Sample records for taste outcomes activate

  1. Effectiveness of Taste Lessons with and without additional experiential learning activities on children's willingness to taste vegetables.

    PubMed

    Battjes-Fries, Marieke C E; Haveman-Nies, Annemien; Zeinstra, Gertrude G; van Dongen, Ellen J I; Meester, Hante J; van den Top-Pullen, Rinelle; Van't Veer, Pieter; de Graaf, Kees

    2017-02-01

    This study assessed the effectiveness of the Dutch school programme Taste Lessons with and without additional experiential learning activities on children's willingness to taste unfamiliar vegetables. Thirty-three primary schools (877 children in grades 6-7 with a mean age of 10.3 years) participated in Taste Lessons Vegetable Menu (TLVM, lessons and extra activities), Taste Lessons (TL, lessons), or a control group. A baseline and follow-up measurement was used to assess for each child: number of four familiar and four unfamiliar vegetables tasted, quantity tasted, choice of vegetable of which to eat more, and number of vegetables willing to taste again later. Furthermore, children filled out a questionnaire on daily vegetable intake and food neophobia. Multilevel and Cox regression analyses were conducted to compare changes in the outcome measures between the three study groups. No significant intervention effects were found on willingness to taste unfamiliar vegetables. Neither were effects found on familiar vegetables, except for number of familiar vegetables tasted (p < 0.05). Furthermore, no significant intervention effects were found on daily vegetable consumption and food neophobia. These results indicate that more intensive school-based nutrition education activities are needed to increase children's willingness to taste unfamiliar vegetables and increase their vegetable intake. Copyright © 2016. Published by Elsevier Ltd.

  2. Play with your food! Sensory play is associated with tasting of fruits and vegetables in preschool children.

    PubMed

    Coulthard, Helen; Sealy, Annemarie

    2017-06-01

    The objective of the current study was to ascertain whether taking part in a sensory play activity with real fruits and vegetables (FV) can encourage tasting in preschool children, compared to a non-food activity or visual exposure to the activity. Three to four year old pre-school children (N = 62) were recruited from three preschool nursery classes from a school in Northamptonshire, UK. A between participants experimental study was conducted with each class assigned to one of three conditions; sensory FV play, sensory non-food play and visual FV exposure. Parental report of several baseline variables were taken; child baseline liking of the foods used in the study, parental and child FV consumption (portions/day), child neophobia and child tactile sensitivity. Outcome measures were the number of fruits and vegetables tasted in a post experiment taste test which featured (n = 5) or did not feature (n = 3) in the task. Analyses of covariance controlling for food neophobia and baseline liking of foods, showed that after the activity children in the sensory FV play condition tried more FV than both children in the non-food sensory play task (p < 0.001) and children in the visual FV exposure task (p < 0.001). This was true not only for five foods used in the activity (p < 0.001), but also three foods that were not used in the activity (p < 0.05). Sensory play activities using fruits and vegetables may encourage FV tasting in preschool children more than non food play or visual exposure alone. Long term intervention studies need to be carried out to see if these effects can be sustained over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development

    PubMed Central

    Thirumangalathu, Shoba; Barlow, Linda A.

    2015-01-01

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh+ placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh+ precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. PMID:26525674

  4. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review.

    PubMed

    Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G

    2016-11-01

    Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A prospective cohort study of the effects of adjuvant breast cancer chemotherapy on taste function, food liking, appetite and associated nutritional outcomes.

    PubMed

    Boltong, Anna; Aranda, Sanchia; Keast, Russell; Wynne, Rochelle; Francis, Prudence A; Chirgwin, Jacqueline; Gough, Karla

    2014-01-01

    'Taste' changes are commonly reported during chemotherapy. It is unclear to what extent this relates to actual changes in taste function or to changes in appetite and food liking and how these changes affect dietary intake and nutritional status. This prospective, repeated measures cohort study recruited participants from three oncology clinics. Women (n = 52) prescribed adjuvant chemotherapy underwent standardised testing of taste perception, appetite and food liking at six time points to measure change from baseline. Associations between taste and hedonic changes and nutritional outcomes were examined. Taste function was significantly reduced early in chemotherapy cycles (p<0.05) but showed recovery by late in the cycle. Ability to correctly identify salty, sour and umami tastants was reduced. Liking of sweet food decreased early and mid-cycle (p<0.01) but not late cycle. Liking of savory food was not significantly affected. Appetite decreased early in the cycle (p<0.001). Reduced taste function was associated with lowest kilojoule intake (r = 0.31; p = 0.008) as was appetite loss with reduced kilojoule (r = 0.34; p = 0.002) and protein intake (r = 0.36; p = 0.001) early in the third chemotherapy cycle. Decreased appetite early in the third and final chemotherapy cycles was associated with a decline in BMI (p = <0.0005) over the study period. Resolution of taste function, food liking and appetite was observed 8 weeks after chemotherapy completion. There was no association between taste change and dry mouth, oral mucositis or nausea. The results reveal, for the first time, the cyclical yet transient effects of adjuvant chemotherapy on taste function and the link between taste and hedonic changes, dietary intake and nutritional outcomes. The results should be used to inform reliable pre-chemotherapy education.

  6. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development.

    PubMed

    Thirumangalathu, Shoba; Barlow, Linda A

    2015-12-15

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh(+) placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh(+) precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. © 2015. Published by The Company of Biologists Ltd.

  7. Functional diversification of taste cells in vertebrates

    PubMed Central

    Matsumoto, Ichiro; Ohmoto, Makoto; Abe, Keiko

    2012-01-01

    Tastes are senses resulting from the activation of taste cells distributed in oral epithelia. Sweet, umami, bitter, sour, and salty tastes are called the five “basic” tastes, but why five, and why these five? In this review, we dissect the peripheral gustatory system in vertebrates from molecular and cellular perspectives. Recent behavioral and molecular genetic studies have revealed the nature of functional taste receptors and cells and show that different taste qualities are accounted for by the activation of different subsets of taste cells. Based on this concept, the diversity of basic tastes should be defined by the diversity of taste cells in taste buds, which varies among species. PMID:23085625

  8. Repletion of Zinc and Iron Deficiencies Improve Cognition of Premenopausal Women

    DTIC Science & Technology

    1998-10-01

    bioelectrical Impedance, taste acuity and other indices related to Zn status ~d 30 Measure baseline neuropsychological outcomes on day 8-12 of... taste buds. A circular, 5mm in diameter, stainless steel electrode was used. Subject were comfortably sitting and familiar with the difference between...determined by increasing the stimulation current starting from zero. Taste acuity was measured before and after treatment. Taste acuity was also measured

  9. Recent Advances in Molecular Mechanisms of Taste Signaling and Modifying.

    PubMed

    Shigemura, Noriatsu; Ninomiya, Yuzo

    2016-01-01

    The sense of taste conveys crucial information about the quality and nutritional value of foods before it is ingested. Taste signaling begins with taste cells via taste receptors in oral cavity. Activation of these receptors drives the transduction systems in taste receptor cells. Then particular transmitters are released from the taste cells and activate corresponding afferent gustatory nerve fibers. Recent studies have revealed that taste sensitivities are defined by distinct taste receptors and modulated by endogenous humoral factors in a specific group of taste cells. Such peripheral taste generations and modifications would directly influence intake of nutritive substances. This review will highlight current understanding of molecular mechanisms for taste reception, signal transduction in taste bud cells, transmission between taste cells and nerves, regeneration from taste stem cells, and modification by humoral factors at peripheral taste organs. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The Role of Cholecystokinin in Peripheral Taste Signaling in Mice

    PubMed Central

    Yoshida, Ryusuke; Shin, Misa; Yasumatsu, Keiko; Takai, Shingo; Inoue, Mayuko; Shigemura, Noriatsu; Takiguchi, Soichi; Nakamura, Seiji; Ninomiya, Yuzo

    2017-01-01

    Cholecystokinin (CCK) is a gut hormone released from enteroendocrine cells. CCK functions as an anorexigenic factor by acting on CCK receptors expressed on the vagal afferent nerve and hypothalamus with a synergistic interaction between leptin. In the gut, tastants such as amino acids and bitter compounds stimulate CCK release from enteroendocrine cells via activation of taste transduction pathways. CCK is also expressed in taste buds, suggesting potential roles of CCK in taste signaling in the peripheral taste organ. In the present study, we focused on the function of CCK in the initial responses to taste stimulation. CCK was coexpressed with type II taste cell markers such as Gα-gustducin, phospholipase Cβ2, and transient receptor potential channel M5. Furthermore, a small subset (~30%) of CCK-expressing taste cells expressed a sweet/umami taste receptor component, taste receptor type 1 member 3, in taste buds. Because type II taste cells are sweet, umami or bitter taste cells, the majority of CCK-expressing taste cells may be bitter taste cells. CCK-A and -B receptors were expressed in both taste cells and gustatory neurons. CCK receptor knockout mice showed reduced neural responses to bitter compounds compared with wild-type mice. Consistently, intravenous injection of CCK-Ar antagonist lorglumide selectively suppressed gustatory nerve responses to bitter compounds. Intravenous injection of CCK-8 transiently increased gustatory nerve activities in a dose-dependent manner whereas administration of CCK-8 did not affect activities of bitter-sensitive taste cells. Collectively, CCK may be a functionally important neurotransmitter or neuromodulator to activate bitter nerve fibers in peripheral taste tissues. PMID:29163209

  11. Taste Receptor Cells That Discriminate Between Bitter Stimuli

    PubMed Central

    Caicedo, Alejandro; Roper, Stephen D.

    2013-01-01

    Recent studies showing that single taste bud cells express multiple bitter taste receptors have reignited a long-standing controversy over whether single gustatory receptor cells respond selectively or broadly to tastants. We examined calcium responses of rat taste receptor cells in situ to a panel of bitter compounds to determine whether individual cells distinguish between bitter stimuli. Most bitter-responsive taste cells were activated by only one out of five compounds tested. In taste cells that responded to multiple stimuli, there were no significant associations between any two stimuli. Bitter sensation does not appear to occur through the activation of a homogeneous population of broadly tuned bitter-sensitive taste cells. Instead, different bitter stimuli may activate different subpopulations of bitter-sensitive taste cells. PMID:11222863

  12. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates

    PubMed Central

    Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E.; Barlow, Linda A.

    2015-01-01

    Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells. PMID:26020789

  13. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    PubMed

    Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E; Barlow, Linda A

    2015-05-01

    Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  14. Impacts of in utero and early infant taste experiences on later taste acceptance: a systematic review.

    PubMed

    Nehring, Ina; Kostka, Tanja; von Kries, Rüdiger; Rehfuess, Eva A

    2015-06-01

    Dietary behavior exerts a critical influence on health and is the outcome of a broad range of interacting factors, including food and taste acceptance. These may be programmed in utero and during early infancy. We examined the hypothesis that fetuses and infants exposed to sweet, salty, sour, bitter, umami, or specific tastes show greater acceptance of that same taste later in life. We conducted a systematic review of the literature, using comprehensive searches and following established procedures for screening, data extraction, and quality appraisal. We used harvest plots to synthesize the evidence graphically. Twenty studies comprising 38 subgroups that differed by taste, age, medium, and duration of exposure were included. Exposure to bitter and specific tastes increased the acceptance of these tastes. Studies on sweet and salty tastes showed equivocal results. Studies on sour tastes were sparse. Our systematic review clearly shows programming of the acceptance of bitter and specific tastes. For other tastes the results were either equivocal or confined to a few number of studies that precluded us from drawing conclusions. Further research should examine the association of salty and sour taste exposures on later preferences of these tastes. Long-term studies and randomized clinical trials on each type of taste are needed. © 2015 American Society for Nutrition.

  15. (+)-(S)-alapyridaine--a general taste enhancer?

    PubMed

    Soldo, Tomislav; Blank, Imre; Hofmann, Thomas

    2003-06-01

    N-(1-Carboxyethyl)-6-hydroxymethyl-pyridinium-3-ol inner salt (alapyridaine), recently identified in heated sugar/amino acid mixtures as well as in beef bouillon, has been shown to exhibit general taste-enhancing activities, although tasteless on its own. Differing from other taste enhancers reported so far, racemic (R/S)-alapyridaine and, to an even greater extent (+)-(S)-alapyridaine, the physiologically active enantiomer, are able to enhance more than one basic taste quality. The threshold concentrations for the sweet taste of glucose and sucrose, for the umami taste of monosodium L-glutamate (MSG) and guanosine-5'-monophosphate (GMP), as well as the salty taste of NaCl, were significantly decreased when alapyridaine was present. In contrast, perception of the bitter tastes of caffeine and L-phenylalanine, as well as of sour-tasting citric acid, was unaffected. Furthermore, alapyridaine was shown to intensify known taste synergies such as, for example, the enhancing effect of L-arginine on the salty taste of NaCl, as well as that of GMP on the umami taste of MSG. The activity of (+)-(S)-alapyridaine could be observed not only in solutions of single taste compounds, but also in more complex tastant mixtures; for example, the umami, sweet and salty taste of a solution containing MSG, sucrose, NaCl and caffeine was significantly modulated, thus indicating that alapyridaine is a general taste enhancer.

  16. Maintenance of Mouse Gustatory Terminal Field Organization Is Disrupted following Selective Removal of Peripheral Sodium Salt Taste Activity at Adulthood

    PubMed Central

    Sun, Chengsan

    2017-01-01

    Neural activity plays a critical role in the development of central circuits in sensory systems. However, the maintenance of these circuits at adulthood is usually not dependent on sensory-elicited neural activity. Recent work in the mouse gustatory system showed that selectively deleting the primary transduction channel for sodium taste, the epithelial sodium channel (ENaC), throughout development dramatically impacted the organization of the central terminal fields of three nerves that carry taste information to the nucleus of the solitary tract. More specifically, deleting ENaCs during development prevented the normal maturation of the fields. The present study was designed to extend these findings by testing the hypothesis that the loss of sodium taste activity impacts the maintenance of the normal adult terminal field organization in male and female mice. To do this, we used an inducible Cre-dependent genetic recombination strategy to delete ENaC function after terminal field maturation occurred. We found that removal of sodium taste neural activity at adulthood resulted in significant reorganization of mature gustatory afferent terminal fields in the nucleus of the solitary tract. Specifically, the chorda tympani and greater superficial petrosal nerve terminal fields were 1.4× and 1.6× larger than age-matched controls, respectively. By contrast, the glossopharyngeal nerve, which is not highly sensitive to sodium taste stimulation, did not undergo terminal field reorganization. These surprising results suggest that gustatory nerve terminal fields remain plastic well into adulthood, which likely impacts central coding of taste information and taste-related behaviors with altered taste experience. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. However, the importance of sensory-driven activity in maintaining these circuits at adulthood, especially in subcortical structures, appears to be much less. Here, we tested whether the loss of sodium taste activity in adult mice impacts the maintenance of how taste nerves project to the first central relay. We found that specific loss of sodium-elicited taste activity at adulthood produced dramatic and selective reorganization of terminal fields in the brainstem. This demonstrates, for the first time, that taste-elicited activity is necessary for the normal maintenance of central gustatory circuits at adulthood and highlights a level of plasticity not seen in other sensory system subcortical circuits. PMID:28676575

  17. Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors

    PubMed Central

    Kirino, Masato; Parnes, Jason; Hansen, Anne; Kiyohara, Sadao; Finger, Thomas E.

    2013-01-01

    Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates. PMID:23466675

  18. Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors.

    PubMed

    Kirino, Masato; Parnes, Jason; Hansen, Anne; Kiyohara, Sadao; Finger, Thomas E

    2013-03-06

    Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates.

  19. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells

    PubMed Central

    Gaillard, Dany; Barlow, Linda A.

    2012-01-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of type I, II and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25 week-old mice compared to 10 week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. PMID:21328519

  20. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells.

    PubMed

    Gaillard, Dany; Barlow, Linda A

    2011-04-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of Type I, II, and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25-week-old mice compared with 10-week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. Copyright © 2011 Wiley-Liss, Inc.

  1. Fgf signaling controls pharyngeal taste bud formation through miR-200 and Delta-Notch activity.

    PubMed

    Kapsimali, Marika; Kaushik, Anna-Lila; Gibon, Guillaume; Dirian, Lara; Ernest, Sylvain; Rosa, Frederic M

    2011-08-01

    Taste buds, the taste sensory organs, are conserved in vertebrates and composed of distinct cell types, including taste receptor, basal/presynaptic and support cells. Here, we characterize zebrafish taste bud development and show that compromised Fgf signaling in the larva results in taste bud reduction and disorganization. We determine that Fgf activity is required within pharyngeal endoderm for formation of Calb2b(+) cells and reveal miR-200 and Delta-Notch signaling as key factors in this process. miR-200 knock down shows that miR-200 activity is required for taste bud formation and in particular for Calb2b(+) cell formation. Compromised delta activity in mib(-/-) dramatically reduces the number of Calb2b(+) cells and increases the number of 5HT(+) cells. Conversely, larvae with increased Notch activity and ascl1a(-/-) mutants are devoid of 5HT(+) cells, but have maintained and increased Calb2b(+) cells, respectively. These results show that Delta-Notch signaling is required for intact taste bud organ formation. Consistent with this, Notch activity restores Calb2b(+) cell formation in pharyngeal endoderm with compromised Fgf signaling, but fails to restore the formation of these cells after miR-200 knock down. Altogether, this study provides genetic evidence that supports a novel model where Fgf regulates Delta-Notch signaling, and subsequently miR-200 activity, in order to promote taste bud cell type differentiation.

  2. Representation of sweet and salty taste intensity in the brain.

    PubMed

    Spetter, M S; Smeets, P A M; de Graaf, C; Viergever, M A

    2010-11-01

    The intensity of the taste of a food is affected mostly by the amount of sugars (mono- and disaccharides) or salt it contains. To season savory-tasting foods mainly table salt (NaCl) is used and to sweeten foods, sugars like sucrose are used. Foods with highly intense tastes are consumed in smaller amounts. The optimal taste intensity of a food is the intensity at which it is perceived as most pleasant. When taste intensity decreases or increases from optimal, the pleasantness of a food decreases. Here, we investigated the brain representation of sweet and salty taste intensity using functional magnetic resonance imaging. Fifteen subjects visited twice and tasted a range of 4 watery solutions (0-1 M) of either sucrose or NaCl in water. Middle insula activation increased with increasing concentration for both NaCl and sucrose. Despite similar subjective intensity ratings, anterior insula activation by NaCl increased more with concentration than that by sucrose. Amygdala activation increased with increasing NaCl concentration but not sucrose concentration. In conclusion, sweet and salty taste intensity are represented in the middle insula. Amygdala activation is only modulated by saltiness. Further research will need to extrapolate these results from simple solutions to real foods.

  3. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes.

    PubMed

    Taruno, Akiyuki; Vingtdeux, Valérie; Ohmoto, Makoto; Ma, Zhongming; Dvoryanchikov, Gennady; Li, Ang; Adrien, Leslie; Zhao, Haitian; Leung, Sze; Abernethy, Maria; Koppel, Jeremy; Davies, Peter; Civan, Mortimer M; Chaudhari, Nirupa; Matsumoto, Ichiro; Hellekant, Göran; Tordoff, Michael G; Marambaud, Philippe; Foskett, J Kevin

    2013-03-14

    Recognition of sweet, bitter and umami tastes requires the non-vesicular release from taste bud cells of ATP, which acts as a neurotransmitter to activate afferent neural gustatory pathways. However, how ATP is released to fulfil this function is not fully understood. Here we show that calcium homeostasis modulator 1 (CALHM1), a voltage-gated ion channel, is indispensable for taste-stimuli-evoked ATP release from sweet-, bitter- and umami-sensing taste bud cells. Calhm1 knockout mice have severely impaired perceptions of sweet, bitter and umami compounds, whereas their recognition of sour and salty tastes remains mostly normal. Calhm1 deficiency affects taste perception without interfering with taste cell development or integrity. CALHM1 is expressed specifically in sweet/bitter/umami-sensing type II taste bud cells. Its heterologous expression induces a novel ATP permeability that releases ATP from cells in response to manipulations that activate the CALHM1 ion channel. Knockout of Calhm1 strongly reduces voltage-gated currents in type II cells and taste-evoked ATP release from taste buds without affecting the excitability of taste cells by taste stimuli. Thus, CALHM1 is a voltage-gated ATP-release channel required for sweet, bitter and umami taste perception.

  4. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling.

    PubMed

    Ermilov, Alexandre N; Kumari, Archana; Li, Libo; Joiner, Ariell M; Grachtchouk, Marina A; Allen, Benjamin L; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2016-11-01

    For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste alterations in cancer patients using systemic Hedgehog pathway inhibitors result principally from interruption of signaling activity in taste papillae.

  5. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling

    PubMed Central

    Mistretta, Charlotte M.

    2016-01-01

    For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste alterations in cancer patients using systemic Hedgehog pathway inhibitors result principally from interruption of signaling activity in taste papillae. PMID:27893742

  6. Visual-gustatory interaction: orbitofrontal and insular cortices mediate the effect of high-calorie visual food cues on taste pleasantness.

    PubMed

    Ohla, Kathrin; Toepel, Ulrike; le Coutre, Johannes; Hudry, Julie

    2012-01-01

    Vision provides a primary sensory input for food perception. It raises expectations on taste and nutritional value and drives acceptance or rejection. So far, the impact of visual food cues varying in energy content on subsequent taste integration remains unexplored. Using electrical neuroimaging, we assessed whether high- and low-calorie food cues differentially influence the brain processing and perception of a subsequent neutral electric taste. When viewing high-calorie food images, participants reported the subsequent taste to be more pleasant than when low-calorie food images preceded the identical taste. Moreover, the taste-evoked neural activity was stronger in the bilateral insula and the adjacent frontal operculum (FOP) within 100 ms after taste onset when preceded by high- versus low-calorie cues. A similar pattern evolved in the anterior cingulate (ACC) and medial orbitofrontal cortex (OFC) around 180 ms, as well as, in the right insula, around 360 ms. The activation differences in the OFC correlated positively with changes in taste pleasantness, a finding that is an accord with the role of the OFC in the hedonic evaluation of taste. Later activation differences in the right insula likely indicate revaluation of interoceptive taste awareness. Our findings reveal previously unknown mechanisms of cross-modal, visual-gustatory, sensory interactions underlying food evaluation.

  7. Visual-Gustatory Interaction: Orbitofrontal and Insular Cortices Mediate the Effect of High-Calorie Visual Food Cues on Taste Pleasantness

    PubMed Central

    Ohla, Kathrin; Toepel, Ulrike; le Coutre, Johannes; Hudry, Julie

    2012-01-01

    Vision provides a primary sensory input for food perception. It raises expectations on taste and nutritional value and drives acceptance or rejection. So far, the impact of visual food cues varying in energy content on subsequent taste integration remains unexplored. Using electrical neuroimaging, we assessed whether high- and low-calorie food cues differentially influence the brain processing and perception of a subsequent neutral electric taste. When viewing high-calorie food images, participants reported the subsequent taste to be more pleasant than when low-calorie food images preceded the identical taste. Moreover, the taste-evoked neural activity was stronger in the bilateral insula and the adjacent frontal operculum (FOP) within 100 ms after taste onset when preceded by high- versus low-calorie cues. A similar pattern evolved in the anterior cingulate (ACC) and medial orbitofrontal cortex (OFC) around 180 ms, as well as, in the right insula, around 360 ms. The activation differences in the OFC correlated positively with changes in taste pleasantness, a finding that is an accord with the role of the OFC in the hedonic evaluation of taste. Later activation differences in the right insula likely indicate revaluation of interoceptive taste awareness. Our findings reveal previously unknown mechanisms of cross-modal, visual-gustatory, sensory interactions underlying food evaluation. PMID:22431974

  8. Taste-active compounds in a traditional Italian food: 'lampascioni'.

    PubMed

    Borgonovo, Gigliola; Caimi, Sara; Morini, Gabriella; Scaglioni, Leonardo; Bassoli, Angela

    2008-06-01

    Nature is a rich source of taste-active compounds, in particular of plant origin, many of which have unusual tastes. Many of these are found in traditional food, where spontaneous plants are used as ingredients. Some taste-active compounds were identified in the bulbs of Muscari comosum, a spontaneous plant belonging to the family of the Liliaceae, very common in the Mediterranean area, and used in traditional gastronomy (called 'lampascioni' in South Italy). The bulbs were extracted with a series of solvents of different polarity. The different fractions were submitted to a preliminary sensory evaluation, and the most interesting ones, characterized by a strong bitter taste and some chemestetic properties, were submitted to further purification and structural analysis. From the ethereal extract, several 3-benzyl-4-chromanones and one stilbene derivative were isolated. Pure compounds were examined for their taste activity by means of sensory evaluation, and proved to be responsible for the characteristic taste of this food. Some of these compounds have been synthesized de novo to confirm their structure.

  9. Maintenance of Mouse Gustatory Terminal Field Organization Is Disrupted following Selective Removal of Peripheral Sodium Salt Taste Activity at Adulthood.

    PubMed

    Skyberg, Rolf; Sun, Chengsan; Hill, David L

    2017-08-09

    Neural activity plays a critical role in the development of central circuits in sensory systems. However, the maintenance of these circuits at adulthood is usually not dependent on sensory-elicited neural activity. Recent work in the mouse gustatory system showed that selectively deleting the primary transduction channel for sodium taste, the epithelial sodium channel (ENaC), throughout development dramatically impacted the organization of the central terminal fields of three nerves that carry taste information to the nucleus of the solitary tract. More specifically, deleting ENaCs during development prevented the normal maturation of the fields. The present study was designed to extend these findings by testing the hypothesis that the loss of sodium taste activity impacts the maintenance of the normal adult terminal field organization in male and female mice. To do this, we used an inducible Cre-dependent genetic recombination strategy to delete ENaC function after terminal field maturation occurred. We found that removal of sodium taste neural activity at adulthood resulted in significant reorganization of mature gustatory afferent terminal fields in the nucleus of the solitary tract. Specifically, the chorda tympani and greater superficial petrosal nerve terminal fields were 1.4× and 1.6× larger than age-matched controls, respectively. By contrast, the glossopharyngeal nerve, which is not highly sensitive to sodium taste stimulation, did not undergo terminal field reorganization. These surprising results suggest that gustatory nerve terminal fields remain plastic well into adulthood, which likely impacts central coding of taste information and taste-related behaviors with altered taste experience. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. However, the importance of sensory-driven activity in maintaining these circuits at adulthood, especially in subcortical structures, appears to be much less. Here, we tested whether the loss of sodium taste activity in adult mice impacts the maintenance of how taste nerves project to the first central relay. We found that specific loss of sodium-elicited taste activity at adulthood produced dramatic and selective reorganization of terminal fields in the brainstem. This demonstrates, for the first time, that taste-elicited activity is necessary for the normal maintenance of central gustatory circuits at adulthood and highlights a level of plasticity not seen in other sensory system subcortical circuits. Copyright © 2017 the authors 0270-6474/17/377619-12$15.00/0.

  10. The discovery and mechanism of sweet taste enhancers.

    PubMed

    Li, Xiaodong; Servant, Guy; Tachdjian, Catherine

    2011-08-01

    Excess sugar intake posts several health problems. Artificial sweeteners have been used for years to reduce dietary sugar content, but they are not ideal substitutes for sugar owing to their off-taste. A new strategy focused on allosteric modulation of the sweet taste receptor led to identification of sweet taste 'enhancers' for the first time. The enhancer molecules do not taste sweet, but greatly potentiate the sweet taste of sucrose and sucralose selectively. Following a similar mechanism as the natural umami taste enhancers, the sweet enhancer molecules cooperatively bind with the sweeteners to the Venus flytrap domain of the human sweet taste receptor and stabilize the active conformation. Now that the approach has proven successful, enhancers for other sweeteners and details of the molecular mechanism for the enhancement are being actively pursued.

  11. Anti-cancer stemness and anti-invasive activity of bitter taste receptors, TAS2R8 and TAS2R10, in human neuroblastoma cells.

    PubMed

    Seo, Yoona; Kim, Yoo-Sun; Lee, Kyung Eun; Park, Tai Hyun; Kim, Yuri

    2017-01-01

    Neuroblastoma (NB) originates from immature neuronal cells and currently has a poor clinical outcome. NB cells possess cancer stem cells (CSCs) characteristics that facilitate the initiation of a tumor, as well as its metastasis. Human bitter taste receptors, referred to as TAS2Rs, are one of five types of basic taste receptors and they belong to a family of G-protein coupled receptors. The recent finding that taste receptors are expressed in non-gustatory tissues suggest that they mediate additional functions distinct from taste perception. While it is generally admitted that the recognition of bitter tastes may be associated with a self-defense system to prevent the ingestion of poisonous food compounds, this recognition may also serve as a disease-related function in the human body. In particular, the anti-cancer stemness and invasion effects of TAS2Rs on NB cells remain poorly understood. In the present study, endogenous expression of TAS2R8 and TAS2R10 in SK-N-BE(2)C and SH-SY5Y cells was examined. In addition, higher levels of TAS2R8 and TAS2R10 expression were investigated in more differentiated SY5Y cells. Both TAS2Rs were up-regulated following the induction of neuronal cell differentiation by retinoic acid. In addition, ectopic transfection of the two TAS2Rs induced neurite elongation in the BE(2)C cells, and down-regulated CSCs markers (including DLK1, CD133, Notch1, and Sox2), and suppressed self-renewal characteristics. In particular, TAS2RS inhibited tumorigenicity. Furthermore, when TAS2Rs was over-expressed, cell migration, cell invasion, and matrix metalloproteinases activity were inhibited. Expression levels of hypoxia-inducible factor-1α, a well-known regulator of tumor metastasis, as well as its downstream targets, vascular endothelial growth factor and glucose transporter-1, were also suppressed by TAS2Rs. Taken together, these novel findings suggest that TAS2Rs targets CSCs by suppressing cancer stemness characteristics and NB cell invasion, thereby highlighting the chemotherapeutic potential of bitter taste receptors.

  12. Anti-cancer stemness and anti-invasive activity of bitter taste receptors, TAS2R8 and TAS2R10, in human neuroblastoma cells

    PubMed Central

    Seo, Yoona; Kim, Yoo-Sun; Lee, Kyung Eun; Park, Tai Hyun; Kim, Yuri

    2017-01-01

    Neuroblastoma (NB) originates from immature neuronal cells and currently has a poor clinical outcome. NB cells possess cancer stem cells (CSCs) characteristics that facilitate the initiation of a tumor, as well as its metastasis. Human bitter taste receptors, referred to as TAS2Rs, are one of five types of basic taste receptors and they belong to a family of G-protein coupled receptors. The recent finding that taste receptors are expressed in non-gustatory tissues suggest that they mediate additional functions distinct from taste perception. While it is generally admitted that the recognition of bitter tastes may be associated with a self-defense system to prevent the ingestion of poisonous food compounds, this recognition may also serve as a disease-related function in the human body. In particular, the anti-cancer stemness and invasion effects of TAS2Rs on NB cells remain poorly understood. In the present study, endogenous expression of TAS2R8 and TAS2R10 in SK-N-BE(2)C and SH-SY5Y cells was examined. In addition, higher levels of TAS2R8 and TAS2R10 expression were investigated in more differentiated SY5Y cells. Both TAS2Rs were up-regulated following the induction of neuronal cell differentiation by retinoic acid. In addition, ectopic transfection of the two TAS2Rs induced neurite elongation in the BE(2)C cells, and down-regulated CSCs markers (including DLK1, CD133, Notch1, and Sox2), and suppressed self-renewal characteristics. In particular, TAS2RS inhibited tumorigenicity. Furthermore, when TAS2Rs was over-expressed, cell migration, cell invasion, and matrix metalloproteinases activity were inhibited. Expression levels of hypoxia-inducible factor-1α, a well-known regulator of tumor metastasis, as well as its downstream targets, vascular endothelial growth factor and glucose transporter-1, were also suppressed by TAS2Rs. Taken together, these novel findings suggest that TAS2Rs targets CSCs by suppressing cancer stemness characteristics and NB cell invasion, thereby highlighting the chemotherapeutic potential of bitter taste receptors. PMID:28467517

  13. Anterior cingulate taste activation predicts ad libitum intake of sweet and savory drinks in healthy, normal-weight men.

    PubMed

    Spetter, Maartje S; de Graaf, Cees; Viergever, Max A; Smeets, Paul A M

    2012-04-01

    After food consumption, the motivation to eat (wanting) decreases and associated brain reward responses change. Wanting-related brain responses and how these are affected by consumption of specific foods are ill documented. Moreover, the predictive value of food-induced brain responses for subsequent consumption has not been assessed. We aimed to determine the effects of consumption of sweet and savory foods on taste activation in the brain and to assess how far taste activation can predict subsequent ad libitum intake. Fifteen healthy men (age: 27 ± 2 y, BMI: 22.0 ± 1.5 kg/m2) participated in a randomized crossover trial. After a >3-h fast, participants were scanned with the use of functional MRI before and after consumption of a sweet or savory preload (0.35 L fruit or tomato juice) on two occasions. After the scans, the preload juice was consumed ad libitum. During scanning, participants tasted the juices and rated their pleasantness. Striatal taste activation decreased after juice consumption, independent of pleasantness. Sweet and savory taste activation were not differentially affected by consumption. Anterior cingulate taste activation predicted subsequent ad libitum intake of sweet (r = -0.78; P < 0.001(uncorrected)) as well as savory juice (r = -0.70; P < 0.001(uncorrected)). In conclusion, we showed how taste activation of brain reward areas changes following food consumption. These changes may be associated with the food's physiological relevance. Further, the results suggest that anterior cingulate taste activation reflects food-specific satiety. This extends our understanding of the representation of food specific-appetite in the brain and shows that neuroimaging may provide objective and more accurate measures of food motivation than self-report measures.

  14. Descending projections from the nucleus accumbens shell excite activity of taste-responsive neurons in the nucleus of the solitary tract in the hamster.

    PubMed

    Li, Cheng-Shu; Lu, Da-Peng; Cho, Young K

    2015-06-01

    The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second relays in the rodent central taste pathway. A series of electrophysiological experiments revealed that spontaneous and taste-evoked activities of brain stem gustatory neurons are altered by descending input from multiple forebrain nuclei in the central taste pathway. The nucleus accumbens shell (NAcSh) is a key neural substrate of reward circuitry, but it has not been verified as a classical gustatory nucleus. A recent in vivo electrophysiological study demonstrated that the NAcSh modulates the spontaneous and gustatory activities of hamster pontine taste neurons. In the present study, we investigated whether activation of the NAcSh modulates gustatory responses of the NST neurons. Extracellular single-unit activity was recorded from medullary neurons in urethane-anesthetized hamsters. After taste response was confirmed by delivery of sucrose, NaCl, citric acid, and quinine hydrochloride to the anterior tongue, the NAcSh was stimulated bilaterally with concentric bipolar stimulating electrodes. Stimulation of the ipsilateral and contralateral NAcSh induced firings from 54 and 37 of 90 medullary taste neurons, respectively. Thirty cells were affected bilaterally. No inhibitory responses or antidromic invasion was observed after NAcSh activation. In the subset of taste cells tested, high-frequency electrical stimulation of the NAcSh during taste delivery enhanced taste-evoked neuronal firing. These results demonstrate that two-thirds of the medullary gustatory neurons are under excitatory descending influence from the NAcSh, which is a strong indication of communication between the gustatory pathway and the mesolimbic reward pathway. Copyright © 2015 the American Physiological Society.

