Sample records for task-related oxygen uptake

  1. Blood flow and oxygen uptake during exercise

    NASA Technical Reports Server (NTRS)

    Mitchell, J. W.; Stolwijk, J. A. J.; Nadel, E. R.

    1973-01-01

    A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.

  2. 21 CFR 868.1730 - Oxygen uptake computer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...

  3. 21 CFR 868.1730 - Oxygen uptake computer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...

  4. 21 CFR 868.1730 - Oxygen uptake computer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...

  5. 21 CFR 868.1730 - Oxygen uptake computer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...

  6. 21 CFR 868.1730 - Oxygen uptake computer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...

  7. The interrelationship between muscle oxygenation, muscle activation, and pulmonary oxygen uptake to incremental ramp exercise: influence of aerobic fitness.

    PubMed

    Boone, Jan; Barstow, Thomas J; Celie, Bert; Prieur, Fabrice; Bourgois, Jan

    2016-01-01

    We investigated whether muscle and ventilatory responses to incremental ramp exercise would be influenced by aerobic fitness status by means of a cross-sectional study with a large subject population. Sixty-four male students (age: 21.2 ± 3.2 years) with a heterogeneous peak oxygen uptake (51.9 ± 6.3 mL·min(-1)·kg(-1), range 39.7-66.2 mL·min(-1)·kg(-1)) performed an incremental ramp cycle test (20-35 W·min(-1)) to exhaustion. Breath-by-breath gas exchange was recorded, and muscle activation and oxygenation were measured with surface electromyography and near-infrared spectroscopy, respectively. The integrated electromyography (iEMG), mean power frequency (MPF), deoxygenated [hemoglobin and myoglobin] (deoxy[Hb+Mb]), and total[Hb+Mb] responses were set out as functions of work rate and fitted with a double linear function. The respiratory compensation point (RCP) was compared and correlated with the breakpoints (BPs) (as percentage of peak oxygen uptake) in muscle activation and oxygenation. The BP in total[Hb+Mb] (83.2% ± 3.0% peak oxygen uptake) preceded (P < 0.001) the BP in iEMG (86.7% ± 4.0% peak oxygen uptake) and MPF (86.3% ± 4.1% peak oxygen uptake), which in turn preceded (P < 0.01) the BP in deoxy[Hb+Mb] (88.2% ± 4.5% peak oxygen uptake) and RCP (87.4% ± 4.5% peak oxygen uptake). Furthermore, the peak oxygen uptake was significantly (P < 0.001) positively correlated to the BPs and RCP, indicating that the BPs in total[Hb+Mb] (r = 0.66; P < 0.001), deoxy[Hb+Mb] (r = 0.76; P < 0.001), iEMG (r = 0.61; P < 0.001), MPF (r = 0.63; P < 0.001), and RCP (r = 0.75; P < 0.001) occurred at a higher percentage of peak oxygen uptake in subjects with a higher peak oxygen uptake. In this study a close relationship between muscle oxygenation, activation, and pulmonary oxygen uptake was found, occurring in a cascade of events. In subjects with a higher aerobic fitness level this cascade occurred at a higher relative intensity.

  8. Influence of simulated weightlessness on maximal oxygen uptake of untrained rats

    NASA Technical Reports Server (NTRS)

    Overton, J. Michael; Tipton, Charles M.

    1987-01-01

    The purpose of this study was to determine the effect of hindlimb suspension on maximal oxygen uptake of rodents. Male Sprague-Dawley rats were assigned to head-down (HD) suspension, horizontal (HOZ) suspension, or cage (C) control for 6-9 days. Rats were tested for maximal oxygen uptake before and after surgical instrumentation (Doppler flow probes, carotid and jugular cannulae), and after suspension. Body weight was significantly decreased after suspension in both HD and HOZ groups, but was significantly increased in the C group. Absolute maximal O2 uptake (ml/min) was not different in the C group. However, because of their increased weight, relative maximal O2 uptake (ml/min per kg) was significantly reduced. In contrast, both relative and absolute maximal O2 uptake were significantly lower, following suspension, for the HD and HOZ groups. These preliminary results support the use of hindlimb suspension as an effective model to study the mechanism(s) of cardiovascular deconditioning.

  9. Optimum aerobic volume control based on continuous in-line oxygen uptake monitoring.

    PubMed

    Svardal, K; Lindtner, S; Winkler, S

    2003-01-01

    Dynamic adaptation of the aerated volume to changing load conditions is essential to maximise the nitrogen removal performance and to minimise energy consumption. A control strategy is presented which provides optimum aerobic volume control (OAV-control concept) based on continuous in-line oxygen uptake monitoring. For ammonium concentrations below 1 mg/l the oxygen uptake rate shows a strong and almost linear dependency on the ammonium concentration. Therefore, the oxygen uptake rate is an ideal indicator for the nitrification performance in activated sludge systems. The OAV-control concept provides dynamic variation of the minimum aerobic volume required for complete nitrification and therefore maximises the denitrification performance. In-line oxygen uptake monitoring is carried out by controlling the oxygen concentration in a continuous aerated zone of the aeration tank and measuring the total air flow to the aeration tank. The total air flow to the aeration tank is directly proportional to the current oxygen uptake rate and can therefore be used as an indicator for the required aerobic volume. The instrumentation requirements for installation of the OAV-control are relatively low, oxygen sensors in the aeration tank and an on-line air flow measurement are needed. This enables individual control of aeration tanks operated in parallel at low investment costs. The OAV-control concept is installed at the WWTP Linz-Asten (1 Mio PE) and shows very good results. Full scale results are presented.

  10. OXYGEN UPTAKE BEFORE AND AFTER THE ONSET OF CLAUDICATION DURING A 6-MINUTE WALK TEST

    PubMed Central

    Gardner, Andrew W.; Ritti-Dias, Raphael M.; Stoner, Julie A.; Montgomery, Polly S.; Khurana, Aman; Blevins, Steve M.

    2011-01-01

    Purposes To compare oxygen uptake before and after the onset of claudication in subjects with peripheral artery disease (PAD) during a 6-minute walk test, and to identify predictors of the change in oxygen uptake following the onset of claudication pain Methods Fifty subjects with PAD were studied, in which 33 experienced claudication (Pain Group) during a 6-minute walk test, and 17 were pain-free during this test (Pain-Free Group). Oxygen uptake and ambulatory cadence were primary outcomes obtained during the 6-minute walk test. Results The Pain Group experienced onset of claudication pain at 179 ± 45 meters (mean ± standard deviation) and continued to walk to achieve a 6-minute walk distance of 393 ± 74 meters, which was similar (p = 0.74) to the Pain-Free Group (401 ± 76 meters). Oxygen uptake increased (p < 0.0001) after the onset of pain in the Pain Group, and this change was greater (p = 0.025) than the increase in oxygen uptake from the second to fifth minute of walking in the Pain-Free Group. Furthermore, ambulatory cadence decreased after the onset of pain in the Pain Group (p = 0.0003). The change in oxygen uptake was associated with metabolic syndrome (p = 0.0023), 6-minute walk distance (p = 0.0037), age, (p = 0.0041), and the oxygen uptake during the second minute of the test (p = 0.012). Conclusion Claudication increases oxygen uptake of self-paced, over-ground ambulation despite a decrease in cadence. The pain-mediated increase in oxygen uptake was blunted in subjects with metabolic syndrome, suggesting that they have an impaired ability to increase oxygen uptake during ambulation. The clinical significance is that claudication increases metabolic cost of ambulation, thereby increasing the relative intensity of exercise and reducing the tolerance to sustain ambulation. PMID:21890308

  11. Atomic Oxygen Task

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.

    1997-01-01

    This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.

  12. Prognostic value of the oxygen uptake efficiency slope and other exercise variables in patients with coronary artery disease.

    PubMed

    Coeckelberghs, Ellen; Buys, Roselien; Goetschalckx, Kaatje; Cornelissen, Véronique A; Vanhees, Luc

    2016-02-01

    Peak exercise capacity is an independent predictor for mortality in patients with coronary artery disease. However, sometimes cardiopulmonary exercise tests are stopped prematurely. Therefore, submaximal exercise measures such as the oxygen uptake efficiency slope have been introduced. The aim of this study was to assess the prognostic value of the oxygen uptake efficiency slope and other exercise parameters, in patients with coronary artery disease. Between 2000 and 2011, 1409 patients with coronary artery disease (age 60.7 ± 9.9 years; 1205 males) underwent cardiopulmonary exercise tests. A maximal effort was not reached in 161 (11.5%) patients. The oxygen uptake efficiency slope was calculated and information on mortality was obtained. Cox proportional hazards regression analyses were used to assess the relation of oxygen uptake efficiency slope and other gas exchange variables with all-cause and cardiovascular mortality. Receiver operating characteristic curve analyses was performed to define optimal cut-off values. During an average follow-up of 7.45 ± 3.20 years (range 0.16-13.95 years), 158 patients died, among which 68 patients for cardiovascular reasons. The oxygen uptake efficiency slope was related to all-cause (hazard ratio: 0.568, p < 0.001) and cardiovascular (hazard ratio: 0.461, p < 0.001) mortality. When significant covariates were entered in the analysis, oxygen uptake efficiency slope remained related to mortality (p < 0.05). When other submaximal exercise parameters were added to the model, oxygen uptake efficiency slope and minute ventilation/carbon dioxide production slope also remained significantly related to mortality. The oxygen uptake efficiency slope is an independent predictor for all-cause and cardiovascular mortality in patients with coronary artery disease, irrespective of a truly maximal effort during cardiopulmonary exercise tests. Furthermore, the oxygen uptake efficiency slope provides prognostic information

  13. Determinants of maximal oxygen uptake (VO2 max) in fire fighter testing.

    PubMed

    Vandersmissen, G J M; Verhoogen, R A J R; Van Cauwenbergh, A F M; Godderis, L

    2014-07-01

    The aim of this study was to evaluate current daily practice of aerobic capacity testing in Belgian fire fighters. The impact of personal and test-related parameters on the outcome has been evaluated. Maximal oxygen uptake (VO2 max) results of 605 male fire fighters gathered between 1999 and 2010 were analysed. The maximal cardio respiratory exercise tests were performed at 22 different centres using different types of tests (tread mill or bicycle), different exercise protocols and measuring equipment. Mean VO2 max was 43.3 (SD = 9.8) ml/kg.min. Besides waist circumference and age, the type of test, the degree of performance of the test and the test centre were statistically significant determinants of maximal oxygen uptake. Test-related parameters have to be taken into account when interpreting and comparing maximal oxygen uptake tests of fire fighters. It highlights the need for standardization of aerobic capacity testing in the medical evaluation of fire fighters. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Gaseous oxygen uptake in porous media at different moisture contents and airflow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G; Kalluri, Prasad N V

    2009-06-01

    The presence and distribution of water in the pore space is a critical factor for flow and transport of gases through unsaturated porous media. The water content also affects the biological activity necessary for treatment of polluted gas streams in biofilters. In this research, microbial activity and quantity of inactive volume in a porous medium as a function of moisture content and gas flow rate were investigated. Yard waste compost was used as a test medium, and oxygen uptake rate measurements were used to quantify microbial activity and effective active compost volume using batch and column flow-through systems. Compost water contents were varied from air-dry to field capacity and gas flows ranged from 0.2 to 2 L x min(-1). The results showed that overall microbial activity and the relative fraction of active compost medium volume increased with airflow velocity for all levels of water content up to a certain flow rate above which the oxygen uptake rate assumed a constant value independent of gas flow. The actual value of the maximum oxygen uptake rate was controlled by the water content. The oxygen uptake rate also increased with increasing water content and reached a maximum between 42 and 48% volumetric water content, above which it decreased, again likely because of formation of inactive zones in the compost medium. Overall, maximum possible oxygen uptake rate as a function of gas flow rate across all water contents and gas flows could be approximated by a linear expression. The relative fraction of active volume also increased with gas flow rate and reached approximately 80% for the highest gas flows used.

  15. Age-related changes in oxygen and nutrient uptake by hindquarters in newborn pigs during cold-induced shivering.

    PubMed

    Lossec, G; Lebreton, Y; Hulin, J C; Fillaut, M; Herpin, P

    1998-11-01

    Newborn pigs rely essentially on shivering thermogenesis in the cold. In order to understand the rapid postnatal enhancement of thermogenic capacities in piglets, the oxygen and nutrient uptake of hindquarters was measured in vivo in 1- (n = 6) and 5-day-old (n = 6) animals at thermal neutrality and during cold exposure. The hindquarters were considered to represent a skeletal muscle compartment. Indirect calorimetry and arterio-venous techniques were used. The cold challenge (23 C at 1 day old and 15 C at 5 days old for 90 min) induced a similar increase (+90 %) in regulatory heat production at both ages. Hindquarters blood flow was higher at 5 days than 1 day old at thermal neutrality (26 +/- 3 vs. 17 +/- 1 ml min-1 (100 g hindquarters)-1) and its increase in the cold was much more marked (+65 % at 5 days old vs. +25 % at 1 day old). Oxygen extraction by the hindquarters rose from 30-35 % at thermal neutrality to 65-70 % in the cold at both ages. The calculated contribution of skeletal muscle to total oxygen consumption averaged 34-40 % at thermal neutrality and 50-64 % in the cold and skeletal muscle was the major contributor to regulatory thermogenesis. Based on hindquarters glucose uptake and lactate release, carbohydrate appeared to be an important fuel for shivering. However, net uptake of fatty acids increased progressively during cold exposure at 5 days old. The enhancement in muscular blood supply and fatty acid utilization during shivering is probably related to the postnatal improvement in the thermoregulatory response of the piglet.

  16. Computer program for calculation of oxygen uptake

    NASA Technical Reports Server (NTRS)

    Castle, B. L.; Castle, G.; Greenleaf, J. E.

    1979-01-01

    A description and operational precedures are presented for a computer program, written in Super Basic, that calculates oxygen uptake, carbon dioxide production, and related ventilation parameters. Program features include: (1) the option of entering slope and intercept values of calibration curves for the O2 and CO2 and analyzers; (2) calculation of expired water vapor pressure; and (3) the option of entering inspured O2 and CO2 concentrations. The program is easily adaptable for programmable laboratory calculators.

  17. Peak oxygen uptake in a sprint interval testing protocol vs. maximal oxygen uptake in an incremental testing protocol and their relationship with cross-country mountain biking performance.

    PubMed

    Hebisz, Rafał; Hebisz, Paulina; Zatoń, Marek; Michalik, Kamil

    2017-04-01

    In the literature, the exercise capacity of cyclists is typically assessed using incremental and endurance exercise tests. The aim of the present study was to confirm whether peak oxygen uptake (V̇O 2peak ) attained in a sprint interval testing protocol correlates with cycling performance, and whether it corresponds to maximal oxygen uptake (V̇O 2max ) determined by an incremental testing protocol. A sample of 28 trained mountain bike cyclists executed 3 performance tests: (i) incremental testing protocol (ITP) in which the participant cycled to volitional exhaustion, (ii) sprint interval testing protocol (SITP) composed of four 30 s maximal intensity cycling bouts interspersed with 90 s recovery periods, (iii) competition in a simulated mountain biking race. Oxygen uptake, pulmonary ventilation, work, and power output were measured during the ITP and SITP with postexercise blood lactate and hydrogen ion concentrations collected. Race times were recorded. No significant inter-individual differences were observed in regards to any of the ITP-associated variables. However, 9 individuals presented significantly increased oxygen uptake, pulmonary ventilation, and work output in the SITP compared with the remaining cyclists. In addition, in this group of 9 cyclists, oxygen uptake in SITP was significantly higher than in ITP. After the simulated race, this group of 9 cyclists achieved significantly better competition times (99.5 ± 5.2 min) than the other cyclists (110.5 ± 6.7 min). We conclude that mountain bike cyclists who demonstrate higher peak oxygen uptake in a sprint interval testing protocol than maximal oxygen uptake attained in an incremental testing protocol demonstrate superior competitive performance.

  18. The influence of different space-related physiological variations on exercise capacity determined by oxygen uptake kinetics.

    PubMed

    Stegemann, J

    1992-07-01

    Oxygen uptake kinetics, following defined variations of work load changes allow to estimate the contribution of aerob and anaerob energy supply which is the base for determining work capacity. Under the aspect of long duration missions with application of adequate dosed countermeasures, a reliable estimate of the astronaut's work capacity is important to adjust the necessary inflight training. Since the kinetics of oxygen uptake originate in the working muscle group itself, while measurements are performed at the mouth, various influences within the oxygen transport system might disturb the determinations. There are not only detraining effects but also well-known other influences, such as blood- and fluid shifts induced by weightlessness. They might have an impact on the circulatory system. Some of these factors have been simulated by immersion, blood donation, and changing of the body position.

  19. The influence of different space-related physiological variations on exercise capacity determined by oxygen uptake kinetics

    NASA Astrophysics Data System (ADS)

    Stegemann, J.

    Oxygen uptake kinetics, following defined variations of work load changes allow to estimate the contribution of aerob and anaerob energy supply which is the base for determining work capacity. Under the aspect of long duration missions with application of adequate dosed countermeasures, a reliable estimate of the astronaut's work capacity is important to adjust the necessary inflight training. Since the kinetics of oxygen uptake originate in the working muscle group itself, while measurements are performed at the mouth, various influences within the oxygen transport system might disturb the determinations. There are not only detraining effects but also well-known other influences, such as blood- and fluid shifts induced by weightlessness. They might have an impact on the circulatory system. Some of these factors have been simulated by immersion, blood donation, and changing of the body position.

  20. The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake

    PubMed Central

    Angleys, Hugo; Jespersen, Sune N.; Østergaard, Leif

    2016-01-01

    Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and in some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor non-oxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%. PMID:27790110

  1. Thromboxane plays a role in postprandial jejunal oxygen uptake and capillary exchange.

    PubMed

    Alemayehu, A; Chou, C C

    1990-09-01

    The effects of a thromboxane A2 (TxA2)-endoperoxide receptor antagonist, SQ 29548, on jejunal blood flow, oxygen uptake, and capillary filtration coefficient (Kfc) were determined in anesthetized dogs under resting conditions and during the presence of predigested food in the jejunal lumen in three series of experiments. In series 1, 2.0 micrograms intra-arterial administration of SQ 29548 was found to abolish completely the vasoconstrictor action of graded doses (0.05-2.0 micrograms) of intra-arterial injection of a TxA2-endoperoxide analogue, U44069. SQ 29548 (2.0 micrograms ia) per se did not significantly alter resting jejunal blood flow, oxygen uptake, capillary pressure, or Kfc. Before SQ 29548, placement of food plus bile into the jejunal lumen increased blood flow +42 +/- 9%, oxygen uptake +28 +/- 7%, and Kfc +24 +/- 6%. After SQ 29548, the food placement increased blood flow +37 +/- 8%, oxygen uptake +52 +/- 11%, and Kfc +63 +/- 20%. The food-induced increases in oxygen uptake and Kfc after SQ 29548 were significantly greater than those induced before the blocking of TxA2-endoperoxide receptors by SQ 29548. Our study indicates that endogenous thromboxane does not play a role in regulating jejunal blood flow, capillary filtration, and oxygen uptake under resting conditions. However, it plays a role in limiting the food-induced increases in jejunal oxygen uptake and capillary exchange capacity without influencing the food-induced hyperemia.

  2. Genetic variants of uncoupling proteins-2 and -3 in relation to maximal oxygen uptake in different sports.

    PubMed

    Holdys, Joanna; Gronek, Piotr; Kryściak, Jakub; Stanisławski, Daniel

    2013-01-01

    Uncoupling proteins 2 and 3 (UCP2 and UCP3) as mitochondrial electron transporters are involved in regulation of ATP production and energy dissipation as heat. Energy efficiency plays an important role in physical performance, especially in aerobic fitness. The aim of this study was to examine the association between maximal oxygen uptake and genetic variants of the UCP2 and UCP3 genes. The studies were carried out in a group of 154 men and 85 women, professional athletes representing various sports and fitness levels and students of the University of Physical Education in Poznań. Physiological and molecular procedures were used, i.e. direct measurement of maximum oxygen uptake (VO₂max) and analysis of an insertion/deletion (I/D) polymorphism in the 3'untranslated region of exon 8 of the UCP2 gene and a C>T substitution in exon 5 (Y210Y) of the UCP3 gene. No statistically significant associations were found, only certain trends. Insertion allele (I) of the I/D UCP2 and the T allele of the UCP3 gene were favourable in obtaining higher VO₂max level and might be considered as endurance-related alleles.

  3. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction.

    PubMed

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-07-01

    Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF.

  4. Exercise modality effect on oxygen uptake off-transient kinetics at maximal oxygen uptake intensity.

    PubMed

    Sousa, Ana; Rodríguez, Ferran A; Machado, Leandro; Vilas-Boas, J Paulo; Fernandes, Ricardo J

    2015-06-01

    What is the central question of this study? Do the mechanical differences between swimming, rowing, running and cycling have a potential effect on the oxygen uptake (V̇O2) off-kinetics after an exercise sustained until exhaustion at 100% of maximal oxygen uptake (V̇O2max) intensity? What is the main finding and its importance? The mechanical differences between exercise modes had a potential effect and contributed to distinct amplitude of the fast component (higher in running compared with cycling) and time constant (higher in swimming compared with rowing and cycling) in the V̇O2 off-kinetic patterns at 100% of V̇O2max intensity. This suggests that swimmers, unlike rowers and cyclists, would benefit more from a longer duration of training intervals after each set of exercise performed at V̇O2max intensity. The kinetics of oxygen uptake (V̇O2) during recovery (off-transient kinetics) for different exercise modes is largely unexplored, hampering the prescription of training and recovery to enhance performance. The purpose of this study was to compare the V̇O2 off-transient kinetics response between swimmers, rowers, runners and cyclists during their specific mode of exercise at 100% of maximal oxygen uptake (V̇O2max) intensity and to examine the on-off symmetry. Groups of swimmers, rowers, runners and cyclists (n = 8 per group) performed (i) an incremental exercise protocol to assess the velocity or power associated with V̇O2max (vV̇O2max or wV̇O2max, respectively) and (ii) a square-wave exercise transition from rest to vV̇O2max/vV̇O2maxwV̇O2maxwV̇O2max until volitional exhaustion. Pulmonary exchange parameters were measured using a telemetric portable gas analyser (K4b(2) ; Cosmed, Rome, Italy), and the on- and off-transient kinetics were analysed through a double-exponential approach. For all exercise modes, both transient periods were symmetrical in shape once they had both been adequately fitted by a double-exponential model. However, differences

  5. Relationship between oxygen cost of walking and level of walking disability after stroke: An experimental study.

    PubMed

    Polese, Janaine C; Ada, Louise; Teixeira-Salmela, Luci F

    2018-01-01

    Since physical inactivity is the major risk factor for recurrent stroke, it is important to understand how level of disability impacts oxygen uptake by people after stroke. This study investigated the nature of the relationship between level of disability and oxygen cost in people with chronic stroke. Level of walking disability was measured as comfortable walking speed using the 10-m Walk Test reported in m/s with 55 ambulatory people 2 years after stroke. Oxygen cost was measured during 3 walking tasks: overground walking at comfortable speed, overground walking at fast speed, and stair walking at comfortable speed. Oxygen cost was calculated from oxygen uptake divided by distance covered during walking and reported in ml∙kg -1 ∙m -1 . The relationship between level of walking disability and oxygen cost was curvilinear for all 3 walking tasks. One quadratic model accounted for 81% (95% CI [74, 88]) of the variance in oxygen cost during the 3 walking tasks: [Formula: see text] DISCUSSION: The oxygen cost of walking was related the level of walking disability in people with chronic stroke, such that the more disabled the individual, the higher the oxygen cost of walking; with oxygen cost rising sharply as disability became severe. An equation that relates oxygen cost during different walking tasks according to the level of walking disability allows clinicians to determine oxygen cost indirectly without the difficulty of measuring oxygen uptake directly. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction

    PubMed Central

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-01-01

    Background Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Methods Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Results Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Conclusions Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF. PMID:27594875

  7. Blood flow regulation and oxygen uptake during high-intensity forearm exercise.

    PubMed

    Nyberg, S K; Berg, O K; Helgerud, J; Wang, E

    2017-04-01

    The vascular strain is very high during heavy handgrip exercise, but the intensity and kinetics to reach peak blood flow, and peak oxygen uptake, are uncertain. We included 9 young (25 ± 2 yr) healthy males to evaluate blood flow and oxygen uptake responses during continuous dynamic handgrip exercise with increasing intensity. Blood flow was measured using Doppler-ultrasound, and venous blood was drawn from a deep forearm vein to determine arteriovenous oxygen difference (a-vO 2diff ) during 6-min bouts of 60, 80, and 100% of maximal work rate (WR max ), respectively. Blood flow and oxygen uptake increased ( P < 0.05) from 60%WR max [557 ± 177(SD) ml/min; 56.0 ± 21.6 ml/min] to 80%WR max (679 ± 190 ml/min; 70.6 ± 24.8 ml/min), but no change was seen from 80%WR max to 100%WR max Blood velocity (49.5 ± 11.5 to 58.1 ± 11.6 cm/s) and brachial diameter (0.49 ± 0.05 to 0.50 ± 0.06 cm) showed concomitant increases ( P < 0.05) with blood flow from 60% to 80%WR max, whereas no differences were observed in a-vO 2diff Shear rate also increased ( P < 0.05) from 60% (822 ± 196 s -1 ) to 80% (951 ± 234 s -1 ) of WR max The mean response time (MRT) was slower ( P < 0.05) for blood flow (60%WR max 50 ± 22 s; 80%WR max 51 ± 20 s; 100%WR max 51 ± 23 s) than a-vO 2diff (60%WR max 29 ± 9 s; 80%WR max 29 ± 5 s; 100%WR max 20 ± 5 s), but not different from oxygen uptake (60%WR max 44 ± 25 s; 80%WR max 43 ± 14 s; 100%WR max 41 ± 32 s). No differences were observed in MRT for blood flow or oxygen uptake with increased exercise intensity. In conclusion, when approaching maximal intensity, oxygen uptake appeared to reach a critical level at ~80% of WR max and be regulated by blood flow. This implies that high, but not maximal, exercise intensity may be an optimal stimulus for shear stress-induced small muscle mass training adaptations. NEW & NOTEWORTHY This study evaluated blood flow regulation and oxygen uptake during small muscle mass forearm exercise with high to

  8. Maximal Oxygen Uptake, Sweating and Tolerance to Exercise in the Heat

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Castle, B. L.; Ruff, W. K.

    1972-01-01

    The physiological mechanisms that facilitate acute acclimation to heat have not been fully elucidated, but the result is the establishment of a more efficient cardiovascular system to increase heat dissipation via increased sweating that allows the acclimated man to function with a cooler internal environment and to extend his performance. Men in good physical condition with high maximal oxygen uptakes generally acclimate to heat more rapidly and retain it longer than men in poorer condition. Also, upon first exposure trained men tolerate exercise in the heat better than untrained men. Both resting in heat and physical training in a cool environment confer only partial acclimation when first exposed to work in the heat. These observations suggest separate additive stimuli of metabolic heat from exercise and environmental heat to increase sweating during the acclimation process. However, the necessity of utilizing physical exercise during acclimation has been questioned. Bradbury et al. (1964) have concluded exercise has no effect on the course of heat acclimation since increased sweating can be induced by merely heating resting subjects. Preliminary evidence suggests there is a direct relationship between the maximal oxygen uptake and the capacity to maintain thermal regulation, particularly through the control of sweating. Since increased sweating is an important mechanism for the development of heat acclimation, and fit men have high sweat rates, it follows that upon initial exposure to exercise in the heat, men with high maximal oxygen uptakes should exhibit less strain than men with lower maximal oxygen uptakes. The purpose of this study was: (1) to determine if men with higher maximal oxygen uptakes exhibit greater tolerance than men with lower oxygen uptakes during early exposure to exercise in the heat, and (2) to investigate further the mechanism of the relationship between sweating and maximal work capacity.

  9. PFC Blood Oxygenation Changes in Four Different Cognitive Tasks.

    PubMed

    Takeda, Tomotaka; Kawakami, Yoshiaki; Konno, Michiyo; Matsuda, Yoshiaki; Nishino, Masayasu; Suzuki, Yoshihiro; Kawano, Yoshiaki; Nakajima, Kazunori; Ozawa, Toshimitsu; Kondo, Yoshihiro; Sakatani, Kaoru

    2017-01-01

    Aging often results in a decline in cognitive function, related to alterations in the prefrontal cortex (PFC) activation. Maintenance of this function in an aging society is an important issue. Some practices/drills, moderate exercise, mastication, and a cognitive task itself could enhance cognitive function. In this validation study, before evaluating the effects of some drills on the elderly, we examined the neural substrate of blood oxygenation changes by the use of four cognitive tasks and fNIRS. Seven healthy volunteers (mean age 25.3 years) participated in this study. Each task session was designed in a block manner; 4 periods of rests (30 s) and 3 blocks of four tasks (30 s). The tasks used were: a computerized Stroop test, a Wisconsin Card Sorting Test, a Sternberg working memory paradigm, and a semantic verbal fluency task. The findings of the study are that all four tasks activated PFC to some extent, without laterality except for the verbal fluency task. The results confirm that NIRS is suitable for measurement of blood oxygenation changes in frontal brain areas that are associated with all four cognitive tasks.

  10. Quantification of the oxygen uptake rate in a dissolved oxygen controlled oscillating jet-driven microbioreactor.

    PubMed

    Kirk, Timothy V; Marques, Marco Pc; Radhakrishnan, Anand N Pallipurath; Szita, Nicolas

    2016-03-01

    Microbioreactors have emerged as a new tool for early bioprocess development. The technology has advanced rapidly in the last decade and obtaining real-time quantitative data of process variables is nowadays state of the art. In addition, control over process variables has also been achieved. The aim of this study was to build a microbioreactor capable of controlling dissolved oxygen (DO) concentrations and to determine oxygen uptake rate in real time. An oscillating jet driven, membrane-aerated microbioreactor was developed without comprising any moving parts. Mixing times of ∼7 s, and k L a values of ∼170 h -1 were achieved. DO control was achieved by varying the duty cycle of a solenoid microvalve, which changed the gas mixture in the reactor incubator chamber. The microbioreactor supported Saccharomyces cerevisiae growth over 30 h and cell densities of 6.7 g dcw L -1 . Oxygen uptake rates of ∼34 mmol L -1 h -1 were achieved. The results highlight the potential of DO-controlled microbioreactors to obtain real-time information on oxygen uptake rate, and by extension on cellular metabolism for a variety of cell types over a broad range of processing conditions. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  11. Measuring oxygen uptake in fishes with bimodal respiration.

    PubMed

    Lefevre, S; Bayley, M; McKenzie, D J

    2016-01-01

    Respirometry is a robust method for measurement of oxygen uptake as a proxy for metabolic rate in fishes, and how species with bimodal respiration might meet their demands from water v. air has interested researchers for over a century. The challenges of measuring oxygen uptake from both water and air, preferably simultaneously, have been addressed in a variety of ways, which are briefly reviewed. These methods are not well-suited for the long-term measurements necessary to be certain of obtaining undisturbed patterns of respiratory partitioning, for example, to estimate traits such as standard metabolic rate. Such measurements require automated intermittent-closed respirometry that, for bimodal fishes, has only recently been developed. This paper describes two approaches in enough detail to be replicated by the interested researcher. These methods are for static respirometry. Measuring oxygen uptake by bimodal fishes during exercise poses specific challenges, which are described to aid the reader in designing experiments. The respiratory physiology and behaviour of air-breathing fishes is very complex and can easily be influenced by experimental conditions, and some general considerations are listed to facilitate the design of experiments. Air breathing is believed to have evolved in response to aquatic hypoxia and, probably, associated hypercapnia. The review ends by considering what realistic hypercapnia is, how hypercapnic tropical waters can become and how this might influence bimodal animals' gas exchange. © 2015 The Fisheries Society of the British Isles.

  12. A quantitative model for oxygen uptake and release in a family of hemeproteins.

    PubMed

    Bustamante, Juan P; Szretter, María E; Sued, Mariela; Martí, Marcelo A; Estrin, Darío A; Boechi, Leonardo

    2016-06-15

    Hemeproteins have many diverse functions that largely depend on the rate at which they uptake or release small ligands, like oxygen. These proteins have been extensively studied using either simulations or experiments, albeit only qualitatively and one or two proteins at a time. We present a physical-chemical model, which uses data obtained exclusively from computer simulations, to describe the uptake and release of oxygen in a family of hemeproteins, called truncated hemoglobins (trHbs). Through a rigorous statistical analysis we demonstrate that our model successfully recaptures all the reported experimental oxygen association and dissociation kinetic rate constants, thus allowing us to establish the key factors that determine the rates at which these hemeproteins uptake and release oxygen. We found that internal tunnels as well as the distal site water molecules control ligand uptake, whereas oxygen stabilization by distal site residues controls ligand release. Because these rates largely determine the functions of these hemeproteins, these approaches will also be important tools in characterizing the trHbs members with unknown functions. lboechi@ic.fcen.uba.ar Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Dynamics and Thermochemistry of Oxygen Uptake by a Mixed Ce-Pr Oxide

    NASA Astrophysics Data System (ADS)

    Sinev, M. Yu.; Fattakhova, Z. T.; Bychkov, V. Yu.; Lomonosov, V. I.; Gordienko, Yu. A.

    2018-03-01

    The dynamics of oxygen uptake by mixed Ce0.55Pr0.45O2-x oxide is studied in a pulsed oxygen supply mode using in situ high-temperature heat flow differential scanning calorimetry. It is stated that the oxidation proceeds in two regimes: a fast one at the beginning of the oxidation process, and a slow one, which is controlled by the diffusion of oxygen through the bulk of the solid at the later stages of the process. Analysis of the shape of calorimetric profiles reveals some processes, accompanied by heat release, that occur in the sample in the absence of oxygen in the gas phase. These could be due to both the redistribution of consumed oxygen in the oxide lattice and the lattice relaxation associated with the transformation of phases with different arrangements of oxygen vacancies in them. The heat effect (which diminishes from 60 to 40 kJ/mol in the course of oxygen uptake) associated with the oxidation of the reduced form of mixed Ce-Pr oxide, corresponds to the oxidation of praseodymium ions from (3+) to (4+).

  14. Hydrologic and geochemical effects on oxygen uptake in bottom sediments of an effluent-dominated river

    USGS Publications Warehouse

    McMahon, P.B.; Tindall, J.A.; Collins, J.A.; Lull, K.J.; Nuttle, J.R.

    1995-01-01

    More than 95% of the water in the South Platte River downstream from the largest wastewater treatment plant serving the metropolitan Denver, Colorado, area consists of treated effluent during some periods of low flow. Fluctuations in effluent-discharge rates caused daily changes in river stage that promoted exchange of water between the river and bottom sediments. Groundwater discharge measurements indicated fluxes of water across the sediment-water interface as high as 18 m3 s−1 km−1. Laboratory experiments indicated that downward movement of surface water through bottom sediments at velocities comparable to those measured in the field (median rate ≈0.005 cm s−1) substantially increased dissolved oxygen uptake rates in bottom sediments (maximum rate 212 ± 10 μmol O2 L−1 h−1) compared with rates obtained when no vertical advective flux was generated (maximum rate 25 ± 8.8 μmol O2 L−1 h−1). Additions of dissolved ammonium to surface waters generally increased dissolved oxygen uptake rates relative to rates measured in experiments without ammonium. However, the magnitude of the advective flux through bottom sediments had a greater effect on dissolved oxygen uptake rates than did the availability of ammonium. Results from this study indicated that efforts to improve dissolved oxygen dynamics in effluent-dominated rivers might include stabilizing daily fluctuations in river stage.

  15. Is the 6-minute walk test a reliable substitute for peak oxygen uptake in patients with dilated cardiomyopathy?

    PubMed

    Zugck, C; Krüger, C; Dürr, S; Gerber, S H; Haunstetter, A; Hornig, K; Kübler, W; Haass, M

    2000-04-01

    The 6-min walk test may serve as a more simple clinical tool to assess functional capacity in congestive heart failure than determination of peak oxygen uptake by cardiopulmonary exercise testing. The purpose of the study was to prospectively examine whether the distance ambulated during a 6-min walk test (i) correlates with peak oxygen uptake, (ii) allows peak oxygen uptake to be predicted, and (iii) provides prognostic information similar to peak oxygen uptake in patients with dilated cardiomyopathy and left ventricular ejection fraction < or = 35%. In 113 patients (age: 54+/-12 years, NYHA: 2.2+/-0.8) with dilated cardiomyopathy (left ventricular ejection fraction 19+/-7%) a 6-min walk test and cardiopulmonary exercise testing were performed. The 6-min walk test and peak oxygen uptake were closely correlated at the initial visit (r=0.68, n=113), as well as after 263+/-114 (r=0.71, n=28) and 381+/-170 days (r=0.74, n=14). During serial exercise testing the 6-min walk test allowed peak oxygen uptake to be reliably predicted (r=0.76 between calculated and real peak oxygen uptake). After 528+/-234 days, 42 patients were hospitalized due to worsening heart failure and/or died from cardiovascular causes. Compared to clinically stable patients, these 42 patients walked a shorter distance (423+/-104 vs 501+/-95 m, P<0.001) and had a lower peak oxygen uptake (12.7+/-4.0 vs 17.4 + 5.6 ml x min(-1) x kg(-1), P<0.001). By univariate analysis the 6-min walk test outperformed other prognostic parameters such as left ventricular ejection fraction, cardiac index and plasma norepinephrine concentration and conferred a prognostic power similar to peak oxygen uptake. This predictive value could be further improved in a multivariate model, by combining the 6-min walk test with independent variables, such as left ventricular ejection fraction or cardiac index. The 6-min walk test correlated with peak oxygen uptake when tested serially over the course of the disease. Although both

  16. Oxygen Level and LFP in Task-Positive and Task-Negative Areas: Bridging BOLD fMRI and Electrophysiology

    PubMed Central

    Bentley, William J.; Li, Jingfeng M.; Snyder, Abraham Z.; Raichle, Marcus E.; Snyder, Lawrence H.

    2016-01-01

    The human default mode network (DMN) shows decreased blood oxygen level dependent (BOLD) signals in response to a wide range of attention-demanding tasks. Our understanding of the specifics regarding the neural activity underlying these “task-negative” BOLD responses remains incomplete. We paired oxygen polarography, an electrode-based oxygen measurement technique, with standard electrophysiological recording to assess the relationship of oxygen and neural activity in task-negative posterior cingulate cortex (PCC), a hub of the DMN, and visually responsive task-positive area V3 in the awake macaque. In response to engaging visual stimulation, oxygen, LFP power, and multi-unit activity in PCC showed transient activation followed by sustained suppression. In V3, oxygen, LFP power, and multi-unit activity showed an initial phasic response to the stimulus followed by sustained activation. Oxygen responses were correlated with LFP power in both areas, although the apparent hemodynamic coupling between oxygen level and electrophysiology differed across areas. Our results suggest that oxygen responses reflect changes in LFP power and multi-unit activity and that either the coupling of neural activity to blood flow and metabolism differs between PCC and V3 or computing a linear transformation from a single LFP band to oxygen level does not capture the true physiological process. PMID:25385710

  17. The contribution of water soluble and water insoluble organic fractions to oxygen uptake rate during high rate composting.

    PubMed

    Giuliana, D'Imporzano; Fabrizio, Adani

    2007-02-01

    This study aims to establish the contribution of the water soluble and water insoluble organic fractions to total oxygen uptake rate during high rate composting process of a mixture of organic fraction of municipal solid waste and lignocellulosic material. This mixture was composted using a 20 l self-heating pilot scale composter for 250 h. The composter was fully equipped to record both the biomass-temperature and oxygen uptake rate. Representative compost samples were taken at 0, 70, 100, 110, 160, and 250 h from starting time. Compost samples were fractionated in water soluble and water insoluble fractions. The water soluble fraction was then fractionated in hydrophilic, hydrophobic, and neutral hydrophobic fractions. Each fraction was then studied using quantitative (total organic carbon) and qualitative analysis (diffuse reflectance infrared spectroscopy and biodegradability test). Oxygen uptake rates were high during the initial stages of the process due to rapid degradation of the soluble degradable organic fraction (hydrophilic plus hydrophobic fractions). Once this fraction was depleted, polymer hydrolysis accounted for most of the oxygen uptake rate. Finally, oxygen uptake rate could be modeled using a two term kinetic. The first term provides the oxygen uptake rate resulting from the microbial growth kinetic type on easily available, no-limiting substrate (soluble fraction), while the second term considers the oxygen uptake rate caused by the degradation of substrate produced by polymer hydrolysis.

  18. Parmitano in Columbus module during Oxygen Uptake measurement session

    NASA Image and Video Library

    2013-10-02

    ISS037-E-004950 (2 Oct. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, performs an oxygen uptake measurement session in the Columbus laboratory of the International Space Station. He is wearing a Pulmonary Function System (PFS) face mask during the session.

  19. Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development.

    PubMed

    Wale, Petra L; Gardner, David K

    2012-07-01

    Oxygen is a powerful regulator of preimplantation embryo development, affecting gene expression, the proteome, and energy metabolism. Even a transient exposure to atmospheric oxygen can have a negative impact on embryo development, which is greatest prior to compaction, and subsequent postcompaction culture at low oxygen cannot alleviate this damage. In spite of this evidence, the majority of human in vitro fertilization is still performed at atmospheric oxygen. One of the physiological parameters shown to be affected by the relative oxygen concentration, carbohydrate metabolism, is linked to the ability of the mammalian embryo to develop in culture and remain viable after transfer. The aim of this study was, therefore, to determine the effect of oxygen concentration on the ability of mouse embryos to utilize both amino acids and carbohydrates both before and after compaction. Metabolomic and fluorometric analysis of embryo culture media revealed that when embryos were exposed to atmospheric oxygen during the cleavage stages, they exhibited significantly greater amino acid utilization and pyruvate uptake than when cultured under 5% oxygen. In contrast, postcompaction embryos cultured in atmospheric oxygen showed significantly lower mean amino acid utilization and glucose uptake. These metabolic changes correlated with developmental compromise because embryos grown in atmospheric oxygen at all stages showed significantly lower blastocyst formation and proliferation. These findings confirm the need to consider both embryo development and metabolism in establishing optimal human embryo growth conditions and prognostic markers of viability, and further highlight the impact of oxygen on such vital parameters.

  20. Oxygen Level and LFP in Task-Positive and Task-Negative Areas: Bridging BOLD fMRI and Electrophysiology.

    PubMed

    Bentley, William J; Li, Jingfeng M; Snyder, Abraham Z; Raichle, Marcus E; Snyder, Lawrence H

    2016-01-01

    The human default mode network (DMN) shows decreased blood oxygen level dependent (BOLD) signals in response to a wide range of attention-demanding tasks. Our understanding of the specifics regarding the neural activity underlying these "task-negative" BOLD responses remains incomplete. We paired oxygen polarography, an electrode-based oxygen measurement technique, with standard electrophysiological recording to assess the relationship of oxygen and neural activity in task-negative posterior cingulate cortex (PCC), a hub of the DMN, and visually responsive task-positive area V3 in the awake macaque. In response to engaging visual stimulation, oxygen, LFP power, and multi-unit activity in PCC showed transient activation followed by sustained suppression. In V3, oxygen, LFP power, and multi-unit activity showed an initial phasic response to the stimulus followed by sustained activation. Oxygen responses were correlated with LFP power in both areas, although the apparent hemodynamic coupling between oxygen level and electrophysiology differed across areas. Our results suggest that oxygen responses reflect changes in LFP power and multi-unit activity and that either the coupling of neural activity to blood flow and metabolism differs between PCC and V3 or computing a linear transformation from a single LFP band to oxygen level does not capture the true physiological process. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Prediction of maximal oxygen uptake by bioelectrical impedance analysis in overweight adolescents.

    PubMed

    Roberts, M D; Drinkard, B; Ranzenhofer, L M; Salaita, C G; Sebring, N G; Brady, S M; Pinchbeck, C; Hoehl, J; Yanoff, L B; Savastano, D M; Han, J C; Yanovski, J A

    2009-09-01

    Maximal oxygen uptake (VO(2max)), the gold standard for measurement of cardiorespiratory fitness, is frequently difficult to assess in overweight individuals due to physical limitations. Reactance and resistance measures obtained from bioelectrical impedance analysis (BIA) have been suggested as easily obtainable predictors of cardiorespiratory fitness, but the accuracy with which ht(2)/Z can predict VO(2max) has not previously been examined in overweight adolescents. The impedance index was used as a predictor of VO(2max) in 87 overweight girls and 47 overweight boys ages 12 to 17 with mean BMI of 38.6 + or - 7.3 and 42.5 + or - 8.2 in girls and boys respectively. The Bland Altman procedure assessed agreement between predicted and actual VO(2max). Predicted VO(2max) was significantly correlated with measured VO(2max) (r(2)=0.48, P<0.0001). Using the Bland Altman procedure, there was significant magnitude bias (r(2)=0.10; P<0.002). The limits of agreement for predicted relative to actual VO(2max) were -589 to 574 mL O(2)/min. The impedance index was highly correlated with VO(2max) in overweight adolescents. However, using BIA data to predict maximal oxygen uptake over-predicted VO(2max) at low levels of oxygen consumption and under-predicted VO(2max) at high levels of oxygen consumption. This magnitude bias, along with the large limits of agreement of BIA-derived predicted VO(2max), limit its usefulness in the clinical setting for overweight adolescents.

  2. Fitting a single-phase model to the post-exercise changes in heart rate and oxygen uptake.

    PubMed

    Stupnicki, R; Gabryś, T; Szmatlan-Gabryś, U; Tomaszewski, P

    2010-01-01

    The kinetics of post-exercise heart rate (HR) and oxygen consumption (EPOC) was studied in 10 elite cyclists subjected to four laboratory cycle ergometer maximal exercises lasting 30, 90, 180 or 360 s. Heart rate and oxygen uptake (VO2) were recorded over a period of 6 min after the exercise. By applying the logit transformation to the recorded variables and relating them to the decimal logarithm of the recovery time, uniform single-phase courses of changes were shown for both variables in all subjects and exercises. This enabled computing half-recovery times (t(1/2)) for both variables. Half-time for VO2 negatively correlated with square root of exercise duration (within-subject r = -0.629, p < 0.001), the total post-exercise oxygen uptake till t(1/2) was thus constant irrespectively of exercise intensity. The method is simple and enables reliable comparisons of various modes of exercise with respect to the rate of recovery.

  3. Maximum Oxygen Uptake Determination in Insulin-Dependent Diabetes Mellitus.

    ERIC Educational Resources Information Center

    Fremion, Amy S.; And Others

    1987-01-01

    A study of 10 children with insulin-dependent diabetes mellitus performing a maximum-effort cycling test indicated blood glucose levels did not change appreciably during test, while maximal oxygen uptake was substandard for their age groups. Findings suggest patients in fair to poor metabolic control can tolerate stress testing without…

  4. Gymnasium-based unsupervised exercise maintains benefits in oxygen uptake kinetics obtained following supervised training in type 2 diabetes.

    PubMed

    Macananey, Oscar; O'Shea, Donal; Warmington, Stuart A; Green, Simon; Egaña, Mikel

    2012-08-01

    Supervised exercise (SE) in patients with type 2 diabetes improves oxygen uptake kinetics at the onset of exercise. Maintenance of these improvements, however, has not been examined when supervision is removed. We explored if potential improvements in oxygen uptake kinetics following a 12-week SE that combined aerobic and resistance training were maintained after a subsequent 12-week unsupervised exercise (UE). The involvement of cardiac output (CO) in these improvements was also tested. Nineteen volunteers with type 2 diabetes were recruited. Oxygen uptake kinetics and CO (inert gas rebreathing) responses to constant-load cycling at 50% ventilatory threshold (V(T)), 80% V(T), and mid-point between V(T) and peak workload (50% Δ) were examined at baseline (on 2 occasions) and following each 12-week training period. Participants decided to exercise at a local gymnasium during the UE. Thirteen subjects completed all the interventions. The time constant of phase 2 of oxygen uptake was significantly faster (p < 0.05) post-SE and post-UE compared with baseline at 50% V(T) (17.3 ± 10.7 s and 17.5 ± 5.9 s vs. 29.9 ± 10.7 s), 80% V(T) (18.9 ± 4.7 and 20.9 ± 8.4 vs. 34.3 ± 12.7s), and 50% Δ (20.4 ± 8.2 s and 20.2 ± 6.0 s vs. 27.6 ± 3.7 s). SE also induced faster heart rate kinetics at all 3 intensities and a larger increase in CO at 30 s in relation to 240 s at 80% V(T); and these responses were maintained post-UE. Unsupervised exercise maintained benefits in oxygen uptake kinetics obtained during a supervised exercise in subjects with diabetes, and these benefits were associated with a faster dynamic response of heart rate after training.

  5. Cardiovascular consequences of bed rest: effect on maximal oxygen uptake

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1997-01-01

    Maximal oxygen uptake (VO2max) is reduced in healthy individuals confined to bed rest, suggesting it is independent of any disease state. The magnitude of reduction in VO2max is dependent on duration of bed rest and the initial level of aerobic fitness (VO2max), but it appears to be independent of age or gender. Bed rest induces an elevated maximal heart rate which, in turn, is associated with decreased cardiac vagal tone, increased sympathetic catecholamine secretion, and greater cardiac beta-receptor sensitivity. Despite the elevation in heart rate, VO2max is reduced primarily from decreased maximal stroke volume and cardiac output. An elevated ejection fraction during exercise following bed rest suggests that the lower stroke volume is not caused by ventricular dysfunction but is primarily the result of decreased venous return associated with lower circulating blood volume, reduced central venous pressure, and higher venous compliance in the lower extremities. VO2max, stroke volume, and cardiac output are further compromised by exercise in the upright posture. The contribution of hypovolemia to reduced cardiac output during exercise following bed rest is supported by the close relationship between the relative magnitude (% delta) and time course of change in blood volume and VO2max during bed rest, and also by the fact that retention of plasma volume is associated with maintenance of VO2max after bed rest. Arteriovenous oxygen difference during maximal exercise is not altered by bed rest, suggesting that peripheral mechanisms may not contribute significantly to the decreased VO2max. However reduction in baseline and maximal muscle blood flow, red blood cell volume, and capillarization in working muscles represent peripheral mechanisms that may contribute to limited oxygen delivery and, subsequently, lowered VO2max. Thus, alterations in cardiac and vascular functions induced by prolonged confinement to bed rest contribute to diminution of maximal oxygen uptake

  6. Comparative analysis of nitrite uptake and hemoglobin-nitrite reactions in erythrocytes: sorting out uptake mechanisms and oxygenation dependencies.

    PubMed

    Jensen, Frank B; Rohde, Sabina

    2010-04-01

    Nitrite uptake into red blood cells (RBCs) precedes its intracellular reactions with hemoglobin (Hb) that forms nitric oxide (NO) during hypoxia. We investigated the uptake of nitrite and its reactions with Hb at different oxygen saturations (So(2)), using RBCs with (carp and rabbit) and without (hagfish and lamprey) anion exchanger-1 (AE1) in the membrane, with the aim to unravel the mechanisms and oxygenation dependencies of nitrite transport. Added nitrite rapidly diffused into the RBCs until equilibrium. The distribution ratio of nitrite across the membrane agreed with that expected from HNO(2) diffusion and AE1-mediated facilitated NO(2)(-) diffusion. Participation of HNO(2) diffusion was emphasized by rapid transmembrane nitrite equilibration also in the natural AE1 knockouts. Following the equilibration, nitrite was consumed by reacting with Hb, which created a continued inward diffusion controlled by intracellular reaction rates. Changes in nitrite uptake with So(2), pH, or species were accordingly explained by corresponding changes in reaction rates. In carp, nitrite uptake rates increased linearly with decreasing So(2) over the entire So(2) range. In rabbit, nitrite uptake rates were highest at intermediate So(2), producing a bell-shaped relationship with So(2). Nitrite consumption increased approximately 10-fold with a 1 unit decrease in pH, as expected from the involvement of protons in the reactions with Hb. The reaction of nitrite with deoxyhemoglobin was favored over that with oxyhemoglobin at intermediate So(2). We propose a model for RBC nitrite uptake that involves both HNO(2) diffusion and AE1-mediated transport and that explains both the present and previous (sometimes puzzling) results.

  7. Maximal and submaximal oxygen uptakes and blood lactate levels in elite male middle- and long-distance runners.

    PubMed

    Svedenhag, J; Sjödin, B

    1984-10-01

    Physiological characteristics of elite runners from different racing events were studied. Twenty-seven middle- and long-distance runners and two 400-m runners belonging to the Swedish national team in track and field were divided, according to their distance preferences, into six groups from 400 m up to the marathon. The maximal oxygen uptake (VO2 max, ml X kg-1 X min-1) on the treadmill was higher the longer the main distance except for the marathon runners (e.g., 800-1500-m group, 72.1; 5000-10,000-m group, 78.7 ml X kg-1 X min-1). Running economy evaluated from oxygen uptake measurements at 15 km/h (VO2 15) and 20 km/h (VO2 20) did not differ significantly between the groups even though VO2 15 tended to be lower in the long-distance runners. The running velocity corresponding to a blood lactate concentration of 4 mmol/l (vHla 4.0) differed markedly between the groups with the highest value (5.61 m/s) in the 5000-10,000-m group. The oxygen uptake (VO2) at vHla 4.0 in percentage of VO2 max did not differ significantly between the groups. The blood lactate concentration after exhaustion (VO2 max test) was lower in the long-distance runners. In summary, the present study demonstrates differences in physiological characteristics of elite runners specializing in different racing events. The two single (but certainly inter-related) variables in which this was most clearly seen were the maximal oxygen uptake (ml X kg-1 X min-1) and the running velocity corresponding to a blood lactate concentration of 4 mmol/l.

  8. Complexity in Student Writing: The Relationship between the Task and Vocabulary Uptake

    ERIC Educational Resources Information Center

    Wolsey, Thomas D.

    2010-01-01

    Cognitive flexibility theory posits that some tasks or cognitive activities resist oversimplification, a lens through which the present study is cast. High school writing tasks that promote complex thinking may also promote increased uptake of academic vocabulary. The study described in this article demonstrates how essential questions and other…

  9. Oceanic Uptake of Oxygen During Deep Convection Events Through Diffusive and Bubble-Mediated Gas Exchange

    NASA Astrophysics Data System (ADS)

    Sun, Daoxun; Ito, Takamitsu; Bracco, Annalisa

    2017-10-01

    The concentration of dissolved oxygen (O2) plays fundamental roles in diverse chemical and biological processes throughout the oceans. The balance between the physical supply and the biological consumption controls the O2 level of the interior ocean, and the O2 supply to the deep waters can only occur through deep convection in the polar oceans. We develop a theoretical framework describing the oceanic O2 uptake during open-ocean deep convection events and test it against a suite of numerical sensitivity experiments. Our framework allows for two predictions, confirmed by the numerical simulations. First, both the duration and the intensity of the wintertime cooling contribute to the total O2 uptake for a given buoyancy loss. Stronger cooling leads to deeper convection and the oxygenation can reach down to deeper depths. Longer duration of the cooling period increases the total amount of O2 uptake over the convective season. Second, the bubble-mediated influx of O2 tends to weaken the diffusive influx by shifting the air-sea disequilibrium of O2 toward supersaturation. The degree of compensation between the diffusive and bubble-mediated gas exchange depends on the dimensionless number measuring the relative strength of oceanic vertical mixing and the gas transfer velocity. Strong convective mixing, which may occur under strong cooling, reduces the degree of compensation so that the two components of gas exchange together drive exceptionally strong oceanic O2 uptake.

  10. Oxygen uptake kinetics of constant-load work - Upright vs. supine exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Goldwater, D. J.; Sandler, H.

    1984-01-01

    Supine and upright positions were used in a comparitive study of the effects of constant load exercise on oxygen uptake (VO2), O2 deficit, steady-state VO2 and VO2 following recovery from constant load work. Ten male subjects (36-40 yr.) performed one submaximal exercise test in the supine and one test in the upright position consisting of 5 min rest and 5 min cycle ergometer exercise at 700 kg/min followed by ten minutes of recovery. It is found that the significant difference in VO2 kinetics during exercise in the upright compared to supine position resulted from changes in oxygen transport and utilization mechanisms rather than changes in mechanical efficiency. To the extent that data measured in the supine position can be used to estimate physiological responses to zero gravity, it is suggested that limitation of systemic O2 consumption may be the result of slow rates of oxygen uptake during transient periods of muscular work. Significant reductions in the rate of steady-state VO2 attainment at submaximal work intensities may produce an onset of muscle fatigue and exhaustion.

  11. The oxygen uptake slow component at submaximal intensities in breaststroke swimming

    PubMed Central

    Oliveira, Diogo R.; Gonçalves, Lio F.; Reis, António M.; Fernandes, Ricardo J.; Garrido, Nuno D.

    2016-01-01

    Abstract The present work proposed to study the oxygen uptake slow component (VO2 SC) of breaststroke swimmers at four different intensities of submaximal exercise, via mathematical modeling of a multi-exponential function. The slow component (SC) was also assessed with two different fixed interval methods and the three methods were compared. Twelve male swimmers performed a test comprising four submaximal 300 m bouts at different intensities where all expired gases were collected breath by breath. Multi-exponential modeling showed values above 450 ml·min−1 of the SC in the two last bouts of exercise (those with intensities above the lactate threshold). A significant effect of the method that was used to calculate the VO2 SC was revealed. Higher mean values were observed when using mathematical modeling compared with the fixed interval 3rd min method (F=7.111; p=0.012; η2=0.587); furthermore, differences were detected among the two fixed interval methods. No significant relationship was found between the SC determined by any method and the blood lactate measured at each of the four exercise intensities. In addition, no significant association between the SC and peak oxygen uptake was found. It was concluded that in trained breaststroke swimmers, the presence of the VO2 SC may be observed at intensities above that corresponding to the 3.5 mM-1 threshold. Moreover, mathematical modeling of the oxygen uptake on-kinetics tended to show a higher slow component as compared to fixed interval methods. PMID:28149379

  12. Oxygen Uptake Efficiency Plateau Best Predicts Early Death in Heart Failure

    PubMed Central

    Hansen, James E.; Stringer, William W.

    2012-01-01

    Background: The responses of oxygen uptake efficiency (ie, oxygen uptake/ventilation = V˙o2/V˙e) and its highest plateau (OUEP) during incremental cardiopulmonary exercise testing (CPET) in patients with chronic left heart failure (HF) have not been previously reported. We planned to test the hypothesis that OUEP during CPET is the best single predictor of early death in HF. Methods: We evaluated OUEP, slope of V˙o2 to log(V˙e) (oxygen uptake efficiency slope), oscillatory breathing, and all usual resting and CPET measurements in 508 patients with low-ejection-fraction (< 35%) HF. Each had further evaluations at other sites, including cardiac catheterization. Outcomes were 6-month all-reason mortality and morbidity (death or > 24 h cardiac hospitalization). Statistical analyses included area under curve of receiver operating characteristics, ORs, univariate and multivariate Cox regression, and Kaplan-Meier plots. Results: OUEP, which requires only moderate exercise, was often reduced in patients with HF. A low % predicted OUEP was the single best predictor of mortality (P < .0001), with an OR of 13.0 (P < .001). When combined with oscillatory breathing, the OR increased to 56.3, superior to all other resting or exercise parameters or combinations of parameters. Other statistical analyses and morbidity analysis confirmed those findings. Conclusions: OUEP is often reduced in patients with HF. Low % predicted OUEP (< 65% predicted) is the single best predictor of early death, better than any other CPET or other cardiovascular measurement. Paired with oscillatory breathing, it is even more powerful. PMID:22030802

  13. Oxygen uptake and blood metabolic responses to a 400-m run.

    PubMed

    Hanon, Christine; Lepretre, Pierre-Marie; Bishop, David; Thomas, Claire

    2010-05-01

    This study aimed to investigate the oxygen uptake and metabolic responses during a 400-m run reproducing the pacing strategy used in competition. A portable gas analyser was used to measure the oxygen uptake (VO2) of ten specifically trained runners racing on an outdoor track. The tests included (1) an incremental test to determine maximal VO2 (VO2max) and the velocity associated with VO2(max) (v - VO2max), (2) a maximal 400-m (400T) and 3) a 300-m running test (300T) reproducing the exact pacing pattern of the 400T. Blood lactate, bicarbonate concentrations [HCO3(-)], pH and arterial oxygen saturation were analysed at rest and 1, 4, 7, 10 min after the end of the 400 and 300T. The peak VO2 recorded during the 400T corresponded to 93.9 +/- 3.9% of VO2max and was reached at 24.4 +/- 3.2 s (192 +/- 22 m). A significant decrease in VO2 (P < 0.05) was observed in all subjects during the last 100 m, although the velocity did not decrease below v - VO2max. The VO2 in the last 5 s was correlated with the pH (r = 0.86, P < 0.0005) and [HCO3(-)] (r = 0.70, P < 0.05) measured at the end of 300T. Additionally, the velocity decrease observed in the last 100 m was inversely correlated with [HCO3(-)] and pH at 300T (r = -0.83, P < 0.001, r = -0.69, P < 0.05, respectively). These track running data demonstrate that acidosis at 300 m was related to both the VO2 response and the velocity decrease during the final 100 m of a 400-m run.

  14. Fluid-electrolyte shifts and maximal oxygen uptake in man at simulated altitude /2,287 m/

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Adams, W. C.; Juhos, L.

    1978-01-01

    Experiments were conducted on six trained distance runners (21-23 yr) subjected to an eight-day dietary control at sea level, followed by an eight-day stay in an altitude chamber (2287-m altitude) and a four-day recovery at sea level. Fluid and electrolyte shifts during exercise at altitude were evaluated to gain insight into the mechanism of reduction in working capacity. The results are discussed in terms of resting fluid volumes and blood constituents, maximal exercise variables, and maximal exercise fluid-electrolyte shifts. Since there are no significant changes in fluid balance or resting plasma volume (PV) at altitude, it is concluded that neither these nor the excessive PV shifts with exercise contribute to the reduction in maximal oxygen uptake at altitude. During altitude exposure the percent loss in PV is found to follow the percent reduction in maximal oxygen uptake; however, on the first day of recovery the percent change in PV remains depressed while maximal oxygen uptake returns to control levels.

  15. Oxygen Uptake. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Wooley, John F.

    Biological waste treatment in the activated sludge process is based on the ability of microorganisms to use dissolved oxygen in breaking down soluble organic substances. The oxygen uptake test is a means of measuring the respiration rate of microorganisms in this process. Designed for individuals who have completed National Pollutant Discharge…

  16. Heart Rate and Oxygen Uptake Kinetics in Type 2 Diabetes Patients - A Pilot Study on the Influence of Cardiovascular Medication on Regulatory Processes.

    PubMed

    Koschate, Jessica; Drescher, Uwe; Baum, Klaus; Brinkmann, Christian; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe

    2017-05-01

    The aim of this pilot study was to investigate whether there are differences in heart rate and oxygen uptake kinetics in type 2 diabetes patients, considering their cardiovascular medication. It was hypothesized that cardiovascular medication would affect heart rate and oxygen uptake kinetics and that this could be detected using a standardized exercise test. 18 subjects were tested for maximal oxygen uptake. Kinetics were measured in a single test session with standardized, randomized moderate-intensity work rate changes. Time series analysis was used to estimate kinetics. Greater maxima in cross-correlation functions indicate faster kinetics. 6 patients did not take any cardiovascular medication, 6 subjects took peripherally acting medication and 6 patients were treated with centrally acting medication. Maximum oxygen uptake was not significantly different between groups. Significant main effects were identified regarding differences in muscular oxygen uptake kinetics and heart rate kinetics. Muscular oxygen uptake kinetics were significantly faster than heart rate kinetics in the group with no cardiovascular medication (maximum in cross-correlation function of muscular oxygen uptake vs. heart rate; 0.32±0.08 vs. 0.25±0.06; p=0.001) and in the group taking peripherally acting medication (0.34±0.05 vs. 0.28±0.05; p=0.009) but not in the patients taking centrally acting medication (0.28±0.05 vs. 0.30±0.07; n.s.). It can be concluded that regulatory processes for the achievement of a similar maximal oxygen uptake are different between the groups. The used standardized test provided plausible results for heart rate and oxygen uptake kinetics in a single measurement session in this patient group. © Georg Thieme Verlag KG Stuttgart · New York.

  17. An in silico analysis of oxygen uptake of a mild COPD patient during rest and exercise using a portable oxygen concentrator

    PubMed Central

    Katz, Ira; Pichelin, Marine; Montesantos, Spyridon; Kang, Min-Yeong; Sapoval, Bernard; Zhu, Kaixian; Thevenin, Charles-Philippe; McCoy, Robert; Martin, Andrew R; Caillibotte, Georges

    2016-01-01

    Oxygen treatment based on intermittent-flow devices with pulse delivery modes available from portable oxygen concentrators (POCs) depends on the characteristics of the delivered pulse such as volume, pulse width (the time of the pulse to be delivered), and pulse delay (the time for the pulse to be initiated from the start of inhalation) as well as a patient’s breathing characteristics, disease state, and respiratory morphology. This article presents a physiological-based analysis of the performance, in terms of blood oxygenation, of a commercial POC at different settings using an in silico model of a COPD patient at rest and during exercise. The analysis encompasses experimental measurements of pulse volume, width, and time delay of the POC at three different settings and two breathing rates related to rest and exercise. These experimental data of device performance are inputs to a physiological-based model of oxygen uptake that takes into account the real dynamic nature of gas exchange to illustrate how device- and patient-specific factors can affect patient oxygenation. This type of physiological analysis that considers the true effectiveness of oxygen transfer to the blood, as opposed to delivery to the nose (or mouth), can be instructive in applying therapies and designing new devices. PMID:27729783

  18. NOS1 ex1f-VNTR polymorphism influences prefrontal brain oxygenation during a working memory task.

    PubMed

    Kopf, Juliane; Schecklmann, Martin; Hahn, Tim; Dresler, Thomas; Dieler, Alica C; Herrmann, Martin J; Fallgatter, Andreas J; Reif, Andreas

    2011-08-15

    Nitric oxide (NO) synthase produces NO, which serves as first and second messenger in neurons, where the protein is encoded by the NOS1 gene. A functional variable number of tandem repeats (VNTR) polymorphism in the promoter region of the alternative first exon 1f of NOS1 is associated with various functions of human behavior, for example increased impulsivity, while another, non-functional variant was linked to decreased verbal working memory and a heightened risk for schizophrenia. We therefore investigated the influence of NOS1 ex 1f-VNTR on working memory function as reflected by both behavioral measures and prefrontal oxygenation. We hypothesized that homozygous short allele carriers exhibit altered brain oxygenation in task-related areas, namely the dorsolateral and ventrolateral prefrontal cortex and the parietal cortex. To this end, 56 healthy subjects were stratified into a homozygous long allele group and a homozygous short allele group comparable for age, sex and intelligence. All subjects completed a letter n-back task (one-, two-, and three-back), while concentration changes of oxygenated (O(2)Hb) hemoglobin in the prefrontal cortex were measured with functional near-infrared spectroscopy (fNIRS). We found load-associated O(2)Hb increases in the prefrontal and parts of the parietal cortex. Significant load-associated oxygenation differences between the two genotype groups could be shown for the dorsolateral prefrontal cortex and the parietal cortex. Specifically, short allele carriers showed a significantly larger increase in oxygenation in all three n-back tasks. This suggests a potential compensatory mechanism, with task-related brain regions being more active in short allele carriers to compensate for reduced NOS1 expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Oxygen uptake efficiency slope and peak oxygen consumption predict prognosis in children with tetralogy of Fallot.

    PubMed

    Tsai, Yun-Jeng; Li, Min-Hui; Tsai, Wan-Jung; Tuan, Sheng-Hui; Liao, Tin-Yun; Lin, Ko-Long

    2016-07-01

    Oxygen uptake efficiency slope (OUES) and peak oxygen consumption (VO2peak) are exercise parameters that can predict cardiac morbidity in patients with numerous heart diseases. But the predictive value in patients with tetralogy of Fallot is still undetermined, especially in children. We evaluated the prognostic value of OUES and VO2peak in children with total repair of tetralogy of Fallot. Retrospective cohort study. Forty tetralogy of Fallot patients younger than 12 years old were recruited. They underwent a cardiopulmonary exercise test during the follow-up period after total repair surgery. The results of the cardiopulmonary exercise test were used to predict the cardiac related hospitalization in the following two years after the test. OUES normalized by body surface area (OUES/BSA) and the percentage of predicted VO2peak appeared to be predictive for two-year cardiac related hospitalization. Receiver operating characteristic curve analysis demonstrated that the best threshold value for OUES/BSA was 1.029 (area under the curve = 0.70, p = 0.03), and for VO2peak was 74% of age prediction (area under the curve = 0.72, p = 0.02). The aforementioned findings were confirmed by Kaplan-Meier plots and log-rank test. OUES/BSA and VO2peak are useful predictors of cardiac-related hospitalization in children with total repair of tetralogy of Fallot. © The European Society of Cardiology 2015.

  20. Influence of Prolonged Spaceflight on Heart Rate and Oxygen Uptake Kinetics

    NASA Astrophysics Data System (ADS)

    Hoffmann, U.; Moore, A.; Drescher, U.

    2013-02-01

    During prolonged spaceflight, physical training is used to minimize cardiovascular deconditioning. Measurement of the kinetics of cardiorespiratory parameters, in particular the kinetic analysis of heart rate, respiratory and muscular oxygen uptake, provides useful information with regard to the efficiency and regulation of the cardiorespiratory system. Practically, oxygen uptake kinetics can only be measured at the lung site (V’O2 resp). The dynamics of V’O2 resp, however, is not identical with the dynamics at the site of interest: skeletal muscle. Eight Astronauts were tested pre- and post-flight using pseudo random binary workload changes between 30 and 80 W. Their kinetic responses of heart rate, respiratory as well as muscular V’O2 kinetics were estimated by using time-series analysis. Statistical analysis revealed that the kinetic responses of respiratory as well as muscular V’O2 kinetics are slowed post-flight than pre-flight. Heart rate seems not to be influenced following flight. The influence of other factors (e. g. astronauts’ exercise training) may impact these parameters and is an area for future studies.

  1. An Inexpensive Electrode and Cell for Measurement of Oxygen Uptake in Chemical and Biochemical Systems.

    ERIC Educational Resources Information Center

    Brunet, Juan E.; And Others

    1983-01-01

    The continuous measurement of oxygen consumption in an enzymatic reaction is a frequent experimental fact and extremely important in the enzymatic activity of oxygenase. An electrochemical system, based on a polarographic method, has been developed to monitor the oxygen uptake. The system developed and electrode used are described. (JN)

  2. Oxygen uptake on-kinetics during six-minute walk test predicts short-term outcomes after off-pump coronary artery bypass surgery.

    PubMed

    Rocco, Isadora Salvador; Viceconte, Marcela; Pauletti, Hayanne Osiro; Matos-Garcia, Bruna Caroline; Marcondi, Natasha Oliveira; Bublitz, Caroline; Bolzan, Douglas William; Moreira, Rita Simone Lopes; Reis, Michel Silva; Hossne, Nelson Américo; Gomes, Walter José; Arena, Ross; Guizilini, Solange

    2017-12-26

    We aimed to investigate the ability of oxygen uptake kinetics to predict short-term outcomes after off-pump coronary artery bypass grafting. Fifty-two patients aged 60.9 ± 7.8 years waiting for off-pump coronary artery bypass surgery were evaluated. The 6-min walk test distance was performed pre-operatively, while simultaneously using a portable cardiopulmonary testing device. The transition of oxygen uptake kinetics from rest to exercise was recorded to calculate oxygen uptake kinetics fitting a monoexponential regression model. Oxygen uptake at steady state, constant time, and mean response time corrected by work rate were analysed. Short-term clinical outcomes were evaluated during the early post-operative of off-pump coronary artery bypass surgery. Multivariate analysis showed body mass index, surgery time, and mean response time corrected by work rate as independent predictors for short-term outcomes. The optimal mean response time corrected by work rate cut-off to estimate short-term clinical outcomes was 1.51 × 10 -3  min 2 /ml. Patients with slower mean response time corrected by work rate demonstrated higher rates of hypertension, diabetes, EuroSCOREII, left ventricular dysfunction, and impaired 6-min walk test parameters. The per cent-predicted distance threshold of 66% in the pre-operative was associated with delayed oxygen uptake kinetics. Pre-operative oxygen uptake kinetics during 6-min walk test predicts short-term clinical outcomes after off-pump coronary artery bypass surgery. From a clinically applicable perspective, a threshold of 66% of pre-operative predicted 6-min walk test distance indicated slower kinetics, which leads to longer intensive care unit and post-surgery hospital length of stay. Implications for rehabilitation Coronary artery bypass grafting is a treatment aimed to improve expectancy of life and prevent disability due to the disease progression; The use of pre-operative submaximal functional capacity test enabled the

  3. [Effects of Triton X-100 on the oxygen uptake rate of photosystem I particles treated at 70 degrees C].

    PubMed

    Chen, Wei; Yang, Zhen-Le; Li, Liang-Bi; Kuang, Ting-Yun

    2005-06-01

    The characteristics including oxygen uptake rates, fluorescence spectra and absorption spectra of photosystem I particles with or without Triton-X 100 treatment before or after the incubation at 70 degrees C for 10 min were compared. The oxygen uptake rates of photosystem I particles decreased after being incubated at 70 degrees C for 10 min, which could be recovered by the addition of Triton-X 100. Singlet oxygen was formed when the light-harvesting complex I was separated from the core complex of photosystem I, which resulted in high oxygen uptake rate. There was much difference in the fluorescence spectra of photosystem I particles between photosystem I particles treated with Triton-X 100 after the incubation at 70 degrees C for 10 min or not, which implies the ability of Triton-X 100 to promote the recovery of photosystem I particles after the incubation at 70 degrees C for 10 min.

  4. Optimal villi density for maximal oxygen uptake in the human placenta.

    PubMed

    Serov, A S; Salafia, C M; Brownbill, P; Grebenkov, D S; Filoche, M

    2015-01-07

    We present a stream-tube model of oxygen exchange inside a human placenta functional unit (a placentone). The effect of villi density on oxygen transfer efficiency is assessed by numerically solving the diffusion-convection equation in a 2D+1D geometry for a wide range of villi densities. For each set of physiological parameters, we observe the existence of an optimal villi density providing a maximal oxygen uptake as a trade-off between the incoming oxygen flow and the absorbing villus surface. The predicted optimal villi density 0.47±0.06 is compatible to previous experimental measurements. Several other ways to experimentally validate the model are also proposed. The proposed stream-tube model can serve as a basis for analyzing the efficiency of human placentas, detecting possible pathologies and diagnosing placental health risks for newborns by using routine histology sections collected after birth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Simultaneous quantum yield measurements of carbon uptake and oxygen evolution in microalgal cultures

    PubMed Central

    Gholami, Pardis; Kline, David I.; DuPont, Christopher L.; Dickson, Andrew G.; Mendola, Dominick; Martz, Todd; Allen, Andrew E.; Mitchell, B. Greg

    2018-01-01

    The photosynthetic quantum yield (Φ), defined as carbon fixed or oxygen evolved per unit of light absorbed, is a fundamental but rarely determined biophysical parameter. A method to estimate Φ for both net carbon uptake and net oxygen evolution simultaneously can provide important insights into energy and mass fluxes. Here we present details for a novel system that allows quantification of carbon fluxes using pH oscillation and simultaneous oxygen fluxes by integration with a membrane inlet mass spectrometer. The pHOS system was validated using Phaeodactylum tricornutum cultured with continuous illumination of 110 μmole quanta m-2 s-1 at 25°C. Furthermore, simultaneous measurements of carbon and oxygen flux using the pHOS-MIMS and photon flux based on spectral absorption were carried out to explore the kinetics of Φ in P. tricornutum during its acclimation from low to high light (110 to 750 μmole quanta m-2 s-1). Comparing results at 0 and 24 hours, we observed strong decreases in cellular chlorophyll a (0.58 to 0.21 pg cell-1), Fv/Fm (0.71 to 0.59) and maximum ΦCO2 (0.019 to 0.004) and ΦO2 (0.028 to 0.007), confirming the transition toward high light acclimation. The Φ time-series indicated a non-synchronized acclimation response between carbon uptake and oxygen evolution, which has been previously inferred based on transcriptomic changes for a similar experimental design with the same diatom that lacked physiological data. The integrated pHOS-MIMS system can provide simultaneous carbon and oxygen measurements accurately, and at the time-resolution required to resolve high-resolution carbon and oxygen physiological dynamics. PMID:29920568

  6. Faster heart rate and muscular oxygen uptake kinetics in type 2 diabetes patients following endurance training.

    PubMed

    Koschate, Jessica; Drescher, Uwe; Brinkmann, Christian; Baum, Klaus; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe

    2016-11-01

    Cardiorespiratory kinetics were analyzed in type 2 diabetes patients before and after a 12-week endurance exercise-training intervention. It was hypothesized that muscular oxygen uptake and heart rate (HR) kinetics would be faster after the training intervention and that this would be detectable using a standardized work rate protocol with pseudo-random binary sequences. The cardiorespiratory kinetics of 13 male sedentary, middle-aged, overweight type 2 diabetes patients (age, 60 ± 8 years; body mass index, 33 ± 4 kg·m -2 ) were tested before and after the 12-week exercise intervention. Subjects performed endurance training 3 times a week on nonconsecutive days. Pseudo-random binary sequences exercise protocols in combination with time series analysis were used to estimate kinetics. Greater maxima in cross-correlation functions (CCF max ) represent faster kinetics of the respective parameter. CCF max of muscular oxygen uptake (pre-training: 0.31 ± 0.03; post-training: 0.37 ± 0.1, P = 0.024) and CCF max of HR (pre-training: 0.25 ± 0.04; post-training: 0.29 ± 0.06, P = 0.007) as well as peak oxygen uptake (pre-training: 24.4 ± 4.7 mL·kg -1 ·min -1 ; post-training: 29.3 ± 6.5 mL·kg -1 ·min -1 , P = 0.004) increased significantly over the course of the exercise intervention. In conclusion, kinetic responses to changing work rates in the moderate-intensity range are similar to metabolic demands occurring in everyday habitual activities. Moderate endurance training accelerated the kinetic responses of HR and muscular oxygen uptake. Furthermore, the applicability of the used method to detect these accelerations was demonstrated.

