017 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
A multiple maximum scatter difference discriminant criterion for facial feature extraction.
Song, Fengxi; Zhang, David; Mei, Dayong; Guo, Zhongwei
2007-12-01
Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.
ERIC Educational Resources Information Center
Salonen, Pekka; Lepola, Janne; Vauras, Marja
2007-01-01
In this exploratory study we conceptualized and explored socio-cognitive, emotional and motivational regulatory processes displayed in scaffolding interaction between parents and their non-task and task-oriented children. Based on the dynamic systems view and findings from developmental research, we assumed that parents with non-task oriented and…
Integrated Task and Data Parallel Programming
NASA Technical Reports Server (NTRS)
Grimshaw, A. S.
1998-01-01
This research investigates the combination of task and data parallel language constructs within a single programming language. There are an number of applications that exhibit properties which would be well served by such an integrated language. Examples include global climate models, aircraft design problems, and multidisciplinary design optimization problems. Our approach incorporates data parallel language constructs into an existing, object oriented, task parallel language. The language will support creation and manipulation of parallel classes and objects of both types (task parallel and data parallel). Ultimately, the language will allow data parallel and task parallel classes to be used either as building blocks or managers of parallel objects of either type, thus allowing the development of single and multi-paradigm parallel applications. 1995 Research Accomplishments In February I presented a paper at Frontiers 1995 describing the design of the data parallel language subset. During the spring I wrote and defended my dissertation proposal. Since that time I have developed a runtime model for the language subset. I have begun implementing the model and hand-coding simple examples which demonstrate the language subset. I have identified an astrophysical fluid flow application which will validate the data parallel language subset. 1996 Research Agenda Milestones for the coming year include implementing a significant portion of the data parallel language subset over the Legion system. Using simple hand-coded methods, I plan to demonstrate (1) concurrent task and data parallel objects and (2) task parallel objects managing both task and data parallel objects. My next steps will focus on constructing a compiler and implementing the fluid flow application with the language. Concurrently, I will conduct a search for a real-world application exhibiting both task and data parallelism within the same program. Additional 1995 Activities During the fall I collaborated with Andrew Grimshaw and Adam Ferrari to write a book chapter which will be included in Parallel Processing in C++ edited by Gregory Wilson. I also finished two courses, Compilers and Advanced Compilers, in 1995. These courses complete my class requirements at the University of Virginia. I have only my dissertation research and defense to complete.
Integrated Task And Data Parallel Programming: Language Design
NASA Technical Reports Server (NTRS)
Grimshaw, Andrew S.; West, Emily A.
1998-01-01
his research investigates the combination of task and data parallel language constructs within a single programming language. There are an number of applications that exhibit properties which would be well served by such an integrated language. Examples include global climate models, aircraft design problems, and multidisciplinary design optimization problems. Our approach incorporates data parallel language constructs into an existing, object oriented, task parallel language. The language will support creation and manipulation of parallel classes and objects of both types (task parallel and data parallel). Ultimately, the language will allow data parallel and task parallel classes to be used either as building blocks or managers of parallel objects of either type, thus allowing the development of single and multi-paradigm parallel applications. 1995 Research Accomplishments In February I presented a paper at Frontiers '95 describing the design of the data parallel language subset. During the spring I wrote and defended my dissertation proposal. Since that time I have developed a runtime model for the language subset. I have begun implementing the model and hand-coding simple examples which demonstrate the language subset. I have identified an astrophysical fluid flow application which will validate the data parallel language subset. 1996 Research Agenda Milestones for the coming year include implementing a significant portion of the data parallel language subset over the Legion system. Using simple hand-coded methods, I plan to demonstrate (1) concurrent task and data parallel objects and (2) task parallel objects managing both task and data parallel objects. My next steps will focus on constructing a compiler and implementing the fluid flow application with the language. Concurrently, I will conduct a search for a real-world application exhibiting both task and data parallelism within the same program m. Additional 1995 Activities During the fall I collaborated with Andrew Grimshaw and Adam Ferrari to write a book chapter which will be included in Parallel Processing in C++ edited by Gregory Wilson. I also finished two courses, Compilers and Advanced Compilers, in 1995. These courses complete my class requirements at the University of Virginia. I have only my dissertation research and defense to complete.
Undergraduate Planet Hunters: Tools and Results
NASA Astrophysics Data System (ADS)
Buzasi, Derek L.; Carboneau, Lindsey; Ferrell, Laura; Green, Gilbert; Kaiser, Maya; Kreke, Kira; Lundy, Samantha; Merritt, William; Passino, Matlin; Paxton, Harrison; Podaril, Alexandria; Stansfield, Alexis
2018-06-01
One student "Honors Experience" option at Florida Gulf Coast University is a research experience, and we have developed a "Planet Hunters" course to provide an astronomical research track that satisfies that requirement. Students spend the first semester learning astronomical background and exoplanet detection techniques, while the second semester is primarily devoted to planet searches in K2 data using student-oriented software tools developed specifically for the task. In this poster, we illustrate those tools and show results obtained by class participants during this years experience.
2009-12-01
CLASSIFICATION OF: A new ballistic material model for 0/90 cross-plied oriented ultra-high molecular weight (UHMW) polyethylene fiber-based armor...recently developed unit cell-based ballistic material model for the same class of composites (M. Grujicic, G. Arakere, T. 1. REPORT DATE (DD-MM-YYYY) 4...ABSTRACT UU c. THIS PAGE UU 2. REPORT TYPE New Reprint 17. LIMITATION OF ABSTRACT UU 15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f
Neuromorphic photonic networks using silicon photonic weight banks.
Tait, Alexander N; de Lima, Thomas Ferreira; Zhou, Ellen; Wu, Allie X; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R
2017-08-07
Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using "neural compiler" to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.
A Parallel Genetic Algorithm for Automated Electronic Circuit Design
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)
2000-01-01
We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.
Self-determination and goal orientation in track and field.
Chin, Ngien-Siong; Khoo, Selina; Low, Wah-Yun
2012-06-01
This study investigated gender, age group and locality differences in adolescent athletes' self-determination motivation and goal orientations in track and field. It also examined the relationship between the self-determination theory and achievement goal theory. A total of 632 (349 boys, 283 girls) adolescent athletes (aged 13-18 years) completed the Sports Motivation Scale and Task and Ego Orientation in Sport Questionnaire. Results indicated significant differences between gender on intrinsic motivation, extrinsic motivation, amotivation (t(630) = 4.10, p < 0.05) and ego orientation (t(630) = 2.48, p < 0.05). Male students reported higher intrinsic motivation, extrinsic motivation, amotivation and ego orientation. A significant difference was found between age groups on task orientation (t(630) = 1.94, p < 0.05) and locality on ego orientation (t(630) = 1.94, p < 0.05). Older athletes showed significantly higher task orientation. Rural athletes had higher ego orientation whereas urban athletes have higher intrinsic motivation. Task orientation was related to intrinsic motivation (r = 0.55, p < 0.01), extrinsic motivation (r = 0.55, p < 0.01), but weakly related to amotivation (r = 0.10, p < 0.01). Ego orientation was related to intrinsic motivation (r = 0.30, p < 0.01), extrinsic motivation (r = 0.36, p < 0.01) and amotivaion (r = 0.36, p < 0.01). Task orientation was related to ego orientation (r = 0.29, p < 0.01). Multiple regression analysis showed intrinsic motivation, extrinsic motivation and amotivation accounted for 30.5% of the variances in task orientation.
Self-Determination and Goal Orientation in Track and Field
Chin, Ngien-Siong; Khoo, Selina; Low, Wah-Yun
2012-01-01
This study investigated gender, age group and locality differences in adolescent athletes’ self-determination motivation and goal orientations in track and field. It also examined the relationship between the self-determination theory and achievement goal theory. A total of 632 (349 boys, 283 girls) adolescent athletes (aged 13–18 years) completed the Sports Motivation Scale and Task and Ego Orientation in Sport Questionnaire. Results indicated significant differences between gender on intrinsic motivation, extrinsic motivation, amotivation (t(630) = 4.10, p < 0.05) and ego orientation (t(630) = 2.48, p < 0.05). Male students reported higher intrinsic motivation, extrinsic motivation, amotivation and ego orientation. A significant difference was found between age groups on task orientation (t(630) = 1.94, p < 0.05) and locality on ego orientation (t(630) = 1.94, p < 0.05). Older athletes showed significantly higher task orientation. Rural athletes had higher ego orientation whereas urban athletes have higher intrinsic motivation. Task orientation was related to intrinsic motivation (r = 0.55, p < 0.01), extrinsic motivation (r = 0.55, p < 0.01), but weakly related to amotivation (r = 0.10, p < 0.01). Ego orientation was related to intrinsic motivation (r = 0.30, p < 0.01), extrinsic motivation (r = 0.36, p < 0.01) and amotivaion (r = 0.36, p < 0.01). Task orientation was related to ego orientation (r = 0.29, p < 0.01). Multiple regression analysis showed intrinsic motivation, extrinsic motivation and amotivation accounted for 30.5% of the variances in task orientation. PMID:23486244
Vu, Michael T.; Du, Guizhi; Bayliss, Douglas A.
2015-01-01
Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K+ (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K+ current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASKf/f mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30–50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30–50 Hz activity in ChAT-Cre:TASKf/f mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. SIGNIFICANCE STATEMENT Attentive states and cognitive function are associated with the generation of γ EEG activity. Basal forebrain cholinergic neurons are important modulators of cortical arousal and γ activity, and in this study we investigated the mechanism by which these neurons are activated by the wake-active neurotransmitter histamine. We found that histamine inhibited a class of K+ leak channels called TASK channels and that deletion of TASK channels selectively on cholinergic neurons modulated baseline EEG activity as well as histamine-induced changes in γ activity. By identifying a discrete brain circuit where TASK channels can influence γ activity, these results represent new knowledge that enhances our understanding of how subcortical arousal systems may contribute to the generation of attentive states. PMID:26446210
Levichkina, Ekaterina; Saalmann, Yuri B; Vidyasagar, Trichur R
2017-03-01
Primate posterior parietal cortex (PPC) is known to be involved in controlling spatial attention. Neurons in one part of the PPC, the lateral intraparietal area (LIP), show enhanced responses to objects at attended locations. Although many are selective for object features, such as the orientation of a visual stimulus, it is not clear how LIP circuits integrate feature-selective information when providing attentional feedback about behaviorally relevant locations to the visual cortex. We studied the relationship between object feature and spatial attention properties of LIP cells in two macaques by measuring the cells' orientation selectivity and the degree of attentional enhancement while performing a delayed match-to-sample task. Monkeys had to match both the location and orientation of two visual gratings presented separately in time. We found a wide range in orientation selectivity and degree of attentional enhancement among LIP neurons. However, cells with significant attentional enhancement had much less orientation selectivity in their response than cells which showed no significant modulation by attention. Additionally, orientation-selective cells showed working memory activity for their preferred orientation, whereas cells showing attentional enhancement also synchronized with local neuronal activity. These results are consistent with models of selective attention incorporating two stages, where an initial feature-selective process guides a second stage of focal spatial attention. We suggest that LIP contributes to both stages, where the first stage involves orientation-selective LIP cells that support working memory of the relevant feature, and the second stage involves attention-enhanced LIP cells that synchronize to provide feedback on spatial priorities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Think manager--think male in adolescents and its relation to sexism and emotions in leadership.
García-Ael, Cristina; Cuadrado, Isabel; Molero, Fernando
2013-01-01
From the perspective of the Think manager--think male, this study was conducted to examine the type of leadership role depending on gender in a sample of 158 Spanish adolescents -according to three types of leaders: "male middle leader", "female middle leader" and "middle leader in general". The kind of emotional expression (positive and negative) evoked by their leadership behaviors (task- and relationship- oriented) was also analyzed. Lastly, whether adolescents' sexist beliefs affected the attribution of traits and the emotional expression towards these leaders was examined. Results showed that task-oriented traits were more characteristic of the leadership role than relationship-oriented traits. Adolescents expressed more positive emotions towards a task-oriented leader and towards a leader behaving in ways associated with both task- and relationship- oriented styles, but only for men. Finally, hostile sexism predicted fewer task-oriented traits to female leaders, more negative affect towards task-oriented male leaders and towards counter-stereotypic leaders. These results were moderated by the sex of adolescents.
Area of Concern: a new paradigm in life cycle assessment for ...
Purpose: As a class of environmental metrics, footprints have been poorly defined, have shared an unclear relationship to life cycle assessment (LCA), and the variety of approaches to quantification have sometimes resulted in confusing and contradictory messages in the marketplace. In response, a task force operating under the auspices of the UNEP/SETAC Life Cycle Initiative project on environmental life cycle impact assessment (LCIA) has been working to develop generic guidance for developers of footprint metrics. The purpose of this paper is to introduce a universal footprint definition and related terminology as well as to discuss modelling implications.MethodsThe task force has worked from the perspective that footprints should be based on LCA methodology, underpinned by the same data systems and models as used in LCA. However, there are important differences in purpose and orientation relative to LCA impact category indicators. Footprints have a primary orientation toward society and nontechnical stakeholders. They are also typically of narrow scope, having the purpose of reporting only in relation to specific topics. In comparison, LCA has a primary orientation toward stakeholders interested in comprehensive evaluation of overall environmental performance and trade-offs among impact categories. These differences create tension between footprints, the existing LCIA framework based on the area of protection paradigm and the core LCA standards ISO14040/44.Res
Balikou, Panagiota; Gourtzelidis, Pavlos; Mantas, Asimakis; Moutoussis, Konstantinos; Evdokimidis, Ioannis; Smyrnis, Nikolaos
2015-11-01
The representation of visual orientation is more accurate for cardinal orientations compared to oblique, and this anisotropy has been hypothesized to reflect a low-level visual process (visual, "class 1" oblique effect). The reproduction of directional and orientation information also leads to a mean error away from cardinal orientations or directions. This anisotropy has been hypothesized to reflect a high-level cognitive process of space categorization (cognitive, "class 2," oblique effect). This space categorization process would be more prominent when the visual representation of orientation degrades such as in the case of working memory with increasing cognitive load, leading to increasing magnitude of the "class 2" oblique effect, while the "class 1" oblique effect would remain unchanged. Two experiments were performed in which an array of orientation stimuli (1-4 items) was presented and then subjects had to realign a probe stimulus within the previously presented array. In the first experiment, the delay between stimulus presentation and probe varied, while in the second experiment, the stimulus presentation time varied. The variable error was larger for oblique compared to cardinal orientations in both experiments reproducing the visual "class 1" oblique effect. The mean error also reproduced the tendency away from cardinal and toward the oblique orientations in both experiments (cognitive "class 2" oblique effect). The accuracy or the reproduced orientation degraded (increasing variable error) and the cognitive "class 2" oblique effect increased with increasing memory load (number of items) in both experiments and presentation time in the second experiment. In contrast, the visual "class 1" oblique effect was not significantly modulated by any one of these experimental factors. These results confirmed the theoretical predictions for the two anisotropies in visual orientation reproduction and provided support for models proposing the categorization of orientation in visual working memory.
Class and ideological orientations revisited: an exploration of class-based mechanisms.
Bengtsson, Mattias; Berglund, Tomas; Oskarson, Maria
2013-12-01
Studies of the relationship between class position and political outlooks still only have a limited understanding of the class-related mechanisms that matter for ideological orientations. This article presents a comprehensive analysis of the mechanisms that link class position and left/right and authoritarian/libertarian orientations. Besides main factors such as income, career prospects, job security, education, class origin and class identification, the significance of work-related factors such as work autonomy, working in a team, a physically demanding job and a mentally demanding job is studied. The findings are based on a survey specifically designed for this purpose and collected in Sweden in 2008/2009. A great deal of the association between class position and left/right orientations is explained by socio-economic conditions; different classes sympathize with policies that will benefit them economically. Another important factor is class identification. Work-related factors also have relevance, but the effect of class position on left/right orientations works mainly through the remuneration system. Class position is also related to authoritarian/libertarian orientations. However, this relationship is less explained by socio-economic position per se, but is rather an effect of the educational system and its allocation of the workforce into different class positions. It also turns out that work-related factors do not explain the class effects; however, a physically demanding job shows a unique effect. Overall, our findings suggest that besides factors such as class position, income, education and class identification, we need to consider work-related aspects to derive a more complete understanding of the distribution of ideological orientations in Western societies. © London School of Economics and Political Science 2013.
Parietal and frontal object areas underlie perception of object orientation in depth.
Niimi, Ryosuke; Saneyoshi, Ayako; Abe, Reiko; Kaminaga, Tatsuro; Yokosawa, Kazuhiko
2011-05-27
Recent studies have shown that the human parietal and frontal cortices are involved in object image perception. We hypothesized that the parietal/frontal object areas play a role in differentiating the orientations (i.e., views) of an object. By using functional magnetic resonance imaging, we compared brain activations while human observers differentiated between two object images in depth-orientation (orientation task) and activations while they differentiated the images in object identity (identity task). The left intraparietal area, right angular gyrus, and right inferior frontal areas were activated more for the orientation task than for the identity task. The occipitotemporal object areas, however, were activated equally for the two tasks. No region showed greater activation for the identity task. These results suggested that the parietal/frontal object areas encode view-dependent visual features and underlie object orientation perception. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Moreno Murcia, Juan Antonio; Cervelló Gimeno, Eduardo; González-Cutre Coll, David
2008-05-01
The purpose of this investigation was to examine the relationships among perceived motivational climate, individuals' goal orientations, and dispositional flow, with attention to possible gender differences. A sample of 413 young athletes, ages 12 to 16 years, completed the Perceived Motivational Climate in Sport Questionnaire-2 (PMCSQ-2) and Perception of Success Questionnaire (POSQ), as well as the Dispositional Flow Scale. Task orientation was positively and significantly related to a perceived task-involving motivational climate and to the disposition to experience flow in the sport. Ego orientation was positively and significantly associated with a perceived ego-involving motivational climate and with dispositional flow. The perceptions of task-involving and ego-involving motivational climates were positively and significantly linked to general dispositional flow. Multiple regression analysis indicated that both task and ego goal orientations and perceived task- and ego-oriented climates predicted dispositional flow. Males displayed a stronger ego orientation, and were more likely to report that they participated in an ego-oriented climate, than did females. To the contrary, the females were more likely to perceive a task-oriented climate than did the males. No meaningful differences were found between males and females in general dispositional flow.
Task Analysis Strategies and Practices. Practice Application Brief.
ERIC Educational Resources Information Center
Brown, Bettina Lankard
Worker-oriented, job-oriented, and cognitive task analyses have all been used as tools for closing the gap between what curriculum teaches and what workers do. Although they share a commonality of purpose, the focus, cost, and practicality of task analysis techniques vary. Worker-oriented task analysis focuses on general human behaviors required…
Leist, Michael; Rinné, Susanne; Datunashvili, Maia; Aissaoui, Ania; Pape, Hans-Christian; Decher, Niels; Meuth, Sven G; Budde, Thomas
2017-09-01
The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons while it induces hyperpolarization in local circuit inhibitory interneurons. Sustained K + currents are modulated in thalamic neurons to control their activity modes; for the interneurons the molecular nature of the underlying ion channels is as yet unknown. Activation of TASK-1 K + channels results in hyperpolarization of interneurons and suppression of their action potential firing. The modulation cascade involves a non-receptor tyrosine kinase, c-Src. The present study identifies a novel pathway for the activation of TASK-1 channels in CNS neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia in smooth muscle cells. The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic site for state-dependent transmission of visual information. Non-retinal inputs from the ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetylcholine (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain potassium (K 2P ) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors induces IN hyperpolarization by recruiting the G-protein βγ subunit (Gβγ), class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase, leading to activation of two-pore domain weakly inwardly rectifying K + channel (TWIK)-related acid-sensitive K + (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient mice. Furthermore inhibition of phospholipase Cβ as well as an increase in the intracellular level of phosphatidylinositol-3,4,5-trisphosphate facilitated the muscarinic effect. Our results have uncovered a previously unknown role of c-Src tyrosine kinase in regulating IN function in the brain and identified a novel mechanism by which TASK-1 channels are activated in neurons. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Analysis of methods of processing of expert information by optimization of administrative decisions
NASA Astrophysics Data System (ADS)
Churakov, D. Y.; Tsarkova, E. G.; Marchenko, N. D.; Grechishnikov, E. V.
2018-03-01
In the real operation the measure definition methodology in case of expert estimation of quality and reliability of application-oriented software products is offered. In operation methods of aggregation of expert estimates on the example of a collective choice of an instrumental control projects in case of software development of a special purpose for needs of institutions are described. Results of operation of dialogue decision making support system are given an algorithm of the decision of the task of a choice on the basis of a method of the analysis of hierarchies and also. The developed algorithm can be applied by development of expert systems to the solution of a wide class of the tasks anyway connected to a multicriteria choice.
3D-ICs created using oblique processing
NASA Astrophysics Data System (ADS)
Burckel, D. Bruce
2016-03-01
This paper demonstrates that another class of three-dimensional integrated circuits (3D-ICs) exists, distinct from through silicon via centric and monolithic 3D-ICs. Furthermore, it is possible to create devices that are 3D at the device level (i.e. with active channels oriented in each of the three coordinate axes), by performing standard CMOS fabrication operations at an angle with respect to the wafer surface into high aspect ratio silicon substrates using membrane projection lithography (MPL). MPL requires only minimal fixturing changes to standard CMOS equipment, and no change to current state-of-the-art lithography. Eliminating the constraint of 2D planar device architecture enables a wide range of new interconnect topologies which could help reduce interconnect resistance/capacitance, and potentially improve performance.
Social Attention and the Brain
Klein, Jeffrey T.; Shepherd, Stephen V.; Platt, Michael L.
2012-01-01
Humans and other animals pay attention to other members of their groups to acquire valuable social information about them, including information about their identity, dominance, fertility, emotions, and likely intent. In primates, attention to other group members and the objects of their attention is mediated by neural circuits that transduce sensory information about others and translate that information into value signals that bias orienting. This process likely proceeds via two distinct but integrated pathways: an ancestral, subcortical route that mediates crude but fast orienting to animate objects and faces; and a more derived route involving cortical orienting circuits that mediate nuanced and context-dependent social attention. PMID:19889376
The effects of instructional sets on reactions to and performance on an intelligent tutoring system
NASA Technical Reports Server (NTRS)
Johnson, Debra Steele
1993-01-01
The effects of a contextual factor, i.e., task instructions, on performance on and reactions to an Intellegent Tutoring System (ITS) training Remote Manipulator System (RMS) tasks were examined. The results supported the first prediction that task instructions could be used to successfully induce a mastery versus an achievement orientation. Previous research suggests that a mastery orientation can result in beneficial effects on learning and performance of complex tasks. Furthermore, the results supported the second prediction that a mastery orientation would have beneficial effects on learning and performance as well as affective and cognitive reactions to the ITS tasks. Moreover, the results indicated that a mastery orientation was especially beneficial for the more complex ITS tasks and later in task practice, i.e., when a task was performed for the second time. A mastery orientation is posited to have its beneficial effects by focusing more effort and attention on task performance. Conclusions are drawn with some caution due to the small number of subjects, although the results for these subjects were consistent across multiple trials and multiple measures of performance. ITS designers are urged to consider contextual factors such as task instructions and feedback in terms of their potential to induce a mastery versus an achievement orientation.
ERIC Educational Resources Information Center
Kilian, Britta; Hofer, Manfred; Fries, Stefan; Kuhnle, Claudia
2010-01-01
The relations between students' value orientations, decisions in conflicts between on-task and off-task actions in the classroom, and experiences of motivational interference following these conflicts were investigated. It was expected that well-being value orientation was positively linked and achievement value orientation was negatively linked…
Perl-speaks-NONMEM (PsN)--a Perl module for NONMEM related programming.
Lindbom, Lars; Ribbing, Jakob; Jonsson, E Niclas
2004-08-01
The NONMEM program is the most widely used nonlinear regression software in population pharmacokinetic/pharmacodynamic (PK/PD) analyses. In this article we describe a programming library, Perl-speaks-NONMEM (PsN), intended for programmers that aim at using the computational capability of NONMEM in external applications. The library is object oriented and written in the programming language Perl. The classes of the library are built around NONMEM's data, model and output files. The specification of the NONMEM model is easily set or changed through the model and data file classes while the output from a model fit is accessed through the output file class. The classes have methods that help the programmer perform common repetitive tasks, e.g. summarising the output from a NONMEM run, setting the initial estimates of a model based on a previous run or truncating values over a certain threshold in the data file. PsN creates a basis for the development of high-level software using NONMEM as the regression tool.
Cornes, Katherine; Donnelly, Nick; Godwin, Hayward; Wenger, Michael J
2011-06-01
The Thatcher illusion (Thompson, 1980) is considered to be a prototypical illustration of the notion that face perception is dependent on configural processes and representations. We explored this idea by examining the relative contributions of perceptual and decisional processes to the ability of observers to identify the orientation of two classes of forms-faces and churches-and a set of their component features. Observers were presented with upright and inverted images of faces and churches in which the components (eyes, mouth, windows, doors) were presented either upright or inverted. Observers first rated the subjective grotesqueness of all of the images and then performed a complete identification task in which they had to identify the orientation of the overall form and the orientation of each of the interior features. Grotesqueness ratings for both classes of image showed the standard modulation of rated grotesqueness as a function of orientation. The complete identification results revealed violations of both perceptual and decisional separability but failed to reveal any violations of within-stimulus (perceptual) independence. In addition, exploration of a simple bivariate Gaussian signal detection model of the relationship between identification performance and judged grotesqueness suggests that within-stimulus violations of perceptual independence on their own are insufficient for producing the illusion. This lack of evidence for within-stimulus configurality suggests the need for a critical reevaluation of the role of configural processing in the Thatcher illusion. (PsycINFO Database Record (c) 2011 APA, all rights reserved).
Chou, Chi-Ta; Lin, Chien-Hung; Tai, Yian; Liu, Chin-Hsin J; Chen, Li-Chyong; Chen, Kuei-Hsien
2012-05-03
In this Letter, we investigated the effect of the molecular stacking orientation on the open circuit voltage (VOC) of pentacene-based organic solar cells. Two functionalized pentacenes, namely, 6,13-diphenyl-pentacene (DP-penta) and 6,13-dibiphenyl-4-yl-pentacene (DB-penta), were utilized. Different molecular stacking orientations of the pentacene derivatives from the pristine pentacene were identified by angle-dependent near-edge X-ray absorption fine structure measurements. It is concluded that pentacene molecules stand up on the substrate surface, while both functionalized pentacenes lie down. A significant increase of the VOC from 0.28 to 0.83 V can be achieved upon the utilization of functionalized pentacene, owing to the modulation of molecular stacking orientation, which induced a vacuum-level shift.
Affective neural response to restricted interests in Autism Spectrum Disorders
Cascio, Carissa J.; Foss-Feig, Jennifer H.; Heacock, Jessica; Schauder, Kimberly B.; Loring, Whitney A.; Rogers, Baxter P.; Pryweller, Jennifer R.; Newsom, Cassandra R.; Cockhren, Jurnell; Cao, Aize; Bolton, Scott
2013-01-01
Background Restricted interests are a class of repetitive behavior in autism spectrum disorders (ASD) whose intensity and narrow focus often contribute to significant interference with daily functioning. While numerous neuroimaging studies have investigated executive circuits as putative neural substrates of repetitive behavior, recent work implicates affective neural circuits in restricted interests. We sought to explore the role of affective neural circuits and determine how restricted interests are distinguished from hobbies or interests in typical development. Methods We compared a group of children with ASD to a typically developing (TD) group of children with strong interests or hobbies, employing parent report, an operant behavioral task, and functional imaging with personalized stimuli based on individual interests. Results While performance on the operant task was similar between the two groups, parent report of intensity and interference of interests was significantly higher in the ASD group. Both the ASD and TD groups showed increased BOLD response in widespread affective neural regions to pictures of their own interest. When viewing pictures of other children's interests, the TD group showed a similar pattern, whereas BOLD response in the ASD group was much more limited. Increased BOLD response in the insula and anterior cingulate cortex distinguished the ASD from the TD group, and parent report of the intensity and interference with daily life of the child's restricted interest predicted insula response. Conclusions While affective neural network response and operant behavior are comparable in typical and restricted interests, the narrowness of focus that clinically distinguishes restricted interests in ASD is reflected in more interference in daily life and aberrantly enhanced insula and anterior cingulate response to individuals’ own interests in the ASD group. These results further support the involvement of affective neural networks in repetitive behaviors in ASD. PMID:24117668
Supercharging Lessons with a Virtual Lab
ERIC Educational Resources Information Center
Stewart, Jefferson; Vincent, Daniel
2013-01-01
The authors describes their experiences incorporating the virtual lab into a simple circuit lesson during an energy unit in a sixth-grade class. The lesson included a hands-on group experiment using wire, batteries, and light bulbs to make a circuit and an online simulation, using a virtual lab. Class discussions, student inquiries, and the study…
Perspective on Flipping Circuits I
ERIC Educational Resources Information Center
Kim, Gloria J.; Patrick, Erin E.; Srivastava, Ramakant; Law, Mark E.
2014-01-01
A flipped-classroom approach was implemented in a Circuits I class for electrical and computer engineering majors to lower its high attrition and failure rate. Students were asked to watch online lectures and then come to class prepared to work problems in small groups of four. The attitude, retention, and performance of students in the flipped…
Van de Werfhorst, Herman G; de Graaf, Nan Dirk
2004-06-01
This paper studies the impact of social class and education on political orientation. We distinguish the 'old' middle class from a new class of social/cultural specialists. However, the difference in their political orientation may especially be related to the level and field of education; the new middle class is more highly educated and often in fields of study that extensively address social competencies, characteristics independently affecting political outcomes. Analyses on Dutch data showed that education is more important in the prediction of 'cultural' liberal issues than social class. Economically-oriented issues are more strongly affected by social class. This means that interests of the new middle class are served by liberal standpoints relating to a strong government and income redistribution policies, but not relating to cultural issues.
McCombe Waller, Sandy; Whitall, Jill; Jenkins, Toye; Magder, Laurence S; Hanley, Daniel F; Goldberg, Andrew; Luft, Andreas R
2014-12-14
Recovering useful hand function after stroke is a major scientific challenge for patients with limited motor recovery. We hypothesized that sequential training beginning with proximal bilateral followed by unilateral task oriented training is superior to time-matched unilateral training alone. Proximal bilateral training could optimally prepare the motor system to respond to the more challenging task-oriented training. Twenty-six participants with moderate severity hemiparesis Intervention: PARTICIPANTS received either 6-weeks of bilateral proximal training followed sequentially by 6-weeks unilateral task-oriented training (COMBO) or 12-weeks of unilateral task-oriented training alone (SAEBO). A subset of 8 COMB0 and 9 SAEBO participants underwent three functional magnetic resonance imaging (fMRI) scans of hand and elbow movement every 6 weeks. Fugl-Meyer Upper extremity scale, Modified Wolf Motor Function Test, University of Maryland Arm Questionnaire for Stroke, Motor cortex activation (fMRI). The COMBO group demonstrated significantly greater gains between baseline and 12-weeks over all outcome measures (p = .018 based on a MANOVA test) and specifically in the Modified Wolf Motor Function test (time). Both groups demonstrated within-group gains on the Fugl-Meyer Upper Extremity test (impairment) and University of Maryland Arm Questionnaire for Stroke (functional use). fMRI subset analyses showed motor cortex (primary and premotor) activation during hand movement was significantly increased by sequential combination training but not by task-oriented training alone. Sequentially combining a proximal bilateral before a unilateral task-oriented training may be an effective way to facilitate gains in arm and hand function in those with moderate to severe paresis post-stroke compared to unilateral task oriented training alone.
Flow theory – goal orientation theory: positive experience is related to athlete’s goal orientation
Stavrou, Nektarios A. M.; Psychountaki, Maria; Georgiadis, Emmanouil; Karteroliotis, Konstantinos; Zervas, Yannis
2015-01-01
The main purpose of this study was to examine the relationship between flow experience and goal orientation theory, as well as, the differences in flow experience based on the orthogonal model of goal orientation theory. Two hundred and seventy eight athletes completed the Task and Ego Orientation Sport Questionnaire based on how they usually feel. The challenge and skills ratings were completed 1 h before the competition, based on how they felt at the exact time of answering. In the following, the Flow State Scale-2 was completed up to 30 min after the competition they just participated, along with the challenge-skill ratings, based on how athletes felt during the competition. The results indicated that the athletes’ task orientation may be an important factor for attaining flow in competitive sport, feeling more skillful and estimating the upcoming competition as challenging, while low ego and low task oriented athletes lack these elements, which are important for them to get into flow. Additionally, not the level of task and ego orientation per se, but the balance between athletes’ goal orientation preferences seems important for the formation of flow experience, indicating that high task – high ego and high task – low ego athletes are experiencing the most positive mental state. PMID:26500577
A Hybrid Parachute Simulation Environment for the Orion Parachute Development Project
NASA Technical Reports Server (NTRS)
Moore, James W.
2011-01-01
A parachute simulation environment (PSE) has been developed that aims to take advantage of legacy parachute simulation codes and modern object-oriented programming techniques. This hybrid simulation environment provides the parachute analyst with a natural and intuitive way to construct simulation tasks while preserving the pedigree and authority of established parachute simulations. NASA currently employs four simulation tools for developing and analyzing air-drop tests performed by the CEV Parachute Assembly System (CPAS) Project. These tools were developed at different times, in different languages, and with different capabilities in mind. As a result, each tool has a distinct interface and set of inputs and outputs. However, regardless of the simulation code that is most appropriate for the type of test, engineers typically perform similar tasks for each drop test such as prediction of loads, assessment of altitude, and sequencing of disreefs or cut-aways. An object-oriented approach to simulation configuration allows the analyst to choose models of real physical test articles (parachutes, vehicles, etc.) and sequence them to achieve the desired test conditions. Once configured, these objects are translated into traditional input lists and processed by the legacy simulation codes. This approach minimizes the number of sim inputs that the engineer must track while configuring an input file. An object oriented approach to simulation output allows a common set of post-processing functions to perform routine tasks such as plotting and timeline generation with minimal sensitivity to the simulation that generated the data. Flight test data may also be translated into the common output class to simplify test reconstruction and analysis.
Standage, Martyn; Treasure, Darren C
2002-03-01
Contemporary research suggests that task and ego achievement goal orientations affect students' intrinsic motivation in physical education. This research has assessed intrinsic motivation as a unidimensional contruct, however, which is inconsistent with the more contemporary postulates of self-determination theory (Deci & Ryan, 1985, 1991) which states that intrinsic motivation is only one type of motivation. To date, research has not addressed whether different types of motivation at the situational level are influenced by the proneness to adopt task or ego involvement. To examine the relationship between achievement goal orientations and multidimensional situational motivation in PE. Middle school children (182 male, 136 female; M age = 13.2 years). Responded to questionnaires assessing their dispositional goal orientation (POSQ; Roberts, Treasure, & Balague, 1998) and situational motivation (SIMS; Guay, Vallerand, & Blanchard, 2000) in PE. Task orientation was found to be positively associated with more self-determined types of situational motivation. Ego orientation was weakly related to less self-determined motivation. An extreme group split was conducted to create four goal groups and goal profile analyses conducted. A significant MANOVA was followed by univariate analyses, post hoc comparisons, and calculated effect sizes, which revealed that groups high in task orientation reported more motivationally adaptive responses than groups low in task orientation. The results suggest that a high level of task orientation singularly or in combination with ego orientation fosters self-determined situational motivation in the context of PE.
Apparatus And Method Of Using Flexible Printed Circuit Board In Optical Transceiver Device
Anderson, Gene R.; Armendariz, Marcelino G.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Peterson, David W.; Peterson, Gary D.; Reysen, Bill H.
2005-03-15
This invention relates to a flexible printed circuit board that is used in connection with an optical transmitter, receiver or transceiver module. In one embodiment, the flexible printed circuit board has flexible metal layers in between flexible insulating layers, and the circuit board comprises: (1) a main body region orientated in a first direction having at least one electrical or optoelectronic device; (2) a plurality of electrical contact pads integrated into the main body region, where the electrical contact pads function to connect the flexible printed circuit board to an external environment; (3) a buckle region extending from one end of the main body region; and (4) a head region extending from one end of the buckle region, and where the head region is orientated so that it is at an angle relative to the direction of the main body region. The electrical contact pads may be ball grid arrays, solder balls or land-grid arrays, and they function to connect the circuit board to an external environment. A driver or amplifier chip may be adapted to the head region of the flexible printed circuit board. In another embodiment, a heat spreader passes along a surface of the head region of the flexible printed circuit board, and a window is formed in the head region of the flexible printed circuit board. Optoelectronic devices are adapted to the head spreader in such a manner that they are accessible through the window in the flexible printed circuit board.
An object-oriented mobile health system with usability features.
Escarfullet, Krystle; Moore, Cantera; Tucker, Shari; Wei, June
2012-01-01
Mobile health (m-health) comprises the concept of utilising mobile devices to carry out the task of viewing electronic medical records, reserving medical appointments with a patient's medical provider and electronically refilling prescriptions. This paper aims at developing a m-health system to improve usability from a user's perspective. Specifically, it first developed a m-health model by logically linking characteristics of the m-health system together based on information flows. Then, the system requirements were collected by using a developed questionnaire. These requirements were structured and further in-depth analysis was conducted by using an object-oriented approach based on unified modelling language, such as use-case, sequence and analysis class diagrams. This research will be beneficial to decision makers and developers in the mobile healthcare industry.
NASA Technical Reports Server (NTRS)
Clarke, M. M.; Garin, J.
1981-01-01
Operator perceptual cognitive styles as predictors of remote task performance were identified. Remote tasks which require the use of servo controlled master/slave manipulators and closed circuit television for teleoperator repair and maintenance of nuclear fuel recycling systems are examined. A useful procedure for identifying such perceptual styles is described.
Behavioural and physiological mechanisms of polarized light sensitivity in birds.
Muheim, Rachel
2011-03-12
Polarized light (PL) sensitivity is relatively well studied in a large number of invertebrates and some fish species, but in most other vertebrate classes, including birds, the behavioural and physiological mechanism of PL sensitivity remains one of the big mysteries in sensory biology. Many organisms use the skylight polarization pattern as part of a sun compass for orientation, navigation and in spatial orientation tasks. In birds, the available evidence for an involvement of the skylight polarization pattern in sun-compass orientation is very weak. Instead, cue-conflict and cue-calibration experiments have shown that the skylight polarization pattern near the horizon at sunrise and sunset provides birds with a seasonally and latitudinally independent compass calibration reference. Despite convincing evidence that birds use PL cues for orientation, direct experimental evidence for PL sensitivity is still lacking. Avian double cones have been proposed as putative PL receptors, but detailed anatomical and physiological evidence will be needed to conclusively describe the avian PL receptor. Intriguing parallels between the functional and physiological properties of PL reception and light-dependent magnetoreception could point to a common receptor system.
Behavioural and physiological mechanisms of polarized light sensitivity in birds
Muheim, Rachel
2011-01-01
Polarized light (PL) sensitivity is relatively well studied in a large number of invertebrates and some fish species, but in most other vertebrate classes, including birds, the behavioural and physiological mechanism of PL sensitivity remains one of the big mysteries in sensory biology. Many organisms use the skylight polarization pattern as part of a sun compass for orientation, navigation and in spatial orientation tasks. In birds, the available evidence for an involvement of the skylight polarization pattern in sun-compass orientation is very weak. Instead, cue-conflict and cue-calibration experiments have shown that the skylight polarization pattern near the horizon at sunrise and sunset provides birds with a seasonally and latitudinally independent compass calibration reference. Despite convincing evidence that birds use PL cues for orientation, direct experimental evidence for PL sensitivity is still lacking. Avian double cones have been proposed as putative PL receptors, but detailed anatomical and physiological evidence will be needed to conclusively describe the avian PL receptor. Intriguing parallels between the functional and physiological properties of PL reception and light-dependent magnetoreception could point to a common receptor system. PMID:21282180
Experiences Building an Object-Oriented System in C++
NASA Technical Reports Server (NTRS)
Madany, Peter W.; Campbell, Roy H.; Kougiouris, Panagiotis
1991-01-01
This paper describes tools that we built to support the construction of an object-oriented operating system in C++. The tools provide the automatic deletion of unwanted objects, first-class classes, dynamically loadable classes, and class-oriented debugging. As a consequence of our experience building Choices, we advocate these features as useful, simplifying and unifying many aspects of system programming.
Teaching RLC Parallel Circuits in High-School Physics Class
ERIC Educational Resources Information Center
Simon, Alpár
2015-01-01
This paper will try to give an alternative treatment of the subject "parallel RLC circuits" and "resonance in parallel RLC circuits" from the Physics curricula for the XIth grade from Romanian high-schools, with an emphasis on practical type circuits and their possible applications, and intends to be an aid for both Physics…
ERIC Educational Resources Information Center
Tabachnick, Sharon E.; Miller, Raymond B.; Relyea, George E.
2008-01-01
The authors performed path analysis, followed by a bootstrap procedure, to test the predictions of a model explaining the relationships among students' distal future goals (both extrinsic and intrinsic), their adoption of a middle-range subgoal, their perceptions of task instrumentality, and their proximal task-oriented self-regulation strategies.…
Reynolds, Elizabeth K; Macpherson, Laura; Tull, Matthew T; Baruch, David E; Lejuez, C W
2011-10-01
College freshmen face a variety of academic and social challenges as they adjust to college life that can place them at risk for a number of negative outcomes, including depression and alcohol-related problems. Orientation classes that focus on teaching incoming students how to better cope with college-oriented stress may provide an opportunity to prevent the development of these adjustment problems. This article outlines a program based on behavioral activation that can be integrated into college orientation programs to provide a more comprehensive orientation experience. Data are presented from an initial pilot study in which 71 first-semester freshman at the University of Maryland participated in a 15-week, 2 hr per week orientation class (n = 37 in the behavioral activation-enhanced orientation classes and n = 34 in the control orientation as usual classes). Students' depression and alcohol use were evaluated at the beginning, middle, and end of the course. Results indicated a Time × Group interaction such that problem drinking (but not consumption) was significantly reduced across assessments in the behavioral activation classes and largely unchanged in the standard classes. No difference was observed in depression scores; however, fairly low depression scores across the 3 time points may have limited the opportunity to observe any meaningful impact of the orientation classes on depression. The authors conclude with a discussion of the implications of their findings for preventing adjustment problems among incoming college students and future directions.
Task-Oriented Internet Assisted English Teaching and Learning in Colleges
ERIC Educational Resources Information Center
Zhang, Juwu
2014-01-01
Task-Oriented Internet Assisted English Teaching and Learning (TIAETL) is a new English teaching and learning model which integrates the Internet-assisted and task-oriented teaching. This article analyzed the worldwide tendency of English teaching and prerequisites for TIAETL in colleges. The TIAETL has the following advantages:…
Lee, Hyung Young; Kim, You Lim; Lee, Suk Min
2015-06-01
[Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training.
Lee, Hyung Young; Kim, You Lim; Lee, Suk Min
2015-01-01
[Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training. PMID:26180341
Neuromorphic VLSI vision system for real-time texture segregation.
Shimonomura, Kazuhiro; Yagi, Tetsuya
2008-10-01
The visual system of the brain can perceive an external scene in real-time with extremely low power dissipation, although the response speed of an individual neuron is considerably lower than that of semiconductor devices. The neurons in the visual pathway generate their receptive fields using a parallel and hierarchical architecture. This architecture of the visual cortex is interesting and important for designing a novel perception system from an engineering perspective. The aim of this study is to develop a vision system hardware, which is designed inspired by a hierarchical visual processing in V1, for real time texture segregation. The system consists of a silicon retina, orientation chip, and field programmable gate array (FPGA) circuit. The silicon retina emulates the neural circuits of the vertebrate retina and exhibits a Laplacian-Gaussian-like receptive field. The orientation chip selectively aggregates multiple pixels of the silicon retina in order to produce Gabor-like receptive fields that are tuned to various orientations by mimicking the feed-forward model proposed by Hubel and Wiesel. The FPGA circuit receives the output of the orientation chip and computes the responses of the complex cells. Using this system, the neural images of simple cells were computed in real-time for various orientations and spatial frequencies. Using the orientation-selective outputs obtained from the multi-chip system, a real-time texture segregation was conducted based on a computational model inspired by psychophysics and neurophysiology. The texture image was filtered by the two orthogonally oriented receptive fields of the multi-chip system and the filtered images were combined to segregate the area of different texture orientation with the aid of FPGA. The present system is also useful for the investigation of the functions of the higher-order cells that can be obtained by combining the simple and complex cells.