  15. Contribution of different taste cells and signaling pathways to the discrimination of "bitter" taste stimuli by an insect.

    PubMed

    Glendinning, John I; Davis, Adrienne; Ramaswamy, Sudha

    2002-08-15

    Animals can discriminate among many different types of foods. This discrimination process involves multiple sensory systems, but the sense of taste is known to play a central role. We asked how the taste system contributes to the discrimination of different "bitter" taste stimuli in Manduca sexta caterpillars. This insect has approximately eight bilateral pairs of taste cells that respond selectively to bitter taste stimuli. Each bilateral pair of bitter-sensitive taste cells has a different molecular receptive range (MRR); some of these taste cells also contain two signaling pathways with distinctive MRRs and temporal patterns of spiking. To test for discrimination, we habituated the caterpillar's taste-mediated aversive response to one bitter taste stimulus (salicin) and then asked whether this habituation phenomenon generalized to four other bitter taste stimuli (caffeine, aristolochic acid, Grindelia extract, and Canna extract). We inferred that the two compounds were discriminable if the habituation phenomenon failed to generalize (e.g., from salicin to aristolochic acid). We found that M. sexta could discriminate between salicin and those bitter taste stimuli that activate (1) different populations of bitter-sensitive taste cells (Grindelia extract and Canna extract) or (2) different signaling pathways within the same bitter-sensitive taste cell (aristolochic acid). M. sexta could not discriminate between salicin and a bitter taste stimulus that activates the same signaling pathway within the same bitter-sensitive taste cell (caffeine). We propose that the heterogeneous population of bitter-sensitive taste cells and signaling pathways within this insect facilitates the discrimination of bitter taste stimuli.

  16. Intravital Microscopic Interrogation of Peripheral Taste Sensation

    NASA Astrophysics Data System (ADS)

    Choi, Myunghwan; Lee, Woei Ming; Yun, Seok Hyun

    2015-03-01

    Intravital microscopy is a powerful tool in neuroscience but has not been adapted to the taste sensory organ due to anatomical constraint. Here we developed an imaging window to facilitate microscopic access to the murine tongue in vivo. Real-time two-photon microscopy allowed the visualization of three-dimensional microanatomy of the intact tongue mucosa and functional activity of taste cells in response to topically administered tastants in live mice. Video microscopy also showed the calcium activity of taste cells elicited by small-sized tastants in the blood circulation. Molecular kinetic analysis suggested that intravascular taste sensation takes place at the microvilli on the apical side of taste cells after diffusion of the molecules through the pericellular capillaries and tight junctions in the taste bud. Our results demonstrate the capabilities and utilities of the new tool for taste research in vivo.

  17. Intravital microscopic interrogation of peripheral taste sensation.

    PubMed

    Choi, Myunghwan; Lee, Woei Ming; Yun, Seok Hyun

    2015-03-02

    Intravital microscopy is a powerful tool in neuroscience but has not been adapted to the taste sensory organ due to anatomical constraint. Here we developed an imaging window to facilitate microscopic access to the murine tongue in vivo. Real-time two-photon microscopy allowed the visualization of three-dimensional microanatomy of the intact tongue mucosa and functional activity of taste cells in response to topically administered tastants in live mice. Video microscopy also showed the calcium activity of taste cells elicited by small-sized tastants in the blood circulation. Molecular kinetic analysis suggested that intravascular taste sensation takes place at the microvilli on the apical side of taste cells after diffusion of the molecules through the pericellular capillaries and tight junctions in the taste bud. Our results demonstrate the capabilities and utilities of the new tool for taste research in vivo.

  18. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    PubMed

    Sun, Chengsan; Hummler, Edith; Hill, David L

    2017-01-18

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. Copyright © 2017 the authors 0270-6474/17/370660-13$15.00/0.

  19. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract

    PubMed Central

    Sun, Chengsan; Hummler, Edith

    2017-01-01

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent “pruning” of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. PMID:28100747

  20. Opportunities in the Classroom or Cafeteria for a "Tasting Challenge" to Influence First Grade Students' Willingness to Try New Foods

    ERIC Educational Resources Information Center

    Bellows, Laura L.; Conlon, Tara; Cunningham-Sabo, Leslie; Johnson, Susan L.

    2015-01-01

    Purpose/Objective: To develop and implement a "Tasting Challenge" activity that is feasible for schools to influence and measure the willingness of elementary students to try new foods. Methods: The Tasting Challenge was as part of a classroom activity. Children were individually offered jicama and edamame to taste and rate (yummy, ok,…

  1. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    PubMed Central

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  2. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    PubMed

    Kataoka, Shinji; Baquero, Arian; Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C; Finger, Thomas E

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  3. MSG-Evoked c-Fos Activity in the Nucleus of the Solitary Tract Is Dependent upon Fluid Delivery and Stimulation Parameters

    PubMed Central

    Thompson, John A.

    2016-01-01

    The marker of neuronal activation, c-Fos, can be used to visualize spatial patterns of neural activity in response to taste stimulation. Because animals will not voluntarily consume aversive tastes, these stimuli are infused directly into the oral cavity via intraoral cannulae, whereas appetitive stimuli are given in drinking bottles. Differences in these 2 methods make comparison of taste-evoked brain activity between results that utilize these methods problematic. Surprisingly, the intraoral cannulae experimental conditions that produce a similar pattern of c-Fos activity in response to taste stimulation remain unexplored. Stimulation pattern (e.g., constant/intermittent) and hydration state (e.g., water-restricted/hydrated) are the 2 primary differences between delivering tastes via bottles versus intraoral cannulae. Thus, we quantified monosodium glutamate (MSG)-evoked brain activity, as measured by c-Fos, in the nucleus of the solitary tract (nTS; primary taste nucleus) across several conditions. The number and pattern of c-Fos neurons in the nTS of animals that were water-restricted and received a constant infusion of MSG via intraoral cannula most closely mimicked animals that consumed MSG from a bottle. Therefore, in order to compare c-Fos activity between cannulae-stimulated and bottle-stimulated animals, cannulated animals should be water restricted prior to stimulation, and receive taste stimuli at a constant flow. PMID:26762887

  4. Unravelling the effect of the Dutch school-based nutrition programme Taste Lessons: the role of dose, appreciation and interpersonal communication.

    PubMed

    Battjes-Fries, Marieke C E; van Dongen, Ellen J I; Renes, Reint Jan; Meester, Hante J; Van't Veer, Pieter; Haveman-Nies, Annemien

    2016-08-05

    To unravel the effect of school-based nutrition education, insight into the implementation process is needed. In this study, process indicators of Taste Lessons (a nutrition education programme for Dutch elementary schools) and their association with changes in behavioural determinants relevant to healthy eating behaviour are studied. The study sample consisted of 392 Dutch primary school children from 12 schools. Data were collected using teacher and child questionnaires at baseline, and at one and six months after the intervention. Multilevel regression analyses were conducted to study the association between dose, appreciation and children's engagement in interpersonal communication (talking about Taste Lessons with others after the lessons), and change in knowledge, awareness, skills, attitude, emotion, subjective norm and intention towards two target behaviours. With an average implementation of a third of the programme activities, dose positively predicted change in children's subjective norm of the teacher after one month. Teachers and children highly appreciated Taste Lessons. Whereas teacher appreciation was inversely associated, child appreciation was positively associated with children's change in awareness, emotion and subjective norm of teachers after one month and in attitude and subjective norm of parents after six months. Interpersonal communication was positively associated with children's change in five determinants after one month and in attitude and intention after six months. The implementation process is related to the programme outcomes of Taste Lessons. Process data provide valuable insights into factors that contribute to the effect of interventions in real-life settings.

  5. Different Neural Processing of Umami and Salty Taste Determined by Umami Identification Ability Independent of Repeated Umami Exposure.

    PubMed

    Han, Pengfei; Mohebbi, Mohebbat; Unrath, Manja; Hummel, Cornelia; Hummel, Thomas

    2018-07-15

    There is a large inter-individual variation for umami taste perception. However the neural mechanism for this variability is not well understood. This study investigated brain responses to umami and salty taste among individuals with different umami identification abilities and the effect of repeated oral umami exposure on umami identification and neural processing of taste perceptions. Fifteen participants with high umami identification ability ("High Tasters, HT) and fifteen with low umami identification ability ("Low Tasters", LT) underwent three weeks of controlled exposure to umami taste (umami training). Prior to and after the training, participants underwent fMRI scans during which the umami taste solution and a control taste (salty) solution were delivered to their mouth using a gustometer. Taste intensity and pleasantness were rated after each scan. Umami taste identification was assessed before and after the umami training using "Taste Strips" test. Neuroimaging results showed different central processing of umami and salty taste based on umami identification ability, in which the umami LT had stronger activation in the thalamus and hippocampus while the umami HT showed stronger activation in the primary gustatory cortex. In addition, umami identification was significantly improved after umami training for LT. However, it was not reflected in changes in neural activation. The current study shows that attention and association/memory related brain structures play a significant role in the perception of umami taste; and with reference to the results of repeated umami exposure, the presence of very subtle changes regarding the neural processing. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. A taste for words and sounds: a case of lexical-gustatory and sound-gustatory synesthesia

    PubMed Central

    Colizoli, Olympia; Murre, Jaap M. J.; Rouw, Romke

    2013-01-01

    Gustatory forms of synesthesia involve the automatic and consistent experience of tastes that are triggered by non-taste related inducers. We present a case of lexical-gustatory and sound-gustatory synesthesia within one individual, SC. Most words and a subset of non-linguistic sounds induce the experience of taste, smell and physical sensations for SC. SC's lexical-gustatory associations were significantly more consistent than those of a group of controls. We tested for effects of presentation modality (visual vs. auditory), taste-related congruency, and synesthetic inducer-concurrent direction using a priming task. SC's performance did not differ significantly from a trained control group. We used functional magnetic resonance imaging to investigate the neural correlates of SC's synesthetic experiences by comparing her brain activation to the literature on brain networks related to language, music, and sound processing, in addition to synesthesia. Words that induced a strong taste were contrasted to words that induced weak-to-no tastes (“tasty” vs. “tasteless” words). Brain activation was also measured during passive listening to music and environmental sounds. Brain activation patterns showed evidence that two regions are implicated in SC's synesthetic experience of taste and smell: the left anterior insula and left superior parietal lobe. Anterior insula activation may reflect the synesthetic taste experience. The superior parietal lobe is proposed to be involved in binding sensory information across sub-types of synesthetes. We conclude that SC's synesthesia is genuine and reflected in her brain activation. The type of inducer (visual-lexical, auditory-lexical, and non-lexical auditory stimuli) could be differentiated based on patterns of brain activity. PMID:24167497

  7. Enhancement of Combined Umami and Salty Taste by Glutathione in the Human Tongue and Brain.

    PubMed

    Goto, Tazuko K; Yeung, Andy Wai Kan; Tanabe, Hiroki C; Ito, Yuki; Jung, Han-Sung; Ninomiya, Yuzo

    2016-09-01

    Glutathione, a natural substance, acts on calcium receptors on the tongue and is known to enhance basic taste sensations. However, the effects of glutathione on brain activity associated with taste sensation on the tongue have not been determined under standardized taste delivery conditions. In this study, we investigated the sensory effect of glutathione on taste with no effect of the smell when glutathione added to a combined umami and salty taste stimulus. Twenty-six volunteers (12 women and 14 men; age 19-27 years) performed a sensory evaluation of taste of a solution of monosodium L-glutamate and sodium chloride, with and without glutathione. The addition of glutathione changed taste qualities and significantly increased taste intensity ratings under standardized taste delivery conditions (P < 0.001). Functional magnetic resonance imaging showed that glutathione itself elicited significant activation in the left ventral insula. These results are the first to demonstrate the enhancing effect of glutathione as reflected by brain data while tasting an umami and salty mixture. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Bioelectronic tongue of taste buds on microelectrode array for salt sensing.

    PubMed

    Liu, Qingjun; Zhang, Fenni; Zhang, Diming; Hu, Ning; Wang, Hua; Hsia, K Jimmy; Wang, Ping

    2013-02-15

    Taste has received great attention for its potential applications. In this work, we combine the biological tissue with micro-chips to establish a novel bioelectronic tongue system for salt taste detection. Before experiment, we established a computational model of action potential in salt taste receptor cell, simulating the responsive results to natural salt stimuli of NaCl solution with various concentrations. Then 36-channel microelectrode arrays (MEA) with the diameter of 30 μm were fabricated on the glass substrate, and taste epithelium was stripped from rat and fixed on MEA. When stimulated by the salt stimuli, electrophysiological activities of taste receptor cells in taste buds were measured through a multi-channel recording system. Both simulation and experiment results showed a dose-dependent increase in NaCl-induced potentials of taste receptor cells, which indicated good applications in salt measurements. The multi-channel analysis demonstrated that different groups of MEA channels were activated during stimulations, indicating non-overlapping populations of receptor cells in taste buds involved in salt taste perception. The study provides an effective and reliable biosensor platform to help recognize and distinguish salt taste components. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Voltage-gated sodium channels in taste bud cells.

    PubMed

    Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D

    2009-03-12

    Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  10. The Influence of Color on the Consumer’s Experience of Beer

    PubMed Central

    Carvalho, Felipe Reinoso; Moors, Pieter; Wagemans, Johan; Spence, Charles

    2017-01-01

    Visual appearance (e.g., color) cues set expectations regarding the likely taste and flavor properties of food and drink. These expectations may, in turn, anchor the subsequent tasting experience. In the present study, we examined the influence of the color of a beer on the consumer’s experience. Dark and pale beers were evaluated both before and after tasting. Importantly, these beers were indistinguishable in terms of their taste/flavor when tasted without any visual cues. The results indicate that the differing visual appearance of the beers led to clear differences in expected taste/flavor. However, after tasting, no differences in flavor ratings were observed, indicating that the expectations based on visual cues did not influence the actual tasting experience. The participants also expected the dark beer to be more expensive than the pale one. These outcomes suggest that changes in the visual appearance of a beer lead to significant changes in the way in which consumers expect the beer to taste. At the same time, however, our findings also suggest the need for more evidence to be collected in order to determine the boundary conditions on when such crossmodal expectations may vs. may not affect the tasting experience. Highlights: The expected flavor of a beer is affected by its visual appearance. No differences in flavor ratings were observed on tasting. Consumers expect dark beers to be more expensive than pale/amber beers. PMID:29312065

  11. The Influence of Color on the Consumer's Experience of Beer.

    PubMed

    Carvalho, Felipe Reinoso; Moors, Pieter; Wagemans, Johan; Spence, Charles

    2017-01-01

    Visual appearance (e.g., color) cues set expectations regarding the likely taste and flavor properties of food and drink. These expectations may, in turn, anchor the subsequent tasting experience. In the present study, we examined the influence of the color of a beer on the consumer's experience. Dark and pale beers were evaluated both before and after tasting. Importantly, these beers were indistinguishable in terms of their taste/flavor when tasted without any visual cues. The results indicate that the differing visual appearance of the beers led to clear differences in expected taste/flavor. However, after tasting, no differences in flavor ratings were observed, indicating that the expectations based on visual cues did not influence the actual tasting experience. The participants also expected the dark beer to be more expensive than the pale one. These outcomes suggest that changes in the visual appearance of a beer lead to significant changes in the way in which consumers expect the beer to taste. At the same time, however, our findings also suggest the need for more evidence to be collected in order to determine the boundary conditions on when such crossmodal expectations may vs. may not affect the tasting experience. Highlights: The expected flavor of a beer is affected by its visual appearance. No differences in flavor ratings were observed on tasting. Consumers expect dark beers to be more expensive than pale/amber beers.

  12. Identification and Modulation of the Key Amino Acid Residue Responsible for the pH Sensitivity of Neoculin, a Taste-Modifying Protein

    PubMed Central

    Nakajima, Ken-ichiro; Yokoyama, Kanako; Koizumi, Taichi; Koizumi, Ayako; Asakura, Tomiko; Terada, Tohru; Masuda, Katsuyoshi; Ito, Keisuke; Shimizu-Ibuka, Akiko; Misaka, Takumi; Abe, Keiko

    2011-01-01

    Neoculin occurring in the tropical fruit of Curculigo latifolia is currently the only protein that possesses both a sweet taste and a taste-modifying activity of converting sourness into sweetness. Structurally, this protein is a heterodimer consisting of a neoculin acidic subunit (NAS) and a neoculin basic subunit (NBS). Recently, we found that a neoculin variant in which all five histidine residues are replaced with alanine elicits intense sweetness at both neutral and acidic pH but has no taste-modifying activity. To identify the critical histidine residue(s) responsible for this activity, we produced a series of His-to-Ala neoculin variants and evaluated their sweetness levels using cell-based calcium imaging and a human sensory test. Our results suggest that NBS His11 functions as a primary pH sensor for neoculin to elicit taste modification. Neoculin variants with substitutions other than His-to-Ala were further analyzed to clarify the role of the NBS position 11 in the taste-modifying activity. We found that the aromatic character of the amino acid side chain is necessary to elicit the pH-dependent sweetness. Interestingly, since the His-to-Tyr variant is a novel taste-modifying protein with alternative pH sensitivity, the position 11 in NBS can be critical to modulate the pH-dependent activity of neoculin. These findings are important for understanding the pH-sensitive functional changes in proteinaceous ligands in general and the interaction of taste receptor–taste substance in particular. PMID:21559382

  13. Bacterial D-Amino Acids Suppress Sinonasal Innate Immunity Through Sweet Taste Receptors in Solitary Chemosensory Cells

    PubMed Central

    Lee, Robert J.; Hariri, Benjamin M.; McMahon, Derek B.; Chen, Bei; Doghramjii, Laurel; Adappa, Nithin D.; Palmer, James N.; Kennedy, David W.; Jiang, Peihua; Margolskee, Robert F.; Cohen, Noam A.

    2017-01-01

    In the upper respiratory epithelium, bitter and sweet taste receptors present in solitary chemosensory cells influence antimicrobial innate immune defense responses. Whereas activation of the bitter taste receptor (T2R) stimulates surrounding epithelial cells to release antimicrobial peptides, activation of the sweet taste receptor (T1R) in the same cells inhibits this response. It is thought that this mechanism exists to control the magnitude of antimicrobial peptide release based upon the sugar content of airway surface liquid. We hypothesized that D-amino acids, which are produced by various bacteria and activate T1R in taste receptor cells in the mouth, may also activate T1R in the airway. Here, we show that both the T1R2 and T1R3 subunits of the sweet taste receptor (T1R2/3) are present in the same chemosensory cells of primary human sinonasal epithelial cultures. Respiratory isolates of Staphylococcus species, but not Pseudomonas aeruginosa, produced at least two D-amino acids that activate the sweet taste receptor. In addition to inhibiting P. aeruginosa biofilm formation, D-amino acids derived from Staphylococcus inhibited T2R-mediated signaling and defensin secretion in sinonasal cells by activating T1R2/3. D-amino acid–mediated activation of T1R2/3 also enhanced epithelial cell death during challenge with Staphylococcus aureus in the presence of the bitter-receptor–activating compound denatonium benzoate. These data establish a potential mechanism for interkingdom signaling in the airway mediated by bacterial D-amino acids and the mammalian sweet taste receptor in airway chemosensory cells. PMID:28874606

  14. Inflammation activates the interferon signaling pathways in taste bud cells.

    PubMed

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-10-03

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.

  15. Intracellular acidification is required for full activation of the sweet taste receptor by miraculin

    PubMed Central

    Sanematsu, Keisuke; Kitagawa, Masayuki; Yoshida, Ryusuke; Nirasawa, Satoru; Shigemura, Noriatsu; Ninomiya, Yuzo

    2016-01-01

    Acidification of the glycoprotein, miraculin (MCL), induces sweet taste in humans, but not in mice. The sweet taste induced by MCL is more intense when acidification occurs with weak acids as opposed to strong acids. MCL interacts with the human sweet receptor subunit hTAS1R2, but the mechanisms by which the acidification of MCL activates the sweet taste receptor remain largely unexplored. The work reported here speaks directly to this activation by utilizing a sweet receptor TAS1R2 + TAS1R3 assay. In accordance with previous data, MCL-applied cells displayed a pH dependence with citric acid (weak acid) being right shifted to that with hydrochloric acid (strong acid). When histidine residues in both the intracellular and extracellular region of hTAS1R2 were exchanged for alanine, taste-modifying effect of MCL was reduced or abolished. Stronger intracellular acidification of HEK293 cells was induced by citric acid than by HCl and taste-modifying effect of MCL was proportional to intracellular pH regardless of types of acids. These results suggest that intracellular acidity is required for full activation of the sweet taste receptor by MCL. PMID:26960429

  16. Effect of satiety on brain activation during chocolate tasting in men and women.

    PubMed

    Smeets, Paul A M; de Graaf, Cees; Stafleu, Annette; van Osch, Matthias J P; Nievelstein, Rutger A J; van der Grond, Jeroen

    2006-06-01

    The brain plays a crucial role in the decision to eat, integrating multiple hormonal and neural signals. A key factor controlling food intake is selective satiety, ie, the phenomenon that the motivation to eat more of a food decreases more than does the motivation to eat foods not eaten. We investigated the effect of satiation with chocolate on the brain activation associated with chocolate taste in men and women. Twelve men and 12 women participated. Subjects fasted overnight and were scanned by use of functional magnetic resonance imaging while tasting chocolate milk, before and after eating chocolate until they were satiated. In men, chocolate satiation was associated with increased taste activation in the ventral striatum, insula, and orbitofrontal and medial orbitofrontal cortex and with decreased taste activation in somatosensory areas. Women showed increased taste activation in the precentral gyrus, superior temporal gyrus, and putamen and decreased taste activation in the hypothalamus and amygdala. Sex differences in the effect of chocolate satiation were found in the hypothalamus, ventral striatum, and medial prefrontal cortex (all P < 0.005). Our results indicate that men and women differ in their response to satiation and suggest that the regulation of food intake by the brain may vary between the sexes. Therefore, sex differences are a covariate of interest in studies of the brain's responses to food.

  17. It's in the eye of the beholder: selective attention to drink properties during tasting influences brain activation in gustatory and reward regions.

    PubMed

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2018-04-01

    Statements regarding pleasantness, taste intensity or caloric content on a food label may influence the attention consumers pay to such characteristics during consumption. There is little research on the effects of selective attention on taste perception and associated brain activation in regular drinks. The aim of this study was to investigate the effect of selective attention on hedonics, intensity and caloric content on brain responses during tasting drinks. Using functional MRI brain responses of 27 women were measured while they paid attention to the intensity, pleasantness or caloric content of fruit juice, tomato juice and water. Brain activation during tasting largely overlapped between the three selective attention conditions and was found in the rolandic operculum, insula and overlying frontal operculum, striatum, amygdala, thalamus, anterior cingulate cortex and middle orbitofrontal cortex (OFC). Brain activation was higher during selective attention to taste intensity compared to calories in the right middle OFC and during selective attention to pleasantness compared to intensity in the right putamen, right ACC and bilateral middle insula. Intensity ratings correlated with brain activation during selective attention to taste intensity in the anterior insula and lateral OFC. Our data suggest that not only the anterior insula but also the middle and lateral OFC are involved in evaluating taste intensity. Furthermore, selective attention to pleasantness engaged regions associated with food reward. Overall, our results indicate that selective attention to food properties can alter the activation of gustatory and reward regions. This may underlie effects of food labels on the consumption experience of consumers.

  18. MSG-Evoked c-Fos Activity in the Nucleus of the Solitary Tract Is Dependent upon Fluid Delivery and Stimulation Parameters.

    PubMed

    Stratford, Jennifer M; Thompson, John A

    2016-03-01

    The marker of neuronal activation, c-Fos, can be used to visualize spatial patterns of neural activity in response to taste stimulation. Because animals will not voluntarily consume aversive tastes, these stimuli are infused directly into the oral cavity via intraoral cannulae, whereas appetitive stimuli are given in drinking bottles. Differences in these 2 methods make comparison of taste-evoked brain activity between results that utilize these methods problematic. Surprisingly, the intraoral cannulae experimental conditions that produce a similar pattern of c-Fos activity in response to taste stimulation remain unexplored. Stimulation pattern (e.g., constant/intermittent) and hydration state (e.g., water-restricted/hydrated) are the 2 primary differences between delivering tastes via bottles versus intraoral cannulae. Thus, we quantified monosodium glutamate (MSG)-evoked brain activity, as measured by c-Fos, in the nucleus of the solitary tract (nTS; primary taste nucleus) across several conditions. The number and pattern of c-Fos neurons in the nTS of animals that were water-restricted and received a constant infusion of MSG via intraoral cannula most closely mimicked animals that consumed MSG from a bottle. Therefore, in order to compare c-Fos activity between cannulae-stimulated and bottle-stimulated animals, cannulated animals should be water restricted prior to stimulation, and receive taste stimuli at a constant flow. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Taste-active compound levels in Korean native chicken meat: The effects of bird age and the cooking process.

    PubMed

    Jayasena, Dinesh D; Jung, Samooel; Kim, Hyun Joo; Yong, Hae In; Nam, Ki Chang; Jo, Cheorun

    2015-08-01

    The effects of bird age and the cooking process on the levels of several taste-active compounds, including inosine 5'-monophosphate (IMP), glutamic acid, cysteine, reducing sugars, as well as oleic, linoleic, arachidonic, and docosahexaenoic acids (DHA), in the breast and leg meats from a certified meat-type commercial Korean native chicken (KNC) strain (Woorimatdag) were investigated. KNC cocks were raised under similar standard conditions at a commercial chicken farm, and breast and leg meats from birds of various ages (10, 11, 12, 13, and 14 wk; 10 birds/age group) were obtained. After raw and cooked meat samples were prepared, they were analyzed for the aforementioned taste-active compounds. Compared to the leg meat, KNC breast meat had higher levels of IMP, arachidonic acid, and DHA, but lower levels of the other taste-active compounds (P < 0.05). KNC meat lost significant amounts of all the taste-active compounds, excluding oleic and linoleic acids, during the cooking process (P < 0.05). However, bird age only had a minor effect on the levels of these taste-active compounds. The results of this study provide useful information regarding the levels of taste-active compounds in KNC meat from birds of different ages, and their fate during the cooking process. This information could be useful for selection and breeding programs, and for popularizing native chicken meat. © 2015 Poultry Science Association Inc.

  20. Modulation of sweet taste by umami compounds via sweet taste receptor subunit hT1R2.

    PubMed

    Shim, Jaewon; Son, Hee Jin; Kim, Yiseul; Kim, Ki Hwa; Kim, Jung Tae; Moon, Hana; Kim, Min Jung; Misaka, Takumi; Rhyu, Mee-Ra

    2015-01-01

    Although the five basic taste qualities-sweet, sour, bitter, salty and umami-can be recognized by the respective gustatory system, interactions between these taste qualities are often experienced when food is consumed. Specifically, the umami taste has been investigated in terms of whether it enhances or reduces the other taste modalities. These studies, however, are based on individual perception and not on a molecular level. In this study we investigated umami-sweet taste interactions using umami compounds including monosodium glutamate (MSG), 5'-mononucleotides and glutamyl-dipeptides, glutamate-glutamate (Glu-Glu) and glutamate-aspartic acid (Glu-Asp), in human sweet taste receptor hT1R2/hT1R3-expressing cells. The sensitivity of sucrose to hT1R2/hT1R3 was significantly attenuated by MSG and umami active peptides but not by umami active nucleotides. Inhibition of sweet receptor activation by MSG and glutamyl peptides is obvious when sweet receptors are activated by sweeteners that target the extracellular domain (ECD) of T1R2, such as sucrose and acesulfame K, but not by cyclamate, which interact with the T1R3 transmembrane domain (TMD). Application of umami compounds with lactisole, inhibitory drugs that target T1R3, exerted a more severe inhibitory effect. The inhibition was also observed with F778A sweet receptor mutant, which have the defect in function of T1R3 TMD. These results suggest that umami peptides affect sweet taste receptors and this interaction prevents sweet receptor agonists from binding to the T1R2 ECD in an allosteric manner, not to the T1R3. This is the first report to define the interaction between umami and sweet taste receptors.

  1. A taste for ATP: neurotransmission in taste buds

    PubMed Central

    Kinnamon, Sue C.; Finger, Thomas E.

    2013-01-01

    Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells. PMID:24385952

  2. The temporal change in the cortical activations due to salty and sweet tastes in humans: fMRI and time-intensity sensory evaluation.

    PubMed

    Nakamura, Yuko; Goto, Tazuko K; Tokumori, Kenji; Yoshiura, Takashi; Kobayashi, Koji; Nakamura, Yasuhiko; Honda, Hiroshi; Ninomiya, Yuzo; Yoshiura, Kazunori

    2012-04-18

    It remains unclear how the cerebral cortex of humans perceives taste temporally, and whether or not such objective data about the brain show a correlation with the current widely used conventional methods of taste-intensity sensory evaluation. The aim of this study was to investigate the difference in the time-intensity profile between salty and sweet tastes in the human brain. The time-intensity profiles of functional MRI (fMRI) data of the human taste cortex were analyzed using finite impulse response analysis for a direct interpretation in terms of the peristimulus time signal. Also, time-intensity sensory evaluations for tastes were performed under the same condition as fMRI to confirm the reliability of the temporal profile in the fMRI data. The time-intensity profile for the brain activations due to a salty taste changed more rapidly than those due to a sweet taste in the human brain cortex and was also similar to the time-intensity sensory evaluation, confirming the reliability of the temporal profile of the fMRI data. In conclusion, the time-intensity profile using finite impulse response analysis for fMRI data showed that there was a temporal difference in the neural responses between salty and sweet tastes over a given period of time. This indicates that there might be taste-specific temporal profiles of activations in the human brain.

  3. Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.

    PubMed

    Mistretta, Charlotte M; Kumari, Archana

    2017-02-10

    The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

  4. Adding sodium information to casual dining restaurant menus: Beneficial or detrimental for consumers?

    PubMed

    Byrd, Karen; Almanza, Barbara; Ghiselli, Richard F; Behnke, Carl; Eicher-Miller, Heather A

    2018-06-01

    High sodium levels in restaurant food have prompted Philadelphia and New York City to require inclusion of sodium content in addition to calories on menus to "nudge" consumers toward lower sodium foods. However, taste perceptions may impact the effectiveness of this intervention. An online survey tested whether sodium and calorie menu nutrition information (MNI) influenced consumer choices from a casual dining restaurant menu, accounting for consumers' intuition about taste of food relative to sodium, calories, and healthiness. Consumer choices were assessed based on calorie and sodium content of the menu items they selected. Participants were randomized to a menu with (1) calorie MNI only, (2) calorie plus numeric sodium MNI, (3) calorie MNI plus a sodium warning symbol for foods with 2300 mg of sodium or more, or (4) no MNI. Calorie plus numeric sodium MNI was associated with selection of meals lower in sodium compared to meals from the calorie MNI only menu or no MNI menu, but only for consumers with a taste intuition that (relatively) lower sodium, lower calorie, healthy foods were tasty. Consumers with the opposite taste intuition *(foods with these characteristics are not tasty) ordered meals higher in sodium. Inclusion of the sodium warning symbol did not result in a significantly different meal sodium content compared to the other menu conditions, regardless of taste intuition. However, differing levels of taste intuition alone, without consideration of MNI, was associated with ordering meals of significantly different calorie content. Overall, findings suggest adding calorie plus numeric sodium MNI may lead to beneficial outcomes (i.e., selecting meals lower in sodium) for some consumers and detrimental outcomes (i.e., selecting meals higher in sodium) for others, depending on their taste intuition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Taste Receptor Signaling-- From Tongues to Lungs

    PubMed Central

    Kinnamon, Sue C.

    2013-01-01

    Taste buds are the transducing endorgans of gustation. Each taste bud comprises 50–100 elongated cells, which extend from the basal lamina to the surface of the tongue, where their apical microvilli encounter taste stimuli in the oral cavity. Salts and acids utilize apically located ion channels for transduction, while bitter, sweet and umami (glutamate) stimuli utilize G protein coupled receptors (GPCRs) and second messenger signaling mechanisms. This review will focus on GPCR signaling mechanisms. Two classes of taste GPCRs have been identified, the T1Rs for sweet and umami (glutamate) stimuli, and the T2Rs for bitter stimuli. These low affinity GPCRs all couple to the same downstream signaling effectors that include Gβγ activation of PLCβ2, IP3-mediated release of Ca2+ from intracellular stores, and Ca2+-dependent activation of the monovalent selective cation channel, TrpM5. These events lead to membrane depolarization, action potentials, and release of ATP as a transmitter to activate gustatory afferents. The Gα subunit, α-gustducin, activates a phosphodiesterase to decrease intracellular cAMP levels, although the precise targets of cAMP have not been identified. With the molecular identification of the taste GPCRs, it has become clear that taste signaling is not limited to taste buds, but occurs in many cell types of the airways. These include solitary chemosensory cells, ciliated epithelial cells, and smooth muscle cells. Bitter receptors are most abundantly expressed in the airways, where they respond to irritating chemicals and promote protective airway reflexes, utilizing the same downstream signaling effectors as taste cells. PMID:21481196

  6. Final comprehensive report of overall activities of AEC contract AT(30-1)- 3269 from its initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1973-01-01

    Research accomplishments are reported for the following projects: determination of the minimum level of x radiation in rats to alter the taste threshold; determination of the permanency of such alteration; determination of the dose and time dependency of the alteration; changes in hypothalamic function following low doses of ionizing radiation; development of new behavioral technique for determination of taste thresholds; correlation of taste sensitivity changes with alteration in taste bud morphology; effects of olfaction on taste thresholds; properties of taste material that influence x radiation effects on taste; determination of effects of in utero x-irradiation on taste function in themore » adult rat; and effects of ingestion of heavy metals on taste acuity and response of taste sensitivity to x radiation. (HLW)« less

  7. Tachykinins Stimulate a Subset of Mouse Taste Cells

    PubMed Central

    Grant, Jeff

    2012-01-01

    The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca2+-imaging on isolated taste cells, it was observed that SP induces Ca2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca2+ responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods. PMID:22363709

  8. Higher Heart-Rate Variability Is Associated with Ventromedial Prefrontal Cortex Activity and Increased Resistance to Temptation in Dietary Self-Control Challenges.