  7. Alterations in Strength and Maximal Oxygen Uptake Consequent to Nautilus Circuit Weight Training.

    ERIC Educational Resources Information Center

    Messier, Stephen P.; Dill, Mary Elizabeth

    1985-01-01

    The study compared the effects on muscular strength and maximal oxygen uptake of a Nautilus circuit weight training program, a free weight strength training program, and a running program. Nautilus circuit weight training appears to be equally effective for a training period of short duration. (MT)

  8. Oxygen uptake during repeated-sprint exercise.

    PubMed

    McGawley, Kerry; Bishop, David J

    2015-03-01

    Repeated-sprint ability appears to be influenced by oxidative metabolism, with reductions in fatigue and improved sprint times related to markers of aerobic fitness. The aim of the current study was to measure the oxygen uptake (VO₂) during the first and last sprints during two, 5 × 6-s repeated-sprint bouts. Cross-sectional study. Eight female soccer players performed two, consecutive, 5 × 6-s maximal sprint bouts (B1 and B2) on five separate occasions, in order to identify the minimum time (trec) required to recover total work done (Wtot) in B1. On a sixth occasion, expired air was collected during the first and last sprint of B1 and B2, which were separated by trec. The trec was 10.9 ± 1.1 min. The VO₂ during the first sprint was significantly less than the last sprint in each bout (p<0.001), and the estimated aerobic contribution to the final sprint (measured in kJ) was significantly related to VO₂max in both B1 (r=0.81, p=0.015) and B2 (r=0.93, p=0.001). In addition, the VO₂ attained in the final sprint was not significantly different from VO₂max in B1 (p=0.284) or B2 (p=0.448). The current study shows that the VO₂ increases from the first to the last of 5 × 6-s sprints and that VO₂max may be a limiting factor to performance in latter sprints. Increasing V˙O₂max in team-sport athletes may enable increased aerobic energy delivery, and consequently work done, during a bout of repeated sprints. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Prediction of Maximum Oxygen Uptake Using Both Exercise and Non-Exercise Data

    ERIC Educational Resources Information Center

    George, James D.; Paul, Samantha L.; Hyde, Annette; Bradshaw, Danielle I.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.

    2009-01-01

    This study sought to develop a regression model to predict maximal oxygen uptake (VO[subscript 2max]) based on submaximal treadmill exercise (EX) and non-exercise (N-EX) data involving 116 participants, ages 18-65 years. The EX data included the participants' self-selected treadmill speed (at a level grade) when exercise heart rate first reached…

  10. Oxygen uptake during functional activities after stroke—Reliability and validity of a portable ergospirometry system

    PubMed Central

    Brurok, Berit; Tjønna, Arnt Erik; Tørhaug, Tom; Askim, Torunn

    2017-01-01

    Background People with stroke have a low peak aerobic capacity and experience increased effort during performance of daily activities. The purpose of this study was to examine test-retest reliability of a portable ergospirometry system in people with stroke during performance of functional activities in a field-test. Secondary aims were to examine the proportion of oxygen consumed during the field-test in relation to the peak-test and to analyse the correlation between the oxygen uptake during the field-test and peak-test in order to support the validity of the field-test. Methods With simultaneous measurement of oxygen consumption, participants performed a standardized field-test consisting of five activities; walking over ground, stair walking, stepping over obstacles, walking slalom between cones and from a standing position lifting objects from one height to another. All activities were performed in self-selected speed. Prior to the field-test, a peak aerobic capacity test was performed. The field-test was repeated minimum 2 and maximum 14 days between the tests. ICC2,1 and Bland Altman tests (Limits of Agreement, LoA) were used to analyse test-retest reliability. Results In total 31 participants (39% women, mean (SD) age 54.5 (12.7) years and 21.1 (14.3) months’ post-stroke) were included. The ICC2,1 was ≥ 0.80 for absolute V̇O2, relative V̇O2, minute ventilation, CO2, respiratory exchange ratio, heart rate and Borgs rating of perceived exertion. ICC2,1 for total time to complete the field-test was 0.99. Mean difference in steady state V̇O2 during Test 1 and Test 2 was -0.40 (2.12) The LoAs were -3.75 and 4.51. Participants spent 60.7% of their V̇O2peak performing functional activities. Correlation between field-test and peak-test was 0.689, p = 0.001 for absolute and 0.733, p = 0.001 for relative V̇O2. Conclusions This study presents first evidence on reliability of oxygen uptake during performance of functional activities after stroke, showing very

  11. Reversible uptake of molecular oxygen by heteroligand Co(II)-L-α-amino acid-imidazole systems: equilibrium models at full mass balance.

    PubMed

    Pająk, Marek; Woźniczka, Magdalena; Vogt, Andrzej; Kufelnicki, Aleksander

    2017-09-19

    systems with alanine and asparagine-in those cases the of oxygenation reaction is right shifted to a relatively lower extent. The experimental results indicate that the "active" complex, able to take up dioxygen, is a heteroligand CoL 2 L'complex, where L = amac (an amino acid with a non-protonated amine group) while L' = Himid, with the N1 nitrogen protonated within the entire pH range under study. Moreover, the corresponding log  [Formula: see text] value at various initial total Co(II), amino acid and imidazole concentrations was found to be constant within the limits of error, which confirms those results. The highest log [Formula: see text] value, 14.9, occurs for the histidine system; in comparison, asparagine is 7.8 and alanine is 9.7. This high value is most likely due to the participation of the additional effective N3 donor of the imidazole side group of histidine. The Co(II)-amac-Himid systems formed by using a [Co(imid) 2 ] n polymer as starting material demonstrate that the reversible uptake of molecular oxygen occurs by forming dimeric μ-peroxy adducts. The essential impact on the electron structure of the dioxygen bridge, and therefore, on the reversibility of O 2 uptake, is due to the imidazole group at axial position (trans towards O 2 ). However, the results of reversibility measurements of O 2 uptake, unequivocally indicate a much higher effectiveness of dioxygenation than in systems in which the oxygen adducts are formed in equilibrium mixtures during titration of solutions containing Co(II) ions, the amino acid and imidazole, separately.

  12. CONTINUOUS, AUTOMATED AND SIMULTANEOUS MEASUREMENT OF OXYGEN UPTAKE AND CARBON DIOXIDE EVOLUTION IN BIOLOGICAL SYSTEMS

    EPA Science Inventory

    Commercial respirometers are capable of continuously and automatically measuring oxygen uptake in bioreactors. A method for continuously and automatically measuring carbon dioxide evolution can be retrofitted to commercial respirometers. Continuous and automatic measurements of...

  13. Relationships between oxygen uptake, dynamic body acceleration and heart rate in humans.

    PubMed

    D'silva, L A; Cardew, A; Qasem, L; Wilson, R P; Lewis, M J

    2015-10-01

    Accurate estimation of energy expenditure (EE) is important in human and animal behavior analysis. Rate of oxygen consumption (VO2) reflects EE during aerobic metabolism but is not always convenient. Alternative methods include heart rate (HR) and overall dynamic body acceleration (ODBA). A favorable ODBA-VO2 relationship was recently reported but the strength of association between VO2, ODBA, HR and its variability (HRV) is less clear. Fifteen young (23±4 years) healthy males of similar aerobic fitness (maximal oxygen uptake, VO2max=49.7±8.5 mL·kg(-1)·min(-1)) carried out progressive maximal exercise. ODBA, HRV and V̇O2 were recorded continuously. Relationships between ODBA, HRV and V̇O2 were explored using regression methods. VO2 was strongly related to ODBA and RR during walking (R=0.45,0.30; P<5x10(-5)) and running (R=0.60,0.38; P<5x10(-5)). HRV was related to VO2 during walking only (R=0.11-0.26; 0.005related to EE and cannot be recommended for its estimation. ODBA and RR are relatively easily measured but careful attention to gait is imperative as it changes these relationships markedly.

  14. Physiological responses and air consumption during simulated firefighting tasks in a subway system.

    PubMed

    Williams-Bell, F Michael; Boisseau, Geoff; McGill, John; Kostiuk, Andrew; Hughson, Richard L

    2010-10-01

    Professional firefighters (33 men, 3 women), ranging in age from 30 to 53 years, participated in a simulation of a subway system search and rescue while breathing from their self-contained breathing apparatus (SCBA). We tested the hypothesis that during this task, established by expert firefighters to be of moderate intensity, the rate of air consumption would exceed the capacity of a nominal 30-min cylinder. Oxygen uptake, carbon dioxide output, and air consumption were measured with a portable breath-by-breath gas exchange analysis system, which was fully integrated with the expired port of the SCBA. The task involved descending a flight of stairs, walking, performing a search and rescue, retreat walking, then ascending a single flight of stairs to a safe exit. This scenario required between 9:56 and 13:24 min:s (mean, 12:10 ± 1:10 min:s) to complete, with an average oxygen uptake of 24.3 ± 4.5 mL kg(-1) min(-1) (47 ± 10 % peak oxygen uptake) and heart rate of 76% ± 7% of maximum. The highest energy requirement was during the final single-flight stair climb (30.4 ± 5.4 mL kg(-1) min(-1)). The average respiratory exchange ratio (carbon dioxide output/oxygen uptake) throughout the scenario was 0.95 ± 0.08, indicating a high carbon dioxide output for a relatively moderate average energy requirement. Air consumption from the nominal "30-min" cylinder averaged 51% (range, 26%-68%); however, extrapolation of these rates of consumption suggested that the low-air alarm, signalling that only 25% of the air remains, would have occurred as early as 11 min for an individual with the highest rate of air consumption, and at 16 min for the group average. These data suggest that even the moderate physical demands of walking combined with search and rescue while wearing full protective gear and breathing through the SCBA impose considerable physiological strain on professional firefighters. As well, the rate of air consumption in these tasks classed as moderate, compared

  15. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise.

    PubMed

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-08-19

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R(2) = 0:77 to R(2) = 0:98 (for blood lactate) and from R(2) = 0:81 to R(2) = 0:97 (for oxygen uptake) were obtained when using random forest regressors.

  16. Uptake of phytodetritus by benthic foraminifera under oxygen depletion at the Indian margin (Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Enge, A. J.; Witte, U.; Kucera, M.; Heinz, P.

    2014-04-01

    Benthic foraminifera in sediments on the Indian margin of the Arabian Sea, where the oxygen minimum zone (OMZ) impinges on the continental slope, are exposed to particularly severe levels of oxygen depletion. Food supply for the benthic community is high but delivered in distinct pulses during upwelling and water mixing events associated with summer and winter monsoon periods. In order to investigate the response by benthic foraminifera to such pulsed food delivery under oxygen concentrations of less than 0.1 mL L-1 (4.5 μmol L-1), an in situ isotope labeling experiment (13C, 15N) was performed on the western continental slope of India at 540 m water depth (OMZ core region). The assemblage of living foraminifera (>125 μm) in the uppermost centimeter at this depth is characterized by an unexpectedly high population density of 3982 individuals 10 cm-2 and a strong dominance by few calcareous species. For the experiment, we concentrated on the nine most abundant taxa, which constitute 93% of the entire foraminiferal population at 0-1 cm sediment depth. Increased concentrations of 13C and 15N in the cytoplasm indicate that all investigated taxa took up labeled phytodetritus during the 4 day experimental phase. In total, these nine species had assimilated 113.8 mg C m-2 (17.5% of the total added carbon). Uptake of nitrogen by the three most abundant taxa (Bolivina aff. B. dilatata, Cassidulina sp., Bulimina gibba) was 2.7 mg N m-2 (2% of the total added nitrogen). The response to the offered phytodetritus varied largely among foraminiferal species with Uvigerina schwageri being by far the most important species in short-term processing, whereas the most abundant taxa Bolivina aff. B. dilatata and Cassidulina sp. showed comparably low uptake of the offered food. We suggest the observed species-specific differences are related to species biomass and specific feeding preferences. In summary, the experiment in the OMZ core region shows rapid processing of fresh

  17. Effectiveness of Resistance Circuit-Based Training for Maximum Oxygen Uptake and Upper-Body One-Repetition Maximum Improvements: A Systematic Review and Meta-Analysis.

    PubMed

    Muñoz-Martínez, Francisco Antonio; Rubio-Arias, Jacobo Á; Ramos-Campo, Domingo Jesús; Alcaraz, Pedro E

    2017-12-01

    It is well known that concurrent increases in both maximal strength and aerobic capacity are associated with improvements in sports performance as well as overall health. One of the most popular training methods used for achieving these objectives is resistance circuit-based training. The objective of the present systematic review with a meta-analysis was to evaluate published studies that have investigated the effects of resistance circuit-based training on maximum oxygen uptake and one-repetition maximum of the upper-body strength (bench press exercise) in healthy adults. The following electronic databases were searched from January to June 2016: PubMed, Web of Science and Cochrane. Studies were included if they met the following criteria: (1) examined healthy adults aged between 18 and 65 years; (2) met the characteristics of resistance circuit-based training; and (3) analysed the outcome variables of maximum oxygen uptake using a gas analyser and/or one-repetition maximum bench press. Of the 100 articles found from the database search and after all duplicates were removed, eight articles were analysed for maximum oxygen uptake. Of 118 healthy adults who performed resistance circuit-based training, maximum oxygen uptake was evaluated before and after the training programme. Additionally, from the 308 articles found for one-repetition maximum, eight articles were analysed. The bench press one-repetition maximum load, of 237 healthy adults who performed resistance circuit-based training, was evaluated before and after the training programme. Significant increases in maximum oxygen uptake and one-repetition maximum bench press were observed following resistance circuit-based training. Additionally, significant differences in maximum oxygen uptake and one-repetition maximum bench press were found between the resistance circuit-based training and control groups. The meta-analysis showed that resistance circuit-based training, independent of the protocol used in the

  18. Muscular Oxygen Uptake Kinetics in Aged Adults.

    PubMed

    Koschate, J; Drescher, U; Baum, K; Eichberg, S; Schiffer, T; Latsch, J; Brixius, K; Hoffmann, U

    2016-06-01

    Pulmonary oxygen uptake (V˙O2) kinetics and heart rate kinetics are influenced by age and fitness. Muscular V˙O2 kinetics can be estimated from heart rate and pulmonary V˙O2. In this study the applicability of a test using pseudo-random binary sequences in combination with a model to estimate muscular V˙O2 kinetics was tested. Muscular V˙O2 kinetics were expected to be faster than pulmonary V˙O2 kinetics, slowed in aged subjects and correlated with maximum V˙O2 and heart rate kinetics. 27 elderly subjects (73±3 years; 81.1±8.2 kg; 175±4.7 cm) participated. Cardiorespiratory kinetics were assessed using the maximum of cross-correlation functions, higher maxima implying faster kinetics. Muscular V˙O2 kinetics were faster than pulmonary V˙O2 kinetics (0.31±0.1 vs. 0.29±0.1 s; p=0.004). Heart rate kinetics were not correlated with muscular or pulmonary V˙O2 kinetics or maximum V˙O2. Muscular V˙O2 kinetics correlated with maximum V˙O2 (r=0.35; p=0.033). This suggests, that muscular V˙O2 kinetics are faster than estimates from pulmonary V˙O2 and related to maximum V˙O2 in aged subjects. In the future this experimental approach may help to characterize alterations in muscular V˙O2 under various conditions independent of motivation and maximal effort. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim; Aristidou, Aristos; Rush, Brian J.

    2016-08-30

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  20. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim [Minnetonka, MN; Aristidou, Aristos [Maple Grove, MN; Rush, Brian [Minneapolis, MN

    2011-05-10

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  1. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Hoek, Van; Pim, Aristidou [Minnetonka, MN; Aristos, Rush [Maple Grove, MN; Brian, [Minneapolis, MN

    2007-06-19

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  2. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim; Aristidou, Aristos; Rush, Brian

    2014-09-09

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  3. Critical evaluation of oxygen-uptake assessment in swimming.

    PubMed

    Sousa, Ana; Figueiredo, Pedro; Pendergast, David; Kjendlie, Per-Ludvik; Vilas-Boas, João P; Fernandes, Ricardo J

    2014-03-01

    Swimming has become an important area of sport science research since the 1970s, with the bioenergetic factors assuming a fundamental performance-influencing role. The purpose of this study was to conduct a critical evaluation of the literature concerning oxygen-uptake (VO2) assessment in swimming, by describing the equipment and methods used and emphasizing the recent works conducted in ecological conditions. Particularly in swimming, due to the inherent technical constraints imposed by swimming in a water environment, assessment of VO2max was not accomplished until the 1960s. Later, the development of automated portable measurement devices allowed VO2max to be assessed more easily, even in ecological swimming conditions, but few studies have been conducted in swimming-pool conditions with portable breath-by-breath telemetric systems. An inverse relationship exists between the velocity corresponding to VO2max and the time a swimmer can sustain it at this velocity. The energy cost of swimming varies according to its association with velocity variability. As, in the end, the supply of oxygen (whose limitation may be due to central-O2 delivery and transportation to the working muscles-or peripheral factors-O2 diffusion and utilization in the muscles) is one of the critical factors that determine swimming performance, VO2 kinetics and its maximal values are critical in understanding swimmers' behavior in competition and to develop efficient training programs.

  4. Reduction in peak oxygen uptake after prolonged bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Kozlowski, S.

    1982-01-01

    The hypothesis that the magnitude of the reduction in peak oxygen uptake (VO2) after bed rest is directly proportional to the level of pre-bed rest peak VO2 is tested. Complete pre and post-bed rest working capacity and body weight data were obtained from studies involving 24 men (19-24 years old) and 8 women (23-34 years old) who underwent bed rest for 14-20 days with no remedial treatments. Results of regression analyses of the present change in post-bed rest peak VO2 on pre-bed rest peak VO2 with 32 subjects show correlation coefficients of -0.03 (NS) for data expressed in 1/min and -0.17 for data expressed in ml/min-kg. In addition, significant correlations are found that support the hypothesis only when peak VO2 data are analyzed separately from studies that utilized the cycle ergometer, particularly with subjects in the supine position, as opposed to data obtained from treadmill peak VO2 tests. It is concluded that orthostatic factors, associated with the upright body position and relatively high levels of physical fitness from endurance training, appear to increase the variability of pre and particularly post-bed rest peak VO2 data, which would lead to rejection of the hypothesis.

  5. Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of VO2max Before, During, and After Long Duration International Space Station Missions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of VO2max Before, During, and After Long Duration International Space Station Missions (VO2max) will document changes in maximum oxygen uptake for crewmembers onboard the International Space Station (ISS) on long-duration missions, greater than 90 days. This investigation will establish the characteristics of VO2max during flight and assess the validity of the current methods of tracking aerobic capacity change during and following the ISS missions.

  6. Relation of oxygen uptake to work rate in prepubertal healthy children - reference for VO2/W-slope and effect on cardiorespiratory fitness assessment.

    PubMed

    Tompuri, Tuomo; Lintu, Niina; Laitinen, Tomi; Lakka, Timo A

    2017-08-09

    Exercise testing by cycle ergometer allows to observe the interaction between oxygen uptake (VO 2 ) and workload (W), and VO 2 /W-slope can be used as a diagnostic tool. Respectively, peak oxygen uptake (VO 2 PEAK ) can be estimated by maximal workload. We aim to determine reference for VO 2 /W-slope among prepubertal children and define agreement between estimated and measured VO 2 PEAK . A total of 38 prepubertal children (20 girls) performed a maximal cycle ergometer test with respiratory gas analysis. VO 2 /W-slopes were computed using linear regression. Agreement analysis by Bland and Altman for estimated and measured VO 2 PEAK was carried out including limits of agreement (LA). Determinants for VO 2 /W-slopes and estimation bias were defined. VO2/W-slope was in both girls and boys ≥9·4 and did not change with exercise level, but the oxygen cost of exercise was higher among physically more active children. Estimated VO 2 PEAK had 6·4% coefficient of variation, and LA varied from 13% underestimation to 13% overestimation. Bias had a trend towards underestimation along lean mass proportional VO 2 PEAK . The primary determinant for estimation bias was VO2/W-slope (β = -0·65; P<0·001). The reference values for VO 2 /W-slope among healthy prepubertal children were similar to those published for adults and among adolescents. Estimated and measured VO 2 PEAK should not be considered to be interchangeable because of the variation in the relationship between VO 2 and W. On other hand, variation in the relationship between VO 2 and W enables that VO 2 /W-slope can be used as a diagnostic tool. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  7. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

    PubMed Central

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-01-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS’s optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust’s coarse particle size and bulking effect. PMID:26954138

  8. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement.

    PubMed

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-05-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

  9. The effects of temperature and salinity on 17-α-ethynylestradiol uptake and its relationship to oxygen consumption in the model euryhaline teleost (Fundulus heteroclitus).

    PubMed

    Blewett, Tamzin; MacLatchy, Deborah L; Wood, Chris M

    2013-02-01

    The synthetic estrogen 17-α-ethynylestradiol (EE2), a component of birth control and hormone replacement therapy, is discharged into the environment via wastewater treatment plant (WWTP) effluents. The present study employed radiolabeled EE2 to examine impacts of temperature and salinity on EE2 uptake in male killifish (Fundulus heteroclitus). Fish were exposed to a nominal concentration of 100ng/L EE2 for 2h. The rate of EE2 uptake was constant over the 2h period. Oxygen consumption rates (MO(2)), whole body uptake rates, and tissue-specific EE2 distribution were determined. In killifish acclimated to 18°C at 16ppt (50% sea water), MO(2) and EE2 uptake were both lower after 24h exposure to 10°C and 4°C, and increased after 24h exposure to 26°C. Transfer to fresh water (FW) for 24h lowered EE2 uptake rate, and long-term acclimation to fresh water reduced it by 70%. Both long-term acclimation to 100% sea water (32ppt) and a 24h transfer to 100% sea water also reduced EE2 uptake rate by 50% relative to 16ppt. Tissue-specific accumulation of EE2 was highest (40-60% of the total) in the liver plus gall bladder across all exposures, and the vast majority of this was in the bile at 2h, regardless of temperature or salinity. The carcass was the next highest accumulator (30-40%), followed by the gut (10-20%) with only small amounts in gill and spleen. Killifish chronically exposed (15 days) to 100ng/L EE2 displayed no difference in EE2 uptake rate or tissue-specific distribution. Drinking rate, measured with radiolabeled polyethylene glycol-4000, was about 25 times greater in 16ppt-acclimated killifish relative to FW-acclimated animals. However, drinking accounted for less than 30% of gut accumulation, and therefore a negligible percentage of whole body EE2 uptake rates. In general, there were strong positive relationships between EE2 uptake rates and MO(2), suggesting similar uptake pathways of these lipophilic molecules across the gills. These data will be useful in

  10. Prognostic value of the post-training oxygen uptake efficiency slope in patients with coronary artery disease.

    PubMed

    Buys, Roselien; Coeckelberghs, Ellen; Cornelissen, Véronique A; Goetschalckx, Kaatje; Vanhees, Luc

    2016-09-01

    Peak oxygen uptake is an independent predictor of mortality in patients with coronary artery disease (CAD). However, patients with CAD are not always capable of reaching peak effort, and therefore submaximal gas exchange variables such as the oxygen uptake efficiency slope (OUES) have been introduced. Baseline exercise capacity as expressed by OUES provides prognostic information and this parameter responds to training. Therefore, we aimed to assess the prognostic value of post-training OUES in patients with CAD. We included 960 patients with CAD (age 60.6 ± 9.5 years; 853 males) who completed a cardiac rehabilitation program between 2000 and 2011. The OUES was calculated before and after cardiac rehabilitation and information on mortality was obtained. The relationships of post-training OUES with all-cause and cardiovascular (CV) mortality was assessed by Cox proportional hazards regression analyses. Receiver operator characteristic curve analysis was performed in order to obtain the optimal cut-off value. During 7.37 ± 3.20 years of follow-up (range: 0.45-13.75 years), 108 patients died, among whom 47 died due to CV reasons. The post-training OUES was related to all-cause (hazard ratio: 0.50, p < 0.001) and CV (hazard ratio: 0.40, p < 0.001) mortality. When significant covariates, including baseline OUES, were entered into the Cox regression analysis, post-training OUES remained related to all-cause and CV mortality (hazard ratio: 0.40, p < 0.01 and 0.26, p < 0.01, respectively). In addition, the change in OUES due to exercise training was positively related to mortality (hazard ratio: 0.49, p < 0.01). Post-training OUES has stronger prognostic value compared to baseline OUES. The lack of improvement in exercise capacity expressed by OUES after an exercise training program relates to a worse prognosis and can help distinguish patients with favorable and unfavorable prognoses. © The European Society of Cardiology 2016.

  11. Nanocrystalline diamond protects Zr cladding surface against oxygen and hydrogen uptake: Nuclear fuel durability enhancement.

    PubMed

    Škarohlíd, Jan; Ashcheulov, Petr; Škoda, Radek; Taylor, Andrew; Čtvrtlík, Radim; Tomáštík, Jan; Fendrych, František; Kopeček, Jaromír; Cháb, Vladimír; Cichoň, Stanislav; Sajdl, Petr; Macák, Jan; Xu, Peng; Partezana, Jonna M; Lorinčík, Jan; Prehradná, Jana; Steinbrück, Martin; Kratochvílová, Irena

    2017-07-25

    In this work, we demonstrate and describe an effective method of protecting zirconium fuel cladding against oxygen and hydrogen uptake at both accident and working temperatures in water-cooled nuclear reactor environments. Zr alloy samples were coated with nanocrystalline diamond (NCD) layers of different thicknesses, grown in a microwave plasma chemical vapor deposition apparatus. In addition to showing that such an NCD layer prevents the Zr alloy from directly interacting with water, we show that carbon released from the NCD film enters the underlying Zr material and changes its properties, such that uptake of oxygen and hydrogen is significantly decreased. After 100-170 days of exposure to hot water at 360 °C, the oxidation of the NCD-coated Zr plates was typically decreased by 40%. Protective NCD layers may prolong the lifetime of nuclear cladding and consequently enhance nuclear fuel burnup. NCD may also serve as a passive element for nuclear safety. NCD-coated ZIRLO claddings have been selected as a candidate for Accident Tolerant Fuel in commercially operated reactors in 2020.

  12. Central Cardiovascular Responses of Quadriplegic Subjects to Arm Exercise at Varying Levels of Oxygen Uptake.

    ERIC Educational Resources Information Center

    Figoni, Stephen F.

    The purpose of this study was to assess selected central cardiovascular functions of spinal cord injured, quadriplegic subjects at varying levels of oxygen uptake (VO sub 2). Subjects included 11 untrained, male college students with C5, C6, or C7 complete quadriplegia and 11 able-bodied reference subjects. Exercise was performed on a Monark cycle…

  13. Simultaneous phosphorus uptake and denitrification by EBPR-r biofilm under aerobic conditions: effect of dissolved oxygen.

    PubMed

    Wong, Pan Yu; Ginige, Maneesha P; Kaksonen, Anna H; Cord-Ruwisch, Ralf; Sutton, David C; Cheng, Ka Yu

    2015-01-01

    A biofilm process, termed enhanced biological phosphorus removal and recovery (EBPR-r), was recently developed as a post-denitrification approach to facilitate phosphorus (P) recovery from wastewater. Although simultaneous P uptake and denitrification was achieved despite substantial intrusion of dissolved oxygen (DO >6 mg/L), to what extent DO affects the process was unclear. Hence, in this study a series of batch experiments was conducted to assess the activity of the biofilm under various DO concentrations. The biofilm was first allowed to store acetate (as internal storage) under anaerobic conditions, and was then subjected to various conditions for P uptake (DO: 0-8 mg/L; nitrate: 10 mg-N/L; phosphate: 8 mg-P/L). The results suggest that even at a saturating DO concentration (8 mg/L), the biofilm could take up P and denitrify efficiently (0.70 mmol e(-)/g total solids*h). However, such aerobic denitrification activity was reduced when the biofilm structure was physically disturbed, suggesting that this phenomenon was a consequence of the presence of oxygen gradient across the biofilm. We conclude that when a biofilm system is used, EBPR-r can be effectively operated as a post-denitrification process, even when oxygen intrusion occurs.

  14. Fish embryos on land: terrestrial embryo deposition lowers oxygen uptake without altering growth or survival in the amphibious fish Kryptolebias marmoratus.

    PubMed

    Wells, Michael W; Turko, Andy J; Wright, Patricia A

    2015-10-01

    Few teleost fishes incubate embryos out of water, but the oxygen-rich terrestrial environment could provide advantages for early growth and development. We tested the hypothesis that embryonic oxygen uptake is limited in aquatic environments relative to air using the self-fertilizing amphibious mangrove rivulus, Kryptolebias marmoratus, which typically inhabits hypoxic, water-filled crab burrows. We found that adult mangrove rivulus released twice as many embryos in terrestrial versus aquatic environments and that air-reared embryos had accelerated developmental rates. Surprisingly, air-reared embryos consumed 44% less oxygen and possessed larger yolk reserves, but attained the same mass, length and chorion thickness. Water-reared embryos moved their opercula ∼2.5 more times per minute compared with air-reared embryos at 7 days post-release, which probably contributed to the higher rates of oxygen uptake and yolk utilization we observed. Genetically identical air- and water-reared embryos from the same parent were raised to maturity, but the embryonic environment did not affect growth, reproduction or emersion ability in adults. Therefore, although aspects of early development were plastic, these early differences were not sustained into adulthood. Kryptolebias marmoratus embryos hatched out of water when exposed to aerial hypoxia. We conclude that exposure to a terrestrial environment reduces the energetic costs of development partly by reducing the necessity of embryonic movements to dispel stagnant boundary layers. Terrestrial incubation of young would be especially beneficial to amphibious fishes that occupy aquatic habitats of poor water quality, assuming low terrestrial predation and desiccation risks. © 2015. Published by The Company of Biologists Ltd.

  15. Effects of Ultraviolet Radiation on the Oxygen Uptake Rate of the Rabbit Cornea

    DTIC Science & Technology

    1989-07-01

    typical of a noncoherent source Optometrist, Ph.D. exposure. IV Effects on Corneal Oxygen Uptake-Lattimore 117 AvxAtl,-blity Codes 1- -il and/or , "t i...romator entrance slit by the housing optics . A 10 reciprocity (i.e., the biologic effects or endpoints cm quartz-enclosed water chamber was placed be...remove the infrared radiation. The exit optical taneous output at 350.7 and 356.4 nm (3:1 ratio), beam was focused by a quartz lens with a beam size

  16. Effects of continuous vs interval exercise training on oxygen uptake efficiency slope in patients with coronary artery disease.

    PubMed

    Prado, D M L; Rocco, E A; Silva, A G; Rocco, D F; Pacheco, M T; Silva, P F; Furlan, V

    2016-02-01

    The oxygen uptake efficiency slope (OUES) is a submaximal index incorporating cardiovascular, peripheral, and pulmonary factors that determine the ventilatory response to exercise. The purpose of this study was to evaluate the effects of continuous exercise training and interval exercise training on the OUES in patients with coronary artery disease. Thirty-five patients (59.3±1.8 years old; 28 men, 7 women) with coronary artery disease were randomly divided into two groups: continuous exercise training (n=18) and interval exercise training (n=17). All patients performed graded exercise tests with respiratory gas analysis before and 3 months after the exercise-training program to determine ventilatory anaerobic threshold (VAT), respiratory compensation point, and peak oxygen consumption (peak VO2). The OUES was assessed based on data from the second minute of exercise until exhaustion by calculating the slope of the linear relation between oxygen uptake and the logarithm of total ventilation. After the interventions, both groups showed increased aerobic fitness (P<0.05). In addition, both the continuous exercise and interval exercise training groups demonstrated an increase in OUES (P<0.05). Significant associations were observed in both groups: 1) continuous exercise training (OUES and peak VO2 r=0.57; OUES and VO2 VAT r=0.57); 2) interval exercise training (OUES and peak VO2 r=0.80; OUES and VO2 VAT r=0.67). Continuous and interval exercise training resulted in a similar increase in OUES among patients with coronary artery disease. These findings suggest that improvements in OUES among CAD patients after aerobic exercise training may be dependent on peripheral and central mechanisms.

  17. Sevoflurane protects rat mixed cerebrocortical neuronal-glial cell cultures against transient oxygen-glucose deprivation: involvement of glutamate uptake and reactive oxygen species.

    PubMed

    Canas, Paula T; Velly, Lionel J; Labrande, Christelle N; Guillet, Benjamin A; Sautou-Miranda, Valérie; Masmejean, Frédérique M; Nieoullon, André L; Gouin, François M; Bruder, Nicolas J; Pisano, Pascale S

    2006-11-01

    The purpose of this study was to clarify the role of glutamate and reactive oxygen species in sevoflurane-mediated neuroprotection on an in vitro model of ischemia-reoxygenation. Mature mixed cerebrocortical neuronal-glial cell cultures, treated or not with increasing concentrations of sevoflurane, were exposed to 90 min combined oxygen-glucose deprivation (OGD) in an anaerobic chamber followed by reoxygenation. Cell death was quantified by lactate dehydrogenase release into the media and cell viability by reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium by mitochondrial succinate dehydrogenase. Extracellular concentrations of glutamate and glutamate uptake were assessed at the end of the ischemic injury by high-performance liquid chromatography and incorporation of L-[H]glutamate into cells, respectively. Free radical generation in cells was assessed 6 h after OGD during the reoxygenation period using 2',7'-dichlorofluorescin diacetate, which reacts with intracellular radicals to be converted to its fluorescent product, 2',7'-dichlorofluorescin, in cell cytosol. Twenty-four hours after OGD, sevoflurane, in a concentration-dependent manner, significantly reduced lactate dehydrogenase release and increased cell viability. At the end of OGD, sevoflurane was able to reduce the OGD-induced decrease in glutamate uptake. This effect was impaired in the presence of threo-3-methyl glutamate, a specific inhibitor of the glial transporter GLT1. Sevoflurane counteracted the increase in extracellular level of glutamate during OGD and the generation of reactive oxygen species during reoxygenation. Sevoflurane had a neuroprotective effect in this in vitro model of ischemia-reoxygenation. This beneficial effect may be explained, at least in part, by sevoflurane-induced antiexcitotoxic properties during OGD, probably depending on GLT1, and by sevoflurane-induced decrease of reactive oxygen species generation during reoxygenation.

  18. Decreases in maximal oxygen uptake following long-duration spaceflight: Role of convective and diffusive O2 transport mechanisms.

    PubMed

    Ade, C J; Broxterman, R M; Moore, A D; Barstow, T J

    2017-04-01

    We have previously predicted that the decrease in maximal oxygen uptake (V̇o 2max ) that accompanies time in microgravity reflects decrements in both convective and diffusive O 2 transport to the mitochondria of the contracting myocytes. The aim of this investigation was therefore to quantify the relative changes in convective O 2 transport (Q̇o 2 ) and O 2 diffusing capacity (Do 2 ) following long-duration spaceflight. In nine astronauts, resting hemoglobin concentration ([Hb]), V̇o 2max , maximal cardiac output (Q̇ Tmax ), and differences in arterial and venous O 2 contents ([Formula: see text]-[Formula: see text]) were obtained retrospectively for International Space Station Increments 19-33 (April 2009-November 2012). Q̇o 2 and Do 2 were calculated from these variables via integration of Fick's Principle of Mass Conservation and Fick's Law of Diffusion. V̇o 2max significantly decreased from pre- to postflight (-53.9 ± 45.5%, P = 0.008). The significant decrease in Q̇ Tmax (-7.8 ± 9.1%, P = 0.05), despite an unchanged [Hb], resulted in a significantly decreased Q̇o 2 (-11.4 ± 10.5%, P = 0.02). Do 2 significantly decreased from pre- to postflight by -27.5 ± 24.5% ( P = 0.04), as did the peak [Formula: see text]-[Formula: see text] (-9.2 ± 7.5%, P = 0.007). With the use of linear regression analysis, changes in V̇o 2max were significantly correlated with changes in Do 2 ( R 2  = 0.47; P = 0.04). These data suggest that spaceflight decreases both convective and diffusive O 2 transport. These results have practical implications for future long-duration space missions and highlight the need to resolve the specific mechanisms underlying these spaceflight-induced changes along the O 2 transport pathway. NEW & NOTEWORTHY Long-duration spaceflight elicited a significant decrease in maximal oxygen uptake. Given the adverse physiological adaptations to microgravity along the O 2 transport pathway that have been reported, an integrative

  19. The influence of exercise duration at VO2 max on the off-transient pulmonary oxygen uptake phase during high intensity running activity.

    PubMed

    Billat, V L; Hamard, L; Koralsztein, J P

    2002-12-01

    The purpose of this study was to examine the influence of time run at maximal oxygen uptake (VO2 max) on the off-transient pulmonary oxygen uptake phase after supra-lactate threshold runs. We hypothesised: 1) that among the velocities eliciting VO2 max there is a velocity threshold from which there is a slow component in the VO2-off transient, and 2) that at this velocity the longer the duration of this time at VO2 max (associated with an accumulated oxygen kinetics since VO2 can not overlap VO2 max), the longer is the off-transient phase of oxygen uptake kinetics. Nine long-distance runners performed five maximal tests on a synthetic track (400 m) while breathing through the COSMED K4b2 portable, telemetric metabolic analyser: i) an incremental test which determined VO2 max, the minimal velocity associated with VO2 max (vVO2 max) and the velocity at the lactate threshold (vLT), ii) and in a random order, four supra-lactate threshold runs performed until exhaustion at vLT + 25, 50, 75 and 100% of the difference between vLT and vVO2 max (vdelta25, vdelta50, vdelta75, vdelta100). At vdelta25, vdelta50 (= 91.0 +/- 0.9% vVO2 max) and vdelta75, an asymmetry was found between the VO2 on (double exponential) and off-transient (mono exponential) phases. Only at vdelta75 there was at positive relationship between the time run at VO2 max (%tlimtot) and the VO2 recovery time constant (Z = 1.8, P = 0.05). In conclusion, this study showed that among the velocities eliciting VO2 max, vdelta75 is the velocity at which the longer the duration of the time at VO2 max, the longer is the off-transient phase of oxygen uptake kinetics. It may be possible that at vdelta50 there is not an accumulated oxygen deficit during the plateau of VO2 at VO2 max and that the duration of the time at VO2 max during the exhaustive runs at vdelta100, could be too short to induce an accumulating oxygen deficit affecting the oxygen recovery.

  20. Sex differences in the oxygen delivery, extraction, and uptake during moderate-walking exercise transition.

    PubMed

    Beltrame, Thomas; Villar, Rodrigo; Hughson, Richard L

    2017-09-01

    Previous studies in children and older adults demonstrated faster oxygen uptake (V̇O 2 ) kinetics in males compared with females, but young healthy adults have not been studied. We hypothesized that young men would have faster aerobic system dynamics in response to the onset of exercise than women. Interactions between oxygen supply and utilization were characterized by the dynamics of V̇O 2 , deoxyhemoglobin (HHb), tissue saturation index (TSI), cardiac output (Q̇), and calculated arteriovenous O 2 difference (a-vO 2 diff ) in women and men. Eighteen healthy active young women and men (9 of each sex) with similar aerobic fitness levels volunteered for this study. Participants performed an incremental cardiopulmonary treadmill exercise test and 3 moderate-intensity treadmill exercise tests (at 80% V̇O 2 of gas exchange threshold). Data related to the moderate exercise were submitted to exponential data modelling to obtain parameters related to the aerobic system dynamics. The time constants of V̇O 2 , a-vO 2 diff , HHb, and TSI (30 ± 6, 29 ± 1, 16 ± 1, and 15 ± 2 s, respectively) in women were statistically (p < 0.05) faster than the time constants in men (42 ± 10, 49 ± 21, 19 ± 3, and 20 ± 4 s, respectively). Although Q̇ dynamics were not statistically different (p = 0.06) between groups, there was a trend to slower Q̇ dynamics in men corresponding with the slower V̇O 2 kinetics. These results indicated that the peripheral and pulmonary oxygen extraction dynamics were remarkably faster in women. Thus, contrary to the hypothesis, V̇O 2 dynamics measured at the mouth at the onset of submaximal treadmill walking were faster in women compared with men.

  1. Morning-to-evening differences in oxygen uptake kinetics in short-duration cycling exercise.

    PubMed

    Brisswalter, Jeanick; Bieuzen, François; Giacomoni, Magali; Tricot, Véronique; Falgairette, Guy

    2007-01-01

    This study analyzed diurnal variations in oxygen (O(2)) uptake kinetics and efficiency during a moderate cycle ergometer exercise. Fourteen physically active diurnally active male subjects (age 23+/-5 yrs) not specifically trained at cycling first completed a test to determine their ventilatory threshold (T(vent)) and maximal oxygen consumption (VO(2max)); one week later, they completed four bouts of testing in the morning and evening in a random order, each separated by at least 24 h. For each period of the day (07:00-08:30 h and 19:00-20:30 h), subjects performed two bouts. Each bout was composed of a 5 min cycling exercise at 45 W, followed after 5 min rest by a 10 min cycling exercise at 80% of the power output associated with T(vent). Gas exchanges were analyzed breath-by-breath and fitted using a mono-exponential function. During moderate exercise, the time constant and amplitude of VO(2) kinetics were significantly higher in the morning compared to the evening. The net efficiency increased from the morning to evening (17.3+/-4 vs. 20.5+/-2%; p<0.05), and the variability of cycling cadence was greater during the morning than evening (+34%; p<0.05). These findings suggest that VO(2) responses are affected by the time of day and could be related to variability in muscle activity pattern.

  2. Characterizing "fibrofog": Subjective appraisal, objective performance, and task-related brain activity during a working memory task.

    PubMed

    Walitt, Brian; Čeko, Marta; Khatiwada, Manish; Gracely, John L; Rayhan, Rakib; VanMeter, John W; Gracely, Richard H

    2016-01-01

    The subjective experience of cognitive dysfunction ("fibrofog") is common in fibromyalgia. This study investigated the relation between subjective appraisal of cognitive function, objective cognitive task performance, and brain activity during a cognitive task using functional magnetic resonance imaging (fMRI). Sixteen fibromyalgia patients and 13 healthy pain-free controls completed a battery of questionnaires, including the Multiple Ability Self-Report Questionnaire (MASQ), a measure of self-perceived cognitive difficulties. Participants were evaluated for working memory performance using a modified N-back working memory task while undergoing Blood Oxygen Level Dependent (BOLD) fMRI measurements. Fibromyalgia patients and controls did not differ in working memory performance. Subjective appraisal of cognitive function was associated with better performance (accuracy) on the working memory task in healthy controls but not in fibromyalgia patients. In fibromyalgia patients, increased perceived cognitive difficulty was positively correlated with the severity of their symptoms. BOLD response during the working memory task did not differ between the groups. BOLD response correlated with task accuracy in control subjects but not in fibromyalgia patients. Increased subjective cognitive impairment correlated with decreased BOLD response in both groups but in different anatomic regions. In conclusion, "fibrofog" appears to be better characterized by subjective rather than objective impairment. Neurologic correlates of this subjective experience of impairment might be separate from those involved in the performance of cognitive tasks.

  3. Effects of Hemopure on maximal oxygen uptake and endurance performance in healthy humans.

    PubMed

    Ashenden, M J; Schumacher, Y O; Sharpe, K; Varlet-Marie, E; Audran, M

    2007-05-01

    Haemoglobin-based oxygen carriers (HBOCs) such as Hemopure are touted as a tenable substitute for red blood cells and therefore potential doping agents, although the mechanisms of oxygen transport of HBOCs are incompletely understood. We investigated whether infusion of Hemopure increased maximal oxygen uptake (V.O 2max) and endurance performance in healthy subjects. Twelve male subjects performed two 4-minute submaximal exercise bouts equivalent to 60 % and 75 % of V.O (2max) on a cycle ergometer, followed by a ramped incremental protocol to elicit V.O (2max). A crossover design tested the effect of infusing either 30 g (6 subjects) or 45 g (6 subjects) of Hemopure versus a placebo. Under our study conditions, Hemopure did not increase V.O (2max) nor endurance performance. However, the infusion of Hemopure caused a decrease in heart rate of approximately 10 bpm (p=0.009) and an average increase in mean ( approximately 7 mmHg) and diastolic blood pressure ( approximately 8 mmHg) (p=0.046) at submaximal and maximal exercise intensities. Infusion of Hemopure did not bestow the same physiological advantages generally associated with infusion of red blood cells. It is conceivable that under exercise conditions, the hypertensive effects of Hemopure counter the performance-enhancing effect of improved blood oxygen carrying capacity.

  4. Uptake of phytodetritus by benthic foraminifera under oxygen depletion at the Indian Margin (Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Enge, A. J.; Witte, U.; Kucera, M.; Heinz, P.

    2013-09-01

    Benthic foraminifera in sediments on the Indian margin of the Arabian Sea where the oxygen minimum zone (OMZ) impinges on the continental slope are exposed to particularly severe levels of oxygen depletion. Food supply for the benthic community is high but delivered in distinct pulses during upwelling and water mixing events associated with summer and winter monsoon periods. In order to investigate the response by benthic foraminifera to such pulsed food delivery under oxygen concentrations of less than 0.1 mL L-1 (4.5 μmol L-1), an in situ isotope labeling experiment (13C, 15N) was performed at the western continental slope of India at 540 m water depth (OMZ core region). The assemblage of living foraminifera (>125 μm) in the uppermost centimeter at this depth is characterized by an unexpectedly high population density of 3982 ind. 10 cm-2 and a strong dominance by few calcareous species. For the experiment, we concentrated on the nine most abundant taxa, which constitute 93% of the entire foraminifera population at 0-1 cm sediment depth. Increased concentrations of 13C and 15N in the cytoplasm indicate that all investigated taxa took up the labeled phytodetritus during the 4 day experimental phase. In total, these nine species had assimilated 113.8 mg C m-2 (17.5% of the total added carbon). The uptake of nitrogen by the three most abundant taxa (Bolivina aff. B. dilatata, Cassidulina sp., Bulimina gibba) was 2.7 mg N m-2 (2% of the total added nitrogen) and showed the successful application of 15N as tracer in foraminiferal studies. The short-term response to the offered phytodetritus varied largely among foraminiferal species with Uvigerina schwageri being by far the most important species in short-term processing whereas the most abundant taxa Bolivina aff. B. dilatata and Cassidulina sp. showed comparably low uptake of the offered food. We suggest that the observed species-specific differences are related to individual biomass of species and to specific

  5. Impact of oxygen status on 10B-BPA uptake into human glioblastoma cells, referring to significance in boron neutron capture therapy

    PubMed Central

    Wada, Yuki; Hirose, Katsumi; Harada, Takaomi; Sato, Mariko; Watanabe, Tsubasa; Anbai, Akira; Hashimoto, Manabu; Takai, Yoshihiro

    2018-01-01

    Abstract Boron neutron capture therapy (BNCT) can potentially deliver high linear energy transfer particles to tumor cells without causing severe damage to surrounding normal tissue, and may thus be beneficial for cases with characteristics of infiltrative growth, which need a wider irradiation field, such as glioblastoma multiforme. Hypoxia is an important factor contributing to resistance to anticancer therapies such as radiotherapy and chemotherapy. In this study, we investigated the impact of oxygen status on 10B uptake in glioblastoma cells in vitro in order to evaluate the potential impact of local hypoxia on BNCT. T98G and A172 glioblastoma cells were used in the present study, and we examined the influence of oxygen concentration on cell viability, mRNA expression of L-amino acid transporter 1 (LAT1), and the uptake amount of 10B-BPA. T98G and A172 glioblastoma cells became quiescent after 72 h under 1% hypoxia but remained viable. Uptake of 10B-BPA, which is one of the agents for BNCT in clinical use, decreased linearly as oxygen levels were reduced from 20% through to 10%, 3% and 1%. Hypoxia with <10% O2 significantly decreased mRNA expression of LAT1 in both cell lines, indicating that reduced uptake of 10B-BPA in glioblastoma in hypoxic conditions may be due to reduced expression of this important transporter protein. Hypoxia inhibits 10B-BPA uptake in glioblastoma cells in a linear fashion, meaning that approaches to overcoming local tumor hypoxia may be an effective method of improving the success of BNCT treatment. PMID:29315429

  6. Prior exercise speeds pulmonary oxygen uptake kinetics and increases critical power during supine but not upright cycling.

    PubMed

    Goulding, Richie P; Roche, Denise M; Marwood, Simon

    2017-09-01

    What is the central question of this study? Critical power (CP) represents the highest work rate for which a metabolic steady state is attainable. The physiological determinants of CP are unclear, but research suggests that CP might be related to the time constant of phase II oxygen uptake kinetics (τV̇O2). What is the main finding and its importance? We provide the first evidence that τV̇O2 is mechanistically related to CP. A reduction of τV̇O2 in the supine position was observed alongside a concomitant increase in CP. This effect may be contingent on measures of oxygen availability derived from near-infrared spectroscopy. Critical power (CP) is a fundamental parameter defining high-intensity exercise tolerance and is related to the time constant of phase II pulmonary oxygen uptake kinetics (τV̇O2). To test the hypothesis that this relationship is causal, we determined the impact of prior exercise ('priming') on CP and τV̇O2 in the upright and supine positions. Seventeen healthy men were assigned to either upright or supine exercise groups, whereby CP, τV̇O2 and muscle deoxyhaemoglobin kinetics (τ [HHb] ) were determined via constant-power tests to exhaustion at four work rates with (primed) and without (control) priming exercise at ∼31%Δ. During supine exercise, priming reduced τV̇O2 (control 54 ± 18 s versus primed 39 ± 11 s; P < 0.001), increased τ [HHb] (control 8 ± 4 s versus primed 12 ± 4 s; P = 0.003) and increased CP (control 177 ± 31 W versus primed 185 ± 30 W, P = 0.006) compared with control conditions. However, priming exercise had no effect on τV̇O2 (control 37 ± 12 s versus primed 35 ± 8 s; P = 0.82), τ [HHb] (control 10 ± 5 s versus primed 14 ± 10 s; P = 0.10) or CP (control 235 ± 42 W versus primed 232 ± 35 W; P = 0.57) during upright exercise. The concomitant reduction of τV̇O2 and increased CP following priming in the supine group, effects that were absent in

  7. Preferential processing of task-irrelevant beloved-related information and task performance: Two event-related potential studies.

    PubMed

    Langeslag, Sandra J E; van Strien, Jan W

    2017-09-18

    People who are in love have better attention for beloved-related information, but report having trouble focusing on other tasks, such as (home)work. So, romantic love can both improve and hurt cognition. Emotional information is preferentially processed, which improves task performance when the information is task-relevant, but hurts task performance when it is task-irrelevant. Because beloved-related information is highly emotional, the effects of romantic love on cognition may resemble these effects of emotion on cognition. We examined whether beloved-related information is preferentially processed even when it is task-irrelevant and whether this hurts task performance. In two event-related potential studies, participants who had recently fallen in love performed a visuospatial short-term memory task. Task-irrelevant beloved, friend, and stranger faces were presented during maintenance (Study 1), or encoding (Study 2). The Early Posterior Negativity (EPN) reflecting early automatic attentional capturing and the Late Positive Potential (LPP) reflecting sustained motivated attention were largest for beloved pictures. Thus, beloved pictures are preferentially processed even when they are task-irrelevant. Task performance and reaction times did not differ between beloved, friend, and stranger conditions. Nevertheless, self-reported obsessive thinking about the beloved tended to correlate negatively with task performance, and positively with reaction times, across conditions. So, although task-irrelevant beloved-related information does not impact task performance, more obsessive thinking about the beloved might relate to poorer and slower overall task performance. More research is needed to clarify why people experience trouble focusing on beloved-unrelated tasks and how this negative effect of love on cognition could be reduced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Oxygen uptake and vertical transport during deep convection events

    NASA Astrophysics Data System (ADS)

    Sun, D.; Ito, T.; Bracco, A.

    2016-02-01

    Dissolved oxygen (O2) is essential for the chemistry and living organisms of the oceans. O2 is consumed in the interior ocean due to the respiration of organic matter, and must be replenished by physical ventilation with the O2-rich surface waters. The O2 supply to the deep waters happens only through the subduction and deep convection during cold seasons at high latitude oceans. The Labrador Sea is one of the few regions where deep ventilation occurs. According to observational and modeling studies, the intensity, duration and timing of deep convection events have varied significantly on the interannual and decadal timescales. In this study we develop a theoretical framework to understand the air-sea transfer of O2 during open-ocean deep convection events. The theory is tested against a suite of numerical integrations using MITgcm in non-hydrostatic configuration including the parameterization of diffusive and bubble mediated gas transfer. Forced with realistic air-sea buoyancy fluxes, the model can reproduce the evolution of temperature, salinity and dissolved O2 observed by ARGO floats in the Labrador Sea. Idealized sensitivity experiments are performed changing the intensity and duration of the buoyancy forcing as well as the wind speed for the gas exchange parameterizations. The downward transport of O2 results from the combination of vertical homogenization of existing O2 and the uptake from the air-sea flux. The intensity of the buoyancy forcing controls the vertical extent of convective mixing which brings O2 to the deep ocean. Integrated O2 uptake increases with the duration of convection even when the total buoyancy loss is held constant. The air-sea fluxes are highly sensitive to the wind speed especially for the bubble injection flux, which is a major addition to the diffusive flux under strong winds. However, the bubble injection flux can be partially compensated by the diffusive outgassing in response to the elevated saturation state. Under strong

  9. Oxygen uptake and local Po2 profiles in submerged larvae of phaeoxantha klugii (Coleoptera: Cicindelidae), as well as their metabolic rate in air.

    PubMed

    Zerm, M; Zinkler, D; Adis, J

    2004-01-01

    We studied whether oxygen uptake from the surrounding water might enhance survival in submerged third instar larvae of Phaeoxantha klugii, a tiger beetle from the central Amazonian floodplains. Local oxygen partial pressures (Po(2)) were measured with microcoaxial needle electrodes close to larvae submerged in initially air-saturated still water. The Po(2) profiles showed that the larvae exploit oxygen from the aquatic medium. Metabolism in the air of more or less resting larvae was determined by measuring the rate of CO(2) production (sV dot co2) with an infrared gas analyzer at 29 degrees C. The sV dot co2 was around 1.8 mu L g(-1) min(-1), equivalent to an oxygen consumption rate (sV dot o2) of 1.8-2.6 mu L g(-1) min(-1). Oxygen consumption (V dot o2) of individually submerged larvae measured in closed respiration chambers at 19-10.3 kPa Po(2) (initially air saturated, 29 degrees C) ranged between 0.05 and 0.2 mu L min(-1) and was not correlated with body mass. The sV dot o2 ranged between 0.1 and 0.4 mu L min(-1), that is, 4%-22% of the metabolic rate measured in air. Mean V dot o2 decreased with declining Po(2); however, some individuals showed contrary patterns. V dot o2 was additionally measured in dormant larvae, in larvae submerged for 1-2 d in open water or for 30-49 d within sediment, as well as in larvae exposed to anoxia before the measurements. The range of V dot o2 was similar in all groups, indicating that the larvae exploit oxygen from the water whenever available. Similar V dot o2 across the whole range of body mass investigated (0.31-0.76 g) suggests that oxygen uptake occurs by spiracular uptake. Assuming that larvae survive for some time at rates comparable to depressed metabolic rates reported for other insect species, it can be concluded that oxygen uptake from water can sustain aerobic metabolism even under quite severe hypoxia. It might therefore play an important role for survival during inundation periods.

  10. The Maximal Oxygen Uptake Verification Phase: a Light at the End of the Tunnel?

    PubMed

    Schaun, Gustavo Z

    2017-12-08

    Commonly performed during an incremental test to exhaustion, maximal oxygen uptake (V̇O 2max ) assessment has become a recurring practice in clinical and experimental settings. To validate the test, several criteria were proposed. In this context, the plateau in oxygen uptake (V̇O 2 ) is inconsistent in its frequency, reducing its usefulness as a robust method to determine "true" V̇O 2max . Moreover, secondary criteria previously suggested, such as expiratory exchange ratios or percentages of maximal heart rate, are highly dependent on protocol design and often are achieved at V̇O 2 percentages well below V̇O 2max . Thus, an alternative method termed verification phase was proposed. Currently, it is clear that the verification phase can be a practical and sensitive method to confirm V̇O 2max ; however, procedures to conduct it are not standardized across the literature and no previous research tried to summarize how it has been employed. Therefore, in this review the knowledge on the verification phase was updated, while suggestions on how it can be performed (e.g. intensity, duration, recovery) were provided according to population and protocol design. Future studies should focus to identify a verification protocol feasible for different populations and to compare square-wave and multistage verification phases. Additionally, studies assessing verification phases in different patient populations are still warranted.

  11. Characterizing “fibrofog”: Subjective appraisal, objective performance, and task-related brain activity during a working memory task

    PubMed Central

    Walitt, Brian; Čeko, Marta; Khatiwada, Manish; Gracely, John L.; Rayhan, Rakib; VanMeter, John W.; Gracely, Richard H.

    2016-01-01

    The subjective experience of cognitive dysfunction (“fibrofog”) is common in fibromyalgia. This study investigated the relation between subjective appraisal of cognitive function, objective cognitive task performance, and brain activity during a cognitive task using functional magnetic resonance imaging (fMRI). Sixteen fibromyalgia patients and 13 healthy pain-free controls completed a battery of questionnaires, including the Multiple Ability Self-Report Questionnaire (MASQ), a measure of self-perceived cognitive difficulties. Participants were evaluated for working memory performance using a modified N-back working memory task while undergoing Blood Oxygen Level Dependent (BOLD) fMRI measurements. Fibromyalgia patients and controls did not differ in working memory performance. Subjective appraisal of cognitive function was associated with better performance (accuracy) on the working memory task in healthy controls but not in fibromyalgia patients. In fibromyalgia patients, increased perceived cognitive difficulty was positively correlated with the severity of their symptoms. BOLD response during the working memory task did not differ between the groups. BOLD response correlated with task accuracy in control subjects but not in fibromyalgia patients. Increased subjective cognitive impairment correlated with decreased BOLD response in both groups but in different anatomic regions. In conclusion, “fibrofog” appears to be better characterized by subjective rather than objective impairment. Neurologic correlates of this subjective experience of impairment might be separate from those involved in the performance of cognitive tasks. PMID:26955513

  12. Priming performance-related concerns induces task-related mind-wandering.

    PubMed

    Jordano, Megan L; Touron, Dayna R

    2017-10-01

    Two experiments tested the hypothesis that priming of performance-related concerns would (1) increase the frequency of task-related mind-wandering (i.e., task-related interference; TRI) and (2) decrease task performance. In each experiment, sixty female participants completed an operation span task (OSPAN) containing thought content probes. The task was framed as a math task for those in a condition primed for math-related stereotype threat and as a memory task for those in a control condition. In both studies, women whose performance-related concerns were primed via stereotype threat reported more TRI than women in the control. The second experiment used a more challenging OSPAN task and stereotype primed women also had lower math accuracy than controls. These results support the "control failures×current concerns" framework of mind-wandering, which posits that the degree to which the environmental context triggers personal concerns influences both mind-wandering frequency and content. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Commonly used reference values underestimate oxygen uptake in healthy, 50-year-old Swedish women.

    PubMed

    Genberg, M; Andrén, B; Lind, L; Hedenström, H; Malinovschi, A

    2018-01-01

    Cardiopulmonary exercise testing (CPET) is the gold standard among clinical exercise tests. It combines a conventional stress test with measurement of oxygen uptake (V O 2 ) and CO 2 production. No validated Swedish reference values exist, and reference values in women are generally understudied. Moreover, the importance of achieved respiratory exchange ratio (RER) and the significance of breathing reserve (BR) at peak exercise in healthy individuals are poorly understood. We compared V O 2 at maximal load (peakV O 2 ) and anaerobic threshold (V O 2@ AT ) in healthy Swedish individuals with commonly used reference values, taking gender into account. Further, we analysed maximal workload and peakV O 2 with regard to peak RER and BR. In all, 181 healthy, 50-year-old individuals (91 women) performed CPET. PeakV O 2 was best predicted using Jones et al. (100·5%), while SHIP reference values underestimated peakV O 2 most: 112·5%. Furthermore, underestimation of peakV O 2 in women was found for all studied reference values (P<0·001) and was largest for SHIP: women had 128% of predicted peakV O 2 , while men had 104%. PeakV O 2 was similar in subjects with peak RER of 1-1·1 and RER > 1·1 (2 328·7 versus 2 176·7 ml min -1 , P = 0·11). Lower BR (≤30%) related to significantly higher peakV O 2 (P<0·001). In conclusion, peakV O 2 was best predicted by Jones. All studied reference values underestimated oxygen uptake in women. No evidence for demanding RER > 1·1 in healthy individuals was found. A lowered BR is probably a normal response to higher workloads in healthy individuals. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  14. Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network

    PubMed Central

    Tommasin, Silvia; Mascali, Daniele; Gili, Tommaso; Assan, Ibrahim Eid; Moraschi, Marta; Fratini, Michela; Wise, Richard G.; Macaluso, Emiliano; Mangia, Silvia; Giove, Federico

    2017-01-01

    Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task. PMID:28845420

  15. The importance of perivitelline fluid convection to oxygen uptake of Pseudophryne bibronii eggs.

    PubMed

    Mueller, Casey A; Seymour, Roger S

    2011-01-01

    The ciliated epithelium of amphibian embryos produces a current within the perivitelline fluid of the egg that is important in the convective transfer of oxygen to the embryo's surface. The effects of convection on oxygen uptake and the immediate oxygen environment of the embryo were investigated in Pseudophryne bibronii. Gelatin was injected into the eggs, setting the perivitelline fluid and preventing convective flow. Oxygen consumption rate (M(.)o₂) and the oxygen partial pressure (Po₂) of the perivitelline fluid were measured in eggs with and without this treatment. M(.)o₂ decreased in eggs without convection at Gosner stages 17-19 under normoxia. The lack of convection also shifted embryos from regulators to conformers as environmental Po₂ decreased. A strong Po₂ gradient formed within the eggs when convection was absent, demonstrating that the loss of convection is equivalent to decreasing the inner radius of the capsule, an important factor in gas exchange, by 25%. M(.)o₂ also declined in stage 26-27 embryos without cilia-driven convection, although not to the extent of younger stages, because of muscular movements and a greater skin surface area in direct contact with the inner capsule wall. This study demonstrates the importance of convective flow within the perivitelline fluid to gas exchange. Convection is especially important in the middle of embryonic development, when the perivitelline space has formed, creating a barrier to gas exchange, but the embryos have yet to develop muscular movements or have a large surface area exposed directly to the jelly capsule.

  16. A neural measure of behavioral engagement: task-residual low-frequency blood oxygenation level-dependent activity in the precuneus.

    PubMed

    Zhang, Sheng; Li, Chiang-Shan Ray

    2010-01-15

    Brain imaging has provided a useful tool to examine the neural processes underlying human cognition. A critical question is whether and how task engagement influences the observed regional brain activations. Here we highlighted this issue and derived a neural measure of task engagement from the task-residual low-frequency blood oxygenation level-dependent (BOLD) activity in the precuneus. Using independent component analysis, we identified brain regions in the default circuit - including the precuneus and medial prefrontal cortex (mPFC) - showing greater activation during resting as compared to task residuals in 33 individuals. Time series correlations with the posterior cingulate cortex as the seed region showed that connectivity with the precuneus was significantly stronger during resting as compared to task residuals. We hypothesized that if the task-residual BOLD activity in the precuneus reflects engagement, it should account for a certain amount of variance in task-related regional brain activation. In an additional experiment of 59 individuals performing a stop signal task, we observed that the fractional amplitude of low-frequency fluctuation (fALFF) of the precuneus but not the mPFC accounted for approximately 10% of the variance in prefrontal activation related to attentional monitoring and response inhibition. Taken together, these results suggest that task-residual fALFF in the precuneus may be a potential indicator of task engagement. This measurement may serve as a useful covariate in identifying motivation-independent neural processes that underlie the pathogenesis of a psychiatric or neurological condition.

  17. Skeletal muscle fatigue precedes the slow component of oxygen uptake kinetics during exercise in humans.

    PubMed

    Cannon, Daniel T; White, Ailish C; Andriano, Melina F; Kolkhorst, Fred W; Rossiter, Harry B

    2011-02-01

    The mechanisms determining exercise intolerance are poorly understood. A reduction in work efficiency in the form of an additional energy cost and oxygen requirement occurs during high-intensity exercise and contributes to exercise limitation. Muscle fatigue and subsequent recruitment of poorly efficient muscle fibres has been proposed to mediate this decline. These data demonstrate in humans, that muscle fatigue, generated in the initial minutes of exercise, is correlated with the increasing energy demands of high-intensity exercise. Surprisingly, however, while muscle fatigue reached a plateau, oxygen uptake continued to increase throughout 8 min of exercise. This suggests that additional recruitment of inefficient muscle fibres may not be the sole mechanism contributing to the decline in work efficiency during high-intensity exercise.

  18. Estimation of maximal oxygen uptake by bioelectrical impedance analysis.

    PubMed

    Stahn, Alexander; Terblanche, Elmarie; Grunert, Sven; Strobel, Günther

    2006-02-01

    Previous non-exercise models for the prediction of maximal oxygen uptake VO(2max) have failed to accurately discriminate cardiorespiratory fitness within large cohorts. The aim of the present study was to evaluate the feasibility of a completely indirect method for predicting VO(2max) that was based on bioelectrical impedance analysis (BIA) in 66 young, healthy fit men and women. Multiple, stepwise regression analysis was used to determine the usefulness of BIA and additional covariates to estimate VO(2max) (ml min(-1)). BIA was highly correlated to VO(2max) (r = 0.914; P < 0.001) and entered the regression equation first. The inclusion of gender and a physical activity rating further improved the model which accounted for 88% of the variance in VO(2max) and resulted in a relative standard error of the estimate (SEE) of 7.2%. Substantial agreement between the methods was confirmed by the fact that nearly all the differences were within +/-2 SD. Furthermore, in contrast to previously published non-exercise models, no trend of a reduction in prediction accuracy with increasing VO(2max) values was apparent. It was concluded that a non-exercise model based on BIA might be a rapid and useful technique to estimate VO(2max), when a direct test does not seem feasible. However, though the present results are useful to determine the viability of the method, further refinement of the BIA approach and its validation in a large, diverse population is needed before it can be applied to the clinical and epidemiological settings.

  19. Brain oxygen utilization is unchanged by hypoglycemia in normal humans: lactate, alanine, and leucine uptake are not sufficient to offset energy deficit.

    PubMed

    Lubow, Jeffrey M; Piñón, Ivan G; Avogaro, Angelo; Cobelli, Claudio; Treeson, David M; Mandeville, Katherine A; Toffolo, Gianna; Boyle, Patrick J

    2006-01-01

    During hypoglycemia, substrates other than glucose have been suggested to serve as alternate neural fuels. We evaluated brain uptake of endogenously produced lactate, alanine, and leucine at euglycemia and during insulin-induced hypoglycemia in 17 normal subjects. Cross-brain arteriovenous differences for plasma glucose, lactate, alanine, leucine, and oxygen content were quantitated. Cerebral blood flow (CBF) was measured by Fick methodology using N(2)O as the dilution indicator gas. Substrate uptake was measured as the product of CBF and the arteriovenous concentration difference. As arterial glucose concentration fell, cerebral oxygen utilization and CBF remained unchanged. Brain glucose uptake (BGU) decreased from 36.3+/-2.6 to 26.6+/-2.1 micromol.100 g of brain(-1).min(-1) (P<0.001), equivalent to a drop in ATP of 291 micromol.100 g(-1).min(-1). Arterial lactate rose (P<0.001), whereas arterial alanine and leucine fell (P<0.009 and P<0.001, respectively). Brain lactate uptake (BLU) increased from a net release of -1.8+/- 0.6 to a net uptake of 2.5+/-1.2 micromol.100 g(-1).min(-1) (P<0.001), equivalent to an increase in ATP of 74 micromol.100 g(-1).min(-1). Brain leucine uptake decreased from 7.1+/-1.2 to 2.5 +/- 0.5 micromol.100 g(-1).min(-1) (P<0.001), and brain alanine uptake trended downward (P<0.08). We conclude that the ATP generated from the physiological increase in BLU during hypoglycemia accounts for no more than 25% of the brain glucose energy deficit.

  20. Temporal dissociation between muscle and pulmonary oxygen uptake kinetics: influences of perfusion dynamics and arteriovenous oxygen concentration differences in muscles and lungs.

    PubMed

    Drescher, U; Koschate, J; Thieschäfer, L; Schneider, S; Hoffmann, U

    2018-06-22

    The aim of the study was to test whether or not the arteriovenous oxygen concentration difference (avDO 2 ) kinetics at the pulmonary (avDO 2 pulm) and muscle (avDO 2 musc) levels is significantly different during dynamic exercise. A re-analysis involving six publications dealing with kinetic analysis was utilized with an overall sample size of 69 participants. All studies comprised an identical pseudorandom binary sequence work rate (WR) protocol-WR changes between 30 and 80 W-to analyze the kinetic responses of pulmonary ([Formula: see text]) and muscle ([Formula: see text]) oxygen uptake kinetics as well as those of avDO 2 pulm and avDO 2 musc. A significant difference between [Formula: see text] (0.395 ± 0.079) and [Formula: see text] kinetics (0.330 ± 0.078) was observed (p < 0.001), where the variables showed a significant relationship (r SP  = 0.744, p < 0.001). There were no significant differences between avDO 2 musc (0.446 ± 0.077) and avDO 2 pulm kinetics (0.451 ± 0.075), which are highly correlated (r = 0.929, p < 0.001). It is suggested that neither avDO 2 pulm nor avDO 2 musc kinetic responses seem to be responsible for the differences between estimated [Formula: see text] and measured [Formula: see text] kinetics. Obviously, the conflation of avDO 2 and perfusion ([Formula: see text] ) at different points in time and at different physiological levels drive potential differences in [Formula: see text] and [Formula: see text] kinetics. Therefore, [Formula: see text] should, in general, be considered whenever oxygen uptake kinetics are analyzed or discussed.

  1. [Dynamics of oxygen uptake during a 100 m front crawl event, performed during competition ].

    PubMed

    Jalab, Chadi; Enea, Carina; Delpech, Nathalie; Bernard, Olivier

    2011-04-01

    The main purpose of this study is to estimate the dynamics of oxygen uptake (VO2) during a 100 m front crawl event, performed in competition conditions. Eleven trained swimmers participated in 2 separate sessions, in a 25 m swimming pool. Maximal oxygen uptake (VO2max) was determined during a 400 m maximal event. Swimmers also performed a 100 m front crawl in competition conditions, and then, 3 tests (25, 50, and 75 m) following the pacing strategy of the 100 m event. To be free of technical constraints, VO2 was not measured during the tests, but before and just at the end of each test with a 1 min breath-by-breath method. Each post-test VO2 measurement (after 25, 50, 75, and 100 m) allows us to reconstruct the VO2 kinetics of the 100 m performance. Our results differ from previous studies in that VO2 increases faster in the first half of the race (at 50 m, VO2 ≈ 94% VO2max), reaches VO2max at the 75 m mark; then a decrease in VO2 corresponding to 7% of VO2max appears during the last 25 m. These differences are supposed to be mainly the consequences of the adoption of technical elements and a pacing strategy similar to competition conditions. In the future, these observations may lead to different considerations of the bioenergetic contributions.

  2. Oxygen Uptake Responses to Submaximal Exercise Loads Do Not Change During Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Moore, Alan D., Jr.; Evetts, Simon N.; Feiveson, Alan H.; Lee, S. M. C.; McCleary, Frank A.; Platts, Steven H.; Ploutz-Snyder, Lori

    2011-01-01

    In previous publications we have reported that the heart rate (HR) responses to graded submaximal exercise tests are elevated during long-duration International Space Station (ISS) flights. Furthermore, the elevation in HR appears greater earlier, rather than later, during the missions. A potential confounder in the interpretation of HR results from graded exercise tests on ISS is that the cycle ergometer used (CEVIS) is vibration-isolated from the station structure. This feature causes the CEVIS assembly to sway slightly during its use and debriefing comments by some crewmembers indicate that there is a "learning curve" associated with CEVIS use. Therefore, one could not exclude the possibility that the elevated HRs experienced in the early stages of ISS missions were related to a lowered metabolic efficiency of CEVIS exercise that would raise the submaximal oxygen uptake (VO2) associated with graded exercise testing work rates.

  3. Hemodynamic responses on prefrontal cortex related to meditation and attentional task

    PubMed Central

    Deepeshwar, Singh; Vinchurkar, Suhas Ashok; Visweswaraiah, Naveen Kalkuni; Nagendra, Hongasandra RamaRao

    2015-01-01

    Recent neuroimaging studies state that meditation increases regional cerebral blood flow (rCBF) in the prefrontal cortex (PFC). The present study employed functional near infrared spectroscopy (fNIRS) to evaluate the relative hemodynamic changes in PFC during a cognitive task. Twenty-two healthy male volunteers with ages between 18 and 30 years (group mean age ± SD; 22.9 ± 4.6 years) performed a color-word stroop task before and after 20 min of meditation and random thinking. Repeated measures ANOVA was performed followed by a post hoc analysis with Bonferroni adjustment for multiple comparisons between the mean values of “During” and “Post” with “Pre” state. During meditation there was an increased in oxy-hemoglobin (ΔHbO) and total hemoglobin (ΔTHC) concentration with reduced deoxy-hemoglobin (ΔHbR) concentration over the right prefrontal cortex (rPFC), whereas in random thinking there was increased ΔHbR with reduced total hemoglobin concentration on the rPFC. The mean reaction time (RT) was shorter during stroop color word task with concomitant reduction in ΔTHC after meditation, suggestive of improved performance and efficiency in task related to attention. Our findings demonstrated that meditation increased cerebral oxygenation and enhanced performance, which was associated with activation of the PFC. PMID:25741245

  4. Process optimization involving critical evaluation of oxygen transfer, oxygen uptake and nitrogen limitation for enhanced biomass and lipid production by oleaginous yeast for biofuel application.

    PubMed

    Chopra, Jayita; Sen, Ramkrishna

    2018-04-20

    Lipid accumulation in oleaginous yeast is generally induced by nitrogen starvation, while oxygen saturation can influence biomass growth. Systematic shake flask studies that help in identifying the right nitrogen source and relate its uptake kinetics to lipid biosynthesis under varying oxygen saturation conditions are very essential for addressing the bioprocessing-related issues, which are envisaged to occur in the fermenter scale production. In the present study, lipid bioaccumulation by P. guilliermondii at varying C:N ratios and oxygen transfer conditions (assessed in terms of k L a) was investigated in shake flasks using a pre-optimized N-source and a two-stage inoculum formulated in a hybrid medium. A maximum lipid concentration of 10.8 ± 0.5 g L -1 was obtained in shake flask study at the optimal condition with an initial C:N and k L a of 60:1 and 0.6 min -1 , respectively, at a biomass specific growth rate of 0.11 h -1 . Translating these optimal shake flask conditions to a 3.7 L stirred tank reactor resulted in biomass and lipid concentrations of 16.74 ± 0.8 and 8 ± 0.4 g L -1 . The fatty acid methyl ester (FAME) profile of lipids obtained by gas chromatography was found to be suitable for biodiesel application. We strongly believe that the rationalistic approach-based design of experiments adopted in the study would help in achieving high cell density with improved lipid accumulation and also minimize the efforts towards process optimization during bioreactor level operations, consequently reducing the research and development-associated costs.

  5. Cycling Power Outputs Predict Functional Threshold Power And Maximum Oxygen Uptake.

    PubMed

    Denham, Joshua; Scott-Hamilton, John; Hagstrom, Amanda D; Gray, Adrian J

    2017-09-11

    Functional threshold power (FTP) has emerged as a correlate of lactate threshold and is commonly assessed by recreational and professional cyclists for tailored exercise programing. To identify whether results from traditional aerobic and anaerobic cycling tests could predict FTP and V˙ O2max, we analysed the association between estimated FTP, maximum oxygen uptake (V˙ O2max [mlkgmin]) and power outputs obtained from a maximal cycle ergometry cardiopulmonary exercise test (CPET) and a 30-s Wingate test in a heterogeneous cohort of cycle-trained and untrained individuals (N=40, mean±SD; age: 32.6±10.6 y; relative V˙ O2max: 46.8±9.1 mlkgmin). The accuracy and sensitivity of the prediction equations was also assessed in young men (N=11) before and after a 6-wk sprint interval training intervention.Moderate to strong positive correlations were observed between FTP, relative V˙ O2max and power outputs achieved during incremental and 30-s Wingate cycling tests (r=.39-.965, all P<.05). While maximum power achieved during incremental cycle testing (Pmax) and relative V˙ O2max were predictors of FTP (r =.93), age and FTP (Wkg) estimated relative V˙ O2max (r=.80). Our findings confirm that FTP predominantly relies on aerobic metabolism and indicate both prediction models are sensitive enough to detect meaningful exercise-induced changes in FTP and V˙ O2max. Thus, coaches should consider limiting the time and load demands placed on athletes by conducting a maximal cycle ergometry CPET to estimate FTP. Additionally, a 20-min FTP test is a convenient method to assess V˙ O2max and is particularly relevant for exercise professionals without access to expensive CPET equipment.

  6. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    PubMed

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  7. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    PubMed Central

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-01-01

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)-capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters. PMID:28208642

  8. Task-related modulations of BOLD low-frequency fluctuations within the default mode network

    NASA Astrophysics Data System (ADS)

    Tommasin, Silvia; Mascali, Daniele; Gili, Tommaso; Eid Assan, Ibrahim; Moraschi, Marta; Fratini, Michela; Wise, Richard G.; Macaluso, Emiliano; Mangia, Silvia; Giove, Federico

    2017-07-01

    Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33±6 years, 8F/12M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the steady-state execution of a sustained working memory n-back task. We found that the steady state execution of such a task impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to steady-state task execution, can contribute to a better understanding of how brain networks rearrange themselves in response of a task.

  9. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    PubMed

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent

  10. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems

    PubMed Central

    Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; de Visser, Pieter H. B.; Marcelis, Leo F. M.

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15–17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent

  11. Laser irradiation of mouse spermatozoa enhances in-vitro fertilization and Ca2+ uptake via reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Cohen, Natalie; Lubart, Rachel; Rubinstein, Sara; Breitbart, Haim

    1996-11-01

    630 nm He-Ne laser irradiation was found to have a profound influence on Ca2+ uptake in mouse spermatozoa and the fertilizing potential of these cells. Laser irradiation affected mainly the mitochondrial Ca2+ transport mechanisms. Furthermore, the effect of light was found to be Ca2+-dependent. We demonstrate that reactive oxygen species (ROS) are involved in the cascade of biochemical events evoked by laser irradiation. A causal association between laser irradiation, ROS generation, and sperm function was indicated by studies with ROS scavengers, superoxide dismutase (SOD) and catalase, and exogenous hydrogen peroxide. SOD treatment resulted in increased Ca2+ uptake and in enhanced fertilization rate. Catalase treatment impaired the light-induced stimulation in Ca2+ uptake and fertilization rate. Exogenous hydrogen peroxide was found to enhance Ca2+ uptake in mouse spermatozoa and the fertilizing capability of these cells in a dose-dependent manner. These results suggest that the effect of 630 nm He-Ne laser irradiation is mediated through the generation of hydrogen peroxide by the spermatozoa and that this effect plays a significant role in the augmentation of the sperm cells' capability to fertilize metaphase II-arrested eggs in-vitro.