Burnout of teachers as related to influence tactics within the college classroom.
Lamude, K G; Scudder, J
1994-10-01
Previous research has shown that burnout among college teachers is negatively associated with on-task learning and student-oriented concerns expressed as tactics on influence in class. Using data collected from 142 college teachers, this study examined this relationship. Burnout was measured on Cherniss's measure, and tactics of influence were assessed by the Behavior Alteration Message Technique. Analysis indicated burnout in teachers was positively related to pressure and position tactics on influence and negatively related to exchange of rewards, rational arguments, and feedback tactics of influence.
Wealth, Poverty, and Happiness: Social Class Is Differentially Associated With Positive Emotions.
Piff, Paul K; Moskowitz, Jake P
2017-12-18
Is higher social class associated with greater happiness? In a large nationally representative U.S. sample (N = 1,519), we examined the association between social class (household income) and self-reported tendencies to experience 7 distinct positive emotions that are core to happiness: amusement, awe, compassion, contentment, enthusiasm, love, and pride. Consistent with past research indicating that social class underlies differential patterns of attending to the self versus orienting to others, higher social class was associated with greater self-oriented feelings of contentment and pride, and with greater amusement. In contrast, lower social class was associated with more other-oriented feelings of compassion and love, and with greater awe. There were no class differences in enthusiasm. We discuss that individuals from different social class backgrounds may exhibit different patterns of emotional responding due to their distinct social concerns and priorities. Whereas self-oriented emotions may follow from, foster, and reinforce upper class individuals' desire for independence and self-sufficiency, greater other-oriented emotion may enable lower class individuals to form more interdependent bonds to cope with their more threatening environments. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Newton, Maria; Detling, Nicole; Kilgore, Jennifer; Bernhardt, Paul
2004-12-01
The relations of achievement goal theory constructs and physical self-perceptions were explored with 225 students (91 men, 109 women, and 25 nonindicators; M age=23.5 yr., SD=9.2), enrolled in basic physical activity classes (aerobics, weight training, modern dance, badminton, yoga, tai chi, basketball, racquetball, gymnastics, bowling, aquatone, and step aerobics) in a university setting. Goal orientations (Task and Ego Orientation in Sport Questionnaire), perceptions of the motivational climate (Perceived Motivational Climate in Sport Questionnaire-2), and physical self-perceptions (Physical Self-perception Profile) were assessed. Data were analyzed separately by sex. Ego orientation was the only predictor of Physical Self-perceptions in men, accounting for between 12 and 15% of the variance in Physical Self-worth, Sport Competence, Physical Conditioning, and Body Attractiveness. Constructs of achievement goal theory were not predictive of Physical Self-perceptions in the women. The results are discussed in light of achievement goal theory and the nature of the sample.
Lameiras, João; Almeida, Pedro L; Garcia-Mas, Alexandre
2014-12-01
In team sports, athletes' goals may focus on the task (enhancing performance, developing better skills, etc.) or on ego (being better than the others, achieving superiority, etc.). This study investigated the relationships between athletes' goal orientation and their tendency to cooperate with teammates and coaches. 158 professional men (M age = 24.1 yr., SD = 4.6) who played on various sport teams participated in this study. Goal orientation was measured with the Portuguese version of the Task and Ego Orientation in Sport Questionnaire, and cooperation was measured with the Questionário de Cooperação Desportiva. Cooperation was positively correlated with task orientation, and negatively correlated with ego orientation. Overall, the findings support that in sports, directing the players' focus on task may promote prosocial behavior.
Hardening Logic Encryption against Key Extraction Attacks with Circuit Camouflage
2017-03-01
camouflage; obfuscation; SAT; key extraction; reverse engineering; security; trusted electronics Introduction Integrated Circuit (IC) designs are...Encryption Algorithms”, Hardware Oriented Security and Trust , 2015. 3. Rajendran J., Pino, Y., Sinanoglu, O., Karri, R., “Security Analysis of Logic
NASA Astrophysics Data System (ADS)
Fazliev, A.
2009-04-01
The information and knowledge layers of information-computational system for water spectroscopy are described. Semantic metadata for all the tasks of domain information model that are the basis of the layers have been studied. The principle of semantic metadata determination and mechanisms of the usage during information systematization in molecular spectroscopy has been revealed. The software developed for the work with semantic metadata is described as well. Formation of domain model in the framework of Semantic Web is based on the use of explicit specification of its conceptualization or, in other words, its ontologies. Formation of conceptualization for molecular spectroscopy was described in Refs. 1, 2. In these works two chains of task are selected for zeroth approximation for knowledge domain description. These are direct tasks chain and inverse tasks chain. Solution schemes of these tasks defined approximation of data layer for knowledge domain conceptualization. Spectroscopy tasks solutions properties lead to a step-by-step extension of molecular spectroscopy conceptualization. Information layer of information system corresponds to this extension. An advantage of molecular spectroscopy model designed in a form of tasks chain is actualized in the fact that one can explicitly define data and metadata at each step of solution of these molecular spectroscopy chain tasks. Metadata structure (tasks solutions properties) in knowledge domain also has form of a chain in which input data and metadata of the previous task become metadata of the following tasks. The term metadata is used in its narrow sense: metadata are the properties of spectroscopy tasks solutions. Semantic metadata represented with the help of OWL 3 are formed automatically and they are individuals of classes (A-box). Unification of T-box and A-box is an ontology that can be processed with the help of inference engine. In this work we analyzed the formation of individuals of molecular spectroscopy applied ontologies as well as the software used for their creation by means of OWL DL language. The results of this work are presented in a form of an information layer and a knowledge layer in W@DIS information system 4. 1 FORMATION OF INDIVIDUALS OF WATER SPECTROSCOPY APPLIED ONTOLOGY Applied tasks ontology contains explicit description of input an output data of physical tasks solved in two chains of molecular spectroscopy tasks. Besides physical concepts, related to spectroscopy tasks solutions, an information source, which is a key concept of knowledge domain information model, is also used. Each solution of knowledge domain task is linked to the information source which contains a reference on published task solution, molecule and task solution properties. Each information source allows us to identify a certain knowledge domain task solution contained in the information system. Water spectroscopy applied ontology classes are formed on the basis of molecular spectroscopy concepts taxonomy. They are defined by constrains on properties of the selected conceptualization. Extension of applied ontology in W@DIS information system is actualized according to two scenarios. Individuals (ontology facts or axioms) formation is actualized during the task solution upload in the information system. Ontology user operation that implies molecular spectroscopy taxonomy and individuals is performed solely by the user. For this purpose Protege ontology editor was used. For the formation, processing and visualization of knowledge domain tasks individuals a software was designed and implemented. Method of individual formation determines the sequence of steps of created ontology individuals' generation. Tasks solutions properties (metadata) have qualitative and quantitative values. Qualitative metadata are regarded as metadata describing qualitative side of a task such as solution method or other information that can be explicitly specified by object properties of OWL DL language. Quantitative metadata are metadata that describe quantitative properties of task solution such as minimal and maximal data value or other information that can be explicitly obtained by programmed algorithmic operations. These metadata are related to DatatypeProperty properties of OWL specification language Quantitative metadata can be obtained automatically during data upload into information system. Since ObjectProperty values are objects, processing of qualitative metadata requires logical constraints. In case of the task solved in W@DIS ICS qualitative metadata can be formed automatically (for example in spectral functions calculation task). The used methods of translation of qualitative metadata into quantitative is characterized as roughened representation of knowledge in knowledge domain. The existence of two ways of data obtainment is a key moment in the formation of applied ontology of molecular spectroscopy task. experimental method (metadata for experimental data contain description of equipment, experiment conditions and so on) on the initial stage and inverse task solution on the following stages; calculation method (metadata for calculation data are closely related to the metadata used for the description of physical and mathematical models of molecular spectroscopy) 2 SOFTWARE FOR ONTOLOGY OPERATION Data collection in water spectroscopy information system is organized in a form of workflow that contains such operations as information source creation, entry of bibliographic data on publications, formation of uploaded data schema an so on. Metadata are generated in information source as well. Two methods are used for their formation: automatic metadata generation and manual metadata generation (performed by user). Software implementation of support of actions related to metadata formation is performed by META+ module. Functions of META+ module can be divided into two groups. The first groups contains the functions necessary to software developer while the second one the functions necessary to a user of the information system. META+ module functions necessary to the developer are: 1. creation of taxonomy (T-boxes) of applied ontology classes of knowledge domain tasks; 2. creation of instances of task classes; 3. creation of data schemes of tasks in a form of an XML-pattern and based on XML-syntax. XML-pattern is developed for instances generator and created according to certain rules imposed on software generator implementation. 4. implementation of metadata values calculation algorithms; 5. creation of a request interface and additional knowledge processing function for the solution of these task; 6. unification of the created functions and interfaces into one information system The following sequence is universal for the generation of task classes' individuals that form chains. Special interfaces for user operations management are designed for software developer in META+ module. There are means for qualitative metadata values updating during data reuploading to information source. The list of functions necessary to end user contains: - data sets visualization and editing, taking into account their metadata, e.g.: display of unique number of bands in transitions for a certain data source; - export of OWL/RDF models from information system to the environment in XML-syntax; - visualization of instances of classes of applied ontology tasks on molecular spectroscopy; - import of OWL/RDF models into the information system and their integration with domain vocabulary; - formation of additional knowledge of knowledge domain for the construction of ontological instances of task classes using GTML-formats and their processing; - formation of additional knowledge in knowledge domain for the construction of instances of task classes, using software algorithm for data sets processing; - function of semantic search implementation using an interface that formulates questions in a form of related triplets in order for getting an adequate answer. 3 STRUCTURE OF META+ MODULE META+ software module that provides the above functions contains the following components: - a knowledge base that stores semantic metadata and taxonomies of information system; - software libraries POWL and RAP 5 created by third-party developer and providing access to ontological storage; - function classes and libraries that form the core of the module and perform the tasks of formation, storage and visualization of classes instances; - configuration files and module patterns that allow one to adjust and organize operation of different functional blocks; META+ module also contains scripts and patterns implemented according to the rules of W@DIS information system development environment. - scripts for interaction with environment by means of the software core of information system. These scripts provide organizing web-oriented interactive communication; - patterns for the formation of functionality visualization realized by the scripts Software core of scientific information-computational system W@DIS is created with the help of MVC (Model - View - Controller) design pattern that allows us to separate logic of application from its representation. It realizes the interaction of three logical components, actualizing interactivity with the environment via Web and performing its preprocessing. Functions of «Controller» logical component are realized with the help of scripts designed according to the rules imposed by software core of the information system. Each script represents a definite object-oriented class with obligatory class method of script initiation called "start". Functions of actualization of domain application operation results representation (i.e. "View" component) are sets of HTML-patterns that allow one to visualize the results of domain applications operation with the help of additional constructions processed by software core of the system. Besides the interaction with the software core of the scientific information system this module also deals with configuration files of software core and its database. Such organization of work provides closer integration with software core and deeper and more adequate connection in operating system support. 4 CONCLUSION In this work the problems of semantic metadata creation in information system oriented on information representation in the area of molecular spectroscopy have been discussed. The described method of semantic metadata and functions formation as well as realization and structure of META+ module have been described. Architecture of META+ module is closely related to the existing software of "Molecular spectroscopy" scientific information system. Realization of the module is performed with the use of modern approaches to Web-oriented applications development. It uses the existing applied interfaces. The developed software allows us to: - perform automatic metadata annotation of calculated tasks solutions directly in the information system; - perform automatic annotation of metadata on the solution of tasks on task solution results uploading outside the information system forming an instance of the solved task on the basis of entry data; - use ontological instances of task solution for identification of data in information tasks of viewing, comparison and search solved by information system; - export applied tasks ontologies for the operation with them by external means; - solve the task of semantic search according to the pattern and using question-answer type interface. 5 ACKNOWLEDGEMENT The authors are grateful to RFBR for the financial support of development of distributed information system for molecular spectroscopy. REFERENCES A.D.Bykov, A.Z. Fazliev, N.N.Filippov, A.V. Kozodoev, A.I.Privezentsev, L.N.Sinitsa, M.V.Tonkov and M.Yu.Tretyakov, Distributed information system on atmospheric spectroscopy // Geophysical Research Abstracts, SRef-ID: 1607-7962/gra/EGU2007-A-01906, 2007, v. 9, p. 01906. A.I.Prevezentsev, A.Z. Fazliev Applied task ontology for molecular spectroscopy information resources systematization. The Proceedings of 9th Russian scientific conference "Electronic libraries: advanced methods and technologies, electronic collections" - RCDL'2007, Pereslavl Zalesskii, 2007, part.1, 2007, P.201-210. OWL Web Ontology Language Semantics and Abstract Syntax, W3C Recommendation 10 February 2004, http://www.w3.org/TR/2004/REC-owl-semantics-20040210/ W@DIS information system, http://wadis.saga.iao.ru RAP library, http://www4.wiwiss.fu-berlin.de/bizer/rdfapi/.
Modulatory Effects of Metabotropic Glutamate Receptors on Local Cortical Circuits
De Pasquale, Roberto; Sherman, S. Murray
2012-01-01
Glutamatergic pathways in various thalamic and cortical circuits have been classified into two types: Class 1 and Class 2, where it has been suggested that Class 1 carries main information for processing and Class 2 is mainly modulatory. We now extend this to the local circuitry of visual cortex of the mouse by demonstrating the modulatory actions on the Class 1 pathway from layer 4 to layers 2/3 of a Class 2 input from adjacent locations in layers 2/3. We found that this Class 2 input produces a long lasting hyperpolarization and suppresses the initial responses of input from layer 4 and that this involves the postsynaptic activation of Group II metabotropic glutamate receptors. This modulation also shifts the paired pulse ratio of the layer 4 input from depression to facilitation. PMID:22623682
2016-02-12
The Food and Drug Administration (FDA) is issuing a final order to redesignate membrane lung devices for long-term pulmonary support, a preamendments class III device, as extracorporeal circuit and accessories for long-term respiratory/cardiopulmonary failure, and to reclassify the device to class II (special controls) in patients with acute respiratory failure or acute cardiopulmonary failure where other available treatment options have failed, and continued clinical deterioration is expected or the risk of death is imminent. A membrane lung device for long-term pulmonary support (>6 hours) refers to the oxygenator in an extracorporeal circuit used during long-term procedures, commonly referred to as extracorporeal membrane oxygenation (ECMO). Because a number of other devices and accessories are used with the oxygenator in the circuit, the title and identification of the regulation are revised to include extracorporeal circuit and accessories for long-term respiratory/cardiopulmonary failure. Although an individual device or accessory used in an ECMO circuit may already have its own classification regulation when the device or accessory is intended for short-term use (<=6 hours), such device or accessory will be subject to the same regulatory controls applied to the oxygenator (i.e., class II, special controls) when evaluated as part of the ECMO circuit for long-term use (>6 hours). On its own initiative, based on new information, FDA is revising the classification of the membrane lung device for long-term pulmonary support.
The Influence of Achievement Goal Orientations and Task Concreteness on Situational Interest
ERIC Educational Resources Information Center
Tapola, Anna; Jaakkola, Tomi; Niemivirta, Markku
2014-01-01
This study investigated changes in elementary school students' (n = 140) situational interest as a function of achievement goal orientation profiles and task characteristics. The authors repeatedly measured situational interest during a simulated science learning task in 2 task conditions that differed in the concreteness of the task elements. The…
Myria: Scalable Analytics as a Service
NASA Astrophysics Data System (ADS)
Howe, B.; Halperin, D.; Whitaker, A.
2014-12-01
At the UW eScience Institute, we're working to empower non-experts, especially in the sciences, to write and use data-parallel algorithms. To this end, we are building Myria, a web-based platform for scalable analytics and data-parallel programming. Myria's internal model of computation is the relational algebra extended with iteration, such that every program is inherently data-parallel, just as every query in a database is inherently data-parallel. But unlike databases, iteration is a first class concept, allowing us to express machine learning tasks, graph traversal tasks, and more. Programs can be expressed in a number of languages and can be executed on a number of execution environments, but we emphasize a particular language called MyriaL that supports both imperative and declarative styles and a particular execution engine called MyriaX that uses an in-memory column-oriented representation and asynchronous iteration. We deliver Myria over the web as a service, providing an editor, performance analysis tools, and catalog browsing features in a single environment. We find that this web-based "delivery vector" is critical in reaching non-experts: they are insulated from irrelevant effort technical work associated with installation, configuration, and resource management. The MyriaX backend, one of several execution runtimes we support, is a main-memory, column-oriented, RDBMS-on-the-worker system that supports cyclic data flows as a first-class citizen and has been shown to outperform competitive systems on 100-machine cluster sizes. I will describe the Myria system, give a demo, and present some new results in large-scale oceanographic microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deline, Chris; Dann, Geoff
Recent increases in photovoltaic (PV) systems on Department of the Navy (DON) land and potential siting near airfields prompted Commander, Naval Installations Command to fund the Naval Facilities Engineering Command to evaluate the impact of electromagnetic interference (EMI) from PV systems on airfield electronic equipment. Naval Facilities Engineering and Expeditionary Warfare Center tasked Department of Energy National Renewable Energy laboratory (NREL) to conduct the assessment. PV systems often include high-speed switching semiconductor circuits to convert the voltage produced by the PV arrays to the voltage needed by the end user. Switching circuits inherently produce electromagnetic radiation at harmonics of themore » switching frequency. In this report, existing literature is summarized and tests to measure emissions and mitigation methods are discussed. The literature shows that the emissions from typical PV systems are low strength and unlikely to cause interference to most airfield electronic systems. With diligent procurement and siting of PV systems, including specifications for FCC Part 15 Class A compliant equipment and a 250-foot setback from communication equipment, NREL anticipates little to no EMI impact on nearby communications or telemetry equipment.« less
Orientation selectivity sharpens motion detection in Drosophila
Fisher, Yvette E.; Silies, Marion; Clandinin, Thomas R.
2015-01-01
SUMMARY Detecting the orientation and movement of edges in a scene is critical to visually guided behaviors of many animals. What are the circuit algorithms that allow the brain to extract such behaviorally vital visual cues? Using in vivo two-photon calcium imaging in Drosophila, we describe direction selective signals in the dendrites of T4 and T5 neurons, detectors of local motion. We demonstrate that this circuit performs selective amplification of local light inputs, an observation that constrains motion detection models and confirms a core prediction of the Hassenstein-Reichardt Correlator (HRC). These neurons are also orientation selective, responding strongly to static features that are orthogonal to their preferred axis of motion, a tuning property not predicted by the HRC. This coincident extraction of orientation and direction sharpens directional tuning through surround inhibition and reveals a striking parallel between visual processing in flies and vertebrate cortex, suggesting a universal strategy for motion processing. PMID:26456048
A neural command circuit for grooming movement control.
Hampel, Stefanie; Franconville, Romain; Simpson, Julie H; Seeds, Andrew M
2015-09-07
Animals perform many stereotyped movements, but how nervous systems are organized for controlling specific movements remains unclear. Here we use anatomical, optogenetic, behavioral, and physiological techniques to identify a circuit in Drosophila melanogaster that can elicit stereotyped leg movements that groom the antennae. Mechanosensory chordotonal neurons detect displacements of the antennae and excite three different classes of functionally connected interneurons, which include two classes of brain interneurons and different parallel descending neurons. This multilayered circuit is organized such that neurons within each layer are sufficient to specifically elicit antennal grooming. However, we find differences in the durations of antennal grooming elicited by neurons in the different layers, suggesting that the circuit is organized to both command antennal grooming and control its duration. As similar features underlie stimulus-induced movements in other animals, we infer the possibility of a common circuit organization for movement control that can be dissected in Drosophila.
Digital circuits for computer applications: A compilation
NASA Technical Reports Server (NTRS)
1972-01-01
The innovations in this updated series of compilations dealing with electronic technology represent a carefully selected collection of digital circuits which have direct application in computer oriented systems. In general, the circuits have been selected as representative items of each section and have been included on their merits of having universal applications in digital computers and digital data processing systems. As such, they should have wide appeal to the professional engineer and scientist who encounter the fundamentals of digital techniques in their daily activities. The circuits are grouped as digital logic circuits, analog to digital converters, and counters and shift registers.
Recent developments in biofeedback for neuromotor rehabilitation
Huang, He; Wolf, Steven L; He, Jiping
2006-01-01
The original use of biofeedback to train single muscle activity in static positions or movement unrelated to function did not correlate well to motor function improvements in patients with central nervous system injuries. The concept of task-oriented repetitive training suggests that biofeedback therapy should be delivered during functionally related dynamic movement to optimize motor function improvement. Current, advanced technologies facilitate the design of novel biofeedback systems that possess diverse parameters, advanced cue display, and sophisticated control systems for use in task-oriented biofeedback. In light of these advancements, this article: (1) reviews early biofeedback studies and their conclusions; (2) presents recent developments in biofeedback technologies and their applications to task-oriented biofeedback interventions; and (3) discusses considerations regarding the therapeutic system design and the clinical application of task-oriented biofeedback therapy. This review should provide a framework to further broaden the application of task-oriented biofeedback therapy in neuromotor rehabilitation. PMID:16790060
Rhythmic coordination of hippocampal neurons during associative memory processing
Rangel, Lara M; Rueckemann, Jon W; Riviere, Pamela D; Keefe, Katherine R; Porter, Blake S; Heimbuch, Ian S; Budlong, Carl H; Eichenbaum, Howard
2016-01-01
Hippocampal oscillations are dynamic, with unique oscillatory frequencies present during different behavioral states. To examine the extent to which these oscillations reflect neuron engagement in distinct local circuit processes that are important for memory, we recorded single cell and local field potential activity from the CA1 region of the hippocampus as rats performed a context-guided odor-reward association task. We found that theta (4–12 Hz), beta (15–35 Hz), low gamma (35–55 Hz), and high gamma (65–90 Hz) frequencies exhibited dynamic amplitude profiles as rats sampled odor cues. Interneurons and principal cells exhibited unique engagement in each of the four rhythmic circuits in a manner that related to successful performance of the task. Moreover, principal cells coherent to each rhythm differentially represented task dimensions. These results demonstrate that distinct processing states arise from the engagement of rhythmically identifiable circuits, which have unique roles in organizing task-relevant processing in the hippocampus. DOI: http://dx.doi.org/10.7554/eLife.09849.001 PMID:26751780
ERIC Educational Resources Information Center
Ferri, Bonni H.; Ferri, Aldo A.; Majerich, David M.; Madden, Amanda G.
2016-01-01
This paper examines the effects of hands-on learning in an undergraduate circuits class that is taught to non-majors; i.e., students outside of electrical and computing engineering. The course, ECE3710, is taught in a blended format facilitated by the video lectures prepared for two Massive Open Online Courses developed for the Coursera Platform.…
Goal orientation: effects on backing up behavior, performance, efficacy, and commitment in teams.
Porter, Christopher O L H
2005-07-01
The author examined the predictive validity of goal orientation in teams on both team process and outcome variables. Results indicate that when mean goal orientation scores were used as a way of describing team members' inputs, learning orientation was related to backing up behavior, efficacy, and commitment. The relationships between performance orientation and efficacy and commitment, however, were more complex and were clarified when task performance was also taken into account. Performance orientation had a negative effect on efficacy when task performance was low and a positive effect on commitment when task performance was high. The implications of these findings for theory and research on goal orientation in teams and team staffing are discussed. Copyright 2005 APA, all rights reserved.
Fluid Power Multi-actuator Circuit Board with Microcomputer Control Option.
ERIC Educational Resources Information Center
McKechnie, R. E.; Vickers, G. W.
1981-01-01
Describes a portable fluid power engineering laboratory and class demonstration apparatus designed to enable students to design, build, and test multi-actuator circuits. Features a variety of standard pneumatic values and actuators fitted with quick disconnect couplings. Discusses sequencing circuit boards, microcomputer control, cost, and…
Teaching science for public understanding: Developing decision-making abilities
NASA Astrophysics Data System (ADS)
Siegel, Marcelle A.
One of the most important challenges educators have is teaching students how to make decisions about complex issues. In this study, methods designed to enhance students' decision-making skills and attitudes were investigated. An issue-oriented science curriculum was partly replaced with activities designed by the experimenter. The first objective of the study was to examine the effects of an instructional method to increase students' use of relevant scientific evidence in their decisions. The second goal of the research was to test whether the instructional activities could promote students' beliefs that science is relevant to them, because attitudes have been shown to affect students' performance and persistence (Schommer, 1994). Third, the study was designed to determine whether the instructional activities would affect students' beliefs that their intelligence is not fixed but can grow; this question is based on Dweck and Leggett's (1988) definition of two orientations toward intelligence---entity theorists and incremental theorists (Dweck & Leggett, 1988; Dweck & Henderson, 1989). Two urban high-school classrooms participated in this study. Tenth graders examined scientific materials about current issues involving technology and society. Instructional materials on decision making were prepared for one class of students to enhance their regular issue-oriented course, Science and Sustainability. A computer program, called Convince Me (Schank, Ranney & Hoadley, 1996), provided scaffolding for making an evidence-based decision. The experimental group's activities also included pen-and-paper lessons on decision making and the effect of experience on the structure of the brain. The control class continued to engage in Science and Sustainability decision-making activities during the time the experimental class completed the treatment. The control group did not show significant improvement on decision-making tasks, and the experimental group showed marginally significant gains (p = .06) according to the Rasch analysis. A measure of students' understanding of coherent argumentation was correlated with higher decision posttest scores. Over time, both classes significantly regarded science as being more relevant to everyday life. Students' attitudes about ability showed insignificant changes.
Housh, Adam A.; Berkowitz, Laura E.; Ybarra, Isaac; Kim, Esther U.; Lee, Brian R.; Calton, Jeffrey L.
2014-01-01
Head direction (HD) cells, found in the rodent Papez circuit, are thought to form the neural circuitry responsible for directional orientation. Because NMDA transmission has been implicated in spatial tasks requiring directional orientation, we sought to determine if the NMDA antagonist dizocilpine (MK-801) would disrupt the directional signal carried by the HD network. Anterior thalamic HD cells were isolated in female Long-Evans rats and initially monitored for baseline directional activity while the animals foraged in a familiar enclosure. The animals were then administered MK-801 at a dose of .05 mg/kg or 0.1 mg/kg, or isotonic saline, and cells were re-examined for changes in directional specificity and landmark control. While the cells showed no changes in directional specificity and landmark control following administration of saline or the lower dose of MK-801, the higher dose of MK-801 caused a dramatic attenuation of the directional signal, characterized by decreases in peak firing rates, signal to noise, and directional information content. While the greatly attenuated directional specificity of cells in the high dose condition usually remained stable relative to the landmarks within the recording enclosure, a few cells in this condition exhibited unstable preferred directions within and between recording sessions. Our results are discussed relative to the possibility that the findings explain the effects of MK-801 on the acquisition and performance of spatial tasks. PMID:25307435
Standardized Curriculum for Electrician.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: electrician I and II. The 11 units in electrician I are as follows: orientation; safety; tools, equipment, materials/supplies; basic principles and theory; DC circuits; AC circuits; blueprints and load calculations; load centers and…
Physiomodel - an integrative physiology in Modelica.
Matejak, Marek; Kofranek, Jiri
2015-08-01
Physiomodel (http://www.physiomodel.org) is our reimplementation and extension of an integrative physiological model called HumMod 1.6 (http://www.hummod.org) using our Physiolibrary (http://www.physiolibrary.org). The computer language Modelica is well-suited to exactly formalize integrative physiology. Modelica is an equation-based, and object-oriented language for hybrid ordinary differential equations (http:// www.modelica.org). Almost every physiological term can be defined as a class in this language and can be instantiated as many times as it occurs in the body. Each class has a graphical icon for use in diagrams. These diagrams are self-describing; the Modelica code generated from them is the full representation of the underlying mathematical model. Special Modelica constructs of physical connectors from Physiolibrary allow us to create diagrams that are analogies of electrical circuits with Kirchhoff's laws. As electric currents and electric potentials are connected in electrical domain, so are molar flows and concentrations in the chemical domain; volumetric flows and pressures in the hydraulic domain; flows of heat energy and temperatures in the thermal domain; and changes and amounts of members in the population domain.
Timmermans, Annick A A; Lemmens, Ryanne J M; Monfrance, Maurice; Geers, Richard P J; Bakx, Wilbert; Smeets, Rob J E M; Seelen, Henk A M
2014-03-31
Over fifty percent of stroke patients experience chronic arm hand performance problems, compromising independence in daily life activities and quality of life. Task-oriented training may improve arm hand performance after stroke, whereby augmented therapy may lead to a better treatment outcome. Technology-supported training holds opportunities for increasing training intensity. However, the effects of robot-supported task-oriented training with real life objects in stroke patients are not known to date. The aim of the present study was to investigate the effectiveness and added value of the Haptic Master robot combined with task-oriented arm hand training in chronic stroke patients. In a single-blind randomized controlled trial, 22 chronic stroke patients were randomly allocated to receive either task-oriented robot-assisted arm-hand training (experimental group) or task-oriented non-robotic arm-hand training (control group). For training, the T-TOAT (Technology-supported Task-Oriented Arm Training) method was applied. Training was provided during 8 weeks, 4 times/week, 2 × 30 min/day. A significant improvement after training on the Action Research Arm Test (ARAT) was demonstrated in the experimental group (p = 0.008). Results were maintained until 6 months after cessation of the training. On the perceived performance measure (Motor Activity Log (MAL)), both, the experimental and control group improved significantly after training (control group p = 0.008; experimental group p = 0.013). The improvements on MAL in both groups were maintained until 6 months after cessation of the training. With regard to quality of life, only in the control group a significant improvement after training was found (EuroQol-5D p = 0.015, SF-36 physical p = 0.01). However, the improvement on SF-36 in the control group was not maintained (p = 0.012). No between-group differences could be demonstrated on any of the outcome measures. Arm hand performance improved in chronic stroke patients, after eight weeks of task oriented training. The use of a Haptic Master robot in support of task-oriented arm training did not show additional value over the video-instructed task-oriented exercises in highly functional stroke patients. Current Controlled Trials ISRCTN82787126.
Bortoli, Laura; Bertollo, Maurizio; Filho, Edson; Robazza, Claudio
2014-01-01
Grounded in achievement goal theory and self-determination theory, this cross-sectional study examined the relationship between perceived motivational climate and individuals' motivation as well as the mediation effect of psychobiosocial states as conceptualised within the individual zones of optimal functioning (IZOF) model. Young students (N = 167, age range 14-15 years) taking part in physical education classes completed measures of teacher-initiated motivational climate, task and ego orientation, motivation and psychobiosocial states. Simple and serial mediation analyses indicated that a perceived mastery climate and individuals' task orientation were related to intrinsic motivation and identified regulation through the mediation of pleasant/functional psychobiosocial states. In contrast, a perceived performance climate was related to external regulation and amotivation through the mediation of unpleasant/dysfunctional psychobiosocial states. Regression analysis results also showed that discrete psychobiosocial states accounted for a significant proportion of variance in motivational variables. Taken together, findings highlight the role of psychobiosocial states as mediators of the relationship between motivational climate and an individual's motivation, and suggest that educators should consider a wide range of individual's functional and dysfunctional reactions deriving from their instructional activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The multi-agent system (MAS) approach has been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future as developed by Southern California Edison. These next generation power system results include better ability to reconfigure the circuit as well as the increased capability to improve the protection and enhance the reliability of the circuit. There were four main tasks in this project. The specific results for each of these four tasks and their related topics are presented in main sections of this report. Also, there were seven deliverables for this project. The mainmore » conclusions for these deliverables are summarized in the identified subtask section of this report. The specific details for each of these deliverables are included in the “Project Deliverables” section at the end of this Final Report.« less
Dual-task results and the lateralization of spatial orientation: artifact of test selection?
Bowers, C A; Milham, L M; Price, C
1998-01-01
An investigation was conducted to identify the degree to which results regarding the lateralization of spatial orientation among men and women are artifacts of test selection. A dual-task design was used to study possible lateralization differences, providing baseline and dual-task measures of spatial-orientation performance, right- and left-hand tapping, and vocalization of "cat, dog, horse." The Guilford-Zimmerman Test (Guilford & Zimmerman, 1953), the Eliot-Price Test (Eliot & Price, 1976), and the Stumpf-Fay Cube Perspectives Test (Stumpf & Fay, 1983) were the three spatial-orientation tests used to investigate possible artifacts of test selection. Twenty-eight right-handed male and 39 right-handed female undergraduates completed random baseline and dual-task sessions. Analyses indicated no significant sex-related differences in spatial-orientation ability for all three tests. Furthermore, there was no evidence of differential lateralization of spatial orientation between the sexes.
3 CFR - White House Task Force on Middle-Class Working Families
Code of Federal Regulations, 2010 CFR
2010-01-01
... 3 The President 1 2010-01-01 2010-01-01 false White House Task Force on Middle-Class Working... Task Force on Middle-Class Working Families Memorandum for the Heads of Executive Departments and... times. To these ends, I hereby direct the following: Section 1. White House Task Force on Middle-Class...
A comparison of visuomotor cue integration strategies for object placement and prehension.
Greenwald, Hal S; Knill, David C
2009-01-01
Visual cue integration strategies are known to depend on cue reliability and how rapidly the visual system processes incoming information. We investigated whether these strategies also depend on differences in the information demands for different natural tasks. Using two common goal-oriented tasks, prehension and object placement, we determined whether monocular and binocular information influence estimates of three-dimensional (3D) orientation differently depending on task demands. Both tasks rely on accurate 3D orientation estimates, but 3D position is potentially more important for grasping. Subjects placed an object on or picked up a disc in a virtual environment. On some trials, the monocular cues (aspect ratio and texture compression) and binocular cues (e.g., binocular disparity) suggested slightly different 3D orientations for the disc; these conflicts either were present upon initial stimulus presentation or were introduced after movement initiation, which allowed us to quantify how information from the cues accumulated over time. We analyzed the time-varying orientations of subjects' fingers in the grasping task and those of the object in the object placement task to quantify how different visual cues influenced motor control. In the first experiment, different subjects performed each task, and those performing the grasping task relied on binocular information more when orienting their hands than those performing the object placement task. When subjects in the second experiment performed both tasks in interleaved sessions, binocular cues were still more influential during grasping than object placement, and the different cue integration strategies observed for each task in isolation were maintained. In both experiments, the temporal analyses showed that subjects processed binocular information faster than monocular information, but task demands did not affect the time course of cue processing. How one uses visual cues for motor control depends on the task being performed, although how quickly the information is processed appears to be task invariant.
Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun
2016-01-01
Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer.
Gravity orientation tuning in macaque anterior thalamus.
Laurens, Jean; Kim, Byounghoon; Dickman, J David; Angelaki, Dora E
2016-12-01
Gravity may provide a ubiquitous allocentric reference to the brain's spatial orientation circuits. Here we describe neurons in the macaque anterior thalamus tuned to pitch and roll orientation relative to gravity, independently of visual landmarks. We show that individual cells exhibit two-dimensional tuning curves, with peak firing rates at a preferred vertical orientation. These results identify a thalamic pathway for gravity cues to influence perception, action and spatial cognition.
The Influence of Task Involvement on the Use of Learning Strategies.
ERIC Educational Resources Information Center
Nolen, Susan Bobbitt
The relationship between goal orientation and the use of learning strategies and their effects on learning outcomes were investigated. The three goal orientations considered were: (1) task orientation, which involves learning for its own sake; (2) ego orientation, which involves a desire to perform better than others; and (3) work avoidance, which…
DUK - A Fast and Efficient Kmer Based Sequence Matching Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingkun; Copeland, Alex; Han, James
2011-03-21
A new tool, DUK, is developed to perform matching task. Matching is to find whether a query sequence partially or totally matches given reference sequences or not. Matching is similar to alignment. Indeed many traditional analysis tasks like contaminant removal use alignment tools. But for matching, there is no need to know which bases of a query sequence matches which position of a reference sequence, it only need know whether there exists a match or not. This subtle difference can make matching task much faster than alignment. DUK is accurate, versatile, fast, and has efficient memory usage. It uses Kmermore » hashing method to index reference sequences and Poisson model to calculate p-value. DUK is carefully implemented in C++ in object oriented design. The resulted classes can also be used to develop other tools quickly. DUK have been widely used in JGI for a wide range of applications such as contaminant removal, organelle genome separation, and assembly refinement. Many real applications and simulated dataset demonstrate its power.« less
Inertial Orientation Trackers with Drift Compensation
NASA Technical Reports Server (NTRS)
Foxlin, Eric M.
2008-01-01
A class of inertial-sensor systems with drift compensation has been invented for use in measuring the orientations of human heads (and perhaps other, similarly sized objects). These systems can be designed to overcome some of the limitations of prior orientation-measuring systems that are based, variously, on magnetic, optical, mechanical-linkage, and acoustical principles. The orientation signals generated by the systems of this invention could be used for diverse purposes, including controlling head-orientation-dependent virtual reality visual displays or enabling persons whose limbs are paralyzed to control machinery by means of head motions. The inventive concept admits to variations too numerous to describe here, making it necessary to limit this description to a typical system, the selected aspects of which are illustrated in the figure. A set of sensors is mounted on a bracket on a band or a cap that gently but firmly grips the wearer s head to be tracked. Among the sensors are three drift-sensitive rotationrate sensors (e.g., integrated-circuit angular- rate-measuring gyroscopes), which put out DC voltages nominally proportional to the rates of rotation about their sensory axes. These sensors are mounted in mutually orthogonal orientations for measuring rates of rotation about the roll, pitch, and yaw axes of the wearer s head. The outputs of these rate sensors are conditioned and digitized, and the resulting data are fed to an integrator module implemented in software in a digital computer. In the integrator module, the angular-rate signals are jointly integrated by any of several established methods to obtain a set of angles that represent approximately the orientation of the head in an external, inertial coordinate system. Because some drift is always present as a component of an angular position computed by integrating the outputs of angular-rate sensors, the orientation signal is processed further in a drift-compensator software module.
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1977-01-01
Rectifying antenna is less bulky structure for absorbing transmitted microwave power and converting it into electrical current. Printed-circuit approach, using microstrip technology and circularly polarized antenna, makes polarization orientation unimportant and allows much smaller arrays for given performance. Innovation is particularly useful with proposed electric vehicles powered by beam microwaves.
Perception for mobile robot navigation: A survey of the state of the art
NASA Technical Reports Server (NTRS)
Kortenkamp, David
1994-01-01
In order for mobile robots to navigate safely in unmapped and dynamic environments they must perceive their environment and decide on actions based on those perceptions. There are many different sensing modalities that can be used for mobile robot perception; the two most popular are ultrasonic sonar sensors and vision sensors. This paper examines the state-of-the-art in sensory-based mobile robot navigation. The first issue in mobile robot navigation is safety. This paper summarizes several competing sonar-based obstacle avoidance techniques and compares them. Another issue in mobile robot navigation is determining the robot's position and orientation (sometimes called the robot's pose) in the environment. This paper examines several different classes of vision-based approaches to pose determination. One class of approaches uses detailed, a prior models of the robot's environment. Another class of approaches triangulates using fixed, artificial landmarks. A third class of approaches builds maps using natural landmarks. Example implementations from each of these three classes are described and compared. Finally, the paper presents a completely implemented mobile robot system that integrates sonar-based obstacle avoidance with vision-based pose determination to perform a simple task.
An Anatomically Constrained Model for Path Integration in the Bee Brain.
Stone, Thomas; Webb, Barbara; Adden, Andrea; Weddig, Nicolai Ben; Honkanen, Anna; Templin, Rachel; Wcislo, William; Scimeca, Luca; Warrant, Eric; Heinze, Stanley
2017-10-23
Path integration is a widespread navigational strategy in which directional changes and distance covered are continuously integrated on an outward journey, enabling a straight-line return to home. Bees use vision for this task-a celestial-cue-based visual compass and an optic-flow-based visual odometer-but the underlying neural integration mechanisms are unknown. Using intracellular electrophysiology, we show that polarized-light-based compass neurons and optic-flow-based speed-encoding neurons converge in the central complex of the bee brain, and through block-face electron microscopy, we identify potential integrator cells. Based on plausible output targets for these cells, we propose a complete circuit for path integration and steering in the central complex, with anatomically identified neurons suggested for each processing step. The resulting model circuit is thus fully constrained biologically and provides a functional interpretation for many previously unexplained architectural features of the central complex. Moreover, we show that the receptive fields of the newly discovered speed neurons can support path integration for the holonomic motion (i.e., a ground velocity that is not precisely aligned with body orientation) typical of bee flight, a feature not captured in any previously proposed model of path integration. In a broader context, the model circuit presented provides a general mechanism for producing steering signals by comparing current and desired headings-suggesting a more basic function for central complex connectivity, from which path integration may have evolved. Copyright © 2017 Elsevier Ltd. All rights reserved.
Object-Oriented Programming in High Schools the Turing Way.
ERIC Educational Resources Information Center
Holt, Richard C.
This paper proposes an approach to introducing object-oriented concepts to high school computer science students using the Object-Oriented Turing (OOT) language. Students can learn about basic object-oriented (OO) principles such as classes and inheritance by using and expanding a collection of classes that draw pictures like circles and happy…
What's in a Name? Impact of marketing different course titles on enrollment for online classes.
Kemper, Kathi J; Woods, Charles; McBride, Allison
2008-12-01
Little is known about the impact of different marketing strategies on enrollment of online courses for health professionals. The authors compared one aspect of marketing, course titles, for online classes about herbs and dietary supplements (HDS). The authors marketed two titles-one knowledge-oriented, the other behavior-oriented-for each of seven online HDS classes. The two titles were (1) "Introduction to topic" (Knowledge) and (2) "Talking with patients about topic" (Behavior). The seven classes were two general (introduction and safety) and five specialty (women, children, the elderly, depression, and gastrointestinal) topics. The Area Health Education Center in northwest North Carolina marketed the classes. Altogether, 195 clinicians enrolled in an average of 7.6 classes per enrollee (1,487 total). For every class, enrollment was higher for knowledge-oriented than behavior-oriented titled classes (average of 124 versus 89 enrollees per class, P < .01). Enrollment, combining the two general classes, was also significantly higher for general than specialty classes (266 versus 191 enrollees per class, P < .01). Differences in titles and levels of generality significantly impacted enrollment rates in these online classes on an unfamiliar topic. Additional marketing research is needed to inform efforts to enroll clinicians into courses on more familiar topics.
Rönspies, Jelena; Schmidt, Alexander F; Melnikova, Anna; Krumova, Rosina; Zolfagari, Asadeh; Banse, Rainer
2015-07-01
The present study was conducted to validate an adaptation of the Implicit Relational Assessment Procedure (IRAP) as an indirect latency-based measure of sexual orientation. Furthermore, reliability and criterion validity of the IRAP were compared to two established indirect measures of sexual orientation: a Choice Reaction Time task (CRT) and a Viewing Time (VT) task. A sample of 87 heterosexual and 35 gay men completed all three indirect measures in an online study. The IRAP and the VT predicted sexual orientation nearly perfectly. Both measures also showed a considerable amount of convergent validity. Reliabilities (internal consistencies) reached satisfactory levels. In contrast, the CRT did not tap into sexual orientation in the present study. In sum, the VT measure performed best, with the IRAP showing only slightly lower reliability and criterion validity, whereas the CRT did not yield any evidence of reliability or criterion validity in the present research. The results were discussed in the light of specific task properties of the indirect latency-based measures (task-relevance vs. task-irrelevance).
Synthetic Synchronisation: From Attention and Multi-Tasking to Negative Capability and Judgment
ERIC Educational Resources Information Center
Stables, Andrew
2013-01-01
Educational literature has tended to focus, explicitly and implicitly, on two kinds of task orientation: the ability either to focus on a single task, or to multi-task. A third form of orientation characterises many highly successful people. This is the ability to combine several tasks into one: to "kill two (or more) birds with one…
NASA Astrophysics Data System (ADS)
Chantana, J.; Watanabe, T.; Teraji, S.; Kawamura, K.; Minemoto, T.