    PubMed

    Maier, Silvia U; Hare, Todd A

    2017-01-11

    Higher levels of self-control in decision making have been linked to better psychosocial and physical health. A similar link to health outcomes has been reported for heart-rate variability (HRV), a marker of physiological flexibility. Here, we sought to link these two, largely separate, research domains by testing the hypothesis that greater HRV would be associated with better dietary self-control in humans. Specifically, we examined whether total HRV at sedentary rest (measured as the SD of normal-to-normal intervals) can serve as a biomarker for the neurophysiological adaptability that putatively underlies self-controlled behavior. We found that HRV explained a significant portion of the individual variability in dietary self-control, with individuals having higher HRV being better able to downregulate their cravings in the face of taste temptations. Furthermore, HRV was associated with activity patterns in the ventromedial prefrontal cortex (vmPFC), a key node in the brain's valuation and decision circuitry. Specifically, individuals with higher HRV showed both higher overall vmPFC blood-oxygen-level-dependent activity and attenuated taste representations when presented with a dietary self-control challenge. Last, the behavioral and neural associations with HRV were consistent across both our stress induction and control experimental conditions. The stability of this association across experimental conditions suggests that HRV may serve as both a readily obtainable and robust biomarker for self-control ability across environmental contexts. Self-control is associated with better health, but behavioral and psychometric self-control measures allow only indirect associations with health outcomes and may be distorted by reporting bias. We tested whether resting heart-rate variability (HRV), a physiological indicator of psychological and physical health, can predict individual differences in dietary self-control in humans. We found that higher HRV was associated with better self-control and improved predictions of choice behavior. Specifically, higher HRV was associated with more effective downregulation of taste temptations, and with a diminished neural representation of taste temptations during self-control challenges. Our results suggest that HRV may serve as an easily acquired, noninvasive, and low-cost biomarker for self-control ability. Copyright © 2017 the authors 0270-6474/17/370446-10$15.00/0.

  9. Wine Expertise Predicts Taste Phenotype

    PubMed Central

    Hayes, John E; Pickering, Gary J

    2011-01-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance – with appropriate caveats about populations tested, outcomes measured and psychophysical methods used – an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but also with more acute discrimination between stimuli. Here, we explore relationships between food and beverage adventurousness and taste phenotype. A convenience sample of wine drinkers (n=330) were recruited in Ontario and phenotyped for PROP bitterness via filter paper disk. They also filled out a short questionnaire regarding willingness to try new foods, alcoholic beverages and wines as well as level of wine involvement, which was used to classify them as a wine expert (n=110) or wine consumer (n=220). In univariate logisitic models, food adventurousness predicted trying new wines and beverages but not expertise. Likewise, wine expertise predicted willingness to try new wines and beverages but not foods. In separate multivariate logistic models, willingness to try new wines and beverages was predicted by expertise and food adventurousness but not PROP. However, mean PROP bitterness was higher among wine experts than wine consumers, and the conditional distribution functions differed between experts and consumers. In contrast, PROP means and distributions did not differ with food adventurousness. These data suggest individuals may self-select for specific professions based on sensory ability (i.e., an active gene-environment correlation) but phenotype does not explain willingness to try new stimuli. PMID:22888174

  10. Wine Expertise Predicts Taste Phenotype.

    PubMed

    Hayes, John E; Pickering, Gary J

    2012-03-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance - with appropriate caveats about populations tested, outcomes measured and psychophysical methods used - an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but also with more acute discrimination between stimuli. Here, we explore relationships between food and beverage adventurousness and taste phenotype. A convenience sample of wine drinkers (n=330) were recruited in Ontario and phenotyped for PROP bitterness via filter paper disk. They also filled out a short questionnaire regarding willingness to try new foods, alcoholic beverages and wines as well as level of wine involvement, which was used to classify them as a wine expert (n=110) or wine consumer (n=220). In univariate logisitic models, food adventurousness predicted trying new wines and beverages but not expertise. Likewise, wine expertise predicted willingness to try new wines and beverages but not foods. In separate multivariate logistic models, willingness to try new wines and beverages was predicted by expertise and food adventurousness but not PROP. However, mean PROP bitterness was higher among wine experts than wine consumers, and the conditional distribution functions differed between experts and consumers. In contrast, PROP means and distributions did not differ with food adventurousness. These data suggest individuals may self-select for specific professions based on sensory ability (i.e., an active gene-environment correlation) but phenotype does not explain willingness to try new stimuli.

  11. Greater emotional eating scores associated with reduced frontolimbic activation to palatable taste in adolescents.

    PubMed

    Bohon, Cara

    2014-08-01

    This study examined the relation between self-reported emotional eating scores and frontolimbic brain response to palatable taste in adolescents. Participants included 162 adolescents (mean BMI percentile = 52.7, range 3-90). Participants completed a self-report survey assessing emotional eating and underwent functional magnetic resonance imaging (fMRI) while viewing pictures signaling subsequent delivery of a chocolate milkshake or a control taste and receiving the corresponding taste. Results revealed no significant relation between emotional eating scores and brain response to anticipation of receipt of milkshake. In response to milkshake taste receipt, emotional eating scores were negatively related to activation in the right thalamus, the left insula and orbitofrontal cortex, and bilateral putamen and caudate. These findings remained significant after controlling for body mass index and body fat percentage. The current results are discussed in the context of findings of reduced reward activation to palatable taste receipt in obese adults and adolescents. Copyright © 2014 The Obesity Society.

  12. The insula modulates arousal-induced reluctance to try novel tastes through adrenergic transmission in the rat

    PubMed Central

    Rojas, Sebastián; Diaz-Galarce, Raúl; Jerez-Baraona, Juan Manuel; Quintana-Donoso, Daisy; Moraga-Amaro, Rodrigo; Stehberg, Jimmy

    2015-01-01

    Reluctance to try novel tastes (neophobia) can be exacerbated in arousing situations, such as when children are under social stress or in rodents, when the new taste is presented in a high arousal context (HA) compared to a low arousal context (LA). The present study aimed at determining whether adrenergic transmission at the Insula regulates the reluctance to try novel tastes induced by arousing contexts. To this end, a combination of systemic and intra-insular manipulations of adrenergic activity was performed before the novel taste (saccharin 0.1%) was presented either in LA or HA contexts in rats. Our results show that systemic adrenergic activity modulates reluctance to try novel tastes. Moreover, intra-insular microinjections of propranolol or norepinephrine (NE) were found to modulate the effects of arousing contexts on reluctance to try novel tastes. Finally, intra-insular propranolol blocked epinephrine-induced increased reluctance, while intra-insular NE blocked oral propranolol-induced decreases in reluctance and increased the reluctance to try novel tastes presented in low arousing contexts. In conclusion, our results suggest that the insula is a critical site for regulating the effects of arousal in the reluctance to try novel tastes via the adrenergic system. PMID:26175672

  13. Sinonasal solitary chemosensory cells "taste" the upper respiratory environment to regulate innate immunity.

    PubMed

    Lee, Robert J; Cohen, Noam A

    2014-01-01

    It is not fully understood how sinonasal epithelial cells detect the presence of pathogens and activate innate defense responses necessary for protecting the upper airway from infection. One mechanism is through bitter taste receptors (T2Rs), which are expressed in the sinonasal cavity. One T2R isoform, T2R38, is expressed in ciliated cells and detects quorum-sensing molecules from gram-negative bacteria, activating antimicrobial nitric oxide production. More recent studies have examined the role of T2Rs expressed in a sinonasal cell type that has only recently been identified in humans, the solitary chemosensory cell (SCC). We sought to provide an overview of SCCs and taste receptor function in human sinonasal defense as well as implications for chronic rhinosinusitis (CRS). A literature review of the current knowledge of SCCs and taste receptors in sinonasal physiology and CRS was conducted. Human sinonasal SCCs express both bitter T2R and sweet T1R2/3 receptors. Activation of SCC T2Rs activates a calcium signal that propagates to the surrounding epithelial cells and causes secretion of antimicrobial peptides. T1R2/3 sweet receptor activation by physiological airway surface liquid (ASL) glucose concentrations attenuates the T2R response, likely as a mechanism to prevent full activation of the T2R pathway except during times of infection, when pathogens may consume ASL glucose and reduce its concentration. SCCs appear to be important mediators of upper airway innate immunity, as the SCC T2Rs regulate antimicrobial peptide secretion, but further study is needed to determine the specific T2R isoforms involved as well as whether polymorphisms in these isoforms affect susceptibility to infection or patient outcomes in CRS. The inhibitory role of T1R2/3 sweet receptor suggests that T1R2/3 blockers may have therapeutic potential in some CRS patients, particularly those with diabetes mellitus. However, further clinical study of the relationship between infection and T1R2/3 genotype is required.

  14. Role of the ectonucleotidase NTPDase2 in taste bud function

    PubMed Central

    Vandenbeuch, Aurelie; Anderson, Catherine B.; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C.; Finger, Thomas E.; Kinnamon, Sue C.

    2013-01-01

    Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses. PMID:23959882

  15. Role of the ectonucleotidase NTPDase2 in taste bud function.

    PubMed

    Vandenbeuch, Aurelie; Anderson, Catherine B; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C; Finger, Thomas E; Kinnamon, Sue C

    2013-09-03

    Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses.

  16. Exposure to foods' non-taste sensory properties. A nursery intervention to increase children's willingness to try fruit and vegetables.

    PubMed

    Dazeley, Paul; Houston-Price, Carmel

    2015-01-01

    Activities that engage young children with the sensory properties of foods are popular with nursery schools, despite the lack of evidence for their efficacy in increasing children's consumption of healthy foods. This study provides the first empirical exploration of the effectiveness of a non-taste sensory activity program in a nursery school setting. Ninety-two children aged between 12 and 36 months were allocated either to an intervention group, who took part in looking, listening, feeling and smelling activities with unusual fruits and vegetables every day for 4 weeks, or to a non-intervention control group. In a subsequent mealtime taste test, children touched and tasted more of the vegetables to which they had been familiarized in their playtime activities than of a matched set of non-exposed foods. The results demonstrate that hands-on activities with unfamiliar fruits and vegetables can enhance children's willingness to taste these foods, and confirm the potential for such activities to support healthy eating initiatives. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Effect of Magnitude Estimation of Pleasantness and Intensity on fMRI Activation to Taste

    PubMed Central

    Cerf-Ducastel, B.; Haase, L.; Murphy, C.

    2012-01-01

    The goal of the present study was to investigate whether the psychophysical evaluation of taste stimuli using magnitude estimation influences the pattern of cortical activation observed with neuroimaging. That is, whether different brain areas are involved in the magnitude estimation of pleasantness relative to the magnitude estimation of intensity. fMRI was utilized to examine the patterns of cortical activation involved in magnitude estimation of pleasantness and intensity during hunger in response to taste stimuli. During scanning, subjects were administered taste stimuli orally and were asked to evaluate the perceived pleasantness or intensity using the general Labeled Magnitude Scale (Green 1996, Bartoshuk et al. 2004). Image analysis was conducted using AFNI. Magnitude estimation of intensity and pleasantness shared common activations in the insula, rolandic operculum, and the medio dorsal nucleus of the thalamus. Globally, magnitude estimation of pleasantness produced significantly more activation than magnitude estimation of intensity. Areas differentially activated during magnitude estimation of pleasantness versus intensity included, e.g., the insula, the anterior cingulate gyrus, and putamen; suggesting that different brain areas were recruited when subjects made magnitude estimates of intensity and pleasantness. These findings demonstrate significant differences in brain activation during magnitude estimation of intensity and pleasantness to taste stimuli. An appreciation for the complexity of brain response to taste stimuli may facilitate a clearer understanding of the neural mechanisms underlying eating behavior and over consumption. PMID:23227271

  18. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.

    PubMed

    Gaillard, Dany; Bowles, Spencer G; Salcedo, Ernesto; Xu, Mingang; Millar, Sarah E; Barlow, Linda A

    2017-08-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.

  19. Oral lipase activities and fat-taste receptors for fat-taste sensing in chickens.

    PubMed

    Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2018-01-01

    It has been reported that a functional fat-taste receptor, GPR120, is present in chicken oral tissues, and that chickens can detect fat taste in a behavioral test. However, although triglycerides need to be digested to free fatty acids to be recognized by fat-taste receptors such as GPR120, it remains unknown whether lipase activities exist in chicken oral tissues. To examine this question, we first cloned another fat-taste receptor candidate gene, CD36, from the chicken palate. Then, using RT-PCR, we determined that GPR120 and CD36 were broadly expressed in chicken oral and gastrointestinal tissues. Also by RT-PCR, we confirmed that several lipase genes were expressed in both oral and gastrointestinal tissues. Finally, we analyzed the lipase activities of oral tissues by using a fluorogenic triglyceride analog as a lipase substrate. We found there are functional lipases in oral tissues as well as in the stomach and pancreas. These results suggested that chickens have a basic fat-taste reception system that incorporates a triglycerides/oral-lipases/free fatty acids/GPR120 axis and CD36 axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    PubMed

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-02

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. Copyright © 2015 the authors 0270-6474/15/3515984-12$15.00/0.

  1. Breadth of tuning in taste afferent neurons varies with stimulus strength

    PubMed Central

    Wu, An; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.

    2015-01-01

    Gustatory stimuli are detected by taste buds and transmitted to the hindbrain via sensory afferent neurons. Whether each taste quality (sweet, bitter and so on) is encoded by separate neurons (‘labelled lines') remains controversial. We used mice expressing GCaMP3 in geniculate ganglion sensory neurons to investigate taste-evoked activity. Using confocal calcium imaging, we recorded responses to oral stimulation with prototypic taste stimuli. Up to 69% of neurons respond to multiple tastants. Moreover, neurons tuned to a single taste quality at low concentration become more broadly tuned when stimuli are presented at higher concentration. Responses to sucrose and monosodium glutamate are most related. Although mice prefer dilute NaCl solutions and avoid concentrated NaCl, we found no evidence for two separate populations of sensory neurons that encode this distinction. Altogether, our data suggest that taste is encoded by activity in patterns of peripheral sensory neurons and challenge the notion of strict labelled line coding. PMID:26373451

  2. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves

    PubMed Central

    Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C.; Finger, Thomas E.

    2015-01-01

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT3A promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT3A mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μm 5-HT and this response is blocked by 1 μm ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μm m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. SIGNIFICANCE STATEMENT Historically, serotonin (5-hydroxytryptamine; 5-HT) has been described as a candidate neurotransmitter in the gustatory system and recent studies show that type III taste receptor cells release 5-HT in response to various taste stimuli. In the present study, we demonstrate that a subset of gustatory sensory neurons express functional 5-HT3 receptors that play a significant role in the neurotransmission of taste information from taste buds to nerves. In addition, we show that the anesthetic pentobarbital, widely used in taste nerve recordings, blocks 5-HT3 signaling. Therefore, many conclusions drawn from those data need to be reexamined in light of this anesthetic effect. PMID:26631478

  3. Neural correlates of taste and pleasantness evaluation in the metabolic syndrome

    PubMed Central

    Green, Erin; Jacobson, Aaron; Haase, Lori; Murphy, Claire

    2015-01-01

    Metabolic syndrome (MetS) is a constellation of cardiometabolic abnormalities that commonly occur together and increase risk for cardiovascular disease and type II diabetes. Having MetS, especially during middle-age, increases the risk for dementia in later life. Abdominal obesity is a central feature of MetS; therefore, increased efforts to prevent obesity and identify predictors of weight gain are of extreme importance. Altered processing of food reward in the brain of obese individuals has been suggested to be a possible mechanism related to overeating. We scanned fifteen healthy middle-aged controls (aged 44–54) and sixteen middle-aged adults with MetS after a fast (hungry) and after a preload (sated), while they rated the pleasantness of sucrose (sweet) and caffeine (bitter) solutions. Data were analyzed using voxelwise linear mixed-effects modeling, and a region of interest analysis to examine associations between hypothalamic activation to sweet taste and BMI during hunger and satiety. The results indicate that middle-aged individuals with MetS respond with significantly less brain activation than controls without MetS during pleasantness evaluation of sweet and bitter tastes in regions involved in sensory and higher-level taste processing. Participants with higher BMI had greater hypothalamic response during pleasantness evaluation of sucrose in the sated condition. Importantly, this study is the first to document differential brain circuitry in middle-aged adults with MetS, a population at risk for poor physical and cognitive outcomes. Future research aimed at better understanding relationships among MetS, obesity, and brain function is warranted to better conceptualize and develop interventions for overeating in these disorders. PMID:25842372

  4. Neural correlates of taste and pleasantness evaluation in the metabolic syndrome.

    PubMed

    Green, Erin; Jacobson, Aaron; Haase, Lori; Murphy, Claire

    2015-09-16

    Metabolic syndrome (MetS) is a constellation of cardiometabolic abnormalities that commonly occur together and increase risk for cardiovascular disease and type II diabetes. Having MetS, especially during middle-age, increases the risk for dementia in later life. Abdominal obesity is a central feature of MetS; therefore, increased efforts to prevent obesity and identify predictors of weight gain are of extreme importance. Altered processing of food reward in the brain of obese individuals has been suggested to be a possible mechanism related to overeating. We scanned fifteen healthy middle-aged controls (aged 44-54) and sixteen middle-aged adults with MetS after a fast (hungry) and after a preload (sated), while they rated the pleasantness of sucrose (sweet) and caffeine (bitter) solutions. Data were analyzed using voxelwise linear mixed-effects modeling, and a region of interest analysis to examine associations between hypothalamic activation to sweet taste and BMI during hunger and satiety. The results indicate that middle-aged individuals with MetS respond with significantly less brain activation than controls without MetS during pleasantness evaluation of sweet and bitter tastes in regions involved in sensory and higher-level taste processing. Participants with higher BMI had greater hypothalamic response during pleasantness evaluation of sucrose in the sated condition. Importantly, this study is the first to document differential brain circuitry in middle-aged adults with MetS, a population at risk for poor physical and cognitive outcomes. Future research aimed at better understanding relationships among MetS, obesity, and brain function is warranted to better conceptualize and develop interventions for overeating in these disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Flavor characteristics of seven grades of black tea produced in Turkey.

    PubMed

    Alasalvar, Cesarettin; Topal, Bahar; Serpen, Arda; Bahar, Banu; Pelvan, Ebru; Gökmen, Vural

    2012-06-27

    Seven grades of black tea [high-quality black tea (grades 1-3) and low-quality black tea (grades 4-7)], processed by ÇAYKUR Tea Processing Plant (Rize, Turkey), were compared for their differences in descriptive sensory analysis (DSA), aroma-active compounds (volatile compounds), and taste-active compounds (sugar, organic acid, and free amino acid compositions). Ten flavor attributes such as 'after taste', 'astringency', 'bitter', 'caramel-like', 'floral/sweet', 'green/grassy', 'hay-like', 'malty', 'roasty', and 'seaweed' were identified. Intensities for a number of flavor attributes ('after taste', 'caramel-like', 'malty', and 'seaweed') were not significantly different (p > 0.05) among seven grades of black tea. A total of 57 compounds in seven grades of black tea (14 aldehydes, eight alcohols, eight ketones, two esters, four aromatic hydrocarbons, five aliphatic hydrocarbons, nine terpenes, two pyrazines, one furan, two acids, and two miscellaneous compounds) were tentatively identified. Of these, aldeyhdes comprised more than 50% to the total volatile compounds identified. In general, high-grade quality tea had more volatiles than low-grade quality tea. With respect to taste-active compounds, five sugars, six organic acids, and 18 free amino acids were positively identified in seven grades of black tea, of which fructose, tannic acid, and theanine predominated, respectively. Some variations (p < 0.05), albeit to different extents, were observed among volatile compounds, sugars, organic acids, and free amino acids in seven grades of black tea. The present study suggests that a certain flavor attributes correlate well with taste- and aroma-active compounds. High- and low-quality black teas should not be distinguished solely on the basis of their DSA and taste- and aroma-active compounds. The combination of taste-active compounds together with aroma-active compounds renders combination effects that provide the characteristic flavor of each grade of black tea.

  6. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice

    PubMed Central

    Gaillard, Dany; Xu, Mingang; Millar, Sarah E.

    2017-01-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. PMID:28846687

  7. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    PubMed

    Huang, Yijen A; Grant, Jeff; Roper, Stephen

    2012-01-01

    Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  8. 5-HT3A -driven green fluorescent protein delineates gustatory fibers innervating sour-responsive taste cells: A labeled line for sour taste?

    PubMed

    Stratford, J M; Larson, E D; Yang, R; Salcedo, E; Finger, T E

    2017-07-01

    Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT 3 receptors on the gustatory nerves. We show here, using 5-HT 3A GFP mice, that 5-HT 3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT 3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT 3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT 3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus. © 2017 Wiley Periodicals, Inc.

  9. Participants with pharmacologically impaired taste function seek out more intense, higher calorie stimuli.

    PubMed

    Noel, Corinna A; Sugrue, Meaghan; Dando, Robin

    2017-10-01

    Research suggests a weaker sense of taste in people with obesity, with the assumption that a debilitated taste response increases the desire for more intensely tasting stimuli to compensate for decreased taste input. However, empirical testing of this supposition remains largely absent. In a randomized, repeated measures design, 51 healthy subjects were treated with varying concentrations of a tea containing Gymnema sylvestre (GS), to temporarily and selectively diminish sweet taste perception, or a control tea. Following treatment in the four testing sessions, taste intensity ratings for various sweet stimuli were captured on the generalized Labeled Magnitude Scale (gLMS), liking for real foods assessed on the hedonic gLMS, and optimal level of sweetness quantified via an ad-libitum mixing task. Data were analyzed with mixed models assessing both treatment condition and each subject's resultant sweet response with various taste-related outcomes, controlling for covariates. GS treatment diminished sweet intensity perception (p < 0.001), reduced liking for sweet foods (p < 0.001), and increased the desired sucrose content of these foods (p < 0.001). Regression modeling revealed a 1% reduction in sweet taste response was associated with a 0.40 g/L increase in optimal concentration of sucrose (p < 0.001). Our results show that an attenuation in the perceived taste intensity of sweeteners correlates with shifted preference and altered hedonic response to select sweet foods. This suggests that those with a diminished sense of taste may desire more intense stimuli to attain a satisfactory level of reward, potentially influencing eating habits to compensate for a lower gustatory input. Copyright © 2017. Published by Elsevier Ltd.

  10. Flavor-Enhanced Modulation of Cerebral Blood Flow during Gum Chewing

    PubMed Central

    Hasegawa, Yoko; Tachibana, Yoshihisa; Sakagami, Joe; Zhang, Min; Urade, Masahiro; Ono, Takahiro

    2013-01-01

    Background Flavor perception, the integration of taste and odor, is a critical factor in eating behavior. It remains unclear how such sensory signals influence the human brain systems that execute the eating behavior. Methods We tested cerebral blood flow (CBF) in the frontal lobes bilaterally while subjects chewed three types of gum with different combinations of taste and odor: no taste/no odor gum (C-gum), sweet taste/no odor gum (T-gum), and sweet taste/lemon odor gum (TO-gum). Simultaneous recordings of transcranial Doppler ultrasound (TCD) and near infrared spectrometer (NIRS) were used to measure CBF during gum chewing in 25 healthy volunteers. Bilateral masseter muscle activity was also monitored. Results We found that subjects could discriminate the type of gum without prior information. Subjects rated the TO-gum as the most flavorful gum and the C-gum as the least flavorful. Analysis of masseter muscle activity indicated that masticatory motor output during gum chewing was not affected by taste and odor. The TCD/NIRS measurements revealed significantly higher hemodynamic signals when subjects chewed the TO-gum compared to when they chewed the C-gum and T-gum. Conclusions These data suggest that taste and odor can influence brain activation during chewing in sensory, cognitive, and motivational processes rather than in motor control. PMID:23840440

  11. Flavor-Enhanced Modulation of Cerebral Blood Flow during Gum Chewing.

    PubMed

    Hasegawa, Yoko; Tachibana, Yoshihisa; Sakagami, Joe; Zhang, Min; Urade, Masahiro; Ono, Takahiro

    2013-01-01

    Flavor perception, the integration of taste and odor, is a critical factor in eating behavior. It remains unclear how such sensory signals influence the human brain systems that execute the eating behavior. WE TESTED CEREBRAL BLOOD FLOW (CBF) IN THE FRONTAL LOBES BILATERALLY WHILE SUBJECTS CHEWED THREE TYPES OF GUM WITH DIFFERENT COMBINATIONS OF TASTE AND ODOR: no taste/no odor gum (C-gum), sweet taste/no odor gum (T-gum), and sweet taste/lemon odor gum (TO-gum). Simultaneous recordings of transcranial Doppler ultrasound (TCD) and near infrared spectrometer (NIRS) were used to measure CBF during gum chewing in 25 healthy volunteers. Bilateral masseter muscle activity was also monitored. We found that subjects could discriminate the type of gum without prior information. Subjects rated the TO-gum as the most flavorful gum and the C-gum as the least flavorful. Analysis of masseter muscle activity indicated that masticatory motor output during gum chewing was not affected by taste and odor. The TCD/NIRS measurements revealed significantly higher hemodynamic signals when subjects chewed the TO-gum compared to when they chewed the C-gum and T-gum. These data suggest that taste and odor can influence brain activation during chewing in sensory, cognitive, and motivational processes rather than in motor control.

  12. Calcitonin Gene-Related Peptide Reduces Taste-Evoked ATP Secretion from Mouse Taste Buds.

    PubMed

    Huang, Anthony Y; Wu, Sandy Y

    2015-09-16

    Immunoelectron microscopy revealed that peripheral afferent nerve fibers innervating taste buds contain calcitonin gene-related peptide (CGRP), which may be as an efferent transmitter released from peripheral axon terminals. In this report, we determined the targets of CGRP within taste buds and studied what effect CGRP exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura-2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings showed that a subset of Presynaptic (Type III) taste cells (53%) responded to 0.1 μm CGRP with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 0.1 μm CGRP. Using pharmacological tools, the actions of CGRP were probed and elucidated by the CGRP receptor antagonist CGRP(8-37). We demonstrated that this effect of CGRP was dependent on phospholipase C activation and was prevented by the inhibitor U73122. Moreover, applying CGRP caused taste buds to secrete serotonin (5-HT), a Presynaptic (Type III) cell transmitter, but not ATP, a Receptor (Type II) cell transmitter. Further, our previous studies showed that 5-HT released from Presynaptic (Type III) cells provides negative paracrine feedback onto Receptor (Type II) cells by activating 5-HT1A receptors, and reducing ATP secretion. Our data showed that CGRP-evoked 5-HT release reduced taste-evoked ATP secretion. The findings are consistent with a role for CGRP as an inhibitory transmitter that shapes peripheral taste signals via serotonergic signaling during processing gustatory information in taste buds. The taste sensation is initiated with a highly complex set of interactions between a variety of cells located within the taste buds before signal propagation to the brain. Afferent signals from the oral cavity are carried to the brain in chemosensory fibers that contribute to chemesthesis, the general chemical sensitivity of the mucus membranes in the oronasal cavities and being perceived as pungency, irritation, or heat. This is a study of a fundamental question in neurobiology: how are signals processed in sensory end organs, taste buds? More specifically, taste-modifying interactions, via transmitters, between gustatory and chemosensory afferents inside taste buds will help explain how a coherent output is formed before being transmitted to the brain. Copyright © 2015 the authors 0270-6474/15/3512714-11$15.00/0.

  13. How People Use Social Information to Find out What to Want in the Paradigmatic Case of Inter-temporal Preferences

    PubMed Central

    Dolan, Raymond J.

    2016-01-01

    The weight with which a specific outcome feature contributes to preference quantifies a person’s ‘taste’ for that feature. However, far from being fixed personality characteristics, tastes are plastic. They tend to align, for example, with those of others even if such conformity is not rewarded. We hypothesised that people can be uncertain about their tastes. Personal tastes are therefore uncertain beliefs. People can thus learn about them by considering evidence, such as the preferences of relevant others, and then performing Bayesian updating. If a person’s choice variability reflects uncertainty, as in random-preference models, then a signature of Bayesian updating is that the degree of taste change should correlate with that person’s choice variability. Temporal discounting coefficients are an important example of taste–for patience. These coefficients quantify impulsivity, have good psychometric properties and can change upon observing others’ choices. We examined discounting preferences in a novel, large community study of 14–24 year olds. We assessed discounting behaviour, including decision variability, before and after participants observed another person’s choices. We found good evidence for taste uncertainty and for Bayesian taste updating. First, participants displayed decision variability which was better accounted for by a random-taste than by a response-noise model. Second, apparent taste shifts were well described by a Bayesian model taking into account taste uncertainty and the relevance of social information. Our findings have important neuroscientific, clinical and developmental significance. PMID:27447491

  14. Drosophila Bitter Taste(s)

    PubMed Central

    French, Alice; Ali Agha, Moutaz; Mitra, Aniruddha; Yanagawa, Aya; Sellier, Marie-Jeanne; Marion-Poll, Frédéric

    2015-01-01

    Most animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called “bitter”. By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if bitter-sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induces aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter-sensitive neurons of the proboscis also respond to the inhibitory pheromone, 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different “categories” of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction, hygienic behavior), thus considerably extending the initial definition of “bitter” tasting. PMID:26635553

  15. Alteration of sweet taste in high-fat diet induced obese rats after 4 weeks treatment with exenatide.

    PubMed

    Zhang, Xiao-juan; Wang, Yu-qing; Long, Yang; Wang, Lei; Li, Yun; Gao, Fa-bao; Tian, Hao-ming

    2013-09-01

    Exenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is effective in inducing weight loss. The exact mechanisms are not fully understood. Reduced appetite and food intake may play important roles. Sweet taste contributes to food palatability, which promotes appetite. Interestingly, GLP-1 and its receptor are expressed in the taste buds of rodents and their interaction has an effect on mediating sweet taste sensitivity. Our aim was to investigate whether sweet taste will be changed after long term treatment with exenatide. The results showed that high-fat diet induced obese rats (HF-C) presented metabolic disorders in food intake, body weight, blood glucose and lipid metabolism compared with long term exenatide treated obese rats (EX) and normal chow fed control rats (NC). Meanwhile, greater preference for sweet taste was observed in HF-C rats but not in EX rats. Compared with NC rats, brain activities induced by sweet taste stimulation were stronger in HF-C rats, however these stronger activities were not found in EX rats. We further found reduced sweet taste receptor T1R3 in circumvallte taste buds of HF-C rats, while GLP-1 was increased. Besides, serum leptin was evaluated in HF-C rats with decreased leptin receptor expressed in taste buds. These changes were not observed in EX rats, which suggest them to be the underlying hormone and molecular mechanisms responsible for alterations in sweet taste of HF-C rats and EX rats. In summary, our results suggest that long term treatment with exenatide could benefit dietary obese rats partially by reversing sweet taste changes. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The neural processing of taste

    PubMed Central

    Lemon, Christian H; Katz, Donald B

    2007-01-01

    Although there have been many recent advances in the field of gustatory neurobiology, our knowledge of how the nervous system is organized to process information about taste is still far from complete. Many studies on this topic have focused on understanding how gustatory neural circuits are spatially organized to represent information about taste quality (e.g., "sweet", "salty", "bitter", etc.). Arguments pertaining to this issue have largely centered on whether taste is carried by dedicated neural channels or a pattern of activity across a neural population. But there is now mounting evidence that the timing of neural events may also importantly contribute to the representation of taste. In this review, we attempt to summarize recent findings in the field that pertain to these issues. Both space and time are variables likely related to the mechanism of the gustatory neural code: information about taste appears to reside in spatial and temporal patterns of activation in gustatory neurons. What is more, the organization of the taste network in the brain would suggest that the parameters of space and time extend to the neural processing of gustatory information on a much grander scale. PMID:17903281

  17. Multiple Shh signaling centers participate in fungiform papilla and taste bud formation and maintenance

    PubMed Central

    Liu, H-X; Ermilov, A; Grachtchouk, M; Li, L; Gumucio, DL; Dlugosz, AA; Mistretta, CM

    2014-01-01

    The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste organs, the fungiform papilla and taste bud, and surrounding lingual cells. Shh signaling has roles in forming and maintaining fungiform papillae and taste buds, most likely via stage-specific autocrine and/or paracrine mechanisms, and by engaging epithelial/mesenchymal interactions. PMID:23916850

  18. Multiple Shh signaling centers participate in fungiform papilla and taste bud formation and maintenance.

    PubMed

    Liu, Hong Xiang; Ermilov, Alexandre; Grachtchouk, Marina; Li, Libo; Gumucio, Deborah L; Dlugosz, Andrzej A; Mistretta, Charalotte M

    2013-10-01

    The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste organs, the fungiform papilla and taste bud, and surrounding lingual cells. Shh signaling has roles in forming and maintaining fungiform papillae and taste buds, most likely via stage-specific autocrine and/or paracrine mechanisms, and by engaging epithelial/mesenchymal interactions. © 2013 Elsevier Inc. All rights reserved.

  19. Food protein-originating peptides as tastants - Physiological, technological, sensory, and bioinformatic approaches.

    PubMed

    Iwaniak, Anna; Minkiewicz, Piotr; Darewicz, Małgorzata; Hrynkiewicz, Monika

    2016-11-01

    Taste is one of the factors based on which the organism makes the selection of what to ingest. It also protects humans from ingesting toxic compounds and is one of the main attributes when thinking about food quality. Five basic taste sensations are recognized by humans: bitter, salty, sour, sweet, and umami. The taste of foods is affected by some molecules of some specific chemical nature. One of them are peptides derived from food proteins. Although they are not the major natural compounds originating from food sources that are responsible for the taste, they are in the area of scientific research due to the specific composition of amino acids which are well-known for their sensory properties. Literature data implicate that sweet, bitter, and umami are the tastes attributable to peptides. Moreover, the bitter peptide tastants are the dominant among the other tastes. Additionally, other biological activities like, e.g., inhibiting enzymes that regulate the body functions and acting as preventive food agents of civilization diseases, are also associated with the taste of peptides. The advance in information technologies has contributed to the elaboration of internet archives (databases) as well as in silico tools for the analysis of biological compounds. It also concerns peptides - namely taste carriers originating from foods. Thus, our paper provides a summary of knowledge about peptides as tastants with special attention paid to the following aspects: a) basis of taste perception, b) taste peptides detected in food protein sequences with special emphasis put on the role of bitter peptides, c) peptides that may enhance/suppress the taste of foods, d) databases as well as bioinformatic approaches suitable to study the taste of peptides, e) taste-taste interactions, f) basis of sensory analysis in the evaluation of the taste of molecules, including peptides, and g) the methodology applied to reduce/eliminate the undesired taste of peptides. The list of taste peptides serving some biological functions is presented in the Supplement file. The information provided includes database resources, whereas peptide sequences are given with InChiKeys, which is aimed at facilitating the Google® search. Our collection of data regarding taste peptides may be supportive for the scientists working with the set of peptide data in the context of structure-function activity of peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Pragmatically on the sense of taste - a short treatise based on culinary art.

    PubMed

    Waluga, Marek; Jonderko, Krzysztof; Buschhaus, Magdalena

    2013-01-01

    The sense of taste is essential for proper functioning of the organism. The authors describe, in an accessible way, the complex mechanisms of taste perception. The structure of particular taste receptors, variants of their activation, as well as physical and chemical factors modifying the sensation of taste, are presented. Exquisite culinary examples are given in order to facilitate the reader with the understanding of why, at the level of the cerebral cortex, a virtually infinite number of combinations of taste sensations can be perceived. The discourse is spiced up by reflections of the eminent philosopher of taste, J.A. Brillat-Savarin, who convinces us that food intake should be not only a physiological act, but also a refined pleasure.

  1. Pragmatically on the sense of taste – a short treatise based on culinary art

    PubMed Central

    Jonderko, Krzysztof; Buschhaus, Magdalena

    2013-01-01

    The sense of taste is essential for proper functioning of the organism. The authors describe, in an accessible way, the complex mechanisms of taste perception. The structure of particular taste receptors, variants of their activation, as well as physical and chemical factors modifying the sensation of taste, are presented. Exquisite culinary examples are given in order to facilitate the reader with the understanding of why, at the level of the cerebral cortex, a virtually infinite number of combinations of taste sensations can be perceived. The discourse is spiced up by reflections of the eminent philosopher of taste, J.A. Brillat-Savarin, who convinces us that food intake should be not only a physiological act, but also a refined pleasure. PMID:24868281

  2. AP1 transcription factors are required to maintain the peripheral taste system.

    PubMed

    Shandilya, Jayasha; Gao, Yankun; Nayak, Tapan K; Roberts, Stefan G E; Medler, Kathryn F

    2016-10-27

    The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance.