  12. Maximal oxygen uptake is proportional to muscle fiber oxidative capacity, from chronic heart failure patients to professional cyclists.

    PubMed

    van der Zwaard, Stephan; de Ruiter, C Jo; Noordhof, Dionne A; Sterrenburg, Renske; Bloemers, Frank W; de Koning, Jos J; Jaspers, Richard T; van der Laarse, Willem J

    2016-09-01

    V̇o2 max during whole body exercise is presumably constrained by oxygen delivery to mitochondria rather than by mitochondria's ability to consume oxygen. Humans and animals have been reported to exploit only 60-80% of their mitochondrial oxidative capacity at maximal oxygen uptake (V̇o2 max). However, ex vivo quantification of mitochondrial overcapacity is complicated by isolation or permeabilization procedures. An alternative method for estimating mitochondrial oxidative capacity is via enzyme histochemical quantification of succinate dehydrogenase (SDH) activity. We determined to what extent V̇o2 max attained during cycling exercise differs from mitochondrial oxidative capacity predicted from SDH activity of vastus lateralis muscle in chronic heart failure patients, healthy controls, and cyclists. V̇o2 max was assessed in 20 healthy subjects and 28 cyclists, and SDH activity was determined from biopsy cryosections of vastus lateralis using quantitative histochemistry. Similar data from our laboratory of 14 chronic heart failure patients and 6 controls were included. Mitochondrial oxidative capacity was predicted from SDH activity using estimated skeletal muscle mass and the relationship between ex vivo fiber V̇o2 max and SDH activity of isolated single muscle fibers and myocardial trabecula under hyperoxic conditions. Mitochondrial oxidative capacity predicted from SDH activity was related (r(2) = 0.89, P < 0.001) to V̇o2 max measured during cycling in subjects with V̇o2 max ranging from 9.8 to 79.0 ml·kg(-1)·min(-1) V̇o2 max measured during cycling was on average 90 ± 14% of mitochondrial oxidative capacity. We conclude that human V̇o2 max is related to mitochondrial oxidative capacity predicted from skeletal muscle SDH activity. Mitochondrial oxidative capacity is likely marginally limited by oxygen supply to mitochondria. Copyright © 2016 the American Physiological Society.

  13. Biomass characterization by dielectric monitoring of viability and oxygen uptake rate measurements in a novel membrane bioreactor.

    PubMed

    Shariati, Farshid Pajoum; Heran, Marc; Sarrafzadeh, Mohammad Hossein; Mehrnia, Mohammad Reza; Sarzana, Gabriele; Ghommidh, Charles; Grasmick, Alain

    2013-07-01

    The application of permittivity and oxygen uptake rate (OUR) as biological process control parameters in a wastewater treatment system was evaluated. Experiments were carried out in a novel airlift oxidation ditch membrane bioreactor under different organic loading rates (OLR). Permittivity as representative of activated sludge viability was measured by a capacitive on-line sensor. OUR was also measured as a representative for respirometric activity. Results showed that the biomass concentration increases with OLR and all biomass related measurements and simulators such as MLSS, permittivity, OUR, ASM1 and ASM3 almost follow the same increasing trends. The viability of biomass decreased when the OLR was reduced from 5 to 4 kg COD m(-3)d(-1). During decreasing of OLR, biomass related parameters generally decreased but not in a similar manner. Also, protein concentration in the system during OLR decreasing changed inversely with the activated sludge viability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. [Monitoring the oxygen supply of skeletal muscle and total oxygen uptake in coronary surgery interventions].

    PubMed

    Boekstegers, P; Fleckenstein, W; Rosport, A; Ruschewsky, W; Braun, U

    1988-05-01

    In patients undergoing aortocoronary bypass operations, extensive monitoring is used for early recognition of complications that may decrease the oxygen supply of body organs. However, none of the parameters usually monitored during open-heart surgery yield information on the state of oxygen supply to a certain organ. Particularly during and after extracorporeal circulation (ECC), undetected organ hypoxia may occur and lead to an increase in postoperative complications. In order to study whether functionally significant changes in oxygen supply to skeletal muscle occur during extracorporeal circulation, in 14 patients undergoing aortocoronary bypass operations pO2 histograms from local pO2 values in resting skeletal muscle were monitored. Intra- and postoperatively, whole-body oxygen uptake (VO2) and pO2 histograms of skeletal muscle were simultaneously measured to determine whether the observed decrease in VO2 during cooling of the patient or the increase in VO2 during rewarming was reflected in the distribution of tissue pO2 in skeletal muscle. PATIENTS AND METHODS. Fourteen patients (aged 42 to 68; 12 male, 2 female) scheduled for 2-4 aortocoronary venous bypass grafts were studied. Measuring periods of 6 min were undertaken after induction of anesthesia (1), after thoracotomy (2), during ECC (3), after ECC (2), and every hour postoperatively up to 5 h. The following data were measured during each period: pO2 histograms of the biceps brachii muscle using a pO2 histograph VO2 using open indirect calorimetry; arterial (a. radialis) and venous (v. cava superior) blood gases, acid-base balances, and blood pressures; venous lactate (v. cava superior); muscle and rectal temperatures. RESULTS. During ECC mean muscle pO2 in all 14 patients decreased from 25 to 14 mmHg. In 7 of 14 patients pO2 values between 0 and 5 mmHg had the highest incidence (left-shifted pO2 histograms). After ECC mean muscle pO2 increased to the same value observed before ECC (25 mmHg). During the

  15. Predicting the practice effects on the blood oxygenation level-dependent (BOLD) function of fMRI in a symbolic manipulation task

    NASA Astrophysics Data System (ADS)

    Qin, Yulin; Sohn, Myeong-Ho; Anderson, John R.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Carter, Cameron S.

    2003-04-01

    Based on adaptive control of thought-rational (ACT-R), a cognitive architecture for cognitive modeling, researchers have developed an information-processing model to predict the blood oxygenation level-dependent (BOLD) response of functional MRI in symbol manipulation tasks. As an extension of this research, the current event-related functional MRI study investigates the effect of relatively extensive practice on the activation patterns of related brain regions. The task involved performing transformations on equations in an artificial algebra system. This paper shows that the base-level activation learning in the ACT-R theory can predict the change of the BOLD response in practice in a left prefrontal region reflecting retrieval of information. In contrast, practice has relatively little effect on the form of BOLD response in the parietal region reflecting imagined transformations to the equation or the motor region reflecting manual programming.

  16. Pulmonary Oxygen Uptake Kinetics During Exercise in Subclinical Hypothyroidism

    PubMed Central

    Coelho, Emerson Filipino; de Lima, Jorge Roberto Perrout; Laterza, Mateus Camaroti; Barral, Marselha Marques; Teixeira, Patrícia de Fátima dos Santos; Vaisman, Mário

    2014-01-01

    Background: Patients with subclinical hypothyroidism (SCH) have lower exercise tolerance, but the impact on oxygen uptake (VO2) kinetics is unknown. This study evaluated VO2 kinetics during and after a constant load submaximal exercise in SCH. Methods: The study included 19 women with SCH (thyrotropin (TSH)=6.87±2.88 μIU/mL, free thyroxine (fT4)=0.97±0.15 ng/dL) and 19 controls (TSH=2.29±0.86 μIU/mL, T4=0.99±0.11 ng/dL) aged between 20 and 55 years. Ergospirometry exercise testing was performed for six minutes with a constant load of 50 W, followed by six minutes of passive recovery. The VO2 kinetics was quantified by the mean response time (MRT), which is the exponential time constant and approximates the time needed to reach 63% of change in VO2 (ΔVO2). The O2 deficit—energy supplied by anaerobic metabolism at the onset of exercise—and O2 debit—extra energy demand during the recovery period—were calculated by the formula MRT×ΔVO2. Values are mean±standard deviation. Results: In the rest-exercise transition, patients with SCH showed slower VO2 kinetics (MRT=47±8 sec vs. 40±6 sec, p=0.004) and a higher oxygen deficit (580±102 mL vs. 477±95 mL, p=0.003) than controls respectively. In the exercise-recovery transition, patients with SCH also showed slower VO2 kinetics (MRT=54±6 sec vs. 44±6 sec, p=0.001) and a higher oxygen debit (679±105 mL vs. 572±104 mL, p=0.003). The VO2 kinetics showed a significant correlation with TSH (p<0.05). Conclusions: This study demonstrates that women with SCH have the slowest VO2 kinetics in the onset and recovery of a constant-load submaximal exercise and highlights that this impairment is already manifest in the early stage of the disease. PMID:24512502

  17. Pulmonary oxygen uptake kinetics during exercise in subclinical hypothyroidism.

    PubMed

    Werneck, Francisco Zacaron; Coelho, Emerson Filipino; de Lima, Jorge Roberto Perrout; Laterza, Mateus Camaroti; Barral, Marselha Marques; Teixeira, Patrícia de Fátima Dos Santos; Vaisman, Mário

    2014-06-01

    Patients with subclinical hypothyroidism (SCH) have lower exercise tolerance, but the impact on oxygen uptake (VO2) kinetics is unknown. This study evaluated VO2 kinetics during and after a constant load submaximal exercise in SCH. The study included 19 women with SCH (thyrotropin (TSH)=6.87±2.88 μIU/mL, free thyroxine (fT4)=0.97±0.15 ng/dL) and 19 controls (TSH=2.29±0.86 μIU/mL, T4=0.99±0.11 ng/dL) aged between 20 and 55 years. Ergospirometry exercise testing was performed for six minutes with a constant load of 50 W, followed by six minutes of passive recovery. The VO2 kinetics was quantified by the mean response time (MRT), which is the exponential time constant and approximates the time needed to reach 63% of change in VO2 (ΔVO2). The O2 deficit-energy supplied by anaerobic metabolism at the onset of exercise-and O2 debit-extra energy demand during the recovery period-were calculated by the formula MRT×ΔVO2. Values are mean±standard deviation. In the rest-exercise transition, patients with SCH showed slower VO2 kinetics (MRT=47±8 sec vs. 40±6 sec, p=0.004) and a higher oxygen deficit (580±102 mL vs. 477±95 mL, p=0.003) than controls respectively. In the exercise-recovery transition, patients with SCH also showed slower VO2 kinetics (MRT=54±6 sec vs. 44±6 sec, p=0.001) and a higher oxygen debit (679±105 mL vs. 572±104 mL, p=0.003). The VO2 kinetics showed a significant correlation with TSH (p<0.05). This study demonstrates that women with SCH have the slowest VO2 kinetics in the onset and recovery of a constant-load submaximal exercise and highlights that this impairment is already manifest in the early stage of the disease.

  18. Cardiovascular fitness and executive control during task-switching: an ERP study.

    PubMed

    Scisco, Jenna L; Leynes, P Andrew; Kang, Jie

    2008-07-01

    Cardiovascular fitness recently has been linked to executive control function in older adults. The present study examined the relationship between cardiovascular fitness and executive control in young adults using event-related potentials (ERPs). Participants completed a two-part experiment. In part one, a graded exercise test (GXT) was administered using a cycle ergometer to obtain VO(2)max, a measure of maximal oxygen uptake. High-fit participants had VO(2)max measures at or above the 70th percentile based on age and sex, and low-fit participants had VO(2)max measures at or below the 30th percentile. In part two, a task-switching paradigm was used to investigate executive control. Task-switching trials produced slower response times and greater amplitude for both the P3a and P3b components of the ERP relative to a non-switch trial block. No ERP components varied as a function of fitness group. These findings, combined with results from previous research, suggest that the relationship between greater cardiovascular fitness and better cognitive function emerges after early adulthood.

  19. Stroop Task-Related Brain Activity in Patients With Insomnia: Changes After Cognitive-Behavioral Therapy for Insomnia.

    PubMed

    Hwang, Jeong Yeon; Kim, Nambeom; Kim, Soohyun; Park, Juhyun; Choi, Jae-Won; Kim, Seog Ju; Kang, Chang-Ki; Lee, Yu Jin

    2018-02-16

    In the present study, we compared differences in brain activity during the Stroop task between patients with chronic insomnia disorder (CID) and good sleepers (GS). Furthermore, we evaluated changes in Stroop task-related brain activity after cognitive-behavioral therapy for insomnia (CBT-I). The final analysis included 21 patients with CID and 25 GS. All participants underwent functional magnetic resonance imaging (fMRI) while performing the color-word Stroop task. CBT-I, consisting of 5 sessions, was administered to 14 patients with CID in the absence of medication. After CBT-I, fMRI was repeated in the patients with CID while performing the same task. Sleep-related questionnaires and sleep variables from a sleep diary were also obtained before and after CBT-I. No significant differences in behavioral performance in the Stroop task or task-related brain activation were observed between the CID and GS groups. No changes in behavioral performance or brain activity were found after CBT-I. However, clinical improvement in the Insomnia Severity Index (ISI) score was significantly associated with changes in the Stroop task-related regional blood oxygen level-dependent signals in the left supramarginal gyrus. Our findings suggest that cognitive impairment in patients with CID was not detectable by the Stroop task or Stroop task-related brain activation on fMRI. Moreover, there was no altered brain activity during the Stroop task after CBT-I. However, the ISI score reflected changes in the neural correlates of cognitive processes in patients with CID after CBT-I.

  20. Intra-dialytic training accelerates oxygen uptake kinetics in hemodialysis patients.

    PubMed

    Reboredo, Maycon M; Neder, J Alberto; Pinheiro, Bruno V; Henrique, Diane Mn; Lovisi, Julio Cm; Paula, Rogério B

    2015-07-01

    End-stage renal disease is associated with several hemodynamic and peripheral muscle abnormalities that could slow the rate of change in oxygen uptake ([Formula: see text]O2) at the onset and at the end of exercise. This study was performed to determine whether an intra-dialytic aerobic training program would speed [Formula: see text]O2 kinetics at the transition to and from moderate and high-intensity exercise. This study was a randomized controlled trial. Twenty-four patients with end-stage renal disease (14 females; 47.0 ± 11.9 years) were randomly assigned to either 12-week cycle ergometer-based training at moderate exertion or a similar control period. At initial and final evaluations, patients underwent 6 min moderate and high-intensity tests to exercise intolerance (Tlim). Training improved Tlim by ∼90% (median (inter-quartile range) = 232 (59) s to 445 (451) s, p < 0.05); in contrast, Tlim decreased by ∼30% in controls (291 (134) s to 202 (131) s). [Formula: see text]O2 kinetics at the onset of moderate-intensity exercise were significantly accelerated with training leading to lower oxygen (O2) deficit (mean ± standard deviation (SD) = 3.2 ± 1.3 l vs 2.3 ± 1.2 l). Similar positive effects were found at the high-intensity test either at the onset of, or recovery from, exercise (p < 0.05). "Excess" [Formula: see text]O2 at the high-intensity test was also lessened with training. Changes in Tlim correlated with faster [Formula: see text]O2 kinetics and lower "excess" [Formula: see text]O2 (Spearman's ρ = -0.56 and -0.75, respectively; p < 0.01). A symptom-targeted intra-dialytic training program improved sub-maximal aerobic metabolism and endurance exercise capacity. [Formula: see text]O2 kinetics are valuable in providing relatively effort-independent information on the efficacy of exercise interventions in this patient population. © The European Society of Cardiology 2014 Reprints and permissions

  1. The Effect of Size of Red Cells on the Kinetics of Their Oxygen Uptake

    PubMed Central

    Holland, R. A. B.; Forster, R. E.

    1966-01-01

    Using a double-beam stopped-flow apparatus estimations were made of the velocity constant for the initial uptake of oxygen by fully reduced erythrocytes (k'c). Mammalian cells were studied with volumes varying from 20 µ3 (goat) to 90 µ3 (man), as were bullfrog cells (680 µ3). Measurements were made under physiological conditions of pH, P CO2, and temperature. In man k'c was 80 mM -1 sec-1 and in other species smaller cells generally had a greater value for k'c than did the larger cells. In the goat it was 1.8 times as great as the human value; in the bullfrog it was only one-fifth as great. These differences could not be accounted for by interspecific differences in hemoglobin kinetics. The differences probably represent a true effect of size conferring some biological advantage on the species with the smaller cells. The cell membrane offered resistance to oxygen passage. Using the usual red cell model of an infinite sheet of reduced hemoglobin, membrane permeability appeared to differ among mammals. If, as is likely, the effective cell halfthickness differs among mammals, actual membrane permeability differences may be less. A method for measurement of oxygen saturation of dilute cell suspensions is also described. PMID:5943611

  2. Coupling of methylmercury uptake with respiration and water pumping in freshwater tilapia Oreochromis niloticus.

    PubMed

    Wang, Rui; Wong, Ming-Hung; Wang, Wen-Xiong

    2011-09-01

    The relationships among the uptake of toxic methylmercury (MeHg) and two important fish physiological processes-respiration and water pumping--in the Nile tilapia (Oreochromis niloticus) were explored in the present study. Coupled radiotracer and respirometric techniques were applied to measure simultaneously the uptake rates of MeHg, water, and oxygen under various environmental conditions (temperature, dissolved oxygen level, and water flow). A higher temperature enhanced MeHg influx and the oxygen consumption rate but had no effect on the water uptake, indicating the influence of metabolism on MeHg uptake. The fish showed a high tolerance to hypoxia, and the oxygen consumption rate was not affected until the dissolved oxygen concentration decreased to extremely low levels (below 1 mg/L). The MeHg and water uptake rates increased simultaneously as the dissolved oxygen level decreased, suggesting the coupling of water flux and MeHg uptake. The influence of fish swimming performance on MeHg uptake was also investigated for the first time. Rapidly swimming fish showed significantly higher uptake rates of MeHg, water, and oxygen, confirming the coupling relationships among respiration, water pumping, and metal uptake. Moreover, these results support that MeHg uptake is a rate-limiting process involving energy. Our study demonstrates the importance of physiological processes in understanding mercury bioaccumulation in fluctuating aquatic environments. Copyright © 2011 SETAC.

  3. Using Argo-O2 data to examine the impact of deep-water formation events on oxygen uptake in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Wolf, M. K.; Hamme, R. C.; Gilbert, D.; Yashayaev, I.

    2016-02-01

    Deep-water formation allows the deep ocean to communicate with the atmosphere, facilitating exchanges of heat as well as important gases such as CO2 and oxygen. The Labrador Sea is the most studied location of deep convection in the North Atlantic Ocean and a strong contributor to the global thermohaline circulation. Since there are no internal sources of oxygen below the euphotic zone, deep-water formation is vital for oxygen transport to the deep ocean. Recent studies document large interannual variability in the strength and depth of convection in the Labrador Sea, from mixed layers of 100m to greater than 1000m. A weakening of this deep convection starves the deep ocean of oxygen, disrupting crucial deep sea biological processes, as well as reducing oceanic CO2 uptake and ocean circulation. We used data from the extensive Argo float network to examine these deep-water formation events in the Labrador Sea. The oxygen optodes onboard many Argo floats suffer from biases whose amplitude must be determined; therefore we investigated and applied various optode calibration methods. Using calibrated vertical profiles of oxygen, temperature, and salinity, we observed the timing, magnitude, and location of deep convection, restratification, and spring phytoplankton blooms. In addition, we used surface oxygen values along with NCEP wind speeds to calculate the air-sea oxygen flux using a range of air-sea gas exchange parameterizations. We then compared this oxygen flux to the rate of change of the measured oxygen inventory. Where the inventory and flux did not agree, we identified other oceanic processes such as biological activity or lateral advection of water masses occurring, or advection of the float itself into a new area. The large role that horizontal advection of water or the float has on oxygen uptake and cycling leads us to conclude that this data cannot be easily interpreted as a 1-D system. Oxygen exchanges with the atmosphere at a faster rate than CO2, is

  4. Task preparation processes related to reward prediction precede those related to task-difficulty expectation

    PubMed Central

    Schevernels, Hanne; Krebs, Ruth M.; Santens, Patrick; Woldorff, Marty G.; Boehler, C. Nico

    2013-01-01

    Recently, attempts have been made to disentangle the neural underpinnings of preparatory processes related to reward and attention. Functional magnetic resonance imaging (fMRI) research showed that neural activity related to the anticipation of reward and to attentional demands invokes neural activity patterns featuring large-scale overlap, along with some differences and interactions. Due to the limited temporal resolution of fMRI, however, the temporal dynamics of these processes remain unclear. Here, we report an event-related potentials (ERP) study in which cued attentional demands and reward prospect were combined in a factorial design. Results showed that reward prediction dominated early cue processing, as well as the early and later parts of the contingent negative variation (CNV) slow-wave ERP component that has been associated with task-preparation processes. Moreover these reward-related electrophysiological effects correlated across participants with response-time speeding on reward-prospect trials. In contrast, cued attentional demands affected only the later part of the CNV, with the highest amplitudes following cues predicting high-difficulty potential-reward targets, thus suggesting maximal task preparation when the task requires it and entails reward prospect. Consequently, we suggest that task-preparation processes triggered by reward can arise earlier, and potentially more directly, than strategic top-down aspects of preparation based on attentional demands. PMID:24064071

  5. Arousal Modulates Activity in the Medial Temporal Lobe during a Short-Term Relational Memory Task

    PubMed Central

    Thoresen, Christian; Jensen, Jimmy; Sigvartsen, Niels Petter B.; Bolstad, Ingeborg; Server, Andres; Nakstad, Per H.; Andreassen, Ole A.; Endestad, Tor

    2011-01-01

    This study investigated the effect of arousal on short-term relational memory and its underlying cortical network. Seventeen healthy participants performed a picture by location, short-term relational memory task using emotional pictures. Functional magnetic resonance imaging was used to measure the blood-oxygenation-level dependent signal relative to task. Subjects’ own ratings of the pictures were used to obtain subjective arousal ratings. Subjective arousal was found to have a dose-dependent effect on activations in the prefrontal cortex, amygdala, hippocampus, and in higher order visual areas. Serial position analyses showed that high arousal trials produced a stronger primacy and recency effect than low arousal trials. The results indicate that short-term relational memory may be facilitated by arousal and that this may be modulated by a dose–response function in arousal-driven neuronal regions. PMID:22291626

  6. Absolute vs. Weight-Related Maximum Oxygen Uptake in Firefighters: Fitness Evaluation with and without Protective Clothing and Self-Contained Breathing Apparatus among Age Group

    PubMed Central

    Perroni, Fabrizio; Guidetti, Laura; Cignitti, Lamberto; Baldari, Carlo

    2015-01-01

    During fire emergencies, firefighters wear personal protective devices (PC) and a self-contained breathing apparatus (S.C.B.A.) to be protected from injuries. The purpose of this study was to investigate the differences of aerobic level in 197 firefighters (age: 34±7 yr; BMI: 24.4±2.3 kg.m-2), evaluated by a Queen’s College Step field Test (QCST), performed with and without fire protective garments, and to analyze the differences among age groups (<25 yr; 26-30 yr, 31-35 yr, 36-40 yr and >40 yr). Variance analysis was applied to assess differences (p < 0.05) between tests and age groups observed in absolute and weight-related values, while a correlation was examined between QCST with and without PC+S.C.B.A. The results have shown that a 13% of firefighters failed to complete the test with PC+S.C.B.A. and significant differences between QCST performed with and without PC+S.C.B.A. in absolute (F(1,169) = 42.6, p < 0.0001) and weight-related (F(1,169) = 339.9, p < 0.0001) terms. A better correlation has been found in L•min-1 (r=0.67) than in ml•kg-1•min-1 (r=0.54). Moreover, we found significant differences among age groups both in absolute and weight-related values. The assessment of maximum oxygen uptake of firefighters in absolute term can be a useful tool to evaluate the firefighters' cardiovascular strain. PMID:25764201

  7. Peak oxygen uptake and left ventricular ejection fraction, but not depressive symptoms, are associated with cognitive impairment in patients with chronic heart failure

    PubMed Central

    Steinberg, Gerrit; Lossnitzer, Nicole; Schellberg, Dieter; Mueller-Tasch, Thomas; Krueger, Carsten; Haass, Markus; Ladwig, Karl Heinz; Herzog, Wolfgang; Juenger, Jana

    2011-01-01

    Background The aim of the present study was to assess cognitive impairment in patients with chronic heart failure (CHF) and its associations with depressive symptoms and somatic indicators of illness severity, which is a matter of controversy. Methods and results Fifty-five patients with CHF (mean age 55.3 ± 7.8 years; 80% male; New York Heart Association functional class I–III) underwent assessment with an expanded neuropsychological test battery (eg, memory, complex attention, mental flexibility, psychomotor speed) to evaluate objective and subjective cognitive impairment. Depressive symptoms were assessed using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (SCID) and a self-report inventory (Hospital Anxiety and Depression Scale [HADS]). A comprehensive clinical dataset, including left ventricular ejection fraction, peak oxygen uptake, and a 6-minute walk test, was obtained for all patients. Neuropsychological functioning revealed impairment in 56% of patients in at least one measure of our neuropsychological test battery. However, the Mini Mental State Examination (MMSE) could only detect cognitive impairment in 1.8% of all patients, 24% had HADS scores indicating depressive symptoms, and 11.1% met SCID criteria for a depressive disorder. No significant association was found between depressive symptoms and cognitive impairment. Left ventricular ejection fraction was related to subjective cognitive impairment, and peak oxygen uptake was related to objective cognitive impairment. Conclusion Cognitive functioning was substantially reduced in patients with CHF and should therefore be diagnosed and treated in routine clinical practice. Caution is advised when the MMSE is used to identify cognitive impairment in patients with CHF. PMID:22267941

  8. Peak oxygen uptake and left ventricular ejection fraction, but not depressive symptoms, are associated with cognitive impairment in patients with chronic heart failure.

    PubMed

    Steinberg, Gerrit; Lossnitzer, Nicole; Schellberg, Dieter; Mueller-Tasch, Thomas; Krueger, Carsten; Haass, Markus; Ladwig, Karl Heinz; Herzog, Wolfgang; Juenger, Jana

    2011-01-01

    The aim of the present study was to assess cognitive impairment in patients with chronic heart failure (CHF) and its associations with depressive symptoms and somatic indicators of illness severity, which is a matter of controversy. Fifty-five patients with CHF (mean age 55.3 ± 7.8 years; 80% male; New York Heart Association functional class I-III) underwent assessment with an expanded neuropsychological test battery (eg, memory, complex attention, mental flexibility, psychomotor speed) to evaluate objective and subjective cognitive impairment. Depressive symptoms were assessed using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (SCID) and a self-report inventory (Hospital Anxiety and Depression Scale [HADS]). A comprehensive clinical dataset, including left ventricular ejection fraction, peak oxygen uptake, and a 6-minute walk test, was obtained for all patients. Neuropsychological functioning revealed impairment in 56% of patients in at least one measure of our neuropsychological test battery. However, the Mini Mental State Examination (MMSE) could only detect cognitive impairment in 1.8% of all patients, 24% had HADS scores indicating depressive symptoms, and 11.1% met SCID criteria for a depressive disorder. No significant association was found between depressive symptoms and cognitive impairment. Left ventricular ejection fraction was related to subjective cognitive impairment, and peak oxygen uptake was related to objective cognitive impairment. Cognitive functioning was substantially reduced in patients with CHF and should therefore be diagnosed and treated in routine clinical practice. Caution is advised when the MMSE is used to identify cognitive impairment in patients with CHF.

  9. Gill structural change in response to turbidity has no effect on the oxygen uptake of a juvenile sparid fish.

    PubMed

    Cumming, H; Herbert, N A

    2016-01-01

    Turbidity as a result of increased suspended sediments in coastal waters is an environmental stress of worldwide concern. Recent research on fish suggests that detrimental changes to gill structure can occur in turbid waters, with speculation that these alterations diminish fitness variables, such as growth and development, by negatively impacting the O 2 uptake capacity (respiration) of fish. Specifically to address this unknown, the impact of turbid water on the gill structure, somatic growth rate and O 2 uptake rates of a juvenile sparid species ( Pagrus auratus ) was addressed following exposure to five different turbidity treatments (<10, 20, 40, 60 or 80 nephelometric turbidity units) for 30 days. Significant gill structural change was apparent with a progressive increase in turbidity and was quantified as a reduction in lamellar density, as well as an increase in basal hyperplasia, epithelial lifting and increased oxygen diffusion distance across the lamellae. The weight of control fish did not change throughout the experiment, but all fish exposed to turbid waters lost weight, and weight loss increased with nephelometric turbidity units, confirming that long-term turbidity exposure is detrimental to growth productivity. The growth of fish could be impacted in a variety of ways, but the specific hypothesis that structural alteration of the gills impairs O 2 uptake across the gills and limits growth fitness was not supported because there was no measurable difference in the standard metabolic rate, maximal metabolic rate, aerobic metabolic scope or critical oxygen saturation limit of fish measured in clear water after 30 days of exposure. Although impaired O 2 uptake as a result of structurally adjusted gills is unlikely to be the cause of poor fish growth, the exact mechanism by which growth productivity is affected in turbid conditions remains unclear and warrants further investigation.

  10. Gill structural change in response to turbidity has no effect on the oxygen uptake of a juvenile sparid fish

    PubMed Central

    Cumming, H.; Herbert, N. A.

    2016-01-01

    Turbidity as a result of increased suspended sediments in coastal waters is an environmental stress of worldwide concern. Recent research on fish suggests that detrimental changes to gill structure can occur in turbid waters, with speculation that these alterations diminish fitness variables, such as growth and development, by negatively impacting the O2 uptake capacity (respiration) of fish. Specifically to address this unknown, the impact of turbid water on the gill structure, somatic growth rate and O2 uptake rates of a juvenile sparid species (Pagrus auratus) was addressed following exposure to five different turbidity treatments (<10, 20, 40, 60 or 80 nephelometric turbidity units) for 30 days. Significant gill structural change was apparent with a progressive increase in turbidity and was quantified as a reduction in lamellar density, as well as an increase in basal hyperplasia, epithelial lifting and increased oxygen diffusion distance across the lamellae. The weight of control fish did not change throughout the experiment, but all fish exposed to turbid waters lost weight, and weight loss increased with nephelometric turbidity units, confirming that long-term turbidity exposure is detrimental to growth productivity. The growth of fish could be impacted in a variety of ways, but the specific hypothesis that structural alteration of the gills impairs O2 uptake across the gills and limits growth fitness was not supported because there was no measurable difference in the standard metabolic rate, maximal metabolic rate, aerobic metabolic scope or critical oxygen saturation limit of fish measured in clear water after 30 days of exposure. Although impaired O2 uptake as a result of structurally adjusted gills is unlikely to be the cause of poor fish growth, the exact mechanism by which growth productivity is affected in turbid conditions remains unclear and warrants further investigation. PMID:27766155

  11. Dispersible oxygen microsensors map oxygen gradients in three-dimensional cell cultures.

    PubMed

    Lesher-Pérez, Sasha Cai; Kim, Ge-Ah; Kuo, Chuan-Hsien; Leung, Brendan M; Mong, Sanda; Kojima, Taisuke; Moraes, Christopher; Thouless, M D; Luker, Gary D; Takayama, Shuichi

    2017-09-26

    Phase fluorimetry, unlike the more commonly used intensity-based measurement, is not affected by differences in light paths from culture vessels or by optical attenuation through dense 3D cell cultures and hydrogels thereby minimizing dependence on signal intensity for accurate measurements. This work describes the use of phase fluorimetry on oxygen-sensor microbeads to perform oxygen measurements in different microtissue culture environments. In one example, cell spheroids were observed to deplete oxygen from the cell-culture medium filling the bottom of conventional microwells within minutes, whereas oxygen concentrations remained close to ambient levels for several days in hanging-drop cultures. By dispersing multiple oxygen microsensors in cell-laden hydrogels, we also mapped cell-generated oxygen gradients. The spatial oxygen mapping was sufficiently precise to enable the use of computational models of oxygen diffusion and uptake to give estimates of the cellular oxygen uptake rate and the half-saturation constant. The results show the importance of integrated design and analysis of 3D cell cultures from both biomaterial and oxygen supply aspects. While this paper specifically tests spheroids and cell-laden gel cultures, the described methods should be useful for measuring pericellular oxygen concentrations in a variety of biomaterials and culture formats.

  12. Real‐time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device

    PubMed Central

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh

    2016-01-01

    Abstract Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real‐time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time‐course data for bulk and peri‐cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non‐invasive and label‐free approach. Additionally, we confirmed non‐invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell−1 s−1, and 5 and 35 amol cell−1 s−1 were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non‐invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell‐based therapies. PMID:27214658

  13. Measuring Steady-State Oxygen Uptake during the 6-Min Walk Test in Adults with Cerebral Palsy: Feasibility and Construct Validity

    ERIC Educational Resources Information Center

    Maltais, Desiree B.; Robitaille, Nancy-Michelle; Dumas, Francine; Boucher, Normand; Richards, Carol L.

    2012-01-01

    This study evaluated the feasibility of measuring steady-state oxygen uptake (V[Combining Dot Above]O[subscript 2]) during the 6-min walk test (6MWT) in adults with cerebral palsy (CP) who walk without support and whether there is construct validity for net 6MWT V[Combining Dot Above]O[subscript 2] as a measure of their walking ability.…

  14. Estimating the effect of burrowing shrimp on deep-sea sediment community oxygen consumption.

    PubMed

    Leduc, Daniel; Pilditch, Conrad A

    2017-01-01

    Sediment community oxygen consumption (SCOC) is a proxy for organic matter processing and thus provides a useful proxy of benthic ecosystem function. Oxygen uptake in deep-sea sediments is mainly driven by bacteria, and the direct contribution of benthic macro- and mega-infauna respiration is thought to be relatively modest. However, the main contribution of infaunal organisms to benthic respiration, particularly large burrowing organisms, is likely to be indirect and mainly driven by processes such as feeding and bioturbation that stimulate bacterial metabolism and promote the chemical oxidation of reduced solutes. Here, we estimate the direct and indirect contributions of burrowing shrimp ( Eucalastacus cf. torbeni ) to sediment community oxygen consumption based on incubations of sediment cores from 490 m depth on the continental slope of New Zealand. Results indicate that the presence of one shrimp in the sediment is responsible for an oxygen uptake rate of about 40 µmol d -1 , only 1% of which is estimated to be due to shrimp respiration. We estimate that the presence of ten burrowing shrimp m -2 of seabed would lead to an oxygen uptake comparable to current estimates of macro-infaunal community respiration on Chatham Rise based on allometric equations, and would increase total sediment community oxygen uptake by 14% compared to sediment without shrimp. Our findings suggest that oxygen consumption mediated by burrowing shrimp may be substantial in continental slope ecosystems.

  15. Motor-cognitive dual-task performance: effects of a concurrent motor task on distinct components of visual processing capacity.

    PubMed

    Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P

    2018-01-01

    Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.

  16. Task-related modulation of visual neglect in cancellation tasks

    PubMed Central

    Sarri, Margarita; Greenwood, Richard; Kalra, Lalit; Driver, Jon

    2008-01-01

    Unilateral neglect involves deficits of spatial exploration and awareness that do not always affect a fixed portion of extrapersonal space, but may vary with current stimulation and possibly with task demands. Here, we assessed any ‘top-down’, task-related influences on visual neglect, with novel experimental variants of the cancellation test. Many different versions of the cancellation test are used clinically, and can differ in the extent of neglect revealed, though the exact factors determining this are not fully understood. Few cancellation studies have isolated the influence of top-down factors, as typically the stimuli are changed also when comparing different tests. Within each of three cancellation studies here, we manipulated task factors, while keeping visual displays identical across conditions to equate purely bottom-up factors. Our results show that top-down task-demands can significantly modulate neglect as revealed by cancellation on the same displays. Varying the target/non-target discrimination required for identical displays has a significant impact. Varying the judgement required can also have an impact on neglect even when all items are targets, so that non-targets no longer need filtering out. Requiring local versus global aspects of shape to be judged for the same displays also has a substantial impact, but the nature of discrimination required by the task still matters even when local/global level is held constant (e.g. for different colour discriminations on the same stimuli). Finally, an exploratory analysis of lesions among our neglect patients suggested that top-down task-related influences on neglect, as revealed by the new cancellation experiments here, might potentially depend on right superior temporal gyrus surviving the lesion. PMID:18790703

  17. Task-related modulation of visual neglect in cancellation tasks.

    PubMed

    Sarri, Margarita; Greenwood, Richard; Kalra, Lalit; Driver, Jon

    2009-01-01

    Unilateral neglect involves deficits of spatial exploration and awareness that do not always affect a fixed portion of extrapersonal space, but may vary with current stimulation and possibly with task demands. Here, we assessed any 'top-down', task-related influences on visual neglect, with novel experimental variants of the cancellation test. Many different versions of the cancellation test are used clinically, and can differ in the extent of neglect revealed, though the exact factors determining this are not fully understood. Few cancellation studies have isolated the influence of top-down factors, as typically the stimuli are changed also when comparing different tests. Within each of three cancellation studies here, we manipulated task factors, while keeping visual displays identical across conditions to equate purely bottom-up factors. Our results show that top-down task demands can significantly modulate neglect as revealed by cancellation on the same displays. Varying the target/non-target discrimination required for identical displays has a significant impact. Varying the judgement required can also have an impact on neglect even when all items are targets, so that non-targets no longer need filtering out. Requiring local versus global aspects of shape to be judged for the same displays also has a substantial impact, but the nature of discrimination required by the task still matters even when local/global level is held constant (e.g. for different colour discriminations on the same stimuli). Finally, an exploratory analysis of lesions among our neglect patients suggested that top-down task-related influences on neglect, as revealed by the new cancellation experiments here, might potentially depend on right superior temporal gyrus surviving the lesion.

  18. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device.

    PubMed

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh; Szita, Nicolas

    2016-09-01

    Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real-time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time-course data for bulk and peri-cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non-invasive and label-free approach. Additionally, we confirmed non-invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell(-1) s(-1) , and 5 and 35 amol cell(-1) s(-1) were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non-invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell-based therapies. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Oxygen uptake and body composition after aquatic physical training in women with fibromyalgia: a randomized controlled trial.

    PubMed

    Andrade, Carolina P; Zamunér, Antonio R; Forti, Meire; França, Thalita F; Tamburús, Nayara Y; Silva, Ester

    2017-10-01

    Aquatic physical training (APT) has been strongly recommended to improve symptoms in fibromyalgia syndrome (FMS). However, its effects on body composition and whether lean body mass (LBM) directly influences the aerobic functional capacity of this population are still not clear. To investigate whether APT can help improve body composition and increase the aerobic functional capacity in women with FMS, and whether oxygen uptake (VO2) related to LBM can better quantify the functional capacity of this population. Randomized controlled trial. The Federal University of São Carlos, São Paulo, Brazil. Fifty-four women with FMS were randomly assigned to trained group (TG, N.=27) or control group (CG, N.=27). All women underwent cardiopulmonary exercise test (CPET) to assess oxygen consumption at ventilatory anaerobic threshold (VAT) and at peak exercise, and also to assess body composition. The TG was submitted to APT program, held twice a week for 16 weeks. The exercise intensity was adapted throughout the sessions in order to keep heart rate and ratings of perceived exertion achieved at VAT. After APT, body composition was not significantly different between groups (TG and CG). In VAT only TG showed increased VO2 related to LBM, since in peak CPET, VO2 in absolute units, VO2 related to total body mass (TBM), VO2 related to LBM and power showed significant differences. Significant difference between VO2 related to TBM and VO2 related to baseline LBM and after 16 weeks of follow-up, both in VAT as in peak CPET in both groups. Significant difference between VO2 related to TBM and VO2 related to LBM at VAT and at peak CPET in both groups at baseline and after 16 weeks of follow-up was observed. APT with standardized intensities did not cause significant changes in body composition, but was effective in promoting increased VO2 at peak CPET in women with FMS. However, VO2 related to LBM more accurately reflected changes in aerobic functional capacity at VAT level after to

  20. Direct oxygen uptake from air by novel glycogen accumulating organism dominated biofilm minimizes excess sludge production.

    PubMed

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2018-05-29

    The cost associated with treatment and disposal of excess sludge produced is one of the greatest operational expenses in wastewater treatment plants. In this study, we quantify and explain greatly reduced excess sludge production in the novel glycogen accumulating organism (GAO) dominated drained biofilm system previously shown to be capable of extremely energy efficient removal of organic carbon (biological oxygen demand or BOD) from wastewater. The average excess sludge production rate was 0.05 g VSS g -1 BOD (acetate) removed, which is about 9-times lower than that of comparative studies using the same acetate based synthetic wastewater. The substantially lower sludge yield was attributed to a number of features such as the high oxygen consumption facilitated by direct oxygen uptake from air, high biomass content (21.41 g VSS L -1 of reactor), the predominance of the GAO (Candidatus competibacter) with a low growth yield and the overwhelming presence of the predatory protozoa (Tetramitus) in the biofilm. Overall, the combination of low-energy requirement for air supply (no compressed air supply) and the low excess sludge production rate, could make this novel "GAO drained biofilm" process one of the most economical ways of biological organic carbon removal from wastewater. Copyright © 2018. Published by Elsevier B.V.

  1. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chibli, H.; Carlini, L.; Park, S.

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to whatmore » is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.« less

  2. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    PubMed

    Chibli, Hicham; Carlini, Lina; Park, Soonhyang; Dimitrijevic, Nada M; Nadeau, Jay L

    2011-06-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  3. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Chibli, Hicham; Carlini, Lina; Park, Soonhyang; Dimitrijevic, Nada M.; Nadeau, Jay L.

    2011-06-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  4. Quadriceps oxygenation during isometric exercise in sailing.

    PubMed

    Vogiatzis, I; Tzineris, D; Athanasopoulos, D; Georgiadou, O; Geladas, N

    2008-01-01

    The aim of the present study was to investigate why blood lactate after prolonged quadriceps contraction during hiking is only marginally increased. Eight sailors performed five 3-min hiking bouts interspersed with 5-s recovery periods. Whole body oxygen uptake, heart rate and lactate were recorded, along with continuous-wave near-infrared spectroscopy measures of quadriceps oxygenation. The time for 50% re-oxygenation was also assessed as an indication of the degree of localized oxygen delivery stress. Hiking elicited a significant (p = 0.001) increase in mean (+/- SD) heart rate (124 +/- 10 beats . min (-1)) which was accompanied by a disproportionately low oxygen uptake (12 +/- 2 ml.kg(-1).min(-1)). Lactate was significantly (p = 0.001) increased throughout hiking manoeuvres, though post-exercise it remained low (3.2 +/- 0.9 mmol.l(-1)). During the hiking bouts mean quadriceps oxygenation was significantly (p = 0.001) reduced compared to baseline (by 33 +/- 5%), indicating an imbalance between muscle oxygen accessibility and oxygen demand. During rest intervals quadriceps oxygenation was partially restored. After the end of the final bout the time for 50 % re-oxygenation was only 8 +/- 2 s, whereas recovery of quadriceps oxygenation and oxygen uptake was completed within 3 min. We conclude that the observed low lactate could be attributed to the small oxygen and energy deficits during hiking as the muscles' oxygen accessibility is presumably partially restored during the brief rest intervals.

  5. Hydrogen Peroxide-Dependent Uptake of Iodine by Marine Flavobacteriaceae Bacterium Strain C-21▿

    PubMed Central

    Amachi, Seigo; Kimura, Koh; Muramatsu, Yasuyuki; Shinoyama, Hirofumi; Fujii, Takaaki

    2007-01-01

    The cells of the marine bacterium strain C-21, which is phylogenetically closely related to Arenibacter troitsensis, accumulate iodine in the presence of glucose and iodide (I−). In this study, the detailed mechanism of iodine uptake by C-21 was determined using a radioactive iodide tracer, 125I−. In addition to glucose, oxygen and calcium ions were also required for the uptake of iodine. The uptake was not inhibited or was only partially inhibited by various metabolic inhibitors, whereas reducing agents and catalase strongly inhibited the uptake. When exogenous glucose oxidase was added to the cell suspension, enhanced uptake of iodine was observed. The uptake occurred even in the absence of glucose and oxygen if hydrogen peroxide was added to the cell suspension. Significant activity of glucose oxidase was found in the crude extracts of C-21, and it was located mainly in the membrane fraction. These findings indicate that hydrogen peroxide produced by glucose oxidase plays a key role in the uptake of iodine. Furthermore, enzymatic oxidation of iodide strongly stimulated iodine uptake in the absence of glucose. Based on these results, the mechanism was considered to consist of oxidation of iodide to hypoiodous acid by hydrogen peroxide, followed by passive translocation of this uncharged iodine species across the cell membrane. Interestingly, such a mechanism of iodine uptake is similar to that observed in iodine-accumulating marine algae. PMID:17933915

  6. Age-Related Differences in Multiple Task Monitoring

    PubMed Central

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age. PMID:25215609

  7. Age-related differences in multiple task monitoring.

    PubMed

    Todorov, Ivo; Del Missier, Fabio; Mäntylä, Timo

    2014-01-01

    Coordinating multiple tasks with narrow deadlines is particularly challenging for older adults because of age related decline in cognitive control functions. We tested the hypothesis that multiple task performance reflects age- and gender-related differences in executive functioning and spatial ability. Young and older adults completed a multitasking session with four monitoring tasks as well as separate tasks measuring executive functioning and spatial ability. For both age groups, men exceeded women in multitasking, measured as monitoring accuracy. Individual differences in executive functioning and spatial ability were independent predictors of young adults' monitoring accuracy, but only spatial ability was related to sex differences. For older adults, age and executive functioning, but not spatial ability, predicted multitasking performance. These results suggest that executive functions contribute to multiple task performance across the adult life span and that reliance on spatial skills for coordinating deadlines is modulated by age.

  8. Exercise intensity and oxygen uptake kinetics in African-American and Caucasian women.

    PubMed

    Lai, Nicola; Tolentino-Silva, Fatima; Nasca, Melita M; Silva, Marco A; Gladden, L Bruce; Cabrera, Marco E

    2012-03-01

    The effect of exercise intensity on the on- and off-transient kinetics of oxygen uptake (VO(2)) was investigated in African American (AA) and Caucasian (C) women. African American (n = 7) and Caucasian (n = 6) women of similar age, body mass index and weight, performed an incremental test and bouts of square-wave exercise at moderate, heavy and very heavy intensities on a cycle ergometer. Gas exchange threshold (LT(GE)) was lower in AA (13.6 ± 2.3 mL kg(-1) min(-1)) than C (18.6 ± 5.6 mL kg(-1) min(-1)). The dynamic exercise and recovery VO(2) responses were characterized by mathematical models. There were no significant differences in (1) peak oxygen uptake (VO(2peak)) between AA (28.5 ± 5 mL kg(-1) min(-1)) and C (31.1 ± 6.6 mL kg(-1) min(-1)) and (2) VO(2) kinetics at any exercise intensity. At moderate exercise, the on- and off- VO(2) kinetics was described by a monoexponential function with similar time constants τ (1,on) (39.4 ± 12.5; 38.8 ± 15 s) and τ (1,off) (52.7 ± 10.1; 40.7 ± 4.4 s) for AA and C, respectively. At heavy and very heavy exercise, the VO(2) kinetics was described by a double-exponential function. The parameter values for heavy and very heavy exercise in the AA group were, respectively: τ (1,on) (47.0 ± 10.8; 44.3 ± 10 s), τ (2,on) (289 ± 63; 219 ± 90 s), τ (1,off) (45.9 ± 6.2; 50.7 ± 10 s), τ (2,off) (259 ± 120; 243 ± 93 s) while in the C group were, respectively: τ (1,on) (41 ± 12; 43.2 ± 15 s); τ (2, on) (277 ± 81; 215 ± 36 s), τ (1,off) (40.2 ± 3.4; 42.3 ± 7.2 s), τ (2,off) (215 ± 133; 228 ± 64 s). The on- and off-transients were symmetrical with respect to model order and dependent on exercise intensity regardless of race. Despite similar VO(2) kinetics, LT(GE) and gain of the VO(2) on-kinetics at moderate intensity were lower in AA than C. However, generalization to the African American and Caucasian populations is constrained by the small subject numbers.

  9. Effect of +Gz Acceleration on the Oxygen Uptake-Excercise Load Relationship during Lower Extremity Ergometer Excercise

    NASA Technical Reports Server (NTRS)

    Jackson, Catherine G. R.

    1996-01-01

    Long term spaceflight and habitation of a space station and/or the moon require that astronauts be provided with sufficient environmental and physiological support so that they can not only function in microgravity but be returned to earth safely. As the duration of habitation in microgravity increase the effects of the concomitant deconditioning of body systems becomes a concern for added exercise in space and for reentry to Earth gravity. Many countermeasures have been proposed to maintain proper functioning of the body, but none have proved sufficient, especially when the cost of crew time spent in these activities is considered. The issue of appropriate countermeasures remains unresolved. Spaceflight deconditioning decreases tolerance to +Gz acceleration, head to foot, the direction which is experienced during reentry; the result is that the crew member is more prone to becoming pre-syncopal or syncopal, thus exacerbating the orthostatic intolerance. All ground-based research using microgravity analogues has produced this same lowered G tolerance. When intermittent exposure to +1 to +4 Gz acceleration training was used, some alleviation of orthosatic intolerance and negative physiological effects of deconditioning occurred. Exercise alone was not as effective; but the added G force was. The physiological responses to acceleration added to exercise training have not been clearly shown. We will test the hypothesis that there will be no difference in the exercise oxygen uptake-exercise load relationship with added +Gz acceleration. We wi also compare oxygen uptake during graded exercise-acceleration loads in the human-powered short arm centrifuge with those from normal supine exercise loads. The human-powered short arm centrifuge was built by NASA engineers at Ames Research Center.

  10. Oxygen uptake kinetics and exercise capacity in children with cystic fibrosis.

    PubMed

    Fielding, Jeremy; Brantley, Lucy; Seigler, Nichole; McKie, Katie T; Davison, Gareth W; Harris, Ryan A

    2015-07-01

    Exercise capacity, an objective measure of exercise intolerance, is known to predict quality of life and mortality in cystic fibrosis (CF). The mechanisms for exercise intolerance in patients with cystic fibrosis (CF), however, have yet to be fully elucidated. Accordingly, this study sought to investigate oxygen uptake kinetics and the impact of fat-free mass (FFM) on exercise capacity in young patients with CF. 16 young patients with CF (age 13 ± 4 years; 10 female) and 15 matched controls (age 14 ± 3 years; nine female) participated. Pulmonary function and a maximal exercise test on a cycle ergometer using the Godfrey protocol were performed. Exercise capacity (VO2 peak), VO2 response time (VO2 RT), and functional VO2 gain (ΔVO2 /ΔWR) were all determined. Lung function was the only demographic parameter significantly lower (P < 0.05) in CF compared to controls. Exercise capacity was lower in CF (P < 0.014) only when VO2 peak was normalized for FFM (43.5 ± 7.7 vs. 50.6 ± 7.4 ml/kg-FFM/min) or expressed as % predicted (70.1 ± 14.3 vs. 85.4 ± 16.0%). The VO2 RT was slower (36.1 ± 15.1 vs. 25.0 ± 12.4 sec; P = 0.03) and the ΔVO2 /ΔWR slope was lower (8.4 ± 3 ml/min/watt vs. 10.1 ± 1.4 ml/min/watt; P = 0.02) in patients compared to controls, respectively. In conclusion, a delayed VO2 response time coupled with the lower functional VO2 gain (ΔVO2 /ΔWR) suggest that young patients with CF have impairment in oxygen transport and oxygen utilization by the muscles. These data in addition to differences in VO2 peak normalized for FFM provide some insight that muscle mass and muscle metabolism contribute to exercise intolerance in CF. © 2015 Wiley Periodicals, Inc.

  11. Assessment of peak oxygen uptake during handcycling: Test-retest reliability and comparison of a ramp-incremented and perceptually-regulated exercise test.

    PubMed

    Hutchinson, Michael J; Paulson, Thomas A W; Eston, Roger; Goosey-Tolfrey, Victoria L

    2017-01-01

    To examine the reliability of a perceptually-regulated maximal exercise test (PRETmax) to measure peak oxygen uptake ([Formula: see text]) during handcycle exercise and to compare peak responses to those derived from a ramp-incremented protocol (RAMP). Twenty recreationally active individuals (14 male, 6 female) completed four trials across a 2-week period, using a randomised, counterbalanced design. Participants completed two RAMP protocols (20 W·min-1) in week 1, followed by two PRETmax in week 2, or vice versa. The PRETmax comprised five, 2-min stages clamped at Ratings of Perceived Exertion (RPE) 11, 13, 15, 17 and 20. Participants changed power output (PO) as often as required to maintain target RPE. Gas exchange variables (oxygen uptake, carbon dioxide production, minute ventilation), heart rate (HR) and PO were collected throughout. Differentiated RPE were collected at the end of each stage throughout trials. For relative [Formula: see text], coefficient of variation (CV) was equal to 4.1% and 4.8%, with ICC(3,1) of 0.92 and 0.85 for repeated measures from PRETmax and RAMP, respectively. Measurement error was 0.15 L·min-1 and 2.11 ml·kg-1·min-1 in PRETmax and 0.16 L·min-1 and 2.29 ml·kg-1·min-1 during RAMP for determining absolute and relative [Formula: see text], respectively. The difference in [Formula: see text] between PRETmax and RAMP was tending towards statistical significance (26.2 ± 5.1 versus 24.3 ± 4.0 ml·kg-1·min-1, P = 0.055). The 95% LoA were -1.9 ± 4.1 (-9.9 to 6.2) ml·kg-1·min-1. The PRETmax can be used as a reliable test to measure [Formula: see text] during handcycle exercise in recreationally active participants. Whilst PRETmax tended towards significantly greater [Formula: see text] values than RAMP, the difference is smaller than measurement error of determining [Formula: see text] from PRETmax and RAMP.

  12. Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure.

    PubMed

    Saunders, Philo U; Garvican-Lewis, Laura A; Schmidt, Walter F; Gore, Christopher J

    2013-12-01

    Endurance athletes have been using altitude training for decades to improve near sea-level performance. The predominant mechanism is thought to be accelerated erythropoiesis increasing haemoglobin mass (Hb(mass)) resulting in a greater maximal oxygen uptake (VO₂(max)). Not all studies have shown a proportionate increase in VO₂(max) as a result of increased Hb(mass). The aim of this study was to determine the relationship between the two parameters in a large group of endurance athletes after altitude training. 145 elite endurance athletes (94 male and 51 female) who participated in various altitude studies as altitude or control participants were used for the analysis. Participants performed Hb(mass) and VO₂(max) testing before and after intervention. For the pooled data, the correlation between per cent change in Hb(mass) and per cent change in VO₂(max) was significant (p<0.0001, r(2)=0.15), with a slope (95% CI) of 0.48 (0.30 to 0.67) intercept free to vary and 0.62 (0.46 to 0.77) when constrained through the origin. When separated, the correlations were significant for the altitude and control groups, with the correlation being stronger for the altitude group (slope of 0.57 to 0.72). With high statistical power, we conclude that altitude training of endurance athletes will result in an increase in VO₂(max) of more than half the magnitude of the increase in Hb(mass), which supports the use of altitude training by athletes. But race performance is not perfectly related to relative VO₂(max), and other non-haematological factors altered from altitude training, such as running economy and lactate threshold, may also be beneficial to performance.

  13. Evaluation of acute effect of light-emitting diode (LED) phototherapy on muscle deoxygenation and pulmonary oxygen uptake kinetics in patients with diabetes mellitus: study protocol for a randomized controlled trial.

    PubMed

    Francisco, Cristina de Oliveira; Beltrame, Thomas; Ferraresi, Cleber; Parizotto, Nivaldo Antonio; Bagnato, Vanderlei Salvador; Borghi Silva, Audrey; Benze, Benedito Galvão; Porta, Alberto; Catai, Aparecida Maria

    2015-12-15

    Type 2 diabetes mellitus (DM) is responsible for a significant reduction in the quality of life due to its negative impact on functional capacity. Cardiopulmonary fitness impairment in DM patients has been associated with limited tissue oxygenation. Phototherapy is widely utilized to treat several disorders due to expected light-tissue interaction. This type of therapy may help to improve muscular oxygenation, thereby increasing aerobic fitness and functional capacity. This study is a randomized, double-blind, placebo-controlled crossover trial approved by the Ethics Committee of the Federal University of São Carlos and registered at ClinicalTrials.gov. Four separate tests will be performed to evaluate the acute effect of phototherapy. All participants will receive both interventions in random order: light-emitting diode therapy (LEDT) and placebo, with a minimum 14-day interval between sessions (washout period). Immediately after the intervention, participants will perform moderate constant workload cycling exercise corresponding to 80 % of the pulmonary oxygen uptake [Formula: see text] during the gas exchange threshold (GET). LEDT will be administered with a multidiode cluster probe (50 GaAIA LEDs, 850 ηm, 75 mW each diode, and 3 J per point) before each exercise session. Pulmonary oxygen uptake, muscle oxygenation, heart rate, and arterial pressure will be measured using a computerized metabolic cart, a near-infrared spectrometer, an electrocardiogram, and a photoplethysmography system, respectively. The main objective of this study is to evaluate the acute effects of muscular pre-conditioning using LED phototherapy on pulmonary oxygen uptake, muscle oxygenation, heart rate, and arterial pressure dynamics during dynamic moderate exercise. We hypothesize that phototherapy may be beneficial to optimize aerobic fitness in the DM population. Data will be published after the study is completed. Registered at ClinicalTrials.gov under trial number NCT01889784 (date

  14. Benthic foraminiferal trace metal uptake: a field calibration from the Arabia Sea Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Koho, K. A.; Reichart, G.-J.

    2012-04-01

    The Arabian Sea Oxygen Minimum Zone (OMZ) is sustained by high surface water productivity and relatively weak mid-depth water column ventilation. High primary productivity drives high respiration rates in the water column, causing severe oxygen depletion between ±150-1400 m water depths, with the oxygen concentrations falling below 2 μM in the core of the OMZ. Living (rose Bengal stained) benthic foraminifera were collected at 10-stations, covering a large bottom water oxygen concentration gradient from the Murray Ridge. This sub-marine ridge is located in the open marine environment of the Arabian Sea and thus not affected by large gradients in surface water productivity such as encountered at the continental margins. Since these sites thus receive similar organic fluxes, but are bathed in bottom waters with contrasting oxygen concentrations, pore water profiles mainly reflect bottom water oxygenation. The study sites represent a natural laboratory to investigate the impact of bottom water chemistry on trace metal incorporation in benthic foraminifera. Trace metal analyses by laser ablation ICP-MS allows detailed single chamber measurements of trace metal content, which can be related to in situ pore water geochemistry. Focus of this study is on redox sensitive trace metal (e.g. Mn, U) incorporation into foraminiferal test calcite in relation to pore water oxygen and carbonate chemistry.

  15. Prognostic value of a new cardiopulmonary exercise testing parameter in chronic heart failure: oxygen uptake efficiency at peak exercise - comparison with oxygen uptake efficiency slope.

    PubMed

    Toste, Alexandra; Soares, Rui; Feliciano, Joana; Andreozzi, Valeska; Silva, Sofia; Abreu, Ana; Ramos, Ruben; Santos, Ninel; Ferreira, Lurdes; Ferreira, Rui Cruz

    2011-10-01

    A growing body of evidence shows the prognostic value of oxygen uptake efficiency slope (OUES), a cardiopulmonary exercise test (CPET) parameter derived from the logarithmic relationship between O(2) consumption (VO(2)) and minute ventilation (VE) in patients with chronic heart failure (CHF). To evaluate the prognostic value of a new CPET parameter - peak oxygen uptake efficiency (POUE) - and to compare it with OUES in patients with CHF. We prospectively studied 206 consecutive patients with stable CHF due to dilated cardiomyopathy - 153 male, aged 53.3±13.0 years, 35.4% of ischemic etiology, left ventricular ejection fraction 27.7±8.0%, 81.1% in sinus rhythm, 97.1% receiving ACE-Is or ARBs, 78.2% beta-blockers and 60.2% spironolactone - who performed a first maximal symptom-limited treadmill CPET, using the modified Bruce protocol. In 33% of patients an cardioverter-defibrillator (ICD) or cardiac resynchronization therapy device (CRT-D) was implanted during follow-up. Peak VO(2), percentage of predicted peak VO(2), VE/VCO(2) slope, OUES and POUE were analyzed. OUES was calculated using the formula VO(2) (l/min) = OUES (log(10)VE) + b. POUE was calculated as pVO(2) (l/min) / log(10)peakVE (l/min). Correlation coefficients between the studied parameters were obtained. The prognosis of each variable adjusted for age was evaluated through Cox proportional hazard models and R2 percent (R2%) and V index (V6) were used as measures of the predictive accuracy of events of each of these variables. Receiver operating characteristic (ROC) curves from logistic regression models were used to determine the cut-offs for OUES and POUE. pVO(2): 20.5±5.9; percentage of predicted peak VO(2): 68.6±18.2; VE/VCO(2) slope: 30.6±8.3; OUES: 1.85±0.61; POUE: 0.88±0.27. During a mean follow-up of 33.1±14.8 months, 45 (21.8%) patients died, 10 (4.9%) underwent urgent heart transplantation and in three patients (1.5%) a left ventricular assist device was implanted. All variables proved

  16. Relationship between Short-Form Health SF36 Questionnaire and oxygen uptake in healthy workers.

    PubMed

    Oscar García López, Oscar; Duarte Bedoya, Álvaro; Jiménez Gutiérrez, Alfonso; Burgos Postigo, Silvia

    2016-03-01

    Physical activity is associated with better health levels, and cardiopulmonary fitness is recognized as one of the best indicators of physical performance, which can be related with some items of quality of life (QoL). The aim of this study was to analyze the relationship between the QoL and cardiorespiratory fitness (VO2max) of healthy workers, measured with the Short-Form Health Survey SF36 and incremental cardiopulmonary Test. Sample was formed by 250 healthy workers (90 men, mean age 37.25 and 160 female, mean age 37.91). Analyzing the results, VO2's Mean values were higher in men (39.00 mL/kg/min SD 7.56) than in women (29.70 mL/kg/min SD 5.73) with significant differences (P<0.01). We found differences in all dimensions of SF36 indicating that men had higher scores than women, but significant differences between both are present only in physical functioning (PF) (P<0.01). Correlating the values obtained in the domains of Questionnaire SF36 and the Vo2 Max, correlation was significant (positive) in PF (0.276), bodily pain (0.189), general health (0.155), vitality (0.241) and mental health (0.129). Results showed that better cardiorespiratory fitness is related to higher scores in SF36. These findings suggest that if the values of oxygen uptake in healthy workers are higher, results in SF36 will be better. Therefore it can be assumed that having a good fitness means having a better QoL.

  17. Limitations of oxygen uptake and leg muscle activity during ascending evacuation in stairways.

    PubMed

    Halder, Amitava; Kuklane, Kalev; Gao, Chuansi; Miller, Michael; Delin, Mattias; Norén, Johan; Fridolf, Karl

    2018-01-01

    Stair ascending performance is critical during evacuation from buildings and underground infrastructures. Healthy subjects performed self-paced ascent in three settings: 13 floor building, 31 floor building, 33 m stationary subway escalator. To investigate leg muscle and cardiorespiratory capacities and how they constrain performance, oxygen uptake (VO 2 ), heart rate (HR) and ascending speed were measured in all three; electromyography (EMG) in the first two. The VO 2 and HR ranged from 89 to 96% of the maximum capacity reported in the literature. The average highest VO 2 and HR ranged from 39 to 41 mL·kg -1 ·min -1 and 162 to 174 b·min -1 , respectively. The subjects were able to sustain their initial preferred maximum pace for a short duration, while the average step rate was 92-95 steps·min -1 . In average, VO 2 reached relatively stable values at ≈37 mL·kg -1 ·min -1 . EMG amplitudes decreased significantly and frequencies were unchanged. Speed reductions indicate that climbing capacity declined in the process of fatigue development. In the two buildings, the reduction of muscle power allowed the subjects to extend their tolerance and complete ascents in the 48 m and 109 m high stairways in 2.9 and 7.8 min, respectively. Muscle activity interpretation squares were developed and proved advantageous to observe fatigue and recovery over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Modeling the relationship between fluorodeoxyglucose uptake and tumor radioresistance as a function of the tumor microenvironment.

    PubMed

    Jeong, Jeho; Deasy, Joseph O

    2014-01-01

    High fluorodeoxyglucose positron emission tomography (FDG-PET) uptake in tumors has often been correlated with increasing local failure and shorter overall survival, but the radiobiological mechanisms of this uptake are unclear. We explore the relationship between FDG-PET uptake and tumor radioresistance using a mechanistic model that considers cellular status as a function of microenvironmental conditions, including proliferating cells with access to oxygen and glucose, metabolically active cells with access to glucose but not oxygen, and severely hypoxic cells that are starving. However, it is unclear what the precise uptake levels of glucose should be for cells that receive oxygen and glucose versus cells that only receive glucose. Different potential FDG uptake profiles, as a function of the microenvironment, were simulated. Predicted tumor doses for 50% control (TD50) in 2 Gy fractions were estimated for each assumed uptake profile and for various possible cell mixtures. The results support the hypothesis of an increased avidity of FDG for cells in the intermediate stress state (those receiving glucose but not oxygen) compared to well-oxygenated (and proliferating) cells.

  19. Influence of oxygen uptake kinetics on physical performance in youth soccer.

    PubMed

    Doncaster, Greg; Marwood, Simon; Iga, John; Unnithan, Viswanath

    2016-09-01

    To examine the relationship between oxygen uptake kinetics (VO2 kinetics) and physical measures associated with soccer match play, within a group of highly trained youth soccer players. Seventeen highly trained youth soccer players (age: 13.3 ± 0.4 year, self-assessed Tanner stage: 3 ± 1) volunteered for the study. Players initially completed an incremental treadmill protocol to exhaustion, to establish gaseous exchange threshold (GET) and VO2max (59.1 ± 5.4 mL kg(-1) min(-1)). On subsequent visits, players completed a step transition protocol from rest-moderate-intensity exercise, followed by an immediate transition, and from moderate- to severe-intensity exercise (moderate: 95 % GET, severe: 60 %∆), during which VO2 kinetics were determined. Physical soccer-based performance was assessed using a maximal Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1) and via GPS-derived measures of physical soccer performance during soccer match play, three 2 × 20 min, 11 v 11 matches, to gain measures of physical performance during soccer match play. Partial correlations revealed significant inverse relationships between the unloaded-to-moderate transition time constant (tau) and: Yo-Yo IR1 performance (r = -0.58, P = 0.02) and GPS variables [total distance (TD): r = -0.64, P = 0.007, high-speed running (HSR): r = -0.64, P = 0.008 and high-speed running efforts (HSReff): r = -0.66, P = 0.005]. Measures of VO2 kinetics are related to physical measures associated with soccer match play and could potentially be used to distinguish between those of superior physical performance, within a group of highly trained youth soccer players.

  20. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO2-x NPs

    NASA Astrophysics Data System (ADS)

    Qiu, Yuan; Rojas, Elena; Murray, Richard A.; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E.

    2015-04-01

    Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO2-x NPs. The brush coating does not prevent CeO2-x NPs from displaying antioxidant properties.Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell

  1. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics.

    PubMed

    Karsten, Bettina; Baker, Jonathan; Naclerio, Fernando; Klose, Andreas; Bianco, Antonino; Nimmerichter, Alfred

    2018-02-01

    To investigate single-day time-to-exhaustion (TTE) and time-trial (TT) -based laboratory tests values of critical power (CP), W prime (W'), and respective oxygen-uptake-kinetic responses. Twelve cyclists performed a maximal ramp test followed by 3 TTE and 3 TT efforts interspersed by 60 min recovery between efforts. Oxygen uptake ( V ˙ O 2 ) was measured during all trials. The mean response time was calculated as a description of the overall [Formula: see text]-kinetic response from the onset to 2 min of exercise. TTE-determined CP was 279 ± 52 W, and TT-determined CP was 276 ± 50 W (P = .237). Values of W' were 14.3 ± 3.4 kJ (TTE W') and 16.5 ± 4.2 kJ (TT W') (P = .028). While a high level of agreement (-12 to 17 W) and a low prediction error of 2.7% were established for CP, for W' limits of agreements were markedly lower (-8 to 3.7 kJ), with a prediction error of 18.8%. The mean standard error for TTE CP values was significantly higher than that for TT CP values (2.4% ± 1.9% vs 1.2% ± 0.7% W). The standard errors for TTE W' and TT W' were 11.2% ± 8.1% and 5.6% ± 3.6%, respectively. The [Formula: see text] response was significantly faster during TT (~22 s) than TTE (~28 s). The TT protocol with a 60-min recovery period offers a valid, time-saving, and less error-filled alternative to conventional and more recent testing methods. Results, however, cannot be transferred to W'.

  2. Prescribing 6-weeks of running training using parameters from a self-paced maximal oxygen uptake protocol.

    PubMed

    Hogg, James S; Hopker, James G; Coakley, Sarah L; Mauger, Alexis R

    2018-05-01

    The self-paced maximal oxygen uptake test (SPV) may offer effective training prescription metrics for athletes. This study aimed to examine whether SPV-derived data could be used for training prescription. Twenty-four recreationally active male and female runners were randomly assigned between two training groups: (1) Standardised (STND) and (2) Self-Paced (S-P). Participants completed 4 running sessions a week using a global positioning system-enabled (GPS) watch: 2 × interval sessions; 1 × recovery run; and 1 × tempo run. STND had training prescribed via graded exercise test (GXT) data, whereas S-P had training prescribed via SPV data. In STND, intervals were prescribed as 6 × 60% of the time that velocity at [Formula: see text] ([Formula: see text]) could be maintained (T max ). In S-P, intervals were prescribed as 7 × 120 s at the mean velocity of rating of perceived exertion 20 ( v RPE20). Both groups used 1:2 work:recovery ratio. Maximal oxygen uptake ([Formula: see text]), [Formula: see text], T max, v RPE20, critical speed (CS), and lactate threshold (LT) were determined before and after the 6-week training. STND and S-P training significantly improved [Formula: see text] by 4 ± 8 and 6 ± 6%, CS by 7 ± 7 and 3 ± 3%; LT by 5 ± 4% and 7 ± 8%, respectively (all P < .05), with no differences observed between groups. Novel metrics obtained from the SPV can offer similar training prescription and improvement in [Formula: see text], CS and LT compared to training derived from a traditional GXT.

  3. Oxygen uptake response to cycle ergometry in post-acute stroke patients with different severity of hemiparesis.

    PubMed

    Chen, Chun-Kai; Weng, Ming-Cheng; Chen, Tien-Wen; Huang, Mao-Hsiung

    2013-11-01

    This study evaluated the impact of severity of hemiparesis on oxygen uptake (VO2) response in post-acute stroke patients. Sixty-four patients with a mean poststroke interval of 8.6 ± 3.8 days underwent a ramp cardiopulmonary exercise test on a cycling ergometer to volitional termination. Mean peak VO2 (VO2peak) and work efficiency (ΔVO2/ΔWR) were measured by open-circuit spirometry during standard upright ergometer cycling. Severity of the hemiparetic lower limb was assessed by Brunnstrom's motor recovery stages lower extremity (BMRSL). VO2peak was 10% lower in hemiparetic leg with BMRSL V than in that with BMRSL VI, 20% lower in BMRSL IV, and 50% lower in BMRSL III. ΔVO2/ΔWR was higher for the group with increased BMRSL. The relations were consistent after adjustment for age, sex, body mass index, stroke type, hemiparetic side, modified Ashworth Scale, time poststroke, comorbidities, and medications. Our findings revealed that O2peak is dependent on the severity of hemiparesis in leg, and along with ΔO2/ΔWR closely related to the severity of hemiparesis in post-acute stroke patients, regardless of the types and locations of lesion after stroke, as well as the differences in comorbidities and medications. Copyright © 2013. Published by Elsevier B.V.

  4. Oxygen consumption and labile dissolved organic carbon uptake by benthic biofilms

    NASA Astrophysics Data System (ADS)

    de Falco, Natalie; Boano, Fulvio; Arnon, Shai

    2015-04-01

    Biogeochemical activity in streams is often magnified at interfaces, such as in the case of biofilm growth near the surface of the stream sediments. The objective of this study was to evaluate the relative importance of surficial biofilms versus the biofilm in the hyporheic zone to the processes of biodegradation of a labile dissolved organic carbon (DOC) and to oxygen consumption. Experiments were conducted in a recirculating flume, equipped with a drainage system that enables the control on losing and gaining fluxes. A surficial biofilm was developed over a sandy streambed with dune-shaped bed forms, by providing labile DOC (sodium benzoate) and nitrate. Homogeneously distributed biofilm was obtained by the same feeding strategy but with mixing the sediments manually on a daily basis. After the biofilm growth period, transformation of the labile DOC under different overlying velocities and losing or gaining fluxes was studied after spiking with sodium benzoate and by monitoring the decrease in DOC concentration in the bulk water over time using an online UV/Vis spectrophotometer. In addition, oxygen profiles across the water-streambed interface were measured at different locations along the bed form using oxygen microelectrodes. Preliminary results showed that the rate of labile DOC degradation increased exponentially with increasing overlying water velocity, regardless of the type of biofilm. Gaining and losing conditions did not play a critical role in the DOC degradation regardless of the type of biofilm, because the labile DOC was quickly utilized close to the surface. Under losing conditions, complete depletion of oxygen was observed within the top 5 millimeters, regardless of the biofilm type. In contrast, oxygen profiles under gaining condition showed an incomplete consumption of oxygen followed by an increase in the concentration of oxygen deeper in the sediments due to the upward flow of oxygenated groundwater. The results suggest that the transformation

  5. Thoughts in flight: automation use and pilots' task-related and task-unrelated thought.

    PubMed

    Casner, Stephen M; Schooler, Jonathan W

    2014-05-01

    The objective was to examine the relationship between cockpit automation use and task-related and task-unrelated thought among airline pilots. Studies find that cockpit automation can sometimes relieve pilots of tedious control tasks and afford them more time to think ahead. Paradoxically, automation has also been shown to lead to lesser awareness. These results prompt the question of what pilots think about while using automation. A total of 18 airline pilots flew a Boeing 747-400 simulator while we recorded which of two levels of automation they used. As they worked, pilots were verbally probed about what they were thinking. Pilots were asked to categorize their thoughts as pertaining to (a) a specific task at hand, (b) higher-level flight-related thoughts (e.g.,planning ahead), or (c) thoughts unrelated to the flight. Pilots' performance was also measured. Pilots reported a smaller percentage of task-at-hand thoughts (27% vs. 50%) and a greater percentage of higher-level flight-related thoughts (56% vs. 29%) when using the higher level of automation. However, when all was going according to plan, using either level of automation, pilots also reported a higher percentage of task-unrelated thoughts (21%) than they did when in the midst of an unsuccessful performance (7%). Task-unrelated thoughts peaked at 25% when pilots were not interacting with the automation. Although cockpit automation may provide pilots with more time to think, it may encourage pilots to reinvest only some of this mental free time in thinking flight-related thoughts. This research informs the design of human-automation systems that more meaningfully engage the human operator.

  6. Role of hemoglobin and capillarization for oxygen delivery and extraction in muscular exercise.

    PubMed

    Saltin, B; Kiens, B; Savard, G; Pedersen, P K

    1986-01-01

    Through the years the role of the various links in the transport of oxygen in the human body has been discussed extensively, and especially whether one of these links could be singled out as limiting oxygen uptake during exercise. In his thesis work Lars Hermansen dealt with several of these variables related to oxygen transport and uptake. Two of these were the hemoglobin concentration of the blood (Hb) and skeletal muscle capillarization. These are the focus of this article. It can be demonstrated that variation in arterial oxygen content due to different Hb concentrations is fully compensated for at the level of the muscle, i.e. the amount of oxygen delivered to contracting muscles is adjusted by a variation in the blood flow so that it is the same regardless of Hb concentration in the range of 118-172 g X l-1. At the systemic level, with a large fraction of the muscle exercising, this causes an increase in submaximal heart rate and a lowering in maximal oxygen uptake in people with low as compared to normal or high Hb concentration. The primary significance of an enlarged capillary network in the muscle does not appear to be for accommodating a larger flow, but rather to allow for a long enough mean transit time and large enough surface area for optimal exchange of gases, substrates and metabolites.

  7. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1990-01-01

    Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.

  8. Determination of the relative uptake of ground vs. surface water by Populus deltoides during phytoremediation

    USGS Publications Warehouse

    Clinton, B.D.; Vose, J.M.; Vroblesky, D.A.; Harvey, G.J.

    2004-01-01

    The use of plants to remediate polluted groundwater is becoming an attractive alternative to more expensive traditional techniques. In order to adequately assess the effectiveness of the phytoremediation treatment, a clear understanding of water-use habits by the selected plant species is essential. We examined the relative uptake of surface water (i.e., precipitation) vs. groundwater by mature Populus deltoides by applying irrigation water at a rate equivalent to a 5-cm rain event. We used stable isotopes of hydrogen (D) and oxygen (18O) to identify groundwater and surface water (irrigation water) in the xylem sap water. Pretreatment isotopic ratios of both deuterium and 18O, ranked from heaviest to lightest, were irrigation water > groundwater > xylem sap. The discrepancy in preirrigation isotopic signatures between groundwater and xylem sap suggests that in the absence of a surface source of water (i.e., between rain events) there is an unknown amount of water being extracted from sources other than groundwater (i.e., soil surface water). We examined changes in volumetric soil water content (%), total hourly sapflux rates, and trichloroethene (TCE) concentrations. Following the irrigation treatment, volumetric soil water increased by 86% and sapflux increased by as much as 61%. Isotopic signatures of the xylem sap became substantially heavier following irrigation, suggesting that the applied irrigation water was quickly taken up by the plants. TCE concentrations in the xylem sap were diluted by an average of 21% following irrigation; however, dilution was low relative to the increase in sapflux. Our results show that water use by Populus deltoides is variable. Hence, studies addressing phytoremediation effectiveness must account for the relative proportion of surface vs. groundwater uptake.

  9. Diurnal Variations in Maximal Oxygen Uptake.

    ERIC Educational Resources Information Center

    McClellan, Powell D.