2013-11-01
Cu(In,Ga)Se2 (CIGS) absorbers with various Ga/III, Ga/(In+Ga), profiles are prepared by the so-called "multi-layer precursor method" using multi-layer co-evaporation of material sources. It is revealed that open-circuit voltage (VOC) of CIGS solar cell is primarily dependent on averaged Ga/III near the surface of its absorber. This averaged Ga/III is well predicted by peak position of (220/204) preferred orientation of CIGS film near its surface investigated by glancing-incidence X-ray diffraction with 0.1° incident angle. Finally, the peak position of (220/204) preferred orientation is proposed as a measure of VOC before solar cell fabrication.
Attention improves encoding of task-relevant features in the human visual cortex
Jehee, Janneke F.M.; Brady, Devin K.; Tong, Frank
2011-01-01
When spatial attention is directed towards a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer’s task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature, and not when the grating’s contrast had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks but color-selective responses were enhanced only when color was task-relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location, but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features, and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information. PMID:21632942
Attention improves encoding of task-relevant features in the human visual cortex.
Jehee, Janneke F M; Brady, Devin K; Tong, Frank
2011-06-01
When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.
Analysis and synthesis of distributed-lumped-active networks by digital computer
NASA Technical Reports Server (NTRS)
1973-01-01
The use of digital computational techniques in the analysis and synthesis of DLA (distributed lumped active) networks is considered. This class of networks consists of three distinct types of elements, namely, distributed elements (modeled by partial differential equations), lumped elements (modeled by algebraic relations and ordinary differential equations), and active elements (modeled by algebraic relations). Such a characterization is applicable to a broad class of circuits, especially including those usually referred to as linear integrated circuits, since the fabrication techniques for such circuits readily produce elements which may be modeled as distributed, as well as the more conventional lumped and active ones.
NASA Astrophysics Data System (ADS)
Suzuki, Daisuke; Hanyu, Takahiro
2018-04-01
A magnetic-tunnel-junction (MTJ)-oriented nonvolatile lookup table (LUT) circuit, in which a low-power data-shift function is performed by minimizing the number of write operations in MTJ devices is proposed. The permutation of the configuration memory cell for read/write access is performed as opposed to conventional direct data shifting to minimize the number of write operations, which results in significant write energy savings in the data-shift function. Moreover, the hardware cost of the proposed LUT circuit is small since the selector is shared between read access and write access. In fact, the power consumption in the data-shift function and the transistor count are reduced by 82 and 52%, respectively, compared with those in a conventional static random-access memory-based implementation using a 90 nm CMOS technology.
Motivational predictors of prosocial and antisocial behaviour in football.
Kavussanu, Maria
2006-06-01
This study examined (a) the main and interactive effects of goal orientations and perceived motivational climate on prosocial and antisocial behaviour, and (b) whether number of seasons one has played for the team interacts with motivational climate in predicting prosocial and antisocial behaviour in association football. Participants were 325 male association football players, whose age ranged from 12 to 17 years. Athletes completed questionnaires measuring frequency of prosocial and antisocial behaviours in football, goal orientation, motivational climate and social desirability, and indicated the number of seasons they had played for their current team. Regression analyses revealed that task orientation and mastery climate were positive predictors of prosocial behaviour, whereas ego orientation and performance climate were positive predictors of antisocial behaviour. In addition, task orientation negatively predicted antisocial behaviour, while ego orientation negatively predicted prosocial behaviour. No significant interactions between task and ego orientation and mastery and performance motivational climate were found. Finally, mastery climate negatively predicted antisocial behaviour for those who had played many seasons for the team. In conclusion, strengthening task orientation and mastery climate and weakening ego orientation may enhance prosocial behaviour. However, for antisocial conduct to be eliminated from the context of association football, ego orientation and performance climate need to be tempered, as these constructs exert unique independent effects on antisocial behaviour.
Karakowsky, L; Siegel, J P
1999-08-01
Much of the research that has examined the behavioral consequences of membership in mixed-gender work groups suggests that men are more participative and influential in task-related behavior. Drawing from elements of sociological, structural, and psychological perspectives, this study examined the effects of group gender composition and gender orientation of the group's task on patterns of emergent leadership behavior. Participants were assigned to male-dominated, female-dominated, or balanced-gender groups for the purpose of discussing and generating solutions for two business-related cases--each case emphasized either male-oriented or female-oriented expertise. The findings suggest that the proportional representation of men and women in a work group, along with the gender orientation of the group's task, can significantly influence the level of leadership behavior exhibited in group activity.
Characteristic and intermingled neocortical circuits encode different visual object discriminations.
Zhang, Guo-Rong; Zhao, Hua; Cook, Nathan; Svestka, Michael; Choi, Eui M; Jan, Mary; Cook, Robert G; Geller, Alfred I
2017-07-28
Synaptic plasticity and neural network theories hypothesize that the essential information for advanced cognitive tasks is encoded in specific circuits and neurons within distributed neocortical networks. However, these circuits are incompletely characterized, and we do not know if a specific discrimination is encoded in characteristic circuits among multiple animals. Here, we determined the spatial distribution of active neurons for a circuit that encodes some of the essential information for a cognitive task. We genetically activated protein kinase C pathways in several hundred spatially-grouped glutamatergic and GABAergic neurons in rat postrhinal cortex, a multimodal associative area that is part of a distributed circuit that encodes visual object discriminations. We previously established that this intervention enhances accuracy for specific discriminations. Moreover, the genetically-modified, local circuit in POR cortex encodes some of the essential information, and this local circuit is preferentially activated during performance, as shown by activity-dependent gene imaging. Here, we mapped the positions of the active neurons, which revealed that two image sets are encoded in characteristic and different circuits. While characteristic circuits are known to process sensory information, in sensory areas, this is the first demonstration that characteristic circuits encode specific discriminations, in a multimodal associative area. Further, the circuits encoding the two image sets are intermingled, and likely overlapping, enabling efficient encoding. Consistent with reconsolidation theories, intermingled and overlapping encoding could facilitate formation of associations between related discriminations, including visually similar discriminations or discriminations learned at the same time or place. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Belli, Emre
2015-01-01
The aim of this study is to explore the task and ego oriented goals of the students majoring at the Faculty of Sports Sciences at Ataturk University. For data collection, "The Task and Ego Orientation in Sport Questionnaire", which was developed by Duda (1) and adapted into Turkish by Toros and Yetim (2), was used in the current study to…
Task oriented training improves the balance outcome & reducing fall risk in diabetic population.
Ghazal, Javeria; Malik, Arshad Nawaz; Amjad, Imran
2016-01-01
The objective was to determine the balance impairments and to compare task oriented versus traditional balance training in fall reduction among diabetic patients. The randomized control trial with descriptive survey and 196 diabetic patients were recruited to assess balance impairments through purposive sampling technique. Eighteen patients were randomly allocated into two groups; task oriented balance training group TOB (n=8) and traditional balance training group TBT (n=10). The inclusion criteria were 30-50 years age bracket and diagnosed cases of Diabetes Mellitus with neuropathy. The demographics were taken through standardized & valid assessment tools include Berg Balance Scale and Functional Reach Test. The measurements were obtained at baseline, after 04 and 08 weeks of training. The mean age of the participants was 49 ±6.79. The result shows that 165(84%) were at moderate risk of fall and 31(15%) were at mild risk of fall among total 196 diabetic patients. There was significant improvement (p <0.05) in task oriented balance training group for dynamic balance, anticipatory balance and reactive balance after 8 weeks of training as compare to traditional balance training. Task oriented balance training is effective in improving the dynamic, anticipator and reactive balance. The task oriented training reduces the risk of falling through enhancing balance outcome.
Task oriented training improves the balance outcome & reducing fall risk in diabetic population
Ghazal, Javeria; Malik, Arshad Nawaz; Amjad, Imran
2016-01-01
Objectives: The objective was to determine the balance impairments and to compare task oriented versus traditional balance training in fall reduction among diabetic patients. Methods: The randomized control trial with descriptive survey and 196 diabetic patients were recruited to assess balance impairments through purposive sampling technique. Eighteen patients were randomly allocated into two groups; task oriented balance training group TOB (n=8) and traditional balance training group TBT (n=10). The inclusion criteria were 30-50 years age bracket and diagnosed cases of Diabetes Mellitus with neuropathy. The demographics were taken through standardized & valid assessment tools include Berg Balance Scale and Functional Reach Test. The measurements were obtained at baseline, after 04 and 08 weeks of training. Results: The mean age of the participants was 49 ±6.79. The result shows that 165(84%) were at moderate risk of fall and 31(15%) were at mild risk of fall among total 196 diabetic patients. There was significant improvement (p <0.05) in task oriented balance training group for dynamic balance, anticipatory balance and reactive balance after 8 weeks of training as compare to traditional balance training. Conclusion: Task oriented balance training is effective in improving the dynamic, anticipator and reactive balance. The task oriented training reduces the risk of falling through enhancing balance outcome. PMID:27648053
Cui, Guanyu; Yao, Meilin; Zhang, Xia
2017-01-01
Class-related boredom is commonly experienced by students and it has an impact on their learning engagement and achievements. Previous research has found that perceived teacher enthusiasm might contribute to reducing students’ class-related boredom. However, the mechanism through which perceived teacher enthusiasm affects class-related boredom remains unexplored. The purpose of the present study was to investigate the mediating role of perceived autonomy support and task value in the relationship between teacher enthusiasm and class-related boredom. College students (N = 734) completed questionnaires on perceived teacher enthusiasm, boredom proneness, perceived task difficulty, perceived autonomy support, perceived task value, and class-related boredom. Results showed that after controlling for the effects of demographic variables, boredom proneness, and perceived task difficulty, both perceived autonomy support and task value fully mediated the relationship between perceived teacher enthusiasm and class-related boredom. These findings suggest that students who perceive more teacher enthusiasm might perceive more autonomy support and task value, which in turn reduce the students’ class-related boredom. Limitations in the present study have also been discussed. PMID:28367134
Cui, Guanyu; Yao, Meilin; Zhang, Xia
2017-01-01
Class-related boredom is commonly experienced by students and it has an impact on their learning engagement and achievements. Previous research has found that perceived teacher enthusiasm might contribute to reducing students' class-related boredom. However, the mechanism through which perceived teacher enthusiasm affects class-related boredom remains unexplored. The purpose of the present study was to investigate the mediating role of perceived autonomy support and task value in the relationship between teacher enthusiasm and class-related boredom. College students ( N = 734) completed questionnaires on perceived teacher enthusiasm, boredom proneness, perceived task difficulty, perceived autonomy support, perceived task value, and class-related boredom. Results showed that after controlling for the effects of demographic variables, boredom proneness, and perceived task difficulty, both perceived autonomy support and task value fully mediated the relationship between perceived teacher enthusiasm and class-related boredom. These findings suggest that students who perceive more teacher enthusiasm might perceive more autonomy support and task value, which in turn reduce the students' class-related boredom. Limitations in the present study have also been discussed.
Integrating end-to-end threads of control into object-oriented analysis and design
NASA Technical Reports Server (NTRS)
Mccandlish, Janet E.; Macdonald, James R.; Graves, Sara J.
1993-01-01
Current object-oriented analysis and design methodologies fall short in their use of mechanisms for identifying threads of control for the system being developed. The scenarios which typically describe a system are more global than looking at the individual objects and representing their behavior. Unlike conventional methodologies that use data flow and process-dependency diagrams, object-oriented methodologies do not provide a model for representing these global threads end-to-end. Tracing through threads of control is key to ensuring that a system is complete and timing constraints are addressed. The existence of multiple threads of control in a system necessitates a partitioning of the system into processes. This paper describes the application and representation of end-to-end threads of control to the object-oriented analysis and design process using object-oriented constructs. The issue of representation is viewed as a grouping problem, that is, how to group classes/objects at a higher level of abstraction so that the system may be viewed as a whole with both classes/objects and their associated dynamic behavior. Existing object-oriented development methodology techniques are extended by adding design-level constructs termed logical composite classes and process composite classes. Logical composite classes are design-level classes which group classes/objects both logically and by thread of control information. Process composite classes further refine the logical composite class groupings by using process partitioning criteria to produce optimum concurrent execution results. The goal of these design-level constructs is to ultimately provide the basis for a mechanism that can support the creation of process composite classes in an automated way. Using an automated mechanism makes it easier to partition a system into concurrently executing elements that can be run in parallel on multiple processors.
Kozlik, Julia; Neumann, Roland; Lozo, Ljubica
2015-01-01
Several emotion theorists suggest that valenced stimuli automatically trigger motivational orientations and thereby facilitate corresponding behavior. Positive stimuli were thought to activate approach motivational circuits which in turn primed approach-related behavioral tendencies whereas negative stimuli were supposed to activate avoidance motivational circuits so that avoidance-related behavioral tendencies were primed (motivational orientation account). However, recent research suggests that typically observed affective stimulus-response compatibility phenomena might be entirely explained in terms of theories accounting for mechanisms of general action control instead of assuming motivational orientations to mediate the effects (evaluative coding account). In what follows, we explore to what extent this notion is applicable. We present literature suggesting that evaluative coding mechanisms indeed influence a wide variety of affective stimulus-response compatibility phenomena. However, the evaluative coding account does not seem to be sufficient to explain affective S-R compatibility effects. Instead, several studies provide clear evidence in favor of the motivational orientation account that seems to operate independently of evaluative coding mechanisms. Implications for theoretical developments and future research designs are discussed.
Kozlik, Julia; Neumann, Roland; Lozo, Ljubica
2015-01-01
Several emotion theorists suggest that valenced stimuli automatically trigger motivational orientations and thereby facilitate corresponding behavior. Positive stimuli were thought to activate approach motivational circuits which in turn primed approach-related behavioral tendencies whereas negative stimuli were supposed to activate avoidance motivational circuits so that avoidance-related behavioral tendencies were primed (motivational orientation account). However, recent research suggests that typically observed affective stimulus–response compatibility phenomena might be entirely explained in terms of theories accounting for mechanisms of general action control instead of assuming motivational orientations to mediate the effects (evaluative coding account). In what follows, we explore to what extent this notion is applicable. We present literature suggesting that evaluative coding mechanisms indeed influence a wide variety of affective stimulus–response compatibility phenomena. However, the evaluative coding account does not seem to be sufficient to explain affective S–R compatibility effects. Instead, several studies provide clear evidence in favor of the motivational orientation account that seems to operate independently of evaluative coding mechanisms. Implications for theoretical developments and future research designs are discussed. PMID:25983718
Predictors of leadership styles of medical students: implications for medical education.
Sriratanaban, J; Chiravisit, M; Viputsiri, O
1999-09-01
Providing effective health care services for a population involves a great deal of team-work among health care workers and leadership of physicians. The primary purpose of this study was to assess the leadership styles of medical students, and to explore factors that may be associated with them. Leadership questionnaires were used to assess leadership styles of 97 sixth-year medical students of the 1995 class at Chulalongkorn University attending the community medicine III program which was designed to introduce basic knowledge and skills in health care management. The baseline leadership styles of the students were more people-oriented than task-oriented. Multivariate analyses revealed that administrative experiences from extracurricular activities and perceived importance of a health administration course were significantly associated with leadership styles. Medical students should be encouraged to participate in extracurricular activities during their medical studies, taking leader positions, in order to develop an optimal leadership style to be effective health team leaders.
Design principles for elementary gene circuits: Elements, methods, and examples
NASA Astrophysics Data System (ADS)
Savageau, Michael A.
2001-03-01
The control of gene expression involves complex circuits that exhibit enormous variation in design. For years the most convenient explanation for these variations was historical accident. According to this view, evolution is a haphazard process in which many different designs are generated by chance; there are many ways to accomplish the same thing, and so no further meaning can be attached to such different but equivalent designs. In recent years a more satisfying explanation based on design principles has been found for at least certain aspects of gene circuitry. By design principle we mean a rule that characterizes some biological feature exhibited by a class of systems such that discovery of the rule allows one not only to understand known instances but also to predict new instances within the class. The central importance of gene regulation in modern molecular biology provides strong motivation to search for more of these underlying design principles. The search is in its infancy and there are undoubtedly many design principles that remain to be discovered. The focus of this three-part review will be the class of elementary gene circuits in bacteria. The first part reviews several elements of design that enter into the characterization of elementary gene circuits in prokaryotic organisms. Each of these elements exhibits a variety of realizations whose meaning is generally unclear. The second part reviews mathematical methods used to represent, analyze, and compare alternative designs. Emphasis is placed on particular methods that have been used successfully to identify design principles for elementary gene circuits. The third part reviews four design principles that make specific predictions regarding (1) two alternative modes of gene control, (2) three patterns of coupling gene expression in elementary circuits, (3) two types of switches in inducible gene circuits, and (4) the realizability of alternative gene circuits and their response to phased environmental cues. In each case, the predictions are supported by experimental evidence. These results are important for understanding the function, design, and evolution of elementary gene circuits.
Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun
2016-01-01
Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer. PMID:26873777
The equivalent internal orientation and position noise for contour integration.
Baldwin, Alex S; Fu, Minnie; Farivar, Reza; Hess, Robert F
2017-10-12
Contour integration is the joining-up of local responses to parts of a contour into a continuous percept. In typical studies observers detect contours formed of discrete wavelets, presented against a background of random wavelets. This measures performance for detecting contours in the limiting external noise that background provides. Our novel task measures contour integration without requiring any background noise. This allowed us to perform noise-masking experiments using orientation and position noise. From these we measure the equivalent internal noise for contour integration. We found an orientation noise of 6° and position noise of 3 arcmin. Orientation noise was 2.6x higher in contour integration compared to an orientation discrimination control task. Comparing against a position discrimination task found position noise in contours to be 2.4x lower. This suggests contour integration involves intermediate processing that enhances the quality of element position representation at the expense of element orientation. Efficiency relative to the ideal observer was lower for the contour tasks (36% in orientation noise, 21% in position noise) compared to the controls (54% and 57%).
Simulated Laboratory in Digital Logic.
ERIC Educational Resources Information Center
Cleaver, Thomas G.
Design of computer circuits used to be a pencil and paper task followed by laboratory tests, but logic circuit design can now be done in half the time as the engineer accesses a program which simulates the behavior of real digital circuits, and does all the wiring and testing on his computer screen. A simulated laboratory in digital logic has been…
Sanders, G; Wright, M
1997-10-01
With each of the tasks in the present studies we expected to find the reported sex difference between heterosexual women and heterosexual men and we predicted a sexual orientation effect with the performance of homosexual men being similar to that of heterosexual women and different from that of heterosexual men. Study 1 aimed to replicate earlier findings by recording the performance of a group of homosexual men on a visuospatial task, the Vincent Mechanical Diagrams Test (VMDT), a dot detection divided visual field measure of functional cerebral asymmetry, and on five subtests of the Wechsler Adult Intelligence Scale (WAIS). For each task the profile of scores obtained for the homosexual men was similar to that of heterosexual women in that they scored lower than heterosexual men on the VMDT, they showed less asymmetry, and they recorded a higher Verbal than Performance IQ on the WAIS. In Study 2, a male-biased targeted throwing task favored heterosexual men while, in contrast, on the female-biased Purdue Pegboard single peg condition heterosexual men were outperformed by heterosexual women and homosexual men. On neither of these two tasks did the performances of homosexual men and heterosexual women differ. One task, manual speed, yielded neither sex nor sexual orientation differences. Another, the Purdue Pegboard assemblies condition, revealed a sex difference but no sexual orientation difference. Failure to obtain a sexual orientation difference in the presence of a sex difference suggests that the sexual orientation effect may be restricted to a subset of sexually dimorphic tasks.
Affective neural response to restricted interests in autism spectrum disorders.
Cascio, Carissa J; Foss-Feig, Jennifer H; Heacock, Jessica; Schauder, Kimberly B; Loring, Whitney A; Rogers, Baxter P; Pryweller, Jennifer R; Newsom, Cassandra R; Cockhren, Jurnell; Cao, Aize; Bolton, Scott
2014-01-01
Restricted interests are a class of repetitive behavior in autism spectrum disorders (ASD) whose intensity and narrow focus often contribute to significant interference with daily functioning. While numerous neuroimaging studies have investigated executive circuits as putative neural substrates of repetitive behavior, recent work implicates affective neural circuits in restricted interests. We sought to explore the role of affective neural circuits and determine how restricted interests are distinguished from hobbies or interests in typical development. We compared a group of children with ASD to a typically developing (TD) group of children with strong interests or hobbies, employing parent report, an operant behavioral task, and functional imaging with personalized stimuli based on individual interests. While performance on the operant task was similar between the two groups, parent report of intensity and interference of interests was significantly higher in the ASD group. Both the ASD and TD groups showed increased BOLD response in widespread affective neural regions to the pictures of their own interest. When viewing pictures of other children's interests, the TD group showed a similar pattern, whereas BOLD response in the ASD group was much more limited. Increased BOLD response in the insula and anterior cingulate cortex distinguished the ASD from the TD group, and parent report of the intensity and interference with daily life of the child's restricted interest predicted insula response. While affective neural network response and operant behavior are comparable in typical and restricted interests, the narrowness of focus that clinically distinguishes restricted interests in ASD is reflected in more interference in daily life and aberrantly enhanced insula and anterior cingulate response to individuals' own interests in the ASD group. These results further support the involvement of affective neural networks in repetitive behaviors in ASD. © 2013 The Authors. Journal of Child Psychology and Psychiatry © 2013 Association for Child and Adolescent Mental Health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chantana, J., E-mail: jakapan@fc.ritsumei.ac.jp; Minemoto, T.; Watanabe, T.
2013-11-25
Cu(In,Ga)Se{sub 2} (CIGS) absorbers with various Ga/III, Ga/(In+Ga), profiles are prepared by the so-called “multi-layer precursor method” using multi-layer co-evaporation of material sources. It is revealed that open-circuit voltage (V{sub OC}) of CIGS solar cell is primarily dependent on averaged Ga/III near the surface of its absorber. This averaged Ga/III is well predicted by peak position of (220/204) preferred orientation of CIGS film near its surface investigated by glancing-incidence X-ray diffraction with 0.1° incident angle. Finally, the peak position of (220/204) preferred orientation is proposed as a measure of V{sub OC} before solar cell fabrication.
Retell, James D; Becker, Stefanie I; Remington, Roger W
2016-01-01
An organism's survival depends on the ability to rapidly orient attention to unanticipated events in the world. Yet, the conditions needed to elicit such involuntary capture remain in doubt. Especially puzzling are spatial cueing experiments, which have consistently shown that involuntary shifts of attention to highly salient distractors are not determined by stimulus properties, but instead are contingent on attentional control settings induced by task demands. Do we always need to be set for an event to be captured by it, or is there a class of events that draw attention involuntarily even when unconnected to task goals? Recent results suggest that a task-irrelevant event will capture attention on first presentation, suggesting that salient stimuli that violate contextual expectations might automatically capture attention. Here, we investigated the role of contextual expectation by examining whether an irrelevant motion cue that was presented only rarely (∼3-6% of trials) would capture attention when observers had an active set for a specific target colour. The motion cue had no effect when presented frequently, but when rare produced a pattern of interference consistent with attentional capture. The critical dependence on the frequency with which the irrelevant motion singleton was presented is consistent with early theories of involuntary orienting to novel stimuli. We suggest that attention will be captured by salient stimuli that violate expectations, whereas top-down goals appear to modulate capture by stimuli that broadly conform to contextual expectations.
System and method for seamless task-directed autonomy for robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Curtis; Bruemmer, David; Few, Douglas
Systems, methods, and user interfaces are used for controlling a robot. An environment map and a robot designator are presented to a user. The user may place, move, and modify task designators on the environment map. The task designators indicate a position in the environment map and indicate a task for the robot to achieve. A control intermediary links task designators with robot instructions issued to the robot. The control intermediary analyzes a relative position between the task designators and the robot. The control intermediary uses the analysis to determine a task-oriented autonomy level for the robot and communicates targetmore » achievement information to the robot. The target achievement information may include instructions for directly guiding the robot if the task-oriented autonomy level indicates low robot initiative and may include instructions for directing the robot to determine a robot plan for achieving the task if the task-oriented autonomy level indicates high robot initiative.« less
Information Flow through a Model of the C. elegans Klinotaxis Circuit.
Izquierdo, Eduardo J; Williams, Paul L; Beer, Randall D
2015-01-01
Understanding how information about external stimuli is transformed into behavior is one of the central goals of neuroscience. Here we characterize the information flow through a complete sensorimotor circuit: from stimulus, to sensory neurons, to interneurons, to motor neurons, to muscles, to motion. Specifically, we apply a recently developed framework for quantifying information flow to a previously published ensemble of models of salt klinotaxis in the nematode worm Caenorhabditis elegans. Despite large variations in the neural parameters of individual circuits, we found that the overall information flow architecture circuit is remarkably consistent across the ensemble. This suggests structural connectivity is not necessarily predictive of effective connectivity. It also suggests information flow analysis captures general principles of operation for the klinotaxis circuit. In addition, information flow analysis reveals several key principles underlying how the models operate: (1) Interneuron class AIY is responsible for integrating information about positive and negative changes in concentration, and exhibits a strong left/right information asymmetry. (2) Gap junctions play a crucial role in the transfer of information responsible for the information symmetry observed in interneuron class AIZ. (3) Neck motor neuron class SMB implements an information gating mechanism that underlies the circuit's state-dependent response. (4) The neck carries more information about small changes in concentration than about large ones, and more information about positive changes in concentration than about negative ones. Thus, not all directions of movement are equally informative for the worm. Each of these findings corresponds to hypotheses that could potentially be tested in the worm. Knowing the results of these experiments would greatly refine our understanding of the neural circuit underlying klinotaxis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aeloiza, Eddy C.; Burgos, Rolando P.
A step-down AC/AC converter for use in an electric distribution system includes at least one chopper circuit for each one of a plurality of phases of the AC power, each chopper circuit including a four-quadrant switch coupled in series between primary and secondary sides of the chopper circuit and a current-bidirectional two-quadrant switch coupled between the secondary side of the chopper circuit and a common node. Each current-bidirectional two-quadrant switch is oriented in the same direction, with respect to the secondary side of the corresponding chopper circuit and the common node. The converter further includes a control circuit configured tomore » pulse-width-modulate control inputs of the switches, to convert a first multiphase AC voltage at the primary sides of the chopper circuits to a second multiphase AC voltage at the secondary sides of the chopper circuits, the second multiphase AC voltage being lower in voltage than the first multiphase AC voltage.« less
Feasibility and effectiveness of circuit training in acute stroke rehabilitation.
Rose, Dorian; Paris, Trevor; Crews, Erin; Wu, Samuel S; Sun, Anqi; Behrman, Andrea L; Duncan, Pamela
2011-02-01
Task-specificity, repetition and progression are key variables in the acquisition of motor skill however they have not been consistently implemented in post-stroke rehabilitation. To evaluate the effectiveness of a stroke rehabilitation plan of care that incorporated task-specific practice, repetition and progression to facilitate functional gain compared to standard physical therapy for individuals admitted to an inpatient stroke unit. Individuals participated in either a circuit training (CTPT) model (n = 72) or a standard (SPT) model (n = 108) of physical therapy, 5 days/week. Each 60 minute circuit training session, delivered according to severity level, consisted of four functional mobility tasks. Daily exercise logs documented both task repetition and progression. The CTPT model was successfully implemented in an acute rehabilitation setting. The CTPT group showed a significantly greater improved change in gait speed from hospital admission to discharge than the SPT group (0.21 ± 0.25 m/sec vs. 0.13 ± 0.22 m/sec; p = 0.03). The difference between groups occurred primarily among those who were ambulatory upon admission. There were no significant differences between the two cohorts at 90 days post-stroke as measured by the FONE-FIM, SF-36 and living location. Therapy focused on systematically progressed functional tasks can be successfully implemented in an inpatient rehabilitation stroke program. This circuit-training model resulted in greater gains in gait velocity over the course of inpatient rehabilitation compared to the standard model of care. Community-based services following hospital discharge to maintain these gains should be included in the continuum of post-stroke care.
2010-08-31
circuit breakers for testing and analysis in ONR laboratories. Task 1.2 Contributors: Sunny Kedia, Shinzo Onishi , Scott Samson, Drew Hanser Task 1.2...HEAT SINK FOR HIGH-POWER MEMS SWITCH APPLICATIONS (TASK 1.3) Contributors: Priscila Spagnol, Shinzo Onishi , Drew Hanser, Weidong Wang, Sunny Kedia
The Negative Impact of Goal-Oriented Instructions
ERIC Educational Resources Information Center
Shatz, Itamar
2015-01-01
The phrasing of task instructions can facilitate or hinder the learning process. In this study, three groups of participants (N = 526) performed a foreign vocabulary memorization task, with modified instructions for each group. The instructions were either learning oriented, encouraging participants to improve their abilities; outcome oriented,…
Object Oriented Modeling and Design
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali
2007-01-01
The Object Oriented Modeling and Design seminar is intended for software professionals and students, it covers the concepts and a language-independent graphical notation that can be used to analyze problem requirements, and design a solution to the problem. The seminar discusses the three kinds of object-oriented models class, state, and interaction. The class model represents the static structure of a system, the state model describes the aspects of a system that change over time as well as control behavior and the interaction model describes how objects collaborate to achieve overall results. Existing knowledge of object oriented programming may benefit the learning of modeling and good design. Specific expectations are: Create a class model, Read, recognize, and describe a class model, Describe association and link, Show abstract classes used with multiple inheritance, Explain metadata, reification and constraints, Group classes into a package, Read, recognize, and describe a state model, Explain states and transitions, Read, recognize, and describe interaction model, Explain Use cases and use case relationships, Show concurrency in activity diagram, Object interactions in sequence diagram.
NASA Astrophysics Data System (ADS)
Main, June Dewey; Budd Rowe, Mary
This study investigated the relationship of locus-of-control orientations and task structure to the science problem-solving performance of 100 same-sex, sixth-grade student pairs. Pairs performed a four-variable problem-solving task, racing cylinders down a ramp in a series of trials to determine the 3 fastest of 18 different cylinders. The task was completed in one of two treatment conditions: the structured condition with moderate cuing and the unstructured condition with minimal cuing. Pairs completed an after-task assessment, predicting the results of proposed cylinder races, to measure the ability to understand and apply task concepts. Overall conclusions were: (1) There was no relationship between locus-of-control orientation and effectiveness of problem-solving strategy; (2) internality was significantly related to higher accuracy on task solutions and on after-task predictions; (3) there was no significant relationship between task structure and effectiveness of problem-solving strategy; (4) solutions to the task were more accurate in the unstructured task condition; (5) internality related to more accurate solutions in the unstructured task condition.
Lomber, Stephen G; Payne, Bertram R; Hilgetag, Claus C; Rushmore, JarrettR
2002-02-01
A contralateral hemineglect of the visual field can be induced by unilateral cooling deactivation of posterior middle suprasylvian (pMS) sulcal cortex of the posterior parietal region, and this neglect can be reversed by additional cooling deactivation of pMS cortex in the opposite hemisphere. The purpose of the present study was to test whether an enduring hemianopia induced by removal of all contiguous visual cortical areas of one hemisphere could be reversed by local cooling of pMS cortex in the opposite hemisphere. Two cats sustained large unilateral ablations of the contiguous visual areas, and cooling loops were placed in the pMS sulcus, and in contact with adjacent area 7 or posterior ectosylvian (PE) cortex of the opposite hemisphere. In both instances cooling of pMS cortex, but neither area 7 nor PE, restored a virtually normal level of orienting performance to stimuli presented anywhere in the previously hemianopic field. The reversal was highly sensitive to the extent of cooling deactivation. In a third cat, cooling deactivation of the superficial layers of the contralateral superior colliculus also restored orienting performance to a cortical ablation-induced hemianopia. This reversal was graded from center-to-periphery in a temperature-dependent manner. Neither the cortical ablation nor any of the cooling deactivations had any impact on an auditory detection and orienting task. The deactivations were localized and confirmed by reduced uptake of radiolabeled 2-deoxyglucose to be limited to the immediate vicinity of each cooling loop. The results are discussed in terms of excitation and disinhibition of visual circuits.
Physiological correlates of sound localization in a parasitoid fly, Ormia ochracea
NASA Astrophysics Data System (ADS)
Oshinsky, Michael Lee
A major focus of research in the nervous system is the investigation of neural circuits. The question of how neurons connect to form functional units has driven modern neuroscience research from its inception. From the beginning, the neural circuits of the auditory system and specifically sound localization were used as a model system for investigating neural connectivity and computation. Sound localization lends itself to this task because there is no mapping of spatial information on a receptor sheet as in vision. With only one eye, an animal would still have positional information for objects. Since the receptor sheet in the ear is frequency oriented and not spatially oriented, positional information for a sound source does not exist with only one ear. The nervous system computes the location of a sound source based on differences in the physiology of the two ears. In this study, I investigated the neural circuits for sound localization in a fly, Ormia ochracea (Diptera, Tachinidae, Ormiini), which is a parasitoid of crickets. This fly possess a unique mechanically coupled hearing organ. The two ears are contained in one air sac and a cuticular bridge, that has a flexible spring-like structure at its center, connects them. This mechanical coupling preprocesses the sound before it is detected by the nervous system and provides the fly with directional information. The subject of this study is the neural coding of the location of sound stimuli by a mechanically coupled auditory system. In chapter 1, I present the natural history of an acoustic parasitoid and I review the peripheral processing of sound by the Ormian ear. In chapter 2, I describe the anatomy and physiology of the auditory afferents. I present this physiology in the context of sound localization. In chapter 3, I describe the directional dependent physiology for the thoracic local and ascending acoustic interneurons. In chapter 4, I quantify the threshold and I detail the kinematics of the phonotactic walking behavior in Ormia ochracea. I also quantify the angular resolution of the phonotactic turning behavior. Using a model, I show that the temporal coding properties of the afferents provide most of the information required by the fly to localize a singing cricket.
Effects of visual information regarding allocentric processing in haptic parallelity matching.
Van Mier, Hanneke I
2013-10-01
Research has revealed that haptic perception of parallelity deviates from physical reality. Large and systematic deviations have been found in haptic parallelity matching most likely due to the influence of the hand-centered egocentric reference frame. Providing information that increases the influence of allocentric processing has been shown to improve performance on haptic matching. In this study allocentric processing was stimulated by providing informative vision in haptic matching tasks that were performed using hand- and arm-centered reference frames. Twenty blindfolded participants (ten men, ten women) explored the orientation of a reference bar with the non-dominant hand and subsequently matched (task HP) or mirrored (task HM) its orientation on a test bar with the dominant hand. Visual information was provided by means of informative vision with participants having full view of the test bar, while the reference bar was blocked from their view (task VHP). To decrease the egocentric bias of the hands, participants also performed a visual haptic parallelity drawing task (task VHPD) using an arm-centered reference frame, by drawing the orientation of the reference bar. In all tasks, the distance between and orientation of the bars were manipulated. A significant effect of task was found; performance improved from task HP, to VHP to VHPD, and HM. Significant effects of distance were found in the first three tasks, whereas orientation and gender effects were only significant in tasks HP and VHP. The results showed that stimulating allocentric processing by means of informative vision and reducing the egocentric bias by using an arm-centered reference frame led to most accurate performance on parallelity matching. © 2013 Elsevier B.V. All rights reserved.
Hox Genes: Choreographers in Neural Development, Architects of Circuit Organization
Philippidou, Polyxeni; Dasen, Jeremy S.
2013-01-01
Summary The neural circuits governing vital behaviors, such as respiration and locomotion, are comprised of discrete neuronal populations residing within the brainstem and spinal cord. Work over the past decade has provided a fairly comprehensive understanding of the developmental pathways that determine the identity of major neuronal classes within the neural tube. However, the steps through which neurons acquire the subtype diversities necessary for their incorporation into a particular circuit are still poorly defined. Studies on the specification of motor neurons indicate that the large family of Hox transcription factors has a key role in generating the subtypes required for selective muscle innervation. There is also emerging evidence that Hox genes function in multiple neuronal classes to shape synaptic specificity during development, suggesting a broader role in circuit assembly. This review highlights the functions and mechanisms of Hox gene networks, and their multifaceted roles during neuronal specification and connectivity. PMID:24094100
Associations between school-level environment and science classroom environment in secondary schools
NASA Astrophysics Data System (ADS)
Dorman, Jeffrey P.; Fraser, Barry J.; McRobbie, Campbell J.
1995-09-01
This article describes a study of links between school environment and science classroom environment. Instruments to assess seven dimensions of school environment (viz., Empowerment, Student Support, Affiliation, Professional Interest, Mission Consensus, Resource Adequacy and Work Pressure) and seven dimensions of classroom environment (viz., Student Affiliation, Interactions, Cooperation, Task Orientation, Order & Organisation, Individualisati n and Teacher Control) in secondary school science classrooms were developed and validated. The study involved a sample of 1,318 students in 64 year 9 and year 12 science classes and 128 teachers of science in Australian secondary schools. Using the class mean as the unit of analysis for student data, associations between school and classroom environment were investigated using simple, multiple and canonical correlational analyses. In general, results indicated weak relationships between school and classroom environments and they reinforced the view that characteristics of the school environment are not transmitted automatically into science classrooms.
Procedures for Instructional Systems Development
1981-09-18
single faults to the circuit and components level. (JTI Task No. TCB-01). Figure III-ll.--Example of a Module Page of a Curriculum Outline. 3 - 80...semiconductor trapezoidal wave generator circuit , multimeter, and oscilloscope measure the output amplitude, rise time, and jump voltage within +/- 10...accuracy. Given a trainer having a semiconductor trapezoidal wave generator circuit , multimeter, and oscilloscope - CONDITION (C) . measure the output
Fixture aids soldering of electronic components on circuit board
NASA Technical Reports Server (NTRS)
Ross, M. H.
1966-01-01
Spring clamp fixture holds small electronic components in a desired position while they are being soldered on a circuit board. The spring clamp is clipped on the edge of the circuit board and an adjustable spring-steel boom holds components against the board. The felt pad at the end of the boom is replaced with different attachments for other holding tasks.
NASA Astrophysics Data System (ADS)
Battista, Christian; Evans, Tanya M.; Ngoon, Tricia J.; Chen, Tianwen; Chen, Lang; Kochalka, John; Menon, Vinod
2018-01-01
Cognitive development is thought to depend on the refinement and specialization of functional circuits over time, yet little is known about how this process unfolds over the course of childhood. Here we investigated growth trajectories of functional brain circuits and tested an interactive specialization model of neurocognitive development which posits that the refinement of task-related functional networks is driven by a shared history of co-activation between cortical regions. We tested this model in a longitudinal cohort of 30 children with behavioral and task-related functional brain imaging data at multiple time points spanning childhood and adolescence, focusing on the maturation of parietal circuits associated with numerical problem solving and learning. Hierarchical linear modeling revealed selective strengthening as well as weakening of functional brain circuits. Connectivity between parietal and prefrontal cortex decreased over time, while connectivity within posterior brain regions, including intra-hemispheric and inter-hemispheric parietal connectivity, as well as parietal connectivity with ventral temporal occipital cortex regions implicated in quantity manipulation and numerical symbol recognition, increased over time. Our study provides insights into the longitudinal maturation of functional circuits in the human brain and the mechanisms by which interactive specialization shapes children's cognitive development and learning.
Processing of Visual--Action Codes by Deaf and Hearing Children: Coding Orientation or "M"-Capacity?
ERIC Educational Resources Information Center
Todman, John; Cowdy, Natascha
1993-01-01
Results from a study in which 25 deaf children and 25 hearing children completed a vocabulary test and a compound stimulus visual information task support the hypothesis that performance on cognitive tasks is dependent on compatibility of task demands with a coding orientation. (SLD)
A task-irrelevant stimulus attribute affects perception and short-term memory
Huang, Jie; Kahana, Michael J.; Sekuler, Robert
2010-01-01
Selective attention protects cognition against intrusions of task-irrelevant stimulus attributes. This protective function was tested in coordinated psychophysical and memory experiments. Stimuli were superimposed, horizontally and vertically oriented gratings of varying spatial frequency; only one orientation was task relevant. Experiment 1 demonstrated that a task-irrelevant spatial frequency interfered with visual discrimination of the task-relevant spatial frequency. Experiment 2 adopted a two-item Sternberg task, using stimuli that had been scaled to neutralize interference at the level of vision. Despite being visually neutralized, the task-irrelevant attribute strongly influenced recognition accuracy and associated reaction times (RTs). This effect was sharply tuned, with the task-irrelevant spatial frequency having an impact only when the task-relevant spatial frequencies of the probe and study items were highly similar to one another. Model-based analyses of judgment accuracy and RT distributional properties converged on the point that the irrelevant orientation operates at an early stage in memory processing, not at a later one that supports decision making. PMID:19933454
Fibre Optic Connections And Method For Using Same
Chan, Benson; Cohen, Mitchell S.; Fortier, Paul F.; Freitag, Ladd W.; Hall, Richard R.; Johnson, Glen W.; Lin, How Tzu; Sherman, John H.
2004-03-30
A package is described that couples a twelve channel wide fiber optic cable to a twelve channel Vertical Cavity Surface Emitting Laser (VCSEL) transmitter and a multiple channel Perpendicularly Aligned Integrated Die (PAID) receiver. The package allows for reduction in the height of the assembly package by vertically orienting certain dies parallel to the fiber optic cable and horizontally orienting certain other dies. The assembly allows the vertically oriented optoelectronic dies to be perpendicularly attached to the horizontally oriented laminate via a flexible circuit.
NASA Astrophysics Data System (ADS)
Gruska, Jozef
2012-06-01
One of the most basic tasks in quantum information processing, communication and security (QIPCC) research, theoretically deep and practically important, is to find bounds on how really important are inherently quantum resources for speeding up computations. This area of research is bringing a variety of results that imply, often in a very unexpected and counter-intuitive way, that: (a) surprisingly large classes of quantum circuits and algorithms can be efficiently simulated on classical computers; (b) the border line between quantum processes that can and cannot be efficiently simulated on classical computers is often surprisingly thin; (c) the addition of a seemingly very simple resource or a tool often enormously increases the power of available quantum tools. These discoveries have put also a new light on our understanding of quantum phenomena and quantum physics and on the potential of its inherently quantum and often mysteriously looking phenomena. The paper motivates and surveys research and its outcomes in the area of de-quantisation, especially presents various approaches and their outcomes concerning efficient classical simulations of various families of quantum circuits and algorithms. To motivate this area of research some outcomes in the area of de-randomization of classical randomized computations.
ERIC Educational Resources Information Center
Sins, Patrick H. M.; van Joolingen, Wouter R.; Savelsbergh, Elwin R.; van Hout-Wolters, Bernadette
2008-01-01
Purpose of the present study was to test a conceptual model of relations among achievement goal orientation, self-efficacy, cognitive processing, and achievement of students working within a particular collaborative task context. The task involved a collaborative computer-based modeling task. In order to test the model, group measures of…
Goal Orientations of General Chemistry Students via the Achievement Goal Framework
ERIC Educational Resources Information Center
Lewis, Scott E.