  3. AP1 transcription factors are required to maintain the peripheral taste system

    PubMed Central

    Shandilya, Jayasha; Gao, Yankun; Nayak, Tapan K; Roberts, Stefan G E; Medler, Kathryn F

    2016-01-01

    The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance. PMID:27787515

  4. Selective attention to affective value alters how the brain processes taste stimuli.

    PubMed

    Grabenhorst, Fabian; Rolls, Edmund T

    2008-02-01

    How does selective attention to affect influence sensory processing? In an fMRI investigation, when subjects were instructed to remember and rate the pleasantness of a taste stimulus, 0.1 M monosodium glutamate, activations were greater in the medial orbitofrontal and pregenual cingulate cortex than when subjects were instructed to remember and rate the intensity of the taste. When the subjects were instructed to remember and rate the intensity, activations were greater in the insular taste cortex. An interaction analysis showed that this dissociation of taste processing, depending on whether attention to pleasantness or intensity was relevant, was highly significant (P < 0.0002). Thus, depending on the context in which tastes are presented and whether affect is relevant, the brain responds to a taste differently. These findings show that, when attention is paid to affective value, the brain systems engaged to represent the sensory stimulus of taste are different from those engaged when attention is directed to the physical properties of a stimulus such as its intensity. This differential biasing of brain regions engaged in processing a sensory stimulus, depending on whether the cognitive demand is for affect-related vs. more sensory-related processing, may be an important aspect of cognition and attention. This has many implications for understanding the effects not only of taste but also of other sensory stimuli.

  5. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.

    PubMed

    Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D

    2008-06-15

    Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.

  6. A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste.

    PubMed

    Tauber, John M; Brown, Elizabeth B; Li, Yuanyuan; Yurgel, Maria E; Masek, Pavel; Keene, Alex C

    2017-11-01

    Fat represents a calorically potent food source that yields approximately twice the amount of energy as carbohydrates or proteins per unit of mass. The highly palatable taste of free fatty acids (FAs), one of the building blocks of fat, promotes food consumption, activates reward circuitry, and is thought to contribute to hedonic feeding underlying many metabolism-related disorders. Despite a role in the etiology of metabolic diseases, little is known about how dietary fats are detected by the gustatory system to promote feeding. Previously, we showed that a broad population of sugar-sensing taste neurons expressing Gustatory Receptor 64f (Gr64f) is required for reflexive feeding responses to both FAs and sugars. Here, we report a genetic silencing screen to identify specific populations of taste neurons that mediate fatty acid (FA) taste. We find neurons identified by expression of Ionotropic Receptor 56d (IR56d) are necessary and sufficient for reflexive feeding response to FAs. Functional imaging reveals that IR56d-expressing neurons are responsive to short- and medium-chain FAs. Silencing IR56d neurons selectively abolishes FA taste, and their activation is sufficient to drive feeding responses. Analysis of co-expression with Gr64f identifies two subpopulations of IR56d-expressing neurons. While physiological imaging reveals that both populations are responsive to FAs, IR56d/Gr64f neurons are activated by medium-chain FAs and are sufficient for reflexive feeding response to FAs. Moreover, flies can discriminate between sugar and FAs in an aversive taste memory assay, indicating that FA taste is a unique modality in Drosophila. Taken together, these findings localize FA taste within the Drosophila gustatory center and provide an opportunity to investigate discrimination between different categories of appetitive tastants.

  7. Substance P as a putative efferent transmitter mediates GABAergic inhibition in mouse taste buds.

    PubMed

    Huang, Anthony Y; Wu, Sandy Y

    2018-04-01

    Capsaicin-mediated modulation of taste nerve responses is thought to be produced indirectly by the actions of neuropeptides, for example, CGRP and substance P (SP), on taste cells implying they play a role in taste sensitivity. During the processing of gustatory information in taste buds, CGRP shapes peripheral taste signals via serotonergic signalling. The underlying assumption has been that SP exerts its effects on taste transmitter secretion in taste buds of mice. To test this assumption, we investigated the net effect of SP on taste-evoked ATP secretion from mouse taste buds, using functional calcium imaging with CHO cells expressing high-affinity transmitter receptors as cellular biosensors. Our results showed that SP elicited PLC activation-dependent intracellular Ca 2+ transients in taste cells via neurokinin 1 receptors, most likely on glutamate-aspartate transporter-expressing Type I cells. Furthermore, SP caused Type I cells to secrete GABA. Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the current results indicate that SP elicited secretion of GABA, which provided negative feedback onto Type II (receptor) cells to reduce taste-evoked ATP secretion. These findings are consistent with a role for SP as an inhibitory transmitter that shapes the peripheral taste signals, via GABAergic signalling, during the processing of gustatory information in taste buds. Notably, the results suggest that SP is intimately associated with GABA in mammalian taste signal processing and demonstrate an unanticipated route for sensory information flow within the taste bud. © 2018 The British Pharmacological Society.

  8. Evolution of the composition of a selected bitter Camembert cheese during ripening: release and migration of taste-active compounds.

    PubMed

    Engel, E; Tournier, C; Salles, C; Le Quéré, J L

    2001-06-01

    The aim of this study was to add to the understanding of changes in taste that occur during the ripening of a bitter Camembert cheese by the evolution of its composition. Physicochemical analyses were performed on rind, under-rind, and center portions of a Camembert cheese selected for its intense bitterness. At each of the six steps of ripening studied organic acids, sugars, total nitrogen, soluble nitrogen, phosphotungstic acid soluble nitrogen, non-protein nitrogen, Na, K, Ca, Mg, Pi, Cl, and biogenic amines were quantified in each portion. Changes in cheese composition seemed to mainly result from the development of Penicillium camemberti on the cheese outer layer. Migration phenomena and the release of potentially taste-active compounds allowed for the evolution of saltiness, sourness, and bitterness throughout ripening to be better understood. Apart from taste-active compounds, the impact of the cheese matrix on its taste development is discussed.

  9. Taste sensitivity, nutritional status and metabolic syndrome: Implication in weight loss dietary interventions

    PubMed Central

    Bertoli, Simona; Laureati, Monica; Battezzati, Alberto; Bergamaschi, Valentina; Cereda, Emanuele; Spadafranca, Angela; Vignati, Laila; Pagliarini, Ella

    2014-01-01

    AIM: We investigated the relationship between taste sensitivity, nutritional status and metabolic syndrome and possible implications on weight loss dietary program. METHODS: Sensitivity for bitter, sweet, salty and sour tastes was assessed by the three-Alternative-Forced-Choice method in 41 overweight (OW), 52 obese (OB) patients and 56 normal-weight matched controls. OW and OB were assessed also for body composition (by impedence), resting energy expenditure (by indirect calorimetry) and presence of metabolic syndrome (MetS) and were prescribed a weight loss diet. Compliance to the weight loss dietary program was defined as adherence to control visits and weight loss ≥ 5% in 3 mo. RESULTS: Sex and age-adjusted multiple regression models revealed a significant association between body mass index (BMI) and both sour taste (P < 0.05) and global taste acuity score (GTAS) (P < 0.05), with lower sensitivity with increasing BMI. This trend in sensitivity for sour taste was also confirmed by the model refitted on the OW/OB group while the association with GTAS was marginally significant (P = 0.06). MetS+ subjects presented higher thresholds for salty taste when compared to MetS- patients while no significant difference was detected for the other tastes and GTAS. As assessed by multiple regression model, the association between salty taste and MetS appeared to be independent of sex, age and BMI. Patients continuing the program (n = 37) did not show any difference in baseline taste sensitivity when compared to drop-outs (n = 29). Similarly, no significant difference was detected between patients reporting and not reporting a weight loss ≥ 5% of the initial body weight. No significant difference in taste sensitivity was detected even after dividing patients on the basis of nutritional (OW and OB) or metabolic status (MetS+ and MetS-). CONCLUSION: There is no cause-effect relationship between overweight and metabolic derangements. Taste thresholds assessment is not useful in predicting the outcome of a diet-induced weight loss program. PMID:25317249

  10. Heterogeneous binary interactions of taste primaries: perceptual outcomes, physiology, and future directions.

    PubMed

    Wilkie, Lynn M; Capaldi Phillips, Elizabeth D

    2014-11-01

    Complex taste experiences arise from the combinations of five taste primaries. Here we review the literature on binary interactions of heterogeneous taste primaries, focusing on perceptual results of administering mixtures of aqueous solutions to human participants. Some interactions proved relatively consistent across tastants and experimental methods: sour acids enhanced saltiness, salts and sweeteners suppressed bitterness, sweeteners suppressed sourness, and sour acids enhanced bitterness. However, for the majority of interactions there were differential effects based on the tastants and their concentrations. Drawing conclusions about interactions with umami is currently not possible due to the low number of primary source studies investigating it and the confounding sodium ions in monosodium glutamate (MSG). Speculative physiological explanations are provided that fit the current data and suggestions for future research studies are proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Middle school-aged child enjoyment of food tastings predicts interest in nutrition education on osteoporosis prevention

    PubMed Central

    Cheng, Feon W.; Monnat, Shannon M.; Lohse, Barbara

    2015-01-01

    BACKGROUND NEEDs for Bones (NFB), based on the Health Belief Model, is a 4-lesson osteoporosis-prevention curriculum for 11-14 year-olds. This study examined the relationship between enjoyment of food tastings and interest in NFB. METHODS NFB was administered by teachers as part of standard practice and evaluated after the 4th lesson using a 21-item survey. Significant clustering of students within classrooms required use of random-intercept multilevel ordinal regression models in SAS proc GLIMMIX, with students nested within classrooms. Analyses considered tasting experience, eating attitudes, sex, grade, and cohort. RESULTS Students (N = 1619; 50% girls) participated from 85 4th-8th grade classrooms (47% 6th grade; 31% 7th grade) in 16 Pennsylvania SNAP-Ed eligible schools over 2 academic years. For all foods tasted, students who did not enjoy the food tasting were less interested in the lesson than students who did enjoy the food tasting (all p < .001); refried beans (OR 0.30), soy milk (OR = 0.55), cranapple juice (OR = 0.51), sunflower kernels (OR = 0.48), and Swiss cheese (OR = 0.49). CONCLUSIONS Enjoyment of food tasting activities can predict interest in nutrition education on osteoporosis prevention, supporting resource allocation and inclusion of food tasting activities in school-age nutrition education. PMID:26032277

  12. Capacitance measurements of regulated exocytosis in mouse taste cells.

    PubMed

    Vandenbeuch, Aurelie; Zorec, Robert; Kinnamon, Sue C

    2010-11-03

    Exocytosis, consisting of the merger of vesicle and plasma membrane, is a common mechanism used by different types of nucleated cells to release their vesicular contents. Taste cells possess vesicles containing various neurotransmitters to communicate with adjacent taste cells and afferent nerve fibers. However, whether these vesicles engage in exocytosis on a stimulus is not known. Since vesicle membrane merger with the plasma membrane is reflected in plasma membrane area fluctuations, we measured membrane capacitance (C(m)), a parameter linearly related to membrane surface area. To investigate whether taste cells undergo regulated exocytosis, we used the compensated tight-seal whole-cell recording technique to monitor depolarization-induced changes in C(m) in the different types of taste cells. To identify taste cell types, mice expressing green fluorescent protein from the TRPM5 promoter or from the GAD67 promoter were used to discriminate type II and type III taste cells, respectively. Moreover, the cell types were also identified by monitoring their voltage-current properties. The results demonstrate that only type III taste cells show significant depolarization-induced increases in C(m), which were correlated to the voltage-activated calcium currents. The results suggest that type III, but neither type II nor type I cells exhibit depolarization-induced regulated exocytosis to release transmitter and activate gustatory afferent nerve fibers.

  13. Purification and complete amino acid sequence of a new type of sweet protein taste-modifying activity, curculin.

    PubMed

    Yamashita, H; Theerasilp, S; Aiuchi, T; Nakaya, K; Nakamura, Y; Kurihara, Y

    1990-09-15

    A new taste-modifying protein named curculin was extracted with 0.5 M NaCl from the fruits of Curculigo latifolia and purified by ammonium sulfate fractionation, CM-Sepharose ion-exchange chromatography, and gel filtration. Purified curculin thus obtained gave a single band having a Mr of 12,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 8 M urea. The molecular weight determined by low-angle laser light scattering was 27,800. These results suggest that native curculin is a dimer of a 12,000-Da polypeptide. The complete amino acid sequence of curculin was determined by automatic Edman degradation. Curculin consists of 114 residues. Curculin itself elicits a sweet taste. After curculin, water elicits a sweet taste, and sour substances induce a stronger sense of sweetness. No protein with both sweet-tasting and taste-modifying activities has ever been found. There are five sets of tripeptides common to miraculin (a taste-modifying protein), six sets of tripeptides common to thaumatin (a sweet protein), and two sets of tripeptides common to monellin (a sweet protein). Anti-miraculin serum was not immunologically reactive with curculin. The mechanism of the taste-modifying action of curculin is discussed.

  14. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    PubMed Central

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  15. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  16. Oral Digestion and Perception of Starch: Effects of Cooking, Tasting Time, and Salivary α-Amylase Activity.

    PubMed

    Lapis, Trina J; Penner, Michael H; Balto, Amy S; Lim, Juyun

    2017-10-01

    Since starch is a significant part of human diet, its oral detection would be highly beneficial. This study was designed to determine whether starch or its degradation products can be tasted and what factors influence its perception. Subjects were asked 1) to taste 8% raw and cooked starch samples for 5, 15, and 35 s and rate perceived intensities of sweetness and "other" taste (i.e., other than sweet), 2) to donate saliva to obtain salivary flow rate (mg/s) and salivary α-amylase activity (per mg saliva), and 3) to fill out a carbohydrate consumption survey. Subsequently, in vitro hydrolysis of starch was performed; saliva was collected from 5 subjects with low and high amylase activities and reacted with 8% raw and cooked starch at 2, 15, and 30 s. Hydrolysis products were then quantified using a High performance liquid chromatography. The results showed cooking increased the digestibility of starch such that the amount of hydrolysis products increased with reaction time. However, cooking did not influence taste ratings, nor were they influenced by tasting time. Subjects' salivary amylase activities were associated with the efficacy of their saliva to degrade starch, in particular cooked starch, and thus the amount of maltooligosaccharide products generated. Effective α-amylase activity [i.e. α-amylase activity (per mg saliva) × salivary flow rate (mg/s)] and carbohydrate consumption score (i.e. consumption frequency × number of servings) were also independently associated with sensory taste ratings. Human perception of starch is undoubtedly complex as shown in this study; the data herein point to the potential roles of salivary α-amylase activity and carbohydrate consumption in the perception of cooked starch. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Altered lipid and salt taste responsivity in ghrelin and GOAT null mice.

    PubMed

    Cai, Huan; Cong, Wei-Na; Daimon, Caitlin M; Wang, Rui; Tschöp, Matthias H; Sévigny, Jean; Martin, Bronwen; Maudsley, Stuart

    2013-01-01

    Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT) is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT), ghrelin knockout (ghrelin(-/-)), and GOAT knockout (GOAT(-/-)) mice. Ghrelin(-/-) mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT(-/-) mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin(-/-) and GOAT(-/-) mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin(-/-) mice, yet potentiated in GOAT(-/-) mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT(-/-) mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin(-/-) and GOAT(-/-) mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities.

  18. Science in a Box. Body Works II: Test Your Taste.

    ERIC Educational Resources Information Center

    Learning, 1991

    1991-01-01

    Presents classroom learning activities to help elementary teachers and students learn about and experiment with the sense of taste. One involves tasting an apple while smelling an onion; another involves locating areas of the tongue that respond to salt, sweet, bitter, and sour. (SM)

  19. Characterization of the Sweet Taste Receptor Tas1r2 from an Old World Monkey Species Rhesus Monkey and Species-Dependent Activation of the Monomeric Receptor by an Intense Sweetener Perillartine

    PubMed Central

    Cai, Chenggu; Jiang, Hua; Li, Lei; Liu, Tianming; Song, Xuejie; Liu, Bo

    2016-01-01

    Sweet state is a basic physiological sensation of humans and other mammals which is mediated by the broadly acting sweet taste receptor-the heterodimer of Tas1r2 (taste receptor type 1 member 2) and Tas1r3 (taste receptor type 1 member 3). Various sweeteners interact with either Tas1r2 or Tas1r3 and then activate the receptor. In this study, we cloned, expressed and functionally characterized the taste receptor Tas1r2 from a species of Old World monkeys, the rhesus monkey. Paired with the human TAS1R3, it was shown that the rhesus monkey Tas1r2 could respond to natural sugars, amino acids and their derivates. Furthermore, similar to human TAS1R2, rhesus monkey Tas1r2 could respond to artificial sweeteners and sweet-tasting proteins. However, the responses induced by rhesus monkey Tas1r2 could not be inhibited by the sweet inhibitor amiloride. Moreover, we found a species-dependent activation of the Tas1r2 monomeric receptors of human, rhesus monkey and squirrel monkey but not mouse by an intense sweetener perillartine. Molecular modeling and sequence analysis indicate that the receptor has the conserved domains and ligand-specific interactive residues, which have been identified in the characterized sweet taste receptors up to now. This is the first report of the functional characterization of sweet taste receptors from an Old World monkey species. PMID:27479072

  20. Characterization of the Sweet Taste Receptor Tas1r2 from an Old World Monkey Species Rhesus Monkey and Species-Dependent Activation of the Monomeric Receptor by an Intense Sweetener Perillartine.

    PubMed

    Cai, Chenggu; Jiang, Hua; Li, Lei; Liu, Tianming; Song, Xuejie; Liu, Bo

    2016-01-01

    Sweet state is a basic physiological sensation of humans and other mammals which is mediated by the broadly acting sweet taste receptor-the heterodimer of Tas1r2 (taste receptor type 1 member 2) and Tas1r3 (taste receptor type 1 member 3). Various sweeteners interact with either Tas1r2 or Tas1r3 and then activate the receptor. In this study, we cloned, expressed and functionally characterized the taste receptor Tas1r2 from a species of Old World monkeys, the rhesus monkey. Paired with the human TAS1R3, it was shown that the rhesus monkey Tas1r2 could respond to natural sugars, amino acids and their derivates. Furthermore, similar to human TAS1R2, rhesus monkey Tas1r2 could respond to artificial sweeteners and sweet-tasting proteins. However, the responses induced by rhesus monkey Tas1r2 could not be inhibited by the sweet inhibitor amiloride. Moreover, we found a species-dependent activation of the Tas1r2 monomeric receptors of human, rhesus monkey and squirrel monkey but not mouse by an intense sweetener perillartine. Molecular modeling and sequence analysis indicate that the receptor has the conserved domains and ligand-specific interactive residues, which have been identified in the characterized sweet taste receptors up to now. This is the first report of the functional characterization of sweet taste receptors from an Old World monkey species.

  1. Altered processing of rewarding and aversive basic taste stimuli in symptomatic women with anorexia nervosa and bulimia nervosa: An fMRI study.

    PubMed

    Monteleone, Alessio Maria; Monteleone, Palmiero; Esposito, Fabrizio; Prinster, Anna; Volpe, Umberto; Cantone, Elena; Pellegrino, Francesca; Canna, Antonietta; Milano, Walter; Aiello, Marco; Di Salle, Francesco; Maj, Mario

    2017-07-01

    Functional magnetic resonance imaging (fMRI) studies have displayed a dysregulation in the way in which the brain processes pleasant taste stimuli in patients with anorexia nervosa (AN) and bulimia nervosa (BN). However, exactly how the brain processes disgusting basic taste stimuli has never been investigated, even though disgust plays a role in food intake modulation and AN and BN patients exhibit high disgust sensitivity. Therefore, we investigated the activation of brain areas following the administration of pleasant and aversive basic taste stimuli in symptomatic AN and BN patients compared to healthy subjects. Twenty underweight AN women, 20 symptomatic BN women and 20 healthy women underwent fMRI while tasting 0.292 M sucrose solution (sweet taste), 0.5 mM quinine hydrochloride solution (bitter taste) and water as a reference taste. In symptomatic AN and BN patients the pleasant sweet stimulus induced a higher activation in several brain areas than that induced by the aversive bitter taste. The opposite occurred in healthy controls. Moreover, compared to healthy controls, AN patients showed a decreased response to the bitter stimulus in the right amygdala and left anterior cingulate cortex, while BN patients showed a decreased response to the bitter stimulus in the right amygdala and left insula. These results show an altered processing of rewarding and aversive taste stimuli in ED patients, which may be relevant for understanding the pathophysiology of AN and BN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Human sweet taste receptor mediates acid-induced sweetness of miraculin

    PubMed Central

    Koizumi, Ayako; Tsuchiya, Asami; Nakajima, Ken-ichiro; Ito, Keisuke; Terada, Tohru; Shimizu-Ibuka, Akiko; Briand, Loïc; Asakura, Tomiko; Misaka, Takumi; Abe, Keiko

    2011-01-01

    Miraculin (MCL) is a homodimeric protein isolated from the red berries of Richadella dulcifica. MCL, although flat in taste at neutral pH, has taste-modifying activity to convert sour stimuli to sweetness. Once MCL is held on the tongue, strong sweetness is sensed over 1 h each time we taste a sour solution. Nevertheless, no molecular mechanism underlying the taste-modifying activity has been clarified. In this study, we succeeded in quantitatively evaluating the acid-induced sweetness of MCL using a cell-based assay system and found that MCL activated hT1R2-hT1R3 pH-dependently as the pH decreased from 6.5 to 4.8, and that the receptor activation occurred every time an acid solution was applied. Although MCL per se is sensory-inactive at pH 6.7 or higher, it suppressed the response of hT1R2-hT1R3 to other sweeteners at neutral pH and enhanced the response at weakly acidic pH. Using human/mouse chimeric receptors and molecular modeling, we revealed that the amino-terminal domain of hT1R2 is required for the response to MCL. Our data suggest that MCL binds hT1R2-hT1R3 as an antagonist at neutral pH and functionally changes into an agonist at acidic pH, and we conclude this may cause its taste-modifying activity. PMID:21949380

  3. Bitter Taste Stimuli Induce Differential Neural Codes in Mouse Brain

    PubMed Central

    Wilson, David M.; Boughter, John D.; Lemon, Christian H.

    2012-01-01

    A growing literature suggests taste stimuli commonly classified as “bitter” induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes) was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total), including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA), presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5) were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05) to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05) from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among “bitter” stimuli, data that challenge a strict monoguesia model for the bitter quality. PMID:22844505

  4. Effects of Age and Removable Artificial Dentition on Taste

    DTIC Science & Technology

    1990-08-01

    gland activity, to decline with age. Similarly, Cohen the taste intensity spectrum and provide sensitivity to weak gustatory stimuli was and Gitman ...Field J, I. Cohen T, Gitman L. Oral complaints and taste AMWQr ed Sci 1976;272:285-99. ed. Handbook of physiology, selection I, perception in the

  5. 27 CFR 6.95 - Consumer tasting or sampling at retail establishments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... sampling at retail establishments. 6.95 Section 6.95 Alcohol, Tobacco Products and Firearms ALCOHOL AND... tasting or sampling at retail establishments. An industry member may conduct tasting or sampling activities at a retail establishment. The industry member may purchase the products to be used from the...

  6. 27 CFR 6.95 - Consumer tasting or sampling at retail establishments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... sampling at retail establishments. 6.95 Section 6.95 Alcohol, Tobacco Products and Firearms ALCOHOL AND... tasting or sampling at retail establishments. An industry member may conduct tasting or sampling activities at a retail establishment. The industry member may purchase the products to be used from the...

  7. 27 CFR 6.95 - Consumer tasting or sampling at retail establishments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... sampling at retail establishments. 6.95 Section 6.95 Alcohol, Tobacco Products and Firearms ALCOHOL AND... tasting or sampling at retail establishments. An industry member may conduct tasting or sampling activities at a retail establishment. The industry member may purchase the products to be used from the...

  8. Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells.

    PubMed

    Oike, Hideaki; Wakamori, Minoru; Mori, Yasuo; Nakanishi, Hiroki; Taguchi, Ryo; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2006-09-01

    Vertebrate sensory cells such as vomeronasal neurons and Drosophila photoreceptor cells use TRP channels to respond to exogenous stimuli. In mammalian taste cells, bitter and sweet substances as well as some amino acids are received by G protein-coupled receptors (T2Rs or T1Rs). As a result of activation of G protein and phospholipase Cbeta2, the TRPM5 channel is activated. Intracellular Ca(2+) is known to be a TRPM5 activator, but the participation of lipid activators remains unreported. To clarify the effect of arachidonic acid on TRPM5 in taste cells, we investigated the expression profile of a series of enzymes involved in controlling the intracellular free arachidonic acid level, with the result that in a subset of taste bud cells, monoglyceride lipase (MGL) and cyclooxygenase-2 (COX-2) are expressed as well as the previously reported group IIA phospholipase A(2) (PLA(2)-IIA). Double-labeling analysis revealed that MGL, COX-2 and PLA(2)-IIA are co-expressed in some cells that express TRPM5. We then investigated whether arachidonic acid activates TRPM5 via a heterologous expression system in HEK293 cells, and found that its activation occurred at 10 microM arachidonic acid. These results strongly suggest the possibility that arachidonic acid acts as a modulator of TRPM5 in taste signaling pathways.

  9. Hedgehog pathway blockade with the cancer drug LDE225 disrupts taste organs and taste sensation.

    PubMed

    Kumari, Archana; Ermilov, Alexandre N; Allen, Benjamin L; Bradley, Robert M; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2015-02-01

    Taste sensation on the anterior tongue requires chorda tympani nerve function and connections with continuously renewing taste receptor cells. However, it is unclear which signaling pathways regulate the receptor cells to maintain chorda tympani sensation. Hedgehog (HH) signaling controls cell proliferation and differentiation in numerous tissues and is active in taste papillae and taste buds. In contrast, uncontrolled HH signaling drives tumorigenesis, including the common skin cancer, basal cell carcinoma. Systemic HH pathway inhibitors (HPIs) lead to basal cell carcinoma regression, but these drugs cause severe taste disturbances. We tested the hypothesis that taste disruption by HPIs reflects a direct requirement for HH signaling in maintaining taste organs and gustatory sensation. In mice treated with the HPI LDE225 up to 28 days, HH-responding cells were lost in fungiform papilla epithelium, and papillae acquired a conical apex. Taste buds were either absent or severely reduced in size in more than 90% of aberrant papillae. Taste bud remnants expressed the taste cell marker keratin 8, and papillae retained expression of nerve markers, neurofilament and P2X3. Chorda tympani nerve responses to taste stimuli were markedly reduced or absent in LDE225-treated mice. Responses to touch were retained, however, whereas cold responses were retained after 16 days of treatment but lost after 28 days. These data identify a critical, modality-specific requirement for HH signaling in maintaining taste papillae, taste buds and neurophysiological taste function, supporting the proposition that taste disturbances in HPI-treated patients are an on-target response to HH pathway blockade in taste organs. Copyright © 2015 the American Physiological Society.

  10. Targeted taste cell-specific overexpression of brain-derived neurotrophic factor in adult taste buds elevates phosphorylated TrkB protein levels in taste cells, increases taste bud size, and promotes gustatory innervation.

    PubMed

    Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A

    2012-05-11

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.

  11. Targeted Taste Cell-specific Overexpression of Brain-derived Neurotrophic Factor in Adult Taste Buds Elevates Phosphorylated TrkB Protein Levels in Taste Cells, Increases Taste Bud Size, and Promotes Gustatory Innervation*

    PubMed Central

    Nosrat, Irina V.; Margolskee, Robert F.; Nosrat, Christopher A.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system. PMID:22442142

  12. Exposure to the taste of alcohol elicits activation of the mesocorticolimbic neurocircuitry.

    PubMed

    Filbey, Francesca M; Claus, Eric; Audette, Amy R; Niculescu, Michelle; Banich, Marie T; Tanabe, Jody; Du, Yiping P; Hutchison, Kent E

    2008-05-01

    A growing number of imaging studies suggest that alcohol cues, mainly visual, elicit activation in mesocorticolimbic structures. Such findings are consistent with the growing recognition that these structures play an important role in the attribution of incentive salience and the pathophysiology of addiction. The present study investigated whether the presentation of alcohol taste cues can activate brain regions putatively involved in the acquisition and expression of incentive salience. Using functional magnetic resonance imaging, we recorded BOLD activity while delivering alcoholic tastes to 37 heavy drinking but otherwise healthy volunteers. The results yielded a pattern of BOLD activity in mesocorticolimbic structures (ie prefrontal cortex, striatum, ventral tegmental area/substantia nigra) relative to an appetitive control. Further analyses suggested strong connectivity between these structures during cue-elicited urge and demonstrated significant positive correlations with a measure of alcohol use problems (ie the Alcohol Use Disorders Identification Test). Thus, repeated exposure to the taste alcohol in the scanner elicits activation in mesocorticolimbic structures, and this activation is related to measures of urge and severity of alcohol problems.

  13. Exposure to the Taste of Alcohol Elicits Activation of the Mesocorticolimbic Neurocircuitry

    PubMed Central

    Filbey, Francesca M; Claus, Eric; Audette, Amy R; Niculescu, Michelle; Banich, Marie T; Tanabe, Jody; Du, Yiping P; Hutchison, Kent E

    2010-01-01

    A growing number of imaging studies suggest that alcohol cues, mainly visual, elicit activation in mesocorticolimbic structures. Such findings are consistent with the growing recognition that these structures play an important role in the attribution of incentive salience and the pathophysiology of addiction. The present study investigated whether the presentation of alcohol taste cues can activate brain regions putatively involved in the acquisition and expression of incentive salience. Using functional magnetic resonance imaging, we recorded BOLD activity while delivering alcoholic tastes to 37 heavy drinking but otherwise healthy volunteers. The results yielded a pattern of BOLD activity in mesocorticolimbic structures (ie prefrontal cortex, striatum, ventral tegmental area/substantia nigra) relative to an appetitive control. Further analyses suggested strong connectivity between these structures during cue-elicited urge and demonstrated significant positive correlations with a measure of alcohol use problems (ie the Alcohol Use Disorders Identification Test). Thus, repeated exposure to the taste alcohol in the scanner elicits activation in mesocorticolimbic structures, and this activation is related to measures of urge and severity of alcohol problems. PMID:17653109

  14. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds

    PubMed Central

    Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F.

    2015-01-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor–deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. PMID:26116698

  15. Orexin-1 receptor antagonist in central nucleus of the amygdala attenuates the acquisition of flavor-taste preference in rats.

    PubMed

    Risco, Severiano; Mediavilla, Cristina

    2014-11-01

    Previous studies demonstrated that the intracerebroventricular administration of SB-334867-A, a selective antagonist of orexin OX1R receptors, blocks the acquisition of saccharin-induced conditioned flavor preference (CFP) but not LiCl-induced taste aversion learning (TAL). Orexinergic fibers from the lateral hypothalamus end in the central nucleus of the amygdala (CeA), which expresses orexin OX1R receptors. Taste and sensory inputs also are present in CeA, which may contribute to the development of taste learning. This study analyzed the effect of two doses (1.5 and 6μg/0.5μl) of SB-334867-A administered into the CeA on flavor-taste preference induced by saccharin and on TAL induced by a single administration of LiCl (0.15M, 20ml/kg, i.p.). Outcomes indicate that inactivation of orexinergic receptors in the CeA attenuates flavor-taste preference in a two-bottle test (saccharin vs. water). Intra-amygdalar SB-334867-A does not affect gustatory processing or the preference for the sweet taste of saccharin given that SB-334867-A- and DMSO-treated groups (control animals) increased the intake of the saccharin-associated flavor across training acquisition sessions. Furthermore, SB-334867-A in the CeA does not block TAL acquisition ruling out the possibility that functional inactivation of OX1R receptors interferes with taste processing. Orexin receptors in the CeA appear to intervene in the association of a flavor with orosensory stimuli, e.g., a sweet and pleasant taste, but could be unnecessary when the association is established with visceral stimuli, e.g., lithium chloride. These data suggest that orexinergic projections to the CeA may contribute to the reinforcing signals facilitating the acquisition of taste learning and the change in hedonic evaluation of the taste, which would have important implications for the OX1R-targeted pharmacological treatment of eating disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Motor control in a Drosophila taste circuit

    PubMed Central

    Gordon, Michael D.; Scott, Kristin

    2009-01-01

    Tastes elicit innate behaviors critical for directing animals to ingest nutritious substances and reject toxic compounds, but the neural basis of these behaviors is not understood. Here, we use a neural silencing screen to identify neurons required for a simple Drosophila taste behavior, and characterize a neural population that controls a specific subprogram of this behavior. By silencing and activating subsets of the defined cell population, we identify the neurons involved in the taste behavior as a pair of motor neurons located in the subesophageal ganglion (SOG). The motor neurons are activated by sugar stimulation of gustatory neurons and inhibited by bitter compounds; however, experiments utilizing split-GFP detect no direct connections between the motor neurons and primary sensory neurons, indicating that further study will be necessary to elucidate the circuitry bridging these populations. Combined, these results provide a general strategy and a valuable starting point for future taste circuit analysis. PMID:19217375

  17. Characterization of taste-active compounds of various cherry wines and their correlation with sensory attributes.

    PubMed

    Niu, Yunwei; Zhang, Xiaoming; Xiao, Zuobing; Song, Shiqing; Jia, Chengsheng; Yu, Haiyan; Fang, Lingling; Xu, Chunhua

    2012-08-01

    Five cherry wines exhibiting marked differences in taste and mouthfeel were selected for the study. The taste and mouthfeel of cherry wines were described by four sensory terms as sour, sweet, bitter and astringent. Eight organic acids, seventeen amino acids, three sugars and tannic acid were determined by high performance liquid chromatography (HPLC). Five phenolic acids were determined by ultra performance liquid chromatography coupled with mass spectrometry (UPLC-MS). The relationship between these taste-active compounds, wine samples and sensory attributes was modeled by partial least squares regression (PLSR). The regression analysis indicated tartaric acid, methionine, proline, sucrose, glucose, fructose, asparagines, serine, glycine, threonine, phenylalanine, leucine, gallic acid, chlorogenic acid, vanillic acid, arginine and tannic acid made a great contribution to the characteristic taste or mouthfeel of cherry wines. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Umami Responses in Mouse Taste Cells Indicate More than One Receptor

    PubMed Central

    Maruyama, Yutaka; Pereira, Elizabeth; Margolskee, Robert F.; Chaudhari, Nirupa; Roper, Stephen D.