    A study attempted to determine if diurnal (daily cyclical) variations were present during maximal exercise. The subjects' (30 female undergraduate physical education majors) oxygen consumption and heart rates were monitored while they walked on a treadmill on which the grade was raised every minute. Each subject was tested for maximal oxygen…

  10. Delivery Rate Affects Uptake of a Fluorescent Glucose Analog in Murine Metastatic Breast Cancer

    PubMed Central

    Rajaram, Narasimhan; Frees, Amy E.; Fontanella, Andrew N.; Zhong, Jim; Hansen, Katherine; Dewhirst, Mark W.; Ramanujam, Nirmala

    2013-01-01

    We demonstrate an optical strategy using intravital microscopy of dorsal skin flap window chamber models to image glucose uptake and vascular oxygenation in vivo. Glucose uptake was imaged using a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). SO2 was imaged using the differential absorption properties of oxygenated [HbO2] and deoxygenated hemoglobin [dHb]. This study was carried out on two sibling murine mammary adenocarcinoma lines, 4T1 and 4T07. 2-NBDG uptake in the 4T1 tumors was lowest when rates of delivery and clearance were lowest, indicating perfusion-limited uptake in poorly oxygenated tumor regions. For increasing rates of delivery that were still lower than the glucose consumption rate (as measured in vitro), both 2-NBDG uptake and the clearance rate from the tumor increased. When the rate of delivery of 2-NBDG exceeded the glucose consumption rate, 2-NBDG uptake decreased with any further increase in rate of delivery, but the clearance rate continued to increase. This inflection point was not observed in the 4T07 tumors due to an absence of low delivery rates close to the glucose consumption rate. In the 4T07 tumors, 2-NBDG uptake increased with increasing rates of delivery at low rates of clearance. Our results demonstrate that 2-NBDG uptake in tumors is influenced by the rates of delivery and clearance of the tracer. The rates of delivery and clearance are, in turn, dependent on vascular oxygenation of the tumors. Knowledge of the kinetics of tracer uptake as well as vascular oxygenation is essential to make an informed assessment of glucose demand of a tumor. PMID:24204635

  11. Bicyclists' Uptake of Traffic-Related Air Pollution: Effects of the Urban Transportation System

    DOT National Transportation Integrated Search

    2014-10-27

    While bicyclists and other active travelers obtain health benefits from increased physical activity, they also risk uptake of traffic-related air pollution. But pollution uptake by urban bicyclists is not well understood due to a lack of direct measu...

  12. A task-related and resting state realistic fMRI simulator for fMRI data validation

    NASA Astrophysics Data System (ADS)

    Hill, Jason E.; Liu, Xiangyu; Nutter, Brian; Mitra, Sunanda

    2017-02-01

    After more than 25 years of published functional magnetic resonance imaging (fMRI) studies, careful scrutiny reveals that most of the reported results lack fully decisive validation. The complex nature of fMRI data generation and acquisition results in unavoidable uncertainties in the true estimation and interpretation of both task-related activation maps and resting state functional connectivity networks, despite the use of various statistical data analysis methodologies. The goal of developing the proposed STANCE (Spontaneous and Task-related Activation of Neuronally Correlated Events) simulator is to generate realistic task-related and/or resting-state 4D blood oxygenation level dependent (BOLD) signals, given the experimental paradigm and scan protocol, by using digital phantoms of twenty normal brains available from BrainWeb (http://brainweb.bic.mni.mcgill.ca/brainweb/). The proposed simulator will include estimated system and modelled physiological noise as well as motion to serve as a reference to measured brain activities. In its current form, STANCE is a MATLAB toolbox with command line functions serving as an open-source add-on to SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The STANCE simulator has been designed in a modular framework so that the hemodynamic response (HR) and various noise models can be iteratively improved to include evolving knowledge about such models.

  13. Assessment by near-infrared spectroscopy of the consumption of oxygen provoked by the human body weight in the vastus medialis muscle

    NASA Astrophysics Data System (ADS)

    Verdaguer-Codina, Joan

    1996-12-01

    This study has been focused to find the importance of the consumption of oxygen for a muscle that works supporting the weight of the human body. The oxygen uptake at rest level is a data know, but by near-IR spectroscopy can be assessed the oxygen uptake used for a muscle. The energy required by the human body is partially used to produce the energy that help to move the human structure. The oxygen required by the muscles to produce the energy to support the human body has been defined as weight oxygen consumption. The purpose of this study was to assess by near-IR spectroscopy the amount of relative oxygenation/deoxygenation that a muscle requires at rest level and a middle-term rest level.

  14. Rockets using Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Busemann, Adolf

    1947-01-01

    It is my task to discuss rocket propulsion using liquid oxygen and my treatment must be highly condensed for the ideas and experiments pertaining to this classic type of rocket are so numerous that one could occupy a whole morning with a detailed presentation. First, with regard to oxygen itself as compared with competing oxygen carriers, it is known that the liquid state of oxygen, in spite of the low boiling point, is more advantageous than the gaseous form of oxygen in pressure tanks, therefore only liquid oxygen need be compared with the oxygen carriers. The advantages of liquid oxygen are absolute purity and unlimited availability at relatively small cost in energy. The disadvantages are those arising from the impossibility of absolute isolation from heat; consequently, allowance must always be made for a certain degree of vaporization and only vented vessels can be used for storage and transportation. This necessity alone eliminates many fields of application, for example, at the front lines. In addition, liquid oxygen has a lower specific weight than other oxygen carriers, therefore many accessories become relatively larger and heavier in the case of an oxygen rocket, for example, the supply tanks and the pumps. The advantages thus become effective only in those cases where definitely scheduled operation and a large ground organization are possible and when the flight requires a great concentration of energy relative to weight. With the aim of brevity, a diagram of an oxygen rocket will be presented and the problem of various component parts that receive particularly thorough investigation in this classic case but which are also often applicable to other rocket types will be referred to.

  15. A hybrid multibreath wash-in wash-out lung function quantification scheme in human subjects using hyperpolarized 3 He MRI for simultaneous assessment of specific ventilation, alveolar oxygen tension, oxygen uptake, and air trapping.

    PubMed

    Hamedani, Hooman; Kadlecek, Stephen; Xin, Yi; Siddiqui, Sarmad; Gatens, Heather; Naji, Joseph; Ishii, Masaru; Cereda, Maurizio; Rossman, Milton; Rizi, Rahim

    2017-08-01

    To present a method for simultaneous acquisition of alveolar oxygen tension (P A O 2 ), specific ventilation (SV), and apparent diffusion coefficient (ADC) of hyperpolarized (HP) gas in the human lung, allowing reinterpretation of the P A O 2 and SV maps to produce a map of oxygen uptake (R). An imaging scheme was designed with a series of identical normoxic HP gas wash-in breaths to measure ADC, SV, P A O 2 , and R in less than 2 min. Signal dynamics were fit to an iterative recursive model that regionally solved for these parameters. This measurement was successfully performed in 12 subjects classified in three healthy, smoker, and chronic obstructive pulmonary disease (COPD) cohorts. The overall whole lung ADC, SV, P A O 2 , and R in healthy, smoker, and COPD subjects was 0.20 ± 0.03 cm 2 /s, 0.39 ± 0.06,113 ± 2 Torr, and 1.55 ± 0.35 Torr/s, respectively, in healthy subjects; 0.21 ± 0.03 cm 2 /s, 0.33 ± 0.06, 115.9 ± 4 Torr, and 0.97 ± 0.2 Torr/s, respectively, in smokers; and 0.25 ± 0.06 cm 2 /s, 0.23 ± 0.08, 114.8 ± 6.0Torr, and 0.94 ± 0.12 Torr/s, respectively, in subjects with COPD. Hetrogeneity of SV, P A O 2 , and R were indicators of both smoking-related changes and disease, and the severity of the disease correlated with the degree of this heterogeneity. Subjects with symptoms showed reduced oxygen uptake and specific ventilation. High-resolution, nearly coregistered and quantitative measures of lung function and structure were obtained with less than 1 L of HP gas. This hybrid multibreath technique produced measures of lung function that revealed clear differences among the cohorts and subjects and were confirmed by correlations with global lung measurements. Magn Reson Med 78:611-624, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Impact of task-related changes in heart rate on estimation of hemodynamic response and model fit.

    PubMed

    Hillenbrand, Sarah F; Ivry, Richard B; Schlerf, John E

    2016-05-15

    The blood oxygen level dependent (BOLD) signal, as measured using functional magnetic resonance imaging (fMRI), is widely used as a proxy for changes in neural activity in the brain. Physiological variables such as heart rate (HR) and respiratory variation (RV) affect the BOLD signal in a way that may interfere with the estimation and detection of true task-related neural activity. This interference is of particular concern when these variables themselves show task-related modulations. We first establish that a simple movement task reliably induces a change in HR but not RV. In group data, the effect of HR on the BOLD response was larger and more widespread throughout the brain than were the effects of RV or phase regressors. The inclusion of HR regressors, but not RV or phase regressors, had a small but reliable effect on the estimated hemodynamic response function (HRF) in M1 and the cerebellum. We next asked whether the inclusion of a nested set of physiological regressors combining phase, RV, and HR significantly improved the model fit in individual participants' data sets. There was a significant improvement from HR correction in M1 for the greatest number of participants, followed by RV and phase correction. These improvements were more modest in the cerebellum. These results indicate that accounting for task-related modulation of physiological variables can improve the detection and estimation of true neural effects of interest. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Parkin in cancer: Mitophagy-related/unrelated tasks.

    PubMed

    Eid, Nabil; Kondo, Yoichi

    2017-03-08

    Dysfunctional mitochondria may produce excessive reactive oxygen species, thus inducing DNA damage, which may be oncogenic if not repaired. As a major role of the PINK1-Parkin pathway involves selective autophagic clearance of damaged mitochondria via a process termed mitophagy, Parkin-mediated mitophagy may be a tumor-suppressive mechanism. As an alternative mechanism for tumor inhibition beyond mitophagy, Parkin has been reported to have other oncosuppressive functions such as DNA repair, negative regulation of cell proliferation and stimulation of p53 tumor suppressor function. The authors recently reported that acute ethanol-induced mitophagy in hepatocytes was associated with Parkin mitochondrial translocation and colocalization with accumulated 8-OHdG (a marker of DNA damage and mutagenicity). This finding suggests: (1) the possibility of Parkin-mediated repair of damaged mitochondrial DNA in hepatocytes of ethanol-treated rats (ETRs) as an oncosuppressive mechanism; and (2) potential induction of cytoprotective mitophagy in ETR hepatocytes if mitochondrial damage is too severe to be repaired. Below is a summary of the various roles Parkin plays in tumor suppression, which may or may not be related to mitophagy. A proper understanding of the various tasks performed by Parkin in tumorigenesis may help in cancer therapy by allowing the PINK1-Parkin pathway to be targeted.

  18. Neuroimaging explanations of age-related differences in task performance.

    PubMed

    Steffener, Jason; Barulli, Daniel; Habeck, Christian; Stern, Yaakov

    2014-01-01

    Advancing age affects both cognitive performance and functional brain activity and interpretation of these effects has led to a variety of conceptual research models without always explicitly linking the two effects. However, to best understand the multifaceted effects of advancing age, age differences in functional brain activity need to be explicitly tied to the cognitive task performance. This work hypothesized that age-related differences in task performance are partially explained by age-related differences in functional brain activity and formally tested these causal relationships. Functional MRI data was from groups of young and old adults engaged in an executive task-switching experiment. Analyses were voxel-wise testing of moderated-mediation and simple mediation statistical path models to determine whether age group, brain activity and their interaction explained task performance in regions demonstrating an effect of age group. Results identified brain regions whose age-related differences in functional brain activity significantly explained age-related differences in task performance. In all identified locations, significant moderated-mediation relationships resulted from increasing brain activity predicting worse (slower) task performance in older but not younger adults. Findings suggest that advancing age links task performance to the level of brain activity. The overall message of this work is that in order to understand the role of functional brain activity on cognitive performance, analysis methods should respect theoretical relationships. Namely, that age affects brain activity and brain activity is related to task performance.

  19. Plant traits related to nitrogen uptake influence plant-microbe competition.

    PubMed

    Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe

    2015-08-01

    Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more

  20. The Task and Relational Dimensions of Online Social Support.

    PubMed

    Beck, Stephenson J; Paskewitz, Emily A; Anderson, Whitney A; Bourdeaux, Renee; Currie-Mueller, Jenna

    2017-03-01

    Online support groups are attractive to individuals suffering from various types of mental and physical illness due to their accessibility, convenience, and comfort level. Individuals coping with depression, in particular, may seek social support online to avoid the stigma that accompanies face-to-face support groups. We explored how task and relational messages created social support in online depression support groups using Cutrona and Suhr's social support coding scheme and Bales's Interaction Process Analysis coding scheme. A content analysis revealed emotional support as the most common type of social support within the group, although the majority of messages were task rather than relational. Informational support consisted primarily of task messages, whereas network and esteem support were primarily relational messages. Specific types of task and relational messages were associated with different support types. Results indicate task messages dominated online depression support groups, suggesting the individuals who participate in these groups are interested in solving problems but may also experience emotional support when their uncertainty is reduced via task messages.

  1. Taking their breath away: metabolic responses to low-oxygen levels in anchialine shrimps (Crustacea: Atyidae and Alpheidae).

    PubMed

    Havird, Justin C; Vaught, Rebecca C; Weeks, Jeffrey R; Fujita, Yoshihisa; Hidaka, Michio; Santos, Scott R; Henry, Raymond P

    2014-12-01

    Crustaceans generally act as oxy-regulators, maintaining constant oxygen uptake as oxygen partial pressures decrease, but when a critical low level is reached, ventilation and aerobic metabolism shut down. Cave-adapted animals, including crustaceans, often show a reduced metabolic rate possibly owing in part to the hypoxic nature of such environments. However, metabolic rates have not been thoroughly explored in crustaceans from anchialine habitats (coastal ponds and caves), which can experience variable oxygenic regimes. Here, an atypical oxy-conforming pattern of oxygen uptake is reported in the Hawaiian anchialine atyid Halocaridina rubra, along with other unusual metabolic characteristics. Ventilatory rates are near-maximal in normoxia and did not increase appreciably as PO₂ declined, resulting in a decline in VO₂ during progressive hypoxia. Halocaridina rubra maintained in anoxic waters survived for seven days (the duration of the experiment) with no measureable oxygen uptake, suggesting a reliance on anaerobic metabolism. Supporting this, lactate dehydrogenase activity was high, even in normoxia, and oxygen debts were quickly repaid by an unusually extreme increase in oxygen uptake upon exposure to normoxia. In contrast, four related anchialine shrimp species from the Ryukyu Islands, Japan, exhibited physiological properties consistent with previously studied crustaceans. The unusual respiratory patterns found in H. rubra are discussed in the context of a trade-off in gill morphology for osmoregulatory ion transport vs. diffusion of respiratory gasses. Future focus on anchialine species may offer novel insight into the diversity of metabolic responses to hypoxia and other physiological challenges experienced by crustaceans. Published by Elsevier Inc.

  2. Mechanisms of Practice-Related Reductions of Dual-Task Interference with Simple Tasks: Data and Theory

    PubMed Central

    Strobach, Tilo; Torsten, Schubert

    2017-01-01

    In dual-task situations, interference between two simultaneous tasks impairs performance. With practice, however, this impairment can be reduced. To identify mechanisms leading to a practice-related improvement in sensorimotor dual tasks, the present review applied the following general hypothesis: Sources that impair dual-task performance at the beginning of practice are associated with mechanisms for the reduction of dual-task impairment at the end of practice. The following types of processes provide sources for the occurrence of this impairment: (a) capacity-limited processes within the component tasks, such as response-selection or motor response stages, and (b) cognitive control processes independent of these tasks and thus operating outside of component-task performance. Dual-task practice studies show that, under very specific conditions, capacity-limited processes within the component tasks are automatized with practice, reducing the interference between two simultaneous tasks. Further, there is evidence that response-selection stages are shortened with practice. Thus, capacity limitations at these stages are sources for dual-task costs at the beginning of practice and are overcome with practice. However, there is no evidence demonstrating the existence of practice-related mechanisms associated with capacity-limited motor-response stages. Further, during practice, there is an acquisition of executive control skills for an improved allocation of limited attention resources to two tasks as well as some evidence supporting the assumption of improved task coordination. These latter mechanisms are associated with sources of dual-task interference operating outside of component task performance at the beginning of practice and also contribute to the reduction of dual-task interference at its end. PMID:28439319

  3. [Assessment of cerebral oxygen saturation using near infrared spectroscopy under driver fatigue state].

    PubMed

    Li, Zeng-yong; Dai, Shi-xun; Zhang, Xiao-yin; Li, Yue; Yu, Xing-xin

    2010-01-01

    The objective of the present study is to assess the cerebral saturation under driver fatigue based on the near infrared spectroscopy (NIRS) signals. Twenty healthy male subjects were randomly divided into two groups: A-group (study group) and B-group (control group). All subjects were required to be well rested before the experiment. In A-group the subjects were required to perform the simulated driving task for 3 hours. Cerebral oxygenation signal was monitored for 20 minutes prior to and after the prescribed task period from the left frontal lobe. The results show that cerebral oxygen saturation was found to be significantly lower following 3-hour driving in the task group compared to that in the control group (F = 15.92, p < 0.001). Also a significant difference in selective reaction time was observed between the task group and control group during the post task period (p = 0.021). These findings showed that the cerebral blood oxygen saturation was closely related to the driver fatigue. The decline of the cerebral oxygen saturation might indicate a reduced cerebral oxygen delivery. This suggests that NIRS could provide a non-invasive method to detect driver fatigue.

  4. Differential Responses of Post-Exercise Recovery of Leg Blood Flow and Oxygen Uptake Kinetics in HFpEF versus HFrEF.

    PubMed

    Thompson, Richard B; Pagano, Joseph J; Mathewson, Kory W; Paterson, Ian; Dyck, Jason R; Kitzman, Dalane W; Haykowsky, Mark J

    2016-01-01

    The goals of the current study were to compare leg blood flow, oxygen extraction and oxygen uptake (VO2) after constant load sub-maximal unilateral knee extension (ULKE) exercise in patients with heart failure with reduced ejection fraction (HFrEF) compared to those with preserved ejection fraction (HFpEF). Previously, it has been shown that prolonged whole body VO2 recovery kinetics are directly related to disease severity and all-cause mortality in HFrEF patients. To date, no study has simultaneously measured muscle-specific blood flow and oxygen extraction post exercise recovery kinetics in HFrEF or HFpEF patients; therefore it is unknown if muscle VO2 recovery kinetics, and more specifically, the recovery kinetics of blood flow and oxygen extraction at the level of the muscle, differ between HF phenotypes. Ten older (68±10yrs) HFrEF (n = 5) and HFpEF (n = 5) patients performed sub-maximal (85% of maximal weight lifted during an incremental test) ULKE exercise for 4 minutes. Femoral venous blood flow and venous O2 saturation were measured continuously from the onset of end-exercise, using a novel MRI method, to determine off-kinetics (mean response times, MRT) for leg VO2 and its determinants. HFpEF and HFrEF patients had similar end-exercise leg blood flow (1.1±0.6 vs. 1.2±0.6 L/min, p>0.05), venous saturation (42±12 vs. 41±11%, p>0.05) and VO2 (0.13±0.08 vs. 0.11±0.05 L/min, p>0.05); however HFrEF had significantly delayed recovery MRT for flow (292±135sec. vs 105±63sec., p = 0.004) and VO2 (95±37sec. vs. 47±15sec., p = 0.005) compared to HFpEF. Impaired muscle VO2 recovery kinetics following ULKE exercise differentiated HFrEF from HFpEF patients and suggests distinct underlying pathology and potential therapeutic approaches in these populations.

  5. Oxygen Uptake Efficiency Slope and Breathing Reserve, Not Anaerobic Threshold, Discriminate Between Patients With Cardiovascular Disease Over Chronic Obstructive Pulmonary Disease.

    PubMed

    Barron, Anthony; Francis, Darrel P; Mayet, Jamil; Ewert, Ralf; Obst, Anne; Mason, Mark; Elkin, Sarah; Hughes, Alun D; Wensel, Roland

    2016-04-01

    The study sought to compare the relative discrimination of various cardiopulmonary exercise testing (CPX) variables between cardiac and respiratory disease. CPX testing is used in many cardiorespiratory diseases. However, discrimination of cardiac and respiratory dysfunction can be problematic. Anaerobic threshold (AT) and oxygen-uptake to work-rate relationship (VO2/WR slope) have been proposed as diagnostic of cardiac dysfunction, but multiple variables have not been compared. A total of 73 patients with chronic obstructive pulmonary disease (COPD) (n = 25), heart failure with reduced ejection fraction (HFrEF) (n = 40), or combined COPD and HFrEF (n = 8) were recruited and underwent CPX testing on a bicycle ergometer. Following a familiarization test, each patient underwent a personalized second test aiming for maximal exercise after ∼10 min. Measurements from this test were used to calculate area under the receiver-operator characteristic curve (AUC). Peak VO2 was similar between the 2 principal groups (COPD 17.1 ± 4.6 ml/min/kg; HFrEF 16.4 ± 3.6 ml/min/kg). Breathing reserve (AUC: 0.91) and percent predicted oxygen uptake efficiency slope (OUES) (AUC: 0.87) had the greatest ability to discriminate between COPD and HFrEF. VO2/WR slope performed significantly worse (AUC: 0.68). VO2 at the AT did not discriminate (AUC for AT as percent predicted peak VO2: 0.56). OUES and breathing reserve remained strong discriminators when compared with an external cohort of healthy matched controls, and were comparable to B-type natriuretic peptide. Breathing reserve and OUES discriminate heart failure from COPD. Despite it being considered an important determinant of cardiac dysfunction, the AT could not discriminate these typical clinical populations while the VO2/WR slope showed poor to moderate discriminant ability. (Identifying an Ideal Cardiopulmonary Exercise Test Parameter [PVA]; NCT01162083). Copyright © 2016 American College of Cardiology Foundation. Published by

  6. Sex and Exercise Intensity Do Not Influence Oxygen Uptake Kinetics in Submaximal Swimming

    PubMed Central

    Reis, Joana F.; Millet, Gregoire P.; Bruno, Paula M.; Vleck, Veronica; Alves, Francisco B.

    2017-01-01

    The aim of this study was to compare the oxygen uptake (V˙O2) kinetics in front crawl between male and female swimmers at moderate and heavy intensity. We hypothesized that the time constant for the primary phase V˙O2 kinetics was faster in men than in women, for both intensities. Nineteen well trained swimmers (8 females mean ± SD; age 17.9 ± 3.5 years; mass 55.2 ± 3.6 kg; height 1.66 ± 0.05 m and 11 male 21.9 ± 2.8 years; 78.2 ± 11.1 kg; 1.81 ± 0.08 m) performed a discontinuous maximal incremental test and two 600-m square wave transitions for both moderate and heavy intensities to determine the V˙O2 kinetics parameters using mono- and bi-exponential models, respectively. All the tests involved breath-by-breath analysis of front crawl swimming using a swimming snorkel. The maximal oxygen uptake (V˙O2max) was higher in men than in women [4,492 ± 585 ml·min−1 and 57.7 ± 4.4 ml·kg−1·min−1 vs. 2,752.4 ± 187.9 ml·min−1 (p ≤ 0.001) and 50.0 ± 5.7 ml·kg−1·min−1(p = 0.007), respectively]. Similarly, the absolute amplitude of the primary component was higher in men for both intensities (moderate: 1,736 ± 164 vs. 1,121 ± 149 ml·min−1; heavy: 2,948 ± 227 vs. 1,927 ± 243 ml·min−1, p ≤ 0.001, for males and females, respectively). However, the time constant of the primary component (τp) was not influenced by sex (p = 0.527) or swimming intensity (p = 0.804) (moderate: 15.1 ± 5.6 vs. 14.4 ± 5.1 s; heavy: 13.5 ± 3.3 vs. 16.0 ± 4.5 s, for females and males, respectively). The slow component in the heavy domain was not significantly different between female and male swimmers (3.2 ± 2.4 vs. 3.8 ± 1.0 ml·kg−1·min−1, p = 0.476). Overall, only the absolute amplitude of the primary component was higher in men, while the other V˙O2 kinetics parameters were similar between female and male swimmers at both moderate and heavy intensities. The mechanisms underlying these similarities remain unclear. PMID:28239356

  7. Effect of salinity on oxygen consumption in fishes: a review.

    PubMed

    Ern, R; Huong, D T T; Cong, N V; Bayley, M; Wang, T

    2014-04-01

    The effect of salinity on resting oxygen uptake was measured in the perch Perca fluviatilis and available information on oxygen uptake in teleost species at a variety of salinities was reviewed. Trans-epithelial ion transport against a concentration gradient requires energy and exposure to salinities osmotically different from the body fluids therefore imposes an energetic demand that is expected to be lowest in brackish water compared to fresh and sea water. Across species, there is no clear trend between oxygen uptake and salinity, and estimates of cost of osmotic and ionic regulation vary from a few per cent to >30% of standard metabolism. © 2014 The Fisheries Society of the British Isles.

  8. Adolescent neural response to reward is related to participant sex and task motivation

    PubMed Central

    Alarcón, Gabriela; Cservenka, Anita; Nagel, Bonnie J.

    2017-01-01

    Risky decision making is prominent during adolescence, perhaps contributed to by heightened sensation seeking and ongoing maturation of reward and dopamine systems in the brain, which are, in part, modulated by sex hormones. In this study, we examined sex differences in the neural substrates of reward sensitivity during a risky decision-making task and hypothesized that compared with girls, boys would show heightened brain activation in reward-relevant regions, particularly the nucleus accumbens, during reward receipt. Further, we hypothesized that testosterone and estradiol levels would mediate this sex difference. Moreover, we predicted boys would make more risky choices on the task. While boys showed increased nucleus accumbens blood oxygen level-dependent (BOLD) response relative to girls, sex hormones did not mediate this effect. As predicted, boys made a higher percentage of risky decisions during the task. Interestingly, boys also self-reported more motivation to perform well and earn money on the task, while girls self-reported higher state anxiety prior to the scan session. Motivation to earn money partially mediated the effect of sex on nucleus accumbens activity during reward. Previous research shows that increased motivation and salience of reinforcers is linked with more robust striatal BOLD response, therefore psychosocial factors, in addition to sex, may play an important role in reward sensitivity. Elucidating neurobiological mechanisms that support adolescent sex differences in risky decision making has important implications for understanding individual differences that lead to advantageous and adverse behaviors that affect health outcomes. PMID:27816780

  9. Non-invasive measurement of the mean alveolar O(2) tension from the oxygen uptake versus tidal volume curve.

    PubMed

    Jordanoglou, J; Latsi, P; Chroneou, A; Koulouris, N G

    2007-10-01

    The classical equations for measuring the mean and the ideal alveolar O(2) tension are based on assumptions, which are shown to be invalid. So we thought to develop a new, non-invasive method for measuring the mean alveolar P,O(2) within the volume domain (PA,O(2(Bohr))). This method is based on the oxygen uptake vs. tidal volume curve (VO(2) vs. VT) obtained during tidal breathing of room air and/or air enriched with oxygen. PA,O(2(Bohr)) and the ideal alveolar PO(2) (PA,O(2(ideal))) were simultaneously measured in 10 healthy subjects and 34 patients suffering from chronic obstructive pulmonary disease (COPD) breathing tidally room air at rest. Additionally, 10 subjects (three healthy subjects and seven COPD patients) were studied while breathing initially room air and subsequently air enriched with oxygen. According to the results, PA,O(2(Bohr)) considerably differed from PA,O(2(ideal)) (P = 0.004). The cause of the difference, at the individual's R, is: (1) the difference between the arterial and Bohr's alveolar CO(2) tension, mainly in COPD patients, and (2) the inequality between Bohr's alveolar part of the tidal volume for CO(2) and O(2). Furthermore, end-tidal gas tension (PET,CO(2) and PET,O(2)) differed from Pa,CO(2) and PA,O(2(Bohr)) respectively. The deviation of PA,O(2(Bohr)) from PA,O(2(ideal)) has a definite impact on Bohr's dead space ratio for O(2) and CO(2), and on the alveolar-arterial O(2) difference. The difference (PA,O(2(Bohr)) - PA,O(2(ideal))) is not related to the pathology of the disease. So, gas exchange within the lungs should be assessed at the subject's R from PA,O(2(Bohr)) and PA,CO(2(Bohr)) but not from PA,O(2(ideal)) nor Pa,CO(2).

  10. Oxygen desaturation during night sleep affects decision-making in patients with obstructive sleep apnea.

    PubMed

    Delazer, Margarete; Zamarian, Laura; Frauscher, Birgit; Mitterling, Thomas; Stefani, Ambra; Heidbreder, Anna; Högl, Birgit

    2016-08-01

    This study assessed decision-making and its associations with executive functions and sleep-related factors in patients with obstructive sleep apnea. Thirty patients with untreated obstructive sleep apnea and 20 healthy age- and education-matched controls performed the Iowa Gambling Task, a decision-making task under initial ambiguity, as well as an extensive neuropsychological test battery. Patients, but not controls, also underwent a detailed polysomnographic assessment. Results of group analyses showed that patients performed at the same level of controls on the Iowa Gambling Task. However, the proportion of risky performers was significantly higher in the patient group than in the control group. Decision-making did not correlate with executive functions and subjective ratings of sleepiness, whereas there was a significant positive correlation between advantageous performance on the Iowa Gambling Task and percentage of N2 sleep, minimal oxygen saturation, average oxygen saturation and time spent below 90% oxygen saturation level. Also, the minimal oxygen saturation accounted for 27% of variance in decision-making. In conclusion, this study shows that a subgroup of patients with obstructive sleep apnea may be at risk of disadvantageous decision-making under ambiguity. Among the sleep-related factors, oxygen saturation is a significant predictor of advantageous decision-making. © 2016 European Sleep Research Society.

  11. Task Analysis - Its Relation to Content Analysis.

    ERIC Educational Resources Information Center

    Gagne, Robert M.

    Task analysis is a procedure having the purpose of identifying different kinds of performances which are outcomes of learning, in order to make possible the specification of optimal instructional conditions for each kind of outcome. Task analysis may be related to content analysis in two different ways: (1) it may be used to identify the probably…

  12. The effect of the oxygen uptake-power output relationship on the prediction of supramaximal oxygen demands.

    PubMed

    Muniz-Pumares, Daniel; Pedlar, Charles; Godfrey, Richard; Glaister, Mark

    2017-01-01

    The aim of this study was to investigate the relationship between oxygen uptake (V̇O2) and power output at intensities below and above the lactate threshold (LT) in cyclists; and to determine the reliability of supramaximal power outputs linearly projected from these relationships. Nine male cyclists (mean±standard deviation age: 41±8 years; mass: 77±6 kg, height: 1.79±0.05 m and V̇O2max: 54±7 mL∙kg-1∙min-1) completed two cycling trials each consisting of a step test (10×3 min stages at submaximal incremental intensities) followed by a maximal test to exhaustion. The lines of best fit for V̇O2 and power output were determined for: the entire step test; stages below and above the LT, and from rolling clusters of five consecutive stages. Lines were projected to determine a power output predicted to elicit 110% peak V̇O2. There were strong linear correlations (r≥0.953; P<0.01) between V̇O2 and power output using the three approaches; with the slope, intercept, and projected values of these lines unaffected (P≥0.05) by intensity. The coefficient of variation of the predicted power output at 110% V̇O2max was 6.7% when using all ten submaximal stages. Cyclists exhibit a linear V̇O2 and power output relationship when determined using 3 min stages, which allows for prediction of a supramaximal intensity with acceptable reliability.

  13. Case-Based Learning of Blood Oxygen Transport

    ERIC Educational Resources Information Center

    Cliff, William H.

    2006-01-01

    A case study about carbon monoxide poisoning was used help students gain a greater understanding of the physiology of oxygen transport by the blood. A review of student answers to the case questions showed that students can use the oxygen-hemoglobin dissociation curve to make meaningful determinations of oxygen uptake and delivery. However, the…

  14. Does Task Affordance Moderate Age-related Deficits in Strategy Production?

    PubMed Central

    Bottiroli, Sara; Dunlosky, John; Guerini, Kate; Cavallini, Elena; Hertzog, Christopher

    2011-01-01

    According to the task-affordance hypothesis, people will be more likely to use a specific strategy as tasks more readily afford its use. To evaluate this hypothesis, we examined the degree to which older and younger adults used a self-testing strategy to learn items, because previous studies suggest that age-related differences in the use of this powerful strategy vary across tasks. These tasks (words affixed to a board vs. pairs on flashcards) differentially afford the use of the self-testing strategy and may moderate the age-related effects on strategy use. Participants performed a recall-readiness task in which they continued to study items until they were ready for the criterion test. As predicted, self testing was used less often on tasks that least afforded its use. Namely, participants used self testing less when they studied single words affixed to a board than when they studied pairs on flashcards. Most important, age-related deficits in strategy use were greater for the former task and nonexistent for the latter one, suggesting that task affordance moderates age differences in strategy use. PMID:20552461

  15. Does task affordance moderate age-related deficits in strategy production?

    PubMed

    Bottiroli, Sara; Dunlosky, John; Guerini, Kate; Cavallini, Elena; Hertzog, Christopher

    2010-09-01

    According to the task-affordance hypothesis, people will be more likely to use a specific strategy as tasks more readily afford its use. To evaluate this hypothesis, we examined the degree to which older and younger adults used a self-testing strategy to learn items, because previous studies suggest that age-related differences in the use of this powerful strategy vary across tasks. These tasks (words affixed to a board vs. pairs on flashcards) differentially afford the use of the self-testing strategy and may moderate the age-related effects on strategy use. Participants performed a recall-readiness task in which they continued to study items until they were ready for the criterion test. As predicted, self testing was used less often on tasks that least afforded its use. Namely, participants used self testing less when they studied single words affixed to a board than when they studied pairs on flashcards. Most important, age-related deficits in strategy use were greater for the former task and nonexistent for the latter one, suggesting that task affordance moderates age differences in strategy use.

  16. The neural architecture of age-related dual-task interferences.

    PubMed

    Chmielewski, Witold X; Yildiz, Ali; Beste, Christian

    2014-01-01

    In daily life elderly adults exhibit deficits when dual-tasking is involved. So far these deficits have been verified on a behavioral level in dual-tasking. Yet, the neuronal architecture of these deficits in aging still remains to be explored especially when late-middle aged individuals around 60 years of age are concerned. Neuroimaging studies in young participants concerning dual-tasking were, among others, related to activity in middle frontal (MFG) and superior frontal gyrus (SFG) and the anterior insula (AI). According to the frontal lobe hypothesis of aging, alterations in these frontal regions (i.e., SFG and MFG) might be responsible for cognitive deficits. We measured brain activity using fMRI, while examining age-dependent variations in dual-tasking by utilizing the PRP (psychological refractory period) test. Behavioral data showed an increasing PRP effect in late-middle aged adults. The results suggest the age-related deteriorated performance in dual-tasking, especially in conditions of risen complexity. These effects are related to changes in networks involving the AI, the SFG and the MFG. The results suggest that different cognitive subprocesses are affected that mediate the observed dual-tasking problems in late-middle aged individuals.

  17. Oxygen Uptake Efficiency Slope and Breathing Reserve, Not Anaerobic Threshold, Discriminate Between Patients With Cardiovascular Disease Over Chronic Obstructive Pulmonary Disease

    PubMed Central

    Barron, Anthony; Francis, Darrel P.; Mayet, Jamil; Ewert, Ralf; Obst, Anne; Mason, Mark; Elkin, Sarah; Hughes, Alun D.; Wensel, Roland

    2016-01-01

    Objectives The study sought to compare the relative discrimination of various cardiopulmonary exercise testing (CPX) variables between cardiac and respiratory disease. Background CPX testing is used in many cardiorespiratory diseases. However, discrimination of cardiac and respiratory dysfunction can be problematic. Anaerobic threshold (AT) and oxygen-uptake to work-rate relationship (VO2/WR slope) have been proposed as diagnostic of cardiac dysfunction, but multiple variables have not been compared. Methods A total of 73 patients with chronic obstructive pulmonary disease (COPD) (n = 25), heart failure with reduced ejection fraction (HFrEF) (n = 40), or combined COPD and HFrEF (n = 8) were recruited and underwent CPX testing on a bicycle ergometer. Following a familiarization test, each patient underwent a personalized second test aiming for maximal exercise after ∼10 min. Measurements from this test were used to calculate area under the receiver-operator characteristic curve (AUC). Results Peak VO2 was similar between the 2 principal groups (COPD 17.1 ± 4.6 ml/min/kg; HFrEF 16.4 ± 3.6 ml/min/kg). Breathing reserve (AUC: 0.91) and percent predicted oxygen uptake efficiency slope (OUES) (AUC: 0.87) had the greatest ability to discriminate between COPD and HFrEF. VO2/WR slope performed significantly worse (AUC: 0.68). VO2 at the AT did not discriminate (AUC for AT as percent predicted peak VO2: 0.56). OUES and breathing reserve remained strong discriminators when compared with an external cohort of healthy matched controls, and were comparable to B-type natriuretic peptide. Conclusions Breathing reserve and OUES discriminate heart failure from COPD. Despite it being considered an important determinant of cardiac dysfunction, the AT could not discriminate these typical clinical populations while the VO2/WR slope showed poor to moderate discriminant ability. (Identifying an Ideal Cardiopulmonary Exercise Test Parameter [PVA]; NCT01162083) PMID:26874378

  18. Embedded interruptions and task complexity influence schema-related cognitive load progression in an abstract learning task.

    PubMed

    Wirzberger, Maria; Esmaeili Bijarsari, Shirin; Rey, Günter Daniel

    2017-09-01

    Cognitive processes related to schema acquisition comprise an essential source of demands in learning situations. Since the related amount of cognitive load is supposed to change over time, plausible temporal models of load progression based on different theoretical backgrounds are inspected in this study. A total of 116 student participants completed a basal symbol sequence learning task, which provided insights into underlying cognitive dynamics. Two levels of task complexity were determined by the amount of elements within the symbol sequence. In addition, interruptions due to an embedded secondary task occurred at five predefined stages over the task. Within the resulting 2x5-factorial mixed between-within design, the continuous monitoring of efficiency in learning performance enabled assumptions on relevant resource investment. From the obtained results, a nonlinear change of learning efficiency over time seems most plausible in terms of cognitive load progression. Moreover, different effects of the induced interruptions show up in conditions of task complexity, which indicate the activation of distinct cognitive mechanisms related to structural aspects of the task. Findings are discussed in the light of evidence from research on memory and information processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Adolescent neural response to reward is related to participant sex and task motivation.

    PubMed

    Alarcón, Gabriela; Cservenka, Anita; Nagel, Bonnie J

    2017-02-01

    Risky decision making is prominent during adolescence, perhaps contributed to by heightened sensation seeking and ongoing maturation of reward and dopamine systems in the brain, which are, in part, modulated by sex hormones. In this study, we examined sex differences in the neural substrates of reward sensitivity during a risky decision-making task and hypothesized that compared with girls, boys would show heightened brain activation in reward-relevant regions, particularly the nucleus accumbens, during reward receipt. Further, we hypothesized that testosterone and estradiol levels would mediate this sex difference. Moreover, we predicted boys would make more risky choices on the task. While boys showed increased nucleus accumbens blood oxygen level-dependent (BOLD) response relative to girls, sex hormones did not mediate this effect. As predicted, boys made a higher percentage of risky decisions during the task. Interestingly, boys also self-reported more motivation to perform well and earn money on the task, while girls self-reported higher state anxiety prior to the scan session. Motivation to earn money partially mediated the effect of sex on nucleus accumbens activity during reward. Previous research shows that increased motivation and salience of reinforcers is linked with more robust striatal BOLD response, therefore psychosocial factors, in addition to sex, may play an important role in reward sensitivity. Elucidating neurobiological mechanisms that support adolescent sex differences in risky decision making has important implications for understanding individual differences that lead to advantageous and adverse behaviors that affect health outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Event-related potentials and secondary task performance during simulated driving.

    PubMed

    Wester, A E; Böcker, K B E; Volkerts, E R; Verster, J C; Kenemans, J L

    2008-01-01

    Inattention and distraction account for a substantial number of traffic accidents. Therefore, we examined the impact of secondary task performance (an auditory oddball task) on a primary driving task (lane keeping). Twenty healthy participants performed two 20-min tests in the Divided Attention Steering Simulator (DASS). The visual secondary task of the DASS was replaced by an auditory oddball task to allow recording of brain activity. The driving task and the secondary (distracting) oddball task were presented in isolation and simultaneously, to assess their mutual interference. In addition to performance measures (lane keeping in the primary driving task and reaction speed in the secondary oddball task), brain activity, i.e. event-related potentials (ERPs), was recorded. Performance parameters on the driving test and the secondary oddball task did not differ between performance in isolation and simultaneous performance. However, when both tasks were performed simultaneously, reaction time variability increased in the secondary oddball task. Analysis of brain activity indicated that ERP amplitude (P3a amplitude) related to the secondary task, was significantly reduced when the task was performed simultaneously with the driving test. This study shows that when performing a simple secondary task during driving, performance of the driving task and this secondary task are both unaffected. However, analysis of brain activity shows reduced cortical processing of irrelevant, potentially distracting stimuli from the secondary task during driving.

  1. Inverted-U Function Relating Cortical Plasticity and Task Difficulty

    PubMed Central

    Engineer, Navzer D.; Engineer, Crystal T.; Reed, Amanda C.; Pandya, Pritesh K.; Jakkamsetti, Vikram; Moucha, Raluca; Kilgard, Michael P.

    2012-01-01

    Many psychological and physiological studies with simple stimuli have suggested that perceptual learning specifically enhances the response of primary sensory cortex to task-relevant stimuli. The aim of this study was to determine whether auditory discrimination training on complex tasks enhances primary auditory cortex responses to a target sequence relative to non-target and novel sequences. We collected responses from more than 2,000 sites in 31 rats trained on one of six discrimination tasks that differed primarily in the similarity of the target and distractor sequences. Unlike training with simple stimuli, long-term training with complex stimuli did not generate target specific enhancement in any of the groups. Instead, cortical receptive field size decreased, latency decreased, and paired pulse depression decreased in rats trained on the tasks of intermediate difficulty while tasks that were too easy or too difficult either did not alter or degraded cortical responses. These results suggest an inverted-U function relating neural plasticity and task difficulty. PMID:22249158

  2. Relative Water Uptake as a Criterion for the Design of Trickle Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Communar, G.; Friedman, S. P.

    2008-12-01

    Previously derived analytical solutions to the 2- and 3-dimensional water flow problems describing trickle irrigation are not being widely used in practice because those formulations either ignore root water uptake or refer to it as a known input. In this lecture we are going to describe a new modeling approach and demonstrate its applicability for designing the geometry of trickle irrigation systems, namely the spacing between the emitters and drip lines. The major difference between our and previous modeling approaches is that we refer to the root water uptake as to the unknown solution of the problem and not as to a known input. We postulate that the solution to the steady-state water flow problem with a root sink that is acting under constant, maximum suction defines un upper bound to the relative water uptake (water use efficiency) in actual transient situations and propose to use it as a design criterion. Following previous derivations of analytical solutions we assume that the soil hydraulic conductivity increases exponentially with its matric head, which allows the linearization of the Richards equation, formulated in terms of the Kirchhoff matric flux potential. Since the transformed problem is linear, the relative water uptake for any given configuration of point or line sources and sinks can be calculated by superposition of the Green's functions of all relevant water sources and sinks. In addition to evaluating the relative water uptake, we also derived analytical expressions for the steam functions. The stream lines separating the water uptake zone from the percolating water provide insight to the dependence of the shape and extent of the actual rooting zone on the source- sink geometry and soil properties. A minimal number of just 3 system parameters: Gardner's (1958) alfa as a soil type quantifier and the depth and diameter of the pre-assumed active root zone are sufficient to characterize the interplay between capillary and gravitational effects on

  3. Predicting Endurance Time in a Repetitive Lift and Carry Task Using Linear Mixed Models

    PubMed Central

    Ham, Daniel J.; Best, Stuart A.; Carstairs, Greg L.; Savage, Robert J.; Straney, Lahn; Caldwell, Joanne N.

    2016-01-01

    Objectives Repetitive manual handling tasks account for a substantial portion of work-related injuries. However, few studies report endurance time in repetitive manual handling tasks. Consequently, there is little guidance to inform expected work time for repetitive manual handling tasks. We aimed to investigate endurance time and oxygen consumption of a repetitive lift and carry task using linear mixed models. Methods Fourteen male soldiers (age 22.4 ± 4.5 yrs, height 1.78 ± 0.04 m, body mass 76.3 ± 10.1 kg) conducted four assessment sessions that consisted of one maximal box lifting session and three lift and carry sessions. The relationships between carry mass (range 17.5–37.5 kg) and the duration of carry, and carry mass and oxygen consumption, were assessed using linear mixed models with random effects to account for between-subject variation. Results Results demonstrated that endurance time was inversely associated with carry mass (R2 = 0.24), with significant individual-level variation (R2 = 0.85). Normalising carry mass to performance in a maximal box lifting test improved the prediction of endurance time (R2 = 0.40). Oxygen consumption presented relative to total mass (body mass, external load and carried mass) was not significantly related to lift and carry mass (β1 = 0.16, SE = 0.10, 95%CI: -0.04, 0.36, p = 0.12), indicating that there was no change in oxygen consumption relative to total mass with increasing lift and carry mass. Conclusion Practically, these data can be used to guide work-rest schedules and provide insight into methods assessing the physical capacity of workers conducting repetitive manual handling tasks. PMID:27379902

  4. Amygdala task-evoked activity and task-free connectivity independently contribute to feelings of arousal.

    PubMed

    Touroutoglou, Alexandra; Bickart, Kevin C; Barrett, Lisa Feldman; Dickerson, Bradford C

    2014-10-01

    Individual differences in the intensity of feelings of arousal while viewing emotional pictures have been associated with the magnitude of task-evoked blood-oxygen dependent (BOLD) response in the amygdala. Recently, we reported that individual differences in feelings of arousal are associated with task-free (resting state) connectivity within the salience network. There has not yet been an investigation of whether these two types of functional magnetic resonance imaging (MRI) measures are redundant or independent in their relationships to behavior. Here we tested the hypothesis that a combination of task-evoked amygdala activation and task-free amygdala connectivity within the salience network relate to individual differences in feelings of arousal while viewing of negatively potent images. In 25 young adults, results revealed that greater task-evoked amygdala activation and stronger task-free amygdala connectivity within the salience network each contributed independently to feelings of arousal, predicting a total of 45% of its variance. Individuals who had both increased task-evoked amygdala activation and stronger task-free amygdala connectivity within the salience network had the most heightened levels of arousal. Task-evoked amygdala activation and task-free amygdala connectivity within the salience network were not related to each other, suggesting that resting-state and task-evoked dynamic brain imaging measures may provide independent and complementary information about affective experience, and likely other kinds of behaviors as well. Copyright © 2014 Wiley Periodicals, Inc.

  5. Influence of protein ingestion on human splanchnic and whole-body oxygen consumption, blood flow, and blood temperature.

    PubMed

    Brundin, T; Wahren, J

    1994-05-01

    Splanchnic and whole-body oxygen uptake, blood flow, and blood temperature were studied in 10 healthy subjects before and during 2 hours after oral ingestion of 900 kJ of fish protein. Indirect calorimetry and catheter techniques were used, including blood thermometry in arterial, pulmonary arterial, and hepatic venous blood. After the meal, pulmonary oxygen uptake increased from a basal value of 272 +/- 11 to 332 +/- 23 mL/min. During the first postprandial hour, splanchnic oxygen uptake increased from 62 +/- 5 to 93 +/- 9 mL/min (+50%, P < .05), thereby accounting for 62% +/- 17% of the simultaneous increase in whole-body oxygen consumption. During the second postprandial hour, splanchnic oxygen uptake increased no further, whereas in the extrasplanchnic tissues the oxygen consumption increased, now accounting for the entire simultaneous increase in pulmonary oxygen uptake. Cardiac output increased from basal 6.4 +/- 0.4 to 7.5 +/- 0.5 L/min. Splanchnic blood flow changed little while the arteriohepatic venous oxygen difference increased from 46 +/- 3 to 54 +/- 4 mL/L. Arterial and hepatic venous blood temperatures increased by almost 0.3 degrees C, reflecting a considerable accumulation of heat, indicating a conversion into a positive thermal balance. It is concluded that after protein ingestion, (1) oxygen uptake increases mainly in the splanchnic organs during the first hour, and thereafter exclusively in the extrasplanchnic tissues; (2) the blood flow increases mainly in extrasplanchnic tissues; and (3) the blood temperature increases almost linearly, indicating an upward adjustment of the temperature setpoint in the central thermosensors.

  6. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance

    PubMed Central

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment (p < 0.001 for both). Multitasking performance was also significantly enhanced in HBO environment (p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance. PMID:29021747

  7. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance.

    PubMed

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment ( p < 0.001 for both). Multitasking performance was also significantly enhanced in HBO environment ( p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  8. Comparison of changes in oxygenated hemoglobin during the tree-drawing task between patients with schizophrenia and healthy controls.

    PubMed

    Nakano, Shinya; Shoji, Yoshihisa; Morita, Kiichiro; Igimi, Hiroyasu; Sato, Mamoru; Ishii, Youhei; Kondo, Akihiko; Uchimura, Naohisa

    2018-01-01

    Tree-drawing test is used as a projective psychological test that expresses the abnormal internal experience in patients with schizophrenia (SZ). Despite the widely accepted view that the cognitive function is involved in characteristic tree-drawing in patients with SZ, no study has psychophysiologically examined it. The present study aimed to investigate the involvement of cognitive function during tree-drawing in patients with SZ. For that purpose, we evaluated the brain function in patients with SZ during a tree-drawing task by using near-infrared spectroscopy (NIRS) and compared them with those in healthy controls. The subjects were 28 healthy controls and 28 patients with SZ. Changes in the oxygenated hemoglobin ([oxy-Hb]) concentration in both the groups during the task of drawing a tree imagined freely (free-drawing task) and the task of copying an illustration of a tree (copying task) were measured by using NIRS. Because of the difference between the task conditions, [oxy-Hb] levels in controls during the free-drawing task were higher than that during the copying task at the bilateral frontal pole regions and left inferior frontal region. Because of the difference between the groups, [oxy-Hb] levels at the left middle frontal region, bilateral inferior frontal regions, bilateral inferior parietal regions, and left superior temporal region during the free-drawing task in patients were lower than that in controls. [oxy-Hb] during the tree-drawing task in patients with SZ was lower than that in healthy controls. Our results suggest that brain dysfunction in patients with SZ might be associated with their tree-drawing.

  9. The hierarchy of task decision and response selection: a task-switching event related potentials study.

    PubMed

    Braverman, Ami; Berger, Andrea; Meiran, Nachshon

    2014-07-01

    According to "hierarchical" multi-step theories, response selection is preceded by a decision regarding which task rule should be executed. Other theories assume a "flat" single-step architecture in which task information and stimulus information are simultaneously considered. Using task switching, the authors independently manipulated two kinds of conflict: task conflict (with information that potentially triggers the relevant or the competing task rule/identity) and response conflict (with information that potentially triggers the relevant or the competing response code/motor response). Event related potentials indicated that the task conflict effect began before the response conflict effect and carried on in parallel with it. These results are more in line with the hierarchical view. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Deceptive meaning of oxygen uptake measured at the anaerobic threshold in patients with systolic heart failure and atrial fibrillation.

    PubMed

    Magrì, Damiano; Agostoni, Piergiuseppe; Corrà, Ugo; Passino, Claudio; Scrutinio, Domenico; Perrone-Filardi, Pasquale; Correale, Michele; Cattadori, Gaia; Metra, Marco; Girola, Davide; Piepoli, Massimo F; Iorio, AnnaMaria; Emdin, Michele; Raimondo, Rosa; Re, Federica; Cicoira, Mariantonietta; Belardinelli, Romualdo; Guazzi, Marco; Limongelli, Giuseppe; Clemenza, Francesco; Parati, Gianfranco; Frigerio, Maria; Casenghi, Matteo; Scardovi, Angela B; Ferraironi, Alessandro; Di Lenarda, Andrea; Bussotti, Maurizio; Apostolo, Anna; Paolillo, Stefania; La Gioia, Rocco; Gargiulo, Paola; Palermo, Pietro; Minà, Chiara; Farina, Stefania; Battaia, Elisa; Maruotti, Antonello; Pacileo, Giuseppe; Contini, Mauro; Oliva, Fabrizio; Ricci, Roberto; Sinagra, Gianfranco

    2015-08-01

    Oxygen uptake at the anaerobic threshold (VO2AT), a submaximal exercise-derived variable, independent of patients' motivation, is a marker of outcome in heart failure (HF). However, previous evidence of VO2AT values paradoxically higher in HF patients with permanent atrial fibrillation (AF) than in those with sinus rhythm (SR) raised uncertainties. We tested the prognostic role of VO2AT in a large cohort of systolic HF patients, focusing on possible differences between SR and AF. Altogether 2976 HF patients (2578 with SR and 398 with AF) were prospectively followed. Besides a clinical examination, each patient underwent a maximal cardiopulmonary exercise test (CPET). The follow-up was analysed for up to 1500 days. Cardiovascular death or urgent cardiac transplantation occurred in 303 patients (250 (9.6%) patients with SR and 53 (13.3%) patients with AF, p = 0.023). In the entire population, multivariate analysis including peak oxygen uptake (VO2) showed a prognostic capacity (C-index) similar to that obtained including VO2AT (0.76 vs 0.72). Also, left ventricular ejection fraction, ventilation vs carbon dioxide production slope, β-blocker and digoxin therapy proved to be significant prognostic indexes. The receiver-operating characteristic (ROC) curves analysis showed that the best predictive VO2AT cut-off for the SR group was 11.7 ml/kg/min, while it was 12.8 ml/kg/min for the AF group. VO2AT, a submaximal CPET-derived parameter, is reliable for long-term cardiovascular mortality prognostication in stable systolic HF. However, different VO2AT cut-off values between SR and AF HF patients should be adopted. © The European Society of Cardiology 2014.

  11. New Generalized Equation for Predicting Maximal Oxygen Uptake (from the Fitness Registry and the Importance of Exercise National Database).

    PubMed

    Kokkinos, Peter; Kaminsky, Leonard A; Arena, Ross; Zhang, Jiajia; Myers, Jonathan

    2017-08-15

    Impaired cardiorespiratory fitness (CRF) is closely linked to chronic illness and associated with adverse events. The American College of Sports Medicine (ACSM) regression equations (ACSM equations) developed to estimate oxygen uptake have known limitations leading to well-documented overestimation of CRF, especially at higher work rates. Thus, there is a need to explore alternative equations to more accurately predict CRF. We assessed maximal oxygen uptake (VO 2 max) obtained directly by open-circuit spirometry in 7,983 apparently healthy subjects who participated in the Fitness Registry and the Importance of Exercise National Database (FRIEND). We randomly sampled 70% of the participants from each of the following age categories: <40, 40 to 50, 50 to 70, and ≥70 and used the remaining 30% for validation. Multivariable linear regression analysis was applied to identify the most relevant variables and construct the best prediction model for VO 2 max. Treadmill speed and treadmill speed × grade were considered in the final model as predictors of measured VO 2 max and the following equation was generated: VO 2 max in ml O 2 /kg/min = speed (m/min) × (0.17 + fractional grade × 0.79) + 3.5. The FRIEND equation predicted VO 2 max with an overall error >4 times lower than the error associated with the traditional ACSM equations (5.1 ± 18.3% vs 21.4 ± 24.9%, respectively). Overestimation associated with the ACSM equation was accentuated when different protocols were considered separately. In conclusion, The FRIEND equation predicts VO 2 max more precisely than the traditional ACSM equations with an overall error >4 times lower than that associated with the ACSM equations. Published by Elsevier Inc.

  12. A Device and Methodology for Measuring Repetitive Lifting VO2max (Oxygen Consumption Rate)

    DTIC Science & Technology

    1987-08-01

    variety of lifting and lowering tasks There have been no dcvice related injuries and little down time due to mechanical failure du ng more than 560 1hours...uptake procedure and is suitable to be used for a wide variety of lifting and lowering tasks. There have been no device related injuries and little...worker productivity and decreased injury rates. What has not been -examined in industrial research is high intensity, maximal effort repetitive lifting

  13. Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performances level in marathons.

    PubMed

    Helgerud, J

    1994-01-01

    Sex differences in running economy (gross oxygen cost of running, CR), maximal oxygen uptake (VO2max), anaerobic threshold (Th(an)), percentage utilization of aerobic power (% VO2max), and Th(an) during running were investigated. There were six men and six women aged 20-30 years with a performance time of 2 h 40 min over the marathon distance. The VO2max, Th(an), and CR were measured during controlled running on a treadmill at 1 degree and 3 degrees gradient. From each subject's recorded time of running in the marathon, the average speed (vM) was calculated and maintained during the treadmill running for 11 min. The VO2max was inversely related to body mass (mb), there were no sex differences, and the mean values of the reduced exponent were 0.65 for women and 0.81 for men. These results indicate that for running the unit ml.kg-0.75.min-1 is convenient when comparing individuals with different mb. The VO2max was about 10% (23 ml.kg-0.75.min-1) higher in the men than in the women. The women had on the average 10-12 ml.kg-0.75.min-1 lower VO2 than the men when running at comparable velocities. Disregarding sex, the mean value of CR was 0.211 (SEM 0.005) ml.kg-1.m-1 (resting included), and was independent of treadmill speed. No sex differences in Th(an) expressed as % VO2max or percentage maximal heart rate were found, but Th(an) expressed as VO2 in ml.kg-0.75.min-1 was significantly higher in the men compared to the women. The percentage utilization of fcmax and concentration of blood lactate at vM was higher for the female runners.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Relationship between oxygen uptake slow component and surface EMG during heavy exercise in humans: influence of pedal rate.

    PubMed

    Vercruyssen, Fabrice; Missenard, Olivier; Brisswalter, Jeanick

    2009-08-01

    The aim of this study was to test the hypothesis that extreme pedal rates contributed to the slow component of oxygen uptake (VO(2) SC) in association with changes in surface electromyographic (sEMG) during heavy-cycle exercise. Eight male trained cyclists performed two square-wave transitions at 50 and 110 rpm at a work rate that would elicit a VO(2) corresponding to 50% of the difference between peak VO(2) and the ventilatory threshold. Pulmonary gas exchange was measured breath-by-breath and sEMG was obtained from the vastus lateralis and medialis muscles. Integrated EMG flow (QiEMG) and mean power frequency (MPF) were computed. The relative amplitude of the VO(2) SC was significantly higher during the 110-rpm bout (556+/-186 ml min(-1), P<0.05) with compared to the 50-rpm bout (372+/-227 ml min(-1)). QiEMG values increased throughout exercise only during the 110-rpm bout and were associated with the greater amplitude of the VO(2) SC observed for this condition (P<0.05). MPF values remained relatively constant whatever the cycle bout. These findings indicated a VO(2) SC at the two pedal rates but the association with sEMG responses was observed only at high pedal rate. Possible changes in motor units recruitment pattern, muscle energy turnover and muscle temperature have been suggested to explain the different VO(2) SC to heavy pedal rate bouts.

  15. Oxygen uptake efficiency slope as a useful measure of cardiorespiratory fitness in morbidly obese women

    PubMed Central

    Felismino, Amanda; Corte, Renata Cristina; Silva, Eliane

    2017-01-01

    Cardiopulmonary assessment through oxygen uptake efficiency slope (OUES) data has shown encouraging results, revealing that we can obtain important clinical information about functional status. Until now, the use of OUES has not been established as a measure of cardiorespiratory capacity in an obese adult population, only in cardiac and pulmonary diseases or pediatric patients. The aim of this study was to characterize submaximal and maximal levels of OUES in a sample of morbidly obese women and analyze its relationship with traditional measures of cardiorespiratory fitness, anthropometry and pulmonary function. Thirty-three morbidly obese women (age 39.1 ± 9.2 years) performed Cardiopulmonary Exercise Testing (CPX) on a treadmill using the ramp protocol. In addition, anthropometric measurements and pulmonary function were also evaluated. Maximal and submaximal OUES were measured, being calculated from data obtained in the first 50% (OUES50%) and 75% (OUES75%) of total CPX duration. In one-way ANOVA analysis, OUES did not significantly differ between the three different exercise intensities, as observed through a Bland-Altman concordance of 58.9 mL/min/log(L/min) between OUES75% and OUES100%, and 0.49 mL/kg/min/log(l/min) between OUES/kg75% and OUES/kg100%. A strong positive correlation between the maximal (r = 0.79) and submaximal (r = 0.81) OUES/kg with oxygen consumption at peak exercise (VO2peak) and ventilatory anaerobic threshold (VO2VAT) was observed, and a moderate negative correlation with hip circumference (r = -0.46) and body adiposity index (r = -0.50) was also verified. There was no significant difference between maximal and submaximal OUES, showing strong correlations with each other and oxygen consumption (peak and VAT). These results indicate that OUES can be a useful parameter which could be used as a cardiopulmonary fitness index in subjects with severe limitations to perform CPX, as for morbidly obese women. PMID:28384329

  16. Oxygen uptake efficiency slope as a useful measure of cardiorespiratory fitness in morbidly obese women.

    PubMed

    Onofre, Tatiana; Oliver, Nicole; Carlos, Renata; Felismino, Amanda; Corte, Renata Cristina; Silva, Eliane; Bruno, Selma

    2017-01-01

    Cardiopulmonary assessment through oxygen uptake efficiency slope (OUES) data has shown encouraging results, revealing that we can obtain important clinical information about functional status. Until now, the use of OUES has not been established as a measure of cardiorespiratory capacity in an obese adult population, only in cardiac and pulmonary diseases or pediatric patients. The aim of this study was to characterize submaximal and maximal levels of OUES in a sample of morbidly obese women and analyze its relationship with traditional measures of cardiorespiratory fitness, anthropometry and pulmonary function. Thirty-three morbidly obese women (age 39.1 ± 9.2 years) performed Cardiopulmonary Exercise Testing (CPX) on a treadmill using the ramp protocol. In addition, anthropometric measurements and pulmonary function were also evaluated. Maximal and submaximal OUES were measured, being calculated from data obtained in the first 50% (OUES50%) and 75% (OUES75%) of total CPX duration. In one-way ANOVA analysis, OUES did not significantly differ between the three different exercise intensities, as observed through a Bland-Altman concordance of 58.9 mL/min/log(L/min) between OUES75% and OUES100%, and 0.49 mL/kg/min/log(l/min) between OUES/kg75% and OUES/kg100%. A strong positive correlation between the maximal (r = 0.79) and submaximal (r = 0.81) OUES/kg with oxygen consumption at peak exercise (VO2peak) and ventilatory anaerobic threshold (VO2VAT) was observed, and a moderate negative correlation with hip circumference (r = -0.46) and body adiposity index (r = -0.50) was also verified. There was no significant difference between maximal and submaximal OUES, showing strong correlations with each other and oxygen consumption (peak and VAT). These results indicate that OUES can be a useful parameter which could be used as a cardiopulmonary fitness index in subjects with severe limitations to perform CPX, as for morbidly obese women.

  17. The leveling-off of oxygen uptake is related to blood lactate accumulation. Retrospective study of 94 elite rowers.

    PubMed

    Lacour, Jean-René; Messonnier, Laurent; Bourdin, Muriel

    2007-09-01

    To assess whether the ability to demonstrate a plateau in oxygen consumption VO2 could be related to adaptation to exercise, the data obtained over a period of 10 years on 94 elite oarsmen who had participated in annual testing were re-evaluated. The test consisted in an incremental step protocol until volitional exhaustion. VO2, heart rate (HR), blood lactate ([La]b) and respiratory exchange ratio (RER) were measured at each step. The maximal oxygen consumption (VO2max), the power corresponding to VO2maxPamax and the maximal power achieved (Ppeak) were recorded. Thirty-eight oarsmen achieved a VO2 plateau and were designated as Pla; 56 did not and were designed as N-Pla. The Pla and N-Pla VO2max, Pamax and maximal HR values were similar. In comparison with N-Pla, the Pla group displayed a rightward shift of the [La]b versus power curve, accounted for by both the increased percentage of VO2max corresponding to 4 mmol l(-1) and the decreased value of [La]b corresponding to Pamax (P<0.05). Pla oarsmen attained a higher Ppeak expressed as % of Pamax (P<0.05) and also showed better ergometer performance (P<0.05). In a sub-group of 53 oarsmen constituted on the basis of Pamax values close to 400 W, for a given power output, the Pla subjects had significantly lower HR, RER, and [La]b values at each sub-maximal stage of the test. These results suggest that achieving a [Formula: see text] plateau during completion of an incremental step protocol accounts for greater muscle ability to maintain homeostasis during exercise. These differences give the oarsmen an advantage in rowing competitions.

  18. Comparison of oxygen transfer parameters and oxygen demands in bioreactors operated at low and high dissolved oxygen levels.

    PubMed

    Mines, Richard O; Callier, Matthew C; Drabek, Benjamin J; Butler, André J

    2017-03-21

    The proper design of aeration systems for bioreactors is critical since it can represent up to 50% of the operational and capital cost at water reclamation facilities. Transferring the actual amount of oxygen needed to meet the oxygen demand of the wastewater requires α- and β-factors, which are used for calculating the actual oxygen transfer rate (AOTR) under process conditions based on the standard oxygen transfer rate (SOTR). The SOTR is measured in tap water at 20°C, 1 atmospheric pressure, and 0 mg L -1 of dissolved oxygen (DO). In this investigation, two 11.4-L bench-scale completely mixed activated process (CMAS) reactors were operated at various solid retention times (SRTs) to ascertain the relationship between the α-factor and SRT, and between the β-factor and SRT. The second goal was to determine if actual oxygen uptake rates (AOURs) are equal to calculated oxygen uptake rates (COURs) based on mass balances. Each reactor was supplied with 0.84 L m -1 of air resulting in SOTRs of 14.3 and 11.5 g O 2 d -1 for Reactor 1 (R-1) and Reactor 2 (R-2), respectively. The estimated theoretical oxygen demands of the synthetic feed to R-1 and R-2 were 6.3 and 21.9 g O 2 d -1 , respectively. R-2 was primarily operated under a dissolved oxygen (DO) limitation and high nitrogen loading to determine if nitrification would be inhibited from a nitrite buildup and if this would impact the α-factor. Nitrite accumulated in R-2 at DO concentrations ranging from 0.50 to 7.35 mg L -1 and at free ammonia (FA) concentrations ranging from 1.34 to 7.19 mg L -1 . Nonsteady-state reaeration tests performed on the effluent from each reactor and on tap water indicated that the α-factor increased as SRT increased. A simple statistical analysis (paired t-test) between AOURs and COURs indicated that there was a statistically significant difference at 0.05 level of significance for both reactors. The ex situ BOD bottle method for estimating AOUR appears to be invalid in

  19. The neural implementation of task rule activation in the task-cuing paradigm: an event-related fMRI study.

    PubMed

    Shi, Yiquan; Zhou, Xiaolin; Müller, Hermann J; Schubert, Torsten

    2010-07-01

    To isolate the neural correlates for task rule activation from those related to general task preparation, the effect of a cue explicitly specifying the S-R correspondences (rule-cue) was contrasted with the effects of a cue specifying only the task to performed (task-cue). While the task-cue provides merely information about the type of task, the rule-cue is explicit about both the task type and the task rule (i.e., the set of S-R correspondences). The rule-cue was expected to activate the task rule more efficiently in the preparation period (prior to target presentation); by contrast, in the task-cue condition, part of the task rule activation was expected to be postponed into the task execution period (following the presentation of the target). In an event-related fMRI experiment, we found the right anterior and middle parts of the middle frontal and superior frontal gyri, the right inferior frontal junction, the pre-SMA, as well as the right superior and inferior parietal lobes to show larger activation elicited by the rule-cue than by the task-cue prior to target presentation. Conversely, the results revealed larger activations in these regions in the task-cue than in the rule-cue condition during the task execution period. In summary, this study identified some of the neural correlates of task rule activation and showed that these are a subset of the general task preparation network. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  20. Reflectance spectroscopy can quantify cutaneous haemoglobin oxygenation by oxygen uptake from the atmosphere after epidermal barrier disruption.

    PubMed

    Heise, H M; Lampen, P; Stücker, M

    2003-11-01

    The supply of oxygen to the viable skin tissue within the upper layers is not only secured by the cutaneous blood vascular system, but to a significant part also by oxygen diffusion from the atmosphere through the horny layer. The aim of this study was to examine whether changes in haemoglobin oxygenation can be observed within the isolated perfused bovine udder skin used as a skin model by removing the upper horny layer by adhesive tape stripping. Diffuse reflectance spectroscopy in the visible spectral range was used for non-invasive characterisation of haemoglobin oxygenation in skin under in vitro conditions. Mid-infrared attenuated total reflectance spectroscopy was employed for analysing the surface layer of the stratum corneum with respect to keratin, water and lipid components. Skin barrier disruption was achieved by repeated stripping of superficial corneocyte layers by adhesive tape. Significant changes in skin haemoglobin oxygenation were observed for skin areas with reduced lipid concentration and a reduced stratum corneum layer, as determined from the quantitative evaluation of the diffuse reflectance skin spectra. The result can be interpreted as an increase of oxygen diffusion after the removal of the upper horny layer.

  1. Comparison of changes in oxygenated hemoglobin during the tree-drawing task between patients with schizophrenia and healthy controls

    PubMed Central

    Nakano, Shinya; Shoji, Yoshihisa; Morita, Kiichiro; Igimi, Hiroyasu; Sato, Mamoru; Ishii, Youhei; Kondo, Akihiko; Uchimura, Naohisa

    2018-01-01

    Background Tree-drawing test is used as a projective psychological test that expresses the abnormal internal experience in patients with schizophrenia (SZ). Despite the widely accepted view that the cognitive function is involved in characteristic tree-drawing in patients with SZ, no study has psychophysiologically examined it. The present study aimed to investigate the involvement of cognitive function during tree-drawing in patients with SZ. For that purpose, we evaluated the brain function in patients with SZ during a tree-drawing task by using near-infrared spectroscopy (NIRS) and compared them with those in healthy controls. Patients and methods The subjects were 28 healthy controls and 28 patients with SZ. Changes in the oxygenated hemoglobin ([oxy-Hb]) concentration in both the groups during the task of drawing a tree imagined freely (free-drawing task) and the task of copying an illustration of a tree (copying task) were measured by using NIRS. Results Because of the difference between the task conditions, [oxy-Hb] levels in controls during the free-drawing task were higher than that during the copying task at the bilateral frontal pole regions and left inferior frontal region. Because of the difference between the groups, [oxy-Hb] levels at the left middle frontal region, bilateral inferior frontal regions, bilateral inferior parietal regions, and left superior temporal region during the free-drawing task in patients were lower than that in controls. Conclusion [oxy-Hb] during the tree-drawing task in patients with SZ was lower than that in healthy controls. Our results suggest that brain dysfunction in patients with SZ might be associated with their tree-drawing. PMID:29719398

  2. Brain Modularity Mediates the Relation between Task Complexity and Performance

    NASA Astrophysics Data System (ADS)

    Ye, Fengdan; Yue, Qiuhai; Martin, Randi; Fischer-Baum, Simon; Ramos-Nuã+/-Ez, Aurora; Deem, Michael

    Recent work in cognitive neuroscience has focused on analyzing the brain as a network, rather than a collection of independent regions. Prior studies taking this approach have found that individual differences in the degree of modularity of the brain network relate to performance on cognitive tasks. However, inconsistent results concerning the direction of this relationship have been obtained, with some tasks showing better performance as modularity increases, and other tasks showing worse performance. A recent theoretical model suggests that these inconsistencies may be explained on the grounds that high-modularity networks favor performance on simple tasks whereas low-modularity networks favor performance on complex tasks. The current study tests these predictions by relating modularity from resting-state fMRI to performance on a set of behavioral tasks. Complex and simple tasks were defined on the basis of whether they drew on executive attention. Consistent with predictions, we found a negative correlation between individuals' modularity and their performance on the complex tasks but a positive correlation with performance on the simple tasks. The results presented here provide a framework for linking measures of whole brain organization to cognitive processing.

  3. Pedaling rate is an important determinant of human oxygen uptake during exercise on the cycle ergometer

    PubMed Central

    Formenti, Federico; Minetti, Alberto E; Borrani, Fabio

    2015-01-01

    Estimation of human oxygen uptake () during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its prediction accuracy. Ten healthy male participants’ (age 19–48 years) were recruited and their steady-state was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of . Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal during exercise (mean bias 1.9 vs. 3.3 mL O2 kg−1 min−1) but it did not affect the accuracy for prediction of maximal (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human during cycling exercise, and it should be considered when predicting oxygen consumption. PMID:26371230

  4. The impact of firefighter personal protective equipment and treadmill protocol on maximal oxygen uptake.

    PubMed

    Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka

    2013-01-01

    This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO(2max)) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO(2max) between Bruce Light, PIP Light, and PSP Light. However, VO(2max) was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO(2) in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO(2) but not VO(2max). These results suggest that firefighters' maximal performance determined from a typical VO(2max) test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE.

  5. The Impact of Firefighter Personal Protective Equipment and Treadmill Protocol on Maximal Oxygen Uptake

    PubMed Central

    Lee, Joo-Young; Bakri, Ilham; Kim, Jung-Hyun; Son, Su-Young; Tochihara, Yutaka

    2015-01-01

    This study investigated the effects of firefighter personal protective equipment (PPE) on the determination of maximal oxygen uptake (VO2max) while using two different treadmill protocols: a progressive incline protocol (PIP) and a progressive speed protocol (PSP), with three clothing conditions (Light-light clothing; Boots-PPE with rubber boots; Shoes-PPE with running shoes). Bruce protocol with Light was performed for a reference test. Results showed there was no difference in VO2max between Bruce Light, PIP Light, and PSP Light. However, VO2max was reduced in Boots and Shoes with shortened maximal performance time (7 and 6 min reduced for PIP Boots and Shoes, respectively; 11 and 9 min reduced for PSP Boots and Shoes, respectively), whereas the increasing rate of VO2 in Boots and Shoes during submaximal exercise was greater compared with Light. Wearing firefighter boots compared with wearing running shoes also significantly affected submaximal VO2 but not VO2max. These results suggest that firefighters’ maximal performance determined from a typical VO2max test without wearing PPE may overestimate the actual performance capability of firefighters wearing PPE. PMID:23668854

  6. Greater preference consistency during the Willingness-to-Pay task is related to higher resting state connectivity between the ventromedial prefrontal cortex and the ventral striatum.

    PubMed

    Mackey, Scott; Olafsson, Valur; Aupperle, Robin L; Lu, Kun; Fonzo, Greg A; Parnass, Jason; Liu, Thomas; Paulus, Martin P

    2016-09-01

    The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior.

  7. Greater preference consistency during the Willingness-to-Pay task is related to higher resting state connectivity between the ventromedial prefrontal cortex and the ventral striatum

    PubMed Central

    Mackey, Scott; Olafsson, Valur; Aupperle, Robin; Lu, Kun; Fonzo, Greg; Parnass, Jason; Liu, Thomas; Paulus, Martin P.

    2015-01-01

    The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior. PMID:26271206

  8. Cell line-dependent differences in uptake and retention of the hypoxia-selective nuclear imaging agent Cu-ATSM.

    PubMed

    Burgman, Paul; O'Donoghue, Joseph A; Lewis, Jason S; Welch, Michael J; Humm, John L; Ling, C Clifton

    2005-08-01

    Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) [Cu-ATSM] is a potential marker for tumor hypoxia that has been under evaluation for clinical use. In this study, we examined the mechanisms underlying the uptake of (64)Cu in cells incubated with (64)Cu-ATSM. The in vitro uptake of (64)Cu was determined as a function of oxygenation conditions and incubation time with (64)Cu-ATSM using four and two tumor cell lines of human origin and rodent origin, respectively. Additionally, the rate of (64)Cu efflux and Cu-ATSM metabolism was determined. (64)Cu accumulation is rapid during the first 0.5-1 h of incubation. It is highest in anoxic cells but is also significant in normoxic cells. After this initial period, the level of intracellular (64)Cu varies depending on the cell line and the oxygenation conditions and, in some circumstances, may decrease. During the first 0.5-1 h, the ratio of (64)Cu levels between anoxic and normoxic cells is approximately 2:10 and that between hypoxic (0.5% O(2)) and normoxic cells is approximately 1:2.5, depending on the cell line. These ratios generally decrease at longer times. The (64)Cu-ATSM compound was found to be metabolized during incubation in a manner dependent on oxygenation conditions. Within 2 h under anoxic conditions, (64)Cu-ATSM could no longer be detected, although 60-90% of the amount of (64)Cu added as (64)Cu-ATSM was present in the medium. Non-ATSM (64)Cu was taken up by the cells, albeit at a much slower rate. Efflux rates of (64)Cu were found to be cell line dependent and appeared to be inversely correlated with the final (64)Cu uptake levels under anoxic conditions. The uptake and retention of (64)Cu and their relation to oxygenation conditions were found to be cell line dependent. Given the complexities in the oxygen dependence and cell line-dependent kinetics of uptake and retention of Cu following exposure to Cu-ATSM, the clinical utility of this compound may be disease site specific.

  9. Tolerability to prolonged lifting tasks. A validation of the recommended limits.

    PubMed

    Capodaglio, P; Bazzini, G

    1997-01-01

    Prolonged physical exertion is subjectively regulated by the perception of effort. This preliminary study was conducted to validate the use of subjective perceptions of effort in assessing objectively tolerable workloads for prolonged lifting tasks. Ten healthy male subjects tested their maximal lifting capacity (MLC) on a lift dynamometer (LidoLift, Loredan Biomed., West Sacramento, CA) and underwent incremental and 30-minute endurance lifting tests. Cardiorespiratory parameters were monitored with an oxygen uptake analyzer, mechanical parameters were calculated using a computerized dynamometer. Ratings of perceived exertion were given on Borg's 10-point scale. Physiological responses to repetitive lifting were matched with subjective perceptions. A single-variable statistical regression for power functions was performed to obtain the individual "iso-perception" curves as functions of the mechanical work exerted. We found that the "iso-perception" curve corresponding to a "moderate" perception of effort may represent the individual "tolerance threshold" for prolonged lifting tasks, since physiological responses at this level of intensity did not change significantly and the respiratory exchange ratio was less than one. The individually tolerable weight for lifting tasks lasting 30 min has been expressed as a percentage of the isoinertial MLC value and compared with the currently recommended limits for prolonged lifting tasks (Italian legislation D.L. 626/94). On the basis of our preliminary results a "tolerance threshold" of 20% MLC has been proposed for prolonged lifting tasks.

  10. Ventilation and oxygen uptake during escape from a civil aircraft.

    PubMed

    Ross, J A; Watt, S J; Henderson, G D; Vant, J H

    1990-01-01

    To help develop a specification for equipment providing personal respiratory protection in the event of aircraft fire a study was carried out to quantify ventilation and oxygen consumption during escape from a Trident aircraft. Data were gathered using the P.K. Morgan 'Oxylog' apparatus after its response time to rapid changes in inspired to expired oxygen concentration difference was assessed using a bench test. The 'Oxylog' had a lag time of 30-32 s and a 5-95% response typified by a half time of 20 s. The data gathered were corrected in the light of these findings. Fourteen male subjects aged 17-38 years were studied under two conditions. Four mass evacuations each involving 40 people; a total of nine subjects escaping from the front rank over eight seats being monitored. Six evacuations each involving only two people escaping from the rear of the cabin; a total of 11 subjects escaping over 14 seats being monitored. Escape was made over the seat backs, down an escape chute to a position 12 m from the base of the chute. Resting minute ventilation (mean 16.7 1 STPD) and oxygen consumption (mean 0.41 min-1 STPD) were similar before both evacuations. There were no significant differences between the two conditions either during, or up to 180 s after escape. Ventilation and oxygen consumption were greatest in the recovery period. The highest oxygen consumption seen was 2.08 l min-1 and maximum minute ventilation was 641. Mean total oxygen consumption for the escape and a 150 s recovery period was 2.41 l (s.d. 0.64, max. 3.11) for the mass evacuation and 2.97 l (s.d. 0.68, max. 4.09) for the two person evacuation. The mean total amount of gas inhaled during the same time period was 89.3 l (s.d. 25.6, max. 121.3) for the mass evacuation and 99.01 (s.d. 26.2, max. 137.3) for the other. These was no correlation between ventilation or oxygen consumption and either escape time, body weight, height or age.