2018-01-01
The Achievement Goal Framework describes students' goal orientations as: task-based, focusing on the successful completion of the task; self-based, evaluating performance relative to one's own past performance; or other-based, evaluating performance relative to the performance of others. Goal orientations have been used to explain student success…
questionnaires and rating scales. Results showed that the task-oriented, low LPC leaders were more effective in the favorable and very unfavorable situations...was minimal, the task-oriented ( low LPC) leaders had groups which were relatively better adjusted than groups having relationship-oriented (high LPC
Children's Performance in Mental Rotation Tasks: Orientation-Free Features Flatten the Slope
ERIC Educational Resources Information Center
Perrucci, Vittore; Agnoli, Franca; Albiero, Paolo
2008-01-01
Studies of the development of mental rotation have yielded conflicting results, apparently because different mental rotation tasks draw on different cognitive abilities. Children may compare two stimuli at different orientations without mental rotation if the stimuli contain orientation-free features. Two groups of children (78 6-year-olds and 92…
Spatial Orienting of Attention in Dyslexic Adults Using Directional and Alphabetic Cues
ERIC Educational Resources Information Center
Judge, Jeannie; Knox, Paul C.; Caravolas, Marketa
2013-01-01
Spatial attention performance was investigated in adults with dyslexia. Groups with and without dyslexia completed literacy/phonological tasks as well as two spatial cueing tasks, in which attention was oriented in response to a centrally presented pictorial (arrow) or alphabetic (letter) cue. Cued response times and orienting effects were largely…
MAISIE: a multipurpose astronomical instrument simulator environment
NASA Astrophysics Data System (ADS)
O'Brien, Alan; Beard, Steven; Geers, Vincent; Klaassen, Pamela
2016-07-01
Astronomical instruments often need simulators to preview their data products and test their data reduction pipelines. Instrument simulators have tended to be purpose-built with a single instrument in mind, and at- tempting to reuse one of these simulators for a different purpose is often a slow and difficult task. MAISIE is a simulator framework designed for reuse on different instruments. An object-oriented design encourages reuse of functionality and structure, while offering the flexibility to create new classes with new functionality. MAISIE is a set of Python classes, interfaces and tools to help build instrument simulators. MAISIE can just as easily build simulators for single and multi-channel instruments, imagers and spectrometers, ground and space based instruments. To remain easy to use and to facilitate the sharing of simulators across teams, MAISIE is written in Python, a freely available and open-source language. New functionality can be created for MAISIE by creating new classes that represent optical elements. This approach allows new and novel instruments to add functionality and take advantage of the existing MAISIE classes. MAISIE has recently been used successfully to develop the simulator for the JWST/MIRI- Medium Resolution Spectrometer.
Auditory cortex of newborn bats is prewired for echolocation.
Kössl, Manfred; Voss, Cornelia; Mora, Emanuel C; Macias, Silvio; Foeller, Elisabeth; Vater, Marianne
2012-04-10
Neuronal computation of object distance from echo delay is an essential task that echolocating bats must master for spatial orientation and the capture of prey. In the dorsal auditory cortex of bats, neurons specifically respond to combinations of short frequency-modulated components of emitted call and delayed echo. These delay-tuned neurons are thought to serve in target range calculation. It is unknown whether neuronal correlates of active space perception are established by experience-dependent plasticity or by innate mechanisms. Here we demonstrate that in the first postnatal week, before onset of echolocation and flight, dorsal auditory cortex already contains functional circuits that calculate distance from the temporal separation of a simulated pulse and echo. This innate cortical implementation of a purely computational processing mechanism for sonar ranging should enhance survival of juvenile bats when they first engage in active echolocation behaviour and flight.
NASA Astrophysics Data System (ADS)
Kock, Zeger-Jan; Taconis, Ruurd; Bolhuis, Sanneke; Gravemeijer, Koeno
2013-04-01
Many students in secondary schools consider the sciences difficult and unattractive. This applies to physics in particular, a subject in which students attempt to learn and understand numerous theoretical concepts, often without much success. A case in point is the understanding of the concepts current, voltage and resistance in simple electric circuits. In response to these problems, reform initiatives in education strive for a change of the classroom culture, putting emphasis on more authentic contexts and student activities containing elements of inquiry. The challenge then becomes choosing and combining these elements in such a manner that they foster an understanding of theoretical concepts. In this article we reflect on data collected and analyzed from a series of 12 grade 9 physics lessons on simple electric circuits. Drawing from a theoretical framework based on individual (conceptual change based) and socio-cultural views on learning, instruction was designed addressing known conceptual problems and attempting to create a physics (research) culture in the classroom. As the success of the lessons was limited, the focus of the study became to understand which inherent characteristics of inquiry based instruction complicate the process of constructing conceptual understanding. From the analysis of the data collected during the enactment of the lessons three tensions emerged: the tension between open inquiry and student guidance, the tension between students developing their own ideas and getting to know accepted scientific theories, and the tension between fostering scientific interest as part of a scientific research culture and the task oriented school culture. An outlook will be given on the implications for science lessons.
Morita, Kenji; Morishima, Mieko; Sakai, Katsuyuki; Kawaguchi, Yasuo
2013-05-15
Humans and animals take actions quickly when they expect that the actions lead to reward, reflecting their motivation. Injection of dopamine receptor antagonists into the striatum has been shown to slow such reward-seeking behavior, suggesting that dopamine is involved in the control of motivational processes. Meanwhile, neurophysiological studies have revealed that phasic response of dopamine neurons appears to represent reward prediction error, indicating that dopamine plays central roles in reinforcement learning. However, previous attempts to elucidate the mechanisms of these dopaminergic controls have not fully explained how the motivational and learning aspects are related and whether they can be understood by the way the activity of dopamine neurons itself is controlled by their upstream circuitries. To address this issue, we constructed a closed-circuit model of the corticobasal ganglia system based on recent findings regarding intracortical and corticostriatal circuit architectures. Simulations show that the model could reproduce the observed distinct motivational effects of D1- and D2-type dopamine receptor antagonists. Simultaneously, our model successfully explains the dopaminergic representation of reward prediction error as observed in behaving animals during learning tasks and could also explain distinct choice biases induced by optogenetic stimulation of the D1 and D2 receptor-expressing striatal neurons. These results indicate that the suggested roles of dopamine in motivational control and reinforcement learning can be understood in a unified manner through a notion that the indirect pathway of the basal ganglia represents the value of states/actions at a previous time point, an empirically driven key assumption of our model.
NASA Technical Reports Server (NTRS)
Lee, F. C. Y.; Wilson, T. G.
1982-01-01
The present investigation is concerned with an important class of power conditioning networks, taking into account self-oscillating dc-to-square-wave transistor inverters. The considered circuits are widely used both as the principal power converting and processing means in many systems and as low-power analog-to-discrete-time converters for controlling the switching of the output-stage semiconductors in a variety of power conditioning systems. Aspects of piecewise-linear modeling are discussed, taking into consideration component models, and an equivalent-circuit model. Questions of singular point analysis and state plane representation are also investigated, giving attention to limit cycles, starting circuits, the region of attraction, a hard oscillator, and a soft oscillator.
A spatially localized architecture for fast and modular DNA computing
NASA Astrophysics Data System (ADS)
Chatterjee, Gourab; Dalchau, Neil; Muscat, Richard A.; Phillips, Andrew; Seelig, Georg
2017-09-01
Cells use spatial constraints to control and accelerate the flow of information in enzyme cascades and signalling networks. Synthetic silicon-based circuitry similarly relies on spatial constraints to process information. Here, we show that spatial organization can be a similarly powerful design principle for overcoming limitations of speed and modularity in engineered molecular circuits. We create logic gates and signal transmission lines by spatially arranging reactive DNA hairpins on a DNA origami. Signal propagation is demonstrated across transmission lines of different lengths and orientations and logic gates are modularly combined into circuits that establish the universality of our approach. Because reactions preferentially occur between neighbours, identical DNA hairpins can be reused across circuits. Co-localization of circuit elements decreases computation time from hours to minutes compared to circuits with diffusible components. Detailed computational models enable predictive circuit design. We anticipate our approach will motivate using spatial constraints for future molecular control circuit designs.
Interaction between Task Oriented and Affective Information Processing in Cognitive Robotics
NASA Astrophysics Data System (ADS)
Haazebroek, Pascal; van Dantzig, Saskia; Hommel, Bernhard
There is an increasing interest in endowing robots with emotions. Robot control however is still often very task oriented. We present a cognitive architecture that allows the combination of and interaction between task representations and affective information processing. Our model is validated by comparing simulation results with empirical data from experimental psychology.
Children's Task Oriented Patterns in Early Childhood: A Latent Transition Analysis
ERIC Educational Resources Information Center
Wang, Feihong; Algina, James; Snyder, Patricia; Cox, Martha; Vernon-Feagans, Lynne; Cox, Martha; Blair, Clancy; Burchinal, Margaret; Burton, Linda; Crnic, Keith; Crouter, Ann; Garrett-Peters, Patricia; Greenberg, Mark; Lanza, Stephanie; Mills-Koonce, Roger; Werner, Emily; Willoughby, Michael
2017-01-01
We examined individual differences and predictions of children's patterns in behavioral, emotional and attentional efforts toward challenging puzzle tasks at 24 and 35 months using data from a large longitudinal rural representative sample. Using latent transition analysis, we found four distinct task-oriented patterns in problem-solving tasks…
Task-Oriented Spoken Dialog System for Second-Language Learning
ERIC Educational Resources Information Center
Kwon, Oh-Woog; Kim, Young-Kil; Lee, Yunkeun
2016-01-01
This paper introduces a Dialog-Based Computer Assisted second-Language Learning (DB-CALL) system using task-oriented dialogue processing technology. The system promotes dialogue with a second-language learner for a specific task, such as purchasing tour tickets, ordering food, passing through immigration, etc. The dialog system plays a role of a…
Strategy Generalization across Orientation Tasks: Testing a Computational Cognitive Model
ERIC Educational Resources Information Center
Gunzelmann, Glenn
2008-01-01
Humans use their spatial information processing abilities flexibly to facilitate problem solving and decision making in a variety of tasks. This article explores the question of whether a general strategy can be adapted for performing two different spatial orientation tasks by testing the predictions of a computational cognitive model. Human…
Bridging Physics and Biology Using Resistance and Axons
NASA Astrophysics Data System (ADS)
Dyer, Joshua M.
2014-11-01
When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics.1 A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology. Despite this impression held by students, there have been calls for better physics education for future physicians and life scientists.2,3 Research is being performed to improve physics classes and labs by linking topics in biology and physics.4,5 Described here is a laboratory experiment covering the topics of resistance of materials and circuits/Kirchhoff's laws in a biology context with their direct application to neurons, axons, and electrical impulse transmission within animals. This experiment will also demonstrate the mechanism believed to cause multiple sclerosis. The apparatus was designed with low-cost and readily available materials in mind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malathi Veeraraghavan
2007-10-31
A high-speed optical circuit network is one that offers users rate-guaranteed connectivity between two endpoints, unlike today’s IP-routed Internet in which the rate available to a pair of users fluctuates based on the volume of competing traffic. This particular research project advanced our understanding of circuit networks in two ways. First, transport protocols were developed for circuit networks. In a circuit network, since bandwidth resources are reserved for each circuit on an end-to-end basis (much like how a person reserves a seat on every leg of a multi-segment flight), and the sender is limited to send at the rate ofmore » the circuit, there is no possibility of congestion during data transfer. Therefore, no congestion control functions are necessary in a transport protocol designed for circuits. However, error control and flow control are still required because bits can become errored due to noise and interference even on highly reliable optical links, and receivers can, due to multitasking or other reasons, not deplete the receive buffer fast enough to keep up with the sending rate (e.g., if the receiving host is multitasking between receiving a file transfer and some other computation). In this work, we developed two transport protocols for circuits, both of which are described below. Second, this project developed techniques for internetworking different types of connection-oriented networks, which are of two types: circuit-switched or packet-switched. In circuit-switched networks, multiplexing on links is “position based,” where “position” refers to the frequency, time slot, and port (fiber), while connection-oriented packet-switched networks use packet header information to demultiplex packets and switch them from node to node. The latter are commonly referred to as virtual circuit networks. Examples of circuit networks are time-division multiplexed Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) and Wavelength Division Multiplexing (WDM) networks, while examples of virtual-circuit networks are MultiProtocol Label Switched (MPLS) networks and Ethernet Virtual Local Area Network (VLAN) networks. A series of new technologies have been developed to carry Ethernet VLAN tagged frames on SONET/SDH and WDM networks, such as Generic Framing Procedure (GFP) and ITU G.709, respectively. These technologies form the basis of our solution for connection-oriented internetworking. The benefit of developing such an architecture is that it allows different providers to choose different connection-oriented networking technologies for their networks, and yet be able to allow their customers to connect to those of other providers. As Metcalfe, the inventor of Ethernet, noted, the value of a network service grows exponentially with the number of endpoints to which any single endpoint can connect. Therefore internetworking solutions are key to commercial success. The technical effectiveness of our solutions was measured with proof-of-concept prototypes and experiments. These solutions were shown to be highly effective. Economic feasibility requires business case analyses that were beyond the scope of this project. The project results are beneficial to the public as they demonstrate the viability of simultaneously supporting different types of networks and data communication services much like the variety of services available for the transportation of people and goods. For example, Fedex service offers a deadline based delivery while the USPS offers basic package delivery service. Similarly, a circuit network can offer a deadline based delivery of a data file while the IP-routed network offers only basic delivery service with no guarantees. Two project Web sites, 13 publications, 7 software programs, 21 presentations resulted from this work. This report provides the complete list of publications, software programs and presentations. As for student education and training (human resources), this DOE project, along with an NSF project, jointly supported two postdoctoral fellowships, three PhDs, three Masters, and two undergraduate students. Specifically, two of the Masters students were directly funded on this DOE project.« less
Gender, social class, and women's employment.
McGinn, Kathleen L; Oh, Eunsil
2017-12-01
People in low-power positions, whether due to gender or class, tend to exhibit other-oriented rather than self-oriented behavior. Women's experiences at work and at home are shaped by social class, heightening identification with gender for relatively upper class women and identification with class for relatively lower class women, potentially mitigating, or even reversing, class-based differences documented in past research. Gender-class differences are reflected in women's employment beliefs and behaviors. Research integrating social class with gendered experiences in homes and workplaces deepens our understanding of the complex interplay between sources of power and status in society. Copyright © 2017 Elsevier Ltd. All rights reserved.
Horowitz-Kraus, Tzipi; Eaton, Kenneth; Farah, Rola; Hajinazarian, Ardag; Vannest, Jennifer; Holland, Scott K
2015-12-10
To investigate whether high performance on college preparedness tests at 18 years of age can be predicted from brain activation patterns during narrative comprehension at 5-7 years of age. In this longitudinal study, functional MRI data during an auditory narrative-comprehension task were acquired from 15 children (5-7 years of age) who also provided their American College Testing (ACT) scores at the age of 18 years. Active voxels during the narrative-comprehension task were correlated with both composite ACT scores and the reading-comprehension component of the exam. Higher composite ACT scores and behavioral scores for reading comprehension were positively correlated with greater activation in frontal and anterior brain regions during the narrative-comprehension task. Our results suggest that neural circuits supporting higher ACT performance are predictable from a narrative-comprehension task at the age of 5-7 years. This supports a critical role for the anterior cingulate cortex, which is a part of the cingulo-opercular cognitive-control network early in development, as a facilitator for better ACT scores. This study highlights that shared neural circuits that support overall ACT performance and neural circuits that support reading comprehension both rely on neural circuits related to narrative comprehension in childhood, suggesting that interventions involving narrative comprehension should be considered for individuals with reading and other academic difficulties. Copyright © 2015 Elsevier B.V. All rights reserved.
Hsieh, Yu-Wei; Wu, Ching-Yi; Wang, Wei-En; Lin, Keh-Chung; Chang, Ku-Chou; Chen, Chih-Chi; Liu, Chien-Ting
2017-02-01
To investigate the treatment effects of bilateral robotic priming combined with the task-oriented approach on motor impairment, disability, daily function, and quality of life in patients with subacute stroke. A randomized controlled trial. Occupational therapy clinics in medical centers. Thirty-one subacute stroke patients were recruited. Participants were randomly assigned to receive bilateral priming combined with the task-oriented approach (i.e., primed group) or to the task-oriented approach alone (i.e., unprimed group) for 90 minutes/day, 5 days/week for 4 weeks. The primed group began with the bilateral priming technique by using a bimanual robot-aided device. Motor impairments were assessed by the Fugal-Meyer Assessment, grip strength, and the Box and Block Test. Disability and daily function were measured by the modified Rankin Scale, the Functional Independence Measure, and actigraphy. Quality of life was examined by the Stroke Impact Scale. The primed and unprimed groups improved significantly on most outcomes over time. The primed group demonstrated significantly better improvement on the Stroke Impact Scale strength subscale ( p = 0.012) and a trend for greater improvement on the modified Rankin Scale ( p = 0.065) than the unprimed group. Bilateral priming combined with the task-oriented approach elicited more improvements in self-reported strength and disability degrees than the task-oriented approach by itself. Further large-scale research with at least 31 participants in each intervention group is suggested to confirm the study findings.
Motivation and Cognition: The Impact of Ego and Task-Involvement on Levels of Processing.
ERIC Educational Resources Information Center
Golan, Shari; Graham, Sandra
To study the effects of motivation on cognition, 55 fifth- and sixth-grade students were randomly assigned to 3 motivational treatment groups: (1) ego-involved (ability oriented); (2) task-involved (mastery oriented); and (3) control (no orientation). The ego-involvement treatment attempted to make subjects feel that their abilities on the tasks…
Representation and design of wavelets using unitary circuits
NASA Astrophysics Data System (ADS)
Evenbly, Glen; White, Steven R.
2018-05-01
The representation of discrete, compact wavelet transformations (WTs) as circuits of local unitary gates is discussed. We employ a similar formalism as used in the multiscale representation of quantum many-body wave functions using unitary circuits, further cementing the relation established in the literature between classical and quantum multiscale methods. An algorithm for constructing the circuit representation of known orthogonal, dyadic, discrete WTs is presented, and the explicit representation for Daubechies wavelets, coiflets, and symlets is provided. Furthermore, we demonstrate the usefulness of the circuit formalism in designing WTs, including various classes of symmetric wavelets and multiwavelets, boundary wavelets, and biorthogonal wavelets.
Discovery of User-Oriented Class Associations for Enriching Library Classification Schemes.
ERIC Educational Resources Information Center
Pu, Hsiao-Tieh
2002-01-01
Presents a user-based approach to exploring the possibility of adding user-oriented class associations to hierarchical library classification schemes. Classes not grouped in the same subject hierarchies yet relevant to users' knowledge are obtained by analyzing a log book of a university library's circulation records, using collaborative filtering…
An Efficient Framework for Development of Task-Oriented Dialog Systems in a Smart Home Environment.
Park, Youngmin; Kang, Sangwoo; Seo, Jungyun
2018-05-16
In recent times, with the increasing interest in conversational agents for smart homes, task-oriented dialog systems are being actively researched. However, most of these studies are focused on the individual modules of such a system, and there is an evident lack of research on a dialog framework that can integrate and manage the entire dialog system. Therefore, in this study, we propose a framework that enables the user to effectively develop an intelligent dialog system. The proposed framework ontologically expresses the knowledge required for the task-oriented dialog system's process and can build a dialog system by editing the dialog knowledge. In addition, the framework provides a module router that can indirectly run externally developed modules. Further, it enables a more intelligent conversation by providing a hierarchical argument structure (HAS) to manage the various argument representations included in natural language sentences. To verify the practicality of the framework, an experiment was conducted in which developers without any previous experience in developing a dialog system developed task-oriented dialog systems using the proposed framework. The experimental results show that even beginner dialog system developers can develop a high-level task-oriented dialog system.
An Efficient Framework for Development of Task-Oriented Dialog Systems in a Smart Home Environment
Park, Youngmin; Kang, Sangwoo; Seo, Jungyun
2018-01-01
In recent times, with the increasing interest in conversational agents for smart homes, task-oriented dialog systems are being actively researched. However, most of these studies are focused on the individual modules of such a system, and there is an evident lack of research on a dialog framework that can integrate and manage the entire dialog system. Therefore, in this study, we propose a framework that enables the user to effectively develop an intelligent dialog system. The proposed framework ontologically expresses the knowledge required for the task-oriented dialog system’s process and can build a dialog system by editing the dialog knowledge. In addition, the framework provides a module router that can indirectly run externally developed modules. Further, it enables a more intelligent conversation by providing a hierarchical argument structure (HAS) to manage the various argument representations included in natural language sentences. To verify the practicality of the framework, an experiment was conducted in which developers without any previous experience in developing a dialog system developed task-oriented dialog systems using the proposed framework. The experimental results show that even beginner dialog system developers can develop a high-level task-oriented dialog system. PMID:29772668
Attention modulates specific motor cortical circuits recruited by transcranial magnetic stimulation.
Mirdamadi, J L; Suzuki, L Y; Meehan, S K
2017-09-17
Skilled performance and acquisition is dependent upon afferent input to motor cortex. The present study used short-latency afferent inhibition (SAI) to probe how manipulation of sensory afference by attention affects different circuits projecting to pyramidal tract neurons in motor cortex. SAI was assessed in the first dorsal interosseous muscle while participants performed a low or high attention-demanding visual detection task. SAI was evoked by preceding a suprathreshold transcranial magnetic stimulus with electrical stimulation of the median nerve at the wrist. To isolate different afferent intracortical circuits in motor cortex SAI was evoked using either posterior-anterior (PA) or anterior-posterior (PA) monophasic current. In an independent sample, somatosensory processing during the same attention-demanding visual detection tasks was assessed using somatosensory-evoked potentials (SEP) elicited by median nerve stimulation. SAI elicited by AP TMS was reduced under high compared to low visual attention demands. SAI elicited by PA TMS was not affected by visual attention demands. SEPs revealed that the high visual attention load reduced the fronto-central P20-N30 but not the contralateral parietal N20-P25 SEP component. P20-N30 reduction confirmed that the visual attention task altered sensory afference. The current results offer further support that PA and AP TMS recruit different neuronal circuits. AP circuits may be one substrate by which cognitive strategies shape sensorimotor processing during skilled movement by altering sensory processing in premotor areas. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Rialon, Kristy L; Barfield, Michael E; Elfenbein, Dawn M; Lunsford, Keri E; Tracy, Elisabeth T; Migaly, John
2013-01-01
To design an orientation for surgical interns to meet the new Accreditation Council for Graduate Medical Education Common Program Requirements regarding supervision, to test patient-management competencies, and to assess confidence on skills and tasks pre-orientation and post-orientation. Twenty-seven incoming surgical interns participated in a two-day orientation to clinical duties. Activities included a pre-test, lectures, simulation, oral examination, intern shadowing, and a post-test. Incoming interns were surveyed before and after orientation and two months later for confidence in patient-management and surgical intern skills. Paired t-tests were used to determine if confidence improved pre-orientation and post-orientation, and two months following orientation. The study took place at an academic training hospital. All (n = 27) postgraduate year-1 (PGY-1) surgical residents at our institution, which included the categorical and nondesignated preliminary general surgery, urology, orthopedic surgery, otolaryngology, and neurosurgery programs. All interns passed the oral and written examinations, and were deemed able to be indirectly supervised, with direct supervision immediately available. They reported increased confidence in all areas of patient management addressed during orientation, and this confidence was retained after two months. In surgical and floor-related tasks and skills, interns reported no increase in confidence directly following orientation. However, after two months, they reported a significant increase in confidence, particularly in those tasks that are performed often. New requirements for resident supervision require creative ways of verifying resident competency in basic skills. This type of orientation is an effective way to address the new requirements of supervision and teach interns the tasks and skills that are necessary for internship. Copyright © 2013 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Expertise with unfamiliar objects is flexible to changes in task but not changes in class
Tangen, Jason M.
2017-01-01
Perceptual expertise is notoriously specific and bound by familiarity; generalizing to novel or unfamiliar images, objects, identities, and categories often comes at some cost to performance. In forensic and security settings, however, examiners are faced with the task of discriminating unfamiliar images of unfamiliar objects within their general domain of expertise (e.g., fingerprints, faces, or firearms). The job of a fingerprint expert, for instance, is to decide whether two unfamiliar fingerprint images were left by the same unfamiliar finger (e.g., Smith’s left thumb), or two different unfamiliar fingers (e.g., Smith and Jones’s left thumb). Little is known about the limits of this kind of perceptual expertise. Here, we examine fingerprint experts’ and novices’ ability to distinguish fingerprints compared to inverted faces in two different tasks. Inverted face images serve as an ideal comparison because they vary naturally between and within identities, as do fingerprints, and people tend to be less accurate or more novice-like at distinguishing faces when they are presented in an inverted or unfamiliar orientation. In Experiment 1, fingerprint experts outperformed novices in locating categorical fingerprint outliers (i.e., a loop pattern in an array of whorls), but not inverted face outliers (i.e., an inverted male face in an array of inverted female faces). In Experiment 2, fingerprint experts were more accurate than novices at discriminating matching and mismatching fingerprints that were presented very briefly, but not so for inverted faces. Our data show that perceptual expertise with fingerprints can be flexible to changing task demands, but there can also be abrupt limits: fingerprint expertise did not generalize to an unfamiliar class of stimuli. We interpret these findings as evidence that perceptual expertise with unfamiliar objects is highly constrained by one’s experience. PMID:28574998
Task Allocation of Wasps Governed by Common Stomach: A Model Based on Electric Circuits
2016-01-01
Simple regulatory mechanisms based on the idea of the saturable ‘common stomach’ can control the regulation of construction behavior and colony-level responses to environmental perturbations in Metapolybia wasp societies. We mapped the different task groups to mutual inductance electrical circuits and used Kirchoff’s basic voltage laws to build a model that uses master equations from physics, yet is able to provide strong predictions for this complex biological phenomenon. Similar to real colonies, independently of the initial conditions, the system shortly sets into an equilibrium, which provides optimal task allocation for a steady construction, depending on the influx of accessible water. The system is very flexible and in the case of perturbations, it reallocates its workforce and adapts to the new situation with different equilibrium levels. Similar to the finding of field studies, decreasing any task groups caused decrease of construction; increasing or decreasing water inflow stimulated or reduced the work of other task groups while triggering compensatory behavior in water foragers. We also showed that only well connected circuits are able to produce adequate construction and this agrees with the finding that this type of task partitioning only exists in larger colonies. Studying the buffer properties of the common stomach and its effect on the foragers revealed that it provides stronger negative feedback to the water foragers, while the connection between the pulp foragers and the common stomach has a strong fixed-point attractor, as evidenced by the dissipative trajectory. PMID:27861633
Gratton, Gabriele
2018-03-01
Here, I propose a view of the architecture of the human information processing system, and of how it can be adapted to changing task demands (which is the hallmark of cognitive control). This view is informed by an interpretation of brain activity as reflecting the excitability level of neural representations, encoding not only stimuli and temporal contexts, but also action plans and task goals. The proposed cognitive architecture includes three types of circuits: open circuits, involved in feed-forward processing such as that connecting stimuli with responses and characterized by brief, transient brain activity; and two types of closed circuits, positive feedback circuits (characterized by sustained, high-frequency oscillatory activity), which help select and maintain representations, and negative feedback circuits (characterized by brief, low-frequency oscillatory bursts), which are instead associated with changes in representations. Feed-forward activity is primarily responsible for the spread of activation along the information processing system. Oscillatory activity, instead, controls this spread. Sustained oscillatory activity due to both local cortical circuits (gamma) and longer corticothalamic circuits (alpha and beta) allows for the selection of individuated representations. Through the interaction of these circuits, it also allows for the preservation of representations across different temporal spans (sensory and working memory) and their spread across the brain. In contrast, brief bursts of oscillatory activity, generated by novel and/or conflicting information, lead to the interruption of sustained oscillatory activity and promote the generation of new representations. I discuss how this framework can account for a number of psychological and behavioral phenomena. © 2017 Society for Psychophysiological Research.
ERIC Educational Resources Information Center
Flores, Jairo; Salguero, Alfonso; Marquez, Sara
2008-01-01
This study examined the relationships of achievement goal orientations and perceptions of the motivational climate in physical education classes among Colombian students, and tested gender and age differences in goal orientations and perceived motivational climate. Participants (1378 boys and 1615 girls, ranging in age from 9 to 18 yr) completed…
Campus-Based Geographic Learning: A Field Oriented Teaching Scenario
ERIC Educational Resources Information Center
Jennings, Steven A.; Huber, Thomas P.
2003-01-01
The use of field classes and the need for university master planning are presented as a way to enhance learning. This field-oriented, goal-oriented approach to learning is proposed as a general model for university-level geographic education. This approach is presented for physical geography classes, but could also be applied to other subdivisions…
Some Specifications for a Computer-Oriented First Course in Electrical Engineering.
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
Reported are specifications for a computer-oriented first course in electrical engineering giving new direction to the development of texts and alternative courses of study. Guidelines for choice of topics, a statement of fundamental concepts, pitfalls to avoid, and some sample course outlines are given. The study of circuits through computer…
Cognitive Task Analysis of the HALIFAX-Class Operations Room Officer
1999-03-10
Image Cover Sheet CLASSIFICATION SYSTEM NUMBER 510918 UNCLASSIFIED llllllllllllllllllllllllllllllllllllllll TITLE COGNITIVE TASK ANALYSIS OF THE...DATES COVERED 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Cognitive Task Analysis of the HALIFAX-Class Operations Room Officer 5a. CONTRACT...Ontario . ~ -- . ’ c ... - Incorporated Cognitive Task Analysis of the HALIFAX-Class Operations Room Officer: PWGSC Contract No. W7711-7-7404/001/SV
ERIC Educational Resources Information Center
Lin, Jing-Wen
2016-01-01
Holding scientific conceptions and having the ability to accurately predict students' preconceptions are a prerequisite for science teachers to design appropriate constructivist-oriented learning experiences. This study explored the types and sources of students' preconceptions of electric circuits. First, 438 grade 3 (9 years old) students were…
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The 135-hour quinmester course covers study of basic radio circuits as applied to vacuum tube radios in six blocks of instruction: orientation; AM receivers with tubes; no signal, audio failure; distortion; weak, noisy signals; and a post-test. Each block is subdivided into several units, and block objectives are outlined. Completion of AC…
The Impact of Goal Achievement Orientation on Student Technology Usage in the Classroom
ERIC Educational Resources Information Center
McGloin, Rory; McGillicuddy, Kara T.; Christensen, John L.
2017-01-01
The aim of this study was to investigate whether students with differing goal achievement orientations were more likely to engage in on-task or off-task mobile device usage, as well as whether particular devices (specifically, laptops and smartphones) have a positive or negative relationship with specific task usage. The results of this study…
There's more to care than tasks.
O'Dwyer, Sheena
2009-07-09
Task orientation is a phrase that is used to demonstrate how not to give care. It is the antithesis of person-centred treatment. I care for people with dementia, working on a ward that is often severely understaffed (sound familiar?) and sometimes I go home wondering how my team and I could have done anything other than be task orientated.
Shapley, Robert M.; Xing, Dajun
2012-01-01
Theoretical considerations have led to the concept that the cerebral cortex is operating in a balanced state in which synaptic excitation is approximately balanced by synaptic inhibition from the local cortical circuit. This paper is about the functional consequences of the balanced state in sensory cortex. One consequence is gain control: there is experimental evidence and theoretical support for the idea that local circuit inhibition acts as a local automatic gain control throughout the cortex. Second, inhibition increases cortical feature selectivity: many studies of different sensory cortical areas have reported that suppressive mechanisms contribute to feature selectivity. Synaptic inhibition from the local microcircuit should be untuned (or broadly tuned) for stimulus features because of the microarchitecture of the cortical microcircuit. Untuned inhibition probably is the source of Untuned Suppression that enhances feature selectivity. We studied inhibition’s function in our experiments, guided by a neuronal network model, on orientation selectivity in the primary visual cortex, V1, of the Macaque monkey. Our results revealed that Untuned Suppression, generated by local circuit inhibition, is crucial for the generation of highly orientation-selective cells in V1 cortex. PMID:23036513
Yakhnich, Liat; Ben-Zur, Hasida
2008-04-01
Between 1989 and 2005, Israel absorbed over a million new immigrants, about 90% of whom were from the Former Soviet Union (FSU). The present study investigated the adaptation of these FSU new immigrants in a sample of 301 participants (67% women, ages 25-45 years), who completed inventories measuring personal resources (tolerance of ambiguity and cognitive flexibility), cognitive appraisals (of employment, language, and housing problems), coping strategies, well-being, distress, and willingness to remain in Israel. A structural equation modeling (SEM) analysis showed that tolerance for ambiguity and cognitive flexibility contributed positively to control appraisals, task-oriented coping, and level of participant well-being, and negatively to threat/loss appraisals, emotion/avoidance-oriented coping, and distress. Control appraisals contributed to task-oriented coping, whereas threat/loss appraisals contributed to both emotion/avoidance-oriented and task-oriented coping. Control and challenge appraisals, and task-oriented coping, contributed positively to participant willingness to remain in Israel, whereas emotion/avoidance-oriented coping contributed positively to distress levels, which in turn were negatively related to willingness to remain in Israel. The results of this study have significant implications for such aspects of immigrant adaptation as absorption policies and the provision of individual care by professionals and organizations. Copyright 2008 APA, all rights reserved.
Duncan, Justin; Gosselin, Frédéric; Cobarro, Charlène; Dugas, Gabrielle; Blais, Caroline; Fiset, Daniel
2017-12-01
Horizontal information was recently suggested to be crucial for face identification. In the present paper, we expand on this finding and investigate the role of orientations for all the basic facial expressions and neutrality. To this end, we developed orientation bubbles to quantify utilization of the orientation spectrum by the visual system in a facial expression categorization task. We first validated the procedure in Experiment 1 with a simple plaid-detection task. In Experiment 2, we used orientation bubbles to reveal the diagnostic-i.e., task relevant-orientations for the basic facial expressions and neutrality. Overall, we found that horizontal information was highly diagnostic for expressions-surprise excepted. We also found that utilization of horizontal information strongly predicted performance level in this task. Despite the recent surge of research on horizontals, the link with local features remains unexplored. We were thus also interested in investigating this link. In Experiment 3, location bubbles were used to reveal the diagnostic features for the basic facial expressions. Crucially, Experiments 2 and 3 were run in parallel on the same participants, in an interleaved fashion. This way, we were able to correlate individual orientation and local diagnostic profiles. Our results indicate that individual differences in horizontal tuning are best predicted by utilization of the eyes.
The evolvability of programmable hardware.
Raman, Karthik; Wagner, Andreas
2011-02-06
In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected 'neutral networks' in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 10(45) logic circuits ('genotypes') and 10(19) logic functions ('phenotypes'). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry.
The evolvability of programmable hardware
Raman, Karthik; Wagner, Andreas
2011-01-01
In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected ‘neutral networks’ in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 1045 logic circuits (‘genotypes’) and 1019 logic functions (‘phenotypes’). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry. PMID:20534598
Seki, Yoichi; Rybak, Jürgen; Wicher, Dieter; Sachse, Silke; Hansson, Bill S
2010-08-01
The Drosophila antennal lobe (AL) has become an excellent model for studying early olfactory processing mechanisms. Local interneurons (LNs) connect a large number of glomeruli and are ideally positioned to increase computational capabilities of odor information processing in the AL. Although the neural circuit of the Drosophila AL has been intensively studied at both the input and the output level, the internal circuit is not yet well understood. An unambiguous characterization of LNs is essential to remedy this lack of knowledge. We used whole cell patch-clamp recordings and characterized four classes of LNs in detail using electrophysiological and morphological properties at the single neuron level. Each class of LN displayed unique characteristics in intrinsic electrophysiological properties, showing differences in firing patterns, degree of spike adaptation, and amplitude of spike afterhyperpolarization. Notably, one class of LNs had characteristic burst firing properties, whereas the others were tonically active. Morphologically, neurons from three classes innervated almost all glomeruli, while LNs from one class innervated a specific subpopulation of glomeruli. Three-dimensional reconstruction analyses revealed general characteristics of LN morphology and further differences in dendritic density and distribution within specific glomeruli between the different classes of LNs. Additionally, we found that LNs labeled by a specific enhancer trap line (GAL4-Krasavietz), which had previously been reported as cholinergic LNs, were mostly GABAergic. The current study provides a systematic characterization of olfactory LNs in Drosophila and demonstrates that a variety of inhibitory LNs, characterized by class-specific electrophysiological and morphological properties, construct the neural circuit of the AL.
van Mier, Hanneke I
2016-01-01
When making two bars haptically parallel to each other, large deviations have been observed, most likely caused by the bias of a hand-centered egocentric reference frame. A consistent finding is that women show significantly larger deviations than men when performing this task. It has been suggested that this difference might be due to the fact that women are more egocentrically oriented than men or are less efficient in overcoming the egocentric bias of the hand. If this is indeed the case, reducing the bias of the egocentric reference frame should eliminate the above-mentioned gender difference. This was investigated in the current study. Sixty participants (30 men, 30 women) were instructed to haptically match (task HP) the orientation of a test bar with the dominant hand to the orientation of a reference bar that was perceived with the non-dominant hand. In a haptic visual task (task HV), in which only the reference bar and exploring hand were out of view, no motor response was required, but participants had to "match" the perceived orientation by verbally naming the parallel orientation that was read out on a test protractor. Both females and males performed better in the HV task than in the HP task. Significant gender effects were only found in the haptic parallelity task (HP), corroborating the idea that women perform at the same level as men when the egocentric bias of the hand is reduced.
Motivational orientations and task autonomy fit: effects on organizational attraction.
Wu, Yu-Chi
2012-02-01
The main purpose of this study was to investigate whether there is congruence between applicant needs (i.e., motivational orientations) and what is available (i.e., task autonomy) from an organizational perspective based on the fit between needs and supply. The fit between work motivation and task autonomy was examined to see whether it was associated with organizational attraction. This experimental study included two phases. Phase 1 participants consisted of 446 undergraduate students, of whom 228 were recruited to participate in Phase 2. The fit relations between task autonomy and intrinsic motivation and between task control and extrinsic motivation were characterized. Findings indicated that the fit between work motivation and task autonomy was positively associated with organizational attraction. Based on these results, it may be inferred that employers should emphasize job characteristics such as autonomy or control orientations to attract individuals, and focus on the most suitable work motivations for their organizations.
A Design Model of Distributed Scaffolding for Inquiry-Based Learning
NASA Astrophysics Data System (ADS)
Hsu, Ying-Shao; Lai, Ting-Ling; Hsu, Wei-Hsiu
2015-04-01
This study presents a series of three experiments that focus on how distributed scaffolding influences learners' conceptual understanding and reasoning from combined levels of triangulation, at the interactive level (discourses within a focus group) and the collective level (class). Three inquiry lessons on plate tectonics (LPT) were designed, implemented and redesigned to explore how students responded to the scaffoldings provided. The results show that the goal-oriented version (LPT3) was significantly more effective at helping students develop an understanding of plate tectonics and evidence-based reasoning than the teacher-led (LPT1) and deconstructed (LPT2) versions ( χ 2 = 11.56, p < 0.003). In LPT3, we can identify three key features of the scaffolding: an advanced organizer, deconstruction of complex tasks, and reflection on the whole inquiry cycle at the end of class time. In addition, LPT3 took much less teaching time. In other words, it appears to be effective and efficient, most likely due to synergies between teacher facilitation and lesson scaffolds. The empirical results clarify the functions of the design model proposed for distributed scaffolding: navigating inquiry, structuring tasks, supporting communication, and fostering reflection. Future studies should more closely evaluate the scaffolding system as a whole and synergies between different types of scaffolds for advancing learning.
Au, Mei K; Chan, Wai M; Lee, Lin; Chen, Tracy Mk; Chau, Rosanna Mw; Pang, Marco Yc
2014-10-01
To compare the effectiveness of a core stability program with a task-oriented motor training program in improving motor proficiency in children with developmental coordination disorder (DCD). Randomized controlled pilot trial. Outpatient unit in a hospital. Twenty-two children diagnosed with DCD aged 6-9 years were randomly allocated to the core stability program or the task-oriented motor program. Both groups underwent their respective face-to-face training session once per week for eight consecutive weeks. They were also instructed to carry out home exercises on a daily basis during the intervention period. Short Form of the Bruininks-Oseretsky Test of Motor Proficiency (Second Edition) and Sensory Organization Test at pre- and post-intervention. Intention-to-treat analysis revealed no significant between-group difference in the change of motor proficiency standard score (P=0.717), and composite equilibrium score derived from the Sensory Organization Test (P=0.100). Further analysis showed significant improvement in motor proficiency in both the core stability (mean change (SD)=6.3(5.4); p=0.008) and task-oriented training groups (mean change(SD)=5.1(4.0); P=0.007). The composite equilibrium score was significantly increased in the task-oriented training group (mean change (SD)=6.0(5.5); P=0.009), but not in the core stability group (mean change(SD) =0.0(9.6); P=0.812). In the task-oriented training group, compliance with the home program was positively correlated with change in motor proficiency (ρ=0.680, P=0.030) and composite equilibrium score (ρ=0.638, P=0.047). The core stability exercise program is as effective as task-oriented training in improving motor proficiency among children with DCD. © The Author(s) 2014.
MFV-class: a multi-faceted visualization tool of object classes.
Zhang, Zhi-meng; Pan, Yun-he; Zhuang, Yue-ting
2004-11-01
Classes are key software components in an object-oriented software system. In many industrial OO software systems, there are some classes that have complicated structure and relationships. So in the processes of software maintenance, testing, software reengineering, software reuse and software restructure, it is a challenge for software engineers to understand these classes thoroughly. This paper proposes a class comprehension model based on constructivist learning theory, and implements a software visualization tool (MFV-Class) to help in the comprehension of a class. The tool provides multiple views of class to uncover manifold facets of class contents. It enables visualizing three object-oriented metrics of classes to help users focus on the understanding process. A case study was conducted to evaluate our approach and the toolkit.
Information Flow through a Model of the C. elegans Klinotaxis Circuit
Izquierdo, Eduardo J.; Williams, Paul L.; Beer, Randall D.
2015-01-01
Understanding how information about external stimuli is transformed into behavior is one of the central goals of neuroscience. Here we characterize the information flow through a complete sensorimotor circuit: from stimulus, to sensory neurons, to interneurons, to motor neurons, to muscles, to motion. Specifically, we apply a recently developed framework for quantifying information flow to a previously published ensemble of models of salt klinotaxis in the nematode worm Caenorhabditis elegans. Despite large variations in the neural parameters of individual circuits, we found that the overall information flow architecture circuit is remarkably consistent across the ensemble. This suggests structural connectivity is not necessarily predictive of effective connectivity. It also suggests information flow analysis captures general principles of operation for the klinotaxis circuit. In addition, information flow analysis reveals several key principles underlying how the models operate: (1) Interneuron class AIY is responsible for integrating information about positive and negative changes in concentration, and exhibits a strong left/right information asymmetry. (2) Gap junctions play a crucial role in the transfer of information responsible for the information symmetry observed in interneuron class AIZ. (3) Neck motor neuron class SMB implements an information gating mechanism that underlies the circuit’s state-dependent response. (4) The neck carries more information about small changes in concentration than about large ones, and more information about positive changes in concentration than about negative ones. Thus, not all directions of movement are equally informative for the worm. Each of these findings corresponds to hypotheses that could potentially be tested in the worm. Knowing the results of these experiments would greatly refine our understanding of the neural circuit underlying klinotaxis. PMID:26465883
Postural control system influences intrinsic alerting state.
Barra, Julien; Auclair, Laurent; Charvillat, Agnès; Vidal, Manuel; Pérennou, Dominic
2015-03-01
Numerous studies using dual-task paradigms (postural and cognitive) have shown that postural control requires cognitive resources. However, the influence of postural control on attention components has never been directly addressed. Using the attention network test (ANT), which assesses specifically each of the 3 components of attention-alertness, orientation, and executive control-within a single paradigm, we investigated the effect of postural balance demand on these 3 components. Forty-two participants completed the ANT in 3 postural conditions: (a) supine, a very stable position; (b) sitting on a chair, an intermediate position; and (c) standing with feet lined up heel to toe, a very instable position known as the Romberg position. Our results revealed that the difficulty of postural control does modulate alerting in such a way that it improves with the level of instability of the position. Regarding the orienting and executive control components of attention, performance was not different when participants were standing upright or seated, whereas in the supine position, performance dropped. The strong and specific interaction between postural control and the alerting system suggests that these mechanisms may share parts of the underlying neural circuits. We discuss the possible implication of the locus coeruleus, known to be involved in both postural balance and alerting. Also, our findings concerning orienting and executive control systems suggest that supine posture could have a specific effect on cognitive activities. These effects are discussed in terms of particularities resulting from the supine position. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Reverse engineering of integrated circuits
Chisholm, Gregory H.; Eckmann, Steven T.; Lain, Christopher M.; Veroff, Robert L.
2003-01-01
Software and a method therein to analyze circuits. The software comprises several tools, each of which perform particular functions in the Reverse Engineering process. The analyst, through a standard interface, directs each tool to the portion of the task to which it is most well suited, rendering previously intractable problems solvable. The tools are generally used iteratively to produce a successively more abstract picture of a circuit, about which incomplete a priori knowledge exists.