    2013-01-01

    A number of gustatory receptors have been proposed to underlie umami, the taste of L-glutamate, and certain other amino acids and nucleotides. However, the response profiles of these cloned receptors have not been validated against responses recorded from taste receptor cells that are the native detectors of umami taste. We investigated umami taste responses in mouse circumvallate taste buds in an intact slice preparation, using confocal calcium imaging. Approximately 5% of taste cells selectively responded to L-glutamate when it was focally applied to the apical chemosensitive tips of receptor cells. The concentration–response range for L-glutamate fell approximately within the physiologically relevant range for taste behavior in mice, namely 10 mM and above. Inosine monophosphate enhanced taste cell responses to L-glutamate, a characteristic feature of umami taste. Using pharmacological agents, ion substitution, and immunostaining, we showed that intracellular pathways downstream of receptor activation involve phospholipase C β2. Each of the above features matches those predicted by studies of cloned and expressed receptors. However, the ligand specificity of each of the proposed umami receptors [taste metabotropic glutamate receptor 4, truncated metabotropic glutamate receptor 1, or taste receptor 1 (T1R1) and T1R3 dimers], taken alone, did not appear to explain the taste responses observed in mouse taste cells. Furthermore, umami responses were still observed in mutant mice lacking T1R3. A full explanation of umami taste transduction may involve novel combinations of the proposed receptors and/or as-yet-undiscovered taste receptors. PMID:16495449

  19. Developing Healthy Food Preferences in Preschool Children Through Taste Exposure, Sensory Learning, and Nutrition Education.

    PubMed

    Nekitsing, Chandani; Hetherington, Marion M; Blundell-Birtill, Pam

    2018-03-01

    The present review was undertaken in order to summarize and evaluate recent research investigating taste exposure, sensory learning, and nutrition education interventions for promoting vegetable intake in preschool children. Overall, taste exposure interventions yielded the best outcomes for increasing vegetable intake in early childhood. Evidence from sensory learning strategies such as visual exposure and experiential learning also show some success. While nutrition education remains the most common approach used in preschool settings, additional elements are needed to strengthen the educational program for increasing vegetable intake. There is a substantial gap in the evidence base to promote vegetable intake in food fussy children. The present review reveals the relative importance of different intervention strategies for promoting vegetable intake. To strengthen intervention effects for improving vegetable intake in preschool children, future research could consider integrating taste exposure and sensory learning strategies with nutrition education within the preschool curriculum.

  20. Sugar-activated ion transport in canine lingual epithelium. Implications for sugar taste transduction

    PubMed Central

    1988-01-01

    There is good evidence indicating that ion-transport pathways in the apical regions of lingual epithelial cells, including taste bud cells, may play a role in salt taste reception. In this article, we present evidence that, in the case of the dog, there also exists a sugar- activated ion-transport pathway that is linked to sugar taste transduction. Evidence was drawn from two parallel lines of experiments: (a) ion-transport studies on the isolated canine lingual epithelium, and (b) recordings from the canine chorda tympani. The results in vitro showed that both mono- and disaccharides in the mucosal bath stimulate a dose-dependent increase in the short-circuit current over the concentration range coincident with mammalian sugar taste responses. Transepithelial current evoked by glucose, fructose, or sucrose in either 30 mM NaCl or in Krebs-Henseleit buffer (K-H) was partially blocked by amiloride. Among current carriers activated by saccharides, the current response was greater with Na than with K. Ion flux measurements in K-H during stimulation with 3-O-methylglucose showed that the sugar-evoked current was due to an increase in the Na influx. Ouabain or amiloride reduced the sugar-evoked Na influx without effect on sugar transport as measured with tritiated 3-O-methylglucose. Amiloride inhibited the canine chorda tympani response to 0.5 M NaCl by 70-80% and the response to 0.5 M KCl by approximately 40%. This agreed with the percent inhibition by amiloride of the short-circuit current supported in vitro by NaCl and KCl. Amiloride also partially inhibited the chorda tympani responses to sucrose and to fructose. The results indicate that in the dog: (a) the ion transporter subserving Na taste also subserves part of the response to K, and (b) a sugar-activated, Na- preferring ion-transport system is one mechanism mediating sugar taste transduction. Results in the literature indicate a similar sweet taste mechanism for humans. PMID:3171536

  1. Does Conspecific Fighting Yield Conditioned Taste Aversion in Rats?

    ERIC Educational Resources Information Center

    Nakajima, Sadahiko; Kumazawa, Gaku; Ieki, Hayato; Hashimoto, Aya

    2012-01-01

    Running in an activity wheel yields conditioned aversion to a taste solution consumed before the running, but its underlying physiological mechanism is unknown. According to the claim that energy expenditure or general stress caused by physical exercise is a critical factor for this taste-aversion learning, not only running but also other…

  2. Evolution of taste and solitary chemoreceptor cell systems.

    PubMed

    Finger, T E

    1997-01-01

    Vertebrates possess four distinct chemosensory systems distinguishable on the basis of structure, innervation and utilization: olfaction, taste, solitary chemoreceptor cells (SCC) and the common chemical sense (free nerve endings). Of these, taste and the SCC sense rely on secondary receptor cells situated in the epidermis and synapsing on sensory nerve fibers innervating them near their base. The SCC sense occurs in anamniote aquatic craniates, including hagfish, and may be used for feeding or predator avoidance. The sense of taste occurs only in vertebrates and is always utilized for feeding. The SCC system achieves a high degree of specialization in two teleosts: sea robins (Prionotus) and rocklings (Ciliata). In sea robins, SCCs are abundant on the three anterior fin rays of the pectoral fin which are free of fin webbing and are used in active exploration of the substrate. Behavioral and physiological studies show that this SCC system responds to feeding cues and drives feeding behavior. It is connected centrally like a somatosensory system. In contrast, the specialized SCC system of rocklings occurs on the anterior dorsal fin which actively samples the surrounding water. This system responds to mucus substances and may serve as a predator detector. The SCC system in rocklings is connected centrally like a gustatory system. Taste buds contain multiple receptor cell types, including a serotonergic Merkel-like cell. Taste receptor cells respond to nutritionally relevant substances. Due to similarities between SCCs and one type of taste receptor cell, the suggestion is made that taste buds may be compound sensory organs that include some cells related to SCCs and others related to cutaneous Merkel cells. The lack of taste buds in hagfish and their presence in all vertebrates may indicate that the phylogenetic development of taste buds coincided with the elaboration of head structures at the craniate-vertebrate transition.

  3. Early alcohol use with parental permission: Psychosocial characteristics and drinking in late adolescence.

    PubMed

    Colder, Craig R; Shyhalla, Kathleen; Frndak, Seth E

    2018-01-01

    The earliest experiences with alcohol for many children occur in the family context with parental supervision. The current study examined individual and sociocultural characteristics associated with early (prior to age 13years) sipping and tasting alcohol with parental permission in two longitudinal community samples. Early sipping/tasting was also tested as a predictor of frequency and quantity of alcohol use, and alcohol-related problems seven years later in late adolescence. Early sipping/tasting with parental permission was associated with a sociocultural context supportive of alcohol use (e.g., parental alcohol use, permissive rules about alcohol use in the home, parental attitudes about underage drinking, perceived peer norms), adolescent sensation seeking and disinhibition (e.g., surgency, externalizing behavior) and appraisals of alcohol (negative outcome expectancies and negative implicit alcohol associations). Early sipping/tasting predicted increased frequency and quantity of alcohol consumption, and increased alcohol-related problems in late adolescence, even after controlling sociocultural and individual difference variables. Findings suggest that early sipping/tasting with parental permission is not benign and is a viable target for preventive interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Optogenetic Induction of Aversive Taste Memory

    PubMed Central

    C. Keene, Alex; Masek, Pavel

    2013-01-01

    The Drosophila melanogaster gustatory system consists of several neuronal pathways representing diverse taste modalities. The two predominant modalities are a sweet sensing pathway that mediates attraction, and a bitter sensing pathway that mediates avoidance. A central question is how flies integrate stimuli from these pathways and generate the appropriate behavioral response. We have developed a novel assay for induction of taste memories. We demonstrate that the gustatory response to fructose is suppressed when followed by the presence of bitter quinine. We employ optogenetic neural activation using infrared laser in combination with heat sensitive channel - TRPA1 to precisely activate gustatory neurons. This optogenetic system allows for spatially and temporally controlled activation of distinct neural classes in the gustatory circuit. We directly activated bitter-sensing neurons together with presentation of fructose for remote induction of aversive taste memories. Here we report that activation of bitter-sensing neurons in the proboscis suffices as a conditioning stimulus. Spatially restricted stimulation indicates that the conditioning stimulus is indeed a signal from the bitter neurons in the proboscis and it is independent of postingestive feedback. The coincidence of temporally specific activation of bitter-sensing neurons with fructose presentation is crucial for memory formation, establishing aversive taste learning in Drosophila as associative learning. Taken together, this optogenetic system provides a powerful new tool for interrogation of the central brain circuits that mediate memory formation. PMID:22820051

  5. A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste

    PubMed Central

    Tauber, John M.; Li, Yuanyuan; Yurgel, Maria E.; Masek, Pavel

    2017-01-01

    Fat represents a calorically potent food source that yields approximately twice the amount of energy as carbohydrates or proteins per unit of mass. The highly palatable taste of free fatty acids (FAs), one of the building blocks of fat, promotes food consumption, activates reward circuitry, and is thought to contribute to hedonic feeding underlying many metabolism-related disorders. Despite a role in the etiology of metabolic diseases, little is known about how dietary fats are detected by the gustatory system to promote feeding. Previously, we showed that a broad population of sugar-sensing taste neurons expressing Gustatory Receptor 64f (Gr64f) is required for reflexive feeding responses to both FAs and sugars. Here, we report a genetic silencing screen to identify specific populations of taste neurons that mediate fatty acid (FA) taste. We find neurons identified by expression of Ionotropic Receptor 56d (IR56d) are necessary and sufficient for reflexive feeding response to FAs. Functional imaging reveals that IR56d-expressing neurons are responsive to short- and medium-chain FAs. Silencing IR56d neurons selectively abolishes FA taste, and their activation is sufficient to drive feeding responses. Analysis of co-expression with Gr64f identifies two subpopulations of IR56d-expressing neurons. While physiological imaging reveals that both populations are responsive to FAs, IR56d/Gr64f neurons are activated by medium-chain FAs and are sufficient for reflexive feeding response to FAs. Moreover, flies can discriminate between sugar and FAs in an aversive taste memory assay, indicating that FA taste is a unique modality in Drosophila. Taken together, these findings localize FA taste within the Drosophila gustatory center and provide an opportunity to investigate discrimination between different categories of appetitive tastants. PMID:29121639

  6. Effects of taste stimulation on gastric myoelectrical activity and autonomic balance.

    PubMed

    Waluga, Marek; Jonderko, Krzysztof; Domosławska, Ewelina; Matwiejszyn, Anna; Dzielicki, Marek; Krusiec-Świdergoł, Beata; Kasicka-Jonderko, Anna

    2018-01-01

    Sham feeding, reproducing the cephalic phase of digestion, and involving combined visual, olfactory, and taste stimulation affects gastrointestinal motility and secretory functions of the digestive system, as well as the sympathetic/parasympathetic balance (SPB). In this study, we aimed to check if taste stimulation with a single flavor affects the gastric myoelectrical activity (GMA) and/or SPB. Eighteen healthy volunteers underwent, on four separate days, 30-min electrogastrographic and electrocardiographic recordings: basal, with stimulation - while keeping in the mouth an agar cube with taste-delivering substance, and postexposure. Concentrations of saccharose, NaCl, citric acid, and quinine hydrochloride within the cubes were adjusted to 100-fold the individual taste recognition thresholds. SPB was determined from the heart rate variability (HRV) analysis of the recorded electrocardiograms. A moderate but statistically significant increase in tachygastria and bradygastria percentage time share was observed, regardless of the type of taste applied. Bitter taste elicited a considerable decrease in the normogastria time share (from 82.8 ± 2.5% to 73.5 ± 3.5%, P = 0.00076) and a diminution of the dominant frequency (from 3.07 ± 0.08 to 2.90 ± 0.10 cycles per minute (cpm) postexposure, P = 0.01). Sour taste brought about a drop of the dominant power (from 42.5 ± 1.1 to 40.1 ± 1.4 dB, P = 0.0015). Two tastes hindered propagation of the gastric slow waves - the average percentage of slow wave coupling decreased from 77.9 ± 3.1% to 69.5 ± 3.1% (P = 0.0078) and from 74.6 ± 2.5% to 68.2 ± 2.8% (P = 0.0054) with the bitter and the salty taste, respectively. Stimulation with sweet, salty, or sour taste evoked a significant decrease in the high frequency component of the HRV, whereas bitter taste did not affect the SPB. Oral stimulation with tastes subjectively perceived as unpleasant brings about disturbances of the interdigestive GMA. This, however, does not coincide with its effect upon SPB.

  7. Changes in taste preference and steps taken after sleep curtailment.

    PubMed

    Smith, Shannon L; Ludy, Mary-Jon; Tucker, Robin M

    2016-09-01

    A substantial proportion of the population does not achieve the recommended amount of sleep. Previous work demonstrates that sleep alterations perturb energy balance by disrupting appetite hormones, increasing energy intake, and decreasing physical activity. This study explored the influence of sleep duration on taste perception as well as effects on dietary intake and physical activity. Participants (n=24 habitual short sleepers and n=27 habitual long sleepers, 82.4% female, 88.2% white, 25.2±7.7years) completed two randomized taste visits; one following short sleep duration (≤7h) and one following long sleep duration (>7h). Taste perception measures included sweet and salt detection thresholds (ascending 3-alternative, forced-choice method), as well as sweet preference (Monell 2-series, forced-choice, paired-comparison, tracking method). Steps and sleep were tracked via FitBit, an activity monitoring device. Dietary intake was assessed using 24-hour recalls and analyzed using Nutritionist Pro. Habitual long-sleepers had a higher sweet taste preference (p=0.042) and took fewer steps (p=0.036) following sleep curtailment compared to the night where they slept >7h but did not experience changes in dietary intake or detection thresholds. Habitual short-sleepers did not experience changes in taste perception, activity, or dietary intake following sleep alteration. Habitual long-sleepers may be at greater risk of gaining weight when typical sleep patterns are disrupted. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells

    PubMed Central

    Miura, Hirohito; Scott, Jennifer K.; Harada, Shuitsu; Barlow, Linda A.

    2014-01-01

    Background Taste buds contain ~60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I - glial cells, II - bitter/sweet/umami receptor cells, and III - sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined. Basal cells have been proposed as taste bud stem cells, a subset of which express Sonic hedgehog (Shh). However, Shh+ basal cells turnover rapidly suggesting that Shh+ cells are precursors of some or all taste cell types. Results To fate map Shh-expressing cells, mice carrying ShhCreERT2 and a high (CAG-CAT-EGFP) or low (R26RLacZ) efficiency reporter allele were given tamoxifen to activate Cre in Shh+ cells. Using R26RLacZ, lineage-labeled cells occur singly within buds, supporting a post-mitotic state for Shh+ cells. Using either reporter, we show that Shh+ cells differentiate into all three taste cell types, in proportions reflecting cell type ratios in taste buds (I > II > III). Conclusions Shh+ cells are not stem cells, but are post-mitotic, immediate precursors of taste cells. Shh+ cells differentiate into each of the three taste cell types, and the choice of a specific taste cell fate is regulated to maintain the proper ratio within buds. PMID:24590958

  9. Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology

    PubMed Central

    2017-01-01

    More and more research studies are revealing unexpectedly important roles of taste for health and pathogenesis of various diseases. Only recently it has been shown that taste receptors have many extraoral locations (e.g., stomach, intestines, liver, pancreas, respiratory system, heart, brain, kidney, urinary bladder, pancreas, adipose tissue, testis, and ovary), being part of a large diffuse chemosensory system. The functional implications of these taste receptors widely dispersed in various organs or tissues shed a new light on several concepts used in ayurvedic pharmacology (dravyaguna vijnana), such as taste (rasa), postdigestive effect (vipaka), qualities (guna), and energetic nature (virya). This review summarizes the significance of extraoral taste receptors and transient receptor potential (TRP) channels for ayurvedic pharmacology, as well as the biological activities of various types of phytochemical tastants from an ayurvedic perspective. The relative importance of taste (rasa), postdigestive effect (vipaka), and energetic nature (virya) as ethnopharmacological descriptors within Ayurveda boundaries will also be discussed. PMID:28642799

  10. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity

    PubMed Central

    Philippaert, Koenraad; Pironet, Andy; Mesuere, Margot; Sones, William; Vermeiren, Laura; Kerselaers, Sara; Pinto, Sílvia; Segal, Andrei; Antoine, Nancy; Gysemans, Conny; Laureys, Jos; Lemaire, Katleen; Gilon, Patrick; Cuypers, Eva; Tytgat, Jan; Mathieu, Chantal; Schuit, Frans; Rorsman, Patrik; Talavera, Karel; Voets, Thomas; Vennekens, Rudi

    2017-01-01

    Steviol glycosides (SGs), such as stevioside and rebaudioside A, are natural, non-caloric sweet-tasting organic molecules, present in extracts of the scrub plant Stevia rebaudiana, which are widely used as sweeteners in consumer foods and beverages. TRPM5 is a Ca2+-activated cation channel expressed in type II taste receptor cells and pancreatic β-cells. Here we show that stevioside, rebaudioside A and their aglycon steviol potentiate the activity of TRPM5. We find that SGs potentiate perception of bitter, sweet and umami taste, and enhance glucose-induced insulin secretion in a Trpm5-dependent manner. Daily consumption of stevioside prevents development of high-fat-diet-induced diabetic hyperglycaemia in wild-type mice, but not in Trpm5−/− mice. These results elucidate a molecular mechanism of action of SGs and identify TRPM5 as a potential target to prevent and treat type 2 diabetes. PMID:28361903

  11. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice.

    PubMed

    Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C

    2015-03-01

    Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca(2+) transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  12. Rat Palatability Study for Taste Assessment of Caffeine Citrate Formulation Prepared via Hot-Melt Extrusion Technology

    PubMed Central

    Tiwari, Roshan V.; Polk, Ashley N.; Patil, Hemlata; Ye, Xingyou; Pimparade, Manjeet B.; Repka, Michael A.

    2017-01-01

    Developing a pediatric oral formulation with an age-appropriate dosage form and taste masking of naturally bitter active pharmaceutical ingredients (APIs) are key challenges for formulation scientists. Several techniques are used for taste masking of bitter APIs to improve formulation palatability; however, not all the techniques are applicable to pediatric dosage forms because of the limitations on the kind and concentration of the excipients that can be used. Hot-melt extrusion (HME) technology is used successfully for taste masking of bitter APIs, and overcomes some of the limitations of the existing taste masking techniques. Likewise, analytical taste assessment is an important quality control parameter evaluated by several in vivo and in vitro methods, such as the human taste panel, electrophysiological methods, electronic sensor, and animal preference tests to aid in selecting a taste-masked formulation. However, the most appropriate in-vivo method to assess the taste-masking efficacy of pediatric formulations remains unknown, because it is not known to what extent the human taste panel/electronic tongue can predict the palatability in the pediatric patients. The purpose of this study was to develop taste-masked caffeine citrate extrudates via HME, and to demonstrate the wide applicability of a single bottle-test rat model to record and compare the volume consumed of the taste-masked solutions to that of the pure API. Thus, this rat model can be considered as a low-cost alternative taste-assessment method to the most commonly used expensive human taste panel/electronic tongue method for pediatric formulations. PMID:26573158

  13. The Insula and Taste Learning

    PubMed Central

    Yiannakas, Adonis; Rosenblum, Kobi

    2017-01-01

    The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC), among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII), transcription factors (CREB, Elk-1) and immediate early genes (c-fos, Arc), has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors. PMID:29163022

  14. Beta-Galactosidase Staining in the Nucleus of the Solitary Tract of Fos-Tau-LacZ Mice Is Unaffected by Monosodium Glutamate Taste Stimulation

    PubMed Central

    Stratford, Jennifer M.; Thompson, John A.

    2014-01-01

    Fos-Tau-LacZ (FTL) transgenic mice are used to visualize the anatomical connectivity of neurons that express c-Fos, an immediate early gene, in response to activation. In contrast to typical c-Fos protein expression, which is localized to the nucleus of stimulated neurons, activation of the c-Fos gene results in beta galactosidase (β-gal) expression throughout the entire cytoplasm of activated cells in FTL mice; thereby making it possible to discern the morphology of c-Fos expressing cells. This can be an especially important tool in brain areas in which function may be related to cell morphology, such as the primary taste/viscerosensory brainstem nucleus of the solitary tract (nTS). Thus, to further characterize FTL activity in the brain, the current study quantified both β-gal enzymatic activity as well as c-Fos protein expression in the nTS under a variety of experimental conditions (no stimulation, no stimulation with prior overnight food and water restriction, monosodium glutamate taste stimulation, and monosodium glutamate taste stimulation with perfusion 5 h post stimulation). Contrary to previous research, we found that β-gal activity (both labeled cell bodies and overall number of labeled pixels) was unchanged across all experimental conditions. However, traditional c-Fos protein activity (both cell bodies and number of activated pixels) varied significantly across experimental conditions, with the greatest amount of c-Fos protein label found in the group that received monosodium glutamate taste stimulation. Interestingly, although many c-Fos positive cells were also β-gal positive in the taste stimulated group, some c-Fos protein labeled cells were not co-labeled with β-gal. Together, these data suggest that β-gal staining within the nTS reflects a stable population of β-gal- positive neurons whose pattern of expression is unaffected by experimental condition. PMID:25192442

  15. High-Intensity Sweeteners and Energy Balance

    PubMed Central

    Swithers, Susan E.; Martin, Ashley A.; Davidson, Terry L.

    2010-01-01

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance. PMID:20060008

  16. Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice.

    PubMed

    Wilson, Courtney E; Finger, Thomas E; Kinnamon, Sue C

    2017-10-31

    Activation of Type III cells in mammalian taste buds is implicated in the transduction of acids (sour) and salty stimuli. Several lines of evidence suggest that function of Type III cells in the anterior taste fields may differ from that of Type III cells in posterior taste fields. Underlying anatomy to support this observation is, however, scant. Most existing immunohistochemical data characterizing this cell type focus on circumvallate taste buds in the posterior tongue. Equivalent data from anterior taste fields-fungiform papillae and soft palate-are lacking. Here, we compare Type III cells in four taste fields: fungiform, soft palate, circumvallate, and foliate in terms of reactivity to four canonical markers of Type III cells: polycystic kidney disease 2-like 1 (PKD2L1), synaptosomal associated protein 25 (SNAP25), serotonin (5-HT), and glutamate decarboxylase 67 (GAD67). Our findings indicate that while PKD2L1, 5-HT, and SNAP25 are highly coincident in posterior taste fields, they diverge in anterior taste fields. In particular, a subset of taste cells expresses PKD2L1 without the synaptic markers, and a subset of SNAP25 cells lacks expression of PKD2L1. In posterior taste fields, GAD67-positive cells are a subset of PKD2L1 expressing taste cells, but anterior taste fields also contain a significant population of GAD67-only expressing cells. These differences in expression patterns may underlie the observed functional differences between anterior and posterior taste fields. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Ionotropic Receptors Mediate Drosophila Oviposition Preference through Sour Gustatory Receptor Neurons.

    PubMed

    Chen, Yan; Amrein, Hubert

    2017-09-25

    Carboxylic acids are present in many foods, being especially abundant in fruits. Yet, relatively little is known about how acids are detected by gustatory systems and whether they have a potential role in nutrition or provide other health benefits. Here we identify sour gustatory receptor neurons (GRNs) in tarsal taste sensilla of Drosophila melanogaster. We find that most tarsal sensilla harbor a sour GRN that is specifically activated by carboxylic and mineral acids but does not respond to sweet- and bitter-tasting chemicals or salt. One pair of taste sensilla features two GRNs that respond only to a subset of carboxylic acids and high concentrations of salt. All sour GRNs prominently express two Ionotropic Receptor (IR) genes, IR76b and IR25a, and we show that both these genes are necessary for the detection of acids. Furthermore, we establish that IR25a and IR76b are essential in sour GRNs of females for oviposition preference on acid-containing food. Our investigations reveal that acids activate a unique set of taste cells largely dedicated to sour taste, and they indicate that both pH/proton concentration and the structure of carboxylic acids contribute to sour GRN activation. Together, our studies provide new insights into the cellular and molecular basis of sour taste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Solitary chemosensory cells and bitter taste receptor signaling in human sinonasal mucosa.

    PubMed

    Barham, Henry P; Cooper, Sarah E; Anderson, Catherine B; Tizzano, Marco; Kingdom, Todd T; Finger, Tom E; Kinnamon, Sue C; Ramakrishnan, Vijay R

    2013-06-01

    Solitary chemosensory cells (SCCs) are specialized cells in the respiratory epithelium that respond to noxious chemicals including bacterial signaling molecules. SCCs express components of bitter taste transduction including the taste receptor type 2 (TAS2R) bitter taste receptors and downstream signaling effectors: α-Gustducin, phospholipase Cβ2 (PLCβ2), and transient receptor potential cation channel subfamily M member 5 (TRPM5). When activated, SCCs evoke neurogenic reflexes, resulting in local inflammation. The purpose of this study was to test for the presence SCCs in human sinonasal epithelium, and to test for a correlation with inflammatory disease processes such as allergic rhinitis and chronic rhinosinusitis. Patient demographics and biopsies of human sinonasal mucosa were obtained from control patients (n = 7) and those with allergic rhinitis and/or chronic rhinosinusitis (n = 15). Reverse transcription polymerase chain reaction (RT-PCR), quantitative PCR (qPCR), and immunohistochemistry were used to determine whether expression of signaling effectors was altered in diseased patients. RT-PCR demonstrated that bitter taste receptors TAS2R4, TAS2R14, and TAS2R46, and downstream signaling effectors α-Gustducin, PLCβ2, and TRPM5 are expressed in the inferior turbinate, middle turbinate, septum, and uncinate of both control and diseased patients. PLCβ2/TRPM5-immunoreactive SCCs were identified in the sinonasal mucosa of both control and diseased patients. qPCR showed similar expression of α-Gustducin and TRPM5 in the uncinate process of control and diseased groups, and there was no correlation between level of expression and 22-item Sino-Nasal Outcomes Test (SNOT-22) or pain scores. SCCs are present in human sinonasal mucosa in functionally relevant areas. Expression level of signaling effectors was similar in control and diseased patients and did not correlate with measures of pain and inflammation. Further study into these pathways may provide insight into nasal inflammatory diseases and may offer potential therapeutic targets. © 2013 ARS-AAOA, LLC.

  19. Determination of taste-active compounds of a bitter Camembert cheese by omission tests.

    PubMed

    Engel, E; Septier, C; Leconte, N; Salles, C; Le Quere, J L

    2001-11-01

    The taste-active compounds of a Camembert cheese selected for its intense bitterness defect were investigated. The water-soluble fraction (WSE) was extracted with pure water and fractionated by successive tangential ultrafiltrations and nanofiltration. The physicochemical assessment of these fractions led to the construction of a model WSE which was compared by sensory evaluation to the crude water-soluble extract, using a panel of 16 trained tasters. As no significant difference was perceived, this model WSE was then used directly or mixed with other cheese components for omission tests. Among the main taste characteristics of the WSE (salty, sour, umami and bitter), bitterness was found to be due to small peptides whose mass distribution was obtained by RPHPLC-MS (400-3000 Da) and whose taste properties are discussed.

  20. Molecular neurobiology of Drosophila taste

    PubMed Central

    Freeman, Erica Gene; Dahanukar, Anupama

    2015-01-01

    Drosophila is a powerful model in which to study the molecular and cellular basis of taste coding. Flies sense tastants via populations of taste neurons that are activated by compounds of distinct categories. The past few years have borne witness to studies that define the properties of taste neurons, identifying functionally distinct classes of sweet and bitter taste neurons that express unique subsets of gustatory receptor (Gr) genes, as well as water, salt, and pheromone sensing neurons that express members of the pickpocket (ppk) or ionotropic receptor (Ir) families. There has also been significant progress in terms of understanding how tastant information is processed and conveyed to higher brain centers, and modulated by prior dietary experience or starvation. PMID:26102453

  1. The sweet taste quality is linked to a cluster of taste fibers in primates: lactisole diminishes preference and responses to sweet in S fibers (sweet best) chorda tympani fibers of M. fascicularis monkey.

    PubMed

    Wang, Yiwen; Danilova, Vicktoria; Cragin, Tiffany; Roberts, Thomas W; Koposov, Alexey; Hellekant, Göran

    2009-02-18

    Psychophysically, sweet and bitter have long been considered separate taste qualities, evident already to the newborn human. The identification of different receptors for sweet and bitter located on separate cells of the taste buds substantiated this separation. However, this finding leads to the next question: is bitter and sweet also kept separated in the next link from the taste buds, the fibers of the taste nerves? Previous studies in non-human primates, P. troglodytes, C. aethiops, M. mulatta, M. fascicularis and C. jacchus, suggest that the sweet and bitter taste qualities are linked to specific groups of fibers called S and Q fibers. In this study we apply a new sweet taste modifier, lactisole, commercially available as a suppressor of the sweetness of sugars on the human tongue, to test our hypothesis that sweet taste is conveyed in S fibers. We first ascertained that lactisole exerted similar suppression of sweetness in M. fascicularis, as reported in humans, by recording their preference of sweeteners and non- sweeteners with and without lactisole in two-bottle tests. The addition of lactisole significantly diminished the preference for all sweeteners but had no effect on the intake of non-sweet compounds or the intake of water. We then recorded the response to the same taste stimuli in 40 single chorda tympani nerve fibers. Comparison between single fiber nerve responses to stimuli with and without lactisole showed that lactisole only suppressed the responses to sweeteners in S fibers. It had no effect on the responses to any other stimuli in all other taste fibers. In M. fascicularis, lactisole diminishes the attractiveness of compounds, which taste sweet to humans. This behavior is linked to activity of fibers in the S-cluster. Assuming that lactisole blocks the T1R3 monomer of the sweet taste receptor T1R2/R3, these results present further support for the hypothesis that S fibers convey taste from T1R2/R3 receptors, while the impulse activity in non-S fibers originates from other kinds of receptors. The absence of the effect of lactisole on the faint responses in some S fibers to other stimuli as well as the responses to sweet and non-sweet stimuli in non-S fibers suggest that these responses originate from other taste receptors.

  2. Cholinergic dependence of taste memory formation: evidence of two distinct processes.

    PubMed

    Gutiérrez, Ranier; Rodriguez-Ortiz, Carlos J; De La Cruz, Vanesa; Núñez-Jaramillo, Luis; Bermudez-Rattoni, Federico

    2003-11-01

    Learning the aversive or positive consequences associated with novel taste solutions has a strong significance for an animal's survival. A lack of recognition of a taste's consequences could prevent ingestion of potential edibles or encounter death. We used conditioned taste aversion (CTA) and attenuation of neophobia (AN) to study aversive and safe taste memory formation. To determine if muscarinic receptors in the insular cortex participate differentially in both tasks, we infused the muscarinic antagonists scopolamine at distinct times before or after the presentation of a strong concentration of saccharin, followed by either an i.p. injection of a malaise-inducing agent or no injection. Our results showed that blockade of muscarinic receptors before taste presentation disrupts both learning tasks. However, the same treatment after the taste prevents AN but not CTA. These results clearly demonstrate that cortical cholinergic activity participates in the acquisition of both safe and aversive memory formation, and that cortical muscarinic receptors seem to be necessary for safe but not for aversive taste memory consolidation. These results suggest that the taste memory trace is processed in the insular cortex simultaneously by at least two independent mechanisms, and that their interaction would determine the degree of aversion or preference learned to a novel taste.

  3. Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.

    PubMed

    Soulika, Marina; Kaushik, Anna-Lila; Mathieu, Benjamin; Lourenço, Raquel; Komisarczuk, Anna Z; Romano, Sebastian Alejo; Jouary, Adrien; Lardennois, Alicia; Tissot, Nicolas; Okada, Shinji; Abe, Keiko; Becker, Thomas S; Kapsimali, Marika

    2016-06-01

    Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly. © 2016. Published by The Company of Biologists Ltd.

  4. TRPs in Taste and Chemesthesis

    PubMed Central

    2015-01-01

    TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca2+ release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa. PMID:24961971

  5. TRPs in taste and chemesthesis.

    PubMed

    Roper, Stephen D

    2014-01-01

    TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca(2+) release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa.

  6. Trends in pharmaceutical taste masking technologies: a patent review.

    PubMed

    Ayenew, Zelalem; Puri, Vibha; Kumar, Lokesh; Bansal, Arvind K

    2009-01-01

    According to the year 2003 survey of pediatricians by the American Association of Pediatrics, unpleasant taste was the biggest barrier for completing treatment in pediatrics. The field of taste masking of active pharmaceutical ingredients (API) has been continuously evolving with varied technologies and new excipients. The article reviews the trends in taste masking technologies by studying the current state of the art patent database for the span of year 1997 to 2007. The worldwide database of European patent office (http://ep.espacenet.com) was employed to collect the patents and patent applications. It also discusses the possible reasons for the change of preferences in the taste masking technologies with time. The prime factors critical to the selection of an optimal taste masking technique such as the extent of drug bitterness, solubility, particle characteristics, dosage form and dose are briefly discussed.

  7. Sweet Taste Perception and Dental Caries in 13- to 15-Year-Olds: A Multicenter Cross-Sectional Study.

    PubMed

    Ashi, H; Lara-Capi, C; Campus, G; Klingberg, G; Lingström, P

    2017-01-01

    Dietary habits and, in particular, the intake frequency of sucrose are of major importance for the development of dental caries. The perception of sweet taste is believed to have an influence on sucrose intake and therefore affects the predisposition to dental caries. The aim was to study the caries experience and sweet taste perception and to further analyze the possible relationship between the 2 tested variables in 13- to 15-year-old children from 3 different geographical areas. A cross-sectional survey comprising 669 children (220 Italian, 224 Mexican, and 225 Saudi Arabian) was conducted. The children were examined in their school setting. A sweet taste perception level was determined by the sweet taste threshold (TT) and sweet taste preference (TP). The sweet test was performed with sucrose solutions varying in concentration from 1.63 to 821.52 g/L. The International Caries Detection and Assessment System (ICDAS) and DMFS indices were used to diagnose caries. The highest mean value for TT was found for Italian children followed by Saudi and Mexican. Saudi schoolchildren showed the highest mean values for TP and DMFS, followed by Italian and Mexican. A statistically significant difference for TP, TT, DMFS, and initial caries was found between the 3 countries. A weak yet positive correlation was found between taste perception (TT and TP) versus DMFS and manifest caries in all 3 countries (r = 0.137-0.313). The findings of the present study showed a variation in sweet taste perception between the 3 countries, which may influence the caries outcome of the children in the individual countries. © 2017 S. Karger AG, Basel.

  8. The role of nutrition labels and advertising claims in altering consumers' evaluation and choice.

    PubMed

    Bialkova, Svetlana; Sasse, Lena; Fenko, Anna

    2016-01-01

    Despite policy efforts, consumers' well-informed healthful choice is a challenge. Due to increasing number of benefit claims advertising taste or health front of pack (FOP), consumers face the dilemma to trade taste for health. To understand the mechanisms underlying food evaluation, this study investigates the health-pleasure trade-off and its effect on consumers' choice. 240 EU consumers took part in a taste experiment, after being presented with the product FOP. Half of the products carried a nutrition label FOP, respectively, reduced fat for potato chips, reduced sugar for cereal bars. Further, one third of the products carried health benefit claim, one third taste benefit claim, and one third no additional claim FOP. Attention to information and its effect on experienced taste, health perception and the buying intention were measured. The results show that the message displayed FOP altered consumers evaluation and choice. The effectiveness of the FOP message further depended on consumers' health motivation and the healthfulness perception of carrier products. The outcomes are summarized in a framework of health-pleasure trade-off. Current findings call for the establishment of standards to avoid the use of misleading information FOP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Application of a voltammetric electronic tongue and near infrared spectroscopy for a rapid umami taste assessment.