  11. Age-related emotional bias in processing two emotionally valenced tasks.

    PubMed

    Allen, Philip A; Lien, Mei-Ching; Jardin, Elliott

    2017-01-01

    Previous studies suggest that older adults process positive emotions more efficiently than negative emotions, whereas younger adults show the reverse effect. We examined whether this age-related difference in emotional bias still occurs when attention is engaged in two emotional tasks. We used a psychological refractory period paradigm and varied the emotional valence of Task 1 and Task 2. In both experiments, Task 1 was emotional face discrimination (happy vs. angry faces) and Task 2 was sound discrimination (laugh, punch, vs. cork pop in Experiment 1 and laugh vs. scream in Experiment 2). The backward emotional correspondence effect for positively and negatively valenced Task 2 on Task 1 was measured. In both experiments, younger adults showed a backward correspondence effect from a negatively valenced Task 2, suggesting parallel processing of negatively valenced stimuli. Older adults showed similar negativity bias in Experiment 2 with a more salient negative sound ("scream" relative to "punch"). These results are consistent with an arousal-bias competition model [Mather and Sutherland (Perspectives in Psychological Sciences 6:114-133, 2011)], suggesting that emotional arousal modulates top-down attentional control settings (emotional regulation) with age.

  12. Body acceleration distribution and O2 uptake in humans during running and jumping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, A.; Mccutcheon, E. P.; Shvartz, E.; Greenleaf, J. E.

    1980-01-01

    The distribution of body acceleration and associated oxygen uptake and heart rate responses are investigated in treadmill running and trampoline jumping. Accelerations in the +Gz direction were measured at the lateral ankle, lumbosacral region and forehead of eight young men during level treadmill walking and running at four speeds and trampoline jumping at four heights, together with corresponding oxygen uptake and heart rate. With increasing treadmill speed, peak acceleration at the ankle is found always to exceed that at the back and forehead, and acceleration profiles with higher frequency components than those observed during jumping are observed. Acceleration levels are found to be more uniformly distributed with increasing height in jumping, although comparable oxygen uptake and heat rates are obtained. Results indicate that the magnitude of the biomechanical stimuli is greater in trampoline jumping than in running, which finding could be of use in the design of procedures to avert deconditioning in persons exposed to weightlessness.

  13. Gallium uptake in tryptophan-related pulmonary disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.M.; Park, C.H.; Intenzo, C.M.

    1991-02-01

    We describe a patient who developed fever, fatigue, muscle weakness, dyspnea, skin rash, and eosinophilia after taking high doses of tryptophan for insomnia for two years. A gallium-67 scan revealed diffuse increased uptake in the lung and no abnormal uptake in the muscular distribution. Bronchoscopy and biopsy confirmed inflammatory reactions with infiltration by eosinophils, mast cells, and lymphocytes. CT scan showed an interstitial alveolar pattern without fibrosis. EMG demonstrated diffuse myopathy. Muscle biopsy from the right thigh showed an inflammatory myositis with eosinophilic and lymphocytic infiltrations.

  14. Physical activity as a long-term predictor of peak oxygen uptake: the HUNT Study.

    PubMed

    Aspenes, Stian Thoresen; Nauman, Javaid; Nilsen, Tom Ivar Lund; Vatten, Lars Johan; Wisløff, Ulrik

    2011-09-01

    A physically active lifestyle and a relatively high level of cardiorespiratory fitness are important for longevity and long-term health. No population-based study has prospectively assessed the association of physical activity levels with long-term peak oxygen uptake (VO(2peak)). 1843 individuals (906 women and 937 men) who were between 18 and 66 yr at baseline and were free from known lung or heart diseases at both baseline (1984-1986) and follow-up (2006-2008) were included in the study. Self-reported physical activity was recorded at both occasions, and VO(2peak) was measured at follow-up. The association of physical activity levels and VO(2peak) was adjusted for age, level of education, smoking status, and weight change from baseline to follow-up, using ANCOVA statistics. The level of physical activity at baseline was strongly associated with VO(2peak) at follow-up 23 yr later in both men and women (Ptrends < 0.001). Compared with individuals who were inactive at baseline, women and men who were highly active at baseline had higher (3.3 and 4.6 mL·kg(-1)·min(-1)) VO(2peak) at follow-up. Women who were inactive at baseline but highly active at follow-up had 3.7 mL·kg(-1)·min(-1) higher VO(2peak) compared with women who were inactive both at baseline and at follow-up. The corresponding comparison in men showed a difference of 5.2 mL·kg(-1)·min(-1) (95% confidence interval = 3.1-7.3) in VO(2peak). Physical activity level at baseline was positively associated with directly measured cardiorespiratory fitness (VO(2peak)) 23 yr later. People who changed from low to high activity during the observation period had substantially higher V˙O(2peak) at follow-up compared with people whose activity remained low.

  15. Functional High-Intensity Circuit Training Improves Body Composition, Peak Oxygen Uptake, Strength, and Alters Certain Dimensions of Quality of Life in Overweight Women.

    PubMed

    Sperlich, Billy; Wallmann-Sperlich, Birgit; Zinner, Christoph; Von Stauffenberg, Valerie; Losert, Helena; Holmberg, Hans-Christer

    2017-01-01

    The effects of circuit-like functional high-intensity training (Circuit HIIT ) alone or in combination with high-volume low-intensity exercise (Circuit combined ) on selected cardio-respiratory and metabolic parameters, body composition, functional strength and the quality of life of overweight women were compared. In this single-center, two-armed randomized, controlled study, overweight women performed 9-weeks (3 sessions·wk -1 ) of either Circuit HIIT ( n = 11), or Circuit combined ( n = 8). Peak oxygen uptake and perception of physical pain were increased to a greater extent ( p < 0.05) by Circuit HIIT , whereas Circuit combined improved perception of general health more ( p < 0.05). Both interventions lowered body mass, body-mass-index, waist-to-hip ratio, fat mass, and enhanced fat-free mass; decreased ratings of perceived exertion during submaximal treadmill running; improved the numbers of push-ups, burpees, one-legged squats, and 30-s skipping performed, as well as the height of counter-movement jumps; and improved physical and social functioning, role of physical limitations, vitality, role of emotional limitations, and mental health to a similar extent (all p < 0.05). Either forms of these multi-stimulating, circuit-like, multiple-joint training can be employed to improve body composition, selected variables of functional strength, and certain dimensions of quality of life in overweight women. However, Circuit HIIT improves peak oxygen uptake to a greater extent, but with more perception of pain, whereas Circuit combined results in better perception of general health.

  16. Functional High-Intensity Circuit Training Improves Body Composition, Peak Oxygen Uptake, Strength, and Alters Certain Dimensions of Quality of Life in Overweight Women

    PubMed Central

    Sperlich, Billy; Wallmann-Sperlich, Birgit; Zinner, Christoph; Von Stauffenberg, Valerie; Losert, Helena; Holmberg, Hans-Christer

    2017-01-01

    The effects of circuit-like functional high-intensity training (CircuitHIIT) alone or in combination with high-volume low-intensity exercise (Circuitcombined) on selected cardio-respiratory and metabolic parameters, body composition, functional strength and the quality of life of overweight women were compared. In this single-center, two-armed randomized, controlled study, overweight women performed 9-weeks (3 sessions·wk−1) of either CircuitHIIT (n = 11), or Circuitcombined (n = 8). Peak oxygen uptake and perception of physical pain were increased to a greater extent (p < 0.05) by CircuitHIIT, whereas Circuitcombined improved perception of general health more (p < 0.05). Both interventions lowered body mass, body-mass-index, waist-to-hip ratio, fat mass, and enhanced fat-free mass; decreased ratings of perceived exertion during submaximal treadmill running; improved the numbers of push-ups, burpees, one-legged squats, and 30-s skipping performed, as well as the height of counter-movement jumps; and improved physical and social functioning, role of physical limitations, vitality, role of emotional limitations, and mental health to a similar extent (all p < 0.05). Either forms of these multi-stimulating, circuit-like, multiple-joint training can be employed to improve body composition, selected variables of functional strength, and certain dimensions of quality of life in overweight women. However, CircuitHIIT improves peak oxygen uptake to a greater extent, but with more perception of pain, whereas Circuitcombined results in better perception of general health. PMID:28420999

  17. A computerized Stroop task to assess cancer-related cognitive biases.

    PubMed

    DiBonaventura, Marco DaCosta; Erblich, Joel; Sloan, Richard P; Bovbjerg, Dana H

    2010-01-01

    Biases in processing information related to sources of stress have widely been demonstrated with the use of Stroop emotional color word tasks. One study reported such biases among women with histories of breast cancer in a first-degree relative (FH+) who were given a Stroop cancer word task. This study aimed to replicate and extend these findings with a computerized version of the task. Response latencies and errors were recorded during administration of the task to FH+ and FH- women. A cancer list and 5 comparison lists were administered. Results indicated that FH+ women exhibited longer response latencies for cancer words than did FH- women (p < 0.04), providing further support for cognitive biases in FH+ women. Confirming the psychometric properties of the task, lists exhibited high reliability for both latency (alphas 0.96-0.98) and error rate (alphas 0.61-0.79). In sum, results support the favorable psychometrics and predictive validity of the Stroop cancer word task.

  18. Spectrophotometric determination of H2O2-generating oxidases using oxyhemoglobin as oxygen donor and indicator.

    PubMed

    Bârzu, O; Dânşoreanu, M

    1980-01-01

    1. Spectrophotometric determination of oxygen uptake using oxyhemoglobin as oxygen donor and indicator was used for assay of H2O2-generating oxidases like monoamine oxidase and glucose oxidase. 2. In order to decompose H2O2 formed during the oxygen uptake, catalase and methanol (or ethanol) was added to the respiratory system. At pH values higher than 7.5 the oxydation of deoxygenated hemoglobin to methemoglobin was less than 3%. 2. Oxidases with low Km for oxygen can be assayed using the spectrophotometric method if suitable correction factors are introduced into the calculation of oxygen uptake. The correction factor represents the ratio of the rate of formation (or disappearance) of one of the reactants and the rate of oxyhemoglobin deoxygenation, measured under identical experimental conditions.

  19. Preserved arterial flow secures hepatic oxygenation during haemorrhage in the pig

    PubMed Central

    Rasmussen, Allan; Skak, Claus; Kristensen, Michael; Ott, Peter; Kirkegaard, Preben; Secher, Niels H

    1999-01-01

    This study examined the extent of liver perfusion and its oxygenation during progressive haemorrhage. We examined hepatic arterial flow and hepatic oxygenation following the reduced portal flow during haemorrhage in 18 pigs. The hepatic surface oxygenation was assessed by near-infrared spectroscopy and the hepatic metabolism of oxygen, lactate and catecholamines determined the adequacy of the hepatic flow. Stepwise haemorrhage until circulatory collapse resulted in proportional reductions in cardiac output and in arterial, central venous and pulmonary wedge pressures. While heart rate increased, pulmonary arterial pressure remained stable. In addition, renal blood flow decreased, renal vascular resistance increased and there was elevated noradrenaline spill-over. Further, renal surface oxygenation was lowered from the onset of haemorrhage. Similarly, the portal blood flow was reduced in response to haemorrhage, and, as for the renal flow, the reduced splanchnic blood flow was associated with an elevated noradrenaline spill-over. In contrast, hepatic arterial blood flow was only slightly reduced by haemorrhage, and surface oxygenation did not change. The hepatic oxygen uptake was maintained until the blood loss represented more than 30 % of the estimated blood volume. At 30 % reduced blood volume, hepatic catecholamine uptake was reduced, and the lactate uptake approached zero. Subsequent reduction of cardiac output and portal blood flow elicited a selective dilatation of the hepatic arterial vascular bed. Due to this dilatation liver blood flow and hepatic cell oxygenation and metabolism were preserved prior to circulatory collapse. PMID:10087351

  20. Age-related differences in reaction time task performance in young children.

    PubMed

    Kiselev, Sergey; Espy, Kimberly Andrews; Sheffield, Tiffany

    2009-02-01

    Performance of reaction time (RT) tasks was investigated in young children and adults to test the hypothesis that age-related differences in processing speed supersede a "global" mechanism and are a function of specific differences in task demands and processing requirements. The sample consisted of 54 4-year-olds, 53 5-year-olds, 59 6-year-olds, and 35 adults from Russia. Using the regression approach pioneered by Brinley and the transformation method proposed by Madden and colleagues and Ridderinkhoff and van der Molen, age-related differences in processing speed differed among RT tasks with varying demands. In particular, RTs differed between children and adults on tasks that required response suppression, discrimination of color or spatial orientation, reversal of contingencies of previously learned stimulus-response rules, and greater stimulus-response complexity. Relative costs of these RT task differences were larger than predicted by the global difference hypothesis except for response suppression. Among young children, age-related differences larger than predicted by the global difference hypothesis were evident when tasks required color or spatial orientation discrimination and stimulus-response rule complexity, but not for response suppression or reversal of stimulus-response contingencies. Process-specific, age-related differences in processing speed that support heterochronicity of brain development during childhood were revealed.

  1. Identification of oxygen-related midgap level in GaAs

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Lin, D. G.; Gatos, H. C.; Aoyama, T.

    1984-01-01

    An oxygen-related deep level ELO was identified in GaAs employing Bridgman-grown crystals with controlled oxygen doping. The activation energy of ELO is almost the same as that of the dominant midgap level: EL2. This fact impedes the identification of ELO by standard deep level transient spectroscopy. However, it was found that the electron capture cross section of ELO is about four times greater than that of EL2. This characteristic served as the basis for the separation and quantitative investigation of ELO employing detailed capacitance transient measurements in conjunction with reference measurements on crystals grown without oxygen doping and containing only EL2.

  2. In Health-Related Tasks, Where Does the School Nurse Function?

    ERIC Educational Resources Information Center

    Berg, Beryl; And Others

    1973-01-01

    The study provided a composite picture of health-related tasks performed in one school district. Nurses were able to evaluate their current practices and recommend specific improvements in nursing actions. Other school districts seeking a profile of their involvement in health-related tasks may request copies of the questionnaire or the entire…

  3. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis

    NASA Astrophysics Data System (ADS)

    Tang, Baojun; Riisgård, Hans Ulrik

    2018-03-01

    The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.

  4. Measuring task-related changes in heart rate variability.

    PubMed

    Moses, Ziev B; Luecken, Linda J; Eason, James C

    2007-01-01

    Small beat-to-beat differences in heart rate are the result of dynamic control of the cardiovascular system by the sympathetic and parasympathetic nervous systems. Heart rate variability (HRV) has been positively correlated with both mental and physical health. While many studies measure HRV under rest conditions, few have measured HRV during stressful situations. We describe an experimental protocol designed to measure baseline, task, and recovery values of HRV as a function of three different types of stressors. These stressors involve an attention task, a cold pressor test, and a videotaped speech presentation. We found a measurable change in heart rate in participants (n=10) during each task (all p's < 0.05). The relative increase or decrease from pre-task heart rate was predicted by task (one-way ANOVA, p= 0.0001). Spectral analysis of HRV during the attention task revealed consistently decreased measures of both high (68+/-7%, mean+/-S.E.) and low (62+/-13%) frequency HRV components as compared to baseline. HRV spectra for the cold pressor and speech tasks revealed no consistent patterns of increase or decrease from baseline measurements. We also found no correlation in reactivity measures between any of our tasks. These findings suggest that each of the tasks in our experimental design elicits a different type of stress response in an individual. Our experimental approach may prove useful to biobehavioral researchers searching for factors that determine individual differences in responses to stress in daily life.

  5. Do low oxygen environments facilitate marine invasions? Relative tolerance of native and invasive species to low oxygen conditions.

    PubMed

    Lagos, Marcelo E; Barneche, Diego R; White, Craig R; Marshall, Dustin J

    2017-06-01

    Biological invasions are one of the biggest threats to global biodiversity. Marine artificial structures are proliferating worldwide and provide a haven for marine invasive species. Such structures disrupt local hydrodynamics, which can lead to the formation of oxygen-depleted microsites. The extent to which native fauna can cope with such low oxygen conditions, and whether invasive species, long associated with artificial structures in flow-restricted habitats, have adapted to these conditions remains unclear. We measured water flow and oxygen availability in marinas and piers at the scales relevant to sessile marine invertebrates (mm). We then measured the capacity of invasive and native marine invertebrates to maintain metabolic rates under decreasing levels of oxygen using standard laboratory assays. We found that marinas reduce water flow relative to piers, and that local oxygen levels can be zero in low flow conditions. We also found that for species with erect growth forms, invasive species can tolerate much lower levels of oxygen relative to native species. Integrating the field and laboratory data showed that up to 30% of available microhabitats within low flow environments are physiologically stressful for native species, while only 18% of the same habitat is physiologically stressful for invasive species. These results suggest that invasive species have adapted to low oxygen habitats associated with manmade habitats, and artificial structures may be creating niche opportunities for invasive species. © 2017 John Wiley & Sons Ltd.

  6. Water Processor and Oxygen Generation Assembly

    NASA Technical Reports Server (NTRS)

    Bedard, John

    1997-01-01

    This report documents the results of the tasks which initiated efforts on design issues relating to the Water Processor (WP) and the Oxygen Generation Assembly (OGA) Flight Hardware for the International Space Station. This report fulfills the Statement of Work deliverables requirement for contract H-29387D. The following lists the tasks required by contract H-29387D: (1) HSSSI shall coordinate a detailed review of WP/OGA Flight Hardware program requirements with personnel from MSFC to identify requirements that can be eliminated without affecting the technical integrity of the WP/OGA Hardware; (2) HSSSI shall conduct the technical interchanges with personnel from MSFC to resolve design issues related to WP/OGA Flight Hardware; (3) HSSSI will initiate discussions with Zellwegger Analytics, Inc. to address design issues related to WP and PCWQM interfaces.

  7. Are the oxygen uptake and heart rate off-kinetics influenced by the intensity of prior exercise?

    PubMed

    do Nascimento Salvador, Paulo Cesar; de Aguiar, Rafael Alves; Teixeira, Anderson Santiago; Souza, Kristopher Mendes de; de Lucas, Ricardo Dantas; Denadai, Benedito Sérgio; Guglielmo, Luiz Guilherme Antonacci

    2016-08-01

    The aim of this study was to investigate the effect of prior exercise on the heart rate (HR) and oxygen uptake (VO2) off-kinetics after a subsequent high-intensity running exercise. Thirteen male futsal players (age 22.8±6.1years) performed a series of high-intensity bouts without prior exercise (control), preceded by a prior same intensity continuous exercise (CE+CE) and a prior sprint exercise (SE+CE). The magnitude of excess post-exercise oxygen consumption (EPOCm-4.25±0.19 vs. 3.69±0.20Lmin(-1) in CE+CE and 3.62±0.18Lmin(-1) in control; p<0.05) and the parasympathetic reactivation (HRR60s-33±3 vs. 37±3bpm in CE+CE and 42±3 bpm in control; p<0.05) in the SE+CE were higher and slower, compared with another two conditions. The EPOCτ (time to attain 63% of total response; 53±2s) and the heart rate time-course (HRτ-86±5s) were significantly longer after the SE+CE condition than control transition (48±2s and 69±5s, respectively; p<0.05). The SE+CE induce greater stress on the metabolic function, respiratory system and autonomic nervous system regulation during post-exercise recovery than CE, highlighting that the inclusion of sprint-based exercises can be an effective strategy to increase the total energy expenditure following an exercise session. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans.

    PubMed

    Crisafulli, Antonio; Tangianu, Flavio; Tocco, Filippo; Concu, Alberto; Mameli, Ombretta; Mulliri, Gabriele; Caria, Marcello A

    2011-08-01

    Brief episodes of nonlethal ischemia, commonly known as "ischemic preconditioning" (IP), are protective against cell injury induced by infarction. Moreover, muscle IP has been found capable of improving exercise performance. The aim of the study was the comparison of standard exercise performances carried out in normal conditions with those carried out following IP, achieved by brief muscle ischemia at rest (RIP) and after exercise (EIP). Seventeen physically active, healthy male subjects performed three incremental, randomly assigned maximal exercise tests on a cycle ergometer up to exhaustion. One was the reference (REF) test, whereas the others were performed after the RIP and EIP sessions. Total exercise time (TET), total work (TW), and maximal power output (W(max)), oxygen uptake (VO(2max)), and pulmonary ventilation (VE(max)) were assessed. Furthermore, impedance cardiography was used to measure maximal heart rate (HR(max)), stroke volume (SV(max)), and cardiac output (CO(max)). A subgroup of volunteers (n = 10) performed all-out tests to assess their anaerobic capacity. We found that both RIP and EIP protocols increased in a similar fashion TET, TW, W(max), VE(max), and HR(max) with respect to the REF test. In particular, W(max) increased by ∼ 4% in both preconditioning procedures. However, preconditioning sessions failed to increase traditionally measured variables such as VO(2max), SV(max,) CO(max), and anaerobic capacity(.) It was concluded that muscle IP improves performance without any difference between RIP and EIP procedures. The mechanism of this effect could be related to changes in fatigue perception.

  9. Effects of varying hematocrit on intestinal oxygen uptake in neonatal lambs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzman, I.R.; Tabata, B.; Edelstone, D.I.

    1985-04-01

    The authors chronically catheterized 15 newborn lambs (9.5 +/- 2.8 days) and measured intestinal blood flow (Qi) by the radionuclide microsphere technique at hematocrit levels ranging from 10 to 55%. Seven animals were made progressively anemic and eight polycythemic by means of exchange transfusions. Using the Fick principle, they calculated intestinal oxygen delivery (Di O/sub 2/), oxygen consumption (Vi O/sub 2/), and oxygen extraction. Initial base-line values were Qi = 195.5 ml . min-1 . 100 g intestine-1, Di O/sub 2/ = 22.1 ml . min-1 . 100 g-1, Vi O/sub 2/ = 4.8 ml . min-1 . 100 g-1,more » and O/sub 2/ extraction = 22.5%. As the hematocrit was lowered, Di O/sub 2/ decreased and O2 extraction increased and vice versa when the hematocrit was raised. Vi O/sub 2/ remained constant, but Qi did not correlate with changes in hematocrit. However, intestinal blood flow, as a percent distribution of total blood flow, decreased with lower hematocrit levels. At no time was there any evidence of anaerobic metabolism as measured by excess lactate production. The data indicate that the intestines of neonatal lambs are capable of maintaining their metabolic needs over a wide range of oxygen availability induced by a changing hematocrit. The primary mechanism is through alteration of oxygen extraction. Within the range of the experiments, no critically low oxygen availability was attained at which anaerobic metabolism became significant.« less

  10. Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice.

    PubMed

    Lund, J; Hafstad, A D; Boardman, N T; Rossvoll, L; Rolim, N P; Ahmed, M S; Florholmen, G; Attramadal, H; Wisløff, U; Larsen, T S; Aasum, E

    2015-04-15

    Although exercise training has been demonstrated to have beneficial cardiovascular effects in diabetes, the effect of exercise training on hearts from obese/diabetic models is unclear. In the present study, mice were fed a high-fat diet, which led to obesity, reduced aerobic capacity, development of mild diastolic dysfunction, and impaired glucose tolerance. Following 8 wk on high-fat diet, mice were assigned to 5 weekly high-intensity interval training (HIT) sessions (10 × 4 min at 85-90% of maximum oxygen uptake) or remained sedentary for the next 10 constitutive weeks. HIT increased maximum oxygen uptake by 13%, reduced body weight by 16%, and improved systemic glucose homeostasis. Exercise training was found to normalize diastolic function, attenuate diet-induced changes in myocardial substrate utilization, and dampen cardiac reactive oxygen species content and fibrosis. These changes were accompanied by normalization of obesity-related impairment of mechanical efficiency due to a decrease in work-independent myocardial oxygen consumption. Finally, we found HIT to reduce infarct size by 47% in ex vivo hearts subjected to ischemia-reperfusion. This study therefore demonstrated for the first time that exercise training mediates cardioprotection following ischemia in diet-induced obese mice and that this was associated with oxygen-sparing effects. These findings highlight the importance of optimal myocardial energetics during ischemic stress. Copyright © 2015 the American Physiological Society.

  11. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S. V.

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below Ec) and at 415 K (0.9 below Ec); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below Ec known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below Ec is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  12. Effect of maximal oxygen uptake and different forms of physical training on serum lipoproteins.

    PubMed

    Schnabel, A; Kindermann, W

    1982-01-01

    260 well trained male sportsmen between 17 and 30 years of age participating in a variety of events were examined for total serum cholesterol and lipoprotein cholesterol and compared with 37 moderately active leisure-time sportsmen and 20 sedentary controls of similar ages and sex. Lipoprotein cholesterol distribution was determined by quantitative electrophoresis. Mean HDL-cholesterol increased progressively from the mean of the sedentary control to the mean of the long-distance runners, indicating a graded effect of physical activity on HDL-cholesterol. In all sporting groups mean LDL-cholesterol tended to be lower than in the controls, no association between LDL-cholesterol and form of training being apparent. Except for the long-distance runners, all sporting groups tended to be lower in total cholesterol than the controls. The HDL-/total cholesterol and LDL/HDL ratios yielded a better discrimination between the physically active and inactive than the HDL-cholesterol alone. Significant positive correlations with maximal oxygen uptake and roentgenologically determined heart volume were found for HDL-cholesterol and HDL-/total cholesterol, and negative ones for LDL/HDL. Differences in the regressions among subsets made up of sporting groups under different physical demands suggest a positive relationship between lipoprotein distribution and the magnitude of the trained muscle mass.

  13. Age-related increase in brain activity during task-related and -negative networks and numerical inductive reasoning.

    PubMed

    Sun, Li; Liang, Peipeng; Jia, Xiuqin; Qi, Zhigang; Li, Kuncheng

    2014-01-01

    Recent neuroimaging studies have shown that elderly adults exhibit increased and decreased activation on various cognitive tasks, yet little is known about age-related changes in inductive reasoning. To investigate the neural basis for the aging effect on inductive reasoning, 15 young and 15 elderly subjects performed numerical inductive reasoning while in a magnetic resonance (MR) scanner. Functional magnetic resonance imaging (fMRI) analysis revealed that numerical inductive reasoning, relative to rest, yielded multiple frontal, temporal, parietal, and some subcortical area activations for both age groups. In addition, the younger participants showed significant regions of task-induced deactivation, while no deactivation occurred in the elderly adults. Direct group comparisons showed that elderly adults exhibited greater activity in regions of task-related activation and areas showing task-induced deactivation (TID) in the younger group. Our findings suggest an age-related deficiency in neural function and resource allocation during inductive reasoning.

  14. Comparison of work rates, energy expenditure, and perceived exertion during a 1-h vacuuming task with a backpack vacuum cleaner and an upright vacuum cleaner.

    PubMed

    Mengelkoch, Larry J; Clark, Kirby

    2006-03-01

    The purpose of this study was to evaluate two types of industrial vacuum cleaners, in terms of cleaning rates, energy expenditure, and perceived exertion. Twelve industrial cleaners (six males and six females, age 28-39 yr) performed two 1-h vacuuming tasks with an upright vacuum cleaner (UVC) and a backpack vacuum cleaner (BPVC). Measures for oxygen uptake (VO2) and ratings of perceived exertion (RPE) were collected continuously during the 1-h vacuuming tasks. Cleaning rates for the UVC and BPVC were 7.23 and 14.98 m2min(-1), respectively. On a separate day subjects performed a maximal treadmill exercise test to determine their maximal aerobic capacity (peak VO2). Average absolute energy costs (in Metabolic equivalents), relative energy costs of the vacuum task compared to the subjects' maximal aerobic capacity (% peak VO2), and RPE responses for the 1-h vacuuming tasks were similar between vacuum cleaners, but % peak VO2 and RPE values differed between genders. These results indicate that the BPVC was more efficient than the UVC. With the BPVC, experienced workers vacuumed at a cleaning rate 2.07 times greater than the UVC and had similar levels of energy expenditure and perceived effort, compared to the slower cleaning rate with the UVC.

  15. San Joaquin River Up-Stream DO TMDL Project Task 4: MonitoringStudy Interim Task Report #3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stringfellow, William; Borglin, Sharon; Dahlgren, Randy

    2007-03-30

    The purpose of the Dissolved Oxygen Total Maximum Daily LoadProject (DO TMDLProject) is to provide a comprehensive understanding ofthe sources and fate of oxygen consuming materials in the San JoaquinRiver (SJR) watershed between Channel Point and Lander Avenue (upstreamSJR). When completed, this study will provide the stakeholders anunderstanding of the baseline conditions of the basin, provide input foran allocation decision, and provide the stakeholders with a tool formeasuring the impact of any waterquality management program that may beimplemented as part of the DO TMDL process. Previous studies haveidentified algal biomass as the most significant oxygen-demandingsubstance in the DO TMDL Projectmore » study-area between of Channel Point andLander Ave onthe SJR. Other oxygen-demanding substances found in theupstream SJR include ammonia and organic carbon from sources other thanalgae. The DO TMDL Project study-area contains municipalities, dairies,wetlands, cattle ranching, irrigated agriculture, and industries thatcould potentially contribute biochemical oxygen demand (BOD) to the SJR.This study is designed to discriminate between algal BOD and othersources of BOD throughout the entire upstream SJR watershed. Algalbiomass is not a conserved substance, but grows and decays in the SJR;hence, characterization of oxygen-demanding substances in the SJR isinherently complicated and requires an integrated effort of extensivemonitoring, scientific study, and modeling. In order to achieve projectobjectives, project activities were divided into a number of Tasks withspecific goals and objectives. In this report, we present the results ofmonitoring and research conducted under Task 4 of the DO TMDL Project.The major objective of Task 4 is to collect sufficient hydrologic (flow)and water quality (WQ) data to characterize the loading of algae, otheroxygen-demanding materials, and nutrients fromindividual tributaries andsub-watersheds of the upstream SJR between Mossdale

  16. Maximum Oxygen Uptake During Long-Duration Space Flight: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Moore, A. D., Jr.; Evetts, S. N.; Feiveson, A.H.; Lee, S. M. C.; McCleary, F. A.; Platts, S. H.; Ploutz-Snyder, L.

    2010-01-01

    INTRODUCTION: Maximum oxygen uptake (VO2max) is maintained during space flight lasting <15 d, but has not been measured during long-duration missions. This abstract describes pre-flight and in-flight preliminary findings from the International Space Station (ISS) VO2max experiment. METHODS: Seven astronauts (4 M, 3 F: 47 +/- 5 yr, 174 +/- 7 cm, 74.1 +/- 14.7 kg [mean +/- SD]) performed cycle exercise tests to volitional maximum approx.45 d before flight and tests were scheduled every 30 d during flight beginning on flight day (FD) 14. Tests consisted of three 5-min stages designed to elicit 25%, 50%, and 75% of preflight VO2max, followed by 25 W/min increases. VO2 and heart rate (HR) were measured using the ISS Portable Pulmonary Function System (PPFS) (Damec, Odense, DK). Unfortunately the PPFS did not arrive at the ISS in time to support early test sessions for 3 crewmembers. Descriptive statistics are presented for pre-flight vs. late-flight (FD 147 +/- 33 d) comparisons for all subjects (n=7); and pre-flight, early (FD 18 +/- 3) and late-flight (FD 156 +/- 5) data are presented for subjects (n=4) who completed all of these test sessions. RESULTS: When all subjects are considered, average VO2max decreased from pre- to late in-flight (2.98 +/- 0.85 vs. 2.57 +/- 0.50 L/min) while maximum HR late-flight seemed unchanged (178 +/- 9 vs. 175 +/- 8 beats/min). Similarly, for subjects who completed pre-, early, and late flight measurements (n=4), mean VO2max declined from 3.19 +/- 0.75 L/min preflight to 2.43 +/- 0.43 and 2.62 +/- 0.38 L/min early and late-flight, respectively. Maximum HR was 183 +/- 8, 174 +/- 8, and 179 +/- 6 beats/min pre-, early- and late-flight. DISCUSSION: Average VO2max declined during flight and did not appreciably recover as flight duration increased; however much inter-subject variation occurred in these changes.

  17. EEG Patterns Related to Cognitive Tasks of Varying Complexity.

    ERIC Educational Resources Information Center

    Dunn, Denise A.; And Others

    A study was conducted that attempted to show changes in electroencephalographic (EEG) patterns (identified using topographic EEG mapping) when children were required to perform the relatively simple task of button pressing during an eyes-open baseline session of low cognitive demand and a complex reaction time (RT) task of high cognitive demand.…

  18. Primary task event-related potentials related to different aspects of information processing

    NASA Technical Reports Server (NTRS)

    Munson, Robert C.; Horst, Richard L.; Mahaffey, David L.

    1988-01-01

    The results of two studies which investigated the relationships between cognitive processing and components of transient event-related potentials (ERPs) are presented in a task in which mental workload was manipulated. The task involved the monitoring of an array of discrete readouts for values that went out of bounds, and was somewhat analogous to tasks performed in cockpits. The ERPs elicited by the changing readouts varied with the number of readouts being monitored, the number of monitored readouts that were close to going out of bounds, and whether or not the change took a monitored readout out of bounds. Moreover, different regions of the waveform differentially reflected these effects. The results confirm the sensitivity of scalp-recorded ERPs to the cognitive processes affected by mental workload and suggest the possibility of extracting useful ERP indices of primary task performance in a wide range of man-machine settings.

  19. Preliminary Evidence for Adipocytokine Signals in Skeletal Muscle Glucose Uptake.

    PubMed

    Kudoh, Akihiro; Satoh, Hiroaki; Hirai, Hiroyuki; Watanabe, Tsuyoshi; Shimabukuro, Michio

    2018-01-01

    The cross talk between the adipose tissue and insulin target tissues is a key mechanism for obesity-associated insulin resistance. However, the precise role of the interaction between the skeletal muscle and adipose tissue for insulin signaling and glucose uptake is questionable. L6 myocytes were co-cultured with or without 3T3-L1 adipocytes (~5 × 10 3 cells/cm 2 ) up to 24 h. Glucose uptake was evaluated by 2-[ 3 H] deoxyglucose uptake assay. Levels of mRNA expression of Glut1 and Glut4 and mitochondrial enzymes were analyzed by quantitative real-time reverse transcription polymerase chain reaction. Levels of Glut1 and Glut4 protein and phosphorylation of Akt (Ser473 and Thr308) were analyzed by immunoblotting. Study 1: co-culture with 3T3-L1 adipocytes increased glucose uptake in dose- and time-dependent manner in L6 myocytes under insulin-untreated conditions. When co-cultured with 3T3-L1 cells, reactive oxygen species production and levels of Glut1 mRNA and protein were increased in L6 cells, while these changes were abrogated and the glucose uptake partially inhibited by antioxidant treatment. Study 2: co-culture with 3T3-L1 adipocytes suppressed insulin-stimulated glucose uptake in L6 myocytes. Insulin-induced Akt phosphorylation at Ser473 decreased, which was proportional to 3T3-L1 density. Antioxidant treatment partially reversed this effect. Interactions between skeletal muscle and adipose tissues are important for glucose uptake under insulin-untreated or -treated condition through oxygen stress mechanism.

  20. Exertional oxygen uptake kinetics: a stamen of stamina?

    PubMed

    Whipp, Brian J; Rossiter, H B; Ward, S A

    2002-04-01

    The fundamental pulmonary O(2) uptake (.VO(2)) response to moderate, constant-load exercise can be characterized as (d.VO(2)/dt)(tau)+Delta.VO(2) (t)=Delta.VO(2SS) where Delta.VO(2SS) is the steady-state response, and tau is the time constant, with the .VO(2) kinetics reflecting intramuscular O(2) uptake (.QO(2)) kinetics, to within 10%. The role of phosphocreatine (PCr) turnover in .QO(2) control can be explored using (31)P-MR spectroscopy, simultaneously with .VO(2). Although tau.VO(2) and tauPCr vary widely among subjects (approx. 20-65 s), they are not significantly different from each other, either at the on- or off-transient. A caveat to interpreting the "well-fit" exponential is that numerous units of similar Delta.VO(2SS) but with a wide tau distribution can also yield a .VO(2) response with an apparent single tau. This tau is, significantly, inversely correlated with lactate threshold and .VO(2max)(but is poorly predictive; a frail stamen, therefore), consistent with tau not characterizing a compartment with uniform kinetics. At higher intensities, the fundamental kinetics become supplemented with a slowly-developing phase, setting .VO(2)on a trajectory towards maximum .VO(2). This slow component is also demonstrable in Delta[PCr]: the decreased efficiency thereby reflecting a predominantly high phosphate-cost of force production rather than a high O(2)-cost of phosphate production. We also propose that the O(2)-deficit for the slow-component is more likely to reflect shifting Delta.VO(2SS) rather than a single one with a single tau.

  1. PVC flooring is related to human uptake of phthalates in infants.

    PubMed

    Carlstedt, F; Jönsson, B A G; Bornehag, C-G

    2013-02-01

    Polyvinyl chloride (PVC) flooring material contains phthalates, and it has been shown that such materials are important sources for phthalates in indoor dust. Phthalates are suspected endocrine-disrupting chemicals (EDCs). Consecutive infants between 2 and 6 months old and their mothers were invited. A questionnaire about indoor environmental factors and family lifestyle was used. Urinary metabolites of the phthalates diethyl phthalate (DEP), dibutyl phthalate (DBP), butylbenzyl phthalate (BBzP), and dietylhexyl phthalate (DEHP) were measured in the urine of the children. Of 209 invited children, 110 (52%) participated. Urine samples were obtained from 83 of these. Urine levels of the BBzP metabolite monobenzyl phthalate (MBzP) was significantly higher in infants with PVC flooring in their bedrooms (P < 0.007) and related to the body area of the infant. Levels of the DEHP metabolites MEHHP (P < 0.01) and MEOHP (P < 0.04) were higher in the 2-month-old infants who were not exclusively breast-fed when compared with breast-fed children. The findings indicate that the use of soft PVC as flooring material may increase the human uptake of phthalates in infants. Urinary levels of phthalate metabolites during early life are associated with the use of PVC flooring in the bedroom, body area, and the use of infant formula. This study shows that the uptake of phthalates is not only related to oral uptake from, for example, food but also to environmental factors such as building materials. This new information should be considered when designing indoor environment, especially for children. © 2012 John Wiley & Sons A/S.

  2. Relative effects of harassment, frustration, and task characteristics on cardiovascular reactivity.

    PubMed

    García-León, Ana; Reyes del Paso, Gustavo A; Robles, Humbelina; Vila, Jaime

    2003-02-01

    Effects of anger induction procedures such as frustration and harassment on cardiovascular reactivity have been demonstrated in a wide range of experimental situations. Similarly, heightened cardiovascular reactivity has been associated with a diverse range of tasks involving active coping, competition and interpersonal interaction. The present study sought to directly compare the relative effects of these two important ways of inducing cardiovascular changes. One hundred and five university students performed two tasks that differed in the degree of active coping and interpersonal competition: a competitive psychomotor task and a problem-solving task. States of anger were induced during both tasks by means of harassment, frustration or frustration+harassment. Task-related changes in heart rate, systolic blood pressure, diastolic blood pressure, pulse volume amplitude and respiratory sinus arrhythmia amplitude were monitored. The competitive psychomotor task produced greater cardiovascular reactivity than did the problem-solving task. Harassment and frustration+harassment provoked more cardiovascular reactivity than did frustration alone. However, harassment and frustration+harassment had the greatest cardiovascular effects in the competitive task, whereas frustration had the greatest cardiovascular effects in the problem-solving task. In this sense, the increases on cardiovascular reactivity seem to depend on the interaction between anger induction procedures and the context in which anger is provoked.

  3. Sunlight modulates the relative importance of heterotrophic bacteria and picophytoplankton in DMSP-sulphur uptake

    PubMed Central

    Ruiz-González, Clara; Simó, Rafel; Vila-Costa, Maria; Sommaruga, Ruben; Gasol, Josep M

    2012-01-01

    There is a large body of evidence supporting a major role of heterotrophic bacteria in dimethylsulphoniopropionate (DMSP) utilisation as a source of reduced sulphur. However, a role for phototrophic microorganisms has been only recently described and little is known about their contribution to DMSP consumption and the potential modulating effects of sunlight. In an attempt to ascertain the relative quantitative roles of heterotrophic bacteria and picophytoplankton in the osmoheterotrophic uptake of DMSP-sulphur upon exposure to natural sunlight conditions, we incubated northwestern Mediterranean waters under various optical filters and used an array of bulk and single-cell activity methods to trace the fate of added 35S-DMSP. Flow cytometry cell sorting confirmed dark 35S uptake by Prochlorococcus, Synechococcus and heterotrophic bacteria, the latter being the most efficient in terms of uptake on a cell volume basis. Under exposure to full sunlight, however, the relative contribution of Synechococcus was significantly enhanced, mainly because of the inhibition of heterotrophic bacteria. Microautoradiography showed a strong increase in the proportion of Synechococcus cells actively taking up 35S-DMSP, which, after full sunlight exposure, made up to 15% of total active Bacteria. Parallel incubations with 3H-leucine generally showed no clear responses to light. Finally, size-fractionated assimilation experiments showed greater relative cyanobacterial assimilation during the day than at night compared with that of heterotrophic bacteria. Our results show for the first time a major influence of sunlight in regulating the competition among autotrophic and heterotrophic picoplankton for DMSP uptake at both the daily and seasonal time scales. PMID:21955992

  4. Age-related increase in brain activity during task-related and -negative networks and numerical inductive reasoning

    PubMed Central

    Sun, Li; Liang, Peipeng; Jia, Xiuqin; Qi, Zhigang; Li, Kuncheng

    2014-01-01

    Objective: Recent neuroimaging studies have shown that elderly adults exhibit increased and decreased activation on various cognitive tasks, yet little is known about age-related changes in inductive reasoning. Methods: To investigate the neural basis for the aging effect on inductive reasoning, 15 young and 15 elderly subjects performed numerical inductive reasoning while in a magnetic resonance (MR) scanner. Results: Functional magnetic resonance imaging (fMRI) analysis revealed that numerical inductive reasoning, relative to rest, yielded multiple frontal, temporal, parietal, and some subcortical area activations for both age groups. In addition, the younger participants showed significant regions of task-induced deactivation, while no deactivation occurred in the elderly adults. Direct group comparisons showed that elderly adults exhibited greater activity in regions of task-related activation and areas showing task-induced deactivation (TID) in the younger group. Conclusions: Our findings suggest an age-related deficiency in neural function and resource allocation during inductive reasoning. PMID:25337240

  5. Physical activity and maximal oxygen uptake in adults with Prader-Willi syndrome.

    PubMed

    Gross, Itai; Hirsch, Harry J; Constantini, Naama; Nice, Shachar; Pollak, Yehuda; Genstil, Larry; Eldar-Geva, Talia; Tsur, Varda Gross

    2017-03-16

    Prader-Willi Syndrome (PWS) is the most common genetic syndrome causing life-threatening obesity. Strict adherence to a low-calorie diet and regular physical activity are needed to prevent weight gain. Direct measurement of maximal oxygen uptake (VO 2 max), the "gold standard" for assessing aerobic exercise capacity, has not been previously described in PWS. Assess aerobic capacity by direct measurement of VO 2 max in adults with PWS, and in age and BMI-matched controls (OC), and compare the results with values obtained by indirect prediction methods. Seventeen individuals (12 males) age: 19-35 (28.6 ± 4.9) years, BMI: 19.4-38.1 (27.8 ± 5) kg/m 2 with genetically confirmed PWS who exercise daily, and 32 matched OC (22 males) age: 19-36 (29.3 ± 5.2) years, BMI: 21.1-48.1 (26.3 ± 4.9) kg/m 2 . All completed a medical questionnaire and performed strength and flexibility tests. VO 2 max was determined by measuring oxygen consumption during a graded exercise test on a treadmill. VO 2 max (24.6 ± 3.4 vs 46.5 ± 12.2 ml/kg/min, p < 0.001) and ventilatory threshold (20 ± 2 and 36.2 ± 10.5 ml/kg/min, p < 0.001), maximal strength of both hands (36 ± 4 vs 91.4 ± 21.2 kg, p < 0.001), and flexibility (15.2 ± 9.5 vs 26 ± 11.1 cm, p = 0.001) were all significantly lower for PWS compared to OC. Predicted estimates and direct measurements of VO 2 max were almost identical for the OC group (p = 0.995), for the PWS group, both methods for estimating VO 2 max gave values which were significantly greater (p < 0.001) than results obtained by direct measurements. Aerobic capacity, assessed by direct measurement of VO 2 max, is significantly lower in PWS adults, even in those who exercise daily, compared to OCs. Indirect estimates of VO 2 max are accurate for OC, but unreliable in PWS. Direct measurement of VO 2 should be used for designing personal training programs and in clinical studies of exercise

  6. Gaming is related to enhanced working memory performance and task-related cortical activity.

    PubMed

    Moisala, M; Salmela, V; Hietajärvi, L; Carlson, S; Vuontela, V; Lonka, K; Hakkarainen, K; Salmela-Aro, K; Alho, K

    2017-01-15

    Gaming experience has been suggested to lead to performance enhancements in a wide variety of working memory tasks. Previous studies have, however, mostly focused on adult expert gamers and have not included measurements of both behavioral performance and brain activity. In the current study, 167 adolescents and young adults (aged 13-24 years) with different amounts of gaming experience performed an n-back working memory task with vowels, with the sensory modality of the vowel stream switching between audition and vision at random intervals. We studied the relationship between self-reported daily gaming activity, working memory (n-back) task performance and related brain activity measured using functional magnetic resonance imaging (fMRI). The results revealed that the extent of daily gaming activity was related to enhancements in both performance accuracy and speed during the most demanding (2-back) level of the working memory task. This improved working memory performance was accompanied by enhanced recruitment of a fronto-parietal cortical network, especially the dorsolateral prefrontal cortex. In contrast, during the less demanding (1-back) level of the task, gaming was associated with decreased activity in the same cortical regions. Our results suggest that a greater degree of daily gaming experience is associated with better working memory functioning and task difficulty-dependent modulation in fronto-parietal brain activity already in adolescence and even when non-expert gamers are studied. The direction of causality within this association cannot be inferred with certainty due to the correlational nature of the current study. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A Causal Relation between Bioluminescence and Oxygen to Quantify the Cell Niche

    PubMed Central

    Lambrechts, Dennis; Roeffaers, Maarten; Goossens, Karel; Hofkens, Johan; Van de Putte, Tom; Schrooten, Jan; Van Oosterwyck, Hans

    2014-01-01

    Bioluminescence imaging assays have become a widely integrated technique to quantify effectiveness of cell-based therapies by monitoring fate and survival of transplanted cells. To date these assays are still largely qualitative and often erroneous due to the complexity and dynamics of local micro-environments (niches) in which the cells reside. Here, we report, using a combined experimental and computational approach, on oxygen that besides being a critical niche component responsible for cellular energy metabolism and cell-fate commitment, also serves a primary role in regulating bioluminescent light kinetics. We demonstrate the potential of an oxygen dependent Michaelis-Menten relation in quantifying intrinsic bioluminescence intensities by resolving cell-associated oxygen gradients from bioluminescent light that is emitted from three-dimensional (3D) cell-seeded hydrogels. Furthermore, the experimental and computational data indicate a strong causal relation of oxygen concentration with emitted bioluminescence intensities. Altogether our approach demonstrates the importance of oxygen to evolve towards quantitative bioluminescence and holds great potential for future microscale measurement of oxygen tension in an easily accessible manner. PMID:24840204

  8. A causal relation between bioluminescence and oxygen to quantify the cell niche.

    PubMed

    Lambrechts, Dennis; Roeffaers, Maarten; Goossens, Karel; Hofkens, Johan; Vande Velde, Greetje; Van de Putte, Tom; Schrooten, Jan; Van Oosterwyck, Hans

    2014-01-01

    Bioluminescence imaging assays have become a widely integrated technique to quantify effectiveness of cell-based therapies by monitoring fate and survival of transplanted cells. To date these assays are still largely qualitative and often erroneous due to the complexity and dynamics of local micro-environments (niches) in which the cells reside. Here, we report, using a combined experimental and computational approach, on oxygen that besides being a critical niche component responsible for cellular energy metabolism and cell-fate commitment, also serves a primary role in regulating bioluminescent light kinetics. We demonstrate the potential of an oxygen dependent Michaelis-Menten relation in quantifying intrinsic bioluminescence intensities by resolving cell-associated oxygen gradients from bioluminescent light that is emitted from three-dimensional (3D) cell-seeded hydrogels. Furthermore, the experimental and computational data indicate a strong causal relation of oxygen concentration with emitted bioluminescence intensities. Altogether our approach demonstrates the importance of oxygen to evolve towards quantitative bioluminescence and holds great potential for future microscale measurement of oxygen tension in an easily accessible manner.

  9. Age-related changes in frequency of mind-wandering and task-related interferences during memory encoding and their impact on retrieval.

    PubMed

    Maillet, David; Rajah, M Natasha

    2013-01-01

    During the performance of cognitive tasks such as memory encoding, attention can become decoupled from the external environment and instead focused on internal thoughts related to the appraisal of the current task (task-related interferences; TRI), or personal thoughts unrelated to the task at hand (mind-wandering; MW). However, the association between the frequency of these thoughts experienced at encoding and retrieval accuracy in young and older adults remains poorly understood. In this study young and older adults encoded lists of words using one of two encoding tasks: judging whether words are man-made/natural (objective task), or whether they are pleasant/neutral (subjective task). We measured the frequency of TRI and MW at encoding, and related them to retrieval accuracy in both age groups. We found that encoding task influenced the type of internal thoughts experienced by young, but not older, adults: young exhibited greater MW in the subjective vs the objective task, and greater TRI in the objective vs subjective encoding task. Second, across both tasks we found marked age-related decreases in both MW and TRI at encoding, and frequency of these thoughts negatively impacted memory retrieval in young adults only. We discuss these findings in relation to current theories of ageing, attention and memory.

  10. End-exercise ΔHHb/ΔVO2 and post-exercise local oxygen availability in relation to exercise intensity.

    PubMed

    Stöcker, F; Von Oldershausen, C; Paternoster, F K; Schulz, T; Oberhoffer, R

    2017-07-01

    Increased local blood supply is thought to be one of the mechanisms underlying oxidative adaptations to interval training regimes. The relationship of exercise intensity with local blood supply and oxygen availability has not been sufficiently evaluated yet. The aim of this study was to examine the effect of six different intensities (40-90% peak oxygen uptake, VO 2peak ) on relative changes in oxygenated, deoxygenated and total haemoglobin (ΔO 2 Hb, ΔHHb, ΔTHb) concentration after exercise as well as end-exercise ΔHHb/ΔVO 2 as a marker for microvascular O 2 distribution. Seventeen male subjects performed an experimental protocol consisting of 3 min cycling bouts at each exercise intensity in randomized order, separated by 5 min rests. ΔO 2 Hb and ΔHHb were monitored with near-infrared spectroscopy of the vastus lateralis muscle, and VO 2 was assessed. ΔHHb/ΔVO 2 increased significantly from 40% to 60% VO 2 peak and decreased from 60% to 90% VO 2 peak. Post-exercise ΔTHb and ΔO 2 Hb showed an overshoot in relation to pre-exercise values, which was equal after 40-60% VO 2peak and rose significantly thereafter. A plateau was reached following exercise at ≥80% VO 2peak . The results suggest that there is an increasing mismatch of local O 2 delivery and utilization during exercise up to 60% VO 2peak . This insufficient local O 2 distribution is progressively improved above that intensity. Further, exercise intensities of ≥80% VO 2peak induce highest local post-exercise O 2 availability. These effects are likely due to improved microvascular perfusion by enhanced vasodilation, which could be mediated by higher lactate production and the accompanying acidosis. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  11. A set for relational reasoning: Facilitation of algebraic modeling by a fraction task.

    PubMed

    DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J

    2016-12-01

    Recent work has identified correlations between early mastery of fractions and later math achievement, especially in algebra. However, causal connections between aspects of reasoning with fractions and improved algebra performance have yet to be established. The current study investigated whether relational reasoning with fractions facilitates subsequent algebraic reasoning using both pre-algebra students and adult college students. Participants were first given either a relational reasoning fractions task or a fraction algebra procedures control task. Then, all participants solved word problems and constructed algebraic equations in either multiplication or division format. The word problems and the equation construction tasks involved simple multiplicative comparison statements such as "There are 4 times as many students as teachers in a classroom." Performance on the algebraic equation construction task was enhanced for participants who had previously completed the relational fractions task compared with those who completed the fraction algebra procedures task. This finding suggests that relational reasoning with fractions can establish a relational set that promotes students' tendency to model relations using algebraic expressions. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Heart rate during basketball game play and volleyball drills accurately predicts oxygen uptake and energy expenditure.

    PubMed

    Scribbans, T D; Berg, K; Narazaki, K; Janssen, I; Gurd, B J

    2015-09-01

    There is currently little information regarding the ability of metabolic prediction equations to accurately predict oxygen uptake and exercise intensity from heart rate (HR) during intermittent sport. The purpose of the present study was to develop and, cross-validate equations appropriate for accurately predicting oxygen cost (VO2) and energy expenditure from HR during intermittent sport participation. Eleven healthy adult males (19.9±1.1yrs) were recruited to establish the relationship between %VO2peak and %HRmax during low-intensity steady state endurance (END), moderate-intensity interval (MOD) and high intensity-interval exercise (HI), as performed on a cycle ergometer. Three equations (END, MOD, and HI) for predicting %VO2peak based on %HRmax were developed. HR and VO2 were directly measured during basketball games (6 male, 20.8±1.0 yrs; 6 female, 20.0±1.3yrs) and volleyball drills (12 female; 20.8±1.0yrs). Comparisons were made between measured and predicted VO2 and energy expenditure using the 3 equations developed and 2 previously published equations. The END and MOD equations accurately predicted VO2 and energy expenditure, while the HI equation underestimated, and the previously published equations systematically overestimated VO2 and energy expenditure. Intermittent sport VO2 and energy expenditure can be accurately predicted from heart rate data using either the END (%VO2peak=%HRmax x 1.008-17.17) or MOD (%VO2peak=%HRmax x 1.2-32) equations. These 2 simple equations provide an accessible and cost-effective method for accurate estimation of exercise intensity and energy expenditure during intermittent sport.

  13. Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake.

    PubMed

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2017-03-01

    Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox. Copyright © 2016. Published by Elsevier Ltd.

  14. Computer-aided discovery of a metal-organic framework with superior oxygen uptake.

    PubMed

    Moghadam, Peyman Z; Islamoglu, Timur; Goswami, Subhadip; Exley, Jason; Fantham, Marcus; Kaminski, Clemens F; Snurr, Randall Q; Farha, Omar K; Fairen-Jimenez, David

    2018-04-11

    Current advances in materials science have resulted in the rapid emergence of thousands of functional adsorbent materials in recent years. This clearly creates multiple opportunities for their potential application, but it also creates the following challenge: how does one identify the most promising structures, among the thousands of possibilities, for a particular application? Here, we present a case of computer-aided material discovery, in which we complete the full cycle from computational screening of metal-organic framework materials for oxygen storage, to identification, synthesis and measurement of oxygen adsorption in the top-ranked structure. We introduce an interactive visualization concept to analyze over 1000 unique structure-property plots in five dimensions and delimit the relationships between structural properties and oxygen adsorption performance at different pressures for 2932 already-synthesized structures. We also report a world-record holding material for oxygen storage, UMCM-152, which delivers 22.5% more oxygen than the best known material to date, to the best of our knowledge.

  15. Uptake of Light Elements in Thin Metallic Films

    NASA Astrophysics Data System (ADS)

    Markwitz, Andreas; Waldschmidt, Mathias

    Ion beam analysis was used to investigate the influence of substrate temperature on the inclusion of impurities during the deposition process of thin metallic single and double layers. Thin layers of gold and aluminium were deposited at different temperatures onto thin copper layers evaporated on silicon wafer substrates. The uptake of oxygen in the layers was measured using the highly sensitive non-resonant reaction 16O(d,p)170O at 920 keV. Nuclear reaction analysis was also used to probe for carbon and nitrogen with a limit of detection better than 20 ppm. Hydrogen depth profiles were measured using elastic recoil detection on the nanometer scale. Rutherford backscattering spectroscopy was used to determine the depth profiles of the metallic layers and to study diffusion processes. The combined ion beam analyses revealed an uptake of oxygen in the layers depending on the different metallic cap layers and the deposition temperature. Lowest oxygen values were measured for the Au/Cu layers, whereas the highest amount of oxygen was measured in Al/Cu layers deposited at 300°C. It was also found that with single copper layers produced at various temperatures, oxygen contamination occurred during the evaporation process and not afterwards, for example, as a consequence of the storage of the films under normal conditions for several days. Hydrogen, carbon, and nitrogen were found as impurities in the single and double layered metallic films, a finding that is in agreement with the measured oxidation behaviour of the metallic films.

  16. Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures.

    PubMed

    Jurado-Oller, Jose Luis; Dubini, Alexandra; Galván, Aurora; Fernández, Emilio; González-Ballester, David

    2015-01-01

    Currently, hydrogen fuel is derived mainly from fossil fuels, but there is an increasing interest in clean and sustainable technologies for hydrogen production. In this context, the ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen is a promising alternative for renewable, clean-energy production. Among a diverse array of photosynthetic microorganisms able to produce hydrogen, the green algae Chlamydomonas reinhardtii is the model organism widely used to study hydrogen production. Despite the well-known fact that acetate-containing medium enhances hydrogen production in this algae, little is known about the precise role of acetate during this process. We have examined several physiological aspects related to acetate assimilation in the context of hydrogen production metabolism. Measurements of oxygen and CO2 levels, acetate uptake, and cell growth were performed under different light conditions, and oxygenic regimes. We show that oxygen and light intensity levels control acetate assimilation and modulate hydrogen production. We also demonstrate that the determination of the contribution of the PSII-dependent hydrogen production pathway in mixotrophic cultures, using the photosynthetic inhibitor DCMU, can lead to dissimilar results when used under various oxygenic regimes. The level of inhibition of DCMU in hydrogen production under low light seems to be linked to the acetate uptake rates. Moreover, we highlight the importance of releasing the hydrogen partial pressure to avoid an inherent inhibitory factor on the hydrogen production. Low levels of oxygen allow for low acetate uptake rates, and paradoxically, lead to efficient and sustained production of hydrogen. Our data suggest that acetate plays an important role in the hydrogen production process, during non-stressed conditions, other than establishing anaerobiosis, and independent of starch accumulation. Potential metabolic pathways involved in

  17. Correlation between the sorption of dissolved oxygen onto chitosan and its antimicrobial activity against Esherichia coli.

    PubMed

    Gylienė, Ona; Servienė, Elena; Vepštaitė, Iglė; Binkienė, Rima; Baranauskas, Mykolas; Lukša, Juliana

    2015-10-20

    The ability of chitosan to adsorb dissolved oxygen from solution depends on its physical shape and is related to the surface area. Depending on conditions chitosan is capable of adsorbing or releasing oxygen. Chitosan, modificated by the substances possessing antimicrobial activity, such as succinic acid, Pd(II) ions, metallic Pd or Ag, distinctly increases the ability to adsorb the dissolved oxygen. The additional treatment of chitosan with air oxygen or electrochemically produced oxygen also increases the uptake of dissolved oxygen by chitosan. A strong correlation between the amount of oxygen adsorbed onto chitosan and its antimicrobial activity against Esherichia coli has been observed. This finding suggests that one of the sources of antimicrobial activity of chitosan is the ability to sorb dissolved oxygen, along with other well-known factors such as physical state and chemical composition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter.

    PubMed

    Cory, Rose M; McNeill, Kristopher; Cotner, James P; Amado, Andre; Purcell, Jeremiah M; Marshall, Alan G

    2010-05-15

    Dissolved organic matter (DOM) is a significant (>700 Pg) global C pool. Transport of terrestrial DOM to the inland waters and coastal zones represents the largest flux of reduced C from land to water (215 Tg yr(-1)) (Meybeck, M. Am. J. Sci. 1983, 282, 401-450). Oxidation of DOM by interdependent photochemical and biochemical processes largely controls the fate of DOM entering surface waters. Reactive oxygen species (ROS) have been hypothesized to play a significant role in the photooxidation of DOM, because they may oxidize the fraction of DOM that is inaccessible to direct photochemical degradation by sunlight. We followed the effects of photochemically produced singlet oxygen ((1)O(2)) on DOM by mass spectrometry with (18)O-labeled oxygen, to understand how (1)O(2)-mediated transformations of DOM may lead to altered DOM bioavailability. The photochemical oxygen uptake by DOM attributed to (1)O(2) increased with DOM concentration, yet it remained a minority contributor to photochemical oxygen uptake even at very high DOM concentrations. When DOM samples were exposed to (1)O(2)-generating conditions (Rose Bengal and visible light), increases were observed in DOM constituents with higher oxygen content and release of H(2)O(2) was detected. Differential effects of H(2)O(2) and (1)O(2)-treated DOM showed that (1)O(2)-treated DOM led to slower bacterial growth rates relative to unmodified DOM. Results of this study suggested that the net effect of the reactions between singlet oxygen and DOM may be production of partially oxidized substrates with correspondingly lower potential biological energy yield.

  19. Age-related decrements in dual-task performance: Comparison of different mobility and cognitive tasks. A cross sectional study.

    PubMed

    Brustio, Paolo Riccardo; Magistro, Daniele; Zecca, Massimiliano; Rabaglietti, Emanuela; Liubicich, Monica Emma

    2017-01-01

    This cross-sectional study investigated the age-related differences in dual-task performance both in mobility and cognitive tasks and the additive dual-task costs in a sample of older, middle-aged and young adults. 74 older adults (M = 72.63±5.57 years), 58 middle-aged adults (M = 46.69±4.68 years) and 63 young adults (M = 25.34±3.00 years) participated in the study. Participants performed different mobility and subtraction tasks under both single- and dual-task conditions. Linear regressions, repeated-measures and one-way analyses of covariance were used, The results showed: significant effects of the age on the dual and mobility tasks (p<0.05) and differences among the age-groups in the combined dual-task costs (p<0.05); significant decreases in mobility performance under dual-task conditions in all groups (p<0.05) and a decrease in cognitive performance in the older group (p<0.05). Dual-task activity affected mobility and cognitive performance, especially in older adults who showed a higher dual-task cost, suggesting that dual-tasks activities are affected by the age and consequently also mobility and cognitive tasks are negatively influenced.

  20. Age-related decrements in dual-task performance: Comparison of different mobility and cognitive tasks. A cross sectional study

    PubMed Central

    Brustio, Paolo Riccardo; Zecca, Massimiliano; Rabaglietti, Emanuela; Liubicich, Monica Emma

    2017-01-01

    This cross-sectional study investigated the age-related differences in dual-task performance both in mobility and cognitive tasks and the additive dual-task costs in a sample of older, middle-aged and young adults. 74 older adults (M = 72.63±5.57 years), 58 middle-aged adults (M = 46.69±4.68 years) and 63 young adults (M = 25.34±3.00 years) participated in the study. Participants performed different mobility and subtraction tasks under both single- and dual-task conditions. Linear regressions, repeated-measures and one-way analyses of covariance were used, The results showed: significant effects of the age on the dual and mobility tasks (p<0.05) and differences among the age-groups in the combined dual-task costs (p<0.05); significant decreases in mobility performance under dual-task conditions in all groups (p<0.05) and a decrease in cognitive performance in the older group (p<0.05). Dual-task activity affected mobility and cognitive performance, especially in older adults who showed a higher dual-task cost, suggesting that dual-tasks activities are affected by the age and consequently also mobility and cognitive tasks are negatively influenced. PMID:28732080

  1. Oxygen-storage behavior and local structure in Ti-substituted YMnO3

    NASA Astrophysics Data System (ADS)

    Levin, I.; Krayzman, V.; Vanderah, T. A.; Tomczyk, M.; Wu, H.; Tucker, M. G.; Playford, H. Y.; Woicik, J. C.; Dennis, C. L.; Vilarinho, P. M.

    2017-02-01

    Hexagonal manganates RMnO3 (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn1-xTix)O3 solid solutions exhibit facile oxygen absorption/desorption via reversible Ti3+↔Ti4+ and Mn3+↔Mn4+ reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn3+1-x-yMn4+yTi4+xO3+δ. The presence of Ti promotes the oxidation of Mn3+ to Mn4+, which is almost negligible for YMnO3 in air, thereby increasing the uptake of oxygen beyond that required for a given Ti4+ concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO5] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO3 structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO5] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti4+(and Mn4+) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with

  2. Effect of high-intensity training versus moderate training on peak oxygen uptake and chronotropic response in heart transplant recipients: a randomized crossover trial.

    PubMed

    Dall, C H; Snoer, M; Christensen, S; Monk-Hansen, T; Frederiksen, M; Gustafsson, F; Langberg, H; Prescott, E

    2014-10-01

    In heart transplant (HTx) recipients, there has been reluctance to recommend high-intensity interval training (HIIT) due to denervation and chronotropic impairment of the heart. We compared the effects of 12 weeks' HIIT versus continued moderate exercise (CON) on exercise capacity and chronotropic response in stable HTx recipients >12 months after transplantation in a randomized crossover trial. The study was completed by 16 HTx recipients (mean age 52 years, 75% males). Baseline peak oxygen uptake (VO2peak ) was 22.9 mL/kg/min. HIIT increased VO2peak by 4.9 ± 2.7 mL/min/kg (17%) and CON by 2.6 ± 2.2 mL/kg/min (10%) (significantly higher in HIIT; p < 0.001). During HIIT, systolic blood pressure decreased significantly (p = 0.037) with no significant change in CON (p = 0.241; between group difference p = 0.027). Peak heart rate (HRpeak ) increased significantly by 4.3 beats per minute (p = 0.014) after HIIT with no significant change in CON (p = 0.34; between group difference p = 0.027). Heart rate recovery (HRrecovery ) improved in both groups with a trend toward greater improvement after HIIT. The 5-month washout showed a significant loss of improvement. HIIT was well tolerated, had a superior effect on oxygen uptake, and led to an unexpected increase in HRpeak accompanied by a faster HRrecovery . This indicates that the benefits of HIIT are partly a result of improved chronotropic response. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  3. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells

    PubMed Central

    Pérez-Escuredo, Jhudit; Dadhich, Rajesh K; Dhup, Suveera; Cacace, Andrea; Van Hée, Vincent F; De Saedeleer, Christophe J; Sboarina, Martina; Rodriguez, Fabien; Fontenille, Marie-Joséphine; Brisson, Lucie; Porporato, Paolo E; Sonveaux, Pierre

    2016-01-01

    ABSTRACT Oxygenated cancer cells have a high metabolic plasticity as they can use glucose, glutamine and lactate as main substrates to support their bioenergetic and biosynthetic activities. Metabolic optimization requires integration. While glycolysis and glutaminolysis can cooperate to support cellular proliferation, oxidative lactate metabolism opposes glycolysis in oxidative cancer cells engaged in a symbiotic relation with their hypoxic/glycolytic neighbors. However, little is known concerning the relationship between oxidative lactate metabolism and glutamine metabolism. Using SiHa and HeLa human cancer cells, this study reports that intracellular lactate signaling promotes glutamine uptake and metabolism in oxidative cancer cells. It depends on the uptake of extracellular lactate by monocarboxylate transporter 1 (MCT1). Lactate first stabilizes hypoxia-inducible factor-2α (HIF-2α), and HIF-2α then transactivates c-Myc in a pathway that mimics a response to hypoxia. Consequently, lactate-induced c-Myc activation triggers the expression of glutamine transporter ASCT2 and of glutaminase 1 (GLS1), resulting in improved glutamine uptake and catabolism. Elucidation of this metabolic dependence could be of therapeutic interest. First, inhibitors of lactate uptake targeting MCT1 are currently entering clinical trials. They have the potential to indirectly repress glutaminolysis. Second, in oxidative cancer cells, resistance to glutaminolysis inhibition could arise from compensation by oxidative lactate metabolism and increased lactate signaling. PMID:26636483

  4. The significance of task significance: Job performance effects, relational mechanisms, and boundary conditions.

    PubMed

    Grant, Adam M

    2008-01-01

    Does task significance increase job performance? Correlational designs and confounded manipulations have prevented researchers from assessing the causal impact of task significance on job performance. To address this gap, 3 field experiments examined the performance effects, relational mechanisms, and boundary conditions of task significance. In Experiment 1, fundraising callers who received a task significance intervention increased their levels of job performance relative to callers in 2 other conditions and to their own prior performance. In Experiment 2, task significance increased the job dedication and helping behavior of lifeguards, and these effects were mediated by increases in perceptions of social impact and social worth. In Experiment 3, conscientiousness and prosocial values moderated the effects of task significance on the performance of new fundraising callers. The results provide fresh insights into the effects, relational mechanisms, and boundary conditions of task significance, offering noteworthy implications for theory, research, and practice on job design, social information processing, and work motivation and performance. 2008 APA

  5. Oxygen-Dependent Transcriptional Regulator Hap1p Limits Glucose Uptake by Repressing the Expression of the Major Glucose Transporter Gene RAG1 in Kluyveromyces lactis▿

    PubMed Central

    Bao, Wei-Guo; Guiard, Bernard; Fang, Zi-An; Donnini, Claudia; Gervais, Michel; Passos, Flavia M. Lopes; Ferrero, Iliana; Fukuhara, Hiroshi; Bolotin-Fukuhara, Monique

    2008-01-01

    The HAP1 (CYP1) gene product of Saccharomyces cerevisiae is known to regulate the transcription of many genes in response to oxygen availability. This response varies according to yeast species, probably reflecting the specific nature of their oxidative metabolism. It is suspected that a difference in the interaction of Hap1p with its target genes may explain some of the species-related variation in oxygen responses. As opposed to the fermentative S. cerevisiae, Kluyveromyces lactis is an aerobic yeast species which shows different oxygen responses. We examined the role of the HAP1-equivalent gene (KlHAP1) in K. lactis. KlHap1p showed a number of sequence features and some gene targets (such as KlCYC1) in common with its S. cerevisiae counterpart, and KlHAP1 was capable of complementing the hap1 mutation. However, the KlHAP1 disruptant showed temperature-sensitive growth on glucose, especially at low glucose concentrations. At normal temperature, 28°C, the mutant grew well, the colony size being even greater than that of the wild type. The most striking observation was that KlHap1p repressed the expression of the major glucose transporter gene RAG1 and reduced the glucose uptake rate. This suggested an involvement of KlHap1p in the regulation of glycolytic flux through the glucose transport system. The ΔKlhap1 mutant showed an increased ability to produce ethanol during aerobic growth, indicating a possible transformation of its physiological property to Crabtree positivity or partial Crabtree positivity. Dual roles of KlHap1p in activating respiration and repressing fermentation may be seen as a basis of the Crabtree-negative physiology of K. lactis. PMID:18806211

  6. Pedaling rate is an important determinant of human oxygen uptake during exercise on the cycle ergometer.

    PubMed

    Formenti, Federico; Minetti, Alberto E; Borrani, Fabio

    2015-09-01

    Estimation of human oxygen uptake (V˙o2) during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human V˙o2 during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its V˙o2 prediction accuracy. Ten healthy male participants' (age 19-48 years) were recruited and their steady-state V˙o2 was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). V˙o2 was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of V˙o2. Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal V˙o2 during exercise (mean bias 1.9 vs. 3.3 mL O2 kg(-1) min(-1)) but it did not affect the accuracy for prediction of maximal V˙o2 (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human V˙o2 during cycling exercise, and it should be considered when predicting oxygen consumption. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Time-resolved photoluminescence characterization of oxygen-related defect centers in AlN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genji, Kumihiro; Uchino, Takashi, E-mail: uchino@kobe-u.ac.jp

    2016-07-11

    Time-resolved photoluminescence (PL) spectroscopy has been employed to investigate the emission characteristics of oxygen-related defects in AlN in the temperature region from 77 to 500 K. Two PL components with different decay constants are observed in the near-ultraviolet to visible regions. One is the PL component with decay time of <10 ns and its peak position shifts to longer wavelengths from ∼350 to ∼500 nm with increasing temperature up to 500 K. This PL component is attributed to the radiative relaxation of photoexcited electrons from the band-edge states to the ground state of the oxygen-related emission centers. In the time region from tens tomore » hundreds of nanoseconds, the second PL component emerges in the wavelength region from 300 to 400 nm. The spectral shape and the decay profiles are hardly dependent on temperature. This temperature-independent PL component most likely results from the transfer of photoexcited electrons from the band-edge states to the localized excited state of the oxygen-related emission centers. These results provide a detailed insight into the radiative relaxation processes of the oxygen-related defect centers in AlN immediately after the photoexcitation process.« less

  8. Oxygen-related vacancy-type defects in ion-implanted silicon

    NASA Astrophysics Data System (ADS)

    Pi, X. D.; Burrows, C. P.; Coleman, P. G.; Gwilliam, R. M.; Sealy, B. J.

    2003-10-01

    Czochralski silicon samples implanted to a dose of 5 × 1015 cm-2 with 0.5 MeV O and to a dose of 1016 cm-2 with 1 MeV Si, respectively, have been studied by positron annihilation spectroscopy. The evolution of divacancies to vacancy (V)-O complexes is out-competed by V-interstitial (I) recombination at 400 and 500 °C in the Si- and O-implanted samples; the higher oxygen concentration makes the latter temperature higher. The defective region shrinks as the annealing temperature increases as interstitials are injected from the end of the implantation range (Rp). VmOn (m> n) are formed in the shallow region most effectively at 700 °C for both Si and O implantation. VxOy (x< y) are produced near Rp by the annealing. At 800 °C, implanted Si ions diffuse and reduce m and implanted O ions diffuse and increase n in VmOn. All oxygen-related vacancy-type defects appear to begin to dissociate at 950 °C, with the probable formation of oxygen clusters. At 1100 °C, oxygen precipitates appear to form just before Rp in O-implanted silicon.

  9. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve.

    PubMed

    Collins, Julie-Ann; Rudenski, Aram; Gibson, John; Howard, Luke; O'Driscoll, Ronan

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content), saturation (S O2 ) and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin-oxygen dissociation curve, a graphical representation of the relationship between oxygen satur-ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the S O2 in blood from patients with normal pH and S O2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (S pO2 ) is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (S aO2 ) as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable S pO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  10. Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Bushinsky, Seth M.; Gray, Alison R.; Johnson, Kenneth S.; Sarmiento, Jorge L.

    2017-11-01

    The Southern Ocean is of outsized significance to the global oxygen and carbon cycles with relatively poor measurement coverage due to harsh winters and seasonal ice cover. In this study, we use recent advances in the parameterization of air-sea oxygen fluxes to analyze 9 years of oxygen data from a recalibrated Argo oxygen data set and from air-calibrated oxygen floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project. From this combined data set of 150 floats, we find a total Southern Ocean oxygen sink of -183 ± 80 Tmol yr-1 (positive to the atmosphere), greater than prior estimates. The uptake occurs primarily in the Polar-Frontal Antarctic Zone (PAZ, -94 ± 30 Tmol O2 yr-1) and Seasonal Ice Zone (SIZ, -111 ± 9.3 Tmol O2 yr-1). This flux is driven by wintertime ventilation, with a large portion of the flux in the SIZ passing through regions with fractional sea ice. The Subtropical Zone (STZ) is seasonally driven by thermal fluxes and exhibits a net outgassing of 47 ± 29 Tmol O2 yr-1 that is likely driven by biological production. The Subantarctic Zone (SAZ) uptake is -25 ± 12 Tmol O2 yr-1. Total oxygen fluxes were separated into a thermal and nonthermal component. The nonthermal flux is correlated with net primary production and mixed layer depth in the STZ, SAZ, and PAZ, but not in the SIZ where seasonal sea ice slows the air-sea gas flux response to the entrainment of deep, low-oxygen waters.

  11. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants

    USGS Publications Warehouse

    Li, H.; Sheng, G.; Chiou, C.T.; Xu, O.

    2005-01-01

    Plant uptake is one of the environmental processes that influence contaminant fate. Understanding the magnitude and rate of plant uptake is critical to assessing potential crop contamination and the development of phytoremediation technologies. We determined (1) the partition-dominated equilibrium sorption of lindane (LDN) and hexachlorobenzene (HCB) by roots and shoots of wheat seedlings, (2) the kinetic uptake of LDN and HCB by roots and shoots of wheat seedlings, (3) the kinetic uptake of HCB, tetrachloroethylene (PCE), and trichloroethylene (TCE) by roots and shoots of ryegrass seedlings, and (4) the lipid, carbohydrate, and water contents of the plants. Although the determined sorption and the plant composition together suggest the predominant role of plant lipids for the sorption of LDN and HCB, the predicted partition with lipids of LDN and HCB using the octanol-water partition coefficients is notably lower than the measured sorption, due presumably to underestimation of the plant lipid contents and to the fact that octanol is less effective as a partition medium than plant lipids. The equilibrium sorption or the estimated partition can be viewed as the kinetic uptake limits. The uptakes of LDN, PCE, and TCE from water at fixed concentrations increased with exposure time in approach to steady states. The uptake of HCB did not reach a plateau within the tested time because of its exceptionally high partition coefficient. In all of the cases, the observed uptakes were lower than their respective limits, due presumably to contaminant dissipation in and limited water transpiration by the plants. ?? 2005 American Chemical Society.