Molecular interfaces for plasmonic hot electron photovoltaics
NASA Astrophysics Data System (ADS)
Pelayo García de Arquer, F.; Mihi, Agustín; Konstantatos, Gerasimos
2015-01-01
The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices.The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices. Electronic supplementary information (ESI) available: Contact-potential differentiometry measurements, FTIR characterization, performance statistics and gold devices. See DOI: 10.1039/c4nr06356b
Interference in Ballistic Motor Learning: Specificity and Role of Sensory Error Signals
Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C.; Nielsen, Jens Bo
2011-01-01
Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity in overlapping circuits and predicted specificity. To test this, subjects learned a ballistic motor task. Interference was observed following subsequent learning of an accuracy-tracking task, but only if the competing task involved the same muscles and movement direction. Interference was not observed from a non-learning task suggesting that interference requires competing learning. Subsequent learning of the competing task 4 h after initial learning did not cause interference suggesting disruption of early motor memory consolidation as one possible mechanism underlying interference. Repeated transcranial magnetic stimulation (rTMS) of corticospinal motor output at intensities below movement threshold did not cause interference, whereas suprathreshold rTMS evoking motor responses and (re)afferent activation did. Finally, the experiments revealed that suprathreshold repetitive electrical stimulation of the agonist (but not antagonist) peripheral nerve caused interference. The present study is, to our knowledge, the first to demonstrate that peripheral nerve stimulation may cause interference. The finding underscores the importance of sensory feedback as error signals in motor learning. We conclude that interference requires competing plasticity in overlapping circuits. Interference is remarkably specific for circuits involved in a specific movement and it may relate to sensory error signals. PMID:21408054
Kubanek, J; Wang, C; Snyder, L H
2013-11-01
We often look at and sometimes reach for visible targets. Looking at a target is fast and relatively easy. By comparison, reaching for an object is slower and is associated with a larger cost. We hypothesized that, as a result of these differences, abrupt visual onsets may drive the circuits involved in saccade planning more directly and with less intermediate regulation than the circuits involved in reach planning. To test this hypothesis, we recorded discharge activity of neurons in the parietal oculomotor system (area LIP) and in the parietal somatomotor system (area PRR) while monkeys performed a visually guided movement task and a choice task. We found that in the visually guided movement task LIP neurons show a prominent transient response to target onset. PRR neurons also show a transient response, although this response is reduced in amplitude, is delayed, and has a slower rise time compared with LIP. A more striking difference is observed in the choice task. The transient response of PRR neurons is almost completely abolished and replaced with a slow buildup of activity, while the LIP response is merely delayed and reduced in amplitude. Our findings suggest that the oculomotor system is more closely and obligatorily coupled to the visual system, whereas the somatomotor system operates in a more discriminating manner.
ERIC Educational Resources Information Center
Babu, Rakesh; Singh, Rahul
2013-01-01
This paper presents a novel task-oriented, user-centered, multi-method evaluation (TUME) technique and shows how it is useful in providing a more complete, practical and solution-oriented assessment of the accessibility and usability of Learning Management Systems (LMS) for blind and visually impaired (BVI) students. Novel components of TUME…
Preissner, Katharine
2010-01-01
This case report describes the use of the Occupational Therapy Task-Oriented Approach with a client with occupational performance limitations after a cerebral vascular accident. The Occupational Therapy Task-Oriented Approach is often suggested as a preferred neurorehabilitation intervention to improve occupational performance by optimizing motor behavior. One common critique of this approach, however, is that it may seem inappropriate or have limited application for clients with cognitive deficits. This case report demonstrates how an occupational therapist working in an inpatient rehabilitation setting used the occupational therapy task-oriented evaluation framework and treatment principles described by Mathiowetz (2004) with a person with significant cognitive limitations. This approach was effective in assisting the client in meeting her long-term goals, maximizing her participation in meaningful occupations, and successfully transitioning to home with her daughter.
Object-Oriented Design for Sparse Direct Solvers
NASA Technical Reports Server (NTRS)
Dobrian, Florin; Kumfert, Gary; Pothen, Alex
1999-01-01
We discuss the object-oriented design of a software package for solving sparse, symmetric systems of equations (positive definite and indefinite) by direct methods. At the highest layers, we decouple data structure classes from algorithmic classes for flexibility. We describe the important structural and algorithmic classes in our design, and discuss the trade-offs we made for high performance. The kernels at the lower layers were optimized by hand. Our results show no performance loss from our object-oriented design, while providing flexibility, case of use, and extensibility over solvers using procedural design.
Takeoka, Aya; Vollenweider, Isabel; Courtine, Grégoire; Arber, Silvia
2014-12-18
Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Barry, Matthew R.
2006-01-01
The X-Windows Process Validation Table (PVT) Widget Class ( Class is used here in the object-oriented-programming sense of the word) was devised to simplify the task of implementing network registration services for Information Sharing Protocol (ISP) graphical-user-interface (GUI) computer programs. Heretofore, ISP PVT programming tasks have required many method calls to identify, query, and interpret the connections and messages exchanged between a client and a PVT server. Normally, programmers have utilized direct access to UNIX socket libraries to implement the PVT protocol queries, necessitating the use of many lines of source code to perform frequent tasks. Now, the X-Windows PVT Widget Class encapsulates ISP client server network registration management tasks within the framework of an X Windows widget. Use of the widget framework enables an X Windows GUI program to interact with PVT services in an abstract way and in the same manner as that of other graphical widgets, making it easier to program PVT clients. Wrapping the PVT services inside the widget framework enables a programmer to treat a PVT server interface as though it were a GUI. Moreover, an alternate subclass could implement another service in a widget of the same type. This program was written by Matthew R. Barry of United Space Alliance for Johnson Space Center. For further information, contact the Johnson Technology Transfer Office at (281) 483-3809. MSC-23582 Shuttle Data Center File- Processing Tool in Java A Java-language computer program has been written to facilitate mining of data in files in the Shuttle Data Center (SDC) archives. This program can be executed on a variety of workstations or via Web-browser programs. This program is partly similar to prior C-language programs used for the same purpose, while differing from those programs in that it exploits the platform-neutrality of Java in implementing several features that are important for analysis of large sets of time-series data. The program supports regular expression queries of SDC archive files, reads the files, interleaves the time-stamped samples according to a chosen output, then transforms the results into that format. A user can choose among a variety of output file formats that are useful for diverse purposes, including plotting, Markov modeling, multivariate density estimation, and wavelet multiresolution analysis, as well as for playback of data in support of simulation and testing.
Fidelity of Implementation of a State Antibullying Policy With a Focus on Protected Social Classes.
Hall, William J; Chapman, Mimi V
2018-01-01
Bullying threatens the mental and educational well-being of students. All states have enacted antibullying laws. This study surveyed 634 educators about the implementation of the North Carolina School Violence Prevention Act, which enumerated social classes protected from bullying: race, national origin, gender, socioeconomic status, sexual orientation, gender identity, appearance, and disability. Results showed that local antibullying policies most often included race as a protected class and least often included sexual orientation and gender identity. More educators had been trained on bullying based on race than any other social class. Students were more often informed that bullying based on race was prohibited and were least often informed about prohibitions regarding sexual orientation and gender identity. Reporting, investigating, and remediating bullying was highest for racial bullying, followed by disability bullying, and was lowest for bullying based on sexual orientation and gender identity.
Gharat, Amol; Baker, Curtis L
2017-01-25
Many of the neurons in early visual cortex are selective for the orientation of boundaries defined by first-order cues (luminance) as well as second-order cues (contrast, texture). The neural circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that it emerges from spatial nonlinearities of subcortical Y cells. To understand how inputs from the Y-cell pathway might be pooled to generate cue-invariant receptive fields, we recorded visual responses from single neurons in cat Area 18 using linear multielectrode arrays. We measured responses to drifting and contrast-reversing luminance gratings as well as contrast modulation gratings. We found that a large fraction of these neurons have nonoriented responses to gratings, similar to those of subcortical Y cells: they respond at the second harmonic (F2) to high-spatial frequency contrast-reversing gratings and at the first harmonic (F1) to low-spatial frequency drifting gratings ("Y-cell signature"). For a given neuron, spatial frequency tuning for linear (F1) and nonlinear (F2) responses is quite distinct, similar to orientation-selective cue-invariant neurons. Also, these neurons respond to contrast modulation gratings with selectivity for the carrier (texture) spatial frequency and, in some cases, orientation. Their receptive field properties suggest that they could serve as building blocks for orientation-selective cue-invariant neurons. We propose a circuit model that combines ON- and OFF-center cortical Y-like cells in an unbalanced push-pull manner to generate orientation-selective, cue-invariant receptive fields. A significant fraction of neurons in early visual cortex have specialized receptive fields that allow them to selectively respond to the orientation of boundaries that are invariant to the cue (luminance, contrast, texture, motion) that defines them. However, the neural mechanism to construct such versatile receptive fields remains unclear. Using multielectrode recording, we found a large fraction of neurons in early visual cortex with receptive fields not selective for orientation that have spatial nonlinearities like those of subcortical Y cells. These are strong candidates for building cue-invariant orientation-selective neurons; we present a neural circuit model that pools such neurons in an imbalanced "push-pull" manner, to generate orientation-selective cue-invariant receptive fields. Copyright © 2017 the authors 0270-6474/17/370998-16$15.00/0.
Uddin, Lucina Q.; Clare Kelly, A. M.; Biswal, Bharat B.; Castellanos, F. Xavier; Milham, Michael P.
2013-01-01
The default mode network (DMN), based in ventromedial prefrontal cortex (vmPFC) and posterior cingulate cortex (PCC), exhibits higher metabolic activity at rest than during performance of externally-oriented cognitive tasks. Recent studies have suggested that competitive relationships between the DMN and various task-positive networks involved in task performance are intrinsically represented in the brain in the form of strong negative correlations (anticorrelations) between spontaneous fluctuations in these networks. Most neuroimaging studies characterize the DMN as a homogenous network, thus few have examined the differential contributions of DMN components to such competitive relationships. Here we examined functional differentiation within the default mode network, with an emphasis on understanding competitive relationships between this and other networks. We used a seed correlation approach on resting-state data to assess differences in functional connectivity between these two regions and their anticorrelated networks. While the positively correlated networks for the vmPFC and PCC seeds largely overlapped, the anticorrelated networks for each showed striking differences. Activity in vmPFC negatively predicted activity in parietal visual spatial and temporal attention networks, whereas activity in PCC negatively predicted activity in prefrontal-based motor control circuits. Granger causality analyses suggest that vmPFC and PCC exert greater influence on their anticorrelated networks than the other way around, suggesting that these two default mode nodes may directly modulate activity in task-positive networks. Thus, the two major nodes comprising the default mode network are differentiated with respect to the specific brain systems with which they interact, suggesting greater heterogeneity within this network than is commonly appreciated. PMID:18219617
Developing a Very Low Vision Orientation and Mobility Test Battery (O&M-VLV).
Finger, Robert P; Ayton, Lauren N; Deverell, Lil; O'Hare, Fleur; McSweeney, Shane C; Luu, Chi D; Fenwick, Eva K; Keeffe, Jill E; Guymer, Robyn H; Bentley, Sharon A
2016-09-01
This study aimed to determine the feasibility of an assessment of vision-related orientation and mobility (O&M) tasks in persons with severe vision loss. These tasks may be used for future low vision rehabilitation clinical assessments or as outcome measures in vision restoration trials. Forty legally blind persons (mean visual acuity logMAR 2.3, or hand movements) with advanced retinitis pigmentosa participated in the Orientation & Mobility-Very Low Vision (O&M-VLV) subtests from the Low Vision Assessment of Daily Activities (LoVADA) protocol. Four categories of tasks were evaluated: route travel in three indoor hospital environments, a room orientation task (the "cafe"), a visual exploration task (the "gallery"), and a modified version of the Timed Up and Go (TUG) test, which assesses re-orientation and route travel. Spatial cognition was assessed using the Stuart Tactile Maps test. Visual acuity and visual fields were measured. A generalized linear regression model showed that a number of measures in the O&M-VLV tasks were related to residual visual function. The percentage of preferred walking speed without an aid on three travel routes was associated with visual field (p < 0.01 for all routes) whereas the number of contacts with obstacles during route travel was associated with acuity (p = 0.001). TUG-LV task time was associated with acuity (p = 0.003), as was the cafe time and distance traveled (p = 0.006 and p < 0.001, respectively). The gallery score was the only measure that was significantly associated with both residual acuity and fields (p < 0.001 and p = 0.001, respectively). The O&M-VLV was designed to capture key elements of O&M performance in persons with severe vision loss, which is a population not often studied previously. Performance on these tasks was associated with both binocular visual acuity and visual field. This new protocol includes assessments of orientation, which may be of benefit in vision restoration clinical trials.
Analysis and design of a class-D amplifier
NASA Technical Reports Server (NTRS)
1968-01-01
Analysis of a basic class-D amplifier circuit configuration shows its adaptability to a variety of applications. The feedback, input and output configuration and the frequency spectrum of the pulse-width-modulated signal are analyzed.
Classes in the Balance: Latent Class Analysis and the Balance Scale Task
ERIC Educational Resources Information Center
Boom, Jan; ter Laak, Jan
2007-01-01
Latent class analysis (LCA) has been successfully applied to tasks measuring higher cognitive functioning, suggesting the existence of distinct strategies used in such tasks. With LCA it became possible to classify post hoc. This important step forward in modeling and analyzing cognitive strategies is relevant to the overlapping waves model for…
NASA Astrophysics Data System (ADS)
Castro-Lopez, Rafael; Fernandez, Francisco V.; Rodriguez Vazquez, Angel
2005-06-01
Accelerating the synthesis of increasingly complex analog integrated circuits is key to bridge the widening gap between what we can integrate and what we can design while meeting ever-tightening time-to-market constraints. It is a well-known fact in the semiconductor industry that such goal can only be attained by means of adequate CAD methodologies, techniques, and accompanying tools. This is particularly important in analog physical synthesis (a.k.a. layout generation), where large sensitivities of the circuit performances to the many subtle details of layout implementation (device matching, loading and coupling effects, reliability, and area features are of utmost importance to analog designers), render complete automation a truly challenging task. To approach the problem, two directions have been traditionally considered, knowledge-based and optimization-based, both with their own pros and cons. Besides, recently reported solutions oriented to speed up the overall design flow by means of reuse-based practices or by cutting off time-consuming, error-prone spins between electrical and layout synthesis (a technique known as layout-aware synthesis), rely on a outstandingly rapid yet efficient layout generation method. This paper analyses the suitability of procedural layout generation based on templates (a knowledge-based approach) by examining the requirements that both layout reuse and layout-aware solutions impose, and how layout templates face them. The ability to capture the know-how of experienced layout designers and the turnaround times for layout instancing are considered main comparative aspects in relation to other layout generation approaches. A discussion on the benefit-cost trade-off of using layout templates is also included. In addition to this analysis, the paper delves deeper into systematic techniques to develop fully reusable layout templates for analog circuits, either for a change of the circuit sizing (i.e., layout retargeting) or a change of the fabrication process (i.e., layout migration). Several examples implemented with the Cadence's Virtuoso tool suite are provided as demonstration of the paper's contributions.
Model authoring system for fail safe analysis
NASA Technical Reports Server (NTRS)
Sikora, Scott E.
1990-01-01
The Model Authoring System is a prototype software application for generating fault tree analyses and failure mode and effects analyses for circuit designs. Utilizing established artificial intelligence and expert system techniques, the circuits are modeled as a frame-based knowledge base in an expert system shell, which allows the use of object oriented programming and an inference engine. The behavior of the circuit is then captured through IF-THEN rules, which then are searched to generate either a graphical fault tree analysis or failure modes and effects analysis. Sophisticated authoring techniques allow the circuit to be easily modeled, permit its behavior to be quickly defined, and provide abstraction features to deal with complexity.
Choice-specific sequences in parietal cortex during a virtual-navigation decision task
Harvey, Christopher D.; Coen, Philip; Tank, David W.
2012-01-01
The posterior parietal cortex (PPC) plays an important role in many cognitive behaviors; however, the neural circuit dynamics underlying PPC function are not well understood. Here we optically imaged the spatial and temporal activity patterns of neuronal populations in mice performing a PPC-dependent task that combined a perceptual decision and memory-guided navigation in a virtual environment. Individual neurons had transient activation staggered relative to one another in time, forming a sequence of neuronal activation spanning the entire length of a task trial. Distinct sequences of neurons were triggered on trials with opposite behavioral choices and defined divergent, choice-specific trajectories through a state space of neuronal population activity. Cells participating in the different sequences and at distinct time points in the task were anatomically intermixed over microcircuit length scales (< 100 micrometers). During working memory decision tasks the PPC may therefore perform computations through sequence-based circuit dynamics, rather than long-lived stable states, implemented using anatomically intermingled microcircuits. PMID:22419153
Cazzato, Valentina; Liuzza, Marco Tullio; Caprara, Gian Vittorio; Macaluso, Emiliano; Aglioti, Salvatore Maria
2015-10-01
Observing someone rapidly moving their eyes induces reflexive shifts of overt and covert attention in the onlooker. Previous studies have shown that this process can be modulated by the onlooker's personality, as well as by the social features of the person depicted in the cued face. Here, we investigated whether an individual's preference for social dominance orientation, in-group perceived similarity (PS), and political affiliation of the cued-face modulated neural activity within specific nodes of the social attention network. During functional magnetic resonance imaging, participants were requested to perform a gaze-following task to investigate whether the directional gaze of various Italian political personages might influence the oculomotor behaviour of in-group or out-group voters. After scanning, we acquired measures of PS in personality traits with each political personage and preference for social dominance orientation. Behavioural data showed that higher gaze interference for in-group than out-group political personages was predicted by a higher preference for social hierarchy. Higher blood oxygenation level-dependent activity in incongruent vs. congruent conditions was found in areas associated with orienting to socially salient events and monitoring response conflict, namely the left frontal eye field, right supramarginal gyrus, mid-cingulate cortex and left anterior insula. Interestingly, higher ratings of PS with the in-group and less preference for social hierarchy predicted increased activity in the left frontal eye field during distracting gaze movements of in-group as compared with out-group political personages. Our results suggest that neural activity in the social orienting circuit is modulated by higher-order social dimensions, such as in-group PS and individual differences in ideological attitudes. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Effects of orientation on Rey complex figure performance.
Ferraro, F Richard; Grossman, Jennifer; Bren, Amy; Hoverson, Allysa
2002-10-01
An experiment was performed that examined the impact of stimulus orientation on performance on the Rey complex figure. A total of 48 undergraduates (24 men, 24 women) were randomly assigned to one of four Rey figure orientation groups (0 degrees, 90 degrees, 180 degrees, and 270 degrees ). Participants followed standard procedures for the Rey figure, initially copying it in whatever orientation group they were assigned to. Next, all participants performed a 15-20 min lexical decision experiment, used as a filler task. Finally, and unbeknownest to them, participants were asked to recall as much of the figure as they could. As expected, results revealed a main effect of Task (F = 83.92, p < .01), in which copy performance was superior to recall performance. However, the main effect for orientation was not significant, nor did orientation interact with task (Fs < .68, ps > .57). The results are important from an applied setting, especially if testing conditions are less than optimal and a fixed stimulus position is not possible (e.g., testing at the bedside).
Haldane, Morgan; Jogia, Jigar; Cobb, Annabel; Kozuch, Eliza; Kumari, Veena; Frangou, Sophia
2008-01-01
Verbal working memory and emotional self-regulation are impaired in Bipolar Disorder (BD). Our aim was to investigate the effect of Lamotrigine (LTG), which is effective in the clinical management of BD, on the neural circuits subserving working memory and emotional processing. Functional Magnetic Resonance Imaging data from 12 stable BD patients was used to detect LTG-induced changes as the differences in brain activity between drug-free and post-LTG monotherapy conditions during a verbal working memory (N-back sequential letter task) and an angry facial affect recognition task. For both tasks, LGT monotherapy compared to baseline was associated with increased activation mostly within the prefrontal cortex and cingulate gyrus, in regions normally engaged in verbal working memory and emotional processing. Therefore, LTG monotherapy in BD patients may enhance cortical function within neural circuits involved in memory and emotional self-regulation.
ERIC Educational Resources Information Center
Bjerstedt, Ake, Ed.
This document is a report on teacher oriented research at the Department of Educational and Psychological Research of the Malmo School of Education in Sweden. It contains four papers: "Education in Teacher Training,""Studies of Closed Circuit Television,""Job Analysis as a Basis for Training and Further Education in the…
ERIC Educational Resources Information Center
Haun-Frank, Julie; Matthews, Catherine E.; Allen, Melony Holyfield
2012-01-01
In this article we provide an example of how to foster an activist-oriented student community by critically examining green technology. We designed this curriculum unit to teach students about the fundamentals of electricity, green technology, and experimental design. Additionally, we viewed this activity as an opportunity for students to apply…
Netlist Oriented Sensitivity Evaluation (NOSE)
2017-03-01
developing methodologies to assess sensitivities of alternative chip design netlist implementations. The research is somewhat foundational in that such...Netlist-Oriented Sensitivity Evaluation (NOSE) project was to develop methodologies to assess sensitivities of alternative chip design netlist...analysis to devise a methodology for scoring the sensitivity of circuit nodes in a netlist and thus providing the raw data for any meaningful
Huang, Liqiang
2015-05-01
Basic visual features (e.g., color, orientation) are assumed to be processed in the same general way across different visual tasks. Here, a significant deviation from this assumption was predicted on the basis of the analysis of stimulus spatial structure, as characterized by the Boolean-map notion. If a task requires memorizing the orientations of a set of bars, then the map consisting of those bars can be readily used to hold the overall structure in memory and will thus be especially useful. If the task requires visual search for a target, then the map, which contains only an overall structure, will be of little use. Supporting these predictions, the present study demonstrated that in comparison to stimulus colors, bar orientations were processed more efficiently in change-detection tasks but less efficiently in visual search tasks (Cohen's d = 4.24). In addition to offering support for the role of the Boolean map in conscious access, the present work also throws doubts on the generality of processing visual features. © The Author(s) 2015.
Monsma, Eva
2016-01-01
This paper examines the factor structure and measurement invariance of the Task and Ego Orientation in Sport Questionnaire (TEOSQ) across American and Chinese samples. Results based on the mean and covariance structure analyses supported configural invariance, metric invariance and scalar invariance across groups. Latent means analyses revealed that American sample had significantly higher mean scores on task and ego orientations than the Chinese sample. The findings suggest that the TEOSQ is a valid and reliable instrument in assessing achievement motivation across these two diverse populations. PMID:27399869
Task-oriented display design - Concept and example
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
1989-01-01
The general topic was in the area of display design alternatives for improved man-machine performance. The intent was to define and assess a display design concept oriented toward providing this task-oriented information. The major focus of this concept deals with the processing of data into parameters that are more relevant to the task of the human operator. Closely coupled to this concept of relevant information is the form or manner in which this information is actually presented. Conventional forms of presentation are normally a direct representation of the underlying data. By providing information in a form that is more easily assimilated and understood, a reduction in human error and cognitive workload may be obtained. A description of this proposed concept with a design example is provided. The application for the example was an engine display for a generic, twin-engine civil transport aircraft. The product of this concept was evaluated against a functionally similar, traditional display. The results of this evaluation showed that a task-oriented approach to design is a viable concept with regard to reducing user error and cognitive workload. The goal of this design process, providing task-oriented information to the user, both in content and form, appears to be a feasible mechanism for increasing the overall performance of a man-machine system.
Task-oriented display design: Concept and example
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
1989-01-01
The general topic was in the area of display design alternatives for improved man-machine performance. The intent was to define and assess a display design concept oriented toward providing this task-oriented information. The major focus of this concept deals with the processing of data into parameters that are more relevant to the task of the human operator. Closely coupled to this concept of relevant information is the form or manner in which this information is actually presented. Conventional forms of presentation are normally a direct representation of the underlying data. By providing information in a form that is more easily assimilated and understood, a reduction in human error and cognitive workload may be obtained. A description of this proposed concept with a design example is provided. The application for the example was an engine display for a generic, twin-engine civil transport aircraft. The product of this concept was evaluated against a functionally similar, traditional display. The results of this evaluation showed that a task-oriented approach to design is a viable concept with regard to reducing user error and cognitive workload. The goal of this design process, providing task-oriented information to the user, both in content and form, appears to be a feasible mechanism for increasing the overall performance of a man-machine system.
NASA Technical Reports Server (NTRS)
Chelette, T. L.; Repperger, Daniel W.; Albery, W. B.
1991-01-01
An effort was initiated at the Armstrong Aerospace Medical Research Laboratory (AAMRL) to investigate the improvement of the situational awareness of a pilot with respect to his aircraft's spatial orientation. The end product of this study is a device to alert a pilot to potentially disorienting situations. Much like a ground collision avoidance system (GCAS) is used in fighter aircraft to alert the pilot to 'pull up' when dangerous flight paths are predicted, this device warns the pilot to put a higher priority on attention to the orientation instrument. A Kalman filter was developed which estimates the pilot's perceived position and orientation. The input to the Kalman filter consists of two classes of data. The first class of data consists of noise parameters (indicating parameter uncertainty), conflict signals (e.g. vestibular and kinesthetic signal disagreement), and some nonlinear effects. The Kalman filter's perceived estimates are now the sum of both Class 1 data (good information) and Class 2 data (distorted information). When the estimated perceived position or orientation is significantly different from the actual position or orientation, the pilot is alerted.
Task decomposition for a multilimbed robot to work in reachable but unorientable space
NASA Technical Reports Server (NTRS)
Su, Chau; Zheng, Yuan F.
1991-01-01
Robot manipulators installed on legged mobile platforms are suggested for enlarging robot workspace. To plan the motion of such a system, the arm-platform motion coordination problem is raised, and a task decomposition is proposed to solve the problem. A given task described by the destination position and orientation of the end effector is decomposed into subtasks for arm manipulation and for platform configuration, respectively. The former is defined as the end-effector position and orientation with respect to the platform, and the latter as the platform position and orientation in the base coordinates. Three approaches are proposed for the task decomposition. The approaches are also evaluated in terms of the displacements, from which an optimal approach can be selected.
Marsh, Rachel; Alexander, Gerianne M; Packard, Mark G; Zhu, Hongtu; Peterson, Bradley S
2005-01-01
Procedural learning and memory systems likely comprise several skills that are differentially affected by various illnesses of the central nervous system, suggesting their relative functional independence and reliance on differing neural circuits. Gilles de la Tourette syndrome (GTS) is a movement disorder that involves disturbances in the structure and function of the striatum and related circuitry. Recent studies suggest that patients with GTS are impaired in performance of a probabilistic classification task that putatively involves the acquisition of stimulus-response (S-R)-based habits. Assessing the learning of perceptual-motor skills and probabilistic classification in the same samples of GTS and healthy control subjects may help to determine whether these various forms of procedural (habit) learning rely on the same or differing neuroanatomical substrates and whether those substrates are differentially affected in persons with GTS. Therefore, we assessed perceptual-motor skill learning using the pursuit-rotor and mirror tracing tasks in 50 patients with GTS and 55 control subjects who had previously been compared at learning a task of probabilistic classifications. The GTS subjects did not differ from the control subjects in performance of either the pursuit rotor or mirror-tracing tasks, although they were significantly impaired in the acquisition of a probabilistic classification task. In addition, learning on the perceptual-motor tasks was not correlated with habit learning on the classification task in either the GTS or healthy control subjects. These findings suggest that the differing forms of procedural learning are dissociable both functionally and neuroanatomically. The specific deficits in the probabilistic classification form of habit learning in persons with GTS are likely to be a consequence of disturbances in specific corticostriatal circuits, but not the same circuits that subserve the perceptual-motor form of habit learning.
Effect of tDCS on task relevant and irrelevant perceptual learning of complex objects.
Van Meel, Chayenne; Daniels, Nicky; de Beeck, Hans Op; Baeck, Annelies
2016-01-01
During perceptual learning the visual representations in the brain are altered, but these changes' causal role has not yet been fully characterized. We used transcranial direct current stimulation (tDCS) to investigate the role of higher visual regions in lateral occipital cortex (LO) in perceptual learning with complex objects. We also investigated whether object learning is dependent on the relevance of the objects for the learning task. Participants were trained in two tasks: object recognition using a backward masking paradigm and an orientation judgment task. During both tasks, an object with a red line on top of it were presented in each trial. The crucial difference between both tasks was the relevance of the object: the object was relevant for the object recognition task, but not for the orientation judgment task. During training, half of the participants received anodal tDCS stimulation targeted at the lateral occipital cortex (LO). Afterwards, participants were tested on how well they recognized the trained objects, the irrelevant objects presented during the orientation judgment task and a set of completely new objects. Participants stimulated with tDCS during training showed larger improvements of performance compared to participants in the sham condition. No learning effect was found for the objects presented during the orientation judgment task. To conclude, this study suggests a causal role of LO in relevant object learning, but given the rather low spatial resolution of tDCS, more research on the specificity of this effect is needed. Further, mere exposure is not sufficient to train object recognition in our paradigm.
Supraliminal But Not Subliminal Distracters Bias Working Memory Recall
2015-01-01
Information of which observers are not consciously aware can nevertheless influence perceptual processes. Whether subliminal information might exert an influence on working memory (WM) representations is less clear, and relatively few studies have examined the interactions between subliminal and supraliminal information in WM. We present 3 experiments examining this issue. Experiments 1a and b replicated the finding that orientation stimuli can influence behavior subliminally in a visuomotor priming task. Experiments 2 and 3 used the same orientation stimuli, but participants had to remember a target orientation and report it back by adjusting a probe orientation after a memory delay. Before or after presentation of the target orientation, a subliminal or supraliminal distracter orientation was presented that was either irrelevant for task completion and never had to be reported (Experiment 2), or was relevant for task completion because it had to be reported on some trials (Experiment 3). In both experiments, presentation of a supraliminal distracter influenced WM recall of the target orientation. When the distracter was presented subliminally, however, there was no bias in orientation recall. These results suggest that information stored in WM is protected from influences of subliminal stimuli, while online information processing is modulated by subliminal information. PMID:25867502
Research on rapid agile metrology for manufacturing based on real-time multitask operating system
NASA Astrophysics Data System (ADS)
Chen, Jihong; Song, Zhen; Yang, Daoshan; Zhou, Ji; Buckley, Shawn
1996-10-01
Rapid agile metrology for manufacturing (RAMM) using multiple non-contact sensors is likely to remain a growing trend in manufacturing. High speed inspecting systems for manufacturing is characterized by multitasks implemented in parallel and real-time events which occur simultaneously. In this paper, we introduce a real-time operating system into RAMM research. A general task model of a class-based object- oriented technology is proposed. A general multitask frame of a typical RAMM system using OPNet is discussed. Finally, an application example of a machine which inspects parts held on a carrier strip is described. With RTOS and OPNet, this machine can measure two dimensions of the contacts at 300 parts/second.
Students' different understandings of class diagrams
NASA Astrophysics Data System (ADS)
Boustedt, Jonas
2012-03-01
The software industry needs well-trained software designers and one important aspect of software design is the ability to model software designs visually and understand what visual models represent. However, previous research indicates that software design is a difficult task to many students. This article reports empirical findings from a phenomenographic investigation on how students understand class diagrams, Unified Modeling Language (UML) symbols, and relations to object-oriented (OO) concepts. The informants were 20 Computer Science students from four different universities in Sweden. The results show qualitatively different ways to understand and describe UML class diagrams and the "diamond symbols" representing aggregation and composition. The purpose of class diagrams was understood in a varied way, from describing it as a documentation to a more advanced view related to communication. The descriptions of class diagrams varied from seeing them as a specification of classes to a more advanced view, where they were described to show hierarchic structures of classes and relations. The diamond symbols were seen as "relations" and a more advanced way was seeing the white and the black diamonds as different symbols for aggregation and composition. As a consequence of the results, it is recommended that UML should be adopted in courses. It is briefly indicated how the phenomenographic results in combination with variation theory can be used by teachers to enhance students' possibilities to reach advanced understanding of phenomena related to UML class diagrams. Moreover, it is recommended that teachers should put more effort in assessing skills in proper usage of the basic symbols and models and students should be provided with opportunities to practise collaborative design, e.g. using whiteboards.
ERIC Educational Resources Information Center
Chapman, Michael; McBride, Michelle L.
1992-01-01
Children of 4 to 10 years of age were given 2 class inclusion tasks. Younger children's performance was inflated by guessing. Scores were higher in the marked task than in the unmarked task as a result of differing rates of inclusion logic. Children's verbal justifications closely approximated estimates of their true competence. (GLR)
ERIC Educational Resources Information Center
Bezci, Sakir
2016-01-01
This research aims to determine the effect of tasks and egos of taekwondo athletes on the coach-athlete relationship and the effect of coach-athlete relationship on motivation in sports. Thus, "Coach-Athlete Relationship", "Task and Ego Orientation in Sports" and "Motivation in Sports" scales have been applied to the…
Sage, Luke D; Kavussanu, Maria
2008-05-01
In this study, we examined the temporal stability and reciprocal relationships among task and ego orientation, task- and ego-involving climates, and prosocial and antisocial behaviour in youth football. Male (n = 156) and female (n = 24) footballers (mean age 14.1 years, s = 1.8) completed questionnaires towards the beginning and end of a regular season. Questionnaires measured goal orientation, perceived motivational climate, and frequency of prosocial and antisocial behaviours. Structural equation modelling indicated moderate covariance stability between the beginning and end of the season. Subsequent analyses revealed a significant decrease only in perceptions of task-involving climate. In the cross-lagged analyses, prosocial behaviour at the beginning of the season positively predicted task-involving climate at the end of the season. Antisocial behaviour at the beginning of the season positively predicted both ego orientation and ego-involving climate at the end of the season and a reciprocal relationship was revealed whereby ego orientation at the beginning of the season positively predicted antisocial behaviour at the end of the season. Task orientation at the beginning of the season negatively predicted ego-involving climate at the end of the season. All cross-lagged relationships were weak. This exploratory study offers limited support for bi-directional relationships between personal, environmental, and behavioural variables but provides useful insight into the covariance stability, change, and interrelationships between motivational and moral constructs over a competitive season.
Xiong, Lilin; Huang, Xiao; Li, Jie; Mao, Peng; Wang, Xiang; Wang, Rubing; Tang, Meng
2018-06-13
Indoor physical environments appear to influence learning efficiency nowadays. For improvement in learning efficiency, environmental scenarios need to be designed when occupants engage in different learning tasks. However, how learning efficiency is affected by indoor physical environment based on task types are still not well understood. The present study aims to explore the impacts of three physical environmental factors (i.e., temperature, noise, and illuminance) on learning efficiency according to different types of tasks, including perception, memory, problem-solving, and attention-oriented tasks. A 3 × 4 × 3 full factorial design experiment was employed in a university classroom with 10 subjects recruited. Environmental scenarios were generated based on different levels of temperature (17 °C, 22 °C, and 27 °C), noise (40 dB(A), 50 dB(A), 60 dB(A), and 70 dB(A)) and illuminance (60 lx, 300 lx, and 2200 lx). Accuracy rate (AC), reaction time (RT), and the final performance indicator (PI) were used to quantify learning efficiency. The results showed ambient temperature, noise, and illuminance exerted significant main effect on learning efficiency based on four task types. Significant concurrent effects of the three factors on final learning efficiency was found in all tasks except problem-solving-oriented task. The optimal environmental scenarios for top learning efficiency were further identified under different environmental interactions. The highest learning efficiency came in thermoneutral, relatively quiet, and bright conditions in perception-oriented task. Subjects performed best under warm, relatively quiet, and moderately light exposure when recalling images in the memory-oriented task. Learning efficiency peaked to maxima in thermoneutral, fairly quiet, and moderately light environment in problem-solving process while in cool, fairly quiet and bright environment with regard to attention-oriented task. The study provides guidance for building users to conduct effective environmental intervention with simultaneous controls of ambient temperature, noise, and illuminance. It contributes to creating the most suitable indoor physical environment for improving occupants learning efficiency according to different task types. The findings could further supplement the present indoor environment-related standards or norms with providing empirical reference on environmental interactions.
Cognitive Task Analysis of the HALIFAX-Class Operations Room Officer: Data Sheets. Annexes
1999-03-10
Image Cover Sheet CLASSIFICATION SYSTEM NUMBER 510920 UNCLASSIFIED 1111111111111111111111111111111111111111 TITLE ANNEXES TO: COGNITIVE TASK ANALYSIS OF...1999 2. REPORT TYPE 3. DATES COVERED 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Annexes to: Cognitive Task Analysis of the HALIFAX-Class...by ANSI Std Z39-18 Guelph, Ontario .H U. M A N S X S T E M S Incorporated Annexes to: Cognitive Task Analysis of the HALIFAX-Class Operations
ERIC Educational Resources Information Center
Meuter, Ralph F.; And Others
This paper describes the Instructional Television Fixed Service (ITFS) program, a closed-circuit educational television system in which classes originating on the California State University, Chico (CSUC) campus are simultaneously broadcast live to various ITFS sites within Northeastern California. Following an introduction, the first section…
Design and development of a brushless, direct drive solar array reorientation system
NASA Technical Reports Server (NTRS)
Jessee, R. D.
1972-01-01
This report covers the design and development of the laboratory model, and is essentially a compilation of reports covering the system and its various parts. To enhance completeness, the final report of Phase 1 covering circuit development of the controller is also included. A controller was developed for a brushless, direct-drive, single axis solar array reorientation system for earth-pointed, passively-stabilized spacecraft. A control systems was designed and breadboard circuits were built and tested for performance. The controller is designed to take over automatic control of the array on command after the spacecraft is stabilized in orbit. The controller will orient the solar array to the sun vector and automatically track to maintain proper orientation. So long as the orbit is circular, orientation toward the sun is maintained even though the spacecraft goes into the shadow of the earth. Particular attention was given in the design to limit reaction between the array and the spacecraft.
Clinical Correlates of Carbon Dioxide Hypersensitivity in Children.
Rappaport, Lance M; Sheerin, Christina; Carney, Dever M; Towbin, Kenneth E; Leibenluft, Ellen; Pine, Daniel S; Brotman, Melissa A; Roberson-Nay, Roxann; Hettema, John M
2017-12-01
Hypersensitivity to carbon dioxide (CO 2 )-enriched air may be a promising risk marker for anxiety disorders. Among adult and adolescent samples, heterogeneity in distress response to the CO 2 challenge task indexes 3 underlying classes of individuals, which distinguish between sustained and acute threat response as markers for internalizing disorders, broadly, and anxiety disorders, specifically. The present study examines latent classes in children's response to the CO 2 challenge task to clarify the association of CO 2 hypersensitivity with anxiety and internalizing symptomatology in childhood. Healthy children from a community twin sample (N = 538; age 9-13 years) rated anxious distress every 2 minutes while breathing air enriched to 7.5% CO 2 for 8 minutes. Latent growth mixture modeling evaluated potential classes of individuals with characteristic trajectories of distress during the task to clarify the association with internalizing disorder symptoms and related traits (e.g., anxiety sensitivity, irritability). Although all participants reported increased distress during the task, interindividual heterogeneity in distress indexed 3 underlying classes: a consistently low class ("low"), a consistently high class ("high"), and participants who demonstrated markedly increased acute distress ("acute"). Compared to the low class, the high class reported greater internalizing psychopathology, whereas membership in the acute class was associated with experiencing a panic-like event during the task. As in older individuals, 3 distinct trajectories emerged to capture interindividual heterogeneity in children's distress during the CO 2 challenge task. These classes were distinguished by clinical validators that reinforce the association of CO 2 hypersensitivity and internalizing disorder phenotypes in children. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. All rights reserved.
Ikuno, Koki; Kawaguchi, Saori; Kitabeppu, Shinsuke; Kitaura, Masaki; Tokuhisa, Kentaro; Morimoto, Shigeru; Matsuo, Atsushi; Shomoto, Koji
2012-11-01
To investigate the feasibility of peripheral sensory nerve stimulation combined with task-oriented training in patients with stroke during inpatient rehabilitation. A pilot randomized crossover trial. Two rehabilitation hospitals. Twenty-two patients with subacute stroke. Participants were randomly assigned to two groups and underwent two weeks of training in addition to conventional inpatient rehabilitation. The immediate group underwent peripheral sensory nerve stimulation combined with task-oriented training in the first week, followed by another week with task-oriented training alone. The delayed group underwent the same training in reverse order. Outcome measures were the level of fatigue and Wolf Motor Function Test. Patients were assessed at baseline, one and two weeks. All participants completed the study with no adverse events. There was no significant difference in level of fatigue between each treatment. From baseline to one week, the immediate group showed larger improvements than the delayed groups in the Wolf Motor Function Test (decrease in mean time (± SD) from 41.9 ± 16.2 seconds to 30.6 ± 11.4 seconds versus from 46.8 ± 19.4 seconds to 42.9 ± 14.7 seconds, respectively) but the difference did not reach significance after Bonferroni correction (P = 0.041). Within-group comparison showed significant improvements in the Wolf Motor Function Test mean time after the peripheral sensory nerve stimulation combined with task-oriented training periods in each group (P < 0.01). Peripheral sensory nerve stimulation is feasible in clinical settings and may enhance the effects of task-oriented training in patients with subacute stroke.
Kwon, Hae-Yeon; Ahn, So-Yoon
2016-10-01
[Purpose] This study investigates how a task-oriented training and high-variability practice program can affect the gross motor performance and activities of daily living for children with spastic diplegia and provides an effective and reliable clinical database for future improvement of motor performances skills. [Subjects and Methods] This study randomly assigned seven children with spastic diplegia to each intervention group including that of a control group, task-oriented training group, and a high-variability practice group. The control group only received neurodevelopmental treatment for 40 minutes, while the other two intervention groups additionally implemented a task-oriented training and high-variability practice program for 8 weeks (twice a week, 60 min per session). To compare intra and inter-relationships of the three intervention groups, this study measured gross motor performance measure (GMPM) and functional independence measure for children (WeeFIM) before and after 8 weeks of training. [Results] There were statistically significant differences in the amount of change before and after the training among the three intervention groups for the gross motor performance measure and functional independence measure. [Conclusion] Applying high-variability practice in a task-oriented training course may be considered an efficient intervention method to improve motor performance skills that can tune to movement necessary for daily livelihood through motor experience and learning of new skills as well as change of tasks learned in a complex environment or similar situations to high-variability practice.
NASA Astrophysics Data System (ADS)
Chen, J.; Gao, G. B.; Ünlü, M. S.; Morkoç, H.
1991-11-01
High-frequency ic- vce output characteristics of bipolar transistors, derived from calculated device cutoff frequencies, are reported. The generation of high-frequency output characteristics from device design specifications represents a novel bridge between microwave circuit design and device design: the microwave performance of simulated device structures can be analyzed, or tailored transistor device structures can be designed to fit specific circuit applications. The details of our compact transistor model are presented, highlighting the high-current base-widening (Kirk) effect. The derivation of the output characteristics from the modeled cutoff frequencies are then presented, and the computed characteristics of an AlGaAs/GaAs heterojunction bipolar transistor operating at 10 GHz are analyzed. Applying the derived output characteristics to microwave circuit design, we examine large-signal class A and class B amplification.
NASA Astrophysics Data System (ADS)
Neklyudov, A. A.; Savenkov, V. N.; Sergeyez, A. G.
1984-06-01
Memories are improved by increasing speed or the memory volume on a single chip. The most effective means for increasing speeds in bipolar memories are current control circuits with the lowest extraction times for a specific power consumption (1/4 pJ/bit). The control current circuitry involves multistage current switches and circuits accelerating transient processes in storage elements and links. Circuit principles for the design of bipolar memories with maximum speeds for an assigned minimum of circuit topology are analyzed. Two main classes of storage with current control are considered: the ECL type and super-integrated injection type storage with data capacities of N = 1/4 and N 4/16, respectively. The circuits reduce logic voltage differentials and the volumes of lexical and discharge buses and control circuit buses. The limiting speed is determined by the antiinterference requirements of the memory in storage and extraction modes.
NASA Astrophysics Data System (ADS)
Bergey, Bradley W.