    PubMed

    Bagnasco, Lucia; Cosulich, M Elisabetta; Speranza, Giovanna; Medini, Luca; Oliveri, Paolo; Lanteri, Silvia

    2014-08-15

    The relationships between sensory attribute and analytical measurements, performed by electronic tongue (ET) and near-infrared spectroscopy (NIRS), were investigated in order to develop a rapid method for the assessment of umami taste. Commercially available umami products and some aminoacids were submitted to sensory analysis. Results were analysed in comparison with the outcomes of analytical measurements. Multivariate exploratory analysis was performed by principal component analysis (PCA). Calibration models for prediction of the umami taste on the basis of ET and NIR signals were obtained using partial least squares (PLS) regression. Different approaches for merging data from the two different analytical instruments were considered. Both of the techniques demonstrated to provide information related with umami taste. In particular, ET signals showed the higher correlation with umami attribute. Data fusion was found to be slightly beneficial - not so significantly as to justify the coupled use of the two analytical techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. T1r3 taste receptor involvement in gustatory neural responses to ethanol and oral ethanol preference.

    PubMed

    Brasser, Susan M; Norman, Meghan B; Lemon, Christian H

    2010-05-01

    Elevated alcohol consumption is associated with enhanced preference for sweet substances across species and may be mediated by oral alcohol-induced activation of neurobiological substrates for sweet taste. Here, we directly examined the contribution of the T1r3 receptor protein, important for sweet taste detection in mammals, to ethanol intake and preference and the neural processing of ethanol taste by measuring behavioral and central neurophysiological responses to oral alcohol in T1r3 receptor-deficient mice and their C57BL/6J background strain. T1r3 knockout and wild-type mice were tested in behavioral preference assays for long-term voluntary intake of a broad concentration range of ethanol, sucrose, and quinine. For neurophysiological experiments, separate groups of mice of each genotype were anesthetized, and taste responses to ethanol and stimuli of different taste qualities were electrophysiologically recorded from gustatory neurons in the nucleus of the solitary tract. Mice lacking the T1r3 receptor were behaviorally indifferent to alcohol (i.e., ∼50% preference values) at concentrations typically preferred by wild-type mice (5-15%). Central neural taste responses to ethanol in T1r3-deficient mice were significantly lower compared with C57BL/6J controls, a strain for which oral ethanol stimulation produced a concentration-dependent activation of sweet-responsive NTS gustatory neurons. An attenuated difference in ethanol preference between knockouts and controls at concentrations >15% indicated that other sensory and/or postingestive effects of ethanol compete with sweet taste input at high concentrations. As expected, T1r3 knockouts exhibited strongly suppressed behavioral and neural taste responses to sweeteners but did not differ from wild-type mice in responses to prototypic salt, acid, or bitter stimuli. These data implicate the T1r3 receptor in the sensory detection and transduction of ethanol taste.

  11. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells.

    PubMed

    Yee, Karen K; Sukumaran, Sunil K; Kotha, Ramana; Gilbertson, Timothy A; Margolskee, Robert F

    2011-03-29

    Although the heteromeric combination of type 1 taste receptors 2 and 3 (T1r2 + T1r3) is well established as the major receptor for sugars and noncaloric sweeteners, there is also evidence of T1r-independent sweet taste in mice, particularly so for sugars. Before the molecular cloning of the T1rs, it had been proposed that sweet taste detection depended on (a) activation of sugar-gated cation channels and/or (b) sugar binding to G protein-coupled receptors to initiate second-messenger cascades. By either mechanism, sugars would elicit depolarization of sweet-responsive taste cells, which would transmit their signal to gustatory afferents. We examined the nature of T1r-independent sweet taste; our starting point was to determine if taste cells express glucose transporters (GLUTs) and metabolic sensors that serve as sugar sensors in other tissues. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we determined that several GLUTs (GLUT2, GLUT4, GLUT8, and GLUT9), a sodium-glucose cotransporter (SGLT1), and two components of the ATP-gated K(+) (K(ATP)) metabolic sensor [sulfonylurea receptor (SUR) 1 and potassium inwardly rectifying channel (Kir) 6.1] were expressed selectively in taste cells. Consistent with a role in sweet taste, GLUT4, SGLT1, and SUR1 were expressed preferentially in T1r3-positive taste cells. Electrophysiological recording determined that nearly 20% of the total outward current of mouse fungiform taste cells was composed of K(ATP) channels. Because the overwhelming majority of T1r3-expressing taste cells also express SUR1, and vice versa, it is likely that K(ATP) channels constitute a major portion of K(+) channels in the T1r3 subset of taste cells. Taste cell-expressed glucose sensors and K(ATP) may serve as mediators of the T1r-independent sweet taste of sugars.

  12. Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine.

    PubMed

    Hufnagel, Jan Carlos; Hofmann, Thomas

    2008-02-27

    Application of sequential solvent extraction, followed by HPLC combined with the taste dilution analysis, enabled the localization of the most intense velvety astringent, drying, and puckering astringent, as well as bitter-tasting, compounds in red wine, respectively. Isolation of the taste components involving gel adsorption chromatography, ultrafiltration, and synthesis revealed the identification of 26 sensory-active nonvolatiles, among which several hydroxybenzoic acids, hydroxycinnamic acids, flavon-3-ol glycosides, and dihydroflavon-3-ol rhamnosides as well as a structurally undefined polymeric fraction (>5 kDa) were identified as the key astringent components. In contradiction to literature suggestions, flavan-3-ols were found to be not of major importance for astringency and bitter taste, respectively. Surprisingly, a series of hydroxybenzoic acid ethyl esters and hydroxycinnamic acid ethyl esters were identified as bitter compounds in wine. Taste qualities and taste threshold concentrations of the individual wine components were determined by means of a three-alternative forced-choice test and the half-mouth test, respectively.

  13. Molecular and cellular organization of taste neurons in adult Drosophila pharynx

    PubMed Central

    Chen, Yu-Chieh (David); Dahanukar, Anupama

    2017-01-01

    SUMMARY The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The organization of pharyngeal neurons reveals similarities and distinctions in receptor repertoires and neuronal groupings compared to external taste neurons. We validate the mapping results by pinpointing a single pharyngeal neuron required for feeding avoidance of L-canavanine. Inducible activation of pharyngeal taste neurons reveals functional differences between external and internal taste neurons and functional subdivision within pharyngeal sweet neurons. Our results provide road maps of pharyngeal taste organs in an insect model system for probing the role of these understudied neurons in controlling feeding behaviors. PMID:29212040

  14. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice

    PubMed Central

    Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C

    2015-01-01

    Abstract Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca2+ transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. Key points Acute inhibition of purinergic receptors with a selective P2X3 antagonist prevents transmission of information from taste buds to sensory nerves. The P2X3 antagonist has no effect on taste-evoked release of ATP, confirming the effect is postsynaptic. The results confirm previous results with P2X2/3 double knockout mice that ATP is required for transmission of all taste qualities, including sour and salty. Previously, ATP was confirmed to be required for bitter, sweet and umami tastes, but was questioned for salty and sour tastes due to pleomorphic deficits in the double knockout mice. The geniculate ganglion in mouse contains two populations of ganglion cells with different subunit composition of P2X2 and P2X3 receptors making them differently susceptible to pharmacological block and, presumably, desensitization. PMID:25524179

  15. In-Classroom Fruit and Vegetable Tastings Offer Potential for Increasing Consumption among Third through Sixth Grade Children

    ERIC Educational Resources Information Center

    Cirignano, Sherri M.; Fitzgerald, Nurgul; Hughes, Luanne J.; Savoca, LeeAnne; Morgan, Kathleen; Grenci, Alexandra

    2014-01-01

    Purpose/Objectives: The purpose of this study was to examine the effect of coordinated in-classroom education and taste-testing activities on fruit and vegetable acceptance in a state-wide sample of third through sixth grade children. Methods: Two taste-testing sessions were a part of six nutrition lessons that were implemented in nine elementary…

  16. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2.

    PubMed

    Mace, Oliver J; Affleck, Julie; Patel, Nick; Kellett, George L

    2007-07-01

    Natural sugars and artificial sweeteners are sensed by receptors in taste buds. T2R bitter and T1R sweet taste receptors are coupled through G-proteins, alpha-gustducin and transducin, to activate phospholipase C beta2 and increase intracellular calcium concentration. Intestinal brush cells or solitary chemosensory cells (SCCs) have a structure similar to lingual taste cells and strongly express alpha-gustducin. It has therefore been suggested over the last decade that brush cells may participate in sugar sensing by a mechanism analogous to that in taste buds. We provide here functional evidence for an intestinal sensing system based on lingual taste receptors. Western blotting and immunocytochemistry revealed that all T1R members are expressed in rat jejunum at strategic locations including Paneth cells, SCCs or the apical membrane of enterocytes; T1Rs are colocalized with each other and with alpha-gustducin, transducin or phospholipase C beta2 to different extents. Intestinal glucose absorption consists of two components: one is classical active Na+-glucose cotransport, the other is the diffusive apical GLUT2 pathway. Artificial sweeteners increase glucose absorption in the order acesulfame potassium approximately sucralose > saccharin, in parallel with their ability to increase intracellular calcium concentration. Stimulation occurs within minutes by an increase in apical GLUT2, which correlates with reciprocal regulation of T1R2, T1R3 and alpha-gustducin versus T1R1, transducin and phospholipase C beta2. Our observation that artificial sweeteners are nutritionally active, because they can signal to a functional taste reception system to increase sugar absorption during a meal, has wide implications for nutrient sensing and nutrition in the treatment of obesity and diabetes.

  17. The heterodimeric sweet taste receptor has multiple potential ligand binding sites.

    PubMed

    Cui, Meng; Jiang, Peihua; Maillet, Emeline; Max, Marianna; Margolskee, Robert F; Osman, Roman

    2006-01-01

    The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric receptor. Receptor activity toward the artificial sweeteners aspartame and neotame depends on residues in the amino terminal domain of human T1R2. In contrast, receptor activity toward the sweetener cyclamate and the sweet taste inhibitor lactisole depends on residues within the transmembrane domain of human T1R3. Furthermore, receptor activity toward the sweet protein brazzein depends on the cysteine rich domain of human T1R3. Although crystal structures are not available for the sweet taste receptor, useful homology models can be developed based on appropriate templates. The amino terminal domain, cysteine rich domain and transmembrane helix domain of T1R2 and T1R3 have been modeled based on the crystal structures of metabotropic glutamate receptor type 1, tumor necrosis factor receptor, and bovine rhodopsin, respectively. We have used homology models of the sweet taste receptors, molecular docking of sweet ligands to the receptors, and site-directed mutagenesis of the receptors to identify potential ligand binding sites of the sweet taste receptor. These studies have led to a better understanding of the structure and function of this heterodimeric receptor, and can act as a guide for rational structure-based design of novel non-caloric sweeteners, which can be used in the fighting against obesity and diabetes.

  18. Sweet Taste Receptor Expressed in Pancreatic β-Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion

    PubMed Central

    Nakagawa, Yuko; Nagasawa, Masahiro; Yamada, Satoko; Hara, Akemi; Mogami, Hideo; Nikolaev, Viacheslav O.; Lohse, Martin J.; Shigemura, Noriatsu; Ninomiya, Yuzo; Kojima, Itaru

    2009-01-01

    Background Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. Methodology/Principal Findings The expression of the sweet taste receptor was determined by RT–PCR and immunohistochemistry. Changes in cytoplasmic Ca2+ ([Ca2+]c) and cAMP ([cAMP]c) were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca2+]c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5)-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca2+]c response. The effect of sucralose on [Ca2+]c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a Gq inhibitor. Sucralose also induced sustained elevation of [cAMP]c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. Conclusions Sweet taste receptor is expressed in β-cells, and activation of this receptor induces insulin secretion by Ca2+ and cAMP-dependent mechanisms. PMID:19352508

  19. Regulation of taste-active components of meat by dietary branched-chain amino acids; effects of branched-chain amino acid antagonism.

    PubMed

    Imanari, M; Kadowaki, M; Fujimura, S

    2008-05-01

    1. The effects of dietary branched-chain amino acids (BCAAs) including leucine (Leu), isoleucine (Ile) and valine (Val) on taste-active components, especially free glutamate (Glu), in meat were investigated. 2. Broiler chickens (28 d old) were given varied dietary BCAA levels for 10 d before marketing. Dietary BCAA content ratios were either 100:100:100 (Low Leu group), 150:100:100 (Control group) or 150:150:150 (High Ile + Val group) for Leu:Ile:Val (% of each BCAA requirement according to NRC, 1994). Taste-related components of meat (free amino acids and ATP metabolites) and sensory scores of meat soup were estimated. 3. Free Glu content, the main taste-active component of meat, was significantly increased by dietary BCAA. Compared to the Control group, free Glu content increased by 30% in the High Ile + Val group. However, the inosine monophosphate (IMP) content in meat did not change among groups. 4. Sensory evaluation of meat soups showed that Control and High Ile + Val groups had different meat flavours. The sensory score of overall taste intensity was significantly higher in the High Ile + Val group. 5. These results suggest that dietary BCAA concentrations regulate free Glu in meat. Increasing dietary Ile + Val induces an increase in free Glu content of meat, improves meat taste and is more effective for increasing free Glu content in meat than decreasing dietary Leu level.

  20. Males and females show differential brain activation to taste when hungry and sated in gustatory and reward areas

    PubMed Central

    Haase, Lori; Green, Erin; Murphy, Claire

    2011-01-01

    Although males and females differ in eating behavior and prevalence rates for eating disorders and obesity, little is known about gender differences in cortical activation to pleasant and unpleasant pure tastes during the physiological states of hunger and satiety. Twenty-one healthy young adults (12 females and 9 males) underwent two functional magnetic resonance imaging scans. Using four pure tastants of differing qualities (i.e., salty, sour, bitter, sweet), the present study examined gender differences in fMRI activation during two motivational states (hunger and satiety). There was greater change in fMRI activation from hunger to satiety in males than females in response to all tastes within the middle frontal gyrus (BA 10), insula, and cerebellum. Males also had greater change in activation from hunger to satiety, relative to females, in limbic regions including dorsal striatum, amygdala, parahippocampal gyrus, and posterior and anterior cingulate; however, activation was stimulus dependent, despite equivalent ratings in perceived pleasantness and intensity. Interestingly, males and females showed significant change from hunger to satiety in response to citric acid, suggesting that in addition to gender and physiological condition, stimulus quality is an important factor in taste fMRI activation. These gender differences may have implications for the pathophysiology of eating disorders and obesity. PMID:21718731

  1. Molecular mechanism of the sweet taste enhancers.

    PubMed

    Zhang, Feng; Klebansky, Boris; Fine, Richard M; Liu, Haitian; Xu, Hong; Servant, Guy; Zoller, Mark; Tachdjian, Catherine; Li, Xiaodong

    2010-03-09

    Positive allosteric modulators of the human sweet taste receptor have been developed as a new way of reducing dietary sugar intake. Besides their potential health benefit, the sweet taste enhancers are also valuable tool molecules to study the general mechanism of positive allosteric modulations of T1R taste receptors. Using chimeric receptors, mutagenesis, and molecular modeling, we reveal how these sweet enhancers work at the molecular level. Our data argue that the sweet enhancers follow a similar mechanism as the natural umami taste enhancer molecules. Whereas the sweeteners bind to the hinge region and induce the closure of the Venus flytrap domain of T1R2, the enhancers bind close to the opening and further stabilize the closed and active conformation of the receptor.

  2. Cell apoptosis of taste buds in circumvallate papillae in diabetic rats.

    PubMed

    Cheng, B; Pan, S; Liu, X; Zhang, S; Sun, X

    2011-09-01

    Diabetes mellitus may result in taste disturbance. The present study has revealed that cell apoptosis of taste buds in circumvallate papillae may contribute to the taste disturbance in a rat model of type2 diabetes. Type2 diabetes was induced in Wistar rats by feeding them with a high-fat diet (30% fat), and a single intraperitoneal injection of streptozotocin (30 mg/kg). The increased cell apoptosis of taste buds in circumvallate papilla sections was detected by TUNEL staining in diabetic rats, and the ultrastructure was further examined by transmission electronic microscopy. Immunohistochemical and Western blot analyses revealed the downregulation of Bcl-2, upregulation of Bax, and increased activation of caspase-9 and -3, in diabetic rats, indicating that the apoptosis of taste bud cells may be mediated via the intrinsic mitochondrial pathway in diabetics. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  3. The Impact of Oral Health on Taste Ability in Acutely Hospitalized Elderly

    PubMed Central

    Solemdal, Kirsten; Sandvik, Leiv; Willumsen, Tiril; Mowe, Morten; Hummel, Thomas

    2012-01-01

    Objective To investigate to what extent various oral health variables are associated with taste ability in acutely hospitalized elderly. Background Impaired taste may contribute to weight loss in elderly. Many frail elderly have poor oral health characterized by caries, poor oral hygiene, and dry mouth. However, the possible influence of such factors on taste ability in acutely hospitalized elderly has not been investigated. Materials and Methods The study was cross-sectional. A total of 174 (55 men) acutely hospitalized elderly, coming from their own homes and with adequate cognitive function, were included. Dental status, decayed teeth, oral bacteria, oral hygiene, dry mouth and tongue changes were recorded. Growth of oral bacteria was assessed with CRT® Bacteria Kit. Taste ability was evaluated with 16 taste strips impregnated with sweet, sour, salty and bitter taste solutions in 4 concentrations each. Correct identification was given score 1, and maximum total taste score was 16. Results Mean age was 84 yrs. (range 70–103 yrs.). Total taste score was significantly and markedly reduced in patients with decayed teeth, poor oral hygiene, high growth of oral bacteria and dry mouth. Sweet and salty taste were particularly impaired in patients with dry mouth. Sour taste was impaired in patients with high growth of oral bacteria. Conclusion This study shows that taste ability was reduced in acutely hospitalized elderly with caries activity, high growth of oral bacteria, poor oral hygiene, and dry mouth. Our findings indicate that good oral health is important for adequate gustatory function. Maintaining proper oral hygiene in hospitalized elderly should therefore get high priority among hospital staff. PMID:22570725

  4. Taste does not determine daily intake of dilute sugar solutions in mice

    PubMed Central

    Beltran, F.; Benton, L.; Cheng, S.; Gieseke, J.; Gillman, J.; Spain, H. N.

    2010-01-01

    When a rodent licks a sweet-tasting solution, taste circuits in the central nervous system that facilitate stimulus identification, motivate intake, and prepare the body for digestion are activated. Here, we asked whether taste also determines daily intake of sugar solutions in C57BL/6 mice. We tested several dilute concentrations of glucose (167, 250, and 333 mM) and fructose (167, 250, and 333 mM). In addition, we tested saccharin (38 mM), alone and in binary mixture with each of the sugar concentrations, to manipulate sweet taste intensity while holding caloric value constant. In experiment 1, we measured taste responsiveness to the sweetener solutions in two ways: chorda tympani nerve responses and short-term lick tests. For both measures, the mice exhibited the following relative magnitude of responsiveness: binary mixtures > saccharin > individual sugars. In experiment 2, we asked whether the taste measures reliably predicted daily intake of the sweetener solutions. No such relationship was observed. The glucose solutions elicited weak taste responses but high daily intakes, whereas the fructose solutions elicited weak taste responses and low daily intakes. On the other hand, the saccharin + glucose solutions elicited strong taste responses and high daily intakes, while the saccharin + fructose solutions elicited strong taste responses but low daily intakes. Overall, we found that 1) daily intake of the sweetener solutions varied independently of the magnitude of the taste responses and 2) the solutions containing glucose stimulated substantially higher daily intakes than did the solutions containing isomolar concentrations of fructose. Given prior work demonstrating greater postoral stimulation of feeding by glucose than fructose, we propose that the magnitude of postoral nutritive stimulation plays a more important role than does taste in determining daily intake of dilute sugar solutions. PMID:20702804

  5. Prefrontal cortex activity during swallowing in dysphagia patients.

    PubMed

    Lee, Jun; Yamate, Chisato; Taira, Masato; Shinoda, Masamichi; Urata, Kentaro; Maruno, Mitsuru; Ito, Reio; Saito, Hiroto; Gionhaku, Nobuhito; Iinuma, Toshimitsu; Iwata, Koichi

    2018-05-24

    Prefrontal cortex activity is modulated by flavor and taste stimuli and changes during swallowing. We hypothesized that changes in the modulation of prefrontal cortex activity by flavor and taste were associated with swallowing movement and evaluated brain activity during swallowing in patients with dysphagia. To evaluate prefrontal cortex activity in dysphagia patients during swallowing, change in oxidized hemoglobin (z-score) was measured with near-infrared spectroscopy while dysphagia patients and healthy controls swallowed sweetened/unsweetened and flavored/unflavored jelly. Total z-scores were positive during swallowing of flavored/unsweetened jelly and negative during swallowing of unflavored/sweetened jelly in controls but negative during swallowing of sweetened/unsweetened and flavored/unflavored jelly in dysphagia patients. These findings suggest that taste and flavor during food swallowing are associated with positive and negative z-scores, respectively. Change in negative and positive z-scores may be useful in evaluating brain activity of dysphagia patients during swallowing of sweetened and unsweetened food.

  6. Modulation of taste responsiveness by the satiation hormone peptide YY

    PubMed Central

    La Sala, Michael S.; Hurtado, Maria D.; Brown, Alicia R.; Bohórquez, Diego V.; Liddle, Rodger A.; Herzog, Herbert; Zolotukhin, Sergei; Dotson, Cedrick D.

    2013-01-01

    It has been hypothesized that the peripheral taste system may be modulated in the context of an animal's metabolic state. One purported mechanism for this phenomenon is that circulating gastrointestinal peptides modulate the functioning of the peripheral gustatory system. Recent evidence suggests endocrine signaling in the oral cavity can influence food intake (FI) and satiety. We hypothesized that these hormones may be affecting FI by influencing taste perception. We used immunohistochemistry along with genetic knockout models and the specific reconstitution of peptide YY (PYY) in saliva using gene therapy protocols to identify a role for PYY signaling in taste. We show that PYY is expressed in subsets of taste cells in murine taste buds. We also show, using brief-access testing with PYY knockouts, that PYY signaling modulates responsiveness to bitter-tasting stimuli, as well as to lipid emulsions. We show that salivary PYY augmentation, via viral vector therapy, rescues behavioral responsiveness to a lipid emulsion but not to bitter stimuli and that this response is likely mediated via activation of Y2 receptors localized apically in taste cells. Our findings suggest distinct functions for PYY produced locally in taste cells vs. that circulating systemically.—La Sala, M. S., Hurtado, M. D., Brown, A. R., Bohórquez, D. V., Liddle, R. A., Herzog, H., Zolotukhin, S., Dotson, C. D. Modulation of taste responsiveness by the satiation hormone peptide YY. PMID:24043261

  7. Analysis and Evaluation of the Characteristic Taste Components in Portobello Mushroom.

    PubMed

    Wang, Jinbin; Li, Wen; Li, Zhengpeng; Wu, Wenhui; Tang, Xueming

    2018-05-10

    To identify the characteristic taste components of the common cultivated mushroom (brown; Portobello), Agaricus bisporus, taste components in the stipe and pileus of Portobello mushroom harvested at different growth stages were extracted and identified, and principal component analysis (PCA) and taste active value (TAV) were used to reveal the characteristic taste components during the each of the growth stages of Portobello mushroom. In the stipe and pileus, 20 and 14 different principal taste components were identified, respectively, and they were considered as the principal taste components of Portobello mushroom fruit bodies, which included most amino acids and 5'-nucleotides. Some taste components that were found at high levels, such as lactic acid and citric acid, were not detected as Portobello mushroom principal taste components through PCA. However, due to their high content, Portobello mushroom could be used as a source of organic acids. The PCA and TAV results revealed that 5'-GMP, glutamic acid, malic acid, alanine, proline, leucine, and aspartic acid were the characteristic taste components of Portobello mushroom fruit bodies. Portobello mushroom was also found to be rich in protein and amino acids, so it might also be useful in the formulation of nutraceuticals and functional food. The results in this article could provide a theoretical basis for understanding and regulating the characteristic flavor components synthesis process of Portobello mushroom. © 2018 Institute of Food Technologists®.

  8. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    PubMed

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Choosing between an Apple and a Chocolate Bar: the Impact of Health and Taste Labels

    PubMed Central

    Forwood, Suzanna E.; Walker, Alexander D.; Hollands, Gareth J.; Marteau, Theresa M.

    2013-01-01

    Increasing the consumption of fruit and vegetables is a central component of improving population health. Reasons people give for choosing one food over another suggest health is of lower importance than taste. This study assesses the impact of using a simple descriptive label to highlight the taste as opposed to the health value of fruit on the likelihood of its selection. Participants (N=439) were randomly allocated to one of five groups that varied in the label added to an apple: apple; healthy apple; succulent apple; healthy and succulent apple; succulent and healthy apple. The primary outcome measure was selection of either an apple or a chocolate bar as a dessert. Measures of the perceived qualities of the apple (taste, health, value, quality, satiety) and of participant characteristics (restraint, belief that tasty foods are unhealthy, BMI) were also taken. When compared with apple selection without any descriptor (50%), the labels combining both health and taste descriptors significantly increased selection of the apple (’healthy & succulent’ 65.9% and ‘succulent & healthy’ 62.4%), while the use of a single descriptor had no impact on the rate of apple selection (‘healthy’ 50.5% and ‘succulent’ 52%). The strongest predictors of individual dessert choice were the taste score given to the apple, and the lack of belief that healthy foods are not tasty. Interventions that emphasize the taste attributes of healthier foods are likely to be more effective at achieving healthier diets than those emphasizing health alone. PMID:24155964

  10. Hippocampal atrophy and altered brain responses to pleasant tastes among obese compared with healthy weight children.

    PubMed

    Mestre, Z L; Bischoff-Grethe, A; Eichen, D M; Wierenga, C E; Strong, D; Boutelle, K N

    2017-10-01

    The hippocampus is a key structure implicated in food motivation and intake. Research has shown that the hippocampus is vulnerable to the consumption of a western diet (i.e., high saturated fat and simple carbohydrates). Studies of patients with obesity (OB), compared with healthy weight (HW), show changes in hippocampal volume and response to food cues. Moreover, evidence suggests that OB children, relative to HW, have greater hippocampal response to taste. However, no study has examined the association of hippocampal volume with taste functioning in children. We hypothesized that OB children, relative to HW, would show a significant reduction in hippocampal volume and that decreased volume would be significantly associated with greater activation to taste. Finally, we explored whether hippocampal activation would be associated with measures on eating and eating habits. Twenty-five 8-12-year-old children (i.e., 13 HW, 12 OB) completed a magnetic resonance imaging scan while participating in a taste paradigm (i.e., 1 ml of 10% sucrose or ionic water delivered pseudorandomly every 20 s). Children with OB, relative to HW, showed reduced left hippocampal volume (t=1.994, P=0.03, 95% confidence interval (CI)=-40.23,  755.42), and greater response to taste in three clusters within the left hippocampus (z=3.3, P=0.001, 95% CI=-0.241, -0.041; z=3.3, P=0.001, 95% CI=-0.2711, -0.0469; z=2.7, P=0.007, 95% CI=-0.6032, -0.0268). Activation within the hippocampus was associated with eating in the absence of hunger (EAH%; t=2.408, P=0.025, 95% CI= 1.751708, 23.94109) and two subscales on a measure of eating behaviors (Food responsiveness, t=2.572, P=0.017, 95% CI= 0.9565195, 9.043440; Food enjoyment, t=2.298, P=0.032, 95% CI=0.2256749, 4.531298). As hypothesized, OB children, relative to HW, had significantly reduced hippocampal volume, and greater hippocampal activation to taste. Moreover, hippocampal activation was associated with measures of eating. These results contribute to research on the relationship between OB, overeating and cognitive impairment.

  11. The Neural Basis of Taste-visual Modal Conflict Control in Appetitive and Aversive Gustatory Context.

    PubMed

    Xiao, Xiao; Dupuis-Roy, Nicolas; Jiang, Jun; Du, Xue; Zhang, Mingmin; Zhang, Qinglin

    2018-02-21

    The functional magnetic resonance imaging (fMRI) technique was used to investigate brain activations related to conflict control in a taste-visual cross-modal pairing task. On each trial, participants had to decide whether the taste of a gustatory stimulus matched or did not match the expected taste of the food item depicted in an image. There were four conditions: Negative match (NM; sour gustatory stimulus and image of sour food), negative mismatch (NMM; sour gustatory stimulus and image of sweet food), positive match (PM; sweet gustatory stimulus and image of sweet food), positive mismatch (PMM; sweet gustatory stimulus and image of sour food). Blood oxygenation level-dependent (BOLD) contrasts between the NMM and the NM conditions revealed an increased activity in the middle frontal gyrus (MFG) (BA 6), the lingual gyrus (LG) (BA 18), and the postcentral gyrus. Furthermore, the NMM minus NM BOLD differences observed in the MFG were correlated with the NMM minus NM differences in response time. These activations were specifically associated with conflict control during the aversive gustatory stimulation. BOLD contrasts between the PMM and the PM condition revealed no significant positive activation, which supported the hypothesis that the human brain is especially sensitive to aversive stimuli. Altogether, these results suggest that the MFG is associated with the taste-visual cross-modal conflict control. A possible role of the LG as an information conflict detector at an early perceptual stage is further discussed, along with a possible involvement of the postcentral gyrus in the processing of the taste-visual cross-modal sensory contrast. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Reduced brain response to a sweet taste in Hispanic young adults.

    PubMed

    Szajer, Jacquelyn; Jacobson, Aaron; Green, Erin; Murphy, Claire

    2017-11-01

    Hispanics have an increased risk for metabolic disorders, which evidence suggests may be due to interactions between lifespan biological, genetic, and lifestyle factors. Studies show the diet of many U.S. Hispanic groups have high sugar consumption, which has been shown to influence future preference for and consumption of high-sugar foods, and is associated with increased risk for insulin-related disorders and obesity. Taste is a primary determinant of food preference and selection. Differences in neural response to taste have been associated with obesity. Understanding brain response to sweet taste stimuli in healthy Hispanic adults is an important first step in characterizing the potential neural mechanisms for this behavior. We used fMRI to examine brain activation during the hedonic evaluation of sucrose as a function of ethnicity in Hispanic and non-Hispanic young adults. Taste stimuli were administered orally while subjects were scanned at 3T. Data were analyzed with AFNI via 3dROIstats and 3dMEMA, a mixed effects multi-level analysis of whole brain activation. The Hispanic group had significantly lower ROI activation in the left amygdala and significantly lower whole brain activation in regions critical for reward processing, and hedonic evaluation (e.g. frontal, orbitofrontal, and anterior cingulate cortices) than the non-Hispanic group. Differences in processing of sweet tastes have important clinical and public health implications, especially considering increased risk of metabolic syndrome and cognitive decline in Hispanic populations. Future research to better understanding relationships between health risk and brain function in Hispanic populations is warranted to better conceptualize and develop interventions for these populations. Copyright © 2017. Published by Elsevier B.V.

  13. Partnering with School Nutrition Professionals to Promote Fruit and Vegetable Intake through Taste-Testing Activities

    ERIC Educational Resources Information Center

    Cirignano, Sherri M.; Hughes, Luanne J.; Wu-Jung, Corey J.; Morgan, Kathleen; Grenci, Alexandra; Savoca, LeeAnne

    2013-01-01

    The Healthy, Hunger-Free Kids Act (HHFKA) of 2010 sets new nutrition standards for schools, requiring them to serve a greater variety and quantity of fruits and vegetables. Extension educators in New Jersey partnered with school nutrition professionals to implement a school wellness initiative that included taste-testing activities to support…

  14. Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster.

    PubMed

    Charlu, Sandhya; Wisotsky, Zev; Medina, Adriana; Dahanukar, Anupama

    2013-01-01

    Drosophila melanogaster can taste various compounds and separate them into few basic categories such as sweet, bitter and salt taste. Here we investigate mechanisms underlying acid detection in Drosophila and report that the fly displays strong taste aversion to common carboxylic acids. We find that acid tastants act by the activation of a subset of bitter neurons and inhibition of sweet neurons. Bitter neurons begin to respond at pH 5 and show an increase in spike frequency as the extracellular pH drops, which does not rely on previously identified chemoreceptors. Notably, sweet neuron activity depends on the balance of sugar and acid tastant concentrations. This is independent of bitter neuron firing, and allows the fly to avoid acid-laced food sources even in the absence of functional bitter neurons. The two mechanisms may allow the fly to better evaluate the risk of ingesting acidic foods and modulate its feeding decisions accordingly.

  15. Taste aversion memory reconsolidation is independent of its retrieval.

    PubMed

    Rodriguez-Ortiz, Carlos J; Balderas, Israela; Garcia-DeLaTorre, Paola; Bermudez-Rattoni, Federico

    2012-10-01

    Reconsolidation refers to the destabilization/re-stabilization memory process upon its activation. However, the conditions needed to undergo reconsolidation, as well as its functional significance is quite unclear and a matter of intense investigation. Even so, memory retrieval is held as requisite to initiate reconsolidation. Therefore, in the present work we examined whether transient pharmacological disruption of memory retrieval impedes reconsolidation of stored memory in the widely used associative conditioning task, taste aversion. We found that AMPA receptors inhibition in the amygdala impaired retrieval of taste aversion memory. Furthermore, AMPA receptors blockade impeded retrieval regardless of memory strength. However, inhibition of retrieval did not affect anisomycin-mediated disruption of reconsolidation. These results indicate that retrieval is a dispensable condition to undergo reconsolidation and provide evidence of molecular dissociation between retrieval and activation of memory in the non-declarative memory model taste aversion. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Functional expression of the taste-modifying protein, miraculin, in transgenic lettuce.

    PubMed

    Sun, Hyeon-Jin; Cui, Min-Long; Ma, Biao; Ezura, Hiroshi

    2006-01-23

    Taste-modifying proteins are a natural alternative to artificial sweeteners and flavor enhancers and have been used in some cultures for centuries. The taste-modifying protein, miraculin, has the unusual property of being able to modify a sour taste into a sweet taste. Here, we report the use of a plant expression system for the production of miraculin. A synthetic gene encoding miraculin was placed under the control of constitutive promoters and transferred to lettuce. Expression of this gene in transgenic lettuce resulted in the accumulation of significant amounts of miraculin protein in the leaves. The miraculin expressed in transgenic lettuce possessed sweetness-inducing activity. These results demonstrate that the production of miraculin in edible plants can be a good alternative strategy to enhance the availability of this protein.

  17. Odor-mediated taste learning requires dorsal hippocampus, but not basolateral amygdala activity

    PubMed Central

    Wheeler, Daniel S.; Chang, Stephen E.; Holland, Peter C.