  12. Functional brain and age-related changes associated with congruency in task switching

    PubMed Central

    Eich, Teal S.; Parker, David; Liu, Dan; Oh, Hwamee; Razlighi, Qolamreza; Gazes, Yunglin; Habeck, Christian; Stern, Yaakov

    2016-01-01

    Alternating between completing two simple tasks, as opposed to completing only one task, has been shown to produce costs to performance and changes to neural patterns of activity, effects which are augmented in old age. Cognitive conflict may arise from factors other than switching tasks, however. Sensorimotor congruency (whether stimulus-response mappings are the same or different for the two tasks) has been shown to behaviorally moderate switch costs in older, but not younger adults. In the current study, we used fMRI to investigate the neurobiological mechanisms of response-conflict congruency effects within a task switching paradigm in older (N=75) and younger (N=62) adults. Behaviorally, incongruency moderated age-related differences in switch costs. Neurally, switch costs were associated with greater activation in the dorsal attention network for older relative to younger adults. We also found that older adults recruited an additional set of brain areas in the ventral attention network to a greater extent than did younger adults to resolve congruency-related response-conflict. These results suggest both a network and an age-based dissociation between congruency and switch costs in task switching. PMID:27520472

  13. Cardiorespiratory responses induced by various military field tasks.

    PubMed

    Pihlainen, Kai; Santtila, Matti; Häkkinen, Keijo; Lindholm, Harri; Kyröläinen, Heikki

    2014-02-01

    Typical military tasks include load carriage, digging, and lifting loads. To avoid accumulation of fatigue, it is important to know the energy expenditure of soldiers during such tasks. The purpose of this study was to measure cardiorespiratory responses during military tasks in field conditions. Unloaded (M1) and loaded (M2) marching, artillery field preparation (AFP), and digging of defensive positions (D) were monitored. 15 conscripts carried additional weight of military outfit (5.4 kg) during M1, AFP, and D and during M2 full combat gear (24.4 kg). Absolute and relative oxygen uptake (VO2) and heart rate (HR) of M1 (n = 8) were 1.5 ± 0.1 L min(-1), 19.9 ± 2.7 mL kg(-1) min(-1) (42 ± 7% VO2max), and 107 ± 8 beats min(-1) (55 ± 3% HRmax), respectively. VO2 of M2 (n = 8) was 1.7 ± 0.2 L min(-1), 22.7 ± 3.4 mL kg(-1) min(-1) (47 ± 6% VO2max) and HR 123 ± 9 beats min(-1) (64 ± 4% HRmax). VO2 of AFP (n = 5) and D (n = 6) were 1.3 ± 0.3 L min(-1), 18.0 ± 3.0 (37 ± 6% VO2max), and 1.8 ± 0.4 L min(-1), 24.3 ± 5.1 mL kg(-1) min(-1) (51 ± 9% VO2max), respectively. Corresponding HR values were 99 ± 8 beats min(-1) (50 ± 3% HRmax) and 132 ± 10 beats min(-1) (68 ± 4% HRmax), respectively. The mean work intensity of soldiers was close to 50% of their maximal aerobic capacity, which has been suggested to be maximal limit of intensity for sustained work. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  14. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.

    PubMed

    Iturrate, I; Montesano, L; Minguez, J

    2013-04-01

    A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user's mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.

  15. Low oxygen tension enhances endothelial fate of human pluripotent stem cells.

    PubMed

    Kusuma, Sravanti; Peijnenburg, Elizabeth; Patel, Parth; Gerecht, Sharon

    2014-04-01

    A critical regulator of the developing or regenerating vasculature is low oxygen tension. Precise elucidation of the role of low oxygen environments on endothelial commitment from human pluripotent stem cells necessitates controlled in vitro differentiation environments. We used a feeder-free, 2-dimensional differentiation system in which we could monitor accurately dissolved oxygen levels during human pluripotent stem cell differentiation toward early vascular cells (EVCs). We found that oxygen uptake rate of differentiating human pluripotent stem cells is lower in 5% O2 compared with atmospheric conditions. EVCs differentiated in 5% O2 had an increased vascular endothelial cadherin expression with clusters of vascular endothelial cadherin+ cells surrounded by platelet-derived growth factor β+ cells. When we assessed the temporal effects of low oxygen differentiation environments, we determined that low oxygen environments during the early stages of EVC differentiation enhance endothelial lineage commitment. EVCs differentiated in 5% O2 exhibited an increased expression of vascular endothelial cadherin and CD31 along with their localization to the membrane, enhanced lectin binding and acetylated low-density lipoprotein uptake, rapid cord-like structure formation, and increased expression of arterial endothelial cell markers. Inhibition of reactive oxygen species generation during the early stages of differentiation abrogated the endothelial inductive effects of the low oxygen environments. Low oxygen tension during early stages of EVC derivation induces endothelial commitment and maturation through the accumulation of reactive oxygen species, highlighting the importance of regulating oxygen tensions during human pluripotent stem cell-vascular differentiation.

  16. Dynamics of task sets: evidence from dense-array event-related potentials.

    PubMed

    Poulsen, Catherine; Luu, Phan; Davey, Colin; Tucker, Don M

    2005-06-01

    Prior research suggests that task sets facilitate coherent, goal-directed behavior by providing an internal, contextual frame that biases selection toward context-relevant stimulus attributes and responses. Questions about how task sets are engaged, maintained, and shifted have recently become a major focus of research on executive control processes. We employed dense-array (128-channel) event-related potential (ERP) methodology to examine the dynamics of brain systems engaged during the preparation and implementation of task switching. The EEG was recorded while participants performed letter and digit judgments to pseudorandomly-ordered, univalent (#3, A%) and bivalent (G5) stimulus trials, with the appropriate task cued by a colored rectangle presented 450 ms before target onset. Results revealed spatial and temporal variations in brain activity that could be related to preparatory processes common to both switch and repeat trials, switch-specific control processes engaged to reconfigure and maintain task set under conflict, and visual priming benefits of task repetition. Despite extensive practice and improvement, both behavioral and ERP results indicated that subjects maintained high levels of executive control processing with extended task engagement. The patterns of ERP activity obtained in the present study fit well with functional neuroanatomical models of self-regulation of action. The frontopolar and right-lateralized frontal switch effects obtained in the present study are consistent with the role of these regions in adapting to changing contextual contingencies. In contrast, the centroparietal P3b and N384 effects related to the contextual ambiguity of bivalent trials are consistent with the context monitoring and updating functions associated with the posterior cingulate learning circuit.

  17. Perceptions of hyperbaric oxygen therapy among podiatrists practicing in high-risk foot clinics.

    PubMed

    Henshaw, Frances R; Brennan, Lauren; MacMillan, Freya

    2018-01-03

    Foot ulceration is a devastating and costly consequence of diabetes. Hyperbaric oxygen therapy is recognised as an adjunctive therapy to treat diabetes-related foot ulceration, yet uptake is low. Semi-structured interviews were conducted with 16 podiatrists who manage patients with foot ulcers related to diabetes to explore their perceptions of, and the barriers/facilitators to, referral for hyperbaric oxygen. Podiatrists cited logistical issues such as location of facilities as well as poor communication pathways, lack of delegation and lack of follow up when patients presented for hyperbaric treatment. In general, podiatrists had an understanding of the premise of hyperbaric oxygen therapy and evidence to support its use but could only provide very limited citations of key papers and guidelines to support their position. Podiatrists stated that they felt a patient was lost from their care when referred for hyperbaric oxygen and that aftercare might not be adequate. Improved referral and delegation pathways for patients presenting for hyperbaric oxygen, as well as the provision of easily accessible evidence to support this therapy, could help to increase podiatrists' confidence in deciding whether or not to recommend their patients for hyperbaric oxygen therapy. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  18. The Relation between Types of Assessment Tasks and the Mathematical Reasoning Students Use

    ERIC Educational Resources Information Center

    Boesen, Jesper; Lithner, Johan; Palm, Torulf

    2010-01-01

    The relation between types of tasks and the mathematical reasoning used by students trying to solve tasks in a national test situation is analyzed. The results show that when confronted with test tasks that share important properties with tasks in the textbook the students solved them by trying to recall facts or algorithms. Such test tasks did…

  19. Prediction of Maximal Oxygen Uptake by Six-Minute Walk Test and Body Mass Index in Healthy Boys.

    PubMed

    Jalili, Majid; Nazem, Farzad; Sazvar, Akbar; Ranjbar, Kamal

    2018-05-14

    To develop an equation to predict maximal oxygen uptake (VO2max) based on the 6-minute walk test (6MWT) and body composition in healthy boys. Direct VO2max, 6-minute walk distance, and anthropometric characteristics were measured in 349 healthy boys (12.49 ± 2.72 years). Multiple regression analysis was used to generate VO2max prediction equations. Cross-validation of the VO2max prediction equations was assessed with predicted residual sum of squares statistics. Pearson correlation was used to assess the correlation between measured and predicted VO2max. Objectively measured VO2max had a significant correlation with demographic and 6MWT characteristics (R = 0.11-0.723, P < .01). Multiple regression analysis revealed the following VO2max prediction equation: VO2max (mL/kg/min) = 12.701 + (0.06 × 6-minute walk distance m ) - (0.732 × body mass index kg/m2 ) (R 2 = 0.79, standard error of the estimate [SEE] = 2.91 mL/kg/min, %SEE = 6.9%). There was strong correlation between measured and predicted VO2max (r = 0.875, P < .001). Cross-validation revealed minimal shrinkage (R 2 p = 0.78 and predicted residual sum of squares SEE = 2.99 mL/kg/min). This study provides a relatively accurate and convenient VO2max prediction equation based on the 6MWT and body mass index in healthy boys. This model can be used for evaluation of cardiorespiratory fitness of boys in different settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Iturrate, I.; Montesano, L.; Minguez, J.

    2013-04-01

    Objective. A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user’s mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials.Approach. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance.Results and significance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.

  1. Scaling maximal oxygen uptake to predict performance in elite-standard men cross-country skiers.

    PubMed

    Carlsson, Tomas; Carlsson, Magnus; Felleki, Majbritt; Hammarström, Daniel; Heil, Daniel; Malm, Christer; Tonkonogi, Michail

    2013-01-01

    The purpose of this study was to: 1) establish the optimal body-mass exponent for maximal oxygen uptake (VO(2)max) to indicate performance in elite-standard men cross-country skiers; and 2) evaluate the influence of course inclination on the body-mass exponent. Twelve elite-standard men skiers completed an incremental treadmill roller-skiing test to determine VO(2)max and performance data came from the 2008 Swedish National Championship 15-km classic-technique race. Log-transformation of power-function models was used to predict skiing speeds. The optimal models were found to be: Race speed = 7.86 · VO(2)max · m(-0.48) and Section speed = 5.96 · [VO(2)max · m(-(0.38 + 0.03 · α)) · e(-0.003 · Δ) (where m is body mass, α is the section's inclination and Δ is the altitude difference of the previous section), that explained 68% and 84% of the variance in skiing speed, respectively. A body-mass exponent of 0.48 (95% confidence interval: 0.19 to 0.77) best described VO(2)max as an indicator of performance in elite-standard men skiers. The confidence interval did not support the use of either "1" (simple ratio-standard scaled) or "0" (absolute expression) as body-mass exponents for expressing VO(2)max as an indicator of performance. Moreover, results suggest that course inclination increases the body-mass exponent for VO(2)max.

  2. An investigation of cerebral oxygen utilization, blood flow and cognition in healthy aging.

    PubMed

    Catchlove, Sarah J; Macpherson, Helen; Hughes, Matthew E; Chen, Yufen; Parrish, Todd B; Pipingas, Andrew

    2018-01-01

    Understanding how vascular and metabolic factors impact on cognitive function is essential to develop efficient therapies to prevent and treat cognitive losses in older age. Cerebral metabolic rate of oxygen (CMRO2), cerebral blood flow (CBF) and venous oxygenation (Yv) comprise key physiologic processes that maintain optimum functioning of neural activity. Changes to these parameters across the lifespan may precede neurodegeneration and contribute to age-related cognitive decline. This study examined differences in blood flow and metabolism between 31 healthy younger (<50 years) and 29 healthy older (>50 years) adults; and investigated whether these parameters contribute to cognitive performance. Participants underwent a cognitive assessment and MRI scan. Grey matter CMRO2 was calculated from measures of CBF (phase contrast MRI), arterial and venous oxygenation (TRUST MRI) to assess group differences in physiological function and the contribution of these parameters to cognition. Performance on memory (p<0.001) and attention tasks (p<0.001) and total CBF were reduced (p<0.05), and Yv trended toward a decrease (p = .06) in the older group, while grey matter CBF and CMRO2 did not differ between the age groups. Attention was negatively associated with CBF when adjusted (p<0.05) in the older adults, but not in the younger group. There was no such relationship with memory. Neither cognitive measure was associated with oxygen metabolism or venous oxygenation in either age group. Findings indicated an age-related imbalance between oxygen delivery, consumption and demand, evidenced by a decreased supply of oxygen with unchanged metabolism resulting in increased oxygen extraction. CBF predicted attention when the age-effect was controlled, suggesting a task- specific CBF- cognition relationship.

  3. Sex-related differences on a task of volume and density

    NASA Astrophysics Data System (ADS)

    Howe, Ann C.; Shayer, Michael

    A sex-related difference, favoring boys, was found on initial performance of two samples (one British, one American) of 10- and 11-year-old children on a task of volume and density. After a period of classroom instruction that included opportunities for children to interact with appropriate materials and each other, both boys and girls performed at a higher level on the task, but the difference between them remained the same. There was no indication of a sex-related difference other than a time lag, in pattern of development of the concept. The question of why there is a sex-related difference, which persists in spite of experience and instruction, is discussed.

  4. Direct measurements of the light dependence of gross photosynthesis and oxygen consumption in the ocean

    NASA Astrophysics Data System (ADS)

    Bailleul, B.; Park, J.; Brown, C. M.; Bidle, K. D.; Lee, S.; Falkowski, P. G.

    2016-02-01

    For decades, a lack of understanding of how respiration is influenced by light has been stymying our ability to quantitatively analyze how phytoplankton allocate carbon in situ and the biological mechanisms that participate to the fate of blooms. Using membrane inlet mass spectrometry (MIMS), the light dependencies of gross photosynthesis and oxygen uptake rates were measured during the bloom demises of two prymnesiophytes, in two open ocean regions. In the North Atlantic, dominated by Emiliania huxleyi, respiration was independent of irradiance and was higher than the gross photosynthetic rate at all irradiances. In the Amundsen Sea (Antarctica), dominated by Phaeocystis antarctica, the situation was very different. Dark respiration was one order of magnitude lower than the maximal gross photosynthetic rate. ut the oxygen uptake rate increased by 10 fold at surface irradiances, where it becomes higher than gross photosynthesis. Our results suggest that the light dependence of oxygen uptake in P. antarctica has two sources: one is independent of photosynthesis, and is possibly associated with the photo-reduction of O2 mediated by dissolved organic matter; the second reflects the activity of an oxidase fueled in the light with photosynthetic electron flow. Interestingly, these dramatic light-dependent changes in oxygen uptake were not reproduced in nutrient-replete P. antarctica cultures, in the laboratory. Our measurements highlight the importance of improving our understanding of oxygen consuming reactions in the euphotic zone, which is critical to investigating the physiology of phytoplankton and tracing the fate of phytoplankton blooms.

  5. Frontal brain activation during a working memory task: a time-domain fNIRS study

    NASA Astrophysics Data System (ADS)

    Molteni, E.; Baselli, G.; Bianchi, A. M.; Caffini, M.; Contini, D.; Spinelli, L.; Torricelli, A.; Cerutti, S.; Cubeddu, R.

    2009-02-01

    We evaluated frontal brain activation during a working memory task with graded levels of difficulty in a group of 19 healthy subjects, by means of time-resolved fNIRS technique. Brain activation was computed, and was then separated into a "block-related" and a "tonic" components. Load-related increases of blood oxygenation were studied for the four different levels of task difficulty. Generalized Linear Models were applied to the data in order to explore the metabolic processes occurring during the mental effort and, possibly, their involvement in short term memorization. Results attest the presence of a persistent attentional-related metabolic activity, superimposed to a task-related mnemonic contribution. Moreover, a systemic component probably deriving from the extra-cerebral capillary bed was detected.

  6. The influence of dimensional overlap on location-related priming in the Simon task.

    PubMed

    Lehle, Carola; Stürmer, Birgit; Sommer, Werner

    2013-01-01

    Choice reaction times are shorter when stimulus and response locations are compatible than when they are incompatible as in the Simon effect. Recent studies revealed that Simon effects are strongly attenuated when there is temporal overlap with a different high-priority task, accompanied by a decrease of early location-related response priming as reflected in the lateralized readiness potential (LRP). The latter result was obtained in a study excluding overlap of stimulus location with any other dimension in the tasks. Independent evidence suggests that location-related priming might be present in conditions with dimensional overlap. Here we tested this prediction in a dual-task experiment supplemented with recording LRPs. The secondary task was either a standard Simon task where irrelevant stimulus location overlapped with dimensions of the primary task or a Stroop-like Simon task including additional overlap of irrelevant and relevant stimulus attributes. At high temporal overlap, there was no Simon effect nor was there stimulus-related response priming in either condition. Therefore stimulus-triggered response priming seems to be abolished in conditions of limited capacity even if the likelihood of an S-R compatibility effect is maximized.

  7. Cognitive caching promotes flexibility in task switching: evidence from event-related potentials.

    PubMed

    Lange, Florian; Seer, Caroline; Müller, Dorothea; Kopp, Bruno

    2015-12-08

    Time-consuming processes of task-set reconfiguration have been shown to contribute to the costs of switching between cognitive tasks. We describe and probe a novel mechanism serving to reduce the costs of task-set reconfiguration. We propose that when individuals are uncertain about the currently valid task, one task set is activated for execution while other task sets are maintained at a pre-active state in cognitive cache. We tested this idea by assessing an event-related potential (ERP) index of task-set reconfiguration in a three-rule task-switching paradigm involving varying degrees of task uncertainty. In high-uncertainty conditions, two viable tasks were equally likely to be correct whereas in low-uncertainty conditions, one task was more likely than the other. ERP and performance measures indicated substantial costs of task-set reconfiguration when participants were required to switch away from a task that had been likely to be correct. In contrast, task-set-reconfiguration costs were markedly reduced when the previous task set was chosen under high task uncertainty. These results suggest that cognitive caching of alternative task sets adds to human cognitive flexibility under high task uncertainty.

  8. Cognitive caching promotes flexibility in task switching: evidence from event-related potentials

    PubMed Central

    Lange, Florian; Seer, Caroline; Müller, Dorothea; Kopp, Bruno

    2015-01-01

    Time-consuming processes of task-set reconfiguration have been shown to contribute to the costs of switching between cognitive tasks. We describe and probe a novel mechanism serving to reduce the costs of task-set reconfiguration. We propose that when individuals are uncertain about the currently valid task, one task set is activated for execution while other task sets are maintained at a pre-active state in cognitive cache. We tested this idea by assessing an event-related potential (ERP) index of task-set reconfiguration in a three-rule task-switching paradigm involving varying degrees of task uncertainty. In high-uncertainty conditions, two viable tasks were equally likely to be correct whereas in low-uncertainty conditions, one task was more likely than the other. ERP and performance measures indicated substantial costs of task-set reconfiguration when participants were required to switch away from a task that had been likely to be correct. In contrast, task-set-reconfiguration costs were markedly reduced when the previous task set was chosen under high task uncertainty. These results suggest that cognitive caching of alternative task sets adds to human cognitive flexibility under high task uncertainty. PMID:26643146

  9. Visuo-spatial orienting during active exploratory behavior: Processing of task-related and stimulus-related signals.

    PubMed

    Macaluso, Emiliano; Ogawa, Akitoshi

    2018-05-01

    Functional imaging studies have associated dorsal and ventral fronto-parietal regions with the control of visuo-spatial attention. Previous studies demonstrated that the activity of both the dorsal and the ventral attention systems can be modulated by many different factors, related both to the stimuli and the task. However, the vast majority of this work utilized stereotyped paradigms with simple and repeated stimuli. This is at odd with any real life situation that instead involve complex combinations of different types of co-occurring signals, thus raising the question of the ecological significance of the previous findings. Here we investigated how the brain responds to task-related and stimulus-related signals using an innovative approach that involved active exploration of a virtual environment. This enabled us to study visuo-spatial orienting in conditions entailing a dynamic and coherent flow of visual signals, to some extent analogous to real life situations. The environment comprised colored/textured spheres and cubes, which allowed us to implement a standard feature-conjunction search task (task-related signals), and included one physically salient object that served to track the processing of stimulus-related signals. The imaging analyses showed that the posterior parietal cortex (PPC) activated when the participants' gaze was directed towards the salient-objects. By contrast, the right inferior partial cortex was associated with the processing of the target-objects and of distractors that shared the target-color and shape, consistent with goal-directed template-matching operations. The study highlights the possibility of combining measures of gaze orienting and functional imaging to investigate the processing of different types of signals during active behavior in complex environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Role of Task-Related Learned Representations in Explaining Asymmetries in Task Switching

    PubMed Central

    Barutchu, Ayla; Becker, Stefanie I.; Carter, Olivia; Hester, Robert; Levy, Neil L.

    2013-01-01

    Task switch costs often show an asymmetry, with switch costs being larger when switching from a difficult task to an easier task. This asymmetry has been explained by difficult tasks being represented more strongly and consequently requiring more inhibition prior to switching to the easier task. The present study shows that switch cost asymmetries observed in arithmetic tasks (addition vs. subtraction) do not depend on task difficulty: Switch costs of similar magnitudes were obtained when participants were presented with unsolvable pseudo-equations that did not differ in task difficulty. Further experiments showed that neither task switch costs nor switch cost asymmetries were due to perceptual factors (e.g., perceptual priming effects). These findings suggest that asymmetrical switch costs can be brought about by the association of some tasks with greater difficulty than others. Moreover, the finding that asymmetrical switch costs were observed (1) in the absence of a task switch proper and (2) without differences in task difficulty, suggests that present theories of task switch costs and switch cost asymmetries are in important ways incomplete and need to be modified. PMID:23613919

  11. The VMAT-2 Inhibitor Tetrabenazine Affects Effort-Related Decision Making in a Progressive Ratio/Chow Feeding Choice Task: Reversal with Antidepressant Drugs

    PubMed Central

    Randall, Patrick A.; Lee, Christie A.; Nunes, Eric J.; Yohn, Samantha E.; Nowak, Victoria; Khan, Bilal; Shah, Priya; Pandit, Saagar; Vemuri, V. Kiran; Makriyannis, Alex; Baqi, Younis; Müller, Christa E.; Correa, Merce; Salamone, John D.

    2014-01-01

    Behavioral activation is a fundamental feature of motivation, and organisms frequently make effort-related decisions based upon evaluations of reinforcement value and response costs. Furthermore, people with major depression and other disorders often show anergia, psychomotor retardation, fatigue, and alterations in effort-related decision making. Tasks measuring effort-based decision making can be used as animal models of the motivational symptoms of depression, and the present studies characterized the effort-related effects of the vesicular monoamine transport (VMAT-2) inhibitor tetrabenazine. Tetrabenazine induces depressive symptoms in humans, and also preferentially depletes dopamine (DA). Rats were assessed using a concurrent progressive ratio (PROG)/chow feeding task, in which they can either lever press on a PROG schedule for preferred high-carbohydrate food, or approach and consume a less-preferred lab chow that is freely available in the chamber. Previous work has shown that the DA antagonist haloperidol reduced PROG work output on this task, but did not reduce chow intake, effects that differed substantially from those of reinforcer devaluation or appetite suppressant drugs. The present work demonstrated that tetrabenazine produced an effort-related shift in responding on the PROG/chow procedure, reducing lever presses, highest ratio achieved and time spent responding, but not reducing chow intake. Similar effects were produced by administration of the subtype selective DA antagonists ecopipam (D1) and eticlopride (D2), but not by the cannabinoid CB1 receptor neutral antagonist and putative appetite suppressant AM 4413, which suppressed both lever pressing and chow intake. The adenosine A2A antagonist MSX-3, the antidepressant and catecholamine uptake inhibitor bupropion, and the MAO-B inhibitor deprenyl, all reversed the impairments induced by tetrabenazine. This work demonstrates the potential utility of the PROG/chow procedure as a rodent model of

  12. The VMAT-2 inhibitor tetrabenazine affects effort-related decision making in a progressive ratio/chow feeding choice task: reversal with antidepressant drugs.

    PubMed

    Randall, Patrick A; Lee, Christie A; Nunes, Eric J; Yohn, Samantha E; Nowak, Victoria; Khan, Bilal; Shah, Priya; Pandit, Saagar; Vemuri, V Kiran; Makriyannis, Alex; Baqi, Younis; Müller, Christa E; Correa, Merce; Salamone, John D

    2014-01-01

    Behavioral activation is a fundamental feature of motivation, and organisms frequently make effort-related decisions based upon evaluations of reinforcement value and response costs. Furthermore, people with major depression and other disorders often show anergia, psychomotor retardation, fatigue, and alterations in effort-related decision making. Tasks measuring effort-based decision making can be used as animal models of the motivational symptoms of depression, and the present studies characterized the effort-related effects of the vesicular monoamine transport (VMAT-2) inhibitor tetrabenazine. Tetrabenazine induces depressive symptoms in humans, and also preferentially depletes dopamine (DA). Rats were assessed using a concurrent progressive ratio (PROG)/chow feeding task, in which they can either lever press on a PROG schedule for preferred high-carbohydrate food, or approach and consume a less-preferred lab chow that is freely available in the chamber. Previous work has shown that the DA antagonist haloperidol reduced PROG work output on this task, but did not reduce chow intake, effects that differed substantially from those of reinforcer devaluation or appetite suppressant drugs. The present work demonstrated that tetrabenazine produced an effort-related shift in responding on the PROG/chow procedure, reducing lever presses, highest ratio achieved and time spent responding, but not reducing chow intake. Similar effects were produced by administration of the subtype selective DA antagonists ecopipam (D1) and eticlopride (D2), but not by the cannabinoid CB1 receptor neutral antagonist and putative appetite suppressant AM 4413, which suppressed both lever pressing and chow intake. The adenosine A2A antagonist MSX-3, the antidepressant and catecholamine uptake inhibitor bupropion, and the MAO-B inhibitor deprenyl, all reversed the impairments induced by tetrabenazine. This work demonstrates the potential utility of the PROG/chow procedure as a rodent model of

  13. Exploring relations between task conflict and informational conflict in the Stroop task.

    PubMed

    Entel, Olga; Tzelgov, Joseph; Bereby-Meyer, Yoella; Shahar, Nitzan

    2015-11-01

    In this study, we tested the proposal that the Stroop task involves two conflicts--task conflict and informational conflict. Task conflict was defined as the latency difference between color words and non-letter neutrals, and manipulated by varying the proportion of color words versus non-letter neutrals. Informational conflict was defined as the latency difference between incongruent and congruent trials and manipulated by varying the congruent-to-incongruent trial ratio. We replicated previous findings showing that increasing the ratio of incongruent-to-congruent trials reduces the latency difference between the incongruent and congruent condition (i.e., informational conflict), as does increasing the proportion of color words (i.e., task conflict). A significant under-additive interaction between the two proportion manipulations (congruent vs. incongruent and color words vs. neutrals) indicated that the effects of task conflict and informational conflict were not additive. By assessing task conflict as the contrast between color words and neutrals, we found that task conflict existed in all of our experimental conditions. Under specific conditions, when task conflict dominated behavior by explaining most of the variability between congruency conditions, we also found negative facilitation, thus demonstrating that this effect is a special case of task conflict.

  14. Biological Oxygen Demand in Soils and Litters

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Smagina, M. V.; Sadovnikova, N. B.

    2018-03-01

    Biological oxygen demand (BOD) in mineral and organic horizons of soddy-podzolic soils in the forest-park belt of Moscow as an indicator of their microbial respiration and potential biodestruction function has been studied. The BOD of soil samples has been estimated with a portable electrochemical analyzer after incubation in closed flasks under optimum hydrothermal conditions. A universal gradation scale of this parameter from very low (<2 g O2/(m3 h)) to extremely high (>140 g O2/(m3 h)) has been proposed for mineral and organic horizons of soil. A physically substantiated model has been developed for the vertical distribution of BOD in the soil, which combines the diffusion transport of oxygen from the atmosphere and its biogenic uptake in the soil by the first-order reaction. An analytical solution of the model in the stationary state has been obtained; from it, the soil oxygen diffusivity and the kinetic constants of O2 uptake have been estimated, and the profile-integrated total BOD value has been calculated (0.4-1.8 g O2/(m2 h)), which is theoretically identical to the potential oxygen flux from the soil surface due to soil respiration. All model parameters reflect the recreation load on the soil cover by the decrease in their values against the control.

  15. Oxygen consumption, heart rate and oxygen pulse associated with selected exercise-to-muscle class elements.

    PubMed Central

    Abernethy, P; Batman, P

    1994-01-01

    The purpose of the investigation was to determine the relative oxygen consumption (VO2), heart rate and oxygen pulse associated with the constituent elements of an exercise-to-music class. Six women exercise-to-music leaders with a mean(s.d.) age, weight and height of 33.2(5.2) years, 51.0(2.8) kg and 157.9(5.6) cm respectively, completed five distinct exercise-to-music movement elements. The movement elements were of a locomoter (circuit, jump and low impact) and callisthenic (prone and side/supine) nature. The movement elements were distinguishable from one another in terms of their movement patterns, posture and tempo. Relative VO2 values were greatest for the circuit element (40.6 ml kg-1 min-1) and least for the side/supine element (20.0 ml kg-1 min-1). The differences in VO2 between the locomotrr and callisthenic elements were significant (circuit approximately jump approximately low impact > prone approximately side/supine). However, effect size data suggested that the differences between the low impact and jump elements and the prone and side/supine elements were of practical significance (circuit approximately jump > low impact > prone > side/supine). With a single exception similar parametric statistics and effect size trends were identified for absolute heart rate. Specifically, the heart rate associated with the low impact element was not significantly greater than the prone element. The oxygen pulse associated with the locomotor elements was significantly greater than the callisthenic elements (circuit approximately jump approximately low impact > prone > side/supine). This suggested that heart rate may be an inappropriate index for making comparisons between exercise-to-music elements. Reasons for differences in oxygen uptake values between movement elements are discussed. PMID:8044493

  16. Age-related Multiscale Changes in Brain Signal Variability in Pre-task versus Post-task Resting-state EEG.

    PubMed

    Wang, Hongye; McIntosh, Anthony R; Kovacevic, Natasa; Karachalios, Maria; Protzner, Andrea B

    2016-07-01

    Recent empirical work suggests that, during healthy aging, the variability of network dynamics changes during task performance. Such variability appears to reflect the spontaneous formation and dissolution of different functional networks. We sought to extend these observations into resting-state dynamics. We recorded EEG in young, middle-aged, and older adults during a "rest-task-rest" design and investigated if aging modifies the interaction between resting-state activity and external stimulus-induced activity. Using multiscale entropy as our measure of variability, we found that, with increasing age, resting-state dynamics shifts from distributed to more local neural processing, especially at posterior sources. In the young group, resting-state dynamics also changed from pre- to post-task, where fine-scale entropy increased in task-positive regions and coarse-scale entropy increased in the posterior cingulate, a key region associated with the default mode network. Lastly, pre- and post-task resting-state dynamics were linked to performance on the intervening task for all age groups, but this relationship became weaker with increasing age. Our results suggest that age-related changes in resting-state dynamics occur across different spatial and temporal scales and have consequences for information processing capacity.

  17. Oxygen-storage behavior and local structure in Ti-substituted YMnO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, I.; Krayzman, V.; Vanderah, T. A.

    Hexagonal manganates RMnO3 (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn1-xTix)O3 solid solutions exhibit facile oxygen absorption/desorption via reversible Ti3+↔Ti4+ and Mn3+↔Mn4+ reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn3+1-x-yMn4+yTi4+xO3+δ. The presence of Ti promotes the oxidation of Mn3+ to Mn4+, which is almostmore » negligible for YMnO3 in air, thereby increasing the uptake of oxygen beyond that required for a given Ti4+ concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO5] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO3 structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO5] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti4+(and Mn4+) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen

  18. Age and Task-Related Effects on Young Children's Understanding of a Complex Picture Story

    ERIC Educational Resources Information Center

    Hayward, Denyse; Schneider, Phyllis; Gillam, Ronald B.

    2009-01-01

    In this study we examined age- and task-related effects in story schema knowledge across an independent narrative task (story formulations) and a supported narrative task (answering questions). We also examined age-related changes to questions about the story as a whole. Participants were typically developing English-speaking children aged 4, 5,…

  19. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies.

    PubMed

    Buchwalter, David B; Jenkins, Jeffrey J; Curtis, Lawrence R

    2003-11-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5 degrees C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  20. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies

    USGS Publications Warehouse

    Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.

    2003-01-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5??C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  1. Influence of silicon treatment on antimony uptake and translocation in rice genotypes with different radial oxygen loss.

    PubMed

    Zhang, Liping; Yang, Qianqian; Wang, Shiliang; Li, Wanting; Jiang, Shaoqing; Liu, Yan

    2017-10-01

    Antimony (Sb) pollution in soil may have a negative impact on the health of people consuming rice. This study investigated the effect of silicon (Si) application on rice biomass, iron plaque formation, and Sb uptake and speciation in rice plants with different radial oxygen loss (ROL) using pot experiments. The results demonstrated that Si addition increased the biomass of straw and grain, but had no obvious impact on the root biomass. Indica genotypes with higher ROL underwent greater iron plaque formation and exhibited more Sb sequestration in iron plaque. Silicon treatments increased iron levels in iron plaque from the different genotypes but decreased the total Sb concentration in root, straw, husk, and grain. In addition, Si treatment reduced the inorganic Sb concentrations but slightly increased the trimethylantimony (TMSb) concentrations in rice straw. Moreover, rice straw from hybrid genotypes accumulated higher concentrations of TMSb and inorganic Sb than that from indica genotypes. The conclusions from this study indicate that Sb contamination in rice can be efficiently reduced by applying Si treatment and selecting genotypes with high ROL. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Technical Note: Some Issues Related to the Selection of Polymers for Aerospace Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Beeson, Harold

    2004-01-01

    Materials intended for use in aerospace oxygen systems are commonly screened for oxygen compatibility following NASA STD 6001. This standard allows qualification of materials based on results provided by only one test method. Potential issues related to this practice are reviewed and recommendations are proposed that would lead to improved aerospace oxygen systems safety.

  3. Increased cardiac output and maximal oxygen uptake in response to ten sessions of high intensity interval training.

    PubMed

    Astorino, Todd A; Edmunds, Ross M; Clark, Amy; King, Leesa; Gallant, Rachael M; Namm, Samantha; Fischer, Anthony; Wood, Kimi A

    2018-01-01

    Increases in maximal oxygen uptake (VO2max) are widely reported in response to completion of high intensity interval training (HIIT), yet the mechanism explaining this result is poorly understood. This study examined changes in VO2max and cardiac output (CO) in response to 10 sessions of low-volume HIIT. Participants included 30 active men and women (mean age and VO2max=22.9±5.4 years and 39.6±5.6 mL/kg/min) who performed HIIT and 30 men and women (age and VO2max=25.7±4.5 years and 40.7±5.2 mL/kg/min) who served as non-exercising controls (CON). High intensity interval training consisted of 6-10 s bouts of cycling per session at 90-110 percent peak power output (PPO) interspersed with 75 s recovery. Before and after training, progressive cycling to exhaustion was completed during which CO, stroke volume (SV), and heart rate (HR) were estimated using thoracic impedance. To confirm VO2max attainment, a verification test was completed after progressive cycling at a work rate equal to 110%PPO. Data demonstrated significant improvements in VO2max (2.71±0.63 L/min to 2.86±0.63 L/min, P<0.001) and COmax (20.0±3.1 L/min to 21.7±3.2 L/min, P=0.04) via HIIT that were not exhibited in CON. Maximal SV was increased in HIIT (P=0.04) although there was no change in maximal HR (P=0.57). The increase in VO2max seen in response to ten sessions of HIIT is due to improvements in oxygen delivery.

  4. PFC Activity Pattern During Verbal WM Task in Healthy Male and Female Subjects: A NIRS Study.

    PubMed

    Gao, Chenyang; Zhang, Lei; Luo, Dewu; Liu, Dan; Gong, Hui

    2016-01-01

    Near-infrared spectroscopy (NIRS), as a non-invasive optical imaging method, has been widely used in psychology research. Working memory (WM) is an extensively researched psychological concept related to the temporary storage and processing of information. Many neuropsychological studies demonstrate that several brain areas of prefrontal cortex (PFC) are engaged during verbal WM tasks. The gender-based differences in WM remains under dispute. To better understand the active module and gender differences in PFC activity patterns during verbal WM tasks, we investigated the blood oxygenation changes of the PFC in 15 healthy subjects using a homemade multichannel continuous-wave NIRS instrument, while performing a verbal n-back task. We employed traditional activation and novel connectivity analyses simultaneously. Males had a higher level of oxygenation activity and connectivity in PFC than females. Only the results of females revealed a leftward lateralization in the 2-back task.

  5. Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration.

    PubMed

    Tandy, Susan; Schulin, Rainer; Nowack, Bernd

    2006-04-15

    The use of chelants to enhance phytoextraction is one method being tested to make phytoextraction efficient enough to be used as a remediation technique for heavy metal pollution in the field. We performed pot experiments with sunflowers in order to investigate the use of the biodegradable chelating agent SS-EDDS for this purpose. We used singly and combined contaminated soils (Cu, Zn) and multimetal contaminated field soils (Cu, Zn, Cd, Pb). EDDS (10 mmol kg(-10 soil) increased soil solution metals greatly for Cu (factor 840-4260) and Pb (factor 100-315), and to a lesser extent for Zn (factor 23-50). It was found that Zn (when present as the sole metal), Cu, and Pb uptake by sunflowers was increased by EDDS, butin multimetal contaminated soil Zn and Cd were not. EDDS was observed in the sunflower roots and shoots at concentrations equal to metal uptake. The different metal uptake in the various soils can be related to a linear relationship between Cu and Zn in soil solution in the presence of EDDS and plant uptake, indicating the great importance of measuring and reporting soil solution metal concentrations in phytoextraction studies.

  6. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    PubMed

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  7. Influence of dissolved oxygen concentration on the pharmacokinetics of alcohol in humans.

    PubMed

    Baek, In-hwan; Lee, Byung-yo; Kwon, Kwang-il

    2010-05-01

    Ethanol oxidation by the microsomal ethanol oxidizing system requires oxygen for alcohol metabolism, and a higher oxygen uptake increases the rate of ethanol oxidation. We investigated the effect of dissolved oxygen on the pharmacokinetics of alcohol in healthy humans (n = 49). The concentrations of dissolved oxygen were 8, 20, and 25 ppm in alcoholic drinks of 240 and 360 ml (19.5% v/v). Blood alcohol concentrations (BACs) were determined by converting breath alcohol concentrations. Breath samples were collected every 30 min when the BAC was higher than 0.015%, 20 min at BAC < or =0.015%, 10 min at BAC < or =0.010%, and 5 min at BAC < or =0.006%. The high dissolved oxygen groups (20, 25 ppm) descended to 0.000% and 0.050% BAC faster than the normal dissolved oxygen groups (8 ppm; p < 0.05). In analyzing pharmacokinetic parameters, AUC(inf) and K(el) of the high oxygen groups were lower than in the normal oxygen group, while C(max) and T(max) were not significantly affected. In a Monte Carlo simulation, the lognormal distribution of mean values of AUC(inf) and t(1/2) was expected to be reduced in the high oxygen group compared to the normal oxygen group. In conclusion, elevated dissolved oxygen concentrations in alcoholic drinks accelerate the metabolism and elimination of alcohol. Thus, enhanced dissolved oxygen concentrations in alcohol may have a role to play in reducing alcohol-related side effects and accidents.

  8. Retinal oxygen saturation evaluation by multi-spectral fundus imaging

    NASA Astrophysics Data System (ADS)

    Khoobehi, Bahram; Ning, Jinfeng; Puissegur, Elise; Bordeaux, Kimberly; Balasubramanian, Madhusudhanan; Beach, James

    2007-03-01

    Purpose: To develop a multi-spectral method to measure oxygen saturation of the retina in the human eye. Methods: Five Cynomolgus monkeys with normal eyes were anesthetized with intramuscular ketamine/xylazine and intravenous pentobarbital. Multi-spectral fundus imaging was performed in five monkeys with a commercial fundus camera equipped with a liquid crystal tuned filter in the illumination light path and a 16-bit digital camera. Recording parameters were controlled with software written specifically for the application. Seven images at successively longer oxygen-sensing wavelengths were recorded within 4 seconds. Individual images for each wavelength were captured in less than 100 msec of flash illumination. Slightly misaligned images of separate wavelengths due to slight eye motion were registered and corrected by translational and rotational image registration prior to analysis. Numerical values of relative oxygen saturation of retinal arteries and veins and the underlying tissue in between the artery/vein pairs were evaluated by an algorithm previously described, but which is now corrected for blood volume from averaged pixels (n > 1000). Color saturation maps were constructed by applying the algorithm at each image pixel using a Matlab script. Results: Both the numerical values of relative oxygen saturation and the saturation maps correspond to the physiological condition, that is, in a normal retina, the artery is more saturated than the tissue and the tissue is more saturated than the vein. With the multi-spectral fundus camera and proper registration of the multi-wavelength images, we were able to determine oxygen saturation in the primate retinal structures on a tolerable time scale which is applicable to human subjects. Conclusions: Seven wavelength multi-spectral imagery can be used to measure oxygen saturation in retinal artery, vein, and tissue (microcirculation). This technique is safe and can be used to monitor oxygen uptake in humans. This work

  9. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.

    PubMed

    Kannurpatti, Sridhar S; Sanganahalli, Basavaraju G; Herman, Peter; Hyder, Fahmeed

    2015-11-01

    Mitochondrial Ca(2+) uptake influences both brain energy metabolism and neural signaling. Given that brain mitochondrial organelles are distributed in relation to vascular density, which varies considerably across brain regions, we hypothesized different physiological impacts of mitochondrial Ca(2+) uptake across brain regions. We tested the hypothesis by monitoring brain "intrinsic activity" derived from the resting state functional MRI (fMRI) blood oxygen level dependent (BOLD) fluctuations in different functional networks spanning the somatosensory cortex, caudate putamen, hippocampus and thalamus, in normal and perturbed mitochondrial Ca(2+) uptake states. In anesthetized rats at 11.7 T, mitochondrial Ca(2+) uptake was inhibited or enhanced respectively by treatments with Ru360 or kaempferol. Surprisingly, mitochondrial Ca(2+) uptake inhibition by Ru360 and enhancement by kaempferol led to similar dose-dependent decreases in brain-wide intrinsic activities in both the frequency domain (spectral amplitude) and temporal domain (resting state functional connectivity; RSFC). The fact that there were similar dose-dependent decreases in the frequency and temporal domains of the resting state fMRI-BOLD fluctuations during mitochondrial Ca(2+) uptake inhibition or enhancement indicated that mitochondrial Ca(2+) uptake and its homeostasis may strongly influence the brain's functional organization at rest. Interestingly, the resting state fMRI-derived intrinsic activities in the caudate putamen and thalamic regions saturated much faster with increasing dosage of either drug treatment than the drug-induced trends observed in cortical and hippocampal regions. Regional differences in how the spectral amplitude and RSFC changed with treatment indicate distinct mitochondrion-mediated spontaneous neuronal activity coupling within the various RSFC networks determined by resting state fMRI. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Detection of phosphohydrolytic enzyme activity through the oxygen isotope composition of dissolved phosphate

    NASA Astrophysics Data System (ADS)

    Colman, A. S.

    2016-02-01

    Phosphohydrolytic enzymes play an important role in phosphorus remineralization. As they release phosphate (Pi) from various organophosphorus compounds, these enzymes facilitate the transfer of oxygen atoms from water to the phosphoryl moieties. Most such enzymatic reactions impart a significant isotopic fractionation to the oxygen transferred. If this reaction occurs within a cell, then the resultant oxygen isotope signal is overprinted by continued recycling of the Pi. However, if this reaction occurs extracellularly, then the isotopic signal will be preserved until the Pi is transported back into a cell. Thus, the oxygen isotope composition of Pi (δ18Op) in an aquatic ecosystem can serve as a useful indicator of the mechanisms by which P is remineralized. We develop a time-dependent model illustrating the sensitivity of the δ18O of dissolved phosphate to various modes of P remineralization. The model is informed by cell lysis experiments that reveal the relative proportions of P­i that are directly liberated from cytosol vs. regenerated from co-liberated dissolved organic phosphorus compounds via extracellular hydrolysis. By incorporating both cellular uptake and release fluxes of P, we show that the degree of isotopic disequilibrium in an aquatic ecosystem can be a strong indicator of P remineralization mode. Apparent oxygen isotope equilibrium between Pi and water arises in this model as a steady-state scenario in which fractionation upon cellular uptake of Pi counterbalances the hydrolytic source flux of disequilibrated Pi. Low and high rates of extracellular phosphohydrolase activity are shown to produce steady-state δ18Op values that are respectively above or below thermodynamic equilibrium compositions.

  11. Logistic Regression Modeling for Predicting Task-Related ICT Use in Teaching

    ERIC Educational Resources Information Center

    Askar, Petek; Usluel, Yasemin Kocak; Mumcu, Filiz Kuskaya

    2006-01-01

    The main goal of this study is to estimate the extent to which perceived innovation characteristics are associated with the probability of task related ICT use among secondary school teachers. The tasks were categorized as teaching preparation, teaching delivery, and management. Four hundred and sixteen teachers from secondary schools in Turkey,…

  12. Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos

    USGS Publications Warehouse

    Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen

    2017-01-01

    The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.

  13. At-Sea Test and Evaluation Of Oxygen (O2) Analyzers.

    DTIC Science & Technology

    1981-04-01

    Paramagnetic Oxygen Analyzer 2-6 2.4 Thermomagnetic Oxygen Analyzer Sensor 2-8 2.5 Cell Voltage versus Oxygen Concentration at 2-11 Various Cell ...of flue gas out of the stack across the cell and back into the stack. In-situ units place the cell directly in the flue gas path in the uptake. ) The...repetitive failurc of a cell heater temperature control circuit and a control cabinet electron- ic malfunction. Of the five (5) units that remained in

  14. Effect of wearing clothes on oxygen uptake and ratings of perceived exertion while swimming.

    PubMed

    Choi, S W; Kurokawa, T; Ebisu, Y; Kikkawa, K; Shiokawa, M; Yamasaki, M

    2000-07-01

    For a comparative study between swimming in swimwear (control-sw) and swimming in clothes (clothes-sw), oxygen uptake (VO2) and ratings of perceived exertion (RPE) were measured. The subjects were six male members of a university swimming team. Three swimming strokes--the breaststroke, the front crawl stroke and the elementary backstroke--were applied. With regards to clothes-sw, swimmers wore T-shirts, sportswear (shirt and pants) over swimwear and running shoes. In both cases of control-sw and clothes-sw, the VO2 was increased exponentially with increased swimming speed. The VO2 of the subjects during the clothed tests did not exceed 1.4 times of that in the case of control-sw at swimming speeds below 0.3 m/s. As swimming speeds increased, VO2 difference in both cases increased. Consequently, VO2 in the clothed tests was equal to 1.5-1.6 times and 1.5-1.8 times of that in the swimwear tests at speeds of 0.5 and 0.7 m/s, respectively. At speeds below 0.6 m/s in clothes-sw, the breaststroke showed lower VO2 than the front crawl stroke, and the elementary backstroke showed higher VO2 than the other two swimming strokes. RPE increased linearly with %peak VO2. In addition, any RPE differences among the three swimming strokes were not shown in the control-sw tests. At an exercise intensity above 60 %peak VO2, clothed swimmers showed slightly higher RPE in the front crawl stroke compared to that in the two other swimming strokes.

  15. Cross-validation of oxygen uptake prediction during walking in ambulatory persons with multiple sclerosis.

    PubMed

    Agiovlasitis, Stamatis; Motl, Robert W

    2016-01-01

    An equation for predicting the gross oxygen uptake (gross-VO2) during walking for persons with multiple sclerosis (MS) has been developed. Predictors included walking speed and total score from the 12-Item Multiple Sclerosis Walking Scale (MSWS-12). This study examined the validity of this prediction equation in another sample of persons with MS. Participants were 18 persons with MS with limited mobility problems (42 ± 13 years; 14 women). Participants completed the MSWS-12. Gross-VO2 was measured with open-circuit spirometry during treadmill walking at 2.0, 3.0, and 4.0 mph (0.89, 1.34, and 1.79 m·s(-1)). Absolute percent error was small: 8.3 ± 6.1% , 8.0 ± 5.6% , and 12.2 ± 9.0% at 2.0, 3.0, and 4.0 mph, respectively. Actual gross-VO2 did not differ significantly from predicted gross-VO2 at 2.0 and 3.0 mph, but was significantly higher than predicted gross-VO2 at 4.0 mph (p <  0.001). Bland-Altman plots indicated nearly zero mean difference between actual and predicted gross-VO2 with modest 95% confidence intervals at 2.0 and 3.0 mph, but there was some underestimation at 4.0 mph. Speed and MSWS-12 score provide valid prediction of gross-VO2 during treadmill walking at slow and moderate speeds in ambulatory persons with MS. However, there is a possibility of small underestimation for walking at 4.0 mph.

  16. Reverse Engineering of Oxygen Transport in the Lung: Adaptation to Changing Demands and Resources through Space-Filling Networks

    PubMed Central

    Hou, Chen; Gheorghiu, Stefan; Huxley, Virginia H.; Pfeifer, Peter

    2010-01-01

    The space-filling fractal network in the human lung creates a remarkable distribution system for gas exchange. Landmark studies have illuminated how the fractal network guarantees minimum energy dissipation, slows air down with minimum hardware, maximizes the gas- exchange surface area, and creates respiratory flexibility between rest and exercise. In this paper, we investigate how the fractal architecture affects oxygen transport and exchange under varying physiological conditions, with respect to performance metrics not previously studied. We present a renormalization treatment of the diffusion-reaction equation which describes how oxygen concentrations drop in the airways as oxygen crosses the alveolar membrane system. The treatment predicts oxygen currents across the lung at different levels of exercise which agree with measured values within a few percent. The results exhibit wide-ranging adaptation to changing process parameters, including maximum oxygen uptake rate at minimum alveolar membrane permeability, the ability to rapidly switch from a low oxygen uptake rate at rest to high rates at exercise, and the ability to maintain a constant oxygen uptake rate in the event of a change in permeability or surface area. We show that alternative, less than space-filling architectures perform sub-optimally and that optimal performance of the space-filling architecture results from a competition between underexploration and overexploration of the surface by oxygen molecules. PMID:20865052

  17. Benthic Oxygen Uptake in the Arctic Ocean Margins - A Case Study at the Deep-Sea Observatory HAUSGARTEN (Fram Strait)

    PubMed Central

    Cathalot, Cecile; Rabouille, Christophe; Sauter, Eberhard; Schewe, Ingo; Soltwedel, Thomas

    2015-01-01

    The past decades have seen remarkable changes in the Arctic, a hotspot for climate change. Nevertheless, impacts of such changes on the biogeochemical cycles and Arctic marine ecosystems are still largely unknown. During cruises to the deep-sea observatory HAUSGARTEN in July 2007 and 2008, we investigated the biogeochemical recycling of organic matter in Arctic margin sediments by performing shipboard measurements of oxygen profiles, bacterial activities and biogenic sediment compounds (pigment, protein, organic carbon, and phospholipid contents). Additional in situ oxygen profiles were performed at two sites. This study aims at characterizing benthic mineralization activity along local bathymetric and latitudinal transects. The spatial coverage of this study is unique since it focuses on the transition from shelf to Deep Ocean, and from close to the ice edge to more open waters. Biogeochemical recycling across the continental margin showed a classical bathymetric pattern with overall low fluxes except for the deepest station located in the Molloy Hole (5500 m), a seafloor depression acting as an organic matter depot center. A gradient in benthic mineralization rates arises along the latitudinal transect with clearly higher values at the southern stations (average diffusive oxygen uptake of 0.49 ± 0.18 mmol O2 m-2 d-1) compared to the northern sites (0.22 ± 0.09 mmol O2 m-2 d-1). The benthic mineralization activity at the HAUSGARTEN observatory thus increases southward and appears to reflect the amount of organic matter reaching the seafloor rather than its lability. Although organic matter content and potential bacterial activity clearly follow this gradient, sediment pigments and phospholipids exhibit no increase with latitude whereas satellite images of surface ocean chlorophyll a indicate local seasonal patterns of primary production. Our results suggest that predicted increases in primary production in the Arctic Ocean could induce a larger export of more

  18. Children's attention to task-relevant information accounts for relations between language and spatial cognition.

    PubMed

    Miller, Hilary E; Simmering, Vanessa R

    2018-08-01

    Children's spatial language reliably predicts their spatial skills, but the nature of this relation is a source of debate. This investigation examined whether the mechanisms accounting for such relations are specific to language use or reflect a domain-general mechanism of selective attention. Experiment 1 examined whether 4-year-olds' spatial skills were predicted by their selective attention or their adaptive language use. Children completed (a) an attention task assessing attention to task-relevant color, size, and location cues; (b) a description task assessing adaptive language use to describe scenes varying in color, size, and location; and (c) three spatial tasks. There was correspondence between the cue types that children attended to and produced across description and attention tasks. Adaptive language use was predicted by both children's attention and task-related language production, suggesting that selective attention underlies skills in using language adaptively. After controlling for age, gender, receptive vocabulary, and adaptive language use, spatial skills were predicted by children's selective attention. The attention score predicted variance in spatial performance previously accounted for by adaptive language use. Experiment 2 followed up on the attention task (Experiment 2a) and description task (Experiment 2b) from Experiment 1 to assess whether performance in the tasks related to selective attention or task-specific demands. Performance in Experiments 2a and 2b paralleled that in Experiment 1, suggesting that the effects in Experiment 1 reflected children's selective attention skills. These findings show that selective attention is a central factor supporting spatial skill development that could account for many effects previously attributed to children's language use. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. The differential effects of prolonged exercise upon executive function and cerebral oxygenation.

    PubMed

    Tempest, Gavin D; Davranche, Karen; Brisswalter, Jeanick; Perrey, Stephane; Radel, Rémi

    2017-04-01

    The acute-exercise effects upon cognitive functions are varied and dependent upon exercise duration and intensity, and the type of cognitive tasks assessed. The hypofrontality hypothesis assumes that prolonged exercise, at physiologically challenging intensities, is detrimental to executive functions due to cerebral perturbations (indicated by reduced prefrontal activity). The present study aimed to test this hypothesis by measuring oxygenation in prefrontal and motor regions using near-infrared spectroscopy during two executive tasks (flanker task and 2-back task) performed while cycling for 60min at a very low intensity and an intensity above the ventilatory threshold. Findings revealed that, compared to very low intensity, physiologically challenging exercise (i) shortened reaction time in the flanker task, (ii) impaired performance in the 2-back task, and (iii) initially increased oxygenation in prefrontal, but not motor regions, which then became stable in both regions over time. Therefore, during prolonged exercise, not only is the intensity of exercise assessed important, but also the nature of the cognitive processes involved in the task. In contrast to the hypofrontality hypothesis, no inverse pattern of oxygenation between prefrontal and motor regions was observed, and prefrontal oxygenation was maintained over time. The present results go against the hypofrontality hypothesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Changes in calcium uptake rate by rat cardiac mitochondria during postnatal development.

    PubMed

    Bassani, R A; Fagian, M M; Bassani, J W; Vercesi, A E

    1998-10-01

    Ca2+ uptake, transmembrane electrical potential (Deltapsim) and oxygen consumption were measured in isolated ventricular mitochondria of rats from 3 days to 5 months of age. Estimated values of ruthenium red-sensitive, succinate-supported maximal rate of Ca2+ uptake (Vmax, expressed as nmol Ca2+/min/mg protein) were higher in neonates and gradually fell during postnatal development (from 435+/-24 at 3-6 days, to 156+/-10 in adults,P<0.001), whereas K0.5 values (approximately 10 microM were not significantly affected by age. Under similar conditions, mitochondria from adults (5 months old) and neonates (4-6 days old) showed comparable state 4 (succinate and alpha-ketoglutarate as substrates) and state 3ADP (alpha-ketoglutarate-supported) respiration rates, as well as Deltapsim values (approximately-150 mV). Respiration-independent Deltapsim and Ca2+ uptake, supported by valinomycin-induced K+ efflux were also investigated at these ages. A transient Deltapsim (approximately -30 mV) was evoked by valinomycin in both neonatal and adult mitochondria. Respiration-independent Ca2+ uptake was also transient, but its initial rate was significantly higher in neonates than in adults (49. 4+/-10.0v 28.0+/-5.7 mmol Ca2+/min/mg protein,P<0.01). These results indicate that Ca2+ uptake capacity of rat cardiac mitochondria is remarkably high just after birth and declines over the first weeks of postnatal life, without change in apparent affinity of the transporter. Increased mitochondrial Ca2+ uptake rate in neonates appears to be related to the uniporter itself, rather than to modification of the driving force of the transport. Copyright 1998 Academic Press

  1. Age-Related Differences in Reaction Time Task Performance in Young Children

    ERIC Educational Resources Information Center

    Kiselev, Sergey; Espy, Kimberlay Andrews; Sheffield, Tiffany

    2009-01-01

    Performance of reaction time (RT) tasks was investigated in young children and adults to test the hypothesis that age-related differences in processing speed supersede a "global" mechanism and are a function of specific differences in task demands and processing requirements. The sample consisted of 54 4-year-olds, 53 5-year-olds, 59…

  2. Distraction decreases prefrontal oxygenation: A NIRS study.

    PubMed

    Ozawa, Sachiyo; Hiraki, Kazuo

    2017-04-01

    When near-infrared spectroscopy (NIRS) is used to measure emotion-related cerebral blood flow (CBF) changes in the prefrontal cortex regions, the functional distinction of CBF changes is often difficult because NIRS is unable to measure neural activity in deeper brain regions that play major roles in emotional processing. The CBF changes could represent cognitive control of emotion and emotional responses to emotional materials. Supposing that emotion-related CBF changes in the prefrontal cortex regions during distraction are emotional responses, we examined whether oxygenated hemoglobin (oxyHb) decreases. Attention-demanding tasks cause blood flow decreases, and we thus compared the effects of visually paced tapping with different tempos, on distraction. The results showed that the oxyHb level induced by emotional stimulation decreased with fast-tempo tapping significantly more than slow-tempo tapping in ventral medial prefrontal cortex regions. Moreover, a Global-Local task following tapping showed significantly greater local-minus-global response time (RT) difference scores in the fast- and mid-tempo condition compared with those in the slow-tempo, suggesting an increased attentional focus, and decreased negative emotion. The overall findings indicate that oxyHb changes in a relatively long distraction task, as measured by NIRS, are associated with emotional responses, and oxyHb can be decreased by successfully performing attention-demanding distraction tasks. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Acute oxygen therapy: a review of prescribing and delivery practices

    PubMed Central

    Cousins, Joyce L; Wark, Peter AB; McDonald, Vanessa M

    2016-01-01

    Oxygen is a commonly used drug in the clinical setting and like other drugs its use must be considered carefully. This is particularly true for those patients who are at risk of type II respiratory failure in whom the risk of hypercapnia is well established. In recent times, several international bodies have advocated for the prescription of oxygen therapy in an attempt to reduce this risk in vulnerable patient groups. Despite this guidance, published data have demonstrated that there has been poor uptake of these recommendations. Multiple interventions have been tested to improve concordance, and while some of these interventions show promise, the sustainability of these interventions are less convincing. In this review, we summarize data that have been published on the prevalence of oxygen prescription and the accurate and appropriate administration of this drug therapy. We also identify strategies that have shown promise in facilitating changes to oxygen prescription and delivery practice. There is a clear need to investigate the barriers, facilitators, and attitudes of clinicians in relation to the prescription of oxygen therapy in acute care. Interventions based on these findings then need to be designed and tested to facilitate the application of evidence-based guidelines to support sustained changes in practice, and ultimately improve patient care. PMID:27307722

  4. The VMAT-2 inhibitor tetrabenazine alters effort-related decision making as measured by the T-maze barrier choice task: reversal with the adenosine A2A antagonist MSX-3 and the catecholamine uptake blocker bupropion.

    PubMed

    Yohn, Samantha E; Thompson, Christian; Randall, Patrick A; Lee, Christie A; Müller, Christa E; Baqi, Younis; Correa, Mercè; Salamone, John D

    2015-04-01

    Depressed people show effort-related motivational symptoms, such as anergia, retardation, lassitude, and fatigue. Animal tests can model these motivational symptoms, and the present studies characterized the effort-related effects of the vesicular monoamine transport (VMAT-2) inhibitor tetrabenazine. Tetrabenazine produces depressive symptoms in humans and, at low doses, preferentially depletes dopamine. The current studies investigated the effects of tetrabenazine on effort-based decision making using the T-maze barrier task. Rats were tested in a T-maze in which the choice arms of the maze contain different reinforcement densities, and under some conditions, a vertical barrier was placed in the high-density arm to provide an effort-related challenge. The first experiment assessed the effects of tetrabenazine under different maze conditions: a barrier in the arm with 4 food pellets and 2 pellets in the no barrier arm (4-2 barrier), 4 pellets in one arm and 2 pellets in the other with no barrier in either arm (no barrier), and 4 pellets in the barrier arm with no pellets in the other (4-0 barrier). Tetrabenazine (0.25-0.75 mg/kg IP) decreased selection of the high cost/high reward arm when the barrier was present, but had no effect on choice under the no barrier and 4-0 barrier conditions. The effects of tetrabenazine on barrier climbing in the 4-2 condition were reversed by the adenosine A2A antagonist MSX-3 and the catecholamine uptake inhibitor and antidepressant bupropion. These studies have implications for the development of animal models of the motivational symptoms of depression and other disorders.

  5. Age-related differences in processing visual device and task characteristics when using technical devices.

    PubMed

    Oehl, M; Sutter, C

    2015-05-01

    With aging visual feedback becomes increasingly relevant in action control. Consequently, visual device and task characteristics should more and more affect tool use. Focussing on late working age, the present study aims to investigate age-related differences in processing task irrelevant (display size) and task relevant visual information (task difficulty). Young and middle-aged participants (20-35 and 36-64 years of age, respectively) sat in front of a touch screen with differently sized active touch areas (4″ to 12″) and performed pointing tasks with differing task difficulties (1.8-5 bits). Both display size and age affected pointing performance, but the two variables did not interact and aiming duration moderated both effects. Furthermore, task difficulty affected the pointing durations of middle-aged adults moreso than those of young adults. Again, aiming duration accounted for the variance in the data. The onset of an age-related decline in aiming duration can be clearly located in middle adulthood. Thus, the fine psychomotor ability "aiming" is a moderator and predictor for age-related differences in pointing tasks. The results support a user-specific design for small technical devices with touch interfaces. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Hybrid Task Design: Connecting Learning Opportunities Related to Critical Thinking and Statistical Thinking

    ERIC Educational Resources Information Center

    Kuntze, Sebastian; Aizikovitsh-Udi, Einav; Clarke, David

    2017-01-01

    Stimulating thinking related to mathematical content is the focus of many tasks in the mathematics classroom. Beyond such content-related thinking, promoting forms of higher order thinking is among the goals of mathematics instruction as well. So-called hybrid tasks focus on combining both goals: they aim at fostering mathematical thinking and…

  7. Ventrolateral prefrontal activation during a N-back task assessed with multichannel functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Zhu, Ye; Jiang, Tianzi

    2007-05-01

    Functional near-infrared spectroscopy (fNIRS) has been used to investigate the changes in the concentration of oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin in brain issue during several cognitive tasks. In the present study, by means of multichannel dual wavelength light-emitting diode continuous-wave (CW) NIRS, we investigated the blood oxygenation changes of prefrontal cortex in 18 healthy subjects while performing a verbal n-back task (0-back and 2-back), which has been rarely investigated by fNIRS. Compared to the 0-back task (control task), we found a significant increase of O2Hb and total amount of hemoglobin (THb) in left and right ventrolateral prefrontal cortex (VLPFC) during the execution of the 2-back task compared to the 0-back task (p<0.05, FDR corrected). This result is consistent with the previous functional neuroimaging studies that have found the VLPFC activation related to verbal working memory. However, we found no significant hemisphere dominance. In addition, the effects of gender and its interaction with task performance on O2Hb concentration change were suggested in the present study. Our findings not only confirm that multichannel fNIRS is suitable to detect spatially specific activation during the performance of cognitive tasks; but also suggest that it should be cautious of gender-dependent difference in cerebral activation when interpreting the fNIRS data during cognitive tasks.

  8. Intelligence related upper alpha desynchronization in a semantic memory task.

    PubMed

    Doppelmayr, M; Klimesch, W; Hödlmoser, K; Sauseng, P; Gruber, W

    2005-07-30

    Recent evidence shows that event-related (upper) alpha desynchronization (ERD) is related to cognitive performance. Several studies observed a positive, some a negative relationship. The latter finding, interpreted in terms of the neural efficiency hypothesis, suggests that good performance is associated with a more 'efficient', smaller extent of cortical activation. Other studies found that ERD increases with semantic processing demands and that this increase is larger for good performers. Studies supporting the neural efficiency hypothesis used tasks that do not specifically require semantic processing. Thus, we assume that the lack of semantic processing demands may at least in part be responsible for the reduced ERD. In the present study we measured ERD during a difficult verbal-semantic task. The findings demonstrate that during semantic processing, more intelligent (as compared to less intelligent) subjects exhibited a significantly larger upper alpha ERD over the left hemisphere. We conclude that more intelligent subjects exhibit a more extensive activation in a semantic processing system and suggest that divergent findings regarding the neural efficiency hypotheses are due to task specific differences in semantic processing demands.

  9. The influence of tumor oxygenation on hypoxia imaging in murine squamous cell carcinoma using [64Cu]Cu-ATSM or [18F]Fluoromisonidazole positron emission tomography.

    PubMed

    Matsumoto, Ken-Ichiro; Szajek, Lawrence; Krishna, Murali C; Cook, John A; Seidel, Jurgen; Grimes, Kelly; Carson, Joann; Sowers, Anastasia L; English, Sean; Green, Michael V; Bacharach, Stephen L; Eckelman, William C; Mitchell, James B

    2007-04-01

    [64Cu]Cu(II)-ATSM (64Cu-ATSM) and [18F]-Fluoromisonidazole (18F-FMiso) tumor binding as assessed by positron emisson topography (PET) was used to determine the responsiveness of each probe to modulation in tumor oxygenation levels in the SCCVII tumor model. Animals bearing the SCCVII tumor were injected with 64Cu-ATSM or 18F-FMiso followed by dynamic small animal PET imaging. Animals were imaged with both agents using different inspired oxygen mixtures (air, 10% oxygen, carbogen) which modulated tumor hypoxia as independently assessed by the hypoxia marker pimonidazole. The extent of hypoxia in the SCCVII tumor as monitored by the pimonidazole hypoxia marker was found to be in the following order: 10% oxygen>air>carbogen. Tumor uptake of 64Cu-ATSM could not be changed if the tumor was oxygenated using carbogen inhalation 90 min post-injection suggesting irreversible cellular uptake of the 64Cu-ATSM complex. A small but significant paradoxical increase in 64Cu-ATSM tumor uptake was observed for animals breathing air or carbogen compared to 10% oxygen. There was a positive trend toward 18F-FMiso tumor uptake as a function of changing hypoxia levels in agreement with the pimonidazole data. 64Cu-ATSM tumor uptake was unable to predictably detect changes in varying amounts of hypoxia when oxygenation levels in SCCVII tumors were modulated. 18F-FMiso tumor uptake was more responsive to changing levels of hypoxia. While the mechanism of nitroimidazole binding to hypoxic cells has been extensively studied, the avid binding of Cu-ATSM to tumors may involve other mechanisms independent of hypoxia that warrant further study.

  10. Exploring the Connection between Age and Strategies for Learning New Technology Related Tasks

    ERIC Educational Resources Information Center

    Meiselwitz, Gabriele; Chakraborty, Suranjan

    2011-01-01

    This paper discusses the connection between age and strategies for learning new technology related tasks. Many users have to learn about new devices and applications on a frequent basis and use a variety of strategies to accomplish this learning process. Approaches to learning new technology related tasks vary and can contribute to a user's…

  11. Tianeptine: 5-HT uptake sites and 5-HT(1-7) receptors modulate memory formation in an autoshaping Pavlovian/instrumental task.

    PubMed

    Meneses, Alfredo

    2002-05-01

    Recent studies using invertebrate and mammal species have revealed that, endogenous serotonin (5-hydroxytryptamine, 5-HT) modulates cognitive processes, particularly learning and memory, though, at present, it is unclear the manner, where, and how long 5-HT systems are involved. Hence in this work, an attempt was made to study the effects of 5-HT endogenous on memory formation, using a 5-HT uptake facilitator (tianeptine) and, selective 5-HT(1-7) receptor antagonists to determine whether 5-HT uptake sites and which 5-HT receptors are involved, respectively. Results showed that post-training tianeptine injection enhanced memory consolidation in an autoshaping Pavlovian/instrumental learning task, which has been useful to detect changes on memory formation elicited by drugs or aging. On interaction experiments, ketanserin (5-HT(1D/2A/2C) antagonist) slightly enhanced tianeptine effects, while WAY 100635 (5-HT(1A) antagonist), SB-224289 (5-HT(1B) inverse agonist), SB-200646 (5-HT(2B/2C) antagonist), ondansetron (5-HT(3) antagonist), GR 127487 (5-HT(4) antagonist), Ro 04-6790 (5-HT(6) antagonist), DR 4004 (5-HT(7) antagonist), or fluoxetine (an inhibitor of 5-HT reuptake) blocked the facilitatory tianeptine effect. Notably, together tianeptine and Ro 04-6790 impaired learning consolidation. Moreover, 5-HT depletion completely reversed the tianeptine effect. Tianeptine also normalized an impaired memory elicited by scopolamine (an antimuscarinic) or dizocilpine (non-competitive glutamatergic antagonist), while partially reversed that induced by TFMPP (5-HT(1B/1D/2A-2C/7) agonist/antagonist). Finally, tianeptine-fluoxetine coadministration had no effect on learning consolidation; nevertheless, administration of an acetylcholinesterase inhibitor, phenserine, potentiated subeffective tianeptine or fluoxetine doses. Collectively, these data confirmed that endogenously 5-HT modulates, via uptake sites and 5-HT(1-7) receptors, memory consolidation, and are consistent with the

  12. Oxygen uptake in Pacific salmon Oncorhynchus spp.: when ecology and physiology meet.

    PubMed

    Eliason, E J; Farrell, A P

    2016-01-01

    Over the past several decades, a substantial amount of research has examined how cardiorespiratory physiology supports the diverse activities performed throughout the life cycle of Pacific salmon, genus Oncorhynchus. Pioneering experiments emphasized the importance of aerobic scope in setting the functional thermal tolerance for activity in fishes. Variation in routine metabolism can have important performance and fitness consequences as it is related to dominance, aggression, boldness, territoriality, growth rate, postprandial oxygen consumption, life history, season, time of day, availability of shelter and social interactions. Wild fishes must perform many activities simultaneously (e.g. swim, obtain prey, avoid predators, compete, digest and reproduce) and oxygen delivery is allocated among competing organ systems according to the capacity of the heart to deliver blood. For example, salmonids that are simultaneously swimming and digesting trade-off maximum swimming performance in order to support the oxygen demands of digestion. As adult Pacific salmonids cease feeding in the ocean prior to their home migration, endogenous energy reserves and cardiac capacity are primarily partitioned among the demands for swimming upriver, sexual maturation and spawning behaviours. Furthermore, the upriver spawning migration is under strong selection pressure, given that Pacific salmonids are semelparous (single opportunity to spawn). Consequently, these fishes optimize energy expenditures in a number of ways: strong homing, precise migration timing, choosing forward-assist current paths and exploiting the boundary layer to avoid the strong currents in the middle of the river, using energetically efficient swimming speeds, and recovering rapidly from anaerobic swimming. Upon arrival at the spawning ground, remaining energy can be strategically allocated to the various spawning behaviours. Strong fidelity to natal streams has resulted in reproductively isolated populations that

  13. Top 10 Research Questions Related to Youth Aerobic Fitness

    ERIC Educational Resources Information Center

    Armstrong, Neil

    2017-01-01

    Peak oxygen uptake (VO[subscript 2]) is internationally recognized as the criterion measure of youth aerobic fitness, but despite pediatric data being available for almost 80 years, its measurement and interpretation in relation to growth, maturation, and health remain controversial. The trainability of youth aerobic fitness continues to be hotly…

  14. Effect of bottom water oxygenation on oxygen consumption and benthic biogeochemical processes at the Crimean Shelf (Black Sea)

    NASA Astrophysics Data System (ADS)

    Lichtschlag, A.; Janssen, F.; Wenzhöfer, F.; Holtappels, M.; Struck, U.; Jessen, G.; Boetius, A.

    2012-04-01

    Hypoxia occurs where oxygen concentrations fall below a physiological threshold of many animals, usually defined as <63 µmol L-1. Oxygen depletion can be caused by anthropogenic influences, such as global warming and eutrophication, but as well occurs naturally due to restricted water exchange in combination with high nutrient loads (e.g. upwelling). Bottom-water oxygen availability not only influences the composition of faunal communities, but is also one of the main factors controlling sediment-water exchange fluxes and organic carbon degradation in the sediment, usually shifting processes towards anaerobic mineralization pathways mediated by microorganisms. The Black Sea is one of the world's largest meromictic marine basins with an anoxic water column below 180m. The outer shelf edge, where anoxic waters meet the seafloor, is an ideal natural laboratory to study the response of benthic ecosystems to hypoxia, including benthic biogeochemical processes. During the MSM 15/1 expedition with the German research vessel MARIA S. MERIAN, the NW area of the Black Sea (Crimean Shelf) was studied. The study was set up to investigate the influence of bottom water oxygenation on, (1) the respective share of fauna-mediated oxygen uptake, microbial respiration, or re-oxidation of reduced compounds formed in the deeper sediments for the total oxygen flux and (2) on the efficiency of benthic biogeochemical cycles. During our study, oxygen consumption and pathways of organic carbon degradation were estimated from benthic chamber incubations, oxygen microprofiles measured in situ, and pore water and solid phase profiles measured on retrieved cores under oxic, hypoxic, and anoxic water column conditions. Benthic oxygen fluxes measured in Crimean Shelf sediments in this study were comparable to fluxes from previous in situ and laboratory measurements at similar oxygen concentrations (total fluxes -8 to -12 mmol m-2 d-1; diffusive fluxes: -2 to -5 mmol m-2 d-1) with oxygen

  15. Examining age-related differences in auditory attention control using a task-switching procedure.

    PubMed

    Lawo, Vera; Koch, Iring

    2014-03-01

    Using a novel task-switching variant of dichotic selective listening, we examined age-related differences in the ability to intentionally switch auditory attention between 2 speakers defined by their sex. In our task, young (M age = 23.2 years) and older adults (M age = 66.6 years) performed a numerical size categorization on spoken number words. The task-relevant speaker was indicated by a cue prior to auditory stimulus onset. The cuing interval was either short or long and varied randomly trial by trial. We found clear performance costs with instructed attention switches. These auditory attention switch costs decreased with prolonged cue-stimulus interval. Older adults were generally much slower (but not more error prone) than young adults, but switching-related effects did not differ across age groups. These data suggest that the ability to intentionally switch auditory attention in a selective listening task is not compromised in healthy aging. We discuss the role of modality-specific factors in age-related differences.

  16. Effect of a concurrent auditory task on visual search performance in a driving-related image-flicker task.

    PubMed

    Richard, Christian M; Wright, Richard D; Ee, Cheryl; Prime, Steven L; Shimizu, Yujiro; Vavrik, John

    2002-01-01

    The effect of a concurrent auditory task on visual search was investigated using an image-flicker technique. Participants were undergraduate university students with normal or corrected-to-normal vision who searched for changes in images of driving scenes that involved either driving-related (e.g., traffic light) or driving-unrelated (e.g., mailbox) scene elements. The results indicated that response times were significantly slower if the search was accompanied by a concurrent auditory task. In addition, slower overall responses to scenes involving driving-unrelated changes suggest that the underlying process affected by the concurrent auditory task is strategic in nature. These results were interpreted in terms of their implications for using a cellular telephone while driving. Actual or potential applications of this research include the development of safer in-vehicle communication devices.

  17. Different components of /sup 3/H-imipramine binding in rat brain membranes: relation to serotonin uptake sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gobbi, M.; Taddei, C.; Mennini, T.

    1988-01-01

    In the present paper, the authors confirm and extend previous studies showing heterogeneous /sup 3/H-imipramine (/sup 3/H-IMI) binding sites. Inhibition curves of various drugs (serotonin, imipramine, desmethyl-imipramine, d-fenfluramine, d-norfenfluramine and indalpine, a potent serotonin uptake inhibitor) obtained using 2 nM /sup 3/H-IMI and in presence of 120 mM NaCl, confirmed the presence of at least three /sup 3/H-IMI binding sites: two of these were serotonin-insensitive while the third one was selectively inhibited by serotonin and indalpine with nanomolar affinities. Moreover this last component was found to be selectively modulated by chronic imipramine treatment thus suggesting a close relation to serontoninmore » uptake mechanism. These data indicate that the use of a more selective inhibitors of the serotonin-sensitive component (like indalpine or serotonin itself) to define non specific /sup 3/H-IMI, may be of help in understanding its relation with serotonin uptake system. 22 references, 2 figures, 2 tables.« less

  18. Prediction of oxygen uptake dynamics by machine learning analysis of wearable sensors during activities of daily living.

    PubMed

    Beltrame, T; Amelard, R; Wong, A; Hughson, R L

    2017-04-05

    Currently, oxygen uptake () is the most precise means of investigating aerobic fitness and level of physical activity; however, can only be directly measured in supervised conditions. With the advancement of new wearable sensor technologies and data processing approaches, it is possible to accurately infer work rate and predict during activities of daily living (ADL). The main objective of this study was to develop and verify the methods required to predict and investigate the dynamics during ADL. The variables derived from the wearable sensors were used to create a predictor based on a random forest method. The temporal dynamics were assessed by the mean normalized gain amplitude (MNG) obtained from frequency domain analysis. The MNG provides a means to assess aerobic fitness. The predicted during ADL was strongly correlated (r = 0.87, P < 0.001) with the measured and the prediction bias was 0.2 ml·min -1 ·kg -1 . The MNG calculated based on predicted was strongly correlated (r = 0.71, P < 0.001) with MNG calculated based on measured data. This new technology provides an important advance in ambulatory and continuous assessment of aerobic fitness with potential for future applications such as the early detection of deterioration of physical health.

  19. Prediction of oxygen uptake dynamics by machine learning analysis of wearable sensors during activities of daily living

    PubMed Central

    Beltrame, T.; Amelard, R.; Wong, A.; Hughson, R. L.