Self-generated questions are a central mechanism for learning, yet students' questions are often infrequent during classroom instruction. As a result, little is known about the nature of student questioning during typical instructional contexts such as listening to a lecture, including the extent and nature of student-generated questions, how students evaluate their questions, and the relations among questions, motivations, and achievement. This study examined the questions undergraduate students (N = 103) generated during 8 lectures in an introductory chemistry course. Students recorded and appraised their question in daily question logs and reported lecture-specific self-efficacy beliefs. Self-efficacy, personal interest, goal orientations, and other motivational self-beliefs were measured before and after the unit. Primary analyses included testing path models, multiple regressions, and latent class analyses. Overall, results indicated that several characteristics of student questioning during lectures were significantly related to various motivations and achievement. Higher end-of-class self-efficacy was associated with fewer procedural questions and more questions that reflected smaller knowledge deficits. Lower exam scores were associated with questions reflecting broader knowledge deficits and students' appraisals that their questions had less value for others than for themselves. Individual goal orientations collectively and positively predicted question appraisals. The questions students generated and their relations with motivational variables and achievement are discussed in light of the learning task and academic context.
Autonomy and control in dyads: effects on interaction quality and joint creative performance.
Weinstein, Netta; Hodgins, Holley S; Ryan, Richard M
2010-12-01
Two studies examined interaction quality and joint performance on two creative tasks in unacquainted dyads primed for autonomy or control orientations. It was hypothesized that autonomy-primed dyads would interact more constructively, experience more positive mood, and engage the task more readily, and as a result these dyads would perform better. To test this, Study 1 primed orientation and explored verbal creative performance on the Remote Associates Task (RAT). In Study 2, dyads were primed with autonomy and control orientation and videotaped during two joint creative tasks, one verbal (RAT) and one nonverbal (charades). Videotapes were coded for behavioral indicators of closeness and task engagement. Results showed that autonomy-primed dyads felt closer, were more emotionally and cognitively attuned, provided empathy and encouragement to partners, and performed more effectively. The effects of primed autonomy on creative performance were mediated by interpersonal quality, mood, and joint engagement.
Neural integrators for decision making: a favorable tradeoff between robustness and sensitivity
Cain, Nicholas; Barreiro, Andrea K.; Shadlen, Michael
2013-01-01
A key step in many perceptual decision tasks is the integration of sensory inputs over time, but a fundamental questions remain about how this is accomplished in neural circuits. One possibility is to balance decay modes of membranes and synapses with recurrent excitation. To allow integration over long timescales, however, this balance must be exceedingly precise. The need for fine tuning can be overcome via a “robust integrator” mechanism in which momentary inputs must be above a preset limit to be registered by the circuit. The degree of this limiting embodies a tradeoff between sensitivity to the input stream and robustness against parameter mistuning. Here, we analyze the consequences of this tradeoff for decision-making performance. For concreteness, we focus on the well-studied random dot motion discrimination task and constrain stimulus parameters by experimental data. We show that mistuning feedback in an integrator circuit decreases decision performance but that the robust integrator mechanism can limit this loss. Intriguingly, even for perfectly tuned circuits with no immediate need for a robustness mechanism, including one often does not impose a substantial penalty for decision-making performance. The implication is that robust integrators may be well suited to subserve the basic function of evidence integration in many cognitive tasks. We develop these ideas using simulations of coupled neural units and the mathematics of sequential analysis. PMID:23446688
Rotor instrumentation circuits for the Sandia 34-meter vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Sutherland, Herbert J.; Stephenson, William A.
1988-07-01
Sandia National Laboratories has erected a research oriented, 34-meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas, which has been designated the Sandia 34-m VAWT Test Bed. To meet present and future research needs, the machine was equipped with a large array of sensors. This manuscript details the sensors initially placed on the rotor, their respective instrumentation circuits, and the provisions incorporated into the design of the rotor instrumentation circuits for future research. This manuscript was written as a reference manual for the rotor instrumentation of the Test Bed.
Application of the NUREG/CR-6850 EPRI/NRC Fire PRA Methodology to a DOE Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom Elicson; Bentley Harwood; Richard Yorg
2011-03-01
The application NUREG/CR-6850 EPRI/NRC fire PRA methodology to DOE facility presented several challenges. This paper documents the process and discusses several insights gained during development of the fire PRA. A brief review of the tasks performed is provided with particular focus on the following: • Tasks 5 and 14: Fire-induced risk model and fire risk quantification. A key lesson learned was to begin model development and quantification as early as possible in the project using screening values and simplified modeling if necessary. • Tasks 3 and 9: Fire PRA cable selection and detailed circuit failure analysis. In retrospect, it wouldmore » have been beneficial to perform the model development and quantification in 2 phases with detailed circuit analysis applied during phase 2. This would have allowed for development of a robust model and quantification earlier in the project and would have provided insights into where to focus the detailed circuit analysis efforts. • Tasks 8 and 11: Scoping fire modeling and detailed fire modeling. More focus should be placed on detailed fire modeling and less focus on scoping fire modeling. This was the approach taken for the fire PRA. • Task 14: Fire risk quantification. Typically, multiple safe shutdown (SSD) components fail during a given fire scenario. Therefore dependent failure analysis is critical to obtaining a meaningful fire risk quantification. Dependent failure analysis for the fire PRA presented several challenges which will be discussed in the full paper.« less
A Behavioral Study of Distraction by Vibrotactile Novelty
ERIC Educational Resources Information Center
Parmentier, Fabrice B. R.; Ljungberg, Jessica K.; Elsley, Jane V.; Lindkvist, Markus
2011-01-01
Past research has demonstrated that the occurrence of unexpected task-irrelevant changes in the auditory or visual sensory channels captured attention in an obligatory fashion, hindering behavioral performance in ongoing auditory or visual categorization tasks and generating orientation and re-orientation electrophysiological responses. We report…
Leadership Effectiveness in Teacher Probation Committees
ERIC Educational Resources Information Center
Martin, Yvonne M.; And Others
1976-01-01
This study tested the prediction of Fiedler's Contingency Theory of Leadership Effectiveness, namely, that a relationship-oriented leadership style would lead to task-group effectiveness in a moderately favorable situation, while a task-oriented leadership style would lead to effectiveness in an unfavorable situation. (Author/IRT)
From Contextual Fear to a Dynamic View of Memory Systems
Fanselow, Michael S
2009-01-01
The brain does not learn and remember in a unitary fashion. Rather, different circuits specialize in certain classes of problems and encode different types of information. Damage to one of these systems typically results in amnesia only for the form of memory that is the affected region's specialty. How does the brain allocate a specific category of memory to a particular circuit? This question has received little attention. The currently dominant view, Multiple Memory Systems Theory, assumes that such abilities are hard-wired. Using fear conditioning as a paradigmatic case, I propose an alternative model in which mnemonic processing is allocated to specific circuits through a dynamic process. Potential circuits compete to form memories with the most efficient circuits emerging as winners. However, alternate circuits compensate when these “primary” circuits are compromised. PMID:19939724
Visual spatial cue use for guiding orientation in two-to-three-year-old children
van den Brink, Danielle; Janzen, Gabriele
2013-01-01
In spatial development representations of the environment and the use of spatial cues change over time. To date, the influence of individual differences in skills relevant for orientation and navigation has not received much attention. The current study investigated orientation abilities on the basis of visual spatial cues in 2–3-year-old children, and assessed factors that possibly influence spatial task performance. Thirty-month and 35-month-olds performed an on-screen Virtual Reality (VR) orientation task searching for an animated target in the presence of visual self-movement cues and landmark information. Results show that, in contrast to 30-month-old children, 35-month-olds were successful in using visual spatial cues for maintaining orientation. Neither age group benefited from landmarks present in the environment, suggesting that successful task performance relied on the use of optic flow cues, rather than object-to-object relations. Analysis of individual differences revealed that 2-year-olds who were relatively more independent in comparison to their peers, as measured by the daily living skills scale of the parental questionnaire Vineland-Screener were most successful at the orientation task. These results support previous findings indicating that the use of various spatial cues gradually improves during early childhood. Our data show that a developmental transition in spatial cue use can be witnessed within a relatively short period of 5 months only. Furthermore, this study indicates that rather than chronological age, individual differences may play a role in successful use of visual cues for spatial updating in an orientation task. Future studies are necessary to assess the exact nature of these individual differences. PMID:24368903
Visual spatial cue use for guiding orientation in two-to-three-year-old children.
van den Brink, Danielle; Janzen, Gabriele
2013-01-01
In spatial development representations of the environment and the use of spatial cues change over time. To date, the influence of individual differences in skills relevant for orientation and navigation has not received much attention. The current study investigated orientation abilities on the basis of visual spatial cues in 2-3-year-old children, and assessed factors that possibly influence spatial task performance. Thirty-month and 35-month-olds performed an on-screen Virtual Reality (VR) orientation task searching for an animated target in the presence of visual self-movement cues and landmark information. Results show that, in contrast to 30-month-old children, 35-month-olds were successful in using visual spatial cues for maintaining orientation. Neither age group benefited from landmarks present in the environment, suggesting that successful task performance relied on the use of optic flow cues, rather than object-to-object relations. Analysis of individual differences revealed that 2-year-olds who were relatively more independent in comparison to their peers, as measured by the daily living skills scale of the parental questionnaire Vineland-Screener were most successful at the orientation task. These results support previous findings indicating that the use of various spatial cues gradually improves during early childhood. Our data show that a developmental transition in spatial cue use can be witnessed within a relatively short period of 5 months only. Furthermore, this study indicates that rather than chronological age, individual differences may play a role in successful use of visual cues for spatial updating in an orientation task. Future studies are necessary to assess the exact nature of these individual differences.
Short-Circuiting the Bureaucracy: Policy Origins in Education.
ERIC Educational Resources Information Center
Graham, Hugh Davis
The Great Society's secret task forces created by Lyndon Johnson, particularly in the case-study area of federal education policy, show the use and misuse of the task force device. Modern use of it began with John F. Kennedy. Although he used the task force device effectively sometimes, he did not use it effectively in his educational programs in…
ERIC Educational Resources Information Center
McLoone, Seamus C.; Lawlor, Bob J.; Meehan, Andrew R.
2016-01-01
This paper describes how a circuits-based project-oriented problem-based learning educational model was integrated into the first year of a Bachelor of Engineering in Electronic Engineering programme at Maynooth University, Ireland. While many variations of problem based learning exist, the presented model is closely aligned with the model used in…
A Mobile Robot for Locomotion Through a 3D Periodic Lattice Environment
NASA Technical Reports Server (NTRS)
Jenett, Benjamin; Cellucci, Daniel; Cheung, Kenneth
2017-01-01
This paper describes a novel class of robots specifically adapted to climb periodic lattices, which we call 'Relative Robots'. These robots use the regularity of the structure to simplify the path planning, align with minimal feedback, and reduce the number of degrees of freedom (DOF) required to locomote. They can perform vital inspection and repair tasks within the structure that larger truss construction robots could not perform without modifying the structure. We detail a specific type of relative robot designed to traverse a cuboctahedral (CubOct) cellular solids lattice, show how the symmetries of the lattice simplify the design, and test these design methodologies with a CubOct relative robot that traverses a 76.2 mm (3 in.) pitch lattice, MOJO (Multi-Objective JOurneying robot). We perform three locomotion tasks with MOJO: vertical climbing, horizontal climbing, and turning, and find that, due to changes in the orientation of the robot relative to the gravity vector, the success rate of vertical and horizontal climbing is significantly different.
The method of abstraction in the design of databases and the interoperability
NASA Astrophysics Data System (ADS)
Yakovlev, Nikolay
2018-03-01
When designing the database structure oriented to the contents of indicators presented in the documents and communications subject area. First, the method of abstraction is applied by expansion of the indices of new, artificially constructed abstract concepts. The use of abstract concepts allows to avoid registration of relations many-to-many. For this reason, when built using abstract concepts, demonstrate greater stability in the processes. The example abstract concepts to address structure - a unique house number. Second, the method of abstraction can be used in the transformation of concepts by omitting some attributes that are unnecessary for solving certain classes of problems. Data processing associated with the amended concepts is more simple without losing the possibility of solving the considered classes of problems. For example, the concept "street" loses the binding to the land. The content of the modified concept of "street" are only the relations of the houses to the declared name. For most accounting tasks and ensure communication is enough.
Social motivation and implicit theory of mind in children with autism spectrum disorder.
Burnside, Kimberly; Wright, Kristyn; Poulin-Dubois, Diane
2017-11-01
According to the social motivation theory of autism, children who develop Autism Spectrum Disorder (ASD) have early deficits in social motivation, which is expressed by decreased attention to social information. These deficits are said to lead to impaired socio-cognitive development, such as theory of mind (ToM). There is little research focused on the relation between social motivation and ToM in this population. The goal of the present study was to investigate the link between one aspect of social motivation, social orienting, and ToM in preschoolers with ASD. It was expected that, in contrast to typically developing (TD) children, children with ASD would show impaired performance on tasks measuring social orienting and ToM. It was also expected that children's performance on the social orienting tasks would be correlated with their performance on the ToM task. A total of 17 children with ASD and 16 TD children participated in this study. Participants completed two social orienting tasks, a face preference task and a biological motion preference task, as well an implicit false belief task. Results reveal that TD children, but not children with ASD, exhibited social preference as measured by a preference for faces and biological motion. Furthermore, children with ASD tended to perform worse on the ToM task compared to their TD counterparts. Performance on the social motivation tasks and the ToM task tended to be related but only for the TD children. These findings suggest that ToM is multifaceted and that motivational deficits might have downstream effects even on implicit ToM. Autism Res 2017, 10: 1834-1844. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. The goal of the present study was to examine the link between poor attention to social information and mindreading abilities in children with autism spectrum disorder (ASD). Results demonstrated that children with ASD tended to perform worse than neurotypical children on both social orienting and theory of mind tasks. Preference for human faces and motion tended to be related but only for the neurotypical children. These findings provide partial support for the social motivation theory. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Temporal Preparation and Inhibitory Deficit in Fibromyalgia Syndrome
ERIC Educational Resources Information Center
Correa, Angel; Miro, Elena; Martinez, M. Pilar; Sanchez, Ana I.; Lupianez, Juan
2011-01-01
Cognitive deficits in fibromyalgia may be specifically related to controlled processes, such as those measured by working memory or executive function tasks. This hypothesis was tested here by measuring controlled temporal preparation (temporal orienting) during a response inhibition (go no-go) task. Temporal orienting effects (faster reaction…
Organizational Leadership: Some Conceptual Models.
ERIC Educational Resources Information Center
Bernthal, Wilmar F.
In this address, the speaker examines several different types of organization (charismatic, traditional, bureaucratic, and task-oriented) and the role of the leader in each. In the modern, task-oriented system, his role can hardly be generalized as decision-making, direction and control, problem-solving, inspiration, communication, or any other…
Student Learning in an Electric Circuit Theory Course: Critical Aspects and Task Design
ERIC Educational Resources Information Center
Carstensen, Anna-Karin; Bernhard, Jonte
2009-01-01
Understanding time-dependent responses, such as transients, is important in electric circuit theory and other branches of engineering. However, transient response is considered difficult to learn since familiarity with advanced mathematical tools such as Laplace transforms is required. Here, we analyse and describe a novel learning environment…
NASA Astrophysics Data System (ADS)
Maghami, Mahsa; Sukthankar, Gita
In this paper, we introduce an agent-based simulation for investigating the impact of social factors on the formation and evolution of task-oriented groups. Task-oriented groups are created explicitly to perform a task, and all members derive benefits from task completion. However, even in cases when all group members act in a way that is locally optimal for task completion, social forces that have mild effects on choice of associates can have a measurable impact on task completion performance. In this paper, we show how our simulation can be used to model the impact of stereotypes on group formation. In our simulation, stereotypes are based on observable features, learned from prior experience, and only affect an agent's link formation preferences. Even without assuming stereotypes affect the agents' willingness or ability to complete tasks, the long-term modifications that stereotypes have on the agents' social network impair the agents' ability to form groups with sufficient diversity of skills, as compared to agents who form links randomly. An interesting finding is that this effect holds even in cases where stereotype preference and skill existence are completely uncorrelated.
Tong, Jonathan; Mao, Oliver; Goldreich, Daniel
2013-01-01
Two-point discrimination is widely used to measure tactile spatial acuity. The validity of the two-point threshold as a spatial acuity measure rests on the assumption that two points can be distinguished from one only when the two points are sufficiently separated to evoke spatially distinguishable foci of neural activity. However, some previous research has challenged this view, suggesting instead that two-point task performance benefits from an unintended non-spatial cue, allowing spuriously good performance at small tip separations. We compared the traditional two-point task to an equally convenient alternative task in which participants attempt to discern the orientation (vertical or horizontal) of two points of contact. We used precision digital readout calipers to administer two-interval forced-choice versions of both tasks to 24 neurologically healthy adults, on the fingertip, finger base, palm, and forearm. We used Bayesian adaptive testing to estimate the participants’ psychometric functions on the two tasks. Traditional two-point performance remained significantly above chance levels even at zero point separation. In contrast, two-point orientation discrimination approached chance as point separation approached zero, as expected for a valid measure of tactile spatial acuity. Traditional two-point performance was so inflated at small point separations that 75%-correct thresholds could be determined on all tested sites for fewer than half of participants. The 95%-correct thresholds on the two tasks were similar, and correlated with receptive field spacing. In keeping with previous critiques, we conclude that the traditional two-point task provides an unintended non-spatial cue, resulting in spuriously good performance at small spatial separations. Unlike two-point discrimination, two-point orientation discrimination rigorously measures tactile spatial acuity. We recommend the use of two-point orientation discrimination for neurological assessment. PMID:24062677
Macko, R F; Ivey, F M; Forrester, L W
2005-01-01
Stroke is the leading cause of disability in older Americans. Each year 750,000 Americans suffer a stroke, two thirds of whom are left with neurological deficits that persistently impair function. Principal among them is hemiparetic gait that limits mobility and increases fall risk, promoting a sedentary lifestyle. These events propagate disability by physical deconditioning and "learned non-use," with further functional declines accelerated by the sarcopenia and fitness decrements of advancing age. Conventional rehabilitation care typically provides little or no structured therapeutic exercise beyond the subacute stroke recovery period, based on natural history studies showing little or no further functional motor recovery beyond 6 months after stroke. Emerging evidence suggests that new models of task-oriented exercise have the potential to improve motor function even years after stroke. This article presents treadmill as a task-oriented training paradigm to optimize locomotor relearning while eliciting cardiovascular conditioning in chronic stroke patients. Protocols for exercise testing and longitudinal aerobic training progression are presented that provide fundamental formulas that safely approach the complex task of customizing aerobic training to gait deficit severity in the high CVD risk stroke population. The beneficial effects of 6 months task-oriented treadmill exercise on cardiovascular-metabolic fitness, energy cost of hemiparetic gait, ADL mobility task performance, and leg strength are discussed with respect to the central and peripheral neuromuscular adaptations targeted by the training. Collectively, these findings constitute one initial experience in a much broader neuroscience and exercise rehabilitation development of task-oriented training paradigms that offer a multisystems approach to improving both neurological and cardiovascular health outcomes in the chronic stroke population.
Asanowicz, Dariusz; Kruse, Lena; Śmigasiewicz, Kamila; Verleger, Rolf
2017-11-01
In bilateral rapid serial visual presentation (RSVP), the second of two targets, T1 and T2, is better identified in the left visual field (LVF) than in the right visual field (RVF). This LVF advantage may reflect hemispheric asymmetry in temporal attention or/and in spatial orienting of attention. Participants performed two tasks: the "standard" bilateral RSVP task (Exp.1) and its unilateral variant (Exp.1 & 2). In the bilateral task, spatial location was uncertain, thus target identification involved stimulus-driven spatial orienting. In the unilateral task, the targets were presented block-wise in the LVF or RVF only, such that no spatial orienting was needed for target identification. Temporal attention was manipulated in both tasks by varying the T1-T2 lag. The results showed that the LVF advantage disappeared when involvement of stimulus-driven spatial orienting was eliminated, whereas the manipulation of temporal attention had no effect on the asymmetry. In conclusion, the results do not support the hypothesis of hemispheric asymmetry in temporal attention, and provide further evidence that the LVF advantage reflects right hemisphere predominance in stimulus-driven orienting of spatial attention. These conclusions fit evidence that temporal attention is implemented by bilateral parietal areas and spatial attention by the right-lateralized ventral frontoparietal network. Copyright © 2017 Elsevier Inc. All rights reserved.
Prediction of intention to continue sport in athlete students: A self-determination theory approach
Keshtidar, Mohammad; Behzadnia, Behzad
2017-01-01
Grounded on the self-determination theory (Deci & Ryan, 1985, 2000) and achievement goals theory (Ames, 1992; Nicholls, 1989), this study via structural equation modelling, predicted intention to continue in sport from goal orientations and motivations among athlete students. 268 athlete students (Mage = 21.9), in Iranian universities completed a multi-section questionnaire tapping the targeted variables. Structural equation modelling (SEM) offered an overall support for the proposed model. The results showed that there are positive relationships between intention to continue in sport and both orientations as well as both motivations. A task-involving orientation emerged as a positive predictor of the autonomous motivation, while an ego-involving orientation was a positive predictor controlled motivation as well as autonomous motivation. The results also support positive paths between autonomous motivation and future intention to participate in sport. Autonomous motivation also was a positive mediator in relationship between task orientation and the intentions. As a conclusion, the implications of the task-involving orientation are discussabled in the light of its importance for the quality and potential maintenance of sport involvement among athlete students. PMID:28178308
Prediction of intention to continue sport in athlete students: A self-determination theory approach.
Keshtidar, Mohammad; Behzadnia, Behzad
2017-01-01
Grounded on the self-determination theory (Deci & Ryan, 1985, 2000) and achievement goals theory (Ames, 1992; Nicholls, 1989), this study via structural equation modelling, predicted intention to continue in sport from goal orientations and motivations among athlete students. 268 athlete students (Mage = 21.9), in Iranian universities completed a multi-section questionnaire tapping the targeted variables. Structural equation modelling (SEM) offered an overall support for the proposed model. The results showed that there are positive relationships between intention to continue in sport and both orientations as well as both motivations. A task-involving orientation emerged as a positive predictor of the autonomous motivation, while an ego-involving orientation was a positive predictor controlled motivation as well as autonomous motivation. The results also support positive paths between autonomous motivation and future intention to participate in sport. Autonomous motivation also was a positive mediator in relationship between task orientation and the intentions. As a conclusion, the implications of the task-involving orientation are discussabled in the light of its importance for the quality and potential maintenance of sport involvement among athlete students.
Sex differences in face gender recognition: an event-related potential study.
Sun, Yueting; Gao, Xiaochao; Han, Shihui
2010-04-23
Multiple level neurocognitive processes are involved in face processing in humans. The present study examined whether the early face processing such as structural encoding is modulated by task demands that manipulate attention to perceptual or social features of faces and such an effect, if any, is different between men and women. Event-related brain potentials were recorded from male and female adults while they identified a low-level perceptual feature of faces (i.e., face orientation) and a high-level social feature of faces (i.e., gender). We found that task demands that required the processing of face orientations or face gender resulted in modulations of both the early occipital/temporal negativity (N170) and the late central/parietal positivity (P3). The N170 amplitude was smaller in the gender relative to the orientation identification task whereas the P3 amplitude was larger in the gender identification task relative to the orientation identification task. In addition, these effects were much stronger in women than in men. Our findings suggest that attention to social information in faces such as gender modulates both the early encoding of facial structures and late evaluative process of faces to a greater degree in women than in men.
The Use of Enhanced Guided Notes in an Electric Circuit Class: An Exploratory Study
ERIC Educational Resources Information Center
Lawanto, O.
2012-01-01
This study was conducted to evaluate students' (n=70) learning performance after their participation in lectures using enhanced guided notes (EGN) in an electric circuits course for non-electrical engineering students. Unlike traditional guided notes, EGN include questions that prompt students to evaluate their metacognitive knowledge. The results…
ERIC Educational Resources Information Center
Payton, Spencer D.
2017-01-01
This study aimed to explore how inquiry-oriented teaching could be implemented in an introductory linear algebra course that, due to various constraints, may not lend itself to inquiry-oriented teaching. In particular, the course in question has a traditionally large class size, limited amount of class time, and is often coordinated with other…
Transfer of perceptual learning between different visual tasks
McGovern, David P.; Webb, Ben S.; Peirce, Jonathan W.
2012-01-01
Practice in most sensory tasks substantially improves perceptual performance. A hallmark of this ‘perceptual learning' is its specificity for the basic attributes of the trained stimulus and task. Recent studies have challenged the specificity of learned improvements, although transfer between substantially different tasks has yet to be demonstrated. Here, we measure the degree of transfer between three distinct perceptual tasks. Participants trained on an orientation discrimination, a curvature discrimination, or a ‘global form' task, all using stimuli comprised of multiple oriented elements. Before and after training they were tested on all three and a contrast discrimination control task. A clear transfer of learning was observed, in a pattern predicted by the relative complexity of the stimuli in the training and test tasks. Our results suggest that sensory improvements derived from perceptual learning can transfer between very different visual tasks. PMID:23048211
Transfer of perceptual learning between different visual tasks.
McGovern, David P; Webb, Ben S; Peirce, Jonathan W
2012-10-09
Practice in most sensory tasks substantially improves perceptual performance. A hallmark of this 'perceptual learning' is its specificity for the basic attributes of the trained stimulus and task. Recent studies have challenged the specificity of learned improvements, although transfer between substantially different tasks has yet to be demonstrated. Here, we measure the degree of transfer between three distinct perceptual tasks. Participants trained on an orientation discrimination, a curvature discrimination, or a 'global form' task, all using stimuli comprised of multiple oriented elements. Before and after training they were tested on all three and a contrast discrimination control task. A clear transfer of learning was observed, in a pattern predicted by the relative complexity of the stimuli in the training and test tasks. Our results suggest that sensory improvements derived from perceptual learning can transfer between very different visual tasks.
Supraliminal but not subliminal distracters bias working memory recall.
Wildegger, Theresa; Myers, Nicholas E; Humphreys, Glyn; Nobre, Anna C
2015-06-01
Information of which observers are not consciously aware can nevertheless influence perceptual processes. Whether subliminal information might exert an influence on working memory (WM) representations is less clear, and relatively few studies have examined the interactions between subliminal and supraliminal information in WM. We present 3 experiments examining this issue. Experiments 1a and b replicated the finding that orientation stimuli can influence behavior subliminally in a visuomotor priming task. Experiments 2 and 3 used the same orientation stimuli, but participants had to remember a target orientation and report it back by adjusting a probe orientation after a memory delay. Before or after presentation of the target orientation, a subliminal or supraliminal distracter orientation was presented that was either irrelevant for task completion and never had to be reported (Experiment 2), or was relevant for task completion because it had to be reported on some trials (Experiment 3). In both experiments, presentation of a supraliminal distracter influenced WM recall of the target orientation. When the distracter was presented subliminally, however, there was no bias in orientation recall. These results suggest that information stored in WM is protected from influences of subliminal stimuli, while online information processing is modulated by subliminal information. (c) 2015 APA, all rights reserved).
Edwards, Darin; Stancescu, Maria; Molnar, Peter; Hickman, James J
2013-08-21
In this study, we demonstrate the directed formation of small circuits of electrically active, synaptically connected neurons derived from the hippocampus of adult rats through the use of engineered chemically modified culture surfaces that orient the polarity of the neuronal processes. Although synaptogenesis, synaptic communication, synaptic plasticity, and brain disease pathophysiology can be studied using brain slice or dissociated embryonic neuronal culture systems, the complex elements found in neuronal synapses makes specific studies difficult in these random cultures. The study of synaptic transmission in mature adult neurons and factors affecting synaptic transmission are generally studied in organotypic cultures, in brain slices, or in vivo. However, engineered neuronal networks would allow these studies to be performed instead on simple functional neuronal circuits derived from adult brain tissue. Photolithographic patterned self-assembled monolayers (SAMs) were used to create the two-cell "bidirectional polarity" circuit patterns. This pattern consisted of a cell permissive SAM, N-1[3-(trimethoxysilyl)propyl] diethylenetriamine (DETA), and was composed of two 25 μm somal adhesion sites connected with 5 μm lines acting as surface cues for guided axonal and dendritic regeneration. Surrounding the DETA pattern was a background of a non-cell-permissive poly(ethylene glycol) (PEG) SAM. Adult hippocampal neurons were first cultured on coverslips coated with DETA monolayers and were later passaged onto the PEG-DETA bidirectional polarity patterns in serum-free medium. These neurons followed surface cues, attaching and regenerating only along the DETA substrate to form small engineered neuronal circuits. These circuits were stable for more than 21 days in vitro (DIV), during which synaptic connectivity was evaluated using basic electrophysiological methods.
Enriching User-Oriented Class Associations for Library Classification Schemes.
ERIC Educational Resources Information Center
Pu, Hsiao-Tieh; Yang, Chyan
2003-01-01
Explores the possibility of adding user-oriented class associations to hierarchical library classification schemes. Analyses a log of book circulation records from a university library in Taiwan and shows that classification schemes can be made more adaptable by analyzing circulation patterns of similar users. (Author/LRW)
Application of TBT in Reading Class
ERIC Educational Resources Information Center
Yu, Hong-qin
2007-01-01
"TBT" means "task-based teaching". In a TBT class, students play the central role. In the class where students are provided with plenty of chances to be engaged in activities, the teacher is more like a patient listener rather than a talkative speaker. This paper mainly explores how task-based teaching is used in English reading class.
ERIC Educational Resources Information Center
Johansen, Bjorn Tore
1997-01-01
A think-aloud technique, in which 20 orienteers verbalized their exact thoughts during orienteering, was used to examine the phenomenon of cognition during orienteering. Results indicate that orienteering is experienced as a task to be accomplished, a physical movement, and a dynamic process, and that thinking involves attuning perceptions to…
Small, Task-Oriented Groups: Conflict, Conflict Management, Satisfaction, and Decision Quality.
ERIC Educational Resources Information Center
Wall, Victor D., Jr.; And Others
1987-01-01
Examined relationship among amount of conflict experienced, the style of its management, individual satisfaction, and decision quality of small, task-oriented groups using 129 college student subjects in 24 groups. Data suggest a curvilinear relationship between the number of conflict episodes experienced by group members and the subsequent…
Children's Incidental Memory for Pictures: Item Processing Versus List Organizations.
ERIC Educational Resources Information Center
Ghatala, Elizabeth S.; Levin, Joel R.
1981-01-01
Two experiments which tested recall differences among young children indicated: (1) organizational factors, not item processing per se, influenced previously found differences in children's recall of pictures following semantic and physical orienting tasks; and (2) physical orienting tasks may effectively inhibit subjects' processing of words, but…
Temporal Effects of Alignment in Text-Based, Task-Oriented Discourse
ERIC Educational Resources Information Center
Foltz, Anouschka; Gaspers, Judith; Meyer, Carolin; Thiele, Kristina; Cimiano, Philipp; Stenneken, Prisca
2015-01-01
Communicative alignment refers to adaptation to one's communication partner. Temporal aspects of such alignment have been little explored. This article examines temporal aspects of lexical and syntactic alignment (i.e., tendencies to use the interlocutor's lexical items and syntactic structures) in task-oriented discourse. In particular, we…
College Student Disposition and Academic Self-Efficacy
ERIC Educational Resources Information Center
Conner, Timothy W., II; Skidmore, Ronald L.; Aagaard, Lola
2012-01-01
Dispositional optimism is an adopted orientation in which one believes that goals will generally be attained and that tasks can generally be successfully completed, whereas pessimists orient toward less belief in successful task or goal completion. A related concept, individuals with high self-efficacy believe they will be successful at particular…
Automated Design of Quantum Circuits
NASA Technical Reports Server (NTRS)
Williams, Colin P.; Gray, Alexander G.
2000-01-01
In order to design a quantum circuit that performs a desired quantum computation, it is necessary to find a decomposition of the unitary matrix that represents that computation in terms of a sequence of quantum gate operations. To date, such designs have either been found by hand or by exhaustive enumeration of all possible circuit topologies. In this paper we propose an automated approach to quantum circuit design using search heuristics based on principles abstracted from evolutionary genetics, i.e. using a genetic programming algorithm adapted specially for this problem. We demonstrate the method on the task of discovering quantum circuit designs for quantum teleportation. We show that to find a given known circuit design (one which was hand-crafted by a human), the method considers roughly an order of magnitude fewer designs than naive enumeration. In addition, the method finds novel circuit designs superior to those previously known.
de Lacy, Nina; Kodish, Ian; Rachakonda, Srinivas; Calhoun, Vince D
2018-04-22
From childhood to adolescence, strengthened coupling in frontal, striatal and parieto-temporal regions associated with cognitive control, and increased anticorrelation between task-positive and task-negative circuits, subserve the reshaping of behavior. ADHD is a common condition peaking in adolescence and regressing in adulthood, with a wide variety of cognitive control deficits. Alternate hypotheses of ADHD emphasize lagging circuitry refinement versus categorical differences in network function. However, quantifying the individual circuit contributions to behavioral findings, and relative roles of maturational versus categorical effects, is challenging in vivo or in meta-analyses using task-based paradigms within the same pipeline, given the multiplicity of neurobehavioral functions implicated. To address this, we analyzed 46 positively-correlated and anticorrelated circuits in a multivariate model in resting-state data from 504 age- and gender-matched youth, and created a novel in silico method to map individual quantified effects to reverse inference maps of 8 neurocognitive functions consistently implicated in ADHD, as well as dopamine and hyperactivity. We identified only age- and gender-related effects in intrinsic connectivity, and found that maturational refinement of circuits in youth with ADHD occupied 3-10x more brain locations than in typical development, with the footprint, effect size and contribution of individual circuits varying substantially. Our analysis supports the maturational hypothesis of ADHD, suggesting lagging connectivity reorganization within specific subnetworks of fronto-parietal control, ventral attention, cingulo-opercular, temporo-limbic and cerebellar sub-networks contribute across neurocognitive findings present in this complex condition. We present the first analysis of anti-correlated connectivity in ADHD and suggest new directions for exploring residual and non-responsive symptoms. © 2018 Wiley Periodicals, Inc.
a Task-Oriented Disaster Information Correlation Method
NASA Astrophysics Data System (ADS)
Linyao, Q.; Zhiqiang, D.; Qing, Z.
2015-07-01
With the rapid development of sensor networks and Earth observation technology, a large quantity of disaster-related data is available, such as remotely sensed data, historic data, case data, simulated data, and disaster products. However, the efficiency of current data management and service systems has become increasingly difficult due to the task variety and heterogeneous data. For emergency task-oriented applications, the data searches primarily rely on artificial experience based on simple metadata indices, the high time consumption and low accuracy of which cannot satisfy the speed and veracity requirements for disaster products. In this paper, a task-oriented correlation method is proposed for efficient disaster data management and intelligent service with the objectives of 1) putting forward disaster task ontology and data ontology to unify the different semantics of multi-source information, 2) identifying the semantic mapping from emergency tasks to multiple data sources on the basis of uniform description in 1), and 3) linking task-related data automatically and calculating the correlation between each data set and a certain task. The method goes beyond traditional static management of disaster data and establishes a basis for intelligent retrieval and active dissemination of disaster information. The case study presented in this paper illustrates the use of the method on an example flood emergency relief task.
Fisher-Pipher, Sarah; Kenyon, Lisa K; Westman, Marci
2017-07-01
Improving functional mobility is often a desired outcome for adolescents with cerebral palsy (CP). Traditional neurorehabilitation approaches are frequently directed at impairments; however, improvements may not be carried over into functional mobility. The purpose of this case report was to describe the examination, intervention, and outcomes of a task-oriented physical therapy intervention program to improve dynamic balance, functional mobility, and dual-task performance in an adolescent with CP. The participant was a 15-year-old girl with spastic triplegic CP (Gross Motor Classification System Level II). Examination procedures included the Canadian Occupational Performance Measure, 6-minute walk test, Muscle Power Sprint Test, 10 x 5-meter sprint test, Timed Up and Down Stairs Test, Gross Motor Function Measure, Gillette Functional Assessment Questionnaire, and functional lower extremity strength tests. Intervention focused on task-oriented dynamic balance and mobility tasks that incorporated coordination and speed demands as well as task-specific lower extremity and trunk strengthening activities. Dual task demands were integrated into all intervention activities. Post-intervention testing revealed improvements in cardiovascular endurance, anaerobic power, agility, stair climbing, gross motor skills, and mobility. The participant appeared to benefit from a task-oriented program to improve dynamic balance, functional mobility, and dual-task performance.
Keys and seats: Spatial response coding underlying the joint spatial compatibility effect.
Dittrich, Kerstin; Dolk, Thomas; Rothe-Wulf, Annelie; Klauer, Karl Christoph; Prinz, Wolfgang
2013-11-01
Spatial compatibility effects (SCEs) are typically observed when participants have to execute spatially defined responses to nonspatial stimulus features (e.g., the color red or green) that randomly appear to the left and the right. Whereas a spatial correspondence of stimulus and response features facilitates response execution, a noncorrespondence impairs task performance. Interestingly, the SCE is drastically reduced when a single participant responds to one stimulus feature (e.g., green) by operating only one response key (individual go/no-go task), whereas a full-blown SCE is observed when the task is distributed between two participants (joint go/no-go task). This joint SCE (a.k.a. the social Simon effect) has previously been explained by action/task co-representation, whereas alternative accounts ascribe joint SCEs to spatial components inherent in joint go/no-go tasks that allow participants to code their responses spatially. Although increasing evidence supports the idea that spatial rather than social aspects are responsible for joint SCEs emerging, it is still unclear to which component(s) the spatial coding refers to: the spatial orientation of response keys, the spatial orientation of responding agents, or both. By varying the spatial orientation of the responding agents (Exp. 1) and of the response keys (Exp. 2), independent of the spatial orientation of the stimuli, in the present study we found joint SCEs only when both the seating and the response key alignment matched the stimulus alignment. These results provide evidence that spatial response coding refers not only to the response key arrangement, but also to the-often neglected-spatial orientation of the responding agents.
Continuous-Variable Instantaneous Quantum Computing is Hard to Sample.
Douce, T; Markham, D; Kashefi, E; Diamanti, E; Coudreau, T; Milman, P; van Loock, P; Ferrini, G
2017-02-17
Instantaneous quantum computing is a subuniversal quantum complexity class, whose circuits have proven to be hard to simulate classically in the discrete-variable realm. We extend this proof to the continuous-variable (CV) domain by using squeezed states and homodyne detection, and by exploring the properties of postselected circuits. In order to treat postselection in CVs, we consider finitely resolved homodyne detectors, corresponding to a realistic scheme based on discrete probability distributions of the measurement outcomes. The unavoidable errors stemming from the use of finitely squeezed states are suppressed through a qubit-into-oscillator Gottesman-Kitaev-Preskill encoding of quantum information, which was previously shown to enable fault-tolerant CV quantum computation. Finally, we show that, in order to render postselected computational classes in CVs meaningful, a logarithmic scaling of the squeezing parameter with the circuit size is necessary, translating into a polynomial scaling of the input energy.
Recruitment of prefrontal-striatal circuit in response to skilled motor challenge.
Guo, Yumei; Wang, Zhuo; Prathap, Sandhya; Holschneider, Daniel P
2017-12-13
A variety of physical fitness regimens have been shown to improve cognition, including executive function, yet our understanding of which parameters of motor training are important in optimizing outcomes remains limited. We used functional brain mapping to compare the ability of two motor challenges to acutely recruit the prefrontal-striatal circuit. The two motor tasks - walking in a complex running wheel with irregularly spaced rungs or walking in a running wheel with a smooth internal surface - differed only in the extent of skill required for their execution. Cerebral perfusion was mapped in rats by intravenous injection of [C]-iodoantipyrine during walking in either a motorized complex wheel or in a simple wheel. Regional cerebral blood flow (rCBF) was quantified by whole-brain autoradiography and analyzed in three-dimensional reconstructed brains by statistical parametric mapping and seed-based functional connectivity. Skilled or simple walking compared with rest, increased rCBF in regions of the motor circuit, somatosensory and visual cortex, as well as the hippocampus. Significantly greater rCBF increases were noted during skilled walking than for simple walking. Skilled walking, unlike simple walking or the resting condition, was associated with a significant positive functional connectivity in the prefrontal-striatal circuit (prelimbic cortex-dorsomedial striatum) and greater negative functional connectivity in the prefrontal-hippocampal circuit. Our findings suggest that the level of skill of a motor training task determines the extent of functional recruitment of the prefrontal-corticostriatal circuit, with implications for a new approach in neurorehabilitation that uses circuit-specific neuroplasticity to improve motor and cognitive functions.
RF waveguide phase-directed power combiners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.
2017-05-02
High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.
Class E/F switching power amplifiers
NASA Technical Reports Server (NTRS)
Hajimiri, Seyed-Ali (Inventor); Aoki, Ichiro (Inventor); Rutledge, David B. (Inventor); Kee, Scott David (Inventor)
2004-01-01
The present invention discloses a new family of switching amplifier classes called class E/F amplifiers. These amplifiers are generally characterized by their use of the zero-voltage-switching (ZVS) phase correction technique to eliminate of the loss normally associated with the inherent capacitance of the switching device as utilized in class-E amplifiers, together with a load network for improved voltage and current wave-shaping by presenting class-F.sup.-1 impedances at selected overtones and class-E impedances at the remaining overtones. The present invention discloses a several topologies and specific circuit implementations for achieving such performance.
STEM for Non-STEM Majors: Enhancing Science Literacy in Large Classes
ERIC Educational Resources Information Center
Jin, Guang; Bierma, Tom
2013-01-01
This study evaluated a strategy using "clickers," POGIL (process oriented guided inquiry learning), and a focused science literacy orientation in an applied science course for non-STEM undergraduates taught in large classes. The effectiveness of these interventions in improving the science literacy of students was evaluated using a…
Rotating magnetizations in electrical machines: Measurements and modeling
NASA Astrophysics Data System (ADS)
Thul, Andreas; Steentjes, Simon; Schauerte, Benedikt; Klimczyk, Piotr; Denke, Patrick; Hameyer, Kay
2018-05-01
This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.
Medical student communication skills and specialty choice.
Ping Tsao, Carol I; Simpson, Deborah; Treat, Robert
2015-06-01
The aim of this study was to determine if communication skills differ for medical students entering person or technique-oriented specialties. Communication ratings by clerkship preceptors on an institutionally required end of clerkship medical student performance evaluation (SPE) form were compiled for 2011/2012 academic year (Class of 2013). M3 clerkships and the Class of 2013 match appointments were categorized as person or technique-oriented clerkships/specialties. Mean differences in SPE communication scores were determined by analyses of variance (ANOVA) and independent t tests. Score associations were determined by Pearson correlations. Inter-item reliability was reported with Cronbach alpha. The Class of 2013 match appointments were as follows: person-oriented (N = 91) and technique-oriented (N = 91) residency specialties. There was no significant difference in mean communication scores for medical students who entered person-oriented (mean 7.8, SD 0.4) versus technique-oriented (mean 7.9, SD 0.4) specialties (p = 0.258) or for person-oriented clerkship (mean 7.8, SD 0.4) versus technique-oriented clerkship (mean 7.9, SD 0.6) ratings for medical students who matched into person-oriented specialties (p = 0.124). Medical students who matched into technique-oriented specialties (mean 8.1, SD 0.5) received significantly higher (p = 0.001) communication ratings as compared with those matching into person-oriented specialties (mean 7.8, SD 0.5) from technique-oriented clerkships. Communication with patients and families is a complex constellation of specific abilities that appear to be influenced by the rater's specialty. Further study is needed to determine if technique-oriented specialties communication skill rating criteria differ from those used by raters from person-oriented specialties.
The interaction of feature and space based orienting within the attention set.
Lim, Ahnate; Sinnett, Scott
2014-01-01
The processing of sensory information relies on interacting mechanisms of sustained attention and attentional capture, both of which operate in space and on object features. While evidence indicates that exogenous attentional capture, a mechanism previously understood to be automatic, can be eliminated while concurrently performing a demanding task, we reframe this phenomenon within the theoretical framework of the "attention set" (Most et al., 2005). Consequently, the specific prediction that cuing effects should reappear when feature dimensions of the cue overlap with those in the attention set (i.e., elements of the demanding task) was empirically tested and confirmed using a dual-task paradigm involving both sustained attention and attentional capture, adapted from Santangelo et al. (2007). Participants were required to either detect a centrally presented target presented in a stream of distractors (the primary task), or respond to a spatially cued target (the secondary task). Importantly, the spatial cue could either share features with the target in the centrally presented primary task, or not share any features. Overall, the findings supported the attention set hypothesis showing that a spatial cuing effect was only observed when the peripheral cue shared a feature with objects that were already in the attention set (i.e., the primary task). However, this finding was accompanied by differential attentional orienting dependent on the different types of objects within the attention set, with feature-based orienting occurring for target-related objects, and additional spatial-based orienting for distractor-related objects.