    2013-01-01

    Mediated learning is a unique cognitive phenomenon in which mental representations of physically absent stimuli enter into associations with directly-activated representations of physically present stimuli. Three experiments investigated the functional physiology of mediated learning involving the use of odor-taste associations. In Experiments 1a and 1b, basolateral amygdala lesions failed to attenuate mediated taste aversion learning. In Experiment 2, dorsal hippocampus inactivation impaired mediated learning, but left direct learning intact. Considered with past studies, the results implicate the dorsal hippocampus in mediated learning generally, and suggest a limit on the importance of the basolateral amygdala. PMID:23274135

  18. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers

    PubMed Central

    Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin

    2018-01-01

    Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB− fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. PMID:28600222

  19. Effects of Sleeve Gastrectomy vs. Roux-en-Y Gastric Bypass on Eating Behavior and Sweet Taste Perception in Subjects with Obesity.

    PubMed

    Nance, Katie; Eagon, J Christopher; Klein, Samuel; Pepino, Marta Yanina

    2017-12-24

    The goal of this study was to test the hypothesis that weight loss induced by Roux-en-Y gastric bypass (RYGB) has greater effects on taste perception and eating behavior than comparable weight loss induced by sleeve gastrectomy (SG). We evaluated the following outcomes in 31 subjects both before and after ~20% weight loss induced by RYGB ( n = 23) or SG ( n = 8): (1) sweet, savory, and salty taste sensitivity; (2) the most preferred concentrations of sucrose and monosodium glutamate; (3) sweetness palatability, by using validated sensory testing techniques; and (4) eating behavior, by using the Food Craving Inventory and the Dutch Eating Behavior Questionnaire. We found that neither RYGB nor SG affected sweetness or saltiness sensitivity. However, weight loss induced by either RYGB or SG caused the same decrease in: (1) frequency of cravings for foods; (2) influence of emotions and external food cues on eating behavior; and (3) shifted sweetness palatability from pleasant to unpleasant when repetitively tasting sucrose (all p -values ≤ 0.01). Therefore, when matched on weight loss, SG and RYGB cause the same beneficial effects on key factors involved in the regulation of eating behavior and hedonic component of taste perception.

  20. Beverage intake preference and bowel preparation laxative taste preference for colonoscopy

    PubMed Central

    Laiyemo, Adeyinka O; Burnside, Clinton; Laiyemo, Maryam A; Kwagyan, John; Williams, Carla D; Idowu, Kolapo A; Ashktorab, Hassan; Kibreab, Angesom; Scott, Victor F; Sanderson, Andrew K

    2015-01-01

    AIM: To examine whether non-alcoholic beverage intake preferences can guide polyethylene glycol (PEG)-based bowel laxative preparation selection for patients. METHODS: We conducted eight public taste test sessions using commercially procured (A) unflavored PEG, (B) citrus flavored PEG and (C) PEG with ascorbate (Moviprep). We collected characteristics of volunteers including their beverage intake preferences. The volunteers tasted the laxatives in randomly assigned orders and ranked the laxatives as 1st, 2nd, and 3rd based on their taste preferences. Our primary outcome is the number of 1st place rankings for each preparation. RESULTS: A total of 777 volunteers completed the study. Unflavored PEG was ranked as 1st by 70 (9.0%), flavored PEG by 534 (68.7%) and PEG with ascorbate by 173 (22.3%) volunteers. Demographic, lifestyle characteristics and beverage intake patterns for coffee, tea, and carbonated drinks did not predict PEG-based laxative preference. CONCLUSION: Beverage intake pattern was not a useful guide for PEG-based laxative preference. It is important to develop more tolerable and affordable bowel preparation laxatives for colonoscopy. Also, patients should taste their PEG solution with and without flavoring before flavoring the entire gallon as this may give them more opportunity to pick a pattern that may be more tolerable. PMID:26261736

  1. Beverage intake preference and bowel preparation laxative taste preference for colonoscopy.

    PubMed

    Laiyemo, Adeyinka O; Burnside, Clinton; Laiyemo, Maryam A; Kwagyan, John; Williams, Carla D; Idowu, Kolapo A; Ashktorab, Hassan; Kibreab, Angesom; Scott, Victor F; Sanderson, Andrew K

    2015-08-06

    To examine whether non-alcoholic beverage intake preferences can guide polyethylene glycol (PEG)-based bowel laxative preparation selection for patients. We conducted eight public taste test sessions using commercially procured (A) unflavored PEG, (B) citrus flavored PEG and (C) PEG with ascorbate (Moviprep). We collected characteristics of volunteers including their beverage intake preferences. The volunteers tasted the laxatives in randomly assigned orders and ranked the laxatives as 1(st), 2(nd), and 3(rd) based on their taste preferences. Our primary outcome is the number of 1(st) place rankings for each preparation. A total of 777 volunteers completed the study. Unflavored PEG was ranked as 1(st) by 70 (9.0%), flavored PEG by 534 (68.7%) and PEG with ascorbate by 173 (22.3%) volunteers. Demographic, lifestyle characteristics and beverage intake patterns for coffee, tea, and carbonated drinks did not predict PEG-based laxative preference. Beverage intake pattern was not a useful guide for PEG-based laxative preference. It is important to develop more tolerable and affordable bowel preparation laxatives for colonoscopy. Also, patients should taste their PEG solution with and without flavoring before flavoring the entire gallon as this may give them more opportunity to pick a pattern that may be more tolerable.

  2. Taste-immunosuppression engram: reinforcement and extinction.

    PubMed

    Niemi, Maj-Britt; Härting, Margarete; Kou, Wei; Del Rey, Adriana; Besedovsky, Hugo O; Schedlowski, Manfred; Pacheco-López, Gustavo

    2007-08-01

    Several Pavlovian conditioning paradigms have documented the brain's abilities to sense immune-derived signals or immune status, associate them with concurrently relevant extereoceptive stimuli, and reinstate such immune responses on demand. Specifically, the naturalistic relation of food ingestion with its possible immune consequences facilitates taste-immune associations. Here we demonstrate that the saccharin taste can be associated with the immunosuppressive agent cyclosporine A, and that such taste-immune associative learning is subject to reinforcement. Furthermore, once consolidated, this saccharin-immunosuppression engram is resistant to extinction when avoidance behavior is assessed. More importantly, the more this engram is activated, either at association or extinction phases, the more pronounced is the conditioned immunosuppression.

  3. A Preliminary Study of the Human Brain Response to Oral Sucrose and its Association with Recent Drinking

    PubMed Central

    Kareken, David A.; Dzemidzic, Mario; Oberlin, Brandon G.; Eiler, William J.A.

    2014-01-01

    Background A preference for sweet tastes has been repeatedly shown to be associated with alcohol preference in both animals and humans. In this study, we tested the extent to which recent drinking is related to blood oxygen dependent (BOLD) activation from an intensely sweet solution in orbitofrontal areas known to respond to primary rewards. Methods Sixteen right-handed, non-treatment seeking, healthy volunteers (mean age 26 years; 75% male) were recruited from the community. All underwent a taste test using a range of sucrose concentrations, as well as functional magnetic resonance imaging (fMRI) during pseudorandom, event-driven stimulation with water and a 0.83M concentration of sucrose in water. Results [Sucrose > Water] provoked significant BOLD activation in primary gustatory cortex and amygdala, as well as in the right ventral striatum and in bilateral orbitofrontal cortex. Drinks/drinking day correlated significantly with the activation as extracted from the left orbital area (r = 0.52, p = 0.04 after correcting for a bilateral comparison). Using stepwise multiple regression, the addition of rated sucrose-liking accounted for significantly more variance in drinks/drinking day than did left orbital activation alone (multiple R= 0.79, p = 0.002). Conclusions Both the orbitofrontal response to an intensely sweet taste, as well as rated liking of that taste, accounted for significant variance in drinking behavior. The brain response to sweet tastes may be an important phenotype of alcoholism risk. PMID:23841808

  4. Males and females show differential brain activation to taste when hungry and sated in gustatory and reward areas.

    PubMed

    Haase, Lori; Green, Erin; Murphy, Claire

    2011-10-01

    Although males and females differ in eating behavior and prevalence rates for eating disorders and obesity, little is known about gender differences in cortical activation to pleasant and unpleasant pure tastes during the physiological states of hunger and satiety. Twenty-one healthy young adults (12 females and 9 males) underwent two functional magnetic resonance imaging scans. Using four pure tastants of differing qualities (i.e., salty, sour, bitter, sweet), the present study examined gender differences in fMRI activation during two motivational states (hunger and satiety). There was greater change in fMRI activation from hunger to satiety in males than females in response to all tastes within the middle frontal gyrus (BA 10), insula, and cerebellum. Males also had greater change in activation from hunger to satiety, relative to females, in limbic regions including dorsal striatum, amygdala, parahippocampal gyrus, and posterior and anterior cingulate; however, activation was stimulus dependent, despite equivalent ratings in perceived pleasantness and intensity. Interestingly, males and females showed significant change from hunger to satiety in response to citric acid, suggesting that in addition to gender and physiological condition, stimulus quality is an important factor in taste fMRI activation. These gender differences may have implications for the pathophysiology of eating disorders and obesity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Molecular mechanism of species-dependent sweet taste toward artificial sweeteners.

    PubMed

    Liu, Bo; Ha, Matthew; Meng, Xuan-Yu; Kaur, Tanno; Khaleduzzaman, Mohammed; Zhang, Zhe; Jiang, Peihua; Li, Xia; Cui, Meng

    2011-07-27

    The heterodimer of Tas1R2 and Tas1R3 is a broadly acting sweet taste receptor, which mediates mammalian sweet taste toward natural and artificial sweeteners and sweet-tasting proteins. Perception of sweet taste is a species-selective physiological process. For instance, artificial sweeteners aspartame and neotame taste sweet to humans, apes, and Old World monkeys but not to New World monkeys and rodents. Although specific regions determining the activation of the receptors by these sweeteners have been identified, the molecular mechanism of species-dependent sweet taste remains elusive. Using human/squirrel monkey chimeras, mutagenesis, and molecular modeling, we reveal that the different responses of mammalian species toward the artificial sweeteners aspartame and neotame are determined by the steric effect of a combination of a few residues in the ligand binding pocket. Residues S40 and D142 in the human Tas1R2, which correspond to residues T40 and E142 in the squirrel monkey Tas1R2, were found to be the critical residues for the species-dependent difference in sweet taste. In addition, human Tas1R2 residue I67, which corresponds to S67 in squirrel monkey receptor, modulates the higher affinity of neotame than of aspartame. Our studies not only shed light on the molecular mechanism of species-dependent sweet taste toward artificial sweeteners, but also provide guidance for designing novel effective artificial sweet compounds.

  6. Gustatory Learning and Processing in the Drosophila Mushroom Bodies

    PubMed Central

    Kirkhart, Colleen

    2015-01-01

    The Drosophila mushroom bodies are critical association areas whose role in olfactory associative learning has been well characterized. Recent behavioral studies using a taste association paradigm revealed that gustatory conditioning also requires the mushroom bodies (Masek and Scott, 2010; Keene and Masek, 2012). Here, we examine the representations of tastes and the neural sites for taste associations in the mushroom bodies. Using molecular genetic approaches to target different neuronal populations, we find that the gamma lobes of the mushroom bodies and a subset of dopaminergic input neurons are required for taste associative learning. Monitoring responses to taste compounds in the mushroom body calyx with calcium imaging reveals sparse, taste-specific and organ-specific activation in the Kenyon cell dendrites of the main calyx and the dorsal accessory calyx. Our work provides insight into gustatory representations in the mushroom bodies, revealing the essential role of gustatory inputs not only as rewards and punishments but also as adaptive cues. PMID:25878268

  7. The sweet taste of true synergy: positive allosteric modulation of the human sweet taste receptor.

    PubMed

    Servant, Guy; Tachdjian, Catherine; Li, Xiaodong; Karanewsky, Donald S

    2011-11-01

    A diet low in carbohydrates helps to reduce the amount of ingested calories and to maintain a healthy weight. With this in mind, food and beverage companies have reformulated a large number of their products, replacing sugar or high fructose corn syrup with several different types of zero-calorie sweeteners to decrease or even totally eliminate their caloric content. A challenge remains, however, with the level of acceptance of some of these products in the market-place. Many consumers believe that zero-calorie sweeteners simply do not taste like sugar. A recent breakthrough reveals that positive allosteric modulators of the human sweet taste receptor, small molecules that enhance the receptor activity and sweetness perception, could be more effective than other reported taste enhancers at reducing calories in consumer products without compromising on the true taste of sugar. A unique mechanism of action at the receptor level could explain the robust synergy achieved with these new modulators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. A history of sweeteners--natural and synthetic.

    PubMed

    Inglett, G E

    1976-09-01

    Sweetness for the prehistoric man was the taste sensation obtained from sweet berries and honey. Man's quest for other sweet things led to sucose, starch-derived sugars, and synthetic sweeteners. An unusual source of sweet taste is a West African berry known as miracle fruit (Synsepalum dulcificum). This fruit possesses a taste-modifying substance that causes sour foods--e.g., lemons, limes, or grapefruit--to taste sweet. The active principle was found to be a glycoprotein. Until this time, only small molecules were considered sweet-evoking substances, but now macromolecules are considered capable of participating in taste perception. The intense sweetener of the fruit of Dioscoreophyllum cumminsii, called the serendipity berry, was revealed to be a protein. The intensely sweet principle of Thaumatococcus daniellii, called katemfe, was reported in 1972 to contain two proteins having intense sweetness. Since intensely sweet protein sweeteners act directly on taste buds as a probe, a peptide linkage analogous to the aspartic acid sweeteners may be partly responsible for their sweetness.

  9. Dried-bonito aroma components enhance salivary hemodynamic responses to broth tastes detected by near-infrared spectroscopy.

    PubMed

    Matsumoto, Tomona; Saito, Kana; Nakamura, Akio; Saito, Tsukasa; Nammoku, Takashi; Ishikawa, Masashi; Mori, Kensaku

    2012-01-25

    To elucidate the effects of aroma from dried bonito (katsuo-bushi) on broth tastes caused by the central integration of flavor, optical imaging of salivary hemodynamic responses was conducted using near-infrared spectroscopy (NIRS). A reconstituted dried bonito flavored broth produced a significantly larger hemodynamic response than the odorless broth taste solutions for 5 of the 10 panelists, who felt that the combination of the aroma with the tastes was congruent. In the remaining 5 panelists who felt the combination incongruent, the flavored broth did not cause the enhancement of response. Moreover, when the odor-active smoky parts were removed from the flavoring, the reconstituted flavoring did not enhance the response in the former five panelists. These results indicate that NIRS offers a sensitive method to detect the effect of specific congruent aroma components from dried-bonito broth on the taste-related salivary hemodynamic responses, dependent on the perceptual experience of the combination of aromas and tastes.

  10. Differential expression of a BMP4 reporter allele in anterior fungiform versus posterior circumvallate taste buds of mice.

    PubMed

    Nguyen, Ha M; Barlow, Linda A

    2010-10-13

    Bone Morphogenetic Protein 4 (BMP4) is a diffusible factor which regulates embryonic taste organ development. However, the role of BMP4 in taste buds of adult mice is unknown. We utilized transgenic mice with LacZ under the control of the BMP4 promoter to reveal the expression of BMP4 in the tongues of adult mice. Further we evaluate the pattern of BMP4 expression with that of markers of specific taste bud cell types and cell proliferation to define and compare the cell populations expressing BMP4 in anterior (fungiform papillae) and posterior (circumvallate papilla) tongue. BMP4 is expressed in adult fungiform and circumvallate papillae, i.e., lingual structures composed of non-taste epithelium and taste buds. Unexpectedly, we find both differences and similarities with respect to expression of BMP4-driven ß-galactosidase. In circumvallate papillae, many fusiform cells within taste buds are BMP4-ß-gal positive. Further, a low percentage of BMP4-expressing cells within circumvallate taste buds is immunopositive for markers of each of the three differentiated taste cell types (I, II and III). BMP4-positive intragemmal cells also expressed a putative marker of immature taste cells, Sox2, and consistent with this finding, intragemmal cells expressed BMP4-ß-gal within 24 hours after their final mitosis, as determined by BrdU birthdating. By contrast, in fungiform papillae, BMP4-ß-gal positive cells are never encountered within taste buds. However, in both circumvallate and fungiform papillae, BMP4-ß-gal expressing cells are located in the perigemmal region, comprising basal and edge epithelial cells adjacent to taste buds proper. This region houses the proliferative cell population that gives rise to adult taste cells. However, perigemmal BMP4-ß-gal cells appear mitotically silent in both fungiform and circumvallate taste papillae, as we do not find evidence of their active proliferation using cell cycle immunomarkers and BrdU birthdating. Our data suggest that intragemmal BMP4-ß-gal cells in circumvallate papillae are immature taste cells which eventually differentiate into each of the 3 taste cell types, whereas perigemmal BMP4-ß-gal cells in both circumvallate and fungiform papillae may be slow cycling stem cells, or belong to the stem cell niche to regulate taste cell renewal from the proliferative cell population.

  11. Contact and nutrient caregiving effects on newborn infant pain responses.

    PubMed

    Gormally, S; Barr, R G; Wertheim, L; Alkawaf, R; Calinoiu, N; Young, S N

    2001-01-01

    To understand how the 'caregiving context' could affect responses to procedural pain, the authors sought to determine whether (1) the combined effects of sweet taste and holding (caregiving contact) were greater than the effects of either alone, (2) any combined effects were additive or interactive, and (3) the interventions had similar effects on behavioral (crying and facial activity) and physiological (heart rate, vagal tone) responses to the heel-stick procedure in newborn infants in a randomized two-factorial intervention trial. Eighty-five normally developing newborn infants were studied with a mean gestational age of 39.4 weeks on the 2nd or 3rd day of life. Infants were randomized in blocks of eight to receive (1) no holding and water taste (control participants), (2) no holding and sucrose taste (sucrose group), (3) holding and water taste (holding group), or (4) holding and sucrose taste (holding and sucrose group). Crying was reduced significantly by taste and holding, and the interventions combined additively. Facial activity was only significantly reduced by holding. For physiological measures, the interventions interacted with each other and preintervention levels to reduce heart rate and lower vagal tone more during the procedure in infants in whom heart rate and vagal tone were higher before intervention. Consequently, sweet taste and holding interventions combined in complex ways when acting on different behavioral and physiological response systems to modify stressful pain experiences. The results suggest that providing a caregiving context when painful procedures are performed may be a simple and practical method of reducing pain experience in infants, and that no one measure captures these effects.

  12. Characterization of Chinese rice wine taste attributes using liquid chromatographic analysis, sensory evaluation, and an electronic tongue.

    PubMed

    Yu, HaiYan; Zhao, Jie; Li, Fenghua; Tian, Huaixiang; Ma, Xia

    2015-08-01

    To evaluate the taste characteristics of Chinese rice wine, wine samples sourced from different vintage years were analyzed using liquid chromatographic analysis, sensory evaluation, and an electronic tongue. Six organic acids and seventeen amino acids were measured using high performance liquid chromatography (HPLC). Five monosaccharides were measured using anion-exchange chromatography. The global taste attributes were analyzed using an electronic tongue (E-tongue). The correlations between the 28 taste-active compounds and the sensory attributes, and the correlations between the E-tongue response and the sensory attributes were established via partial least square discriminant analysis (PLSDA). E-tongue response data combined with linear discriminant analysis (LDA) were used to discriminate the Chinese rice wine samples sourced from different vintage years. Sensory evaluation indicated significant differences in the Chinese rice wine samples sourced from 2003, 2005, 2008, and 2010 vintage years in the sensory attributes of harmony and mellow. The PLSDA model for the taste-active compounds and the sensory attributes showed that proline, fucose, arabinose, lactic acid, glutamic acid, arginine, isoleucine, valine, threonine, and lysine had an influence on the taste characteristic of Chinese rice wine. The Chinese rice wine samples were all correctly classified using the E-tongue and LDA. The electronic tongue was an effective tool for rapid discrimination of Chinese rice wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Double blind study of the effects of zinc sulfate on taste and smell dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henkin, R.I.; Schecter, P.J.; Friedewald, W.T.

    1976-01-01

    A randomized, double blind crossover study of the effects of zinc sulfate and placebo was carried out in 106 patients with taste and smell dysfunction secondary to a variety of etiological factors. In the patient group prior to treatment, mean serum zinc concentration and leukocyte alkaline phosphatase activity were significantly lower than normal. Results indicate that zinc sulfate was effectively equivalent to placebo in the treatment of these disorders. Although these results demonstrate abnormalities of zinc metabolism in some patients with taste and smell dysfunction they fail to provide evidence for a single, therapeutic approach to the many disorders whichmore » are associated with abnormalities of taste and smell. However, the methods and procedures developed in this study demonstrate that taste and smell dysfunction can be studied in a quantitative, systematic manner.« less

  14. Peas, please! Food familiarization through picture books helps parents introduce vegetables into preschoolers' diets.

    PubMed

    Owen, Laura H; Kennedy, Orla B; Hill, Claire; Houston-Price, Carmel

    2018-05-26

    Repeated taste exposure is an established means of increasing children's liking and intake of fruit and vegetables. However, parents find it difficult to offer children disliked foods repeatedly, often giving up after a few attempts. Studies show that familiarizing children to fruit and vegetables through picture books can increase their interest in tasting targeted foods. This study explored whether looking at picture books before providing foods to taste improved the outcomes of a home-delivered taste exposure regime. Parents of 127 toddlers (aged 21-24 months) identified two 'target' foods they wanted their child to eat (1 fruit, 1 vegetable). Families were randomly assigned to one of three groups. Parents and children in two experimental groups looked at books about either the target fruit or vegetable every day for two weeks; the control group did not receive a book. Parents in all three groups were then asked to offer their child both target foods every day during a 2-week taste-exposure phase. Parental ratings of children's liking and consumption of the foods were collected at baseline, immediately following taste-exposure (post-intervention), and 3 months later (follow-up). In all groups, liking of both foods increased following taste exposure and remained above baseline at follow-up (all ps < .001). In addition, compared to the control group who experienced only taste exposure, looking at vegetable books enhanced children's liking of their target vegetable post-intervention (p < .001) and at follow-up (p < .05), and increased consumption of the vegetable at follow-up (p < .01). Exposure to vegetable books was also associated with smaller increases in neophobia and food fussiness over the period of the study compared to controls (ps < .01), suggesting that picture books may have positive, long-term impacts on children's attitudes towards new foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Rubemamine and Rubescenamine, Two Naturally Occurring N-Cinnamoyl Phenethylamines with Umami-Taste-Modulating Properties.

    PubMed

    Backes, Michael; Obst, Katja; Bojahr, Juliane; Thorhauer, Anika; Roudnitzky, Natacha; Paetz, Susanne; Reichelt, Katharina V; Krammer, Gerhard E; Meyerhof, Wolfgang; Ley, Jakob P

    2015-10-07

    Sensory screening of a series of naturally occurring N-cinnamoyl derivatives of substituted phenethylamines revealed that rubemamine (9, from Chenopodium album) and rubescenamine (10, from Zanthoxylum rubsecens) elicit strong intrinsic umami taste in water at 50 and 10 ppm, respectively. Sensory tests in glutamate- and nucleotide-containing bases showed that the compounds influence the whole flavor profile of savory formulations. Both rubemamine (9) and rubescenamine (10) at 10-100 ppm dose-dependently positively modulated the umami taste of MSG (0.17-0.22%) up to threefold. Among the investigated amides, only rubemamine (9) and rubescenamine (10) are able to directly activate the TAS1R1-TAS1R3 umami taste receptor. Moreover, both compounds also synergistically modulated the activation of TAS1R1-TAS1R3 by MSG. Most remarkably, rubemamine (9) was able to further positively modulate the IMP-enhanced TAS1R1-TAS1R3 response to MSG ∼ 1.8-fold. Finally, armatamide (11), zanthosinamide (13), and dioxamine (14), which lack intrinsic umami taste in vivo and direct receptor response in vitro, also positively modulated receptor activation by MSG about twofold and the IMP-enhanced MSG-induced TAS1R1-TAS1R3 responses approximately by 50%. In sensory experiments, dioxamine (14) at 25 ppm in combination with 0.17% MSG exhibited a sensory equivalent to 0.37% MSG.

  16. Knocking out P2X receptors reduces transmitter secretion in taste buds

    PubMed Central

    Huang, Yijen A.; Stone, Leslie M.; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C.; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E.; Kinnamon, Sue C.; Roper, Stephen D.

    2011-01-01

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors (P2X2 and P2X3 double knockout, or “DKO” mice). The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca2+ in taste Receptor (Type II) cells from DKO mice, as from wild type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we employed reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion. PMID:21940456

  17. Knocking out P2X receptors reduces transmitter secretion in taste buds.

    PubMed

    Huang, Yijen A; Stone, Leslie M; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E; Kinnamon, Sue C; Roper, Stephen D

    2011-09-21

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors [P2X2 and P2X3 double knock-out (DKO) mice]. The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca(2+) in taste Receptor (Type II) cells from DKO mice, as from wild-type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we used reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion.

  18. Developing a new formulation of sodium phenylbutyrate.

    PubMed

    Guffon, Nathalie; Kibleur, Yves; Copalu, William; Tissen, C; Breitkreutz, Joerg

    2012-12-01

    Sodium phenylbutyrate (NaPB) is used as a treatment for urea cycle disorders (UCD). However, the available, licensed granule form has an extremely bad taste, which can compromise compliance and metabolic control. A new, taste-masked, coated-granule formulation (Luc 01) under development was characterised for its in vitro taste characteristics, dissolution profiles and bioequivalence compared with the commercial product. Taste, safety and tolerability were also compared in healthy adult volunteers. The in vitro taste profile of NaPB indicated a highly salty and bitter tasting molecule, but Luc 01 released NaPB only after a lag time of ∼10 s followed by a slow release over a few minutes. In contrast, the licensed granules released NaPB immediately. The pharmacokinetic study demonstrated the bioequivalence of a single 5 g dose of the two products in 13 healthy adult volunteers. No statistical difference was seen either for maximal plasma concentration (C(max)) or for area under the plasma concentration-time curve (AUC). CI for C(max) and AUC(0-inf) of NaPB were included in the bioequivalence range of 0.80-1.25. One withdrawal for vomiting and five reports of loss of taste perception (ageusia) were related to the licensed product. Acceptability, bitterness and saltiness assessed immediately after administration indicated a significant preference for Luc 01 (p<0.01), confirming the results of the taste prediction derived from in vitro measurements. In vitro dissolution, in vitro and in vivo taste profiles support the view that the newly developed granules can be swallowed before release of the bitter active substance, thus avoiding stimulation of taste receptors. Moreover, Luc 01 was shown to be bioequivalent to the licensed product. The availability of a taste-masked form should improve compliance which is critical to the efficacy of NaPB treatment in patients with UCD.

  19. Enteroendocrine cells: a site of 'taste' in gastrointestinal chemosensing.

    PubMed

    Sternini, Catia; Anselmi, Laura; Rozengurt, Enrique

    2008-02-01

    This review discusses the role of enteroendocrine cells of the gastrointestinal tract as chemoreceptors that sense lumen contents and induce changes in gastrointestinal function and food intake through the release of signaling substances acting on a variety of targets locally or at a distance. Recent evidence supports the concept that chemosensing in the gut involves G protein-coupled receptors and effectors that are known to mediate gustatory signals in the oral cavity. These include sweet-taste and bitter-taste receptors, and their associated G proteins, which are expressed in the gastrointestinal mucosa, including selected populations of enteroendocrine cells. In addition, taste receptor agonists elicit a secretory response in enteroendocrine cells in vitro and in animals in vivo, and induce neuronal activation. Taste-signaling molecules expressed in the gastrointestinal mucosa might participate in the functional detection of nutrients and harmful substances in the lumen and prepare the gut to absorb them or initiate a protective response. They might also participate in the control of food intake through the activation of gut-brain neural pathways. These findings provide a new dimension to unraveling the regulatory circuits initiated by luminal contents of the gastrointestinal tract.

  20. Anticonvulsant activity of artificial sweeteners: a structural link between sweet-taste receptor T1R3 and brain glutamate receptors.

    PubMed

    Talevi, Alan; Enrique, Andrea V; Bruno-Blanch, Luis E

    2012-06-15

    A virtual screening campaign based on application of a topological discriminant function capable of identifying novel anticonvulsant agents indicated several widely-used artificial sweeteners as potential anticonvulsant candidates. Acesulfame potassium, cyclamate and saccharin were tested in the Maximal Electroshock Seizure model (mice, ip), showing moderate anticonvulsant activity. We hypothesized a probable structural link between the receptor responsible of sweet taste and anticonvulsant molecular targets. Bioinformatic tools confirmed a highly significant sequence-similarity between taste-related protein T1R3 and several metabotropic glutamate receptors from different species, including glutamate receptors upregulated in epileptogenesis and certain types of epilepsy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Pain-Relieving Interventions for Retinopathy of Prematurity: A Meta-analysis.

    PubMed

    Disher, Timothy; Cameron, Chris; Mitra, Souvik; Cathcart, Kelcey; Campbell-Yeo, Marsha

    2018-06-01

    Retinopathy of prematurity eye examinations conducted in the neonatal intensive care. To combine randomized trials of pain-relieving interventions for retinopathy of prematurity examinations using network meta-analysis. Systematic review and network meta-analysis of Medline, Embase, Cochrane Central Register of Controlled Trials, Web of Science, and the World Health Organization International Clinical Trials Registry Platform. All databases were searched from inception to February 2017. Abstract and title screen and full-text screening were conducted independently by 2 reviewers. Data were extracted by 2 reviewers and pooled with random effect models if the number of trials within a comparison was sufficient. The primary outcome was pain during the examination period; secondary outcomes were pain after the examination, physiologic response, and adverse events. Twenty-nine studies ( N = 1487) were included. Topical anesthetic (TA) combined with sweet taste and an adjunct intervention (eg, nonnutritive sucking) had the highest probability of being the optimal treatment (mean difference [95% credible interval] versus TA alone = -3.67 [-5.86 to -1.47]; surface under the cumulative ranking curve = 0.86). Secondary outcomes were sparsely reported (2-4 studies, N = 90-248) but supported sweet-tasting solutions with or without adjunct interventions as optimal. Limitations included moderate heterogeneity in pain assessment reactivity phase and severe heterogeneity in the regulation phase. Multisensory interventions including sweet taste is likely the optimal treatment for reducing pain resulting from eye examinations in preterm infants. No interventions were effective in absolute terms. Copyright © 2018 by the American Academy of Pediatrics.

  2. Intra-Amygdala ZIP Injections Impair the Memory of Learned Active Avoidance Responses and Attenuate Conditioned Taste-Aversion Acquisition in Rats

    ERIC Educational Resources Information Center

    Gamiz, Fernando; Gallo, Milagros

    2011-01-01

    We have investigated the effect of protein kinase Mzeta (PKM[zeta]) inhibition in the basolateral amygdala (BLA) upon the retention of a nonspatial learned active avoidance response and conditioned taste-aversion (CTA) acquisition in rats. ZIP (10 nmol/[mu]L) injected into the BLA 24 h after training impaired retention of a learned…

  3. Taste of Fat: A Sixth Taste Modality?

    PubMed

    Besnard, Philippe; Passilly-Degrace, Patricia; Khan, Naim A

    2016-01-01

    An attraction for palatable foods rich in lipids is shared by rodents and humans. Over the last decade, the mechanisms responsible for this specific eating behavior have been actively studied, and compelling evidence implicates a taste component in the orosensory detection of dietary lipids [i.e., long-chain fatty acids (LCFA)], in addition to textural, olfactory, and postingestive cues. The interactions between LCFA and specific receptors in taste bud cells (TBC) elicit physiological changes that affect both food intake and digestive functions. After a short overview of the gustatory pathway, this review brings together the key findings consistent with the existence of a sixth taste modality devoted to the perception of lipids. The main steps leading to this new paradigm (i.e., chemoreception of LCFA in TBC, cell signaling cascade, transfer of lipid signals throughout the gustatory nervous pathway, and their physiological consequences) will be critically analyzed. The limitations to this concept will also be discussed in the light of our current knowledge of the sense of taste. Finally, we will analyze the recent literature on obesity-related dysfunctions in the orosensory detection of lipids ("fatty" taste?), in relation to the overconsumption of fat-rich foods and the associated health risks. Copyright © 2016 the American Physiological Society.

  4. Classroom Materials for Job-Related BSEP 2 Program

    DTIC Science & Technology

    1983-09-01

    gathered D. gathered, combined, camoufl age 10. The greedy man was happy to take the money. A. greedy C. was *B. was happy D. take 11. The banana ...tastes good with peanut butter on it. A. tastes C. tastes good B. on D. banana III. Instructions: You are given a choice of two verbs in the following...previously o.- before. (The M16 had ALREADY been fired.) 162 peel Grammar Activity Sheet 36A Good Usage of English Name 6. ALL RIGHT - "ALRIGHT" ALL RIGHT

  5. Molecular Mechanism of Species-dependent Sweet Taste toward Artificial Sweeteners

    PubMed Central

    Liu, Bo; Ha, Matthew; Meng, Xuan-Yu; Kaur, Tanno; Khaleduzzaman, Mohammed; Zhang, Zhe; Jiang, Peihua; Li, Xia; Cui, Meng

    2011-01-01

    The heterodimer of Tas1R2 and Tas1R3 is a broadly acting sweet taste receptor, which mediates mammalian sweet taste toward natural and artificial sweeteners and sweet-tasting proteins. Perception of sweet taste is a species selective physiological process. For instance, artificial sweeteners aspartame and neotame taste sweet to humans, apes and Old World monkeys but not to New World monkeys and rodents. Although specific regions determining the activation of the receptors by these sweeteners have been identified, the molecular mechanism of species-dependent sweet taste remains elusive. Using human/squirrel monkey chimeras, mutagenesis and molecular modeling, we reveal that the different responses of mammalian species towards the artificial sweeteners aspartame and neotame are determined by the steric effect of a combination of a few residues in the ligand binding pocket. Residues S40 and D142 in the human Tas1R2, which correspond to residues T40 and E142 in the squirrel monkey Tas1R2, were found to be the critical residues for the species dependent difference in sweet taste. In addition, human Tas1R2 residue I67, which corresponds to S67 in squirrel monkey receptor, modulates the higher affinity of neotame than that of aspartame. Our studies not only shed light on the molecular mechanism of species dependent sweet taste toward artificial sweeteners, but also provide guidance for designing novel effective artificial sweet compounds. PMID:21795555

  6. Bioelectronic tongue using heterodimeric human taste receptor for the discrimination of sweeteners with human-like performance.