    2017-01-01

    Currently, oxygen uptake () is the most precise means of investigating aerobic fitness and level of physical activity; however, can only be directly measured in supervised conditions. With the advancement of new wearable sensor technologies and data processing approaches, it is possible to accurately infer work rate and predict during activities of daily living (ADL). The main objective of this study was to develop and verify the methods required to predict and investigate the dynamics during ADL. The variables derived from the wearable sensors were used to create a predictor based on a random forest method. The temporal dynamics were assessed by the mean normalized gain amplitude (MNG) obtained from frequency domain analysis. The MNG provides a means to assess aerobic fitness. The predicted during ADL was strongly correlated (r = 0.87, P < 0.001) with the measured and the prediction bias was 0.2 ml·min−1·kg−1. The MNG calculated based on predicted was strongly correlated (r = 0.71, P < 0.001) with MNG calculated based on measured data. This new technology provides an important advance in ambulatory and continuous assessment of aerobic fitness with potential for future applications such as the early detection of deterioration of physical health. PMID:28378815

  20. Event-related potential indices of workload in a single task paradigm

    NASA Technical Reports Server (NTRS)

    Horst, R. L.; Munson, R. C.; Ruchkin, D. S.

    1984-01-01

    Many previous studies of both behavioral and physiological correlates of cognitive workload have burdened subjects with a contrived secondary task in order to assess the workload of a primary task. The present study investigated event-related potential (ERP) indices of workload in a single task paradigm. Subjects monitored changing digital readouts for values that went 'out-of-bounds'. The amplitude of a long-latency positivity in the ERPs elicited by readout changes increased with the number of readouts being monitored. This effect of workload on ERPs is reported, along with plans for additional analyses to address theoretical implications.

  1. Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes

    PubMed Central

    Li, Hui; Yue, Fan; Wen, Hongmei

    2016-01-01

    This paper introduces the structural characterization and studies on reversible oxygenation behavior of a new oxygen carrier Co(II)-2,4-diaminobutanoic acid (DABA) complex in aqueous solution. The composition of the oxygenated complex was determined by gas volumetric method, molar ratio method, and mass spectrometry, and the formula of the oxygenated complex was determined to be [Co(DABA)2O2]. In aqueous solution, the complex can continuously uptake and release dioxygen and exhibit excellent reversibility of oxygenation and deoxygenation ability. This complex can maintain 50% of its original oxygenation capacity after 30 cycles in 24 h and retain 5% of the original oxygenation capacity after more than 260 cycles after 72 h. When a ligand analogue was linked to histidine (His), the new complex exhibited as excellent reversible oxygenation property as His-Co(II) complex. Insight into the relationship between structural detail and oxygenation properties will provide valuable suggestion for a new family of oxygen carriers. PMID:27648004

  2. Effect of ship locking on sediment oxygen uptake in impounded rivers

    NASA Astrophysics Data System (ADS)

    Lorke, A.; McGinnis, D. F.; Maeck, A.; Fischer, H.

    2012-12-01

    In the majority of large river systems, flow is regulated and/or otherwise affected by operational and management activities, such as ship locking. The effect of lock operation on sediment-water oxygen fluxes was studied within a 12.9 km long impoundment at the Saar River (Germany) using eddy-correlation flux measurements. The continuous observations cover a time period of nearly 5 days and 39 individual locking events. Ship locking is associated with the generation of surges propagating back and forth through the impoundment which causes strong variations of near-bed current velocity and turbulence. These wave-induced flow variations cause variations in sediment-water oxygen fluxes. While the mean flux during time periods without lock operation was 0.5 ± 0.1 g m-2 d-1, it increased by about a factor of 2 to 1.0 ± 0.5 g m-2 d-1within time periods with ship locking. Following the daily schedule of lock operations, fluxes are predominantly enhanced during daytime and follow a pronounced diurnal rhythm. The driving force for the increased flux is the enhancement of diffusive transport across the sediment-water interface by bottom-boundary layer turbulence and perhaps resuspension. Additional means by which the oxygen budget of the impoundment is affected by lock-induced flow variations are discussed.

  3. Age-related effects on postural control under multi-task conditions.

    PubMed

    Granacher, Urs; Bridenbaugh, Stephanie A; Muehlbauer, Thomas; Wehrle, Anja; Kressig, Reto W

    2011-01-01

    Changes in postural sway and gait patterns due to simultaneously performed cognitive (CI) and/or motor interference (MI) tasks have previously been reported and are associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of a CI and/or MI task on static and dynamic postural control in young and elderly subjects, and to find out whether there is an association between measures of static and dynamic postural control while concurrently performing the CI and/or MI task. A total of 36 healthy young (n = 18; age: 22.3 ± 3.0 years; BMI: 21.0 ± 1.6 kg/m(2)) and elderly adults (n = 18; age: 73.5 ± 5.5 years; BMI: 24.2 ± 2.9 kg/m(2)) participated in this study. Static postural control was measured during bipedal stance, and dynamic postural control was obtained while walking on an instrumented walkway. Irrespective of the task condition, i.e. single-task or multiple tasks, elderly participants showed larger center-of-pressure displacements and greater stride-to-stride variability than younger participants. Associations between measures of static and dynamic postural control were found only under the single-task condition in the elderly. Age-related deficits in the postural control system seem to be primarily responsible for the observed results. The weak correlations detected between static and dynamic measures could indicate that fall-risk assessment should incorporate dynamic measures under multi-task conditions, and that skills like erect standing and walking are independent of each other and may have to be trained complementarily. Copyright © 2010 S. Karger AG, Basel.

  4. Seasonality of Oxygen isotope composition in cow (Bos taurus) hair and its model interpretation

    NASA Astrophysics Data System (ADS)

    Chen, Guo; Schnyder, Hans; Auerswald, Karl

    2017-04-01

    Oxygen isotopes in animal and human tissues are expected to be good recorders of geographical origin and migration histories based on the isotopic relationship between hair oxygen and annual precipitation and the well-known spatial pattern of oxygen isotope composition in meteoric water. However, seasonal variation of oxygen isotope composition may diminish the origin information in the tissues. Here the seasonality of oxygen isotope composition in tail hair was investigated in a domestic suckler cow (Bos taurus) that underwent different ambient conditions, physiological states, and keeping and feeding strategies during five years. A detailed mechanistic model involving in ambient conditions, soil properties and animal physiology was built to explain this variation. The measured oxygen isotope composition in hair was significantly related (p<0.05) to the isotope composition in meteoric water in a regression analysis. Modelling suggested that this relation was only partly derived from the direct influence of feed moisture. Ambient conditions (temperature, moisture) did not only influence the isotopic signal of precipitation but also affected the animal itself (drinking water demand, transcutaneous vapor etc.). The clear temporal variation thus resulted from complex interactions with multiple influences. The twofold influence of ambient conditions via the feed and via the animal itself is advantageous for tracing the geographic origin because the oxygen isotope composition is then less influenced by variations in moisture uptake; however, it is unfavorable for indicating the production system, e.g. to distinguish between milk produced from fresh grass or from silage.

  5. Age-related differences in dual task performance: A cross-sectional study on women.

    PubMed

    Brustio, Paolo R; Magistro, Daniele; Rabaglietti, Emanuela; Liubicich, Monica E

    2017-02-01

    Simultaneous performances of motor and attention-demanding tasks are common in activities of everyday life. The present cross-sectional study examined the changes and age-related differences on mobility performance with an additional cognitive or motor task, and evaluated the relative dual-task cost (DTC) on the motor performance in young, middle-aged and older women. A total of 30 young (mean age 25.12 ± 3.00 years), 30 middle-aged (mean age 47.82 ± 5.06 years) and 30 older women (mean age 72.74 ± 5.95 years) were recruited. Participants carried out: (i) single task: Timed Up & Go Test; (ii) cognitive dual-task: Timed Up & Go Test while counting backwards by three; (iii) manual dual-task: Timed Up & Go Test while carrying a glass of water. A repeated measures anova with between-factor as age groups and within-factor as tasks was carried out to assess the effect of aging on the performance of mobility tasks. DTC was calculated as ([performance in single-task - performance in dual-task] / performance in single task) × 100%. One-way ancova were carried out to compare the DTC among the three age groups. A significant interaction between age groups and task (F 4,172  = 6.716, P < 0.001, partial η 2  = 0.135) was observed. Specifically, older women showed a worse mobility performance under dual-task condition compared with young and middle-aged groups. Furthermore, DTC differences in cognitive task were observed in older women compared with younger and middle-aged women (F 2,86  = 7.649, P < 0.001, partial η 2  = 0.151), but not in manual task. Dual-task conditions might affect mobility performance differently across the lifespan, and could be particularly challenging in older women. Geriatr Gerontol Int 2017; 17: 315-321. © 2015 Japan Geriatrics Society.

  6. Tensile properties of V-Cr-Ti alloys after exposure in helium and low-partial-pressure oxygen environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Soppet, W.K.

    1997-04-01

    A test program is in progress to evaluate the effect of oxygen at low pO{sub 2} on the tensile properties of V-(4-5)wt% Cr-(4-5)wt% Ti alloys. Some of the tensile specimens were precharged with oxygen at low pO{sub 2} at 500{degrees}C and reannealed in vacuum at 500{degrees}C in environments with various pO{sub 2} levels and subsequently tensile tested at room temperature. The preliminary results indicate that both approaches are appropriate for evaluating the effect of oxygen uptake on the tensile properties of the alloys. The data showed that in the relatively short-time tests conducted thus far, the maximum engineering stress slightlymore » increased after oxygen exposure but the uniform and total elongation values exhibited significant decrease after exposure in oxygen-containing environments. The data for a specimen exposed to a helium environment were similar to those obtained in low pO{sub 2} environments.« less

  7. Persistent Postconcussive Symptoms Are Accompanied by Decreased Functional Brain Oxygenation.

    PubMed

    Helmich, Ingo; Saluja, Rajeet S; Lausberg, Hedda; Kempe, Mathias; Furley, Philip; Berger, Alisa; Chen, Jen-Kai; Ptito, Alain

    2015-01-01

    Diagnostic methods are considered a major concern in the determination of mild traumatic brain injury. The authors examined brain oxygenation patterns in subjects with severe and minor persistent postconcussive difficulties and a healthy control group during working memory tasks in prefrontal brain regions using functional near-infrared spectroscopy. The results demonstrated decreased working memory performances among concussed subjects with severe postconcussive symptoms that were accompanied by decreased brain oxygenation patterns. An association appears to exist between decreased brain oxygenation, poor performance of working memory tasks, and increased symptom severity scores in subjects suffering from persistent postconcussive symptoms.

  8. Task Complexity, Language-Related Episodes, and Production of L2 Spanish Vowels

    ERIC Educational Resources Information Center

    Solon, Megan; Long, Avizia Y.; Gurzynski-Weiss, Laura

    2017-01-01

    This study tests the theoretical predictions regarding effects of increasing task complexity (Robinson, 2001a, 2001b, 2007, 2010; Robinson & Gilabert, 2007) for second language (L2) pronunciation. Specifically, we examine whether more complex tasks (a) lead to greater incidence of pronunciation-focused language-related episodes (LREs) and (b)…

  9. Maximal Upper Body Strength and Oxygen Uptake are Associated with Performance in High-Level 200-M Sprint Kayakers.

    PubMed

    Pickett, Craig W; Nosaka, Kazunori; Zois, James; Hopkins, Will G; J, Anthony; Blazevich

    2017-12-27

    Current training and monitoring methods in sprint kayaking are based on the premise that upper-body muscular strength and aerobic power are both important for performance, but limited evidence exists to support this premise in high-level athletes. Relationships between measures of strength, maximal oxygen uptake (VO2max) and 200-m race times in kayakers competing at national-to-international levels were examined. Data collected from Australian Canoeing training camps and competitions for 7 elite, 7 national and 8 club level male sprint kayakers were analyzed for relationships between maximal isoinertial strength (3-RM bench press, bench row, chin-up and deadlift), VO2max on a kayak ergometer, and 200-m race time. Correlations between race time and bench press, bench row, chin-up, and VO2max were -0.80, -0.76, -0.73, -0.02 and 0.71, respectively (90% confidence limits ∼±0.17). The multiple correlation coefficient for 200-m race time with bench press and VO2max was 0.84. Errors in prediction of 200-m race time in regression analyses were extremely large (∼4%) in relation to the smallest important change of 0.3%. However, from the slopes of the regressions, the smallest important change could be achieved with a 1.4% (±0.5%) change in bench-press strength and a 0.9% (±0.5%) change in VO2max. Substantial relationships were found between upper-body strength or aerobic power and 200-m performances. These measures may not accurately predict individual performance times, but would be practicable for talent identification purposes. Training aimed at improving upper-body strength or aerobic power in lowerperforming athletes could also enhance the performance in 200-m kayak sprints.

  10. Children's self-assessment of performance and task-related help seeking.

    PubMed

    Nelson-Le Gall, S; Kratzer, L; Jones, E; DeCooke, P

    1990-04-01

    The present research examined the role of self-assessment of performance on children's use of help-seeking as an achievement strategy. In two experiments, third- and fifth-grade children were blocked into low and high verbal skill groups. Children performed a multitrial verbal task in which they were required to indicate their confidence in the correctness of their tentative solution and then were given the opportunity to seek help before providing a final solution on each trial. The second experiment differed from the first in that subjects were provided with a common motivation for seeking help. Subjects' confidence in the correctness of their solution was found to influence both the frequency and type of help sought. High task-related skill was associated with the discriminating use of help-seeking as an achievement strategy, especially among boys. Also, both the frequency and type of help sought varied with self-assessments for older children more than for younger children. Findings are discussed in terms of grade and sex differences in the use of internally based cues for performance evaluation. The importance of accounting for the interplay of children's age and task specific skill with achievement-related goals is stressed.

  11. A cognitive stressor for event-related potential studies: the Portland arithmetic stress task.

    PubMed

    Atchley, Rachel; Ellingson, Roger; Klee, Daniel; Memmott, Tabatha; Oken, Barry

    2017-05-01

    In this experiment, we developed and evaluated the Portland Arithmetic Stress Task (PAST) as a cognitive stressor to evaluate acute and sustained stress reactivity for event-related potential (ERP) studies. The PAST is a titrated arithmetic task adapted from the Montreal Imaging Stress Task (MIST), with added experimental control over presentation parameters, improved and synchronized acoustic feedback and generation of timing markers needed for physiological analyzes of real-time brain activity. Thirty-one older adults (M = 60 years) completed the PAST. EEG was recorded to assess feedback-related negativity (FRN) and the magnitude of the stress response through autonomic nervous system activity and salivary cortisol. Physiological measures other than EEG included heart rate, respiration rate, heart rate variability, blood pressure and salivary cortisol. These measures were collected at several time points throughout the task. Feedback-related negativity evoked-potential responses were elicited and they significantly differed depending on whether positive or negative feedback was received. The PAST also increased systolic blood pressure, heart rate variability and respiration rates compared to a control condition attentional task. These preliminary results suggest that the PAST is an effective cognitive stressor. Successful measurement of the feedback-related negativity suggests that the PAST is conducive to EEG and time-sensitive ERP experiments. Moreover, the physiological findings support the PAST as a potent method for inducing stress in older adult participants. Further research is needed to confirm these results, but the PAST shows promise as a tool for cognitive stress induction for time-locked event-related potential experiments.

  12. High-dose catecholamine treatment decreases polymorphonuclear leukocyte phagocytic capacity and reactive oxygen production.

    PubMed Central

    Wenisch, C; Parschalk, B; Weiss, A; Zedwitz-Liebenstein, K; Hahsler, B; Wenisch, H; Georgopoulos, A; Graninger, W

    1996-01-01

    Flow cytometry was used to study phagocytic function (uptake of fluorescein isothiocyanate-labeled bacteria) and release of reactive oxygen products (dihydrorhodamine 123 converted to rhodamine 123) following phagocytosis by neutrophil granulocytes of heparinized whole blood treated with adrenaline, noradrenaline, dopamine, dobutamine, or orciprenaline. Reduced neutrophil phagocytosis and reactive oxygen production were seen at 12 micrograms of adrenaline per liter (72% each compared with control values); at 120 micrograms of noradrenaline (72% each), dobutamine (83 and 80%, respectively), and orciprenaline (81 and 80%, respectively) per liter; and at 100 micrograms of dopamine per liter (66 and 70%) (P < 0.05 for all). At these dosages, neutrophil chemotaxis was reduced to < 50% of control values for all catecholamines. Treatment with catecholamines at lower dosages had no significant effect on phagocytosis or generation of reactive oxygen products or chemotaxis. The phagocytic capacity of granulocytes was related to the generation of reactive oxygen products (r = 0.789; P < 0.05). The results demonstrate that catecholamines have a suppressive effect on the response of phagocytic cells to bacterial pathogens at high therapeutic levels in blood. PMID:8807207

  13. Root attributes affecting water uptake of rice (Oryza sativa) under drought.

    PubMed

    Henry, Amelia; Cal, Andrew J; Batoto, Tristram C; Torres, Rolando O; Serraj, Rachid

    2012-08-01

    Lowland rice roots have a unique physiological response to drought because of their adaptation to flooded soil. Rice root attributes that facilitate growth under flooded conditions may affect rice response to drought, but the relative roles of root structural and functional characteristics for water uptake under drought in rice are not known. Morphological, anatomical, biochemical, and molecular attributes of soil-grown rice roots were measured to investigate the genotypic variability and genotype×environment interactions of water uptake under variable soil water regimes. Drought-resistant genotypes had the lowest night-time bleeding rates of sap from the root system in the field. Diurnal fluctuation predominated as the strongest source of variation for bleeding rates in the field and root hydraulic conductivity (Lpr) in the greenhouse, and was related to expression trends of various PIP and TIP aquaporins. Root anatomy was generally more responsive to drought treatments in drought-resistant genotypes. Suberization and compaction of sclerenchyma layer cells decreased under drought, whereas suberization of the endodermis increased, suggesting differential roles of these two cell layers for the retention of oxygen under flooded conditions (sclerenchyma layer) and retention of water under drought (endodermis). The results of this study point to the genetic variability in responsiveness to drought of rice roots in terms of morphology, anatomy, and function.

  14. Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism.

    PubMed

    Keating, Elisa; Martel, Fátima

    2018-01-01

    In the last years, metabolic reprogramming became a new key hallmark of tumor cells. One of its components is a deviant energetic metabolism, known as Warburg effect-an aerobic lactatogenesis- characterized by elevated rates of glucose uptake and consumption with high-lactate production even in the presence of oxygen. Because many cancer cells display a greater sensitivity to glucose deprivation-induced cytotoxicity than normal cells, inhibitors of glucose cellular uptake (facilitative glucose transporter 1 inhibitors) and oxidative metabolism (glycolysis inhibitors) are potential therapeutic targets in cancer treatment. Polyphenols, abundantly contained in fruits and vegetables, are dietary components with an established protective role against cancer. Several molecular mechanisms are involved in the anticancer effect of polyphenols, including effects on apoptosis, cell cycle regulation, plasma membrane receptors, signaling pathways, and epigenetic mechanisms. Additionally, inhibition of glucose cellular uptake and metabolism in cancer cell lines has been described for several polyphenols, and this effect was shown to be associated with their anticarcinogenic effect. This work will review data showing an antimetabolic effect of polyphenols and its involvement in the chemopreventive/chemotherapeutic potential of these dietary compounds, in relation to breast cancer.

  15. Secondary aerosol formation promotes water uptake by organic-rich wildfire haze particles in equatorial Asia

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Hapsari Budisulistiorini, Sri; Miyakawa, Takuma; Komazaki, Yuichi; Kuwata, Mikinori

    2018-06-01

    The diameter growth factor (GF) of 100 nm haze particles at 85 % relative humidity (RH) and their chemical characteristics were simultaneously monitored at Singapore in October 2015 during a pervasive wildfire haze episode that was caused by peatland burning in Indonesia. Non-refractory submicron particles (NR-PM1) were dominated by organics (OA; approximating 77.1 % in total mass), whereas sulfate was the most abundant inorganic constituent (11.7 % on average). A statistical analysis of the organic mass spectra showed that most organics (36.0 % of NR-PM1 mass) were highly oxygenated. Diurnal variations of GF, number fractions of more hygroscopic mode particles, mass fractions of sulfate, and mass fractions of oxygenated organics (OOA) synchronized well, peaking during the day. The mean hygroscopicity parameter (κ) of the haze particles was 0.189 ± 0.087, and the mean κ values of organics were 0.157 ± 0.108 (κorg, bulk organics) and 0.266 ± 0.184 (κOOA, OOA), demonstrating the important roles of both sulfate and highly oxygenated organics in the hygroscopic growth of organics-dominated wildfire haze particles. κorg correlated with the water-soluble organic fraction insignificantly, but it positively correlated with f44 (fraction of the ion fragment at m/z 44 in total organics) (R = 0.70), implying the oxygenation degree of organics could be more critical for the water uptake of organic compounds. These results further suggest the importance of sulfate and secondary organic aerosol formation in promoting the hygroscopic growth of wildfire haze particles. Further detailed size-resolved as well as molecular-level chemical information about organics is necessary for the profound exploration of water uptake by wildfire haze particles in equatorial Asia.

  16. Oxygen-storage behavior and local structure in Ti-substituted YMnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, I., E-mail: igor.levin@nist.gov; Krayzman, V.; Vanderah, T.A.

    Hexagonal manganates RMnO{sub 3} (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn{sub 1−x}Ti{sub x})O{sub 3} solid solutions exhibit facile oxygen absorption/desorption via reversible Ti{sup 3+}↔Ti{sup 4+} and Mn{sup 3+}↔Mn{sup 4+} reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn{sup 3+}{sub 1−x-y}Mn{sup 4+}{sub y}Ti{sup 4+}{sub x}O{submore » 3+δ}. The presence of Ti promotes the oxidation of Mn{sup 3+} to Mn{sup 4+}, which is almost negligible for YMnO{sub 3} in air, thereby increasing the uptake of oxygen beyond that required for a given Ti{sup 4+} concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO{sub 5}] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO{sub 3} structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO{sub 5}] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti{sup 4+}(and Mn{sup 4+}) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the

  17. Oxygen uptake of overweight and obese children at different stages of a progressive treadmill test

    PubMed Central

    Meléndez-Ortega, Agustín; Lucy Davis, Catherine; Barbeau, Paule; Boyle, Colleen Ann

    2010-01-01

    Introduction Maximal oxygen uptake (VO2 max) is associated with cardiovascular and metabolic risks but it is difficult to assess in obese children. The objective of this study was to develop an equation to estimate VO2 (mL/kg/min) and to check the % of tests that were maximal according to recommended criteria. Methods Stress tests were analyzed of 222 subjects (94 male and 128 female with a BMI above the 85 percentile for age and sex), and repeated 4 months later. Mean age was 9.4 ± 1.1 years and weighed 52.4 ± 13.3 kg. Body fat % (40.5 + 6.2) was determined by DXA (Hologic QDR 4500W). The protocol on the treadmill started with a warm up at 2.5 and 3 mph with a slope of 0% and 2%. The speed was kept at 3 mph for all the stages and the slope was increased 2% every 2 minutes. Statistical analysis (descriptive, t-test and ANOVAS 2×2×2) was done with SPSS 15.0. Results Only 35% of the tests were maximal. The equation calculates was Y = 2.6x + 22.3 (x = protocol stage). Data pre and post treatment were not statistically different Discussion Increments in VO2 were consistent despite subject diversity (sex, % body fat, physical fitness, treatment). Conclusion To be able to estimate VO2 at the different stages of the test without complex equipment or specialized staff, will facilitate the performance of stress tests on a daily basis. PMID:21218170

  18. Human Factors Process Task Analysis Liquid Oxygen Pump Acceptance Test Procedure for the Advanced Technology Development Center

    NASA Technical Reports Server (NTRS)

    Diorio, Kimberly A.

    2002-01-01

    A process task analysis effort was undertaken by Dynacs Inc. commencing in June 2002 under contract from NASA YA-D6. Funding was provided through NASA's Ames Research Center (ARC), Code M/HQ, and Industrial Engineering and Safety (IES). The John F. Kennedy Space Center (KSC) Engineering Development Contract (EDC) Task Order was 5SMA768. The scope of the effort was to conduct a Human Factors Process Failure Modes and Effects Analysis (HF PFMEA) of a hazardous activity and provide recommendations to eliminate or reduce the effects of errors caused by human factors. The Liquid Oxygen (LOX) Pump Acceptance Test Procedure (ATP) was selected for this analysis. The HF PFMEA table (see appendix A) provides an analysis of six major categories evaluated for this study. These categories include Personnel Certification, Test Procedure Format, Test Procedure Safety Controls, Test Article Data, Instrumentation, and Voice Communication. For each specific requirement listed in appendix A, the following topics were addressed: Requirement, Potential Human Error, Performance-Shaping Factors, Potential Effects of the Error, Barriers and Controls, Risk Priority Numbers, and Recommended Actions. This report summarizes findings and gives recommendations as determined by the data contained in appendix A. It also includes a discussion of technology barriers and challenges to performing task analyses, as well as lessons learned. The HF PFMEA table in appendix A recommends the use of accepted and required safety criteria in order to reduce the risk of human error. The items with the highest risk priority numbers should receive the greatest amount of consideration. Implementation of the recommendations will result in a safer operation for all personnel.

  19. Medical Care Tasks among Spousal Dementia Caregivers: Links to Care-Related Sleep Disturbances.

    PubMed

    Polenick, Courtney A; Leggett, Amanda N; Maust, Donovan T; Kales, Helen C

    2018-05-01

    Medical care tasks are commonly provided by spouses caring for persons living with dementia (PLWDs). These tasks reflect complex care demands that may interfere with sleep, yet their implications for caregivers' sleep outcomes are unknown. The authors evaluated the association between caregivers' medical/nursing tasks (keeping track of medications; managing tasks such as ostomy care, intravenous lines, or blood testing; giving shots/injections; and caring for skin wounds/sores) and care-related sleep disturbances. A retrospective analysis of cross-sectional data from the 2011 National Health and Aging Trends Study and National Study of Caregiving was conducted. Spousal caregivers and PLWDs/proxies were interviewed by telephone at home. The U.S. sample included 104 community-dwelling spousal caregivers and PLWDs. Caregivers reported on their sociodemographic and health characteristics, caregiving stressors, negative caregiving relationship quality, and sleep disturbances. PLWDs (or proxies) reported on their health conditions and sleep problems. Caregivers who performed a higher number of medical/nursing tasks reported significantly more frequent care-related sleep disturbances, controlling for sociodemographic and health characteristics, caregiving stressors, negative caregiving relationship quality, and PLWDs' sleep problems and health conditions. Post hoc tests showed that wound care was independently associated with more frequent care-related sleep disturbances after accounting for the other medical/nursing tasks and covariates. Spousal caregivers of PLWDs who perform medical/nursing tasks may be at heightened risk for sleep disturbances and associated adverse health consequences. Interventions to promote the well-being of both care partners may benefit from directly addressing caregivers' needs and concerns about their provision of medical/nursing care. Copyright © 2018 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights

  20. Mechanisms That Modulate Peripheral Oxygen Delivery during Exercise in Heart Failure.

    PubMed

    Kisaka, Tomohiko; Stringer, William W; Koike, Akira; Agostoni, Piergiuseppe; Wasserman, Karlman

    2017-07-01

    Oxygen uptake ([Formula: see text]o 2 ) measured at the mouth, which is equal to the cardiac output (CO) times the arterial-venous oxygen content difference [C(a-v)O 2 ], increases more than 10- to 20-fold in normal subjects during exercise. To achieve this substantial increase in oxygen uptake [[Formula: see text]o 2  = CO × C(a-v)O 2 ] both CO and the arterial-venous difference must simultaneously increase. Although this occurs in normal subjects, patients with heart failure cannot achieve significant increases in cardiac output and must rely primarily on changes in the arterial-venous difference to increase [Formula: see text]o 2 during exercise. Inadequate oxygen delivery to the tissue during exercise in heart failure results in tissue anaerobiosis, lactic acid accumulation, and reduction in exercise tolerance. H + is an important regulatory and feedback mechanism to facilitate additional oxygen delivery to the tissue (Bohr effect) and further aerobic production of ATP when tissue anaerobic metabolism increases the production of lactate (anaerobic threshold). This H + production in the muscle capillary promotes the continued unloading of oxygen (oxyhemoglobin desaturation) while maintaining the muscle capillary Po 2 (Fick principle) at a sufficient level to facilitate aerobic metabolism and overcome the diffusion barriers from capillary to mitochondria ("critical capillary Po 2 ," 15-20 mm Hg). This mechanism is especially important during exercise in heart failure where cardiac output increase is severely constrained. Several compensatory mechanisms facilitate peripheral oxygen delivery during exercise in both normal persons and patients with heart failure.

  1. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli--Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinowitz, Joshua D; Wingreen, Ned s; Rabitz, Herschel A

    2012-10-22

    A key challenge for living systems is balancing utilization of multiple elemental nutrients, such as carbon, nitrogen, and oxygen, whose availability is subject to environmental fluctuations. As growth can be limited by the scarcity of any one nutrient, the rate at which each nutrient is assimilated must be sensitive not only to its own availability, but also to that of other nutrients. Remarkably, across diverse nutrient conditions, E. coli grows nearly optimally, balancing effectively the conversion of carbon into energy versus biomass. To investigate the link between the metabolism of different nutrients, we quantified metabolic responses to nutrient perturbations usingmore » LC-MS based metabolomics and built differential equation models that bridge multiple nutrient systems. We discovered that the carbonaceous substrate of nitrogen assimilation, -ketoglutarate, directly inhibits glucose uptake and that the upstream glycolytic metabolite, fructose-1,6-bisphosphate, ultrasensitively regulates anaplerosis to allow rapid adaptation to changing carbon availability. We also showed that NADH controls the metabolic response to changing oxygen levels. Our findings support a general mechanism for nutrient integration: limitation for a nutrient other than carbon leads to build-up of the most closely related product of carbon metabolism, which in turn feedback inhibits further carbon uptake.« less

  2. Task frequency influences stimulus-driven effects on task selection during voluntary task switching.

    PubMed

    Arrington, Catherine M; Reiman, Kaitlin M

    2015-08-01

    Task selection during voluntary task switching involves both top-down (goal-directed) and bottom-up (stimulus-driven) mechanisms. The factors that shift the balance between these two mechanisms are not well characterized. In the present research, we studied the role that task frequency plays in determining the extent of stimulus-driven task selection. In two experiments, we used the basic paradigm adapted from Arrington (Memory & Cognition, 38, 991-997, 2008), in which the effect of stimulus availability serves as a marker of stimulus-driven task selection. A number and letter appeared on each trial with varying stimulus onset asynchronies, and participants performed either a consonant/vowel or an even/odd judgment. In Experiment 1, participants were instructed as to the relative frequency with which each task was to be performed (i.e., 50/50, 60/40, or 75/25) and were further instructed to make their transitions between tasks unpredictable. In Experiment 2, participants were given no instructions about how to select tasks, resulting in naturally occurring variation in task frequency. With both instructed (Exp. 1) and naturally occurring (Exp. 2) relative task frequencies, the less frequently performed task showed a greater effect of stimulus availability on task selection, suggestive of a larger influence of stimulus-driven mechanisms during task performance for the less frequent task. When goal-directed mechanisms of task choice are engaged less frequently, the relative influence of the stimulus environment increases.

  3. An oil-based model of inhalation anesthetic uptake and elimination.

    PubMed

    Loughlin, P J; Bowes, W A; Westenskow, D R

    1989-08-01

    An oil-based model was developed as a physical simulation of inhalation anesthetic uptake and elimination. It provides an alternative to animal models in testing the performance of anesthesia equipment. A 7.5-1 water-filled manometer simulates pulmonary mechanics. Nitrogen and carbon dioxide flowing into the manometer simulate oxygen consumption and carbon dioxide production. Oil-filled chambers (180 ml and 900 ml) simulate the uptake and washout of halothane by the vessel-rich and muscle tissue groups. A 17.2-1 air-filled chamber simulates uptake by the lung group. Gas circulates through the chambers (3.7, 13.8, and 25 l/min) to simulate the transport of anesthetic to the tissues by the circulatory system. Results show that during induction and washout, the rate of rise in endtidal halothane fraction simulated by the model parallels that measured in patients. The model's end-tidal fraction changes correctly with changes in cardiac output and alveolar ventilation. The model has been used to test anesthetic controllers and to evaluate gas sensors, and should be useful in teaching principles underlying volatile anesthetic uptake.

  4. Exploring adolescent cognitive control in a combined interference switching task.

    PubMed

    Mennigen, Eva; Rodehacke, Sarah; Müller, Kathrin U; Ripke, Stephan; Goschke, Thomas; Smolka, Michael N

    2014-08-01

    Cognitive control enables individuals to flexibly adapt to environmental challenges. In the present functional magnetic resonance imaging (fMRI) study, we investigated 185 adolescents at the age of 14 with a combined response interference switching task measuring behavioral responses (reaction time, RT and error rate, ER) and brain activity during the task. This task comprises two types of conflict which are co-occurring, namely, task switching and stimulus-response incongruence. Data indicated that already in adolescents an overlapping cognitive control network comprising the dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (DLPFC), pre-supplementary motor area (preSMA) and posterior parietal cortex (PPC) is recruited by conflicts arising from task switching and response incongruence. Furthermore our study revealed higher blood oxygenation level dependent (BOLD) responses elicited by incongruent stimuli in participants with a pronounced incongruence effect, calculated as the RT difference between incongruent and congruent trials. No such correlation was observed for switch costs. Furthermore, increased activation of the default mode network (DMN) was only observed in congruent trials compared to incongruent trials, but not in task repetition relative to task switch trials. These findings suggest that even though the two processes of task switching and response incongruence share a common cognitive control network they might be processed differentially within the cognitive control network. Results are discussed in the context of a novel hypothesis concerning antagonistic relations between the DMN and the cognitive control network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Brazilian Twin Registry: A Bright Future for Twin Studies/Twin Research: Twin Study of Alcohol Consumption and Mortality; Oxygen Uptake in Adolescent Twins/In the News: Superfecundated Twins In Vietnam; Adolescent Twin Relations; Twin and Triplet Co-Workers; A Special Twin Ultrasound; Monozygotic Twins With Different Skin Color; Identical Twin Returns from Space.

    PubMed

    Segal, Nancy L

    2016-06-01

    The establishment of the Brazilian Twin Registry for the study of genetic, social, and cultural influences on behavior is one of eleven newly funded projects in the Department of Psychology at the University of São Paulo. These 11 interrelated projects form the core of the university's Center for Applied Research on Well-Being and Human Behavior. An overview of the planned twin research and activities to date is presented. Next, two recent twin studies are reviewed, one on the relationship between alcohol consumption and mortality, and the other on factors affecting maximal oxygen uptake. Twins cited in the media include the first identified superfecundated twins in Vietnam, adolescent twin relations, twins and triplets who work together, monozygotic twins with different skin tones and a co-twin control study that addresses the effects of space travel.

  6. Task-relevant cognitive and motor functions are prioritized during prolonged speed-accuracy motor task performance.

    PubMed

    Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas

    2018-06-01

    This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.

  7. Inferring foliar water uptake using stable isotopes of water.

    PubMed

    Goldsmith, Gregory R; Lehmann, Marco M; Cernusak, Lucas A; Arend, Matthias; Siegwolf, Rolf T W

    2017-08-01

    A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes.

  8. ESCA Study of Poly (Vinylidene Fluoride) Tetrafluoroethylene - Ethylene Copolymer and Polyethylene Exposed to Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Cormia, Robert D.

    1989-01-01

    The ESCA (electron spectroscopy for chemical analysis) spectra of films of poly(vinylidene fluoride) (PVDF), tetrafluoroethylene-ethylene copolymer (TFE/ET) and polyethylene (PE) exposed to atomic oxygen (O(P-3)), in or out of the glow of a radio-frequency O2 plasma, were compared. ESCA spectra of PE films exposed to (O(P-3)) in low Earth orbit (LEO) on the STS-8 Space Shuttle were also examined. Apart from O(P-3)-induced surface recession (etching), the various polymer films exhibited surface oxidation, which proceeded towards equilibrium saturation oxygen levels. The maximum surface oxygen uptakes for in-glow or out-of-glow exposures were in the order: PE greater than TFE/ET greater than PVDF; for PE itself, the oxygen uptakes were in the order: in glow greater than out of glow greater than LEO. Given prior ESCA data on poly(vinyl fluoride) and polytetrafluoroethylene films exposed to O(P-3), the extent of surface oxidation is seen to decrease regularly with increase in fluorine substitution in a family of ethylene-type polymers. (Keywords: ESCA; poly(vinylidene fluoride); tetrafluoroethylene ethylene copolymer; polyethylene; atomic oxygen; radio-frequency oxygen plasma; low Earth orbit)

  9. The repeated-bout effect: influence on biceps brachii oxygenation and myoelectrical activity.

    PubMed

    Muthalib, Makii; Lee, Hoseong; Millet, Guillaume Y; Ferrari, Marco; Nosaka, Kazunori

    2011-05-01

    This study investigated biceps brachii oxygenation and myoelectrical activity during and following maximal eccentric exercise to better understand the repeated-bout effect. Ten men performed two bouts of eccentric exercise (ECC1, ECC2), consisting of 10 sets of 6 maximal lengthening contractions of the elbow flexors separated by 4 wk. Tissue oxygenation index minimum amplitude (TOI(min)), mean and maximum total hemoglobin volume by near-infrared spectroscopy, torque, and surface electromyography root mean square (EMG(RMS)) during exercise were compared between ECC1 and ECC2. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion, plasma creatine kinase activity, muscle soreness, TOI(min), and EMG(RMS) during sustained (10-s) and 30-repeated isometric contraction tasks at 30% (same absolute force) and 100% MVC (same relative force) for 4 days postexercise were compared between ECC1 and ECC2. No significant differences between ECC1 and ECC2 were evident for changes in torque, TOI(min), mean total hemoglobin volume, maximum total hemoglobin volume, and EMG(RMS) during exercise. Smaller (P < 0.05) changes and faster recovery of muscle damage markers were evident following ECC2 than ECC1. During 30% MVC tasks, TOI(min) did not change, but EMG(RMS) increased 1-4 days following ECC1 and ECC2. During 100% MVC tasks, EMG(RMS) did not change, but torque and TOI(min) decreased 1-4 days following ECC1 and ECC2. TOI(min) during 100% MVC tasks and EMG(RMS) during 30% MVC tasks recovered faster (P < 0.05) following ECC2 than ECC1. We conclude that the repeated-bout effect cannot be explained by altered muscle activation or metabolic/hemodynamic changes, and the faster recovery in muscle oxygenation and activation was mainly due to faster recovery of force.

  10. Dual-task gait differences in female and male adolescents following sport-related concussion.

    PubMed

    Howell, David R; Stracciolini, Andrea; Geminiani, Ellen; Meehan, William P

    2017-05-01

    Concussion may affect females and males differentially. Identification of gender-related differences after concussion, therefore, may help clinicians with individualized evaluations. We examined potential differences in dual-task gait between females and males after concussion. Thirty-five participants diagnosed with a concussion (49% female, mean age=15.0±2.1 years, 7.5±3.0 days post-injury) and 51 controls (51% female, mean age=14.4±2.1 years) completed a symptom inventory and single/dual-task gait assessment. The primary outcome variable, the dual-task cost, was calculated as the percent change between single-task and dual-task conditions to account for individual differences in spatio-temporal gait variables. No significant differences in symptom severity measured by the post-concussion symptom scale were observed between females (32.0±18.0) and males (27.8±18.2). Compared with males, adolescent females walked with significantly decreased cadence dual-task costs after concussion (-19.7%±10.0% vs. -11.3%±9.2%, p=0.007) when adjusted for age, height, and prior concussion history. No significant differences were found between female and male control groups on other dual-task cost gait measures. Females and males with concussion also walked with significantly shorter stride lengths than controls during single-task (females: 1.13±0.11m vs. 1.26±0.11m, p=0.001; males: 1.14±0.14m vs. 1.22±0.15m, p=0.04) and dual-task gait (females: 0.99±0.10m vs. 1.10±0.11m, p=0.001; males: 1.00±0.13m vs. 1.08±0.14m, p=0.04). Females demonstrated a significantly greater amount of cadence change between single-task and dual-task gait than males after a sport-related concussion. Thus, differential alterations may exist during gait among those with a concussion; gender may be one prominent factor affecting dual-task gait. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Peak Exercise Oxygen Uptake Predicts Recurrent Admissions in Heart Failure With Preserved Ejection Fraction.

    PubMed

    Palau, Patricia; Domínguez, Eloy; Núñez, Eduardo; Ramón, José María; López, Laura; Melero, Joana; Sanchis, Juan; Bellver, Alejandro; Santas, Enrique; Bayes-Genis, Antoni; Chorro, Francisco J; Núñez, Julio

    2018-04-01

    Heart failure with preserved ejection fraction (HFpEF) is a highly prevalent syndrome with an elevated risk of morbidity and mortality. To date, there is scarce evidence on the role of peak exercise oxygen uptake (peak VO 2 ) for predicting the morbidity burden in HFpEF. We sought to evaluate the association between peak VO 2 and the risk of recurrent hospitalizations in patients with HFpEF. A total of 74 stable symptomatic patients with HFpEF underwent a cardiopulmonary exercise test between June 2012 and May 2016. A negative binomial regression method was used to determine the association between the percentage of predicted peak VO 2 (pp-peak VO 2 ) and recurrent hospitalizations. Risk estimates are reported as incidence rate ratios. The mean age was 72.5 ± 9.1 years, 53% were women, and all patients were in New York Heart Association functional class II to III. Mean peak VO 2 and median pp-peak VO 2 were 10 ± 2.8mL/min/kg and 60% (range, 47-67), respectively. During a median follow-up of 276 days [interquartile range, 153-1231], 84 all-cause hospitalizations in 31 patients (41.9%) were registered. A total of 15 (20.3%) deaths were also recorded. On multivariate analysis, accounting for mortality as a terminal event, pp-peak VO 2 was independently and linearly associated with the risk of recurrent admission. Thus, and modeled as continuous, a 10% decrease of pp-peak VO 2 increased the risk of recurrent hospitalizations by 32% (IRR, 1.32; 95%CI, 1.03-1.68; P = .028). In symptomatic elderly patients with HFpEF, pp-peak VO 2 predicts all-cause recurrent admission. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  12. Task related doses in Spanish pressurized water reactors over the period 1988-1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Donnell, P.; Labarta, T.; Amor, I.

    1995-03-01

    In order to evaluate in depth the collective dose trend and its correlation with the effectiveness of the practical application of the ALARA principle in Spanish nuclear facilities, and base the different policy lines to promote this criteria, the CSN has fullfilled an analysis of the task related doses data over the period 1988-1992. Previously, the CSN had required to the utilities the compilation of their refuelling outage collective dose from 1988 according with a predeterminate number of tasks, in order to have available a representative and retrospective set of data in an homogeneous way and coherent with the internationalmore » data banks on occupational exposure in NPP, as the CEC and the NEA ones. The scope of this analysis was the following: first, the collective dose summaries for outage tasks and departments for PWR and for BWR, including the minimum, maximum and average dose (and statistics data) for 18 different refuelling outage tasks and 12 personal departments for each generation of each type of rector, the task and department related collective dose trends in each plant and in each generation, and second, the dose reduction techniques having been used during that period in each plant and the relative level of adoption. In this presentation the main results and conclusions of the first part of the study are reviewed for PWR.« less

  13. Comparison between maximal lengthening and shortening contractions for biceps brachii muscle oxygenation and hemodynamics.

    PubMed

    Muthalib, Makii; Lee, Hoseong; Millet, Guillaume Y; Ferrari, Marco; Nosaka, Kazunori

    2010-09-01

    Eccentric contractions (ECC) require lower systemic oxygen (O2) and induce greater symptoms of muscle damage than concentric contractions (CON); however, it is not known if local muscle oxygenation is lower in ECC than CON during and following exercise. This study compared between ECC and CON for changes in biceps brachii muscle oxygenation [tissue oxygenation index (TOI)] and hemodynamics [total hemoglobin volume (tHb)=oxygenated-Hb+deoxygenated-Hb], determined by near-infrared spectroscopy over 10 sets of 6 maximal contractions of the elbow flexors of 10 healthy subjects. This study also compared between ECC and CON for changes in TOI and tHb during a 10-s sustained and 30-repeated maximal isometric contraction (MVC) task measured immediately before and after and 1-3 days following exercise. The torque integral during ECC was greater (P<0.05) than that during CON by approximately 30%, and the decrease in TOI was smaller (P<0.05) by approximately 50% during ECC than CON. Increases in tHb during the relaxation phases were smaller (P<0.05) by approximately 100% for ECC than CON; however, the decreases in tHb during the contraction phases were not significantly different between sessions. These results suggest that ECC utilizes a lower muscle O2 relative to O2 supply compared with CON. Following exercise, greater (P<0.05) decreases in MVC strength and increases in plasma creatine kinase activity and muscle soreness were evident 1-3 days after ECC than CON. Torque integral, TOI, and tHb during the sustained and repeated MVC tasks decreased (P<0.01) only after ECC, suggesting that muscle O2 demand relative to O2 supply during the isometric tasks was decreased after ECC. This could mainly be due to a lower maximal muscle mass activated as a consequence of muscle damage; however, an increase in O2 supply due to microcirculation dysfunction and/or inflammatory vasodilatory responses after ECC is recognized.

  14. Maternal uptake of pertussis cocooning strategy and other pregnancy related recommended immunizations.

    PubMed

    Wong, C Y; Thomas, N J; Clarke, M; Boros, C; Tuckerman, J; Marshall, H S

    2015-01-01

    Maternal immunization is an important strategy to prevent severe morbidity and mortality in mothers and their offspring. This study aimed to identify whether new parents were following immunization recommendations prior to pregnancy, during pregnancy, and postnatally. A cross-sectional survey was conducted by a questionnaire administered antenatally to pregnant women attending a maternity hospital with a follow-up telephone interview at 8-10 weeks post-delivery. Factors associated with uptake of pertussis vaccination within the previous 5 y or postnatally and influenza vaccination during pregnancy were explored using log binomial regression models. A total of 297 pregnant women completed the questionnaire. For influenza vaccine, 20.3% were immunized during pregnancy and 3.0% postnatally. For pertussis vaccine, 13.1% were vaccinated within 5 y prior to pregnancy and 31 women received the vaccine postnatally, 16 (51.6%) received the vaccine >4 weeks after delivery. Receiving a recommendation from a healthcare provider (HCP) was an independent predictor for receipt of both pertussis (RR 2.07, p < 0.001) and influenza vaccine (RR 2.26, p = 0.001). Non-English speaking mothers were significantly less likely to have received pertussis vaccination prior to pregnancy or postnatally (RR 0.24, p = 0.011). Multiparous pregnant women were less likely to have received an influenza vaccine during their current pregnancy (p = 0.015). Uptake of pregnancy related immunization is low and likely due to poor knowledge of availability, language barriers and lack of recommendations from HCPs. Strategies to improve maternal vaccine uptake should include education about recommended vaccines for both HCPs and parents and written information in a variety of languages.

  15. Analysis of heart rate and oxygen uptake kinetics studied by two different pseudo-random binary sequence work rate amplitudes.

    PubMed

    Drescher, U; Koschate, J; Schiffer, T; Schneider, S; Hoffmann, U

    2017-06-01

    The aim of the study was to compare the kinetics responses of heart rate (HR), pulmonary (V˙O 2 pulm) and predicted muscular (V˙O 2 musc) oxygen uptake between two different pseudo-random binary sequence (PRBS) work rate (WR) amplitudes both below anaerobic threshold. Eight healthy individuals performed two PRBS WR protocols implying changes between 30W and 80W and between 30W and 110W. HR and V˙O 2 pulm were measured beat-to-beat and breath-by-breath, respectively. V˙O 2 musc was estimated applying the approach of Hoffmann et al. (Eur J Appl Physiol 113: 1745-1754, 2013) considering a circulatory model for venous return and cross-correlation functions (CCF) for the kinetics analysis. HR and V˙O 2 musc kinetics seem to be independent of WR intensity (p>0.05). V˙O 2 pulm kinetics show prominent differences in the lag of the CCF maximum (39±9s; 31±4s; p<0.05). A mean difference of 14W between the PRBS WR amplitudes impacts venous return significantly, while HR and V˙O 2 musc kinetics remain unchanged. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Slowed muscle oxygen uptake kinetics with raised metabolism are not dependent on blood flow or recruitment dynamics

    PubMed Central

    Wüst, Rob C I; McDonald, James R; Sun, Yi; Ferguson, Brian S; Rogatzki, Matthew J; Spires, Jessica; Kowalchuk, John M; Gladden, L Bruce; Rossiter, Harry B

    2014-01-01

    Oxygen uptake kinetics (τ) are slowed when exercise is initiated from a raised metabolic rate. Whether this reflects the recruitment of muscle fibres differing in oxidative capacity, or slowed blood flow () kinetics is unclear. This study determined τ in canine muscle in situ, with experimental control over muscle activation and during contractions initiated from rest and a raised metabolic rate. The gastrocnemius complex of nine anaesthetised, ventilated dogs was isolated and attached to a force transducer. Isometric tetanic contractions (50 Hz; 200 ms duration) via supramaximal sciatic nerve stimulation were used to manipulate metabolic rate: 3 min stimulation at 0.33 Hz (S1), followed by 3 min at 0.67 Hz (S2). Circulation was initially intact (SPON), and subsequently isolated for pump-perfusion (PUMP) above the greatest value in SPON. Muscle was determined contraction-by-contraction using an ultrasonic flowmeter and venous oximeter, and normalised to tension-time integral (TTI). τ/TTI and τ were less in S1SPON (mean ± s.d.: 13 ± 3 s and 12 ± 4 s, respectively) than in S2SPON (29 ± 19 s and 31 ± 13 s, respectively; P < 0.05). τ/TTI was unchanged by pump-perfusion (S1PUMP, 12 ± 4 s; S2PUMP, 24 ± 6 s; P < 0.001) despite increased O2 delivery; at S2 onset, venous O2 saturation was 21 ± 4% and 65 ± 5% in SPON and PUMP, respectively. kinetics remained slowed when contractions were initiated from a raised metabolic rate despite uniform muscle stimulation and increased O2 delivery. The intracellular mechanism may relate to a falling energy state, approaching saturating ADP concentration, and/or slowed mitochondrial activation; but further study is required. These data add to the evidence that muscle control is more complex than previously suggested. PMID:24469073

  17. Dual Tasking and Working Memory in Alcoholism: Relation to Frontocerebellar Circuitry

    PubMed Central

    Chanraud, Sandra; Pitel, Anne-Lise; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V

    2010-01-01

    Controversy exists regarding the role of cerebellar systems in cognition and whether working memory compromise commonly marking alcoholism can be explained by compromise of nodes of corticocerebellar circuitry. We tested 17 alcoholics and 31 age-matched controls with dual-task, working memory paradigms. Interference tasks competed with verbal and spatial working memory tasks using low (three item) or high (six item) memory loads. Participants also underwent structural MRI to obtain volumes of nodes of the frontocerebellar system. On the verbal working memory task, both groups performed equally. On the spatial working memory with the high-load task, the alcoholic group was disproportionately more affected by the arithmetic distractor than were controls. In alcoholics, volumes of the left thalamus and left cerebellar Crus I volumes were more robust predictors of performance in the spatial working memory task with the arithmetic distractor than the left frontal superior cortex. In controls, volumes of the right middle frontal gyrus and right cerebellar Crus I were independent predictors over the left cerebellar Crus I, left thalamus, right superior parietal cortex, or left middle frontal gyrus of spatial working memory performance with tracking interference. The brain–behavior correlations suggest that alcoholics and controls relied on the integrity of certain nodes of corticocerebellar systems to perform these verbal and spatial working memory tasks, but that the specific pattern of relationships differed by group. The resulting brain structure–function patterns provide correlational support that components of this corticocerebellar system not typically related to normal performance in dual-task conditions may be available to augment otherwise dampened performance by alcoholics. PMID:20410871

  18. Atmospheric particulate matter intercepted by moss-bags: Relations to moss trace element uptake and land use.

    PubMed

    Di Palma, Anna; Capozzi, Fiore; Spagnuolo, Valeria; Giordano, Simonetta; Adamo, Paola

    2017-06-01

    Particulate matter has to be constantly monitored because it is an important atmospheric transport form of potentially harmful contaminants. The cost-effective method of the moss-bags can be employed to evaluate both loads and chemical composition of PM. PM entrapped by the moss Pseudoscleropodium purum exposed in bags in 9 European sites was characterized for number, size and chemical composition by SEM/EDX. Moreover, moss elemental uptake of 53 elements including rare earth elements was estimated by ICP-MS analysis. All above was aimed to find possible relations between PM profile and moss uptake and to find out eventual element markers of the different land use (i.e. agricultural, urban, industrial) of the selected sites. After exposure, about 12,000 particles, mostly within the inhalable fraction, were counted on P. purum leaves; their number generally increased from the agricultural sites to the urban and industrial ones. ICP analysis indicated that twenty-three elements were significantly accumulated by mosses with different element profile according to the various land uses. The PM from agricultural sites were mainly made of natural/crustal elements or derived from rural activities. Industrial-related PM covered a wider range of sources, from those linked to specific industrial activities, to those related to manufacturing processes or use of heavy-duty vehicles. This study indicates a close association between PM amount and moss element-uptake, which increases in parallel with PM amount. Precious metals and REEs may constitute novel markers of air pollution in urban and agricultural sites, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Working memory capacity and task goals modulate error-related ERPs.

    PubMed

    Coleman, James R; Watson, Jason M; Strayer, David L

    2018-03-01

    The present study investigated individual differences in information processing following errant behavior. Participants were initially classified as high or as low working memory capacity using the Operation Span Task. In a subsequent session, they then performed a high congruency version of the flanker task under both speed and accuracy stress. We recorded ERPs and behavioral measures of accuracy and response time in the flanker task with a primary focus on processing following an error. The error-related negativity was larger for the high working memory capacity group than for the low working memory capacity group. The positivity following an error (Pe) was modulated to a greater extent by speed-accuracy instruction for the high working memory capacity group than for the low working memory capacity group. These data help to explicate the neural bases of individual differences in working memory capacity and cognitive control. © 2017 Society for Psychophysiological Research.

  20. Effects of CT-based attenuation correction of rat microSPECT images on relative myocardial perfusion and quantitative tracer uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strydhorst, Jared H., E-mail: jared.strydhorst@gmail.com; Ruddy, Terrence D.; Wells, R. Glenn

    2015-04-15

    Purpose: Our goal in this work was to investigate the impact of CT-based attenuation correction on measurements of rat myocardial perfusion with {sup 99m}Tc and {sup 201}Tl single photon emission computed tomography (SPECT). Methods: Eight male Sprague-Dawley rats were injected with {sup 99m}Tc-tetrofosmin and scanned in a small animal pinhole SPECT/CT scanner. Scans were repeated weekly over a period of 5 weeks. Eight additional rats were injected with {sup 201}Tl and also scanned following a similar protocol. The images were reconstructed with and without attenuation correction, and the relative perfusion was analyzed with the commercial cardiac analysis software. The absolutemore » uptake of {sup 99m}Tc in the heart was also quantified with and without attenuation correction. Results: For {sup 99m}Tc imaging, relative segmental perfusion changed by up to +2.1%/−1.8% as a result of attenuation correction. Relative changes of +3.6%/−1.0% were observed for the {sup 201}Tl images. Interscan and inter-rat reproducibilities of relative segmental perfusion were 2.7% and 3.9%, respectively, for the uncorrected {sup 99m}Tc scans, and 3.6% and 4.3%, respectively, for the {sup 201}Tl scans, and were not significantly affected by attenuation correction for either tracer. Attenuation correction also significantly increased the measured absolute uptake of tetrofosmin and significantly altered the relationship between the rat weight and tracer uptake. Conclusions: Our results show that attenuation correction has a small but statistically significant impact on the relative perfusion measurements in some segments of the heart and does not adversely affect reproducibility. Attenuation correction had a small but statistically significant impact on measured absolute tracer uptake.« less

  1. Severe transfusion-related acute lung injury managed with extracorporeal membrane oxygenation (ECMO) in an obstetric patient.

    PubMed

    Lee, Allison J; Koyyalamudi, Pushpa L; Martinez-Ruiz, Ricardo

    2008-11-01

    Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related mortality in the United States. Management is usually supportive, including supplemental oxygen, intravenous fluids, and mechanical ventilation if necessary. Most patients recover within 72 hours. We present a nearly fatal case of TRALI in an obstetric patient, which was successfully managed with extracorporeal membrane oxygenation (ECMO).

  2. Age-Related Changes in the Processing of Emotional Faces in a Dual-Task Paradigm.

    PubMed

    Casares-Guillén, Carmen; García-Rodríguez, Beatriz; Delgado, Marisa; Ellgring, Heiner

    2016-01-01

    Background/ Study Context: Age-related changes appear to affect the ability to identify emotional facial expressions in dual-task conditions (i.e., while simultaneously performing a second visual task). The level of interference generated by the secondary task depends on the phase of emotional processing affected by the interference and the nature of the secondary task. The aim of the present study was to investigate the effect of these variables on age-related changes in the processing of emotional faces. The identification of emotional facial expressions (EFEs) was assessed in a dual-task paradigm using the following variables: (a) the phase during which interference was applied (encoding vs. retrieval phase); and (b) the nature of the interfering stimulus (visuospatial vs. verbal). The sample population consisted of 24 healthy aged adults (mean age = 75.38) and 40 younger adults (mean age = 26.90). The accuracy of EFE identification was calculated for all experimental conditions. Consistent with our hypothesis, the performance of the older group was poorer than that of the younger group in all experimental conditions. Dual-task performance was poorer when the interference occurred during the encoding phase of emotional face processing and when both tasks were of the same nature (i.e., when the experimental condition was more demanding in terms of attention). These results provide empirical evidence of age-related deficits in the identification of emotional facial expressions, which may be partially explained by the impairment of cognitive resources specific to this task. These findings may account for the difficulties experienced by the elderly during social interactions that require the concomitant processing of emotional and environmental information.

  3. Exploring Task- and Student-Related Factors in the Method of Propositional Manipulation (MPM)

    ERIC Educational Resources Information Center

    Leppink, Jimmie; Broers, Nick J.; Imbos, Tjaart; van der Vleuten, Cees P. M.; Berger, Martijn P. F.

    2011-01-01

    The method of propositional manipulation (MPM) aims to help students develop conceptual understanding of statistics by guiding them into self-explaining propositions. To explore task- and student-related factors influencing students' ability to learn from MPM, twenty undergraduate students performed six learning tasks while thinking aloud. The…

  4. Mental fatigue and impaired response processes: event-related brain potentials in a Go/NoGo task.

    PubMed

    Kato, Yuichiro; Endo, Hiroshi; Kizuka, Tomohiro

    2009-05-01

    The effects of mental fatigue on the availability of cognitive resources and associated response-related processes were examined using event-related brain potentials. Subjects performed a Go/NoGo task for 60 min. Reaction time, number of errors, and mental fatigue scores all significantly increased with time spent on the task. The NoGo-P3 amplitude significantly decreased with time on task, but the Go-P3 amplitude was not modulated. The amplitude of error-related negativity (Ne/ERN) also decreased with time on task. These results indicate that mental fatigue attenuates resource allocation and error monitoring for NoGo stimuli. The Go- and NoGo-P3 latencies both increased with time on task, indicative of a delay in stimulus evaluation time due to mental fatigue. NoGo-N2 latency increased with time on task, but NoGo-N2 amplitude was not modulated. The amplitude of response-locked lateralized readiness potential (LRP) significantly decreased with time on task. Mental fatigue appears to slows down the time course of response inhibition, and impairs the intensity of response execution.

  5. Determination of the Relative Uptake of Ground vs. Surface Water by Populus deltoides During Phytoremediation

    Treesearch

    Barton D. Clinton; James M. Vose; Don A. Vroblesky; Gregory J. Harvey

    2004-01-01

    The use of plants to remediate polluted groundwater is becoming an attractive alternative to more expensive traditional techniques. In order to adequately assess the effectiveness of the phytoremediation treatment, a clear understanding of water-use habits by the selected plant species is essential. We examined the relative uptake of surface water (i.e., precipitation...

  6. Linear and non-linear contributions to oxygen transport and utilization during moderate random exercise in humans.

    PubMed

    Beltrame, T; Hughson, R L

    2017-05-01

    What is the central question of this study? The pulmonary oxygen uptake (pV̇O2) data used to study the muscle aerobic system dynamics during moderate-exercise transitions is classically described as a mono-exponential function controlled by a complex interaction of the oxygen delivery-utilization balance. This elevated complexity complicates the acquisition of relevant information regarding aerobic system dynamics based on pV̇O2 data during a varying exercise stimulus. What is the main finding and its importance? The elevated complexity of pV̇O2 dynamics is a consequence of a multiple-order interaction between muscle oxygen uptake and circulatory distortion. Our findings challenge the use of a first-order function to study the influences of the oxygen delivery-utilization balance over the pV̇O2 dynamics. The assumption of aerobic system linearity implies that the pulmonary oxygen uptake (pV̇O2) dynamics during exercise transitions present a first-order characteristic. The main objective of this study was to test the linearity of the oxygen delivery-utilization balance during random moderate exercise. The cardiac output (Q̇) and deoxygenated haemoglobin concentration ([HHb]) were measured to infer the central and local O 2 availability, respectively. Thirteen healthy men performed two consecutive pseudorandom binary sequence cycling exercises followed by an incremental protocol. The system input and the outputs pV̇O2, [HHb] and Q̇ were submitted to frequency-domain analysis. The linearity of the variables was tested by computing the ability of the response at a specific frequency to predict the response at another frequency. The predictability levels were assessed by the coefficient of determination. In a first-order system, a participant who presents faster dynamics at a specific frequency should also present faster dynamics at any other frequency. All experimentally obtained variables (pV̇O2, [HHb] and Q̇) presented a certainly degree of non

  7. Transdural doppler ultrasonography monitors cerebral blood flow changes in relation to motor tasks.

    PubMed

    Hatanaka, Nobuhiko; Tokuno, Hironobu; Nambu, Atsushi; Takada, Masahiko

    2009-04-01

    Monitoring changes in cerebral blood flow in association with neuronal activity has widely been used to evaluate various brain functions. However, current techniques do not directly measure blood flow changes in specified blood vessels. The present study identified arterioles within the cerebral cortex by echoencephalography and color Doppler imaging, and then measured blood flow velocity (BFV) changes in pulsed-wave Doppler mode. We applied this "transdural Doppler ultrasonography (TDD)" to examine BFV changes in the cortical motor-related areas of monkeys during the performance of unimanual (right or left) and bimanual key-press tasks. BFV in the primary motor cortex (MI) was increased in response to contralateral movement. In each of the unimanual and bimanual tasks, bimodal BFV increases related to both the instruction signal and the movement were observed in the supplementary motor area (SMA). Such BFV changes in the SMA were prominent during the early stage of task training and gradually decreased with improvements in task performance, leaving those in the MI unchanged. Moreover, BFV changes in the SMA depended on task difficulty. The present results indicate that TDD is useful for evaluating regional brain functions.

  8. Combustion of bulk titanium in oxygen

    NASA Technical Reports Server (NTRS)

    Clark, A. F.; Moulder, J. C.; Runyan, C. C.

    1975-01-01

    The combustion of bulk titanium in one atmosphere oxygen is studied using laser ignition and several analytical techniques. These were high-speed color cinematography, time and space resolved spectra in the visible region, metallography (including SEM) of specimens quenched in argon gas, X-ray and chemical product analyses, and a new optical technique, the Hilbert transform method. The cinematographic application of this technique for visualizing phase objects in the combustion zone is described. The results indicate an initial vapor phase reaction immediately adjacent to the molten surface but as the oxygen uptake progresses the evaporation approaches the point of congruency and a much reduced evaporation rate. This and the accumulation of the various soluble oxides soon drive the reaction zone below the surface where gas formation causes boiling and ejection of particles. The buildup of rutile cuts off the oxygen supply and the reaction ceases.

  9. Quantification of crew workload imposed by communications-related tasks in commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Acton, W. H.; Crabtree, M. S.; Simons, J. C.; Gomer, F. E.; Eckel, J. S.

    1983-01-01

    Information theoretic analysis and subjective paired-comparison and task ranking techniques were employed in order to scale the workload of 20 communications-related tasks frequently performed by the captain and first officer of transport category aircraft. Tasks were drawn from taped conversations between aircraft and air traffic controllers (ATC). Twenty crewmembers performed subjective message comparisons and task rankings on the basis of workload. Information theoretic results indicated a broad range of task difficulty levels, and substantial differences between captain and first officer workload levels. Preliminary subjective data tended to corroborate these results. A hybrid scale reflecting the results of both the analytical and the subjective techniques is currently being developed. The findings will be used to select representative sets of communications for use in high fidelity simulation.

  10. Response time of mitochondrial oxygen consumption following stepwise changes in cardiac energy demand.

    PubMed

    van Beek, J H; Westerhof, N

    1990-01-01

    We determined the speed with which mitochondrial oxygen consumption and therefore the mitochondrial ATP-synthesis adapted to changes in metabolic demand in the rabbit heart. This was done by measuring the oxygen uptake of the whole heart during a stepwise change in heart rate and correcting for the time taken by diffusion and by convective transport in the blood vessels. Data for the correction for transport time were obtained from the response of venous oxygen concentration to a stepwise change of arterial oxygen concentration. The time constant of the response of mitochondrial oxygen consumption to a step change in heart rate was found to be 4-8 s.

  11. Discrepancy of performance among working memory-related tasks in autism spectrum disorders was caused by task characteristics, apart from working memory, which could interfere with task execution.

    PubMed

    Nakahachi, Takayuki; Iwase, Masao; Takahashi, Hidetoshi; Honaga, Eiko; Sekiyama, Ryuji; Ukai, Satoshi; Ishii, Ryouhei; Ishigami, Wataru; Kajimoto, Osami; Yamashita, Ko; Hashimoto, Ryota; Tanii, Hisashi; Shimizu, Akira; Takeda, Masatoshi

    2006-06-01

    Working memory performance has been inconsistently reported in autism spectrum disorders (ASD). Several studies in ASD have found normal performance in digit span and poor performance in digit symbol task although these are closely related with working memory. It is assumed that poor performance in digit symbol could be explained by confirmatory behavior, which is induced due to the vague memory representation of number-symbol association. Therefore it was hypothesized that the performance of working memory task, in which vagueness did not cause confirmatory behavior, would be normal in ASD. For this purpose, the Advanced Trail Making Test (ATMT) was used. The performance of digit span, digit symbol and ATMT was compared between ASD and normal control. The digit span, digit symbol and ATMT was given to 16 ASD subjects and 28 IQ-, age- and sex-matched control subjects. The scores of these tasks were compared. A significantly lower score for ASD was found only in digit symbol compared with control subjects. There were no significant difference in digit span and working memory estimated by ATMT. Discrepancy of scores among working memory-related tasks was demonstrated in ASD. Poor digit symbol performance, normal digit span and normal working memory in ATMT implied that ASD subjects would be intact in working memory itself, and that superficial working memory dysfunction might be observed due to confirmatory behavior in digit symbol. Therefore, to evaluate working memory in ASD, tasks that could stimulate psychopathology specific to ASD should be avoided.

  12. Increased Tumor Oxygenation and Drug Uptake During Anti-Angiogenic Weekly Low Dose Cyclophosphamide Enhances the Anti-Tumor Effect of Weekly Tirapazamine

    PubMed Central

    Doloff, J.C.; Khan, N.; Ma, J.; Demidenko, E.; Swartz, H.M.; Jounaidi, Y.

    2010-01-01

    Metronomic cyclophosphamide treatment is associated with anti-angiogenic activity and is anticipated to generate exploitable hypoxia using hypoxia-activated prodrugs. Weekly administration of tirapazamine (TPZ; 5 mg/kg body weight i.p.) failed to inhibit the growth of 9L gliosarcoma tumors grown s.c. in scid mice. However, the anti-tumor effect of weekly cyclophosphamide (CPA) treatment (140 mg/kg BW i.p.) was substantially enhanced by weekly TPZ administration. An extended tumor free period and increased frequency of tumor eradication without overt toxicity were observed when TPZ was given 3, 4 or 5 days after each weekly CPA treatment. Following the 2nd CPA injection, Electron Paramagnetic Resonance (EPR) Oximetry indicated significant increases in tumor pO2, starting at 48 hr, which further increased after the 3rd CPA injection. pO2 levels were, however, stable in growing untreated tumors. A strong negative correlation (−0.81) between tumor pO2 and tumor volume during 21 days of weekly CPA chemotherapy was observed, indicating increasing tumor pO2 with decreasing tumor volume. Furthermore, CPA treatment resulted in increased tumor uptake of activated CPA. CPA induced increases in VEGF RNA, which reached a maximum on day 1, and in PLGF RNA which was sustained throughout the treatment, while anti-angiogenic host thrombospondin-1 increased dramatically through day 7 post-CPA treatment. Weekly cyclophosphamide treatment was anticipated to generate exploitable hypoxia. However, our findings suggest that weekly CPA treatment induces a functional improvement of tumor vasculature, which is characterized by increased tumor oxygenation and drug uptake in tumors, thus counter-intuitively, benefiting intratumoral activation of TPZ and perhaps other bioreductive drugs. PMID:19754361

  13. Lrp5 Has a Wnt-Independent Role in Glucose Uptake and Growth for Mammary Epithelial Cells

    PubMed Central

    Chin, Emily N.; Martin, Joshua A.; Kim, Soyoung; Fakhraldeen, Saja A.

    2015-01-01

    Lrp5 is typically described as a Wnt signaling receptor, albeit a less effective Wnt signaling receptor than the better-studied sister isoform, Lrp6. Here we show that Lrp5 is only a minor player in the response to Wnt3a-type ligands in mammary epithelial cells; instead, Lrp5 is required for glucose uptake, and glucose uptake regulates the growth rate of mammary epithelial cells in culture. Thus, a loss of Lrp5 leads to profound growth suppression, whether growth is induced by serum or by specific growth factors, and this inhibition is not due to a loss of Wnt signaling. Depletion of Lrp5 decreases glucose uptake, lactate secretion, and oxygen consumption rates; inhibition of glucose consumption phenocopies the loss of Lrp5 function. Both Lrp5 knockdown and low external glucose induce mitochondrial stress, as revealed by the accumulation of reactive oxygen species (ROS) and the activation of the ROS-sensitive checkpoint, p38α. In contrast, loss of function of Lrp6 reduces Wnt responsiveness but has little impact on growth. This highlights the distinct functions of these two Lrp receptors and an important Wnt ligand-independent role of Lrp5 in glucose uptake in mammary epithelial cells. PMID:26711269

  14. Higher Intelligence Is Associated with Less Task-Related Brain Network Reconfiguration

    PubMed Central

    Cole, Michael W.

    2016-01-01

    the efficiency of these updates in brain network organization is positively related to general intelligence, the ability to perform a wide variety of cognitively challenging tasks well. Specifically, we found that brain network configuration at rest was already closer to a wide variety of task configurations in intelligent individuals. This suggests that the ability to modify network connectivity efficiently when task demands change is a hallmark of high intelligence. PMID:27535904

  15. Influence of low oxygen tensions and sorption to sediment black carbon on biodegradation of pyrene.

    PubMed

    Ortega-Calvo, José-Julio; Gschwend, Philip M

    2010-07-01

    Sorption to sediment black carbon (BC) may limit the aerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in resuspension events and intact sediment beds. We examined this hypothesis experimentally under conditions that were realistic in terms of oxygen concentrations and BC content. A new method, based on synchronous fluorescence observations of (14)C-pyrene, was developed for continuously measuring the uptake of dissolved pyrene by Mycobacterium gilvum VM552, a representative degrader of PAHs. The effect of oxygen and pyrene concentrations on pyrene uptake followed Michaelis-Menten kinetics, resulting in a dissolved oxygen half-saturation constant (K(om)) of 14.1 microM and a dissolved pyrene half-saturation constant (K(pm)) of 6 nM. The fluorescence of (14)C-pyrene in air-saturated suspensions of sediments and induced cells followed time courses that reflected simultaneous desorption and biodegradation of pyrene, ultimately causing a quasi-steady-state concentration of dissolved pyrene balancing desorptive inputs and biodegradation removals. The increasing concentrations of (14)CO(2) in these suspensions, as determined with liquid scintillation, evidenced the strong impact of sorption to BC-rich sediments on the biodegradation rate. Using the best-fit parameter values, we integrated oxygen and sorption effects and showed that oxygen tensions far below saturation levels in water are sufficient to enable significant decreases in the steady-state concentrations of aqueous-phase pyrene. These findings may be relevant for bioaccumulation scenarios that consider the effect of sediment resuspension events on exposure to water column and sediment pore water, as well as the direct uptake of PAHs from sediments.

  16. Effect of simulated commercial flight on oxygenation in patients with interstitial lung disease and chronic obstructive pulmonary disease

    PubMed Central

    Seccombe, L; Kelly, P; Wong, C; Rogers, P; Lim, S; Peters, M

    2004-01-01

    Background: Commercial aircraft cabins provide a hostile environment for patients with underlying respiratory disease. Although there are algorithms and guidelines for predicting in-flight hypoxaemia, these relate to chronic obstructive pulmonary disease (COPD) and data for interstitial lung disease (ILD) are lacking. The purpose of this study was to evaluate the effect of simulated cabin altitude on subjects with ILD at rest and during a limited walking task. Methods: Fifteen subjects with ILD and 10 subjects with COPD were recruited. All subjects had resting arterial oxygen pressure (PaO2) of >9.3 kPa. Subjects breathed a hypoxic gas mixture containing 15% oxygen with balance nitrogen for 20 minutes at rest followed by a 50 metre walking task. Pulse oximetry (SpO2) was monitored continuously with testing terminated if levels fell below 80%. Arterial blood gas tensions were taken on room air at rest and after the resting and exercise phases of breathing the gas mixture. Results: In both groups there was a statistically significant decrease in arterial oxygen saturation (SaO2) and PaO2 from room air to 15% oxygen at rest and from 15% oxygen at rest to the completion of the walking task. The ILD group differed significantly from the COPD group in resting 15% oxygen SaO2, PaO2, and room air pH. Means for both groups fell below recommended levels at both resting and when walking on 15% oxygen. Conclusion: Even in the presence of acceptable arterial blood gas tensions at sea level, subjects with both ILD and COPD fall below recommended levels of oxygenation when cabin altitude is simulated. This is exacerbated by minimal exercise. Resting sea level arterial blood gas tensions are similarly poor in both COPD and ILD for predicting the response to simulated cabin altitude. PMID:15516473

  17. Task-Related Deactivation and Functional Connectivity of the Subgenual Cingulate Cortex in Major Depressive Disorder

    PubMed Central

    Davey, Christopher G.; Yücel, Murat; Allen, Nicholas B.; Harrison, Ben J.

    2012-01-01

    Background: Major depressive disorder is associated with functional alterations in activity and resting-state connectivity of the extended medial frontal network. In this study we aimed to examine how task-related medial network activity and connectivity were affected in depression. Methods: 18 patients with major depressive disorder, aged 15- to 24-years-old, were matched with 19 healthy control participants. We characterized task-related activations and deactivations while participants engaged with an executive-control task (the multi-source interference task, MSIT). We used a psycho-physiological interactions approach to examine functional connectivity changes with subgenual anterior cingulate cortex. Voxel-wise statistical maps for each analysis were compared between the patient and control groups. Results: There were no differences between groups in their behavioral performances on the MSIT task, and nor in patterns of activation and deactivation. Assessment of functional connectivity with the subgenual cingulate showed that depressed patients did not demonstrate the same reduction in functional connectivity with the ventral striatum during task performance, but that they showed greater reduction in functional connectivity with adjacent ventromedial frontal cortex. The magnitude of this latter connectivity change predicted the relative activation of task-relevant executive-control regions in depressed patients. Conclusion: The study reinforces the importance of the subgenual cingulate cortex for depression, and demonstrates how dysfunctional connectivity with ventral brain regions might influence executive–attentional processes. PMID:22403553

  18. Decoupling of reaction time-related default mode network activity with cognitive demand.

    PubMed

    Barber, Anita D; Caffo, Brian S; Pekar, James J; Mostofsky, Stewart H

    2017-06-01

    Reaction Time (RT) is associated with increased amplitude of the Blood Oxygen-Level Dependent (BOLD) response in task positive regions. Few studies have focused on whether opposing RT-related suppression of task activity also occurs. The current study used two Go/No-go tasks with different cognitive demands to examine regions that showed greater BOLD suppression for longer RT trials. These RT-related suppression effects occurred within the DMN and were task-specific, localizing to separate regions for the two tasks. In the task requiring working memory, RT-related de-coupling of the DMN occurred. This was reflected by opposing RT-BOLD effects for different DMN regions, as well as by reduced positive RT-related Psycho-Physiological Interaction (PPI) connectivity within the DMN and a lack of negative RT-related PPI connectivity between DMN and task positive regions. The results suggest that RT-related DMN suppression is task-specific. RT-related de-coupling of the DMN with more complex task demands may contribute to lapses of attention and performance decrements that occur during cognitively-demanding tasks.

  19. Cross-language activation of morphological relatives in cognates: the role of orthographic overlap and task-related processing

    PubMed Central

    Mulder, Kimberley; Dijkstra, Ton; Baayen, R. Harald

    2015-01-01

    We considered the role of orthography and task-related processing mechanisms in the activation of morphologically related complex words during bilingual word processing. So far, it has only been shown that such morphologically related words (i.e., morphological family members) are activated through the semantic and morphological overlap they share with the target word. In this study, we investigated family size effects in Dutch-English identical cognates (e.g., tent in both languages), non-identical cognates (e.g., pil and pill, in English and Dutch, respectively), and non-cognates (e.g., chicken in English). Because of their cross-linguistic overlap in orthography, reading a cognate can result in activation of family members both languages. Cognates are therefore well-suited for studying mechanisms underlying bilingual activation of morphologically complex words. We investigated family size effects in an English lexical decision task and a Dutch-English language decision task, both performed by Dutch-English bilinguals. English lexical decision showed a facilitatory effect of English and Dutch family size on the processing of English-Dutch cognates relative to English non-cognates. These family size effects were not dependent on cognate type. In contrast, for language decision, in which a bilingual context is created, Dutch and English family size effects were inhibitory. Here, the combined family size of both languages turned out to better predict reaction time than the separate family size in Dutch or English. Moreover, the combined family size interacted with cognate type: the response to identical cognates was slowed by morphological family members in both languages. We conclude that (1) family size effects are sensitive to the task performed on the lexical items, and (2) depend on both semantic and formal aspects of bilingual word processing. We discuss various mechanisms that can explain the observed family size effects in a spreading activation framework

  20. Cross-lagged relations between teacher and parent ratings of children's task avoidance and different literacy skills.