The interaction of feature and space based orienting within the attention set
Lim, Ahnate; Sinnett, Scott
2014-01-01
The processing of sensory information relies on interacting mechanisms of sustained attention and attentional capture, both of which operate in space and on object features. While evidence indicates that exogenous attentional capture, a mechanism previously understood to be automatic, can be eliminated while concurrently performing a demanding task, we reframe this phenomenon within the theoretical framework of the “attention set” (Most et al., 2005). Consequently, the specific prediction that cuing effects should reappear when feature dimensions of the cue overlap with those in the attention set (i.e., elements of the demanding task) was empirically tested and confirmed using a dual-task paradigm involving both sustained attention and attentional capture, adapted from Santangelo et al. (2007). Participants were required to either detect a centrally presented target presented in a stream of distractors (the primary task), or respond to a spatially cued target (the secondary task). Importantly, the spatial cue could either share features with the target in the centrally presented primary task, or not share any features. Overall, the findings supported the attention set hypothesis showing that a spatial cuing effect was only observed when the peripheral cue shared a feature with objects that were already in the attention set (i.e., the primary task). However, this finding was accompanied by differential attentional orienting dependent on the different types of objects within the attention set, with feature-based orienting occurring for target-related objects, and additional spatial-based orienting for distractor-related objects. PMID:24523682
ERIC Educational Resources Information Center
Eisenberg, Ann R.
2002-01-01
The interactions of 20 middle-class and 20 working-class Mexican American mothers and their 4-year-old children were observed during a school-type construction task (block building) and a home-type construction task (baking biscuits). Both task and socioeconomic status had significant effects on mothers' and children's conversations and behaviors.…
Using Prewriting Tasks in L2 Writing Classes: Insights from Three Experiments
ERIC Educational Resources Information Center
McDonough, Kim; Neumann, Heike
2014-01-01
Even though collaborative prewriting tasks are frequently used in second language (L2) writing classes (Fernández Dobao, 2012; Storch, 2005), they have not been as widely researched as other tasks, such as collaborative writing and peer review. This article examines the effectiveness of collaborative prewriting tasks at encouraging English for…
Telemanipulator design and optimization software
NASA Astrophysics Data System (ADS)
Cote, Jean; Pelletier, Michel
1995-12-01
For many years, industrial robots have been used to execute specific repetitive tasks. In those cases, the optimal configuration and location of the manipulator only has to be found once. The optimal configuration or position where often found empirically according to the tasks to be performed. In telemanipulation, the nature of the tasks to be executed is much wider and can be very demanding in terms of dexterity and workspace. The position/orientation of the robot's base could be required to move during the execution of a task. At present, the choice of the initial position of the teleoperator is usually found empirically which can be sufficient in the case of an easy or repetitive task. In the converse situation, the amount of time wasted to move the teleoperator support platform has to be taken into account during the execution of the task. Automatic optimization of the position/orientation of the platform or a better designed robot configuration could minimize these movements and save time. This paper will present two algorithms. The first algorithm is used to optimize the position and orientation of a given manipulator (or manipulators) with respect to the environment on which a task has to be executed. The second algorithm is used to optimize the position or the kinematic configuration of a robot. For this purpose, the tasks to be executed are digitized using a position/orientation measurement system and a compact representation based on special octrees. Given a digitized task, the optimal position or Denavit-Hartenberg configuration of the manipulator can be obtained numerically. Constraints on the robot design can also be taken into account. A graphical interface has been designed to facilitate the use of the two optimization algorithms.
L2 Reading Ability: Further Insight into the Short-Circuit Hypothesis.
ERIC Educational Resources Information Center
Taillefer, Gail F.
1996-01-01
Discusses the notion of a language proficiency threshold that short circuits the transfer of reading ability from the native language (L1) to a second language (L2). This study, in which cognitive complexity of tasks and students' L2 proficiency levels vary, focuses on university students in France reading preprofessional English texts. (39…
Modeling Hidden Circuits: An Authentic Research Experience in One Lab Period
ERIC Educational Resources Information Center
Moore, J. Christopher; Rubbo, Louis J.
2016-01-01
Two wires exit a black box that has three exposed light bulbs connected together in an unknown configuration. The task for students is to determine the circuit configuration without opening the box. In the activity described in this paper, we navigate students through the process of making models, developing and conducting experiments that can…
ERIC Educational Resources Information Center
Chung, Gregory K. W. K.; Dionne, Gary B.; Kaiser, William J.
2006-01-01
Our research question was whether we could develop a feasible technique, using Bayesian networks, to diagnose gaps in student knowledge. Thirty-four college-age participants completed tasks designed to measure conceptual knowledge, procedural knowledge, and problem-solving skills related to circuit analysis. A Bayesian network was used to model…
Orienting of attention, pupil size, and the norepinephrine system.
Gabay, Shai; Pertzov, Yoni; Henik, Avishai
2011-01-01
This research examined a novel suggestion regarding the involvement of the locus coeruleus-norepinephrine (LC-NE) system in orienting reflexive (exogenous) attention. A common procedure for studying exogenous orienting of attention is Posner's cuing task. Importantly, one can manipulate the required level of target processing by changing task requirements, which, in turn, can elicit a different time course of inhibition of return (IOR). An easy task (responding to target location) produces earlier onset IOR, whereas a demanding task (responding to target identity) produces later onset IOR. Aston-Jones and Cohen (Annual Review of Neuroscience, 28, 403-450, 2005) presented a theory suggesting two different modes of LC activity: tonic and phasic. Accordingly, we suggest that in the more demanding task, the LC-NE system is activated in phasic mode, and in the easier task, it is activated in tonic mode. This, in turn, influences the appearance of IOR. We examined this suggestion by measuring participants' pupil size, which has been demonstrated to correlate with the LC-NE system, while they performed cuing tasks. We found a response-locked phasic dilation of the pupil in the discrimination task, as compared with the localization task, which may reflect different firing modes of the LC-NE system during the two tasks. We also demonstrated a correlation between pupil size at the time of cue presentation and magnitude of IOR.
[Action-oriented versus state-oriented reactions to experimenter-induced failures].
Brunstein, J C
1989-01-01
The present study assessed different effects of action-oriented versus state-oriented styles of coping with failure on achievement-related performance and cognition. In a learned helplessness experiment, students were exposed to an academic failure situation and were then tested on a series of problem-solving tasks, either immediately after the pretreatment or after a delay of 24 hours. Performance and cognitive concomitants were measured during both experimental periods. Results demonstrated that action orientation was associated with self-immunizing cognitions during helplessness training. Action-oriented participants improved their performance level even after repeated failure feedbacks. Moreover, action-oriented students assigned to the delayed test condition responded with increased striving for success and showed performance increments, even in comparison with control subjects. In contrast, state-oriented participants developed symptoms of helplessness and showed impaired performance during failure inductions. In later tests on problem-solving tasks, state-oriented groups responded with increased fear of failure. Independent of immediate or delayed test conditions, they soon lapsed into new performance decrements.
ERIC Educational Resources Information Center
Naylor, Anna Schmidt; Kamps, Debra; Wills, Howard
2018-01-01
The current study examined the effects of the Class-wide Function-related Intervention Teams (CW-FIT), a class-wide group contingency, on the on-task behavior of all students in a first grade class and the on-task and disruptive behavior of three target students within that class who were nominated by their teacher through a behavioral screening.…
Rodrigo, Guillermo; Jaramillo, Alfonso; Blázquez, Miguel A
2011-08-17
The interplay between hormone signaling and gene regulatory networks is instrumental in promoting the development of living organisms. In particular, plants have evolved mechanisms to sense gravity and orient themselves accordingly. Here, we present a mathematical model that reproduces plant gravitropic responses based on known molecular genetic interactions for auxin signaling coupled with a physical description of plant reorientation. The model allows one to analyze the spatiotemporal dynamics of the system, triggered by an auxin gradient that induces differential growth of the plant with respect to the gravity vector. Our model predicts two important features with strong biological implications: 1), robustness of the regulatory circuit as a consequence of integral control; and 2), a higher degree of plasticity generated by the molecular interplay between two classes of hormones. Our model also predicts the ability of gibberellins to modulate the tropic response and supports the integration of the hormonal role at the level of gene regulation. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A general numerical analysis program for the superconducting quasiparticle mixer
NASA Technical Reports Server (NTRS)
Hicks, R. G.; Feldman, M. J.; Kerr, A. R.
1986-01-01
A user-oriented computer program SISCAP (SIS Computer Analysis Program) for analyzing SIS mixers is described. The program allows arbitrary impedance terminations to be specified at all LO harmonics and sideband frequencies. It is therefore able to treat a much more general class of SIS mixers than the widely used three-frequency analysis, for which the harmonics are assumed to be short-circuited. An additional program, GETCHI, provides the necessary input data to program SISCAP. The SISCAP program performs a nonlinear analysis to determine the SIS junction voltage waveform produced by the local oscillator. The quantum theory of mixing is used in its most general form, treating the large signal properties of the mixer in the time domain. A small signal linear analysis is then used to find the conversion loss and port impedances. The noise analysis includes thermal noise from the termination resistances and shot noise from the periodic LO current. Quantum noise is not considered. Many aspects of the program have been adequately verified and found accurate.
Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina
Venkataramani, Sowmya
2016-01-01
Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. SIGNIFICANCE STATEMENT A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The results further reveal the physiological basis for feature detection in the visual system, elucidate the synaptic mechanisms that generate orientation selectivity at an early stage of visual processing, and illustrate a novel role for NMDA receptors in retinal processing. PMID:26985041
Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina.
Venkataramani, Sowmya; Taylor, W Rowland
2016-03-16
Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The results further reveal the physiological basis for feature detection in the visual system, elucidate the synaptic mechanisms that generate orientation selectivity at an early stage of visual processing, and illustrate a novel role for NMDA receptors in retinal processing. Copyright © 2016 the authors 0270-6474/16/363336-14$15.00/0.
Visual selective attention in amnestic mild cognitive impairment.
McLaughlin, Paula M; Anderson, Nicole D; Rich, Jill B; Chertkow, Howard; Murtha, Susan J E
2014-11-01
Subtle deficits in visual selective attention have been found in amnestic mild cognitive impairment (aMCI). However, few studies have explored performance on visual search paradigms or the Simon task, which are known to be sensitive to disease severity in Alzheimer's patients. Furthermore, there is limited research investigating how deficiencies can be ameliorated with exogenous support (auditory cues). Sixteen individuals with aMCI and 14 control participants completed 3 experimental tasks that varied in demand and cue availability: visual search-alerting, visual search-orienting, and Simon task. Visual selective attention was influenced by aMCI, auditory cues, and task characteristics. Visual search abilities were relatively consistent across groups. The aMCI participants were impaired on the Simon task when working memory was required, but conflict resolution was similar to controls. Spatially informative orienting cues improved response times, whereas spatially neutral alerting cues did not influence performance. Finally, spatially informative auditory cues benefited the aMCI group more than controls in the visual search task, specifically at the largest array size where orienting demands were greatest. These findings suggest that individuals with aMCI have working memory deficits and subtle deficiencies in orienting attention and rely on exogenous information to guide attention. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lee, Woogul; Kim, Sung-il
2014-01-01
We conducted behavioral and functional magnetic resonance imaging (fMRI) research to investigate the effects of two types of achievement goals—mastery goals and performance-approach goals— on challenge seeking and feedback processing. The results of the behavioral experiment indicated that mastery goals were associated with a tendency to seek challenge, both before and after experiencing difficulty during task performance, whereas performance-approach goals were related to a tendency to avoid challenge after encountering difficulty during task performance. The fMRI experiment uncovered a significant decrease in ventral striatal activity when participants received negative feedback for any task type and both forms of achievement goals. During the processing of negative feedback for the rule-finding task, performance-approach-oriented participants showed a substantial reduction in activity in the dorsolateral prefrontal cortex (DLPFC) and the frontopolar cortex, whereas mastery-oriented participants showed little change. These results suggest that performance-approach-oriented participants are less likely to either recruit control processes in response to negative feedback or focus on task-relevant information provided alongside the negative feedback. In contrast, mastery-oriented participants are more likely to modulate aversive valuations to negative feedback and focus on the constructive elements of feedback in order to attain their task goals. We conclude that performance-approach goals lead to a reluctant stance towards difficulty, while mastery goals encourage a proactive stance. PMID:25251396
The influence of visual and vestibular orientation cues in a clock reading task.
Davidenko, Nicolas; Cheong, Yeram; Waterman, Amanda; Smith, Jacob; Anderson, Barrett; Harmon, Sarah
2018-05-23
We investigated how performance in the real-life perceptual task of analog clock reading is influenced by the clock's orientation with respect to egocentric, gravitational, and visual-environmental reference frames. In Experiment 1, we designed a simple clock-reading task and found that observers' reaction time to correctly tell the time depends systematically on the clock's orientation. In Experiment 2, we dissociated egocentric from environmental reference frames by having participants sit upright or lie sideways while performing the task. We found that both reference frames substantially contribute to response times in this task. In Experiment 3, we placed upright or rotated participants in an upright or rotated immersive virtual environment, which allowed us to further dissociate vestibular from visual cues to the environmental reference frame. We found evidence of environmental reference frame effects only when visual and vestibular cues were aligned. We discuss the implications for the design of remote and head-mounted displays. Copyright © 2018 Elsevier Inc. All rights reserved.
Development of a 66kV Class Rectifier Type Fault Current Limiter System
NASA Astrophysics Data System (ADS)
Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa; Tokuda, Noriaki; Murai, Masaki; Nagasaki, Norihisa; Yuguchi, Kyousuke
A fault current limiter (FCL) is extensively expected to suppress fault current, particularly required for trunk power systems heavily connected high-voltage transmission lines, such as 500 kV class power system which constitutes the nucleus of the electric power system. By installing such FCL in the power system, the system interconnection is possible without the need to raise the capacity of the circuit breakers, and it is expected that FCLs may be used in more efficient power system design. For these reasons, FCLs based on various principles of operation have been developed in the world. In this paper, we have proposed a new type of FCL system, consisting of solid-state diodes, DC coil and bypass AC coil, and described the specification of distribution power system and 66 kV class FCL model. Also we have proposed a 66 kV class prototype single-phase model and the current limiting performance of this model was evaluated using a short circuit generator.
Self-Presentation in Task-Oriented Leadership Situations.
ERIC Educational Resources Information Center
Leary, Mark R.; Schlenker, Barry R.
To examine tactical self-presentations (images persons display publicly) in task-oriented leadership situations, 128 subjects (56 male and 72 female) were assigned leadership positions in groups that did very well or very poorly. The leaders learned that either they or the group-at-large were responsible for the performance and that the other…
It's All about Baxter: Task Orientation in the Effective Teaching of Writing
ERIC Educational Resources Information Center
Gadd, Murray; Parr, Judy M.
2016-01-01
This New Zealand-based study of the classroom practice of nine exemplary teachers of writing to upper primary-age students explored the significance of task orientation as a component of effective teacher instruction and the instructional strategies or actions that effective teachers utilise to promote such. Effectiveness pertains to teachers…
ERIC Educational Resources Information Center
Alkharusi, Hussain
2013-01-01
The present study aims at deriving correlational models of students' perceptions of assessment tasks, motivational orientations, and learning strategies using canonical analyses. Data were collected from 198 Omani tenth grade students. Results showed that high degrees of authenticity and transparency in assessment were associated with positive…
Potential Uses of Occupational Analysis Data By Air Force Management Engineering Teams.
ERIC Educational Resources Information Center
McFarland, Barry P.
Both the occupational analysis program and the management engineering program are primarily concerned with task level descriptions of time spent to perform tasks required in the Air Force, the first being personnel specialty code oriented and the second being work center oriented. However two separate and independent techniques have been developed…
Judgment of Line Orientation Depends on Gender, Education, and Type of Error
ERIC Educational Resources Information Center
Caparelli-Daquer, Egas M.; Oliveira-Souza, Ricardo; Filho, Pedro F. Moreira
2009-01-01
Visuospatial tasks are particularly proficient at eliciting gender differences during neuropsychological performance. Here we tested the hypothesis that gender and education are related to different types of visuospatial errors on a task of line orientation that allowed the independent scoring of correct responses ("hits", or H) and one type of…
Career-Oriented Performance Tasks: Effects on Students' Interest in Chemistry
ERIC Educational Resources Information Center
Espinosa, Allen A.; Monterola, Sheryl Lyn C.; Punzalan, Amelia E.
2013-01-01
The study was conducted to assess the effectiveness of Career-Oriented Performance Task (COPT) approach against the traditional teaching approach (TTA) in enhancing students' interest in Chemistry. Specifically, it sought to find out if students exposed to COPT have higher interest in Chemistry than those students exposed to the traditional…
Enhancing Problem-Solving Capabilities Using Object-Oriented Programming Language
ERIC Educational Resources Information Center
Unuakhalu, Mike F.
2009-01-01
This study integrated object-oriented programming instruction with transfer training activities in everyday tasks, which might provide a mechanism that can be used for efficient problem solving. Specifically, a Visual BASIC embedded with everyday tasks group was compared to another group exposed to Visual BASIC instruction only. Subjects were 40…
Working for a living: the vocational decision making of lesbians.
Hook, Misty K; Bowman, Sharon
2008-01-01
While lesbians are similar to other women in that they face discrimination in the workplace based on gender, ethnicity and class, they also have unique needs and confront bias because of their sexual orientation. Thus, choosing an occupation is an extremely important task for many lesbians. In order to adequately serve a lesbian population, vocational counselors need to be aware of how lesbians choose occupations. Astin's (1985) and Gottfredson's (1981) theories of career development can be adapted to help explain the vocational needs of lesbians. This article will review the major findings within the field, discuss how the two theories relate to the vocational decision-making process of lesbian women and make suggestions for how to do vocational counseling with lesbians.
AN EXPERIMENTAL STUDY UTILIZING CLOSED-CIRCUIT TELEVISION IN THE TEACHING OF DENTAL TECHNIQUES.
ERIC Educational Resources Information Center
MORRISON, ARTHUR H.
CLOSED CIRCUIT TELEVISION WAS WELL RECEIVED BY DENTISTRY STUDENTS AT NEW YORK UNIVERSITY BUT FAILED TO YIELD SIGNIFICANT GAINS IN ACHIEVEMENT OVER CONVENTIONAL INSTRUCTION. TWENTY-ONE NULL HYPOTHESES WERE TESTED ON 154 MALE SOPHOMORE STUDENTS, WHO WERE DIVIDED INTO GWO GROUPS, HALF BEING INSTRUCTED TO A LARGE EXTENT VIA CCTV, TV CLASS, AND HALF…
Printed-Circuit-Board Soldering Training for Group IV Personnel.
ERIC Educational Resources Information Center
Hooprich, E. A.; Matlock, E. W.
As part of a larger program to determine which Navy skills can be learned by lower aptitude personnel, and which methods and techniques would be most effective, an experimental course in printed circuit board soldering was given to 186 Group IV students in 13 classes. Two different training approaches--one stressing instructor guidance and the…
Leadership styles of hospital pharmacy directors.
Parrett, E E; Hurd, P D; Northcraft, G; McGhan, W F; Bootman, J L
1985-05-01
The leadership styles of hospital pharmacy directors and the association between leadership style, participative management, and innovative pharmaceutical services were studied using a mail questionnaire. The questionnaire was sent to 570 randomly selected hospital pharmacy directors. Included were a validated instrument that measures task-oriented versus relationship-oriented leadership behavior and other questions about participation of staff members, innovative services, and respondents' personal characteristics. The response rate was 69%. The majority of respondents perceived their leadership as highly relationship-oriented as well as highly task-oriented. Respondents with the "high relationship-high task" leadership style had the highest scores for subordinate participation. There were no significant differences in scores for innovative services by leadership style. A positive correlation between scores for subordinate participation and scores for innovative services was demonstrated. Most hospital pharmacy directors used a management style in which relationships and staff participation were important.
Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics
Girshick, Ahna R.; Landy, Michael S.; Simoncelli, Eero P.
2011-01-01
Humans are remarkably good at performing visual tasks, but experimental measurements reveal substantial biases in the perception of basic visual attributes. An appealing hypothesis is that these biases arise through a process of statistical inference, in which information from noisy measurements is fused with a probabilistic model of the environment. But such inference is optimal only if the observer’s internal model matches the environment. Here, we provide evidence that this is the case. We measured performance in an orientation-estimation task, demonstrating the well-known fact that orientation judgements are more accurate at cardinal (horizontal and vertical) orientations, along with a new observation that judgements made under conditions of uncertainty are strongly biased toward cardinal orientations. We estimate observers’ internal models for orientation and find that they match the local orientation distribution measured in photographs. We also show how a neural population could embed probabilistic information responsible for such biases. PMID:21642976
Functional Maps of Neocortical Local Circuitry
Thomson, Alex M.; Lamy, Christophe
2007-01-01
This review aims to summarize data obtained with different techniques to provide a functional map of the local circuit connections made by neocortical neurones, a reference for those interested in cortical circuitry and the numerical information required by those wishing to model the circuit. A brief description of the main techniques used to study circuitry is followed by outline descriptions of the major classes of neocortical excitatory and inhibitory neurones and the connections that each layer makes with other cortical and subcortical regions. Maps summarizing the projection patterns of each class of neurone within the local circuit and tables of the properties of these local circuit connections are provided. This review relies primarily on anatomical studies that have identified the classes of neurones and their local and long distance connections and on paired intracellular and whole-cell recordings which have documented the properties of the connections between them. A large number of different types of synaptic connections have been described, but for some there are only a few published examples and for others the details that can only be obtained with paired recordings and dye-filling are lacking. A further complication is provided by the range of species, technical approaches and age groups used in these studies. Wherever possible the range of available data are summarised and compared. To fill some of the more obvious gaps for the less well-documented cases, data obtained with other methods are also summarized. PMID:18982117
Son, Bo-Young; Bang, Yo-Soon; Hwang, Min-Ji; Oh, Eun-Ju
2017-08-01
[Purpose] This study investigates the effects of task-oriented activities on hand function, cognitive function, and self-expression of the elderly with dementia, and then identify the influencing factors on self-expression in sub-factors of dependent variables. [Subjects and Methods] Forty elderly persons were divided into two groups: intervention group (n=20) and control group (n=20). The interventions were applied to the subjects 3 times a week, 50 minutes per each time, for a total of five weeks. We measured the jamar hand dynamometer test for grip strength, the jamar hydraulic pinch gauge test for prehension test, nine-hole pegboard test for coordination test, and Loewenstein Occupational Therapy Cognitive Assessment-Geriatric Population for cognitive function, and self-expression rating scale for self-expression test. [Results] The task-oriented activities promoted hand function, cognitive function (visual perception, spatial perception, visuomotor organization, attention & concentration) and self-expression of the elderly with early dementia, and the factors influencing the self-expression were cognitive function (visual perception) and hand function (coordination). The study showed that the task-oriented program enabled self-expression by improving hand function and cognitive function. [Conclusion] This study suggested that there should be provided the task-oriented program for prevention and treatment of the elderly with early dementia in the clinical settings and it was considered that results have a value as basic data that can be verified relationship of hand function, cognitive function, and self-expression.
Son, Bo-Young; Bang, Yo-Soon; Hwang, Min-Ji; Oh, Eun-Ju
2017-01-01
[Purpose] This study investigates the effects of task-oriented activities on hand function, cognitive function, and self-expression of the elderly with dementia, and then identify the influencing factors on self-expression in sub-factors of dependent variables. [Subjects and Methods] Forty elderly persons were divided into two groups: intervention group (n=20) and control group (n=20). The interventions were applied to the subjects 3 times a week, 50 minutes per each time, for a total of five weeks. We measured the jamar hand dynamometer test for grip strength, the jamar hydraulic pinch gauge test for prehension test, nine-hole pegboard test for coordination test, and Loewenstein Occupational Therapy Cognitive Assessment-Geriatric Population for cognitive function, and self-expression rating scale for self-expression test. [Results] The task-oriented activities promoted hand function, cognitive function (visual perception, spatial perception, visuomotor organization, attention & concentration) and self-expression of the elderly with early dementia, and the factors influencing the self-expression were cognitive function (visual perception) and hand function (coordination). The study showed that the task-oriented program enabled self-expression by improving hand function and cognitive function. [Conclusion] This study suggested that there should be provided the task-oriented program for prevention and treatment of the elderly with early dementia in the clinical settings and it was considered that results have a value as basic data that can be verified relationship of hand function, cognitive function, and self-expression. PMID:28878462
Optimization of perceptual learning: effects of task difficulty and external noise in older adults.
DeLoss, Denton J; Watanabe, Takeo; Andersen, George J
2014-06-01
Previous research has shown a wide array of age-related declines in vision. The current study examined the effects of perceptual learning (PL), external noise, and task difficulty in fine orientation discrimination with older individuals (mean age 71.73, range 65-91). Thirty-two older subjects participated in seven 1.5-h sessions conducted on separate days over a three-week period. A two-alternative forced choice procedure was used in discriminating the orientation of Gabor patches. Four training groups were examined in which the standard orientations for training were either easy or difficult and included either external noise (additive Gaussian noise) or no external noise. In addition, the transfer to an untrained orientation and noise levels were examined. An analysis of the four groups prior to training indicated no significant differences between the groups. An analysis of the change in performance post-training indicated that the degree of learning was related to task difficulty and the presence of external noise during training. In addition, measurements of pupil diameter indicated that changes in orientation discrimination were not associated with changes in retinal illuminance. These results suggest that task difficulty and training in noise are factors important for optimizing the effects of training among older individuals. Copyright © 2013 Elsevier B.V. All rights reserved.
Leondari, Angeliki; Gonida, Eleftheria
2007-09-01
Academic self-handicapping refers to the use of impediments to successful performance on academic tasks. Previous studies have shown that it is related to personal achievement goals. A performance goal orientation is a positive predictor of self-handicapping, whereas a task goal orientation is unrelated to self-handicapping. The aim of this study was to examine the relationship between academic self-handicapping, goal orientations (task, performance-approach, performance-avoidance), social goals, future consequences and achievement in mathematics. An additional aim was to investigate grade-level and gender differences in relation to academic self-handicapping. Participants were 702 upper elementary, junior and senior high school students with approximately equal numbers of girls and boys. There were no grade-level or gender differences as regards the use of self-handicapping. The correlations among the variables revealed that, when the whole sample was considered, self-handicapping was positively related to performance goal orientations and pleasing significant others and negatively to achievement in mathematics. The results of hierarchical regression analysis showed that, in upper elementary and junior high schools, the association between achievement in mathematics and self-handicapping was mediated by performance-avoidance goals. In senior high school, only task goal orientation was a negative predictor of self-handicapping.
NASA Technical Reports Server (NTRS)
Robinson, Brandi
2004-01-01
This summer I have been working with the N.A.S.A. Project at Cuyahoga Community College (Tri-C) under the title of Exploring Aeronautics Project Leader. The class that I have worked with is comprised of students that will enter the eighth grade in the fall of 2004. The program primarily focuses upon math proficiency and individualized class projects. My duties have encompassed both realms. During the first 2-3 weeks of my internship, I worked at NASA Glenn Research Center (GRC) researching, organizing, and compiling information for weekly Scholastic Challenges and the Super Scholastic Challenge. I was able to complete an overview of Scholastic Challenge and staff responsibilities regarding the competition; a proposal for an interactive learning system, Quizdom; a schedule for challenge equipment, as well as a schedule listing submission deadlines for the staff. Also included in my tasks, during these first 2-3 weeks, were assisting Tammy Allen and Candice Thomas with the student application review and interview processes for student applicants. For the student and parent orientation, I was assigned publications and other varying tasks to complete before the start of the program. Upon the commencement of the program, I changed location from NASA GRC to Tri-C Metro Campus, where student classes for the Cleveland site are held. During the duration of the program, I work with the instructor for the Exploring Aeronautics class, kkkk, assisting in classroom management, daily attendance, curriculum, project building, and other tasks as needed. These tasks include the conducting of the weekly competition, known as Scholastic Challenge. As a Project Leader, I am also responsible for one subject area of the Scholastic Challenge aspect of the N.A.S.A. Project curriculum. Each week I have to prepare a mission that the participants will take home the following Monday and at least 10 questions that will be included in the pool of questions used for the Scholastic Challenge competition on Thursdays. For at least one of these competitions, I must compile all mission and question information submitted by the staff, distribute missions to the students, and enter questions into Jeopardy formatted PowerPoint presentation. Unique to the N.A.S.A. Project are its Saturday sessions and opportunities for field trips. As a Project Leader, I am required to attend all field trips and Saturday sessions held for participants and their parent(s)/guardian(s). The Saturday sessions do not require my assistance because they are facilitated by a contracting company, Imhotep. This leaves my duties to observation unless instructed otherwise.
Strategy generalization across orientation tasks: testing a computational cognitive model.
Gunzelmann, Glenn
2008-07-08
Humans use their spatial information processing abilities flexibly to facilitate problem solving and decision making in a variety of tasks. This article explores the question of whether a general strategy can be adapted for performing two different spatial orientation tasks by testing the predictions of a computational cognitive model. Human performance was measured on an orientation task requiring participants to identify the location of a target either on a map (find-on-map) or within an egocentric view of a space (find-in-scene). A general strategy instantiated in a computational cognitive model of the find-on-map task, based on the results from Gunzelmann and Anderson (2006), was adapted to perform both tasks and used to generate performance predictions for a new study. The qualitative fit of the model to the human data supports the view that participants were able to tailor a general strategy to the requirements of particular spatial tasks. The quantitative differences between the predictions of the model and the performance of human participants in the new experiment expose individual differences in sample populations. The model provides a means of accounting for those differences and a framework for understanding how human spatial abilities are applied to naturalistic spatial tasks that involve reasoning with maps. 2008 Cognitive Science Society, Inc.
Automatic Vetting for Malice in Android Platforms
2016-05-01
be distinguished. For example, both Face- book and Instagram ship a class named Landroid/support/v4/app/Fragment;§ with different method signatures...relationships (e.g., Lcom/ instagram /.../LoadImageTask; is a sub- class of the abstract class Landroid/os/AsyncTask;). Figure 2(c) displays a method graph...7feaf7c75a5305b1083a160f...baa6.dex.dex parent_loader 3 Instagram instagram_classes.dex parent_loader 4 JohnNESLite johnneslite_classes.dex parent_loader (a) Class Loader
Lemmens, Ryanne J. M.; Timmermans, Annick A. A.; Janssen-Potten, Yvonne J. M.; Pulles, Sanne A. N. T. D.; Geers, Richard P. J.; Bakx, Wilbert G. M.; Smeets, Rob J. E. M.; Seelen, Henk A. M.
2014-01-01
Purpose This study aims to assess the extent to which accelerometers can be used to determine the effect of robot-supported task-oriented arm-hand training, relative to task-oriented arm-hand training alone, on the actual amount of arm-hand use of chronic stroke patients in their home situation. Methods This single-blind randomized controlled trial included 16 chronic stroke patients, randomly allocated using blocked randomization (n = 2) to receive task-oriented robot-supported arm-hand training or task-oriented (unsupported) arm-hand training. Training lasted 8 weeks, 4 times/week, 2×30 min/day using the (T-)TOAT ((Technology-supported)-Task-Oriented-Arm-Training) method. The actual amount of arm-hand use, was assessed at baseline, after 8 weeks training and 6 months after training cessation. Duration of use and intensity of use of the affected arm-hand during unimanual and bimanual activities were calculated. Results Duration and intensity of use of the affected arm-hand did not change significantly during and after training, with or without robot-support (i.e. duration of use of unimanual use of the affected arm-hand: median difference of −0.17% in the robot-group and −0.08% in the control group between baseline and after training cessation; intensity of the affected arm-hand: median difference of 3.95% in the robot-group and 3.32% in the control group between baseline and after training cessation). No significant between-group differences were found. Conclusions Accelerometer data did not show significant changes in actual amount of arm-hand use after task-oriented training, with or without robot-support. Next to the amount of use, discrimination between activities performed and information about quality of use of the affected arm-hand are essential to determine actual arm-hand performance. Trial Registration Controlled-trials.com ISRCTN82787126 PMID:24823925
ERIC Educational Resources Information Center
Goldstein, Susan B.
2013-01-01
This study seeks to expand the literature on predicting friendship diversity beyond race/ethnicity to include religion, social class, and sexual orientation. Survey packets elicited information regarding up to four close friendships developed during college. Additional measures assessed pre-college friendship diversity, participation in college…
The TRIPSE: A Process-Oriented Exam for Large Undergraduate Classes
ERIC Educational Resources Information Center
Nastos, Stash; Rangachari, P. K.
2013-01-01
The TRIPSE (tri-partite problem solving exercise), a process-oriented exam that mimics the scientific process, was used previously in small classes (15-25). Provided limited data, students frame explanations and design experimental tests that they later revise with additional information. Our 6-year experience using it with larger numbers…
Career Orientation and Preparation for Teen Parents Curriculum.
ERIC Educational Resources Information Center
Whipple, Vicky
The Career Education and Training for Teen Parents Program at Kishwaukee College (Malta, Illinois) included a vocational orientation and preparation curriculum that focused on nontraditional occupations and local labor market trends. The class met three days a week for six weeks, with most class sessions including a field trip to a local job site.…
Student Engagement in High School Physical Education: Do Social Motivation Orientations Matter?
ERIC Educational Resources Information Center
Garn, Alex; Ware, David R.; Solmon, Melinda A.
2011-01-01
High school physical education classes provide students with numerous opportunities for social interactions, but few studies have explored how social strivings impact class engagement. The purpose of this study was to investigate the relationships among 2 x 2 achievement goals, social motivation orientations, and effort in high school physical…
Pursuing Their Own Learning Agenda: How Mastery-Oriented Students Jeopardize Their Class Performance
ERIC Educational Resources Information Center
Senko, Corwin; Miles, Kenneth M.
2008-01-01
This study explored why mastery-based achievement goals often are unrelated to class grades despite promoting deep learning strategies and high course interest. We hypothesized that mastery-oriented students jeopardize their exam performance by allowing their individual interests to dictate their study efforts such that they neglect boring topics…
Insect Responses to Linearly Polarized Reflections: Orphan Behaviors Without Neural Circuits.
Heinloth, Tanja; Uhlhorn, Juliane; Wernet, Mathias F
2018-01-01
The e-vector orientation of linearly polarized light represents an important visual stimulus for many insects. Especially the detection of polarized skylight by many navigating insect species is known to improve their orientation skills. While great progress has been made towards describing both the anatomy and function of neural circuit elements mediating behaviors related to navigation, relatively little is known about how insects perceive non-celestial polarized light stimuli, like reflections off water, leaves, or shiny body surfaces. Work on different species suggests that these behaviors are not mediated by the "Dorsal Rim Area" (DRA), a specialized region in the dorsal periphery of the adult compound eye, where ommatidia contain highly polarization-sensitive photoreceptor cells whose receptive fields point towards the sky. So far, only few cases of polarization-sensitive photoreceptors have been described in the ventral periphery of the insect retina. Furthermore, both the structure and function of those neural circuits connecting to these photoreceptor inputs remain largely uncharacterized. Here we review the known data on non-celestial polarization vision from different insect species (dragonflies, butterflies, beetles, bugs and flies) and present three well-characterized examples for functionally specialized non-DRA detectors from different insects that seem perfectly suited for mediating such behaviors. Finally, using recent advances from circuit dissection in Drosophila melanogaster , we discuss what types of potential candidate neurons could be involved in forming the underlying neural circuitry mediating non-celestial polarization vision.
Ibrahim, Leena A.; Mesik, Lukas; Ji, Xu-ying; Fang, Qi; Li, Hai-fu; Li, Ya-tang; Zingg, Brian; Zhang, Li I.; Tao, Huizhong Whit
2016-01-01
Summary Cross-modality interaction in sensory perception is advantageous for animals’ survival. How cortical sensory processing is cross-modally modulated and what are the underlying neural circuits remain poorly understood. In mouse primary visual cortex (V1), we discovered that orientation selectivity of layer (L)2/3 but not L4 excitatory neurons was sharpened in the presence of sound or optogenetic activation of projections from primary auditory cortex (A1) to V1. The effect was manifested by decreased average visual responses yet increased responses at the preferred orientation. It was more pronounced at lower visual contrast, and was diminished by suppressing L1 activity. L1 neurons were strongly innervated by A1-V1 axons and excited by sound, while visual responses of L2/3 vasoactive intestinal peptide (VIP) neurons were suppressed by sound, both preferentially at the cell's preferred orientation. These results suggest that the cross-modality modulation is achieved primarily through L1 neuron and L2/3 VIP-cell mediated inhibitory and disinhibitory circuits. PMID:26898778
Uncertainty Modeling and Evaluation of CMM Task Oriented Measurement Based on SVCMM
NASA Astrophysics Data System (ADS)
Li, Hongli; Chen, Xiaohuai; Cheng, Yinbao; Liu, Houde; Wang, Hanbin; Cheng, Zhenying; Wang, Hongtao
2017-10-01
Due to the variety of measurement tasks and the complexity of the errors of coordinate measuring machine (CMM), it is very difficult to reasonably evaluate the uncertainty of the measurement results of CMM. It has limited the application of CMM. Task oriented uncertainty evaluation has become a difficult problem to be solved. Taking dimension measurement as an example, this paper puts forward a practical method of uncertainty modeling and evaluation of CMM task oriented measurement (called SVCMM method). This method makes full use of the CMM acceptance or reinspection report and the Monte Carlo computer simulation method (MCM). The evaluation example is presented, and the results are evaluated by the traditional method given in GUM and the proposed method, respectively. The SVCMM method is verified to be feasible and practical. It can help CMM users to conveniently complete the measurement uncertainty evaluation through a single measurement cycle.
Automatic Design of Digital Synthetic Gene Circuits
Marchisio, Mario A.; Stelling, Jörg
2011-01-01
De novo computational design of synthetic gene circuits that achieve well-defined target functions is a hard task. Existing, brute-force approaches run optimization algorithms on the structure and on the kinetic parameter values of the network. However, more direct rational methods for automatic circuit design are lacking. Focusing on digital synthetic gene circuits, we developed a methodology and a corresponding tool for in silico automatic design. For a given truth table that specifies a circuit's input–output relations, our algorithm generates and ranks several possible circuit schemes without the need for any optimization. Logic behavior is reproduced by the action of regulatory factors and chemicals on the promoters and on the ribosome binding sites of biological Boolean gates. Simulations of circuits with up to four inputs show a faithful and unequivocal truth table representation, even under parametric perturbations and stochastic noise. A comparison with already implemented circuits, in addition, reveals the potential for simpler designs with the same function. Therefore, we expect the method to help both in devising new circuits and in simplifying existing solutions. PMID:21399700
Hakim, Renée M; Tunis, Brandon G; Ross, Michael D
2017-11-01
The focus of research using technological innovations such as robotic devices has been on interventions to improve upper extremity function in neurologic populations, particularly patients with stroke. There is a growing body of evidence describing rehabilitation programs using various types of supportive/assistive and/or resistive robotic and virtual reality-enhanced devices to improve outcomes for patients with neurologic disorders. The most promising approaches are task-oriented, based on current concepts of motor control/learning and practice-induced neuroplasticity. Based on this evidence, we describe application and feasibility of virtual reality-enhanced robotics integrated with current concepts in orthopaedic rehabilitation shifting from an impairment-based focus to inclusion of more intense, task-specific training for patients with upper extremity disorders, specifically emphasizing the wrist and hand. The purpose of this paper is to describe virtual reality-enhanced rehabilitation robotic devices, review evidence of application in patients with upper extremity deficits related to neurologic disorders, and suggest how this technology and task-oriented rehabilitation approach can also benefit patients with orthopaedic disorders of the wrist and hand. We will also discuss areas for further research and development using a task-oriented approach and a commercially available haptic robotic device to focus on training of grasp and manipulation tasks. Implications for Rehabilitation There is a growing body of evidence describing rehabilitation programs using various types of supportive/assistive and/or resistive robotic and virtual reality-enhanced devices to improve outcomes for patients with neurologic disorders. The most promising approaches using rehabilitation robotics are task-oriented, based on current concepts of motor control/learning and practice-induced neuroplasticity. Based on the evidence in neurologic populations, virtual reality-enhanced robotics may be integrated with current concepts in orthopaedic rehabilitation shifting from an impairment-based focus to inclusion of more intense, task-specific training for patients with UE disorders, specifically emphasizing the wrist and hand. Clinical application of a task-oriented approach may be accomplished using commercially available haptic robotic device to focus on training of grasp and manipulation tasks.
Papaioannou, Athanasios; Bebetsos, Evaggelos; Theodorakis, Yannis; Christodoulidis, Triantafyllos; Kouli, Olga
2006-04-01
Little information exists about the causal relationships of sport and exercise participation with goal orientations, perceived athletic competence and intrinsic motivation in physical education. A longitudinal study was conducted involving 882 Greek students who completed questionnaires on three occasions: 3 - 5 weeks into the academic year, 3 - 6 weeks before the end of the academic year, and 7 months later. The data were analysed using structural equation models, controlling for age. Task orientation and intrinsic motivation in physical education at the beginning of the academic year predicted sport and exercise participation 7 and 14 months later. Perceived athletic competence both at the beginning and end of the academic year predicted sport and exercise participation 7 and 14 months later, while ego orientation did not predict sport and exercise involvement at either time. Previous sport and exercise participation had positive effects on task orientation and perceived athletic competence 3 - 6 weeks before the end of the academic year and predicted all cognitive-affective constructs 7 months later. These results imply that the cultivation of task orientation, intrinsic motivation in physical education and perceived athletic competence will help to promote sport and exercise participation in adolescence.
Mueller, Sven C.; Hardin, Michael G.; Mogg, Karin; Benson, Valerie; Bradley, Brendan P.; Reinholdt-Dunne, Marie Louise; Liversedge, Simon P.; Pine, Daniel S.; Ernst, Monique
2012-01-01
Background Anxiety disorders are highly prevalent in children and adolescents, and are associated with aberrant emotion-related attention orienting and inhibitory control. While recent studies conducted with high-trait anxious adults have employed novel emotion-modified antisaccade tasks to examine the influence of emotional information on orienting and inhibition, similar studies have yet to be conducted in youths. Methods Participants were 22 children/adolescents diagnosed with an anxiety disorder, and 22 age-matched healthy comparison youths. Participants completed an emotion-modified antisaccade task that was similar to those used in studies of high-trait anxious adults. This task probed the influence of abruptly appearing neutral, happy, angry, or fear stimuli on orienting (prosaccade) or inhibitory (antisaccade) responses. Results Anxious compared to healthy children showed facilitated orienting towards angry stimuli. With respect to inhibitory processes, threat-related information improved antisaccade accuracy in healthy but not anxious youth. These findings were not linked to individual levels of reported anxiety or specific anxiety disorders. Conclusions Findings suggest that anxious relative to healthy children manifest enhanced orienting towards threat-related stimuli. Additionally, the current findings suggest that threat may modulate inhibitory control during adolescent development. PMID:22409260
47 CFR 32.2230 - Central office-transmission.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2230 Central office—transmission. This account shall be used by Class B companies to record the original cost of radio systems and circuit equipment of the type and character required of Class A companies in...
NASA Astrophysics Data System (ADS)
Becker, C.; Ruske, F.; Sontheimer, T.; Gorka, B.; Bloeck, U.; Gall, S.; Rech, B.
2009-10-01
Polycrystalline silicon (poly-Si) thin films have been prepared by electron-beam evaporation and thermal annealing for the development of thin-film solar cells on glass coated with ZnO:Al as a transparent, conductive layer. The poly-Si microstructure and photovoltaic performance were investigated as functions of the deposition temperature by Raman spectroscopy, scanning and transmission electron microscopies including defect analysis, x-ray diffraction, external quantum efficiency, and open circuit measurements. It is found that two temperature regimes can be distinguished: Poly-Si films fabricated by deposition at low temperatures (Tdep<400 °C) and a subsequent thermal solid phase crystallization step exhibit 1-3 μm large, randomly oriented grains, but a quite poor photovoltaic performance. However, silicon films deposited at higher temperatures (Tdep>400 °C) directly in crystalline phase reveal columnar, up to 300 nm big crystals with a strong ⟨110⟩ orientation and much better solar cell parameters. It can be concluded from the results that the electrical quality of the material, reflected by the open circuit voltage of the solar cell, only marginally depends on crystal size and shape but rather on the intragrain properties of the material. The carrier collection, described by the short circuit current of the cell, seems to be positively influenced by preferential ⟨110⟩ orientation of the grains. The correlation between experimental, microstructural, and photovoltaic parameters will be discussed in detail.
Zhang, Yiyan; Xin, Yi; Li, Qin; Ma, Jianshe; Li, Shuai; Lv, Xiaodan; Lv, Weiqi
2017-11-02
Various kinds of data mining algorithms are continuously raised with the development of related disciplines. The applicable scopes and their performances of these algorithms are different. Hence, finding a suitable algorithm for a dataset is becoming an important emphasis for biomedical researchers to solve practical problems promptly. In this paper, seven kinds of sophisticated active algorithms, namely, C4.5, support vector machine, AdaBoost, k-nearest neighbor, naïve Bayes, random forest, and logistic regression, were selected as the research objects. The seven algorithms were applied to the 12 top-click UCI public datasets with the task of classification, and their performances were compared through induction and analysis. The sample size, number of attributes, number of missing values, and the sample size of each class, correlation coefficients between variables, class entropy of task variable, and the ratio of the sample size of the largest class to the least class were calculated to character the 12 research datasets. The two ensemble algorithms reach high accuracy of classification on most datasets. Moreover, random forest performs better than AdaBoost on the unbalanced dataset of the multi-class task. Simple algorithms, such as the naïve Bayes and logistic regression model are suitable for a small dataset with high correlation between the task and other non-task attribute variables. K-nearest neighbor and C4.5 decision tree algorithms perform well on binary- and multi-class task datasets. Support vector machine is more adept on the balanced small dataset of the binary-class task. No algorithm can maintain the best performance in all datasets. The applicability of the seven data mining algorithms on the datasets with different characteristics was summarized to provide a reference for biomedical researchers or beginners in different fields.
Méndez-Giménez, Antonio; Cecchini-Estrada, José-Antonio; Fernández-Río, Javier; Prieto Saborit, José Antonio; Méndez-Alonso, David
2017-09-20
The main objective was to analyze relationships and predictive patterns between 3x2 classroom goal structures (CGS), and motivational regulations, dimensions of self-concept, and affectivity in the context of secondary education. A sample of 1,347 secondary school students (56.6% young men, 43.4% young women) from 10 different provinces of Spain agreed to participate (M age = 13.43, SD = 1.05). Hierarchical regression analyses indicated the self-approach CGS was the most adaptive within the spectrum of self-determination, followed by the task-approach CGS. The other-approach CGS had an ambivalent influence on motivation. Task-approach and self-approach CGS predicted academic self-concept (p < .01; p < .001, respectively; R 2 = .134), and both along with other-approach CGS (negatively) predicted family self-concept (p < .05; p < .001; p < .01, respectively; R 2 = .064). Physical self-concept was predicted by the task-approach and other-approach CGS's (p < .05; p < .001, respectively; R 2 = .078). Finally, positive affect was predicted by all three approach-oriented CGS's (p < .001; R 2 = .137), whereas negative affect was predicted by other-approach (positively) and self-approach (negatively) CGS (p < .001; p < .05, respectively; R 2 = .028). These results expand the 3x2 achievement goal framework to include environmental factors, and reiterate that teachers should focus on raising levels of self- and task-based goals for students in their classes.
Constraint and Contingency in Multifunctional Gene Regulatory Circuits
Payne, Joshua L.; Wagner, Andreas
2013-01-01
Gene regulatory circuits drive the development, physiology, and behavior of organisms from bacteria to humans. The phenotypes or functions of such circuits are embodied in the gene expression patterns they form. Regulatory circuits are typically multifunctional, forming distinct gene expression patterns in different embryonic stages, tissues, or physiological states. Any one circuit with a single function can be realized by many different regulatory genotypes. Multifunctionality presumably constrains this number, but we do not know to what extent. We here exhaustively characterize a genotype space harboring millions of model regulatory circuits and all their possible functions. As a circuit's number of functions increases, the number of genotypes with a given number of functions decreases exponentially but can remain very large for a modest number of functions. However, the sets of circuits that can form any one set of functions becomes increasingly fragmented. As a result, historical contingency becomes widespread in circuits with many functions. Whether a circuit can acquire an additional function in the course of its evolution becomes increasingly dependent on the function it already has. Circuits with many functions also become increasingly brittle and sensitive to mutation. These observations are generic properties of a broad class of circuits and independent of any one circuit genotype or phenotype. PMID:23762020
NASA Astrophysics Data System (ADS)
Yang, Y.; Tenenbaum, D. E.
2009-12-01
The process of urbanization has major effects on both human and natural systems. In order to monitor these changes and better understand how urban ecological systems work, urban spatial structure and the variation needs to be first quantified at a fine scale. Because the land-use and land-cover (LULC) in urbanizing areas is highly heterogeneous, the classification of urbanizing environments is the most challenging field in remote sensing. Although a pixel-based method is a common way to do classification, the results are not good enough for many research objectives which require more accurate classification data in fine scales. Transect sampling and object-oriented classification methods are more appropriate for urbanizing areas. Tenenbaum used a transect sampling method using a computer-based facility within a widely available commercial GIS in the Glyndon Catchment and the Upper Baismans Run Catchment, Baltimore, Maryland. It was a two-tiered classification system, including a primary level (which includes 7 classes) and a secondary level (which includes 37 categories). The statistical information of LULC was collected. W. Zhou applied an object-oriented method at the parcel level in Gwynn’s Falls Watershed which includes the two previously mentioned catchments and six classes were extracted. The two urbanizing catchments are located in greater Baltimore, Maryland and drain into Chesapeake Bay. In this research, the two different methods are compared for 6 classes (woody, herbaceous, water, ground, pavement and structure). The comparison method uses the segments in the transect method to extract LULC information from the results of the object-oriented method. Classification results were compared in order to evaluate the difference between the two methods. The overall proportions of LULC classes from the two studies show that there is overestimation of structures in the object-oriented method. For the other five classes, the results from the two methods are similar, except for a difference in the proportions of the woody class. The segment to segment comparison shows that the resolution of the light detection and ranging (LIDAR) data used in the object-oriented method does affect the accuracy of the classification. Shadows of trees and structures are still a big problem in the object-oriented method. For classes that make up a small proportion of the catchments, such as water, neither method was capable of detecting them.
Multiconductor Short/Open Cable Tester
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis
1994-01-01
Frequent or regular testing of multiconductor cables terminated in multipin conductors tedious, if not impossible, task. This inexpensive circuit simplifies open/short testing and is amenable to automation. In operation, pair of connectors selected to match pair of connectors installed on each of cables to be tested. As many connectors accommodated as required, and each can have as many conductors as required. Testing technique implemented with this circuit automated easily with electronic controls and computer interface. Printout provides status of each conductor in cable, indicating which, if any, of conductors has open or short circuit.
Gender differences in global-local perception? Evidence from orientation and shape judgments.
Kimchi, Ruth; Amishav, Rama; Sulitzeanu-Kenan, Anat
2009-01-01
Direct examinations of gender differences in global-local processing are sparse, and the results are inconsistent. We examined this issue with a visuospatial judgment task and with a shape judgment task. Women and men were presented with hierarchical stimuli that varied in closure (open or closed shape) or in line orientation (oblique or horizontal/vertical) at the global or local level. The task was to classify the stimuli on the basis of the variation at the global level (global classification) or at the local level (local classification). Women's classification by closure (global or local) was more accurate than men's for stimuli that varied in closure on both levels, suggesting a female advantage in discriminating shape properties. No gender differences were observed in global-local processing bias. Women and men exhibited a global advantage, and they did not differ in their speed of global or local classification, with only one exception. Women were slower than men in local classification by orientation when the to-be-classified lines were embedded in a global line with a different orientation. This finding suggests that women are more distracted than men by misleading global oriented context when performing local orientation judgments, perhaps because women and men differ in their ability to use cognitive schemes to compensate for the distracting effects of the global context. Our findings further suggest that whether or not gender differences arise depends not only on the nature of the visual task but also on the visual context.
An Information Theoretic Model for the Human Processing of Cognitive Tasks.
ERIC Educational Resources Information Center
Moser, Gene W.
An information-theory model of human memory was tested in thirteen experiments which involved children (six years and older) and graduate students. The subjects conducted science investigations in laboratory and non-laboratory settings, solved problems of electrical circuits, and participated in classroom science lessons. The tasks used involved…
Garnett, Bernice Raveche; Masyn, Katherine E; Austin, S Bryn; Miller, Matthew; Williams, David R; Viswanath, Kasisomayajula
2014-08-01
Discrimination is commonly experienced among adolescents. However, little is known about the intersection of multiple attributes of discrimination and bullying. We used a latent class analysis (LCA) to illustrate the intersections of discrimination attributes and bullying, and to assess the associations of LCA membership to depressive symptoms, deliberate self harm and suicidal ideation among a sample of ethnically diverse adolescents. The data come from the 2006 Boston Youth Survey where students were asked whether they had experienced discrimination based on four attributes: race/ethnicity, immigration status, perceived sexual orientation and weight. They were also asked whether they had been bullied or assaulted for these attributes. A total of 965 (78%) students contributed to the LCA analytic sample (45% Non-Hispanic Black, 29% Hispanic, 58% Female). The LCA revealed that a 4-class solution had adequate relative and absolute fit. The 4-classes were characterized as: low discrimination (51%); racial discrimination (33%); sexual orientation discrimination (7%); racial and weight discrimination with high bullying (intersectional class) (7%). In multivariate models, compared to the low discrimination class, individuals in the sexual orientation discrimination class and the intersectional class had higher odds of engaging in deliberate self-harm. Students in the intersectional class also had higher odds of suicidal ideation. All three discrimination latent classes had significantly higher depressive symptoms compared to the low discrimination class. Multiple attributes of discrimination and bullying co-occur among adolescents. Research should consider the co-occurrence of bullying and discrimination.
ERIC Educational Resources Information Center
Polli, Frida E.; Barton, Jason J. S.; Thakkar, Katharine N.; Greve, Douglas N.; Goff, Donald C.; Rauch, Scott L.; Manoach, Dara S.
2008-01-01
To perform well on any challenging task, it is necessary to evaluate your performance so that you can learn from errors. Recent theoretical and experimental work suggests that the neural sequellae of error commission in a dorsal anterior cingulate circuit index a type of contingency- or reinforcement-based learning, while activation in a rostral…
NASA Astrophysics Data System (ADS)
Klonov, V. V.; Larionov, I. A.; Bessonov, V. B.
2018-02-01
Despite obvious drawbacks of the resonant converter, such as complicated calculation, increased size and weight of the device, deviations of the circuit parameters from product to product, the resonant converter shows significant advantages in comparison with other. The task was to design the generator, which is built on a resonant topology.
Cheng, Wei; Rolls, Edmund T; Zhang, Jie; Sheng, Wenbo; Ma, Liang; Wan, Lin; Luo, Qiang; Feng, Jianfeng
2017-03-01
A powerful new method is described called Knowledge based functional connectivity Enrichment Analysis (KEA) for interpreting resting state functional connectivity, using circuits that are functionally identified using search terms with the Neurosynth database. The method derives its power by focusing on neural circuits, sets of brain regions that share a common biological function, instead of trying to interpret single functional connectivity links. This provides a novel way of investigating how task- or function-related networks have resting state functional connectivity differences in different psychiatric states, provides a new way to bridge the gap between task and resting-state functional networks, and potentially helps to identify brain networks that might be treated. The method was applied to interpreting functional connectivity differences in autism. Functional connectivity decreases at the network circuit level in 394 patients with autism compared with 473 controls were found in networks involving the orbitofrontal cortex, anterior cingulate cortex, middle temporal gyrus cortex, and the precuneus, in networks that are implicated in the sense of self, face processing, and theory of mind. The decreases were correlated with symptom severity. Copyright © 2017. Published by Elsevier Inc.
Small covers of graph-associahedra and realization of cycles
NASA Astrophysics Data System (ADS)
Gaifullin, A. A.
2016-11-01
An oriented connected closed manifold M^n is called a URC-manifold if for any oriented connected closed manifold N^n of the same dimension there exists a nonzero-degree mapping of a finite-fold covering \\widehat{M}^n of M^n onto N^n. This condition is equivalent to the following: for any n-dimensional integral homology class of any topological space X, a multiple of it can be realized as the image of the fundamental class of a finite-fold covering \\widehat{M}^n of M^n under a continuous mapping f\\colon \\widehat{M}^n\\to X. In 2007 the author gave a constructive proof of Thom's classical result that a multiple of any integral homology class can be realized as an image of the fundamental class of an oriented smooth manifold. This construction yields the existence of URC-manifolds of all dimensions. For an important class of manifolds, the so-called small covers of graph-associahedra corresponding to connected graphs, we prove that either they or their two-fold orientation coverings are URC-manifolds. In particular, we obtain that the two-fold covering of the small cover of the usual Stasheff associahedron is a URC-manifold. In dimensions 4 and higher, this manifold is simpler than all the previously known URC-manifolds. Bibliography: 39 titles.
Brown, Theresa C; Fry, Mary D
2013-01-01
The aim of this study was to examine the relationship between female college students' perceptions of the motivational climate in their aerobics classes to their adaptive exercise responses. Data were collected from university group exercise classes in spring 2008. The participants (N = 213) responded to a questionnaire measuring perceptions of the climate (i.e., caring, task-, and ego-involving), correlates of intrinsic motivation (i.e., interest/enjoyment, perceived competence, effort/importance, and tension/pressure), commitment to exercise, and reasons for exercising. Canonical correlation analyses revealed that participants who perceived a predominately caring, task-involving climate reported higher interest/enjoyment, perceived competence, effort/importance, and commitment to exercise, as well as lower tension/pressure. Further, those who perceived a high caring, task-involving, and low ego-involving climate were also more likely to report more health-related reasons for exercise versus appearance-focused reasons. Results suggested that important motivational benefits might exist when women perceive caring, task-involving climates in their aerobics class settings. Aerobics class instructors who intentionally create caring, task-involving climates may promote more adaptive motivational responses among their female participants.
Effect of Delay on Search Decisions in a Task-Oriented Reading Environment
ERIC Educational Resources Information Center
Mañá, Amelia; Vidal-Abarca, Eduardo; Salmerón, Ladislao
2017-01-01
The goal of this study was to determine the effect of setting a delay between reading a text and answering comprehension questions on "when"-to-search and "what"-to-search decisions in a task-oriented reading environment. Fifty-five eighth-grade students were randomly divided into two groups. One group read one text, answered…
ERIC Educational Resources Information Center
Edward, Norrie; Middleton, June
2002-01-01
First-year engineering students at Robert Gordon University (Scotland) were presented with a task-oriented induction program. Students were divided into groups and assigned a facilitator, later personal tutor, to whom they could refer. Student reaction to the experience was very favorable. Effect on progression rates is yet to be determined. (AEF)
ERIC Educational Resources Information Center
Graham, Jedda; Tisher, Ruth; Ainley, Mary; Kennedy, Gregor
2008-01-01
This study addresses concerns about boys' underperformance on literacy tasks compared to girls, by investigating male and females students' responses to narrative texts. Participants were 142 Grade 9 and 10 students. Achievement orientations, including goals, self-efficacy, and self-handicapping, were measured and approach and avoidance factors…
ERIC Educational Resources Information Center
Chang, Yuwen
2015-01-01
The relationships among future-oriented motivation, self-efficacy, task values of science, and achievement outcomes were investigated among 15-year-olds across four Asian nations who participated in the Program for International Student Assessment (PISA) of the Organization for Economic Cooperation and Development (OECD). The factor structure of…
Web-Based Seamless Migration for Task-Oriented Mobile Distance Learning
ERIC Educational Resources Information Center
Zhang, Degan; Li, Yuan-chao; Zhang, Huaiyu; Zhang, Xinshang; Zeng, Guangping
2006-01-01
As a new kind of computing paradigm, pervasive computing will meet the requirements of human being that anybody maybe obtain services in anywhere and at anytime, task-oriented seamless migration is one of its applications. Apparently, the function of seamless mobility is suitable for mobile services, such as mobile Web-based learning. In this…
Implicit Change Identification: A Replication of Fernandez-Duque and Thornton (2003)
ERIC Educational Resources Information Center
Laloyaux, Cedric; Destrebecqz, Arnaud; Cleeremans, Axel
2006-01-01
Using a simple change detection task involving vertical and horizontal stimuli, I. M. Thornton and D. Fernandez-Duque (2000) showed that the implicit detection of a change in the orientation of an item influences performance in a subsequent orientation judgment task. However, S. R. Mitroff, D. J. Simons, and S. L. Franconeri (2002) were not able…
The Nature of Pre-Service Science Teachers' Argumentation in Inquiry-Oriented Laboratory Context
ERIC Educational Resources Information Center
Ozdem, Yasemin; Ertepinar, Hamide; Cakiroglu, Jale; Erduran, Sibel
2013-01-01
The aim of this study was to investigate the kinds of argumentation schemes generated by pre-service elementary science teachers (PSTs) as they perform inquiry-oriented laboratory tasks, and to explore how argumentation schemes vary by task as well as by experimentation and discussion sessions. The model of argumentative and scientific inquiry was…
Development of detection and recognition of orientation of geometric and real figures.
Stein, N L; Mandler, J M
1975-06-01
Black and white kindergarten and second-grade children were tested for accuracy of detection and recognition of orientation and location changes in pictures of real-world and geometric figures. No differences were found in accuracy of recognition between the 2 kinds of pictures, but patterns of verbalization differed on specific transformations. Although differences in accuracy were found between kindergarten and second grade on an initial recognition task, practice on a matching-to-sample task eliminated differences on a second recognition task. Few ethnic differences were found on accuracy of recognition, but significant differences were found in amount of verbal output on specific transformations. For both groups, mention of orientation changes was markedly reduced when location changes were present.
Motor cortex is required for learning but not executing a motor skill
Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.
2018-01-01
Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304
Human centromedian-parafascicular complex signals sensory cues for goal-oriented behavior selection.
Schepers, Inga M; Beck, Anne-Kathrin; Bräuer, Susann; Schwabe, Kerstin; Abdallat, Mahmoud; Sandmann, Pascale; Dengler, Reinhard; Rieger, Jochem W; Krauss, Joachim K
2017-05-15
Experimental research has shown that the centromedian-parafascicular complex (CM-Pf) of the intralaminar thalamus is activated in attentional orienting and processing of behaviorally relevant stimuli. These observations resulted in the hypothesis that the CM-Pf plays a pivotal role in goal-oriented behavior selection. We here set out to test this hypothesis with electrophysiological recordings from patients with electrodes implanted in CM-Pf for deep brain stimulation (DBS) treatment of chronic neuropathic pain. Six patients participated in (1) an auditory three-class oddball experiment, which required a button press to target tones, but not to standard and deviant tones and in (2) a multi-speaker experiment with a target word that required attention selection and a target image that required response selection. Subjects showed transient neural responses (8-15Hz) to the target tone and the target word. Two subjects additionally showed transient neural responses (15-25Hz) to the target image. All sensory target stimuli were related to an internal goal and required a behavior selection (attention selection, response selection). In group analyses, neural responses were greater to target tones than deviant and standard tones and to target words than other task-relevant words that did not require attention selection. The transient neural responses occurred after the target stimuli but prior to the overt behavioral response. Our results demonstrate that in human subjects the CM-Pf is involved in signaling sensory inputs related to goal-oriented selection of behavior. Copyright © 2017 Elsevier Inc. All rights reserved.
Texture analysis based on the Hermite transform for image classification and segmentation
NASA Astrophysics Data System (ADS)
Estudillo-Romero, Alfonso; Escalante-Ramirez, Boris; Savage-Carmona, Jesus
2012-06-01
Texture analysis has become an important task in image processing because it is used as a preprocessing stage in different research areas including medical image analysis, industrial inspection, segmentation of remote sensed imaginary, multimedia indexing and retrieval. In order to extract visual texture features a texture image analysis technique is presented based on the Hermite transform. Psychovisual evidence suggests that the Gaussian derivatives fit the receptive field profiles of mammalian visual systems. The Hermite transform describes locally basic texture features in terms of Gaussian derivatives. Multiresolution combined with several analysis orders provides detection of patterns that characterizes every texture class. The analysis of the local maximum energy direction and steering of the transformation coefficients increase the method robustness against the texture orientation. This method presents an advantage over classical filter bank design because in the latter a fixed number of orientations for the analysis has to be selected. During the training stage, a subset of the Hermite analysis filters is chosen in order to improve the inter-class separability, reduce dimensionality of the feature vectors and computational cost during the classification stage. We exhaustively evaluated the correct classification rate of real randomly selected training and testing texture subsets using several kinds of common used texture features. A comparison between different distance measurements is also presented. Results of the unsupervised real texture segmentation using this approach and comparison with previous approaches showed the benefits of our proposal.
ERIC Educational Resources Information Center
Perkins, Karen
2016-01-01
The topics of decimals and polygons were taught to two classes by using challenging tasks, rather than the more conventional textbook approach. Students were given a pre-test and a post-test. A comparison between the two classes on the pre- and post-test was made. Prior to teaching through challenging tasks, students were surveyed about their…
Detection of circuit-board components with an adaptive multiclass correlation filter
NASA Astrophysics Data System (ADS)
Diaz-Ramirez, Victor H.; Kober, Vitaly
2008-08-01
A new method for reliable detection of circuit-board components is proposed. The method is based on an adaptive multiclass composite correlation filter. The filter is designed with the help of an iterative algorithm using complex synthetic discriminant functions. The impulse response of the filter contains information needed to localize and classify geometrically distorted circuit-board components belonging to different classes. Computer simulation results obtained with the proposed method are provided and compared with those of known multiclass correlation based techniques in terms of performance criteria for recognition and classification of objects.
Greenwald, Elliot; Masters, Matthew R; Thakor, Nitish V
2016-01-01
A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very large-scale integration has advanced the design of complex integrated circuits. System-on-chip devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems.
Swedish Orienteers: A Survey Study.
ERIC Educational Resources Information Center
Ottosson, Torgny
1995-01-01
A survey questionnaire was sent to 1,200 members of Swedish orienteering clubs. Some common beliefs about orienteers were verified. Respondents identifying themselves as active orienteers were often well educated and in the upper middle class, had a healthy lifestyle, and tended to participate as families. (Author/TD)
Impact of Teacher Value Orientations on Student Learning in Physical Education
Chen, Ang; Zhang, Tan; Wells, Stephanie L.; Schweighardt, Ray; Ennis, Catherine D.
2017-01-01
Based on the value orientation theory, the purpose of this study was to determine the impact of value orientation incongruence between physical education teachers and an externally designed curriculum on student learning in a concept-based fitness-centered physical education curriculum. Physical education teachers (n = 15) with different value orientations taught an externally designed, standards-based fitness/healthful living curriculum to their middle school students (n = 3,827) in 155 sixth, seventh, and eighth grade intact classes. A pre-post assessment design was used to determine whether student fitness/healthful living knowledge gains differed in terms of teachers’ value orientations. An ANOVA on class means of residual-adjusted knowledge gain scores revealed no statistically significant differences based on value orientations. The evidence suggests that teacher value orientation impact may be mediated by curriculum impact. This finding supports the observation that a well-designed physical education curriculum may minimize the impact of teachers’ diverse value orientations on the curriculum implementation and student learning. PMID:29200587
Impact of Teacher Value Orientations on Student Learning in Physical Education.
Chen, Ang; Zhang, Tan; Wells, Stephanie L; Schweighardt, Ray; Ennis, Catherine D
2017-04-01
Based on the value orientation theory, the purpose of this study was to determine the impact of value orientation incongruence between physical education teachers and an externally designed curriculum on student learning in a concept-based fitness-centered physical education curriculum. Physical education teachers ( n = 15) with different value orientations taught an externally designed, standards-based fitness/healthful living curriculum to their middle school students ( n = 3,827) in 155 sixth, seventh, and eighth grade intact classes. A pre-post assessment design was used to determine whether student fitness/healthful living knowledge gains differed in terms of teachers' value orientations. An ANOVA on class means of residual-adjusted knowledge gain scores revealed no statistically significant differences based on value orientations. The evidence suggests that teacher value orientation impact may be mediated by curriculum impact. This finding supports the observation that a well-designed physical education curriculum may minimize the impact of teachers' diverse value orientations on the curriculum implementation and student learning.
Revisiting Parametric Types and Virtual Classes
NASA Astrophysics Data System (ADS)
Madsen, Anders Bach; Ernst, Erik
This paper presents a conceptually oriented updated view on the relationship between parametric types and virtual classes. The traditional view is that parametric types excel at structurally oriented composition and decomposition, and virtual classes excel at specifying mutually recursive families of classes whose relationships are preserved in derived families. Conversely, while class families can be specified using a large number of F-bounded type parameters, this approach is complex and fragile; and it is difficult to use traditional virtual classes to specify object composition in a structural manner, because virtual classes are closely tied to nominal typing. This paper adds new insight about the dichotomy between these two approaches; it illustrates how virtual constraints and type refinements, as recently introduced in gbeta and Scala, enable structural treatment of virtual types; finally, it shows how a novel kind of dynamic type check can detect compatibility among entire families of classes.
Nakao, Takashi; Matsumoto, Tomoya; Morita, Machiko; Shimizu, Daisuke; Yoshimura, Shinpei; Northoff, Georg; Morinobu, Shigeru; Okamoto, Yasumasa; Yamawaki, Shigeto
2013-01-01
Early life stress (ELS), an important risk factor for psychopathology in mental disorders, is associated neuronally with decreased functional connectivity within the default mode network (DMN) in the resting state. Moreover, it is linked with greater deactivation in DMN during a working memory task. Although DMN shows large amplitudes of very low-frequency oscillations (VLFO) and strong involvement during self-oriented tasks, these features’ relation to ELS remains unclear. Therefore, our preliminary study investigated the relationship between ELS and the degree of frontal activations during a resting state and self-oriented task using near-infrared spectroscopy (NIRS). From 22 healthy participants, regional hemodynamic changes in 43 front-temporal channels were recorded during 5 min resting states, and execution of a self-oriented task (color-preference judgment) and a control task (color-similarity judgment). Using a child abuse and trauma scale, ELS was quantified. We observed that ELS showed a negative correlation with medial prefrontal cortex (MPFC) activation during both resting state and color-preference judgment. In contrast, no significant correlation was found between ELS and MPFC activation during color-similarity judgment. Additionally, we observed that ELS and the MPFC activation during color-preference judgment were associated behaviorally with the rate of similar color choice in preference judgment, which suggests that, for participants with higher ELS, decisions in the color-preference judgment were based on an external criterion (color similarity) rather than an internal criterion (subjective preference). Taken together, our neuronal and behavioral findings show that high ELS is related to lower MPFC activation during both rest and self-oriented tasks. This is behaviorally manifest in an abnormal shift from internally to externally guided decision making, even under circumstances where internal guidance is required. PMID:23840186
Adler, D; Mahler, Y
1980-04-01
A procedure for automatic detection and digital processing of the maximum first derivative of the intraventricular pressure (dp/dtmax), time to dp/dtmax(t - dp/dt) and beat-to-beat intervals have been developed. The procedure integrates simple electronic circuits with a short program using a simple algorithm for the detection of the points of interest. The tasks of differentiating the pressure signal and detecting the onset of contraction were done by electronics, while the tasks of finding the values of dp/dtmax, t - dp/dt, beat-to-beat intervals and all computations needed were done by software. Software/hardware 'trade off' considerations and the accuracy and reliability of the system are discussed.
Utilizing "The Wire" to Teach about Justice-Oriented Citizenship
ERIC Educational Resources Information Center
Lucas, Ashley G.; Clark, Julie
2016-01-01
"Charm City: Down to 'The Wire?'" is the title of an elective class developed by Sarah Taylor, a teacher at a private school in Baltimore. In the class, students explore their city and social justice issues from a framework that correlates to Westheimer and Kahne's (2004) concept of justice-oriented citizenship. Not only do students…
Creating an Engaging Library Orientation: First Year Experience Courses at UC San Diego
ERIC Educational Resources Information Center
Goldman, Crystal; Turnbow, Dominique; Roth, Amanda; Friedman, Lia; Heskett, Karen
2016-01-01
This article focuses on the development of an engaging library orientation module for UC San Diego First Year Experience (FYE) courses. The library module included a brief in-class presentation about research concepts and library services, an online interactive library scavenger hunt given as an in-class activity, and a homework assignment where…
ERIC Educational Resources Information Center
Baghaei, Nilufar; Mitrovic, Antonija; Irwin, Warwick
2007-01-01
We present COLLECT-UML, a constraint-based intelligent tutoring system (ITS) that teaches object-oriented analysis and design using Unified Modelling Language (UML). UML is easily the most popular object-oriented modelling technology in current practice. While teaching how to design UML class diagrams, COLLECT-UML also provides feedback on…
Diagram, a Learning Environment for Initiation to Object-Oriented Modeling with UML Class Diagrams
ERIC Educational Resources Information Center
Py, Dominique; Auxepaules, Ludovic; Alonso, Mathilde
2013-01-01
This paper presents Diagram, a learning environment for object-oriented modelling (OOM) with UML class diagrams. Diagram an open environment, in which the teacher can add new exercises without constraints on the vocabulary or the size of the diagram. The interface includes methodological help, encourages self-correcting and self-monitoring, and…
NASA Astrophysics Data System (ADS)
Ruhiyat, Z. F.; Somantri, Y.; Wahyudin, D.; Hakim, D. L.
2018-02-01
This research aims to determine the student’s response to the implementation of Internet of Things (IoT) device based on RFM69, called Mote69, for practical work of Aircraft Electronic Circuits and Controllers. Participants in this study were students of a vocational high school of Aircraft Electronics which consisted of three groups. The first group is the students who have grades above the average class. The second group is the students who have grade the average class. The third group is the students who have grades below the average class. The research phase consisted of (1). Observation and Assessment of Empirical Issues; (2). Testing of Media Feasibility and Research Instruments; (3). Accumulate and Processing of Field Data; and (4). Results and Data Conclusions. The result of media feasibility showed that Mote69 is appropriate to be used in practical work of Aircraft Electronic Circuits and Controllers subject.
Turchi, Janita; Devan, Bryan; Yin, Pingbo; Sigrist, Emmalynn; Mishkin, Mortimer
2010-01-01
The monkey's ability to learn a set of visual discriminations presented concurrently just once a day on successive days (24-hr ITI task) is based on habit formation, which is known to rely on a visuo-striatal circuit and to be independent of visuo-rhinal circuits that support one-trial memory. Consistent with this dissociation, we recently reported that performance on the 24-hr ITI task is impaired by a striatal-function blocking agent, the dopaminergic antagonist haloperidol, and not by a rhinal-function blocking agent, the muscarinic cholinergic antagonist scopolamine. In the present study, monkeys were trained on a short-ITI form of concurrent visual discrimination learning, one in which a set of stimulus pairs is repeated not only across daily sessions but also several times within each session (in this case, at about 4-min ITIs). Asymptotic discrimination learning rates in the non-drug condition were reduced by half, from ~11 trials/pair on the 24-hr ITI task to ~5 trials/pair on the 4-min ITI task, and this faster learning was impaired by systemic injections of either haloperidol or scopolamine. The results suggest that in the version of concurrent discrimination learning used here, the short ITIs within a session recruit both visuo-rhinal and visuo-striatal circuits, and that the final performance level is driven by both cognitive memory and habit formation working in concert. PMID:20144631
Quartz/fused silica chip carriers
NASA Technical Reports Server (NTRS)
1992-01-01
The primary objective of this research and development effort was to develop monolithic microwave integrated circuit (MMIC) packaging which will operate efficiently at millimeter-wave frequencies. The packages incorporated fused silica as the substrate material which was selected due to its favorable electrical properties and potential performance improvement over more conventional materials for Ka-band operation. The first step towards meeting this objective is to develop a package that meets standard mechanical and thermal requirements using fused silica and to be compatible with semiconductor devices operating up to at least 44 GHz. The second step is to modify the package design and add multilayer and multicavity capacity to allow for application specific integrated circuits (ASIC's) to control multiple phase shifters. The final step is to adapt the package design to a phased array module with integral radiating elements. The first task was a continuation of the SBIR Phase 1 work. Phase 1 identified fused silica as a viable substrate material by demonstrating various plating, machining, and adhesion properties. In Phase 2 Task 1, a package was designed and fabricated to validate these findings. Task 2 was to take the next step in packaging and fabricate a multilayer, multichip module (MCM). This package is the predecessor to the phased array module and demonstrates the ability to via fill, circuit print, laminate, and to form vertical interconnects. The final task was to build a phased array module. The radiating elements were to be incorporated into the package instead of connecting to it with wire or ribbon bonds.
Turchi, Janita; Devan, Bryan; Yin, Pingbo; Sigrist, Emmalynn; Mishkin, Mortimer
2010-07-01
The monkey's ability to learn a set of visual discriminations presented concurrently just once a day on successive days (24-h ITI task) is based on habit formation, which is known to rely on a visuo-striatal circuit and to be independent of visuo-rhinal circuits that support one-trial memory. Consistent with this dissociation, we recently reported that performance on the 24-h ITI task is impaired by a striatal-function blocking agent, the dopaminergic antagonist haloperidol, and not by a rhinal-function blocking agent, the muscarinic cholinergic antagonist scopolamine. In the present study, monkeys were trained on a short-ITI form of concurrent visual discrimination learning, one in which a set of stimulus pairs is repeated not only across daily sessions but also several times within each session (in this case, at about 4-min ITIs). Asymptotic discrimination learning rates in the non-drug condition were reduced by half, from approximately 11 trials/pair on the 24-h ITI task to approximately 5 trials/pair on the 4-min ITI task, and this faster learning was impaired by systemic injections of either haloperidol or scopolamine. The results suggest that in the version of concurrent discrimination learning used here, the short ITIs within a session recruit both visuo-rhinal and visuo-striatal circuits, and that the final performance level is driven by both cognitive memory and habit formation working in concert.
NASA Astrophysics Data System (ADS)
Sutherland, Herbert J.
1988-08-01
Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to equivalent gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system.
Podokinetic Stimulation Causes Shifts in Perception of Straight Ahead
Scott, John T.; Lohnes, Corey A.; Horak, Fay B.; Earhart, Gammon M.
2011-01-01
Podokinetic after-rotation (PKAR) is a phenomenon in which subjects inadvertently rotate when instructed to step in place after a period of walking on a rotating treadmill. PKAR has been shown to transfer between different forms of locomotion, but has not been tested in a non-locomotor task. We conducted two experiments to assess effects of PKAR on perception of subjective straight ahead and on quiet standing posture. Twenty-one healthy young right-handed subjects pointed to what they perceived as their subjective straight ahead with a laser pointer while they were recorded by a motion capture system both before and after a training period on the rotating treadmill. Subjects performed the pointing task while standing, sitting on a chair without a back, and a chair with a back. After the training period, subjects demonstrated a significant shift in subjective straight ahead, pointing an average of 29.1 ± 10.6 degrees off of center. The effect was direction-specific, depending on whether subjects had trained in the clockwise or counter-clockwise direction. Postures that limited subjects’ ability to rotate the body in space resulted in reduction, but not elimination, of the effect. The effect was present in quiet standing and even in sitting postures where locomotion was not possible. The robust transfer of PKAR to non-locomotor tasks, and across locomotor forms as demonstrated previously, is in contrast to split-belt adaptations that show limited transfer. We propose that, unlike split-belt adaptations, podokinetic adaptations are mediated at supraspinal, spatial orientation areas that influences spinal-level circuits for locomotion. PMID:21076818
A CAI System for Visually Impaired Children to Improve Abilities of Orientation and Mobility
NASA Astrophysics Data System (ADS)
Yoneda, Takahiro; Kudo, Hiroaki; Minagawa, Hiroki; Ohnishi, Noboru; Matsubara, Shizuya
Some visually impaired children have difficulty in simple locomotion, and need orientation and mobility training. We developed a computer assisted instruction system which assists this training. A user realizes a task given by a tactile map and synthesized speech. The user walks around a room according to the task. The system gives the gap of walk path from its target path via both auditory and tactile feedback after the end of a task. Then the user can understand how well the user walked. We describe the detail of the proposed system and task, and the experimental result with three visually impaired children.
Mammalian synthetic biology: emerging medical applications
Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob
2015-01-01
In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341
Marginalization in neural circuits with divisive normalization
Beck, J.M.; Latham, P.E.; Pouget, A.
2011-01-01
A wide range of computations performed by the nervous system involves a type of probabilistic inference known as marginalization. This computation comes up in seemingly unrelated tasks, including causal reasoning, odor recognition, motor control, visual tracking, coordinate transformations, visual search, decision making, and object recognition, to name just a few. The question we address here is: how could neural circuits implement such marginalizations? We show that when spike trains exhibit a particular type of statistics – associated with constant Fano factors and gain-invariant tuning curves, as is often reported in vivo – some of the more common marginalizations can be achieved with networks that implement a quadratic nonlinearity and divisive normalization, the latter being a type of nonlinear lateral inhibition that has been widely reported in neural circuits. Previous studies have implicated divisive normalization in contrast gain control and attentional modulation. Our results raise the possibility that it is involved in yet another, highly critical, computation: near optimal marginalization in a remarkably wide range of tasks. PMID:22031877
Yashar, Amit; Denison, Rachel N
2017-12-01
Training can modify the visual system to produce a substantial improvement on perceptual tasks and therefore has applications for treating visual deficits. Visual perceptual learning (VPL) is often specific to the trained feature, which gives insight into processes underlying brain plasticity, but limits VPL's effectiveness in rehabilitation. Under what circumstances VPL transfers to untrained stimuli is poorly understood. Here we report a qualitatively new phenomenon: intrinsic variation in the representation of features determines the transfer of VPL. Orientations around cardinal are represented more reliably than orientations around oblique in V1, which has been linked to behavioral consequences such as visual search asymmetries. We studied VPL for visual search of near-cardinal or oblique targets among distractors of the other orientation while controlling for other display and task attributes, including task precision, task difficulty, and stimulus exposure. Learning was the same in all training conditions; however, transfer depended on the orientation of the target, with full transfer of learning from near-cardinal to oblique targets but not the reverse. To evaluate the idea that representational reliability was the key difference between the orientations in determining VPL transfer, we created a model that combined orientation-dependent reliability, improvement of reliability with learning, and an optimal search strategy. Modeling suggested that not only search asymmetries but also the asymmetric transfer of VPL depended on preexisting differences between the reliability of near-cardinal and oblique representations. Transfer asymmetries in model behavior also depended on having different learning rates for targets and distractors, such that greater learning for low-reliability distractors facilitated transfer. These findings suggest that training on sensory features with intrinsically low reliability may maximize the generalizability of learning in complex visual environments.
Feature reliability determines specificity and transfer of perceptual learning in orientation search
2017-01-01
Training can modify the visual system to produce a substantial improvement on perceptual tasks and therefore has applications for treating visual deficits. Visual perceptual learning (VPL) is often specific to the trained feature, which gives insight into processes underlying brain plasticity, but limits VPL’s effectiveness in rehabilitation. Under what circumstances VPL transfers to untrained stimuli is poorly understood. Here we report a qualitatively new phenomenon: intrinsic variation in the representation of features determines the transfer of VPL. Orientations around cardinal are represented more reliably than orientations around oblique in V1, which has been linked to behavioral consequences such as visual search asymmetries. We studied VPL for visual search of near-cardinal or oblique targets among distractors of the other orientation while controlling for other display and task attributes, including task precision, task difficulty, and stimulus exposure. Learning was the same in all training conditions; however, transfer depended on the orientation of the target, with full transfer of learning from near-cardinal to oblique targets but not the reverse. To evaluate the idea that representational reliability was the key difference between the orientations in determining VPL transfer, we created a model that combined orientation-dependent reliability, improvement of reliability with learning, and an optimal search strategy. Modeling suggested that not only search asymmetries but also the asymmetric transfer of VPL depended on preexisting differences between the reliability of near-cardinal and oblique representations. Transfer asymmetries in model behavior also depended on having different learning rates for targets and distractors, such that greater learning for low-reliability distractors facilitated transfer. These findings suggest that training on sensory features with intrinsically low reliability may maximize the generalizability of learning in complex visual environments. PMID:29240813
INVESTIGATION OF THE SUN'S X-RAYS. III. ELECTRONIC APPARATUS (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasil'ev, B.N.; Shurigin, A.I.; Tindo, I.P.
1963-01-01
The electronic portion of an apparatus constructed for the investigation of soft x rays being emitted by the sun is described. The apparatus is used in geophysical rockets and in cosmic space ships and earth satellites. In the geophysical rockets two separate detection channels are employed, one for the working counters and the other for the control counters. The working counter is always directed towards the sun while the control counter is turned 15 deg away from the sun. In the second Sputnik six identical counters were used and arranged so that their line of sight was oriented along threemore » mutually perpendicular axes. In the third Sputnik the working and contour counters were distributed in a system which was self-orienting with respect to the sun. In addition, two stationary counters were enrployed; their direction with respect to the sun changed during the course of the flight. The electronic apparatus consists of the following basic components: a circuit that forms the amplitude and shape of the counter pulses, the triggering device, the separating cascade circuit, and the coding set-up. Each of these circuits is described in detail; block diagrams are shown. (TTT)« less
NASA Astrophysics Data System (ADS)
Jiang, Chuanpeng; Zhang, Pengpeng
2018-02-01
Using photoconductive atomic force microscopy and Kelvin probe force microscopy, we characterize the local electrical properties of grains and grain boundaries of organic-inorganic hybrid perovskite (CH3NH3PbI3) thin films on top of a poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS)/ITO substrate. Three discrete photoconductivity levels are identified among perovskite grains, likely corresponding to the crystal orientation of each grain. Local J-V curves recorded on these grains further suggest an anti-correlation behavior between the short circuit current (JSC) and open circuit voltage (VOC). This phenomenon can be attributed to diffusion-limited surface recombination at the non-selective perovskite-tip contact, where a higher carrier mobility established in the perovskite grain results in an enhanced surface recombination and thus a lower VOC. In addition, the photoresponse of perovskite films displays a pronounced heterogeneity across the grain boundaries, with the boundaries formed between grains of the same photoconductivity level displaying even enhanced photocurrent and open circuit voltage compared to those of the adjacent grain interiors. These observations highlight the significance of controlling the microstructure of perovskite thin films, which will be a necessary route for further improving the efficiency of perovskite solar cells.
Prieur, J-M; Bourdin, C; Sarès, F; Vercher, J-L
2006-01-01
A major issue in motor control studies is to determine whether and how we use spatial frames of reference to organize our spatially oriented behaviors. In previous experiments we showed that simulated body tilt during off-axis rotation affected the performance in verbal localization and manual pointing tasks. It was hypothesized that the observed alterations were at least partly due to a change in the orientation of the egocentric frame of reference, which was indeed centered on the body but aligned with the gravitational vector. The present experiments were designed to test this hypothesis in a situation where no inertial constraints (except the usual gravitational one) exist and where the orientation of the body longitudinal z-axis was not aligned with the direction of the gravity. Eleven subjects were exposed to real static body tilt and were required to verbally localize (experiment 1) and to point as accurately as possible towards (experiment 2) memorized visual targets, in two conditions, Head-Free and Head-Fixed conditions. Results show that the performance was only affected by real body tilt in the localization task performed when the subject's head was tilted relative to the body. Thus, dissociation between gravity and body longitudinal z-axis alone is not responsible for localization nor for pointing errors. Therefore, the egocentric frame of reference seems independent from the orientation of the gravity with regard to body z-axis as expected from our previous studies. Moreover, the use of spatial referentials appears to be less mandatory than expected for pointing movements (motor task) than for localization task (cognitive task).