    PubMed

    Georgiou, George K; Hirvonen, Riikka; Manolitsis, George; Nurmi, Jari-Erik

    2017-09-01

    Task avoidance is a significant predictor of literacy skills. However, it remains unclear whether the relation between the two is reciprocal and whether it is affected by the type of literacy outcome, who is rating children's task avoidance, and the children's gender. The purpose of this longitudinal study was to examine the cross-lagged relations between teacher and parent ratings of children's task avoidance and different literacy skills. One hundred and seventy-two Greek children (91 girls, 81 boys) were followed from Grade 1 to Grade 3. Children were assessed on reading accuracy, reading fluency, and spelling to dictation. Parents and teachers rated the children's task-avoidant behaviour. Results of structural equation modelling showed that the cross-lagged relations varied as a function of the literacy outcome, who rated the children's task avoidance, and children's gender. Earlier reading and spelling performance predicted subsequent parent-rated task avoidance, but parent-rated task avoidance did not predict subsequent reading and spelling performance (with the exception of spelling in Grade 3). Teacher-rated task avoidance and reading fluency/spelling had a reciprocal relationship over time. In addition, the effects of teacher-rated task avoidance on future spelling were significantly stronger in boys than in girls. This suggests that poor reading and spelling performance can lead to subsequent task avoidance in both classroom and home situations. The fact that task avoidance permeates across different learning environments is alarming and calls for joint action from both parents and teachers to mitigate its negative impact on learning. © 2017 The British Psychological Society.

  1. Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses.

    PubMed

    Stephen, Emily P; Lepage, Kyle Q; Eden, Uri T; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S; Guenther, Frank H; Kramer, Mark A

    2014-01-01

    The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty-both in the functional network edges and the corresponding aggregate measures of network topology-are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here-appropriate for static and dynamic network inference and different statistical measures of coupling-permits the evaluation of confidence in network measures in a variety of settings common to neuroscience.

  2. Age-related processing strategies and go–nogo effects in task-switching: an ERP study

    PubMed Central

    Gaál, Zsófia A.; Czigler, István

    2015-01-01

    We studied cognitive and age-related changes in three task-switching (TS) paradigms: (1) informatively cued TS with go stimuli, (2) informatively cued TS with go and nogo stimuli, (3) non-informatively cued TS with go and nogo stimuli. This design allowed a direct comparison, how informative and non-informative cues influenced preparatory processes, and how nogo stimuli changed the context of the paradigm and cognitive processing in different aging groups. Beside the behavioral measures [reaction time (RT), error rate], event-related potentials (ERPs) were registered to the cue and target stimuli in young (N = 39, mean age = 21.6 ± 1.6 years) and older (N = 40, mean age = 65.7 ± 3.2 years) adults. The results provide evidence for declining performance in the older group: they had slower RT, less hits, more erroneous responses, higher mixing costs and decreased amplitude of ERP components than the participants of the younger group. In the task without the nogo stimuli young adults kept the previous task-set active that could be seen in shorter RT and larger amplitude of cue-locked late positivity (P3b) in task repeat (TR) trials compared to task switch trials. If both go and nogo stimuli were presented, similar RTs and P3b amplitudes appeared in the TR and TS trials. In the complex task situations older adults did not evolve an appropriate task representation and task preparation, as indicated by the lack of cue-locked P3b, CNV, and target-locked P3b. We conclude that young participants developed explicit representation of task structures, but the presence of nogo stimuli had marked effects on such representation. On the other hand, older people used only implicit control strategy to solve the task, hence the basic difference between the age groups was their strategy of task execution. PMID:26029072

  3. The Effect of Visual Task Difficulty on the Fixation-Related Lambda Response

    DTIC Science & Technology

    2018-02-01

    than limiting eye movements in experimental paradigms. The lambda response, a prominent neural signature of the fixation-related potential, has been...release; distribution is unlimited. v List of Figures Fig. 1 Task layout. The left image shows the layout of the experimental environment while a...on an invisible 7 × 7 grid. Fig. 1 Task layout. The left image shows the layout of the experimental environment while a participant performs the

  4. Oxygen Uptake Kinetics Is Slower in Swimming Than Arm Cranking and Cycling during Heavy Intensity

    PubMed Central

    Sousa, Ana; Borrani, Fabio; Rodríguez, Ferran A.; Millet, Grégoire P.

    2017-01-01

    Oxygen uptake (V·O2) kinetics has been reported to be influenced by the activity mode. However, only few studies have compared V·O2 kinetics between activities in the same subjects in which they were equally trained. Therefore, this study compared the V·O2 kinetics response to swimming, arm cranking, and cycling within the same group of subjects within the heavy exercise intensity domain. Ten trained male triathletes (age 23.2 ± 4.5 years; height 180.8 ± 8.3 cm; weight 72.3 ± 6.6 kg) completed an incremental test to exhaustion and a 6-min heavy constant-load test in the three exercise modes in random order. Gas exchange was measured by a breath-by-breath analyzer and the on-transient V·O2 kinetics was modeled using bi-exponential functions. V·O2peak was higher in cycling (65.6 ± 4.0 ml·kg−1·min−1) than in arm cranking or swimming (48.7 ± 8.0 and 53.0 ± 6.7 ml·kg−1·min−1; P < 0.01), but the V·O2 kinetics were slower in swimming (τ1 = 31.7 ± 6.2 s) than in arm cranking (19.3 ± 4.2 s; P = 0.001) and cycling (12.4 ± 3.7 s; P = 0.001). The amplitude of the primary component was lower in both arm cranking and swimming (21.9 ± 4.7 and 28.4 ± 5.1 ml·kg−1·min−1) compared with cycling (39.4 ± 4.1 ml·kg−1·min−1; P = 0.001). Although the gain of the primary component was higher in arm cranking compared with cycling (15.3 ± 4.2 and 10.7 ± 1.3 ml·min−1·W−1; P = 0.02), the slow component amplitude, in both absolute and relative terms, did not differ between exercise modes. The slower V·O2 kinetics during heavy-intensity swimming is exercise-mode dependent. Besides differences in muscle mass and greater type II muscle fibers recruitment, the horizontal position adopted and the involvement of trunk and lower-body stabilizing muscles could be additional mechanisms that explain the differences between exercise modalities. PMID:28919863

  5. Root attributes affecting water uptake of rice (Oryza sativa) under drought

    PubMed Central

    Henry, Amelia

    2012-01-01

    Lowland rice roots have a unique physiological response to drought because of their adaptation to flooded soil. Rice root attributes that facilitate growth under flooded conditions may affect rice response to drought, but the relative roles of root structural and functional characteristics for water uptake under drought in rice are not known. Morphological, anatomical, biochemical, and molecular attributes of soil-grown rice roots were measured to investigate the genotypic variability and genotype×environment interactions of water uptake under variable soil water regimes. Drought-resistant genotypes had the lowest night-time bleeding rates of sap from the root system in the field. Diurnal fluctuation predominated as the strongest source of variation for bleeding rates in the field and root hydraulic conductivity (Lp r) in the greenhouse, and was related to expression trends of various PIP and TIP aquaporins. Root anatomy was generally more responsive to drought treatments in drought-resistant genotypes. Suberization and compaction of sclerenchyma layer cells decreased under drought, whereas suberization of the endodermis increased, suggesting differential roles of these two cell layers for the retention of oxygen under flooded conditions (sclerenchyma layer) and retention of water under drought (endodermis). The results of this study point to the genetic variability in responsiveness to drought of rice roots in terms of morphology, anatomy, and function. PMID:22791828

  6. Effects of hyperoxia on 18F-fluoro-misonidazole brain uptake and tissue oxygen tension following middle cerebral artery occlusion in rodents: Pilot studies

    PubMed Central

    Jensen-Kondering, Ulf; Williamson, David J.; Sitnikov, Sergey; Sawiak, Stephen J.; Aigbirhio, Franklin I.; Hong, Young T.

    2017-01-01

    Purpose Mapping brain hypoxia is a major goal for stroke diagnosis, pathophysiology and treatment monitoring. 18F-fluoro-misonidazole (FMISO) positron emission tomography (PET) is the gold standard hypoxia imaging method. Normobaric hyperoxia (NBO) is a promising therapy in acute stroke. In this pilot study, we tested the straightforward hypothesis that NBO would markedly reduce FMISO uptake in ischemic brain in Wistar and spontaneously hypertensive rats (SHRs), two rat strains with distinct vulnerability to brain ischemia, mimicking clinical heterogeneity. Methods Thirteen adult male rats were randomized to distal middle cerebral artery occlusion under either 30% O2 or 100% O2. FMISO was administered intravenously and PET data acquired dynamically for 3hrs, after which magnetic resonance imaging (MRI) and tetrazolium chloride (TTC) staining were carried out to map the ischemic lesion. Both FMISO tissue uptake at 2-3hrs and FMISO kinetic rate constants, determined based on previously published kinetic modelling, were obtained for the hypoxic area. In a separate group (n = 9), tissue oxygen partial pressure (PtO2) was measured in the ischemic tissue during both control and NBO conditions. Results As expected, the FMISO PET, MRI and TTC lesion volumes were much larger in SHRs than Wistar rats in both the control and NBO conditions. NBO did not appear to substantially reduce FMISO lesion size, nor affect the FMISO kinetic rate constants in either strain. Likewise, MRI and TTC lesion volumes were unaffected. The parallel study showed the expected increases in ischemic cortex PtO2 under NBO, although these were small in some SHRs with very low baseline PtO2. Conclusions Despite small samples, the apparent lack of marked effects of NBO on FMISO uptake suggests that in permanent ischemia the cellular mechanisms underlying FMISO trapping in hypoxic cells may be disjointed from PtO2. Better understanding of FMISO trapping processes will be important for future applications

  7. Effects of hyperoxia on 18F-fluoro-misonidazole brain uptake and tissue oxygen tension following middle cerebral artery occlusion in rodents: Pilot studies.

    PubMed

    Fryer, Tim D; Ejaz, Sohail; Jensen-Kondering, Ulf; Williamson, David J; Sitnikov, Sergey; Sawiak, Stephen J; Aigbirhio, Franklin I; Hong, Young T; Baron, Jean-Claude

    2017-01-01

    Mapping brain hypoxia is a major goal for stroke diagnosis, pathophysiology and treatment monitoring. 18F-fluoro-misonidazole (FMISO) positron emission tomography (PET) is the gold standard hypoxia imaging method. Normobaric hyperoxia (NBO) is a promising therapy in acute stroke. In this pilot study, we tested the straightforward hypothesis that NBO would markedly reduce FMISO uptake in ischemic brain in Wistar and spontaneously hypertensive rats (SHRs), two rat strains with distinct vulnerability to brain ischemia, mimicking clinical heterogeneity. Thirteen adult male rats were randomized to distal middle cerebral artery occlusion under either 30% O2 or 100% O2. FMISO was administered intravenously and PET data acquired dynamically for 3hrs, after which magnetic resonance imaging (MRI) and tetrazolium chloride (TTC) staining were carried out to map the ischemic lesion. Both FMISO tissue uptake at 2-3hrs and FMISO kinetic rate constants, determined based on previously published kinetic modelling, were obtained for the hypoxic area. In a separate group (n = 9), tissue oxygen partial pressure (PtO2) was measured in the ischemic tissue during both control and NBO conditions. As expected, the FMISO PET, MRI and TTC lesion volumes were much larger in SHRs than Wistar rats in both the control and NBO conditions. NBO did not appear to substantially reduce FMISO lesion size, nor affect the FMISO kinetic rate constants in either strain. Likewise, MRI and TTC lesion volumes were unaffected. The parallel study showed the expected increases in ischemic cortex PtO2 under NBO, although these were small in some SHRs with very low baseline PtO2. Despite small samples, the apparent lack of marked effects of NBO on FMISO uptake suggests that in permanent ischemia the cellular mechanisms underlying FMISO trapping in hypoxic cells may be disjointed from PtO2. Better understanding of FMISO trapping processes will be important for future applications of FMISO imaging.

  8. XPS study of the effect of hydrocarbon contamination on polytetrafluoroethylene (teflon) exposed to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore; Cormia, Robert D.

    1991-01-01

    The presence of hydrocarbon contamination on the surface of polytetrafluoroethylene (PTFE) markedly affects the oxygen uptake, and hence the wettability, of this polymer when exposed to an oxygen plasma. As revealed by X-ray photoelectron spectroscopy (XPS) analysis, the oxygen-to-carbon ratio (O/C) for such a polymer can increase sharply, and correspondingly the fluorine-to-carbon ratio (F/C) can decrease sharply, at very short exposure times; at longer times, however, such changes in the O/C and F/C ratios reverse direction, and these ratios then assume values similar to those of the unexposed PTFE. The greater the extent of hydrocarbon contamination in the PTFE, the larger are the amplitudes of the 'spikes' in the O/C- and F/C-exposure time plots. In contrast, a pristine PTFE experiences a very small, monotonic increase of surface oxidation or O/C ratio with time of exposure to oxygen atoms, while the F/C ratio is virtually unchanged from that of the unexposed polymer (2.0). Unless the presence of adventitious hydrocarbon is taken into account, anomalous surface properties relating to polymer adhesion may be improperly ascribed to PTFE exposed to an oxygen plasma.

  9. Phytoplankton productivity, respiration, and nutrient uptake and regeneration in the Potomac River, August 1977 - August 1978

    USGS Publications Warehouse

    Cole, B.E.; Harmon, D.D.

    1981-01-01

    Rates of phytoplankton productivity, respiration, and nutrient uptake and regeneration are presented. These observations were made on the Potomac River estuary (POTE) during four cruises between August 1977 and August 1978. Four experimental methods were used: carbon uptake using carbon-14, carbon uptake and respiration by a pH method, productivity and respiration by the dissolved oxygen method, and nutrient (NH4+, NO3-, NO2-, PO4=, and SiO2=) uptake and regeneration by colorimetry. The experiments were made at sites representative of conditions in four principal reaches of the tidal Potomac River estuary: near the mouth, seaward of the summer nutrient and phytoplankton maximum, near the region of maximum phytoplankton standing stock , and near the maximum anthropogenic nutrient source. (USGS)

  10. Peak oxygen uptake, ventilatory efficiency and QRS-duration predict event free survival in patients late after surgical repair of tetralogy of Fallot.

    PubMed

    Müller, Jan; Hager, Alfred; Diller, Gerhard-Paul; Derrick, Graham; Buys, Roselien; Dubowy, Karl-Otto; Takken, Tim; Orwat, Stefan; Inuzuka, Ryo; Vanhees, Luc; Gatzoulis, Michael; Giardini, Alessandro

    2015-10-01

    Patients with repaired tetralogy of Fallot (ToF) have an increased long-term risk of cardiovascular morbidity and mortality. Risk stratification in this population is difficult. Initial evidence suggests that cardiopulmonary exercise testing (CPET) may be helpful to risk-stratify patients with repaired ToF. We studied 875 patients after surgical repair for ToF (358 females, age 25.5 ± 11.7 year, range 7-75 years) who underwent CPET between 1999 and 2009. During a mean follow-up of 4.1 ± 2.6 years after CPET, 30 patients (3.4%) died or had sustained ventricular tachycardia (VT). 225 patients (25.7%) had other cardiac related events (emergency admission, surgery, or catheter interventions). On multivariable Cox regression-analysis, %predicted peak oxygen uptake (V˙O2 %) (p=0.001), resting QRS duration (p=0.030) and age (p<0.001) emerged as independent predictors of mortality or sustained VT. Patients with a peak V˙O2 ≤ 65% of predicted and a resting QRS duration ≥ 170 ms had a 11.4-fold risk of death or sustained VT. Ventilatory efficiency expressed as V˙E/V˙CO2 slope (p<0.001), peak V˙O2 % (p=.001), QRS duration (p=.001) and age (p=0.046) independently predicted event free survival. V˙E/V˙CO2 slope ≥ 31.0, peak V˙O2 % ≤ 65% and QRS duration ≥ 170 ms were the cut-off points with best sensitivity and specificity to detect an unfavorable outcome. CPET is an important predictive tool that may assist in the risk stratification of patients with ToF. Subjects with a poor exercise capacity in addition to a prolonged QRS duration have a substantially increased risk for death or sustained ventricular tachycardia, as well as for cardiac-related hospitalizations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Age- and sex-related disturbance in a battery of sensorimotor and cognitive tasks in Kunming mice.

    PubMed

    Chen, Gui-Hai; Wang, Yue-Ju; Zhang, Li-Qun; Zhou, Jiang-Ning

    2004-12-15

    A battery of tasks, i.e. beam walking, open field, tightrope, radial six-arm water maze (RAWM), novel-object recognition and olfactory discrimination, was used to determine whether there was age- and sex-related memory deterioration in Kunming (KM) mice, and whether these tasks are independent or correlated with each other. Two age groups of KM mice were used: a younger group (7-8 months old, 12 males and 11 females) and an older group (17-18 months old, 12 males and 12 females). The results showed that the spatial learning ability and memory in the RAWM were lower in older female KM mice relative to younger female mice and older male mice. Consistent with this, in the novel-object recognition task, a non-spatial cognitive task, older female mice but not older male mice had impairment of short-term memory. In olfactory discrimination, another non-spatial task, the older mice retained this ability. Interestingly, female mice performed better than males, especially in the younger group. The older females exhibited sensorimotor impairment in the tightrope task and low locomotor activity in the open-field task. Moreover, older mice spent a longer time in the peripheral squares of the open-field than younger ones. The non-spatial cognitive performance in the novel-object recognition and olfactory discrimination tasks was related to performance in the open-field, whereas the spatial cognitive performance in the RAWM was not related to performance in any of the three sensorimotor tasks. These results suggest that disturbance of spatial learning and memory, as well as selective impairment of non-spatial learning and memory, existed in older female KM mice.

  12. Identification of Tasks in Home Economics Related Occupations: Food Service.

    ERIC Educational Resources Information Center

    Iowa State Univ. of Science and Technology, Ames. Dept. of Home Economics Education.

    The study was made to obtain curriculum development data for food service education programs below the baccalaureate level. Tasks related to the job functions of service, production, sanitation/safety, menu planning, procurement, supervision, and management were studied for five job categories of full-time personnel: middle-level service,…

  13. Experimental study of moisture uptake of polyurethane foam subjected to a heat sink below 30 K

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Chen, J. Y.; Gan, Z. H.; Qiu, L. M.; Zhang, K. H.; Yang, R. P.; Ma, X. J.; Liu, Z. H.

    2014-01-01

    Rigid closed-cell foam is widely used to thermally insulate liquid hydrogen and oxygen tanks of space launch vehicles due to its lightweight, mechanical strength and thermal-insulating performance. Up to now, little information is available on the intrusion of moisture into the foam that subjects one side to liquid hydrogen temperatures and the other side to room temperatures and high relative humidity. A novel cryogenic moisture uptake apparatus has been designed and fabricated to measure the moisture uptake into the polyurethane foam. For safety and convenience, two identical single-stage pulse tube cryocoolers instead of liquid hydrogen are used to cool one side of the foam specimen to the lowest temperature of 26 K. Total of eight specimens in three groups, according to whether there is a butt-joint or weathering period, are tested respectively for both 5 h and 9 h. The additional weight due to moisture uptake of the foam for the 26 K cases is compared to previous measurements at 79 K. The results are instructive for the applications of foam to the insulation of liquid hydrogen tanks in space launch vehicles.

  14. Deficits of long-term memory in ecstasy users are related to cognitive complexity of the task.

    PubMed

    Brown, John; McKone, Elinor; Ward, Jeff

    2010-03-01

    Despite animal evidence that methylenedioxymethamphetamine (ecstasy) causes lasting damage in brain regions related to long-term memory, results regarding human memory performance have been variable. This variability may reflect the cognitive complexity of the memory tasks. However, previous studies have tested only a limited range of cognitive complexity. Furthermore, comparisons across different studies are made difficult by regional variations in ecstasy composition and patterns of use. The objective of this study is to evaluate ecstasy-related deficits in human verbal memory over a wide range of cognitive complexity using subjects drawn from a single geographical population. Ecstasy users were compared to non-drug using controls on verbal tasks with low cognitive complexity (stem completion), moderate cognitive complexity (stem-cued recall and word list learning) and high cognitive complexity (California Verbal Learning Test, Verbal Paired Associates and a novel Verbal Triplet Associates test). Where significant differences were found, both groups were also compared to cannabis users. More cognitively complex memory tasks were associated with clearer ecstasy-related deficits than low complexity tasks. In the most cognitively demanding task, ecstasy-related deficits remained even after multiple learning opportunities, whereas the performance of cannabis users approached that of non-drug using controls. Ecstasy users also had weaker deliberate strategy use than both non-drug and cannabis controls. Results were consistent with the proposal that ecstasy-related memory deficits are more reliable on tasks with greater cognitive complexity. This could arise either because such tasks require a greater contribution from the frontal lobe or because they require greater interaction between multiple brain regions.

  15. Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex.

    PubMed

    Lin, Ai-Ling; Fox, Peter T; Hardies, Jean; Duong, Timothy Q; Gao, Jia-Hong

    2010-05-04

    The purpose of this study was to investigate activation-induced hypermetabolism and hyperemia by using a multifrequency (4, 8, and 16 Hz) reversing-checkerboard visual stimulation paradigm. Specifically, we sought to (i) quantify the relative contributions of the oxidative and nonoxidative metabolic pathways in meeting the increased energy demands [i.e., ATP production (J(ATP))] of task-induced neuronal activation and (ii) determine whether task-induced cerebral blood flow (CBF) augmentation was driven by oxidative or nonoxidative metabolic pathways. Focal increases in CBF, cerebral metabolic rate of oxygen (CMRO(2); i.e., index of aerobic metabolism), and lactate production (J(Lac); i.e., index of anaerobic metabolism) were measured by using physiologically quantitative MRI and spectroscopy methods. Task-induced increases in J(ATP) were small (12.2-16.7%) at all stimulation frequencies and were generated by aerobic metabolism (approximately 98%), with %DeltaJ(ATP) being linearly correlated with the percentage change in CMRO(2) (r = 1.00, P < 0.001). In contrast, task-induced increases in CBF were large (51.7-65.1%) and negatively correlated with the percentage change in CMRO(2) (r = -0.64, P = 0.024), but positively correlated with %DeltaJ(Lac) (r = 0.91, P < 0.001). These results indicate that (i) the energy demand of task-induced brain activation is small (approximately 15%) relative to the hyperemic response (approximately 60%), (ii) this energy demand is met through oxidative metabolism, and (iii) the CBF response is mediated by factors other than oxygen demand.

  16. A model study of warming-induced phosphorus-oxygen feedbacks in open-ocean oxygen minimum zones on millennial timescales

    NASA Astrophysics Data System (ADS)

    Niemeyer, Daniela; Kemena, Tronje P.; Meissner, Katrin J.; Oschlies, Andreas

    2017-05-01

    Observations indicate an expansion of oxygen minimum zones (OMZs) over the past 50 years, likely related to ongoing deoxygenation caused by reduced oxygen solubility, changes in stratification and circulation, and a potential acceleration of organic matter turnover in a warming climate. The overall area of ocean sediments that are in direct contact with low-oxygen bottom waters also increases with expanding OMZs. This leads to a release of phosphorus from ocean sediments. If anthropogenic carbon dioxide emissions continue unabated, higher temperatures will cause enhanced weathering on land, which, in turn, will increase the phosphorus and alkalinity fluxes into the ocean and therefore raise the ocean's phosphorus inventory even further. A higher availability of phosphorus enhances biological production, remineralisation and oxygen consumption, and might therefore lead to further expansions of OMZs, representing a positive feedback. A negative feedback arises from the enhanced productivity-induced drawdown of carbon and also increased uptake of CO2 due to weathering-induced alkalinity input. This feedback leads to a decrease in atmospheric CO2 and weathering rates. Here, we quantify these two competing feedbacks on millennial timescales for a high CO2 emission scenario. Using the University of Victoria (UVic) Earth System Climate Model of intermediate complexity, our model results suggest that the positive benthic phosphorus release feedback has only a minor impact on the size of OMZs in the next 1000 years. The increase in the marine phosphorus inventory under assumed business-as-usual global warming conditions originates, on millennial timescales, almost exclusively (> 80 %) from the input via terrestrial weathering and causes a 4- to 5-fold expansion of the suboxic water volume in the model.

  17. Uptake of VOC by sunflower

    NASA Astrophysics Data System (ADS)

    Folkers, A.; Miebach, M.; Kleist, E.; Wildt, J.

    2003-04-01

    To study potential VOC uptake by plants we exposed sunflower (Helianthus annuus) to different VOC in continuously stirred tank reactors. For many VOC like methanol, ethanol, acetone, methylvinylketone, isoprene or limonene no uptake was detectable within the accuracy of our analytic set up. Other VOC like hexanal, octanal, (E)-3-hexenol and nopinone were taken up by sunflower. The uptake was related to stomatal aperture. Obviously, these VOC enter the plants through stomata. In case of hexanal, octanal, and (E)-3-hexenol the uptake was only limited by stomatal aperture implying that these VOC are rapidly metabolised. For nopinone the uptake seems to be limited by a slow metabolization. Estimations of deposition velocities showed that dry deposition of these compounds cannot be neglected as sink if diffusion through stomata is the limiting step for dry deposition. In such cases the lifetime with respect to dry deposiotion is comparable to the lifetime with respect to oxidation by hydroxyl radicals.

  18. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations.

    PubMed

    Rubio, Francisco; Nieves-Cordones, Manuel; Alemán, Fernando; Martínez, Vicente

    2008-12-01

    The relative contribution of the high-affinity K(+) transporter AtHAK5 and the inward rectifier K(+) channel AtAKT1 to K(+) uptake in the high-affinity range of concentrations was studied in Arabidopsis thaliana ecotype Columbia (Col-0). The results obtained with wild-type lines, with T-DNA insertion in both genes and specific uptake inhibitors, show that AtHAK5 and AtAKT1 mediate the NH4+-sensitive and the Ba(2+)-sensitive components of uptake, respectively, and that they are the two major contributors to uptake in the high-affinity range of Rb(+) concentrations. Using Rb(+) as a K(+) analogue, it was shown that AtHAK5 mediates absorption at lower Rb(+) concentrations than AtAKT1 and depletes external Rb(+) to values around 1 muM. Factors such as the presence of K(+) or NH4+ during plant growth determine the relative contribution of each system. The presence of NH4+ in the growth solution inhibits the induction of AtHAK5 by K(+) starvation. In K(+)-starved plants grown without NH4+, both systems are operative, but when NH4+ is present in the growth solution, AtAKT1 is probably the only system mediating Rb(+) absorption, and the capacity of the roots to deplete Rb(+) is reduced.

  19. Formal Derivation of Lotka-Volterra-Haken Amplitude Equations of Task-Related Brain Activity in Multiple, Consecutively Performed Tasks

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    The Lotka-Volterra-Haken equations have been frequently used in ecology and pattern formation. Recently, the equations have been proposed by several research groups as amplitude equations for task-related patterns of brain activity. In this theoretical study, the focus is on the circular causality aspect of pattern formation systems as formulated within the framework of synergetics. Accordingly, the stable modes of a pattern formation system inhibit the unstable modes, whereas the unstable modes excite the stable modes. Using this circular causality principle it is shown that under certain conditions the Lotka-Volterra-Haken amplitude equations can be derived from a general model of brain activity akin to the Wilson-Cowan model. The model captures the amplitude dynamics for brain activity patterns in experiments involving several consecutively performed multiple-choice tasks. This is explicitly demonstrated for two-choice tasks involving grasping and walking. A comment on the relevance of the theoretical framework for clinical psychology and schizophrenia is given as well.

  20. Parenting behavior dimensions and child psychopathology: specificity, task dependency, and interactive relations.

    PubMed

    Caron, Annalise; Weiss, Bahr; Harris, Vicki; Catron, Tom

    2006-02-01

    This study examined the specificity of relations between parent or caregiver behaviors and childhood internalizing and externalizing problems in a sample of 70 fourth-grade children (64% boys, M age = 9.7 years). Specificity was assessed via (a) unique effects, (b) differential effects, and (c) interactive effects. When measured as unique and differential effects, specificity was not found for warmth or psychological control but was found for caregiver's use of behavior control. Higher levels of behavior control were uniquely related to lower levels of externalizing problems and higher levels of internalizing problems; differential effects analyses indicated that higher levels of behavior control were related to decreases in the within-child difference in relative levels of level of internalizing versus externalizing problems. Interactive relations among the 3 parenting behavior dimensions also were identified. Although caregivers emphasized different parenting behavior dimensions across 2 separate caregiver-child interaction tasks, relations between parenting behavior dimensions and child psychopathology did not vary as a function of task. These findings indicate the importance of assessing and simultaneously analyzing multiple parenting behavior dimensions and multiple child psychopathology domains.

  1. Effect of hemoglobin polymerization on oxygen transport in hemoglobin solutions.

    PubMed

    Budhiraja, Vikas; Hellums, J David

    2002-09-01

    The effect of hemoglobin (Hb) polymerization on facilitated transport of oxygen in a bovine hemoglobin-based oxygen carrier was studied using a diffusion cell. In high oxygen tension gradient experiments (HOTG) at 37 degrees C the diffusion of dissolved oxygen in polymerized Hb samples was similar to that in unpolymerized Hb solutions during oxygen uptake. However, in the oxygen release experiments, the transport by diffusion of dissolved oxygen was augmented by diffusion of oxyhemoglobin over a range of oxygen saturations. The augmentation was up to 30% in the case of polymerized Hb and up to 100% in the case of unpolymerized Hb solution. In experiments performed at constant, low oxygen tension gradients in the range of physiological significance, the augmentation effect was less than that in the HOTG experiments. Oxygen transport in polymerized Hb samples was approximately the same as that in unpolymerized samples over a wide range of oxygen tensions. However, at oxygen tensions lower than 30 mm Hg, there were more significant augmentation effects in unpolymerized bovine Hb samples than in polymerized Hb. The results presented here are the first accurate, quantitative measurements of effective diffusion coefficients for oxygen transport in hemoglobin-based oxygen carriers of the type being evaluated to replace red cells in transfusions. In all cases the oxygen carrier was found to have higher effective oxygen diffusion coefficients than blood.

  2. Modification of the Fox method to predict maximum oxygen uptake in female university students of Kolkata, India.

    PubMed

    Bandyopadhyay, Amit

    2011-12-01

    The present study was aimed to develop a simple method, i.e. the modified Fox test protocol (MFT) to predict VO2(max) in female sedentary university students of Kolkata, India. One hundred and eleven (111) healthy untrained female students of the University of Calcutta (mean age, body height and body mass of 22.76 ± 1.72 years, 163.52 ± 4.70 cm and 53.03 ± 3.78 kg, respectively) were randomly sampled for the study. They were further randomly divided into the study group (n = 60) and confirmatory group (n = 51). Direct estimation of the maximum oxygen uptake (VO2(max)) comprised an incremental bicycle exercise followed by expired gas analysis by the Scholander micro-gas analyzer. The submaximal heart rate (HR(sub)) was measured at the completion of five min of exercise at 110W workload. HR(sub) exhibited significant negative correlation (r = -0.87, P < 0.001) with VO2(max). Application of the computed norm in the confirmatory group depicted insignificant difference between VO2(max) and predicted VO2(max) or PVO2(max). Limits of agreement between PVO2(max) and VO2(max) were substantially small. The standard error of estimate of the norm was also substantially small. From the present study, MFT is recommended for application in the sedentary female university students for accurate and reliable assessment of cardiorespiratory fitness in terms of VO2(max).

  3. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles

    PubMed Central

    Coulter, Jonathan A; Jain, Suneil; Butterworth, Karl T; Taggart, Laura E; Dickson, Glenn R; McMahon, Stephen J; Hyland, Wendy B; Muir, Mark F; Trainor, Coleman; Hounsell, Alan R; O’Sullivan, Joe M; Schettino, Giuseppe; Currell, Fred J; Hirst, David G; Prise, Kevin M

    2012-01-01

    Background This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data. Methods We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species. Results Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential. Conclusion Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies. PMID:22701316

  4. Age-Related Differences in Working Memory Performance in A 2-Back Task

    PubMed Central

    Wild-Wall, Nele; Falkenstein, Michael; Gajewski, Patrick D.

    2011-01-01

    The present study aimed to elucidate the neuro-cognitive processes underlying age-related differences in working memory. Young and middle-aged participants performed a two-choice task with low and a 2-back task with high working memory load. The P300, an event-related potential reflecting controlled stimulus–response processing in working memory, and the underlying neuronal sources of expected age-related differences were analyzed using sLORETA. Response speed was generally slower for the middle-aged than the young group. Under low working memory load the middle-aged participants traded speed for accuracy. The middle-aged were less efficient in the 2-back task as they responded slower while the error rates did not differ for groups. An age-related decline of the P300 amplitude and characteristic topographical differences were especially evident in the 2-back task. A more detailed analysis of the P300 in non-target trials revealed that amplitudes in the young but not middle-aged group differentiate between correctly detected vs. missed targets in the following trial. For these trials, source analysis revealed higher activation for the young vs. middle-aged group in brain areas which support working memory processes. The relationship between P300 and overt performance was validated by significant correlations. To sum up, under high working memory load the young group showed an increased neuronal activity before a successful detected target, while the middle-aged group showed the same neuronal pattern regardless of whether a subsequent target will be detected or missed. This stable memory trace before detected targets was reflected by a specific activation enhancement in brain areas which orchestrate maintenance, update, storage, and retrieval of information in working memory. PMID:21909328

  5. Estimate of oxygen consumption and intracellular zinc concentration of human spermatozoa in relation to motility.

    PubMed

    Henkel, Ralf R; Defosse, Kerstin; Koyro, Hans-Wilhelm; Weissmann, Norbert; Schill, Wolf-Bernhard

    2003-03-01

    To investigate the human sperm oxygen/energy consumption and zinc content in relation to motility. In washed spermatozoa from 67 ejaculates, the oxygen consumption was determined. Following calculation of the total oxygen consumed by the Ideal Gas Law, the energy consumption of spermatozoa was calculated. In addition, the zinc content of the sperm was determined using an atomic absorption spectrometer. The resulting data were correlated to the vitality and motility. The oxygen consumption averaged 0.24 micromol/10(6) sperm x 24h, 0.28 micromol/10(6) live sperm x 24h and 0.85 micromol/10(6) live motile sperm x 24h. Further calculations revealed that sperm motility was the most energy consuming process (164.31 mJ/10(6) motile spermatozoa x 24h), while the oxygen consumption of the total spermatozoa was 46.06 mJ/10(6) spermatozoa x 24h. The correlation of the oxygen/energy consumption and zinc content with motility showed significant negative correlations (r= -0.759; P<0.0001 and r=-0.441; P<0.0001, respectively). However, when correlating sperm energy consumption with the zinc content, a significant positive relation (r=0.323; P=0.01) was observed. Poorly motile sperm are actually wasting the available energy. Moreover, our data clearly support the "Geometric Clutch Model" of the axoneme function and demonstrate the importance of the outer dense fibers for the generation of sperm motility, especially progressive motility.

  6. Identification of an iron permease, cFTR1, in cyanobacteria involved in the iron reduction/re-oxidation uptake pathway.

    PubMed

    Xu, Ning; Qiu, Guo-Wei; Lou, Wen-Jing; Li, Zheng-Ke; Jiang, Hai-Bo; Price, Neil M; Qiu, Bao-Sheng

    2016-12-01

    Cyanobacteria are globally important primary producers and abundant in many iron-limited aquatic environments. The ways in which they take up iron are largely unknown, but reduction of Fe 3+ is an important step in the process. Here we report a special iron permease in Synechocystis, cFTR1, that is required for Fe 3+ uptake following Fe 2+ re-oxidation. The expression of cFTR1 is induced by iron starvation, and a mutant lacking the gene is abnormally sensitive to iron starvation. The cFTR1 protein localizes to the plasma membrane and contains the iron-binding motif "REXXE". Point-directed mutagenesis of the REXXE motif results in a sensitivity to Fe-deficiency. Measurements of iron ( 55 Fe) uptake rate show that cFTR1 takes up Fe 3+ rather than Fe 2+ . The function of cFTR1 in Synechocystis could be genetically complemented by the iron permease, Ftr1p, of Saccharomyces cerevisiae, that is known to transport Fe 3+ produced by the oxidation of Fe 2+ via a multicopper oxidase. Unlike yeast Ftr1p, cyanobacterial cFTR1 probably obtains Fe 3+ primarily from the oxidation of Fe 2+ by oxygen. Growth assays show that the cFTR1 is required during oxygenic, photoautotrophic growth but not when oxygen production is inhibited during photoheterotrophic growth. In cyanobacteria, iron reduction/re-oxidation uptake pathway may represent their adaptation to oxygenated environments. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses

    PubMed Central

    Stephen, Emily P.; Lepage, Kyle Q.; Eden, Uri T.; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S.; Guenther, Frank H.; Kramer, Mark A.

    2014-01-01

    The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty—both in the functional network edges and the corresponding aggregate measures of network topology—are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here—appropriate for static and dynamic network inference and different statistical measures of coupling—permits the evaluation of confidence in network measures in a variety of settings common to neuroscience. PMID:24678295

  8. Cratos: A Simple Low Power Excavation and Hauling System for Lunar Oxygen Production and General Excavation Tasks

    NASA Technical Reports Server (NTRS)

    Caruso, John J.; Greer, Lawrence C.; John, Wentworth T.; Spina, Dan C.; Krasowski, Mike J.; Abel, Phillip B.; Prokop, Norman F.; Flatico, Joseph M.; Sacksteder, Kurt R.

    2007-01-01

    The development of a robust excavating and hauling system for lunar and planetary excavation is critical to the NASA mission to the Moon and Mars. Cratos was developed as a low center of gravity, small (.75m x .75m x 0.3m), low power tracked test vehicle. The vehicle was modified to excavate and haul because it demonstrated good performance capabilities in a laboratory and field testing. Tested on loose sand in the SLOPE facility, the vehicle was able to pick up, carry, and dump sand, allowing it to accomplish the standard requirements delivery of material to a lunar oxygen production site. Cratos can pick up and deliver raw material to a production plant, as well as deliver spent tailings to a disposal site. The vehicle can complete many other In-Situ Resource Utilization (ISRU) excavation chores and in conjunction with another vehicle or with additional attachments may be able to accomplish all needed ISRU tasks.

  9. Knowledge of Previous Tasks: Task Similarity Influences Bias in Task Duration Predictions

    PubMed Central

    Thomas, Kevin E.; König, Cornelius J.

    2018-01-01

    Bias in predictions of task duration has been attributed to misremembering previous task duration and using previous task duration as a basis for predictions. This research sought to further examine how previous task information affects prediction bias by manipulating task similarity and assessing the role of previous task duration feedback. Task similarity was examined through participants performing two tasks 1 week apart that were the same or different. Duration feedback was provided to all participants (Experiment 1), its recall was manipulated (Experiment 2), and its provision was manipulated (Experiment 3). In all experiments, task similarity influenced bias on the second task, with predictions being less biased when the first task was the same task. However, duration feedback did not influence bias. The findings highlight the pivotal role of knowledge about previous tasks in task duration prediction and are discussed in relation to the theoretical accounts of task duration prediction bias. PMID:29881362

  10. Knowledge, attitude, and uptake related to human papillomavirus vaccination among young women in Germany recruited via a social media site.

    PubMed

    Remschmidt, Cornelius; Walter, Dietmar; Schmich, Patrick; Wetzstein, Matthias; Deleré, Yvonne; Wichmann, Ole

    2014-01-01

    Many industrialized countries have introduced human papillomavirus (HPV) vaccination of young women, but vaccine uptake often remains suboptimal. This study aimed to investigate whether a social media site like Facebook is an appropriate tool to assess knowledge, attitude and uptake related to HPV vaccination in young women in Germany. Between December 2012 and January 2013 two different targeting strategies were implemented on Facebook, providing a link to an online questionnaire. Advertisements were displayed to female Facebook users aged 18-25 years living in Germany. During the simple targeting strategy, advertisements comprised health-related images along with various short titles and text messages. During the focused strategy, advertisements were targeted to users who in addition had certain fashion brands or pop stars listed on their profiles. The targeting strategies were compared with respect to participant characteristics. Univariate and multivariate analyses were used to identify factors associated with HPV vaccine uptake. A total of 1161 women participated. The two targeting strategies resulted in significant differences regarding educational status and migrant background. Overall, awareness of HPV was high, but only 53% received at least one vaccine dose. In multivariate analysis, HPV vaccine uptake was independently associated with a physician's recommendation and trust in vaccine effectiveness. Concerns of adverse effects were negatively associated with vaccine uptake. Social network recruitment permits fast and convenient access to young people. Sample characteristics can be manipulated by adjusting targeting strategies. There is further need for promoting knowledge of HPV vaccination among young women. Physicians have a major role in the vaccination decision-making process of young women.

  11. Oxygen Nanobubble Tracking by Light Scattering in Single Cells and Tissues.

    PubMed

    Bhandari, Pushpak; Wang, Xiaolei; Irudayaraj, Joseph

    2017-03-28

    Oxygen nanobubbles (ONBs) have significant potential in targeted imaging and treatment in cancer diagnosis and therapy. Precise localization and tracking of single ONBs is demonstrated based on hyperspectral dark-field microscope (HSDFM) to image and track single oxygen nanobubbles in single cells. ONBs were proposed as promising contrast-generating imaging agents due to their strong light scattering generated from nonuniformity of refractive index at the interface. With this powerful platform, we have revealed the trajectories and quantities of ONBs in cells, and demonstrated the relation between the size and diffusion coefficient. We have also evaluated the presence of ONBs in the nucleus with respect to an increase in incubation time and have quantified the uptake in single cells in ex vivo tumor tissues. Our results demonstrate that HSDFM can be a versatile platform to detect and measure cellulosic nanoparticles at the single-cell level and to assess the dynamics and trajectories of this delivery system.

  12. Plant–Water Relations (1): Uptake and Transport

    PubMed Central

    2014-01-01

    Summary Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow tracheary elements are just one of many adaptations that enable plants to cope with a very dry atmosphere. This lecture examines the physical laws that govern water uptake and transport, the biological properties of cells and plant tissues that facilitate it, and the strategies that enable plants to survive in diverse environments

  13. Stress in nonregular work arrangements: A longitudinal study of task- and employment-related aspects of stress.

    PubMed

    Vahle-Hinz, Tim

    2016-10-01

    In nonregular forms of employment, such as fixed-term or temporary agency work, 2 sources of stress must be distinguished: task-related stress components (e.g., time pressure) and employment-related stress components (e.g., effort to maintain employment). The present study investigated the relationship between task- and employment-related demands and resources and indicators of strain, well-being, work engagement, and self-rated performance in a sample of nonregular employed workers. Using a 2-wave longitudinal design, the results of autoregressive cross-lagged structural equation models demonstrated that time pressure, as a task-related demand, is positively related to strain and negatively related to well-being and self-rated performance. Autonomy, as a task-related resource, exhibited no significant relationships in the current study. Employment-related demands exhibited negative relationships with well-being and work engagement as well as negative and positive relationships with self-rated performance over time. Employment-related resources were primarily positive predictors of well-being and self-rated performance. Fit indices of comparative models indicated that reciprocal effect models (which enable causal and reverse effects) best fit the data. Accordingly, demands and resources predicted strain, well-being, work engagement, and self-rated performance over time and vice versa. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Relation of retinal blood flow and retinal oxygen extraction during stimulation with diffuse luminance flicker

    PubMed Central

    Palkovits, Stefan; Lasta, Michael; Told, Reinhard; Schmidl, Doreen; Werkmeister, René; Cherecheanu, Alina Popa; Garhöfer, Gerhard; Schmetterer, Leopold

    2015-01-01

    Cerebral and retinal blood flow are dependent on local neuronal activity. Several studies quantified the increase in cerebral blood flow and oxygen consumption during activity. In the present study we investigated the relation between changes in retinal blood flow and oxygen extraction during stimulation with diffuse luminance flicker and the influence of breathing gas mixtures with different fractions of O2 (FiO2; 100% 15% and 12%). Twenty-four healthy subjects were included. Retinal blood flow was studied by combining measurement of vessel diameters using the Dynamic Vessel Analyser with measurements of blood velocity using laser Doppler velocimetry. Oxygen saturation was measured using spectroscopic reflectometry and oxygen extraction was calculated. Flicker stimulation increased retinal blood flow (57.7 ± 17.8%) and oxygen extraction (34.6 ± 24.1%; p < 0.001 each). During 100% oxygen breathing the response of retinal blood flow and oxygen extraction was increased (p < 0.01 each). By contrast, breathing gas mixtures with 12% and 15% FiO2 did not alter flicker–induced retinal haemodynamic changes. The present study indicates that at a comparable increase in blood flow the increase in oxygen extraction in the retina is larger than in the brain. During systemic hyperoxia the blood flow and oxygen extraction responses to neural stimulation are augmented. The underlying mechanism is unknown. PMID:26672758

  15. Task-Related Interactions between Kindergarten Children and Their Teachers: The Role of Emotional Security

    ERIC Educational Resources Information Center

    Thijs, Jochem T.; Koomen, Helma M. Y.

    2008-01-01

    This study examined the emotional security of kindergarten children in dyadic task-related interactions with their teachers. In particular, it examined the interrelations between security, task behaviours (persistence and independence), social inhibition, and teachers' support. Participants were 79 kindergartners (mean age = 69.7 months) and their…

  16. Dual task cost of walking is related to fall risk in persons with multiple sclerosis.

    PubMed

    Wajda, Douglas A; Motl, Robert W; Sosnoff, Jacob J

    2013-12-15

    Persons with multiple sclerosis (MS) commonly have walking and cognitive impairments. While walking with a simultaneous cognitive task, persons with MS experience a greater decline in walking performance than healthy controls. This change in performance is termed dual task cost or dual task interference and has been associated with fall risk in older adults. We examined whether dual task cost during walking was related to fall risk in persons with MS. Thirty-three ambulatory persons with MS performed walking tasks with and without a concurrent cognitive task (dual task condition) as well as underwent a fall risk assessment. Dual task cost was operationalized as the percent change in velocity from normal walking conditions to dual task walking conditions. Fall risk was quantified using the Physiological Profile Assessment. A Spearman correlation analysis revealed a significant positive correlation between dual task cost of walking velocity and fall risk as well as dual task cost of stride length and fall risk. Overall, the findings indicate that dual task cost is associated with fall risk and may be an important target for falls prevention strategies. © 2013.

  17. Response of benthic foraminifera to phytodetritus in the eastern Arabian Sea under low oxygen conditions

    NASA Astrophysics Data System (ADS)

    Enge, Annekatrin; Wukovits, Julia; Wanek, Wolfgang; Watzka, Margarete; Witte, Ursula; Hunter, William; Heinz, Petra

    2016-04-01

    At water depths between 100 and 1500 m a permanent Oxygen Minimum Zone (OMZ) impinges on the sea floor in the eastern Arabian Sea, exposing benthic organisms to anoxic to suboxic conditions. The flux of organic matter to the sea floor is relatively high at these depths but displays seasonal variation. Deposition of relatively fresh phytodetrital material (phytoplankton remains) can occur within a short period of time after monsoon periods. Several organism groups including foraminifera are involved to different extent in the processing of phytodetritus in the OMZs of the northern Arabian Sea. A series of in situ feeding experiments were performed to study the short-term processing (< 11 days) of organic carbon, nitrogen and nutritional demands of foraminifera at different oxygen concentrations on the continental margin in the eastern Arabian Sea. For the experiments, a single pulse of isotopically labeled phytodetritus was added to the sediment along a depth transect (540-1100 m) on the Indian Margin, covering the OMZ core and the lower OMZ boundary region. Uptake of phytodetritus within 4 days shows the relevance of phytodetritus as food source for foraminifera. Lower content of phytodetrital carbon recorded in foraminifera from more oxygenated depths shows greater food uptake by foraminifera in the OMZ core than in the OMZ boundary region. The foraminiferal assemblage living under almost anoxic conditions in the OMZ core is dominated by species typically found in eutroph environments (such as Uvigerinids) that are adapted to high flux of organic matter. The elevated carbon uptake can also result from missing food competition by macrofauna or from greater energy demand in foraminifera to sustain metabolic processes under hypoxic stress. Variable levels and ratios of phytodetrital carbon and nitrogen indicate specific nutritional demands and storage of food-derived nitrogen in some foraminifera species under near anoxia where the mean phytodetrital nitrogen content

  18. Retinal oxygen distribution and the role of neuroglobin.

    PubMed

    Roberts, Paul A; Gaffney, Eamonn A; Luthert, Philip J; Foss, Alexander J E; Byrne, Helen M

    2016-07-01

    The retina is the tissue layer at the back of the eye that is responsible for light detection. Whilst equipped with a rich supply of oxygen, it has one of the highest oxygen demands of any tissue in the body and, as such, supply and demand are finely balanced. It has been suggested that the protein neuroglobin (Ngb), which is found in high concentrations within the retina, may help to maintain an adequate supply of oxygen via the processes of transport and storage. We construct mathematical models, formulated as systems of reaction-diffusion equations in one-dimension, to test this hypothesis. Numerical simulations show that Ngb may play an important role in oxygen transport, but not in storage. Our models predict that the retina is most susceptible to hypoxia in the regions of the photoreceptor inner segment and inner plexiform layers, where Ngb has the potential to prevent hypoxia and increase oxygen uptake by 30-40 %. Analysis of a simplified model confirms the utility of Ngb in transport and shows that its oxygen affinity ([Formula: see text] value) is near optimal for this process. Lastly, asymptotic analysis enables us to identify conditions under which the piecewise linear and quadratic approximations to the retinal oxygen profile, used in the literature, are valid.

  19. Executive functioning and processing speed in age-related differences in memory: contribution of a coding task.

    PubMed

    Baudouin, Alexia; Clarys, David; Vanneste, Sandrine; Isingrini, Michel

    2009-12-01

    The aim of the present study was to examine executive dysfunctioning and decreased processing speed as potential mediators of age-related differences in episodic memory. We compared the performances of young and elderly adults in a free-recall task. Participants were also given tests to measure executive functions and perceptual processing speed and a coding task (the Digit Symbol Substitution Test, DSST). More precisely, we tested the hypothesis that executive functions would mediate the age-related differences observed in the free-recall task better than perceptual speed. We also tested the assumption that a coding task, assumed to involve both executive processes and perceptual speed, would be the best mediator of age-related differences in memory. Findings first confirmed that the DSST combines executive processes and perceptual speed. Secondly, they showed that executive functions are a significant mediator of age-related differences in memory, and that DSST performance is the best predictor.

  20. Effects of Non-Driving Related Task Modalities on Takeover Performance in Highly Automated Driving.

    PubMed

    Wandtner, Bernhard; Schömig, Nadja; Schmidt, Gerald

    2018-04-01

    Aim of the study was to evaluate the impact of different non-driving related tasks (NDR tasks) on takeover performance in highly automated driving. During highly automated driving, it is allowed to engage in NDR tasks temporarily. However, drivers must be able to take over control when reaching a system limit. There is evidence that the type of NDR task has an impact on takeover performance, but little is known about the specific task characteristics that account for performance decrements. Thirty participants drove in a simulator using a highly automated driving system. Each participant faced five critical takeover situations. Based on assumptions of Wickens's multiple resource theory, stimulus and response modalities of a prototypical NDR task were systematically manipulated. Additionally, in one experimental group, the task was locked out simultaneously with the takeover request. Task modalities had significant effects on several measures of takeover performance. A visual-manual texting task degraded performance the most, particularly when performed handheld. In contrast, takeover performance with an auditory-vocal task was comparable to a baseline without any task. Task lockout was associated with faster hands-on-wheel times but not altered brake response times. Results showed that NDR task modalities are relevant factors for takeover performance. An NDR task lockout was highly accepted by the drivers and showed moderate benefits for the first takeover reaction. Knowledge about the impact of NDR task characteristics is an enabler for adaptive takeover concepts. In addition, it might help regulators to make decisions on allowed NDR tasks during automated driving.

  1. Changes in peak oxygen uptake and plasma volume in fit and unfit subjects following exposure to a simulation of microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1998-01-01

    To test the hypothesis that the magnitude of reduction in plasma volume and work capacity following exposure to simulated microgravity is dependent on the initial level of aerobic fitness, peak oxygen uptake (VO2peak) was measured in a group of physically fit subjects and compared with VO2peak in a group of relatively unfit subjects before and after 10 days of continuous 6 degrees head-down tilt (HDT). Ten fit subjects (40 +/- 2 year) with mean +/- SE VO2peak = 48.9 +/- 1.7 mL kg-1 min-1 were matched for age, height, and lean body weight with 10 unfit subjects (VO2peak = 37.7 +/- 1.6 mL kg-1 min-1). Before and after HDT, plasma, blood, and red cell volumes and body composition were measured and all subjects underwent a graded supine cycle ergometer test to determine VO2peak period needed. Reduced VO2peak in fit subjects (-16.2%) was greater than that of unfit subjects (-6.1%). Similarly, reductions in plasma (-18.3%) and blood volumes (-16.0%) in fit subjects were larger than those of unfit subjects (blood volume = -5.6%; plasma volume = -6.6%). Reduced plasma volume was associated with greater negative body fluid balance during the initial 24 h of HDT in the fit group (912 +/- 154 mL) compared with unfit subjects (453 +/- 200 mL). The percentage change for VO2peak correlated with percentage change in plasma volume (r = +0.79). Following exposure to simulated microgravity, fit subjects demonstrated larger reductions in VO2peak than unfit subjects which was associated with larger reductions in plasma and blood volume. These data suggest that the magnitude of physical deconditioning induced by exposure to microgravity without intervention of countermeasures was influenced by the initial fitness of the subjects.

  2. End Criteria for Reaching Maximal Oxygen Uptake Must Be Strict and Adjusted to Sex and Age: A Cross-Sectional Study

    PubMed Central

    Edvardsen, Elisabeth; Hem, Erlend; Anderssen, Sigmund A.

    2014-01-01

    Objective To describe different end criteria for reaching maximal oxygen uptake (VO2max) during a continuous graded exercise test on the treadmill, and to explore the manner by which different end criteria have an impact on the magnitude of the VO2max result. Methods A sample of 861 individuals (390 women) aged 20–85 years performed an exercise test on a treadmill until exhaustion. Gas exchange, heart rate, blood lactate concentration and Borg Scale6–20 rating were measured, and the impact of different end criteria on VO2max was studied;VO2 leveling off, maximal heart rate (HRmax), different levels of respiratory exchange ratio (RER), and postexercise blood lactate concentration. Results Eight hundred and four healthy participants (93%) fulfilled the exercise test until voluntary exhaustion. There were no sex-related differences in HRmax, RER, or Borg Scale rating, whereas blood lactate concentration was 18% lower in women (P<0.001). Forty-two percent of the participants achieved a plateau in VO2; these individuals had 5% higher ventilation (P = 0.033), 4% higher RER (P<0.001), and 5% higher blood lactate concentration (P = 0.047) compared with participants who did not reach a VO2 plateau. When using RER ≥1.15 or blood lactate concentration ≥8.0 mmol•L–1, VO2max was 4% (P = 0.012) and 10% greater (P<0.001), respectively. A blood lactate concentration ≥8.0 mmol•L–1 excluded 63% of the participants in the 50–85-year-old cohort. Conclusions A range of typical end criteria are presented in a random sample of subjects aged 20–85 years. The choice of end criteria will have an impact on the number of the participants as well as the VO2max outcome. Suggestions for new recommendations are given. PMID:24454832

  3. Clusters of anthropometric indicators of body fat associated with maximum oxygen uptake in adolescents

    PubMed Central

    2018-01-01

    Introduction The aim of this study was to evaluate different clusters of anthropometric indicators (body mass index | BMI |, waist circumference | WC |, waist-to-height ratio | WHtR |, triceps skinfold |TR SF|, subscapular skinfold |SE SF|, sum of the triceps and subscapular skinfolds | ΣTR + SE |, and sum of the triceps, subscapular and suprailiac folds | ΣTR + SE + SI|) associated with the VO2max levels in adolescents. Methods The study included 1,132 adolescents (aged 14–19 years) enrolled in public schools of São José, Santa Catarina, Brazil, in the 2014 academic year. The dependent variable was the cluster of anthropometric indicators (BMI, WC, WHtR, TR SF, SE SF, SI SF, ΣTR + SE and ΣTR + SE + SI) of excess body fat. The independent variable was maximum oxygen uptake (VO2max), estimated by the modified Canadian aerobic fitness test—mCAFT. Control variables were: age, skin color, economic level, maternal education, physical activity and sexual maturation. Multinomial logistic regression was used for associations between the dependent and independent variables. Binary logistic regression was performed to identify the association between adolescents with all anthropometric indicators in excess and independent variables. Results One in ten adolescents presented all anthropometric indicators of excess body fat. Multinomial regression showed that with each increase of one VO2max unit, the odds of adolescents having three, four, five or more anthropometric indicators of excess body fat decreased by 0.92, 0.85 and 0.73 times, respectively. In the binary regression, this fact was reconfirmed, demonstrating that with each increase of one VO2max unit, the odds of adolescents having simultaneously the eight anthropometric indicators of excess body fat decreased by 0.55. Conclusion It was concluded that with each increase of one VO2max unit, adolescents decreased the odds of simultaneously presenting three or more anthropometric indicators of excess body fat

  4. Clusters of anthropometric indicators of body fat associated with maximum oxygen uptake in adolescents.

    PubMed

    Gonçalves, Eliane Cristina de Andrade; Nunes, Heloyse Elaine Gimenes; Silva, Diego Augusto Santos

    2018-01-01

    The aim of this study was to evaluate different clusters of anthropometric indicators (body mass index | BMI |, waist circumference | WC |, waist-to-height ratio | WHtR |, triceps skinfold |TR SF|, subscapular skinfold |SE SF|, sum of the triceps and subscapular skinfolds | ΣTR + SE |, and sum of the triceps, subscapular and suprailiac folds | ΣTR + SE + SI|) associated with the VO2max levels in adolescents. The study included 1,132 adolescents (aged 14-19 years) enrolled in public schools of São José, Santa Catarina, Brazil, in the 2014 academic year. The dependent variable was the cluster of anthropometric indicators (BMI, WC, WHtR, TR SF, SE SF, SI SF, ΣTR + SE and ΣTR + SE + SI) of excess body fat. The independent variable was maximum oxygen uptake (VO2max), estimated by the modified Canadian aerobic fitness test-mCAFT. Control variables were: age, skin color, economic level, maternal education, physical activity and sexual maturation. Multinomial logistic regression was used for associations between the dependent and independent variables. Binary logistic regression was performed to identify the association between adolescents with all anthropometric indicators in excess and independent variables. One in ten adolescents presented all anthropometric indicators of excess body fat. Multinomial regression showed that with each increase of one VO2max unit, the odds of adolescents having three, four, five or more anthropometric indicators of excess body fat decreased by 0.92, 0.85 and 0.73 times, respectively. In the binary regression, this fact was reconfirmed, demonstrating that with each increase of one VO2max unit, the odds of adolescents having simultaneously the eight anthropometric indicators of excess body fat decreased by 0.55. It was concluded that with each increase of one VO2max unit, adolescents decreased the odds of simultaneously presenting three or more anthropometric indicators of excess body fat, regardless of biological, economic and

  5. Comparison of the oxygen exchange between photosynthetic cell suspensions and detached leaves of Euphorbia characias L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrier, P.; Chagvardieff, P.; Tapie, P.

    1989-11-01

    Using a mass-spectrometric {sup 16}O{sub 2}/{sup 18}O{sub 2}-isotope technique, we compared the nature and the relative importance of oxygen exchange in photomixotrophic (PM) and photoautotrophic (PA) suspensions of Euphorbia characias L. with those in intact leaves of the same species. Young and mature leaves, dividing and nondividing cell suspensions were characterized in short-term experiments. On chlorophyll basis, the gross photosynthetic activities at CO{sub 2} saturating concentration of PA and PM suspensions varied little from those of leaves. On dry weight basis, gross photosynthesis of PA suspensions was equal to that of leaves because of their similar chlorophyll content. This wasmore » not the case in PM suspensions where gross photosynthesis was lower and largely varied during the growth cycle. The CO{sub 2} compensation point of PA cells was much higher than that of leaves. Oxygen uptakes were analyzed in terms of mitochondrial respiration, photorespiration and light stimulation of oxygen uptake (LSOU), often identified to Mehler-type reactions. In Pa and PM suspensions, mitochondrial respiration rates were higher than in leaves by a factor of 1.5 to 4.5. In PM suspensions, photorespiration and LSOU were observed only in nondividing cells. Photorespiration and LSOU rates were comparable in PA suspensions and leaves. Our results demonstrate that photorespiration of PA suspensions has not been affected by the 2% CO{sub 2} concentration imposed during 2 years of culture.« less

  6. [Exercise-related risk at anaerobic threshold in patients with chronic obstructive pulmonary disease].

    PubMed

    Xu, Q F; Yuan, W; Zhao, X J; Li, B; Wang, H Y

    2016-02-01

    To investigate the exercise-related risk at anaerobic threshold(AT) in patients with chronic obstructive pulmonary disease(COPD). Sixty two patients [men 56, women 6, aged (66±8) yr] with stable COPD in Beijing Friendship Hospital during 2013-2014, participated in this study. Incremental symptom-limited cardiopulmonary exercise test was performed on cycle ergometer. The AT was determined using the V-Slope technique and ventilatory equivalents for carbon dioxide and oxygen. Symptoms, 10-lead electrocardiogram, oxygen saturation by pulse oximetry(SpO(2)) were monitored during exercise. The AT, detectable in 53 patients, occurred at (68±10)% of peak oxygen uptake(peak VO(2)). The SpO(2) was in the safe range (94±2) % and the respiratory reserve was relatively high at AT (i.e. 48%). High-intensity exercise training can be performed in patients with moderate-to- severe COPD without resting oxygen desaturation.

  7. Goal orientation, perceived task outcome and task demands in mathematics tasks: effects on students' attitude in actual task settings.

    PubMed

    Seegers, Gerard; van Putten, Cornelis M; de Brabander, Cornelis J

    2002-09-01

    In earlier studies, it has been found that students' domain-specific cognitions and personal learning goals (goal orientation) influence task-specific appraisals of actual learning tasks. The relations between domain-specific and task-specific variables have been specified in the model of adaptive learning. In this study, additional influences, i.e., perceived task outcome on a former occasion and variations in task demands, were investigated. The purpose of this study was to identify personality and situational variables that mediate students' attitude when confronted with a mathematics task. Students worked on a mathematics task in two subsequent sessions. Effects of perceived task outcome at the first session on students' attitude at the second session were investigated. In addition, we investigated how differences in task demands influenced students' attitude. Variations in task demands were provoked by different conditions in task-instruction. In one condition, students were told that the result on the test would add to their mark on mathematics. This outcome orienting condition was contrasted with a task-orienting condition where students were told that the results on the test would not be used to give individual grades. Participants were sixth grade students (N = 345; aged 11-12 years) from 14 primary schools. Multivariate and univariate analyses of (co)variance were applied to the data. Independent variables were goal orientation, task demands, and perceived task outcome, with task-specific variables (estimated competence for the task, task attraction, task relevance, and willingness to invest effort) as the dependent variables. The results showed that previous perceived task outcome had a substantial impact on students' attitude. Additional but smaller effects were found for variation in task demands. Furthermore, effects of previous perceived task outcome and task demands were related to goal orientation. The resulting pattern confirmed that, in general

  8. Molecular dynamics simulations reveal highly permeable oxygen exit channels shared with water uptake channels in photosystem II.

    PubMed

    Vassiliev, Serguei; Zaraiskaya, Tatiana; Bruce, Doug

    2013-10-01

    Photosystem II (PSII) catalyzes the oxidation of water in the conversion of light energy into chemical energy in photosynthesis. Water delivery and oxygen removal from the oxygen evolving complex (OEC), buried deep within PSII, are critical requirements to facilitate the reaction and minimize reactive oxygen damage. It has often been assumed that water and oxygen travel through separate channels within PSII, as demonstrated in cytochrome c oxidase. This study describes all-atom molecular dynamics simulations of PSII designed to investigate channels by fully characterizing the distribution and permeation of both water and oxygen. Interestingly, most channels found in PSII were permeable to both oxygen and water, however individual channels exhibited different energetic barriers for the two solutes. Several routes for oxygen diffusion within PSII with low energy permeation barriers were found, ensuring its fast removal from the OEC. In contrast, all routes for water showed significant energy barriers, corresponding to a much slower permeation rate for water through PSII. Two major factors were responsible for this selectivity: (1) hydrogen bonds between water and channel amino acids, and (2) steric restraints. Our results reveal the presence of a shared network of channels in PSII optimized to both facilitate the quick removal of oxygen and effectively restrict the water supply to the OEC to help stabilize and protect it from small water soluble inhibitors. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Prediction of Maximum Oxygen Consumption from Walking, Jogging, or Running.

    ERIC Educational Resources Information Center

    Larsen, Gary E.; George, James D.; Alexander, Jeffrey L.; Fellingham, Gilbert W.; Aldana, Steve G.; Parcell, Allen C.

    2002-01-01

    Developed a cardiorespiratory endurance test that retained the inherent advantages of submaximal testing while eliminating reliance on heart rate measurement in predicting maximum oxygen uptake (VO2max). College students completed three exercise tests. The 1.5-mile endurance test predicted VO2max from submaximal exercise without requiring heart…

  10. Oxygen content tailored magnetic and electronic properties in cobaltite double perovskite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrell, Zach John; Enriquez, Erik M.; Chen, Aiping

    Oxygen content in transition metal oxides is one of the most important parameters to control for the desired physical properties. Recently, we have systematically studied the oxygen content and property relationship of the double perovskite PrBaCo 2O 5.5+δ (PBCO) thin films deposited on the LaAlO 3 substrates. The oxygen content in the films was varied by in-situ annealing in a nitrogen, oxygen, or ozone environment. Associated with the oxygen content, the out-of-plane lattice parameter progressively decreases with increasing oxygen content in the films. The saturated magnetization shows a drastic increase and resistivity is significantly reduced in the ozone annealed samples,more » indicating the strong coupling between physical properties and oxygen content. Furthermore, these results demonstrate that the magnetic properties of PBCO films are highly dependent on the oxygen contents, or the film with higher oxygen uptake has the largest magnetization.« less

  11. Oxygen content tailored magnetic and electronic properties in cobaltite double perovskite thin films

    DOE PAGES

    Harrell, Zach John; Enriquez, Erik M.; Chen, Aiping; ...

    2017-02-27

    Oxygen content in transition metal oxides is one of the most important parameters to control for the desired physical properties. Recently, we have systematically studied the oxygen content and property relationship of the double perovskite PrBaCo 2O 5.5+δ (PBCO) thin films deposited on the LaAlO 3 substrates. The oxygen content in the films was varied by in-situ annealing in a nitrogen, oxygen, or ozone environment. Associated with the oxygen content, the out-of-plane lattice parameter progressively decreases with increasing oxygen content in the films. The saturated magnetization shows a drastic increase and resistivity is significantly reduced in the ozone annealed samples,more » indicating the strong coupling between physical properties and oxygen content. Furthermore, these results demonstrate that the magnetic properties of PBCO films are highly dependent on the oxygen contents, or the film with higher oxygen uptake has the largest magnetization.« less

  12. [Cancer and family: tasks and stress of relatives].

    PubMed

    Popek, V; Hönig, K

    2015-03-01

    Relatives are the primary and existential resource of cancer patients, while at the same time experiencing substantial distress themselves. This article presents a description of tasks, roles and distress factors, the prevalence of psychosocial distress, description of risk factors in families contributing to dysfunctional coping, options and empirical evidence for the efficacy of psychosocial support. Evaluation of registry data, analysis of case reports, discussion of basic research findings, meta-analyses and expert judgments. Psychosocial distress in relatives of cancer patients is comparable to the degree of distress experienced by the patients and is sometimes even higher. Distress in relatives is still underrecognized, underreported and undertreated. Hostile interaction patterns, low emotional expression and high conflict tendencies impair coping with cancer and its treatment. Psychosocial support for the family of cancer patients improves coping behavior and the quality of life both in relatives and patients. Professional and lay caregivers need to adopt a social perspective on cancer whereby participation and inclusion of relatives in the treatment, acknowledgment of their engagement and recognition of their distress is beneficial for both patients and their relatives. Screening for psychosocial distress in relatives is recommended, attention should be drawn to psychosocial support services and utilization should be encouraged.

  13. Tasks completed by nursing members of a teaching hospital Medical Emergency Team.

    PubMed

    Topple, Michelle; Ryan, Brooke; Baldwin, Ian; McKay, Richard; Blythe, Damien; Rogan, John; Radford, Sam; Jones, Daryl

    2016-02-01

    To assess tasks completed by intensive care medical emergency team nurses. Prospective observational study. Australian teaching hospital. Nursing-related technical and non-technical tasks and level of self-reported confidence and competence. Amongst 400 calls, triggers and nursing tasks were captured in 93.5% and 77.3% of cases, respectively. The median patient age was 73 years. The four most common triggers were hypotension (22.0%), tachycardia (21.1%), low SpO2 (17.4%), and altered conscious state (10.1%). Non-technical skills included investigation review (33.7%), history acquisition (18.4%), contribution to the management plan (40.5%) and explanation to bedside nurses (78.3%), doctors (13.6%), allied health (3.9%) or patient/relative (39.5%). Technical tasks included examining the circulation (32%), conscious state (29.4%), and chest (26.5%). Additional tasks included adjusting oxygen (23.9%), humidification (8.4%), non-invasive ventilation (6.5%), performing an ECG (22%), and administrating fluid as a bolus (17.5%) or maintenance (16, 5.2%), or medication as a statim dose (16.8%) or infusion (5.2%). Self-reported competence and confidence appeared to be high overall amongst our MET nurses. Our findings provide important information on the tasks completed by Medical Emergency Team nurses and will guide future training. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Ability of higenamine and related compounds to enhance glucose uptake in L6 cells.

    PubMed

    Kato, Eisuke; Kimura, Shunsuke; Kawabata, Jun

    2017-12-15

    β2-Adrenergic receptor (β2AR) agonists are employed as bronchodilators to treat pulmonary disorders, but are attracting attention for their modulation of glucose handling and energy expenditure. Higenamine is a tetrahydroisoquinoline present in several plant species and has β2AR agonist activity, but the involvement of each functional groups in β2AR agonist activity and its effectiveness compared with endogenous catecholamines (dopamine, epinephrine, and norepinephrine) has rarely been studied. Glucose uptake of muscle cells are known to be induced through β2AR activation. Here, the ability to enhance glucose uptake of higenamine was compared with that of several methylated derivatives of higenamine or endogenous catecholamines. We found that: (i) the functional groups of higenamine except for the 4'-hydroxy group are required to enhance glucose uptake; (ii) higenamine shows a comparable ability to enhance glucose uptake with that of epinephrine and norepinephrine; (iii) the S-isomer shows a greater ability to enhance glucose uptake compared with that of the R-isomer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Physiological effects of positive pressure breathing with pure oxygen and a low oxygen gas mixture.

    PubMed

    Liu, Xiaopeng; Xiao, Huajun; Shi, Weiru; Wen, Dongqing; Yu, Lihua; Chen, Jianzhang

    2015-01-01

    Positive pressure breathing (PPB) can cause circulatory dysfunction due to peripheral pooling of blood. This study explored a better way at ground level to simulate pure oxygen PPB at 59,055 ft (18,000 m) by comparing the physiological changes during PPB with pure oxygen and low oxygen at ground level. Six subjects were exposed to 3 min of 69-mmHg PPB and 3 min of 59-mmHg PPB with pure oxygen and low oxygen while wearing the thoracic counterpressure jerkin inflated to 1× breathing pressure and G-suit inflated to 3 and 4× breathing pressure. Stroke volume (SV), cardiac output (CO), heart rate (HR), and peripheral oxygen saturation (Spo2) were measured. Subjects completed a simulating flying task (SFT) during 3-min PPB and scores were recorded. HR and SV responses differed significantly between breathing pure oxygen and low oxygen. CO response was not significantly different for pure oxygen and low oxygen, the two levels of PPB, and the two levels of G-suit pressure. Spo2 declined as a linear function of time during low-oxygen PPB and there was a significant difference in Spo2 response for the two levels of PPB. The average score of SFT during pure oxygen PPB was 3970.5 ± 1050.4, which was significantly higher than 2708.0 ± 702.7 with low oxygen PPB. Hypoxia and PPB have a synergistic negative effect on both the cardiovascular system and SFT performance. PPB with low oxygen was more appropriate at ground level to investigate physiological responses during PPB and evaluate the protective performance of garments. Liu X, Xiao H, Shi W, Wen D, Yu L, Chen J. Physiological effects of positive pressure breathing with pure oxygen and a low oxygen gas mixture.

  16. Allometric modelling of peak oxygen uptake in male soccer players of 8-18 years of age.

    PubMed

    Valente-Dos-Santos, João; Coelho-E-Silva, Manuel J; Tavares, Óscar M; Brito, João; Seabra, André; Rebelo, António; Sherar, Lauren B; Elferink-Gemser, Marije T; Malina, Robert M

    2015-03-01

    Peak oxygen uptake (VO2peak) is routinely scaled as mL O2 per kilogram body mass despite theoretical and statistical limitations of using ratios. To examine the contribution of maturity status and body size descriptors to age-associated inter-individual variability in VO2peak and to present static allometric models to normalize VO2peak in male youth soccer players. Total body and estimates of total and regional lean mass were measured with dual energy X-ray absorptiometry in a cross-sectional sample of Portuguese male soccer players. The sample was divided into three age groups for analysis: 8-12 years, 13-15 years and 16-18 years. VO2peak was estimated using an incremental maximal exercise test on a motorized treadmill. Static allometric models were used to normalize VO2peak. The independent variables with the best statistical fit explained 72% in the younger group (lean body mass: k = 1.07), 52% in mid-adolescent players (lean body mass: k = 0.93) and 31% in the older group (body mass: k = 0.51) of variance in VO2peak. The inclusion of the exponential term pubertal status marginally increased the explained variance in VO2peak (adjusted R(2 )= 36-75%) and provided statistical adjustments to the size descriptors coefficients. The allometric coefficients and exponents evidenced the varying inter-relationship among size descriptors and maturity status with aerobic fitness from early to late-adolescence. Lean body mass, lean lower limbs mass and body mass combined with pubertal status explain most of the inter-individual variability in VO2peak among youth soccer players.

  17. Age-related differences in resolving semantic and phonological competition during receptive language tasks.

    PubMed

    Zhuang, Jie; Johnson, Micah A; Madden, David J; Burke, Deborah M; Diaz, Michele T

    2016-12-01

    Receptive language (e.g., reading) is largely preserved in the aging brain, and semantic processes in particular may continue to develop throughout the lifespan. We investigated the neural underpinnings of phonological and semantic retrieval in older and younger adults during receptive language tasks (rhyme and semantic similarity judgments). In particular, we were interested in the role of competition on language retrieval and varied the similarities between a cue, target, and distractor that were hypothesized to affect the mental process of competition. Behaviorally, all participants responded faster and more accurately during the rhyme task compared to the semantic task. Moreover, older adults demonstrated higher response accuracy than younger adults during the semantic task. Although there were no overall age-related differences in the neuroimaging results, an Age×Task interaction was found in left inferior frontal gyrus (IFG), with older adults producing greater activation than younger adults during the semantic condition. These results suggest that at lower levels of task difficulty, older and younger adults engaged similar neural networks that benefited behavioral performance. As task difficulty increased during the semantic task, older adults relied more heavily on largely left hemisphere language regions, as well as regions involved in perception and internal monitoring. Our results are consistent with the stability of language comprehension across the adult lifespan and illustrate how the preservation of semantic representations with aging may influence performance under conditions of increased task difficulty. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of increasing pump speed during exercise on peak oxygen uptake in heart failure patients supported with a continuous-flow left ventricular assist device. A double-blind randomized study.

    PubMed

    Jung, Mette Holme; Hansen, Peter Bo; Sander, Kaare; Olsen, Peter Skov; Rossing, Kasper; Boesgaard, Soeren; Russell, Stuart D; Gustafsson, Finn

    2014-04-01

    Continuous-flow left ventricular assist device (CF-LVAD) implantation is associated with improved quality of life, but the effect on exercise capacity is less well documented. It is uncertain whether a fixed CF-LVAD pump speed, which allows for sufficient circulatory support at rest, remains adequate during exercise. The aim of this study was to evaluate the effects of fixed versus incremental pump speed on peak oxygen uptake (peak VO2) during a maximal exercise test. In CF-LVAD (HeartMate II) patients exercise testing measuring peak oxygen uptake (VO2) was performed on an ergometer bike twice in one day: once with fixed pump speed (testfix) and once with incremental pump speed (testinc). The order of testfix and testinc in each patient was determined by randomization. During testinc pump speed was increased from the baseline value by 400 rpm/2 min. Fourteen patients (aged 23–69 years) were included with a mean support duration of 465±483 days. Baseline CF-LVAD speed was 9357±238 rpm and during testinc speed was increased by a mean of 1486±775 rpm. Mean peak VO2 was significantly higher in testinc compared with testfix (15.4±5.9 mL/kg/min vs. 14.1±6.3 mL/kg/min; P=0.012), corresponding to a 9.2% increase. All exercise tests (n=28) were adequately performed with RER>1. Increasing pump speed during exercise augments peak VO2 in patients supported with CF-LVADs. An automatic speed-change function in future generations of CF-LVADs might improve functional capacity. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.

  19. Task-Related Suppression of the Brainstem Frequency following Response

    DTIC Science & Technology

    2013-02-18

    from switching between attention-demanding task stimuli. However, it is also possible that the opposite may be true – the addition of a task, instead...of a resting, passive state may suppress the FFR. Here we examined the influence of a subsequent task, and the relevance of the task modality, on...as a baseline consisting of the same background stimuli in the absence of a task. FFR pitch strength and amplitude of the primary frequency response

  20. Effect of task-related extracerebral circulation on diffuse optical tomography: experimental data and simulations on the forehead.

    PubMed

    Näsi, Tiina; Mäki, Hanna; Hiltunen, Petri; Heiskala, Juha; Nissilä, Ilkka; Kotilahti, Kalle; Ilmoniemi, Risto J

    2013-03-01

    The effect of task-related extracerebral circulatory changes on diffuse optical tomography (DOT) of brain activation was evaluated using experimental data from 14 healthy human subjects and computer simulations. Total hemoglobin responses to weekday-recitation, verbal-fluency, and hand-motor tasks were measured with a high-density optode grid placed on the forehead. The tasks caused varying levels of mental and physical stress, eliciting extracerebral circulatory changes that the reconstruction algorithm was unable to fully distinguish from cerebral hemodynamic changes, resulting in artifacts in the brain activation images. Crosstalk between intra- and extracranial layers was confirmed by the simulations. The extracerebral effects were attenuated by superficial signal regression and depended to some extent on the heart rate, thus allowing identification of hemodynamic changes related to brain activation during the verbal-fluency task. During the hand-motor task, the extracerebral component was stronger, making the separation less clear. DOT provides a tool for distinguishing extracerebral components from signals of cerebral origin. Especially in the case of strong task-related extracerebral circulatory changes, however, sophisticated reconstruction methods are needed to eliminate crosstalk artifacts.