    PubMed

    Song, Hyun Seok; Jin, Hye Jun; Ahn, Sae Ryun; Kim, Daesan; Lee, Sang Hun; Kim, Un-Kyung; Simons, Christopher T; Hong, Seunghun; Park, Tai Hyun

    2014-10-28

    The sense of taste helps humans to obtain information and form a picture of the world by recognizing chemicals in their environments. Over the past decade, large advances have been made in understanding the mechanisms of taste detection and mimicking its capability using artificial sensor devices. However, the detection capability of previous artificial taste sensors has been far inferior to that of animal tongues, in terms of its sensitivity and selectivity. Herein, we developed a bioelectronic tongue using heterodimeric human sweet taste receptors for the detection and discrimination of sweeteners with human-like performance, where single-walled carbon nanotube field-effect transistors were functionalized with nanovesicles containing human sweet taste receptors and used to detect the binding of sweeteners to the taste receptors. The receptors are heterodimeric G-protein-coupled receptors (GPCRs) composed of human taste receptor type 1 member 2 (hTAS1R2) and human taste receptor type 1 member 3 (hTAS1R3), which have multiple binding sites and allow a human tongue-like broad selectivity for the detection of sweeteners. This nanovesicle-based bioelectronic tongue can be a powerful tool for the detection of sweeteners as an alternative to labor-intensive and time-consuming cell-based assays and the sensory evaluation panels used in the food and beverage industry. Furthermore, this study also allows the artificial sensor to exam the functional activity of dimeric GPCRs.

  7. Bitterness prediction in-silico: A step towards better drugs.

    PubMed

    Bahia, Malkeet Singh; Nissim, Ido; Niv, Masha Y

    2018-02-05

    Bitter taste is innately aversive and thought to protect against consuming poisons. Bitter taste receptors (Tas2Rs) are G-protein coupled receptors, expressed both orally and extra-orally and proposed as novel targets for several indications, including asthma. Many clinical drugs elicit bitter taste, suggesting the possibility of drugs re-purposing. On the other hand, the bitter taste of medicine presents a major compliance problem for pediatric drugs. Thus, efficient tools for predicting, measuring and masking bitterness of active pharmaceutical ingredients (APIs) are required by the pharmaceutical industry. Here we highlight the BitterDB database of bitter compounds and survey the main computational approaches to prediction of bitter taste based on compound's chemical structure. Current in silico bitterness prediction methods provide encouraging results, can be constantly improved using growing experimental data, and present a reliable and efficient addition to the APIs development toolbox. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Exposure to Acute Stress is Associated with Attenuated Sweet Taste

    PubMed Central

    al’Absi, Mustafa; Nakajima, Motohiro; Hooker, Stephanie; Wittmers, Larry; Cragin, Tiffany

    2011-01-01

    This study examined the effects of stress on taste perception. Participants (N = 38; 21 women) completed two laboratory sessions: one stress (public speaking, math, and cold pressor) and one control rest session. The taste perception test was conducted at the end of each session and included rating the intensity and pleasantness of sweet, salty, sour, and savory solutions at suprathreshold concentrations. Cardiovascular, hormonal, and mood measures were collected throughout the sessions. Participants showed the expected changes in cardiovascular, hormonal, and mood measures in response to stress. Reported intensity of the sweet solution was significantly lower on the stress day than on the rest day. Cortisol level post stress predicted reduced intensity of salt and sour, suggesting that stress-related changes in adrenocortical activity were related to reduced taste intensity. Results indicate that acute stress may alter taste perception, and ongoing research investigates the extent to which these changes mediate effects of stress on appetite. PMID:22091733

  9. The anatomy of mammalian sweet taste receptors.

    PubMed

    Chéron, Jean-Baptiste; Golebiowski, Jérôme; Antonczak, Serge; Fiorucci, Sébastien

    2017-02-01

    All sweet-tasting compounds are detected by a single G-protein coupled receptor (GPCR), the heterodimer T1R2-T1R3, for which no experimental structure is available. The sweet taste receptor is a class C GPCR, and the recently published crystallographic structures of metabotropic glutamate receptor (mGluR) 1 and 5 provide a significant step forward for understanding structure-function relationships within this family. In this article, we recapitulate more than 600 single point site-directed mutations and available structural data to obtain a critical alignment of the sweet taste receptor sequences with respect to other class C GPCRs. Using this alignment, a homology 3D-model of the human sweet taste receptor is built and analyzed to dissect out the role of key residues involved in ligand binding and those responsible for receptor activation. Proteins 2017; 85:332-341. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. STS-31 Crew Training: Firefighting, Food Tasting, EVA Prep and Post

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Space Shuttle crew is shown lighting a pond of gasoline and then performing firefighting tasks. The crew is also shown tasting food including lemonade, chicken casserole, and tortillas, and performing extravehicular activity (EVA) equipment checkouts in the CCT middeck and airlock.

  11. STS-31 crew training: firefighting, food tasting, EVA prep and post

    NASA Astrophysics Data System (ADS)

    1990-03-01

    The Space Shuttle crew is shown lighting a pond of gasoline and then performing firefighting tasks. The crew is also shown tasting food including lemonade, chicken casserole, and tortillas, and performing extravehicular activity (EVA) equipment checkouts in the CCT middeck and airlock.

  12. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers.

    PubMed

    Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin

    2017-07-01

    Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB- fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. Copyright © 2017. Published by Elsevier Inc.

  13. Molecular basis of fatty acid taste in Drosophila

    PubMed Central

    Ahn, Ji-Eun; Chen, Yan

    2017-01-01

    Behavioral studies have established that Drosophila appetitive taste responses towards fatty acids are mediated by sweet sensing Gustatory Receptor Neurons (GRNs). Here we show that sweet GRN activation requires the function of the Ionotropic Receptor genes IR25a, IR76b and IR56d. The former two IR genes are expressed in several neurons per sensillum, while IR56d expression is restricted to sweet GRNs. Importantly, loss of appetitive behavioral responses to fatty acids in IR25a and IR76b mutant flies can be completely rescued by expression of respective transgenes in sweet GRNs. Interestingly, appetitive behavioral responses of wild type flies to hexanoic acid reach a plateau at ~1%, but decrease with higher concentration, a property mediated through IR25a/IR76b independent activation of bitter GRNs. With our previous report on sour taste, our studies suggest that IR-based receptors mediate different taste qualities through cell-type specific IR subunits. PMID:29231818

  14. The tarsal taste of honey bees: behavioral and electrophysiological analyses

    PubMed Central

    de Brito Sanchez, Maria Gabriela; Lorenzo, Esther; Su, Songkun; Liu, Fanglin; Zhan, Yi; Giurfa, Martin

    2014-01-01

    Taste plays a crucial role in the life of honey bees as their survival depends on the collection and intake of nectar and pollen, and other natural products. Here we studied the tarsal taste of honey bees through a series of behavioral and electrophysiological analyses. We characterized responsiveness to various sweet, salty and bitter tastants delivered to gustatory sensilla of the fore tarsi. Behavioral experiments showed that stimulation of opposite fore tarsi with sucrose and bitter substances or water yielded different outcomes depending on the stimulation sequence. When sucrose was applied first, thereby eliciting proboscis extension, no bitter substance could induce proboscis retraction, thus suggesting that the primacy of sucrose stimulation induced a central excitatory state. When bitter substances or water were applied first, sucrose stimulation could still elicit proboscis extension but to a lower level, thus suggesting central inhibition based on contradictory gustatory input on opposite tarsi. Electrophysiological experiments showed that receptor cells in the gustatory sensilla of the tarsomeres are highly sensitive to saline solutions at low concentrations. No evidence for receptors responding specifically to sucrose or to bitter substances was found in these sensilla. Receptor cells in the gustatory sensilla of the claws are highly sensitive to sucrose. Although bees do not possess dedicated bitter-taste receptors in the tarsi, indirect bitter detection is possible because bitter tastes inhibit sucrose receptor cells of the claws when mixed with sucrose solution. By combining behavioral and electrophysiological approaches, these results provide the first integrative study on tarsal taste detection in the honey bee. PMID:24550801

  15. The tarsal taste of honey bees: behavioral and electrophysiological analyses.

    PubMed

    de Brito Sanchez, Maria Gabriela; Lorenzo, Esther; Su, Songkun; Liu, Fanglin; Zhan, Yi; Giurfa, Martin

    2014-01-01

    Taste plays a crucial role in the life of honey bees as their survival depends on the collection and intake of nectar and pollen, and other natural products. Here we studied the tarsal taste of honey bees through a series of behavioral and electrophysiological analyses. We characterized responsiveness to various sweet, salty and bitter tastants delivered to gustatory sensilla of the fore tarsi. Behavioral experiments showed that stimulation of opposite fore tarsi with sucrose and bitter substances or water yielded different outcomes depending on the stimulation sequence. When sucrose was applied first, thereby eliciting proboscis extension, no bitter substance could induce proboscis retraction, thus suggesting that the primacy of sucrose stimulation induced a central excitatory state. When bitter substances or water were applied first, sucrose stimulation could still elicit proboscis extension but to a lower level, thus suggesting central inhibition based on contradictory gustatory input on opposite tarsi. Electrophysiological experiments showed that receptor cells in the gustatory sensilla of the tarsomeres are highly sensitive to saline solutions at low concentrations. No evidence for receptors responding specifically to sucrose or to bitter substances was found in these sensilla. Receptor cells in the gustatory sensilla of the claws are highly sensitive to sucrose. Although bees do not possess dedicated bitter-taste receptors in the tarsi, indirect bitter detection is possible because bitter tastes inhibit sucrose receptor cells of the claws when mixed with sucrose solution. By combining behavioral and electrophysiological approaches, these results provide the first integrative study on tarsal taste detection in the honey bee.

  16. Awareness Programs and Change in Taste-Based Caste Prejudice

    PubMed Central

    Banerjee, Ritwik; Datta Gupta, Nabanita

    2015-01-01

    Becker's theory of taste-based discrimination predicts that relative employment of the discriminated social group will improve if there is a decrease in the level of prejudice for the marginally discriminating employer. In this paper we experimentally test this prediction offered by Garry Becker in his seminal work on taste based discrimination, in the context of caste in India, with management students (potential employers in the near future) as subjects. First, we measure caste prejudice and show that awareness through a TV social program reduces implicit prejudice against the lower caste and the reduction is sustained over time. Second, we find that the treatment reduces the prejudice levels of those in the left tail of the prejudice distribution - the group which can potentially affect real outcomes as predicted by the theory. And finally, a larger share of the treatment group subjects exhibit favorable opinion about reservation in jobs for the lower caste. PMID:25902290

  17. Awareness programs and change in taste-based caste prejudice.

    PubMed

    Banerjee, Ritwik; Datta Gupta, Nabanita

    2015-01-01

    Becker's theory of taste-based discrimination predicts that relative employment of the discriminated social group will improve if there is a decrease in the level of prejudice for the marginally discriminating employer. In this paper we experimentally test this prediction offered by Garry Becker in his seminal work on taste based discrimination, in the context of caste in India, with management students (potential employers in the near future) as subjects. First, we measure caste prejudice and show that awareness through a TV social program reduces implicit prejudice against the lower caste and the reduction is sustained over time. Second, we find that the treatment reduces the prejudice levels of those in the left tail of the prejudice distribution--the group which can potentially affect real outcomes as predicted by the theory. And finally, a larger share of the treatment group subjects exhibit favorable opinion about reservation in jobs for the lower caste.

  18. Leptin suppresses sweet taste responses of enteroendocrine STC-1 cells.

    PubMed

    Jyotaki, Masafumi; Sanematsu, Keisuke; Shigemura, Noriatsu; Yoshida, Ryusuke; Ninomiya, Yuzo

    2016-09-22

    Leptin is an important hormone that regulates food intake and energy homeostasis by acting on central and peripheral targets. In the gustatory system, leptin is known to selectively suppress sweet responses by inhibiting the activation of sweet sensitive taste cells. Sweet taste receptor (T1R2+T1R3) is also expressed in gut enteroendocrine cells and contributes to nutrient sensing, hormone release and glucose absorption. Because of the similarities in expression patterns between enteroendocrine and taste receptor cells, we hypothesized that they may also share similar mechanisms used to modify/regulate the sweet responsiveness of these cells by leptin. Here, we used mouse enteroendocrine cell line STC-1 and examined potential effect of leptin on Ca(2+) responses of STC-1 cells to various taste compounds. Ca(2+) responses to sweet compounds in STC-1 cells were suppressed by a rodent T1R3 inhibitor gurmarin, suggesting the involvement of T1R3-dependent receptors in detection of sweet compounds. Responses to sweet substances were suppressed by ⩾1ng/ml leptin without affecting responses to bitter, umami and salty compounds. This effect was inhibited by a leptin antagonist (mutant L39A/D40A/F41A) and by ATP gated K(+) (KATP) channel closer glibenclamide, suggesting that leptin affects sweet taste responses of enteroendocrine cells via activation of leptin receptor and KATP channel expressed in these cells. Moreover, leptin selectively inhibited sweet-induced but not bitter-induced glucagon-like peptide-1 (GLP-1) secretion from STC-1 cells. These results suggest that leptin modulates sweet taste responses of enteroendocrine cells to regulate nutrient sensing, hormone release and glucose absorption in the gut. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Sour taste increases swallowing and prolongs hemodynamic responses in the cortical swallowing network

    PubMed Central

    Kamarunas, Erin; Ludlow, Christy L.

    2016-01-01

    Sour stimuli have been shown to upregulate swallowing in patients and in healthy volunteers. However, such changes may be dependent on taste-induced increases in salivary flow. Other mechanisms include genetic taster status (Bartoshuk LM, Duffy VB, Green BG, Hoffman HJ, Ko CW, Lucchina LA, Weiffenbach JM. Physiol Behav 82: 109–114, 2004) and differences between sour and other tastes. We investigated the effects of taste on swallowing frequency and cortical activation in the swallowing network and whether taster status affected responses. Three-milliliter boluses of sour, sour with slow infusion, sweet, water, and water with infusion were compared on swallowing frequency and hemodynamic responses. The sour conditions increased swallowing frequency, whereas sweet and water did not. Changes in cortical oxygenated hemoglobin (hemodynamic responses) measured by functional near-infrared spectroscopy were averaged over 30 trials for each condition per participant in the right and left motor cortex, S1 and supplementary motor area for 30 s following bolus onset. Motion artifact in the hemodynamic response occurred 0–2 s after bolus onset, when the majority of swallows occurred. The peak hemodynamic response 2–7 s after bolus onset did not differ by taste, hemisphere, or cortical location. The mean hemodynamic response 17–22 s after bolus onset was highest in the motor regions of both hemispheres, and greater in the sour and infusion condition than in the water condition. Genetic taster status did not alter changes in swallowing frequency or hemodynamic response. As sour taste significantly increased swallowing and cortical activation equally with and without slow infusion, increases in the cortical swallowing were due to sour taste. PMID:27489363

  20. Positive allosteric modulators of the human sweet taste receptor enhance sweet taste

    PubMed Central

    Servant, Guy; Tachdjian, Catherine; Tang, Xiao-Qing; Werner, Sara; Zhang, Feng; Li, Xiaodong; Kamdar, Poonit; Petrovic, Goran; Ditschun, Tanya; Java, Antoniette; Brust, Paul; Brune, Nicole; DuBois, Grant E.; Zoller, Mark; Karanewsky, Donald S.

    2010-01-01

    To identify molecules that could enhance sweetness perception, we undertook the screening of a compound library using a cell-based assay for the human sweet taste receptor and a panel of selected sweeteners. In one of these screens we found a hit, SE-1, which significantly enhanced the activity of sucralose in the assay. At 50 μM, SE-1 increased the sucralose potency by >20-fold. On the other hand, SE-1 exhibited little or no agonist activity on its own. SE-1 effects were strikingly selective for sucralose. Other popular sweeteners such as aspartame, cyclamate, and saccharin were not enhanced by SE-1 whereas sucrose and neotame potency were increased only by 1.3- to 2.5-fold at 50 μM. Further assay-guided chemical optimization of the initial hit SE-1 led to the discovery of SE-2 and SE-3, selective enhancers of sucralose and sucrose, respectively. SE-2 (50 μM) and SE-3 (200 μM) increased sucralose and sucrose potencies in the assay by 24- and 4.7-fold, respectively. In human taste tests, 100 μM of SE-1 and SE-2 allowed for a reduction of 50% to >80% in the concentration of sucralose, respectively, while maintaining the sweetness intensity, and 100 μM SE-3 allowed for a reduction of 33% in the concentration of sucrose while maintaining the sweetness intensity. These enhancers did not exhibit any sweetness when tasted on their own. Positive allosteric modulators of the human sweet taste receptor could help reduce the caloric content in food and beverages while maintaining the desired taste. PMID:20173092

  1. Taste perception and implicit attitude toward sweet related to body mass index and soft drink supplementation.

    PubMed

    Sartor, Francesco; Donaldson, Lucy F; Markland, David A; Loveday, Helina; Jackson, Matthew J; Kubis, Hans-Peter

    2011-08-01

    These studies examined the differences in sweet taste perception and implicit attitude toward sweet between normal-weight and overweight/obese adults; and tested the effects of soft drink consumption on sweet taste, explicit preference and implicit attitude toward sweet in normal-weight subjects. In study 1, normal-weight (n = 22) and overweight/obese (n = 11) adults were assessed for sweet taste intensity and pleasantness. Implicit attitude toward sweet was assessed by implicit association test (IAT). In study 2, normal-weight, lightly active adults (n = 12) underwent one month soft drink supplementation (≈760 ml/day). This increased their daily carbohydrate intake by 2.1 ± 0.2g/kg body weight. Sweet taste perception, explicit preference and implicit attitudes to sweet were assessed. In both studies salty taste was also assessed as a contrasting perception. Overweight/obese subjects perceived sweet and salty tastes as less intense (-23% and -19%, respectively) and reported higher IAT scores for sweet than normal-weight controls (2.1-fold). The supplementation changed sweet intensity/pleasantness ratings and it increased explicit preference (2.3-fold) for sweet in a subgroup of initial sucrose-dislikers. In conclusion, overweight/obese individuals are more implicitly attracted to sweet. One month of soft drink supplementation changed sweet taste perception of normal-weight subjects. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  2. Taste Changes in Vitamin A Deficiency

    PubMed Central

    Bernard, Rudy A.; Halpern, Bruce P.

    1968-01-01

    Taste preferences were studied in two groups of rats depleted of vitamin A by dietary restriction. One group received sufficient vitamin A acid supplement to maintain normal growth. The other group was repleted with vitamin A alcohol after the classical deficiency symptoms had appeared; this group gradually lost normal preferences for NaCl and aversion to quinine solutions during depletion. Vitamin A alcohol repletion tended to restore taste preferences to normal. In contrast, the group receiving vitamin A acid showed normal taste preferences throughout the depletion period. When the vitamin A acid supplement was removed taste preferences became abnormal and returned to normal when vitamin A acid was restored. Peripheral gustatory neural activity of depleted rats without any form of vitamin A was less than normal both at rest and when the tongue was stimulated with NaCl solutions. Histological examination showed keratin infiltrating the pores of the taste buds. Accessory glandular tissues were atrophied and debris filled the trenches of the papillae. It is concluded that vitamin A acid can provide the vitamin A required for normal taste, as contrasted with its inability to maintain visual function. It is suggested that the effect of vitamin A is exerted at the receptor level, as a result of its role in the biosynthesis of mucopolysaccharides, which have been recently identified in the pore area of taste buds, as well as being present in the various secretions of the oral cavity. PMID:4299794

  3. Genetic dissection of TrkB activated signalling pathways required for specific aspects of the taste system

    PubMed Central

    2014-01-01

    Background Neurotrophin-4 (NT-4) and brain derived neurotrophic factor (BDNF) bind to the same receptor, Ntrk2/TrkB, but play distinct roles in the development of the rodent gustatory system. However, the mechanisms underlying these processes are lacking. Results Here, we demonstrate, in vivo, that single or combined point mutations in major adaptor protein docking sites on TrkB receptor affect specific aspects of the mouse gustatory development, known to be dependent on BDNF or NT-4. In particular, mice with a mutation in the TrkB-SHC docking site had reduced gustatory neuron survival at both early and later stages of development, when survival is dependent on NT-4 and BDNF, respectively. In addition, lingual innervation and taste bud morphology, both BDNF-dependent functions, were altered in these mutants. In contrast, mutation of the TrkB-PLCγ docking site alone did not affect gustatory neuron survival. Moreover, innervation to the tongue was delayed in these mutants and taste receptor expression was altered. Conclusions We have genetically dissected pathways activated downstream of the TrkB receptor that are required for specific aspects of the taste system controlled by the two neurotrophins NT-4 and BDNF. In addition, our results indicate that TrkB also regulate the expression of specific taste receptors by distinct signalling pathways. These results advance our knowledge of the biology of the taste system, one of the fundamental sensory systems crucial for an organism to relate to the environment. PMID:25256039

  4. Correlation Between Activation of the Prelimbic Cortex, Basolateral Amygdala, and Agranular Insular Cortex During Taste Memory Formation.

    PubMed

    Uematsu, Akira; Kitamura, Akihiko; Iwatsuki, Ken; Uneyama, Hisayuki; Tsurugizawa, Tomokazu

    2015-09-01

    Conditioned taste aversion (CTA) is a well-established learning paradigm, whereby animals associate tastes with subsequent visceral illness. The prelimbic cortex (PL) has been shown to be involved in the association of events separated by time. However, the nature of PL activity and its functional network in the whole brain during CTA learning remain unknown. Here, using awake functional magnetic resonance imaging and fiber tracking, we analyzed functional brain connectivity during the association of tastes and visceral illness. The blood oxygen level-dependent (BOLD) signal significantly increased in the PL after tastant and lithium chloride (LiCl) infusions. The BOLD signal in the PL significantly correlated with those in the amygdala and agranular insular cortex (IC), which we found were also structurally connected to the PL by fiber tracking. To precisely examine these data, we then performed double immunofluorescence with a neuronal activity marker (c-Fos) and an inhibitory neuron marker (GAD67) combined with a fluorescent retrograde tracer in the PL. During CTA learning, we found an increase in the activity of excitatory neurons in the basolateral amygdala (BLA) or agranular IC that project to the PL. Taken together, these findings clearly identify a role of synchronized PL, agranular IC, and BLA activity in CTA learning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Bitter-tasting and kokumi-enhancing molecules in thermally processed avocado (Persea americana Mill.).

    PubMed

    Degenhardt, Andreas Georg; Hofmann, Thomas

    2010-12-22

    Sequential application of solvent extraction and RP-HPLC in combination with taste dilution analyses (TDA) and comparative TDA, followed by LC-MS and 1D/2D NMR experiments, led to the discovery of 10 C(17)-C(21) oxylipins with 1,2,4-trihydroxy-, 1-acetoxy-2,4-dihydroxy-, and 1-acetoxy-2-hydroxy-4-oxo motifs, respectively, besides 1-O-stearoyl-glycerol and 1-O-linoleoyl-glycerol as bitter-tasting compounds in thermally processed avocado (Persea americana Mill.). On the basis of quantitative data, dose-over-threshold (DoT) factors, and taste re-engineering experiments, these phytochemicals, among which 1-acetoxy-2-hydroxy-4-oxo-octadeca-12-ene was found with the highest taste impact, were confirmed to be the key contributors to the bitter off-taste developed upon thermal processing of avocado. For the first time, those C(17)-C(21) oxylipins exhibiting a 1-acetoxy-2,4-dihydroxy- and a 1-acetoxy-2-hydroxy-4-oxo motif, respectively, were discovered to induce a mouthfulness (kokumi)-enhancing activity in sub-bitter threshold concentrations.

  6. Design, synthesis, and taste evaluation of a high-intensity umami-imparting oxazole-based compound.

    PubMed

    Amino, Yusuke; Tahara, Yu-Ki; Yamada, Kei; Nakazawa, Masakazu; Tagami, Uno; Tajima, Takaho; Kuroda, Motonaka

    2017-09-01

    Umami taste is imparted predominantly by monosodium glutamate (MSG) and 5'-ribonucleotides. Recently, several different classes of hydrophobic umami-imparting compounds, the structures of which are quite different from MSG, have been reported. To obtain a novel umami-imparting compound, N-cinnamoyl phenethylamine was chosen as the lead compound, and a rational structure-optimization study was conducted on the basis of the pharmacophore model of previously reported compounds. The extremely potent umami-imparting compound 2-[[[2-[(1E)-2-(1,3-benzodioxol-5-yl)ethenyl]-4-oxazolyle]methoxy]methyl]pyridine, which exhibits 27,000 times the umami taste of MSG, was found. Its terminal pyridine residue and linear structure are suggested to be responsible for its strong activity. The time taken to reach maximum taste intensity exhibited by it, as determined by the time-intensity method, is 22.0 s, whereas the maximum taste intensity of MSG occurs immediately. This distinct difference in the time-course taste profile may be due to the hydrophobicity and strong receptor affinity of the new compound.

  7. Gustatory stimuli representing different perceptual qualities elicit distinct patterns of neuropeptide secretion from taste buds.

    PubMed

    Geraedts, Maartje C P; Munger, Steven D

    2013-04-24

    Taste stimuli that evoke different perceptual qualities (e.g., sweet, umami, bitter, sour, salty) are detected by dedicated subpopulations of taste bud cells that use distinct combinations of sensory receptors and transduction molecules. Here, we report that taste stimuli also elicit unique patterns of neuropeptide secretion from taste buds that are correlated with those perceptual qualities. We measured tastant-dependent secretion of glucagon-like peptide-1 (GLP-1), glucagon, and neuropeptide Y (NPY) from circumvallate papillae of Tas1r3(+/+), Tas1r3(+/-) and Tas1r3 (-/-) mice. Isolated tongue epithelia were mounted in modified Ussing chambers, permitting apical stimulation of taste buds; secreted peptides were collected from the basal side and measured by specific ELISAs. Appetitive stimuli (sweet: glucose, sucralose; umami: monosodium glutamate; polysaccharide: Polycose) elicited GLP-1 and NPY secretion and inhibited basal glucagon secretion. Sweet and umami stimuli were ineffective in Tas1r3(-/-) mice, indicating an obligatory role for the T1R3 subunit common to the sweet and umami taste receptors. Polycose responses were unaffected by T1R3 deletion, consistent with the presence of a distinct polysaccharide taste receptor. The effects of sweet stimuli on peptide secretion also required the closing of ATP-sensitive K(+) (KATP) channels, as the KATP channel activator diazoxide inhibited the effects of glucose and sucralose on both GLP-1 and glucagon release. Both sour citric acid and salty NaCl increased NPY secretion but had no effects on GLP-1 or glucagon. Bitter denatonium showed no effects on these peptides. Together, these results suggest that taste stimuli of different perceptual qualities elicit unique patterns of neuropeptide secretion from taste buds.

  8. Cracking Taste Codes by Tapping into Sensory Neuron Impulse Traffic

    PubMed Central

    Frank, Marion E.; Lundy, Robert F.; Contreras, Robert J.

    2008-01-01

    Insights into the biological basis for mammalian taste quality coding began with electrophysiological recordings from “taste” nerves and this technique continues to produce essential information today. Chorda tympani (geniculate ganglion) neurons, which are particularly involved in taste quality discrimination, are specialists or generalists. Specialists respond to stimuli characterized by a single taste quality as defined by behavioral cross-generalization in conditioned taste tests. Generalists respond to electrolytes that elicit multiple aversive qualities. Na+-salt (N) specialists in rodents and sweet-stimulus (S) specialists in multiple orders of mammals are well-characterized. Specialists are associated with species’ nutritional needs and their activation is known to be malleable by internal physiological conditions and contaminated external caloric sources. S specialists, associated with the heterodimeric G-protein coupled receptor: T1R, and N specialists, associated with the epithelial sodium channel: ENaC, are consistent with labeled line coding from taste bud to afferent neuron. Yet, S-specialist neurons and behavior are less specific thanT1R2-3 in encompassing glutamate and E generalist neurons are much less specific than a candidate, PDK TRP channel, sour receptor in encompassing salts and bitter stimuli. Specialist labeled lines for nutrients and generalist patterns for aversive electrolytes may be transmitting taste information to the brain side by side. However, specific roles of generalists in taste quality coding may be resolved by selecting stimuli and stimulus levels found in natural situations. T2Rs, participating in reflexes via the glossopharynygeal nerve, became highly diversified in mammalian phylogenesis as they evolved to deal with dangerous substances within specific environmental niches. Establishing the information afferent neurons traffic to the brain about natural taste stimuli imbedded in dynamic complex mixtures will ultimately “crack taste codes.” PMID:18824076

  9. Discrete innervation of murine taste buds by peripheral taste neurons.

    PubMed

    Zaidi, Faisal N; Whitehead, Mark C

    2006-08-09

    The peripheral taste system likely maintains a specific relationship between ganglion cells that signal a particular taste quality and taste bud cells responsive to that quality. We have explored a measure of the receptoneural relationship in the mouse. By injecting single fungiform taste buds with lipophilic retrograde neuroanatomical markers, the number of labeled geniculate ganglion cells innervating single buds on the tongue were identified. We found that three to five ganglion cells innervate a single bud. Injecting neighboring buds with different color markers showed that the buds are primarily innervated by separate populations of geniculate cells (i.e., multiply labeled ganglion cells are rare). In other words, each taste bud is innervated by a population of neurons that only connects with that bud. Palate bud injections revealed a similar, relatively exclusive receptoneural relationship. Injecting buds in different regions of the tongue did not reveal a topographic representation of buds in the geniculate ganglion, despite a stereotyped patterned arrangement of fungiform buds as rows and columns on the tongue. However, ganglion cells innervating the tongue and palate were differentially concentrated in lateral and rostral regions of the ganglion, respectively. The principal finding that small groups of ganglion cells send sensory fibers that converge selectively on a single bud is a new-found measure of specific matching between the two principal cellular elements of the mouse peripheral taste system. Repetition of the experiments in the hamster showed a more divergent innervation of buds in this species. The results indicate that whatever taste quality is signaled by a murine geniculate ganglion neuron, that signal reflects the activity of cells in a single taste bud.

  10. State Dependency of Chemosensory Coding in the Gustatory Thalamus (VPMpc) of Alert Rats

    PubMed Central

    Liu, Haixin

    2015-01-01

    The parvicellular portion of the ventroposteromedial nucleus (VPMpc) is the part of the thalamus that processes gustatory information. Anatomical evidence shows that the VPMpc receives ascending gustatory inputs from the parabrachial nucleus (PbN) in the brainstem and sends projections to the gustatory cortex (GC). Although taste processing in PbN and GC has been the subject of intense investigation in behaving rodents, much less is known on how VPMpc neurons encode gustatory information. Here we present results from single-unit recordings in the VPMpc of alert rats receiving multiple tastants. Thalamic neurons respond to taste with time-varying modulations of firing rates, consistent with those observed in GC and PbN. These responses encode taste quality as well as palatability. Comparing responses to tastants either passively delivered, or self-administered after a cue, unveiled the effects of general expectation on taste processing in VPMpc. General expectation led to an improvement of taste coding by modulating response dynamics, and single neuron ability to encode multiple tastants. Our results demonstrate that the time course of taste coding as well as single neurons' ability to encode for multiple qualities are not fixed but rather can be altered by the state of the animal. Together, the data presented here provide the first description that taste coding in VPMpc is dynamic and state-dependent. SIGNIFICANCE STATEMENT Over the past years, a great deal of attention has been devoted to understanding taste coding in the brainstem and cortex of alert rodents. Thanks to this research, we now know that taste coding is dynamic, distributed, and context-dependent. Alas, virtually nothing is known on how the gustatory thalamus (VPMpc) processes gustatory information in behaving rats. This manuscript investigates taste processing in the VPMpc of behaving rats. Our results show that thalamic neurons encode taste and palatability with time-varying patterns of activity and that thalamic coding of taste is modulated by general expectation. Our data will appeal not only to researchers interested in taste, but also to a broader audience of sensory and systems neuroscientists interested in the thalamocortical system. PMID:26609147

  11. Synthetic study on the relationship between structure and sweet taste properties of steviol glycosides.

    PubMed

    Upreti, Mani; Dubois, Grant; Prakash, Indra

    2012-04-05

    The structure activity relationship between the C₁₆-C₁₇ methylene double bond on the aglycone of steviol glycosides and the corresponding impact on their sweet taste has been reported here for the first time. It has been observed that converting stevioside and rebaudioside A to their corresponding ketones by switching the doubly bonded methylene on C-17 for a ketone group actually removes the sweet taste properties of these molecules completely. Regenerating the original molecules tends to restore the sweet taste of both the steviol glycosides. Thus this C₁₆-C₁₇ methylene double bond in rebaudioside A and stevioside can be regarded as a pharmacophore essential for the sweetness property of these molecules.

  12. Reconstitution of the flavor signature of Dornfelder red wine on the basis of the natural concentrations of its key aroma and taste compounds.

    PubMed

    Frank, Stephanie; Wollmann, Nadine; Schieberle, Peter; Hofmann, Thomas

    2011-08-24

    By application of aroma extract dilution analysis (AEDA) on the volatile fraction isolated from a Dornfelder red wine, 31 odor-active compounds were identified by means of HRGC-MS and comparison with reference compounds. A total of 27 odorants, judged with high FD factors by means of AEDA, was quantitated by means of stable isotope dilution assays, and acetaldehyde was determined enzymatically. In addition, 36 taste-active compounds were analyzed by means of HPLC-UV, HPLC-MS/MS, and ion chromatography. The quantitative data obtained for the identified aroma and taste compounds enabled for the first time the reconstruction of the overall flavor of the red wine. Sensory evaluation of both the aroma and taste profiles of the authentic red wine and the recombinate revealed that Dornfelder red wine was closely mimicked. Moreover, it was demonstrated that the high molecular weight fraction of red wine is essential for its astringent taste impression. By comparison of the overall odor of the aroma recombinate in ethanol with that of the total flavor recombinate containing all tastants, it was shown for the first time that the nonvolatile tastants had a strong influence on the intensity of certain aroma qualities.

  13. Active taste compounds in juice from oranges symptomatic for Huanglongbing (HLB) citrus greening disease

    USDA-ARS?s Scientific Manuscript database

    Citrus greening disease, also known as Huanglongbing (HLB), compromises the quality of citrus fruit and juice, causing increased bitterness, metallic taste, astringency and a burning mouthfeel. The chemical basis responsible for these changes remains largely unknown other than the roles of the bitte...

  14. Active ion transport in dog tongue: a possible role in taste.

    PubMed

    DeSimone, J A; Heck, G L; DeSimone, S K

    1981-11-27

    An in vitro preparation of the dorsal epithelium of the dog tongue actively transports ions, producing a transepithelial potential difference characteristic of the ions and their concentration. Hypertonic sodium chloride solutions generally cause increased potentials and short-circuit currents and reduced resistances when placed on the mucosal surface. This hypertonic flux is eliminated by ouabain and is not found in ventral lingual epithelia. When either sodium acetate or tetramethylammonium chloride is substituted for sodium chloride in the mucosal medium, the currents are diminished but their sum at a given concentration approximates that for sodium chloride at the same concentration. This result suggests a current composed of inward sodium ion movement and outward chloride ion movement. Actively regulated potentials and currents, whether generated in the taste buds or in supporting cells, may be important in both normal chemotransduction and in taste responses evoked by currents passing through the tongue.

  15. The T1R2/T1R3 sweet receptor and TRPM5 ion channel taste targets with therapeutic potential.

    PubMed

    Sprous, Dennis; Palmer, Kyle R

    2010-01-01

    Taste signaling is a critical determinant of ingestive behaviors and thereby linked to obesity and related metabolic dysfunctions. Recent evidence of taste signaling pathways in the gut suggests the link to be more direct, raising the possibility that taste receptor systems could be regarded as therapeutic targets. T1R2/T1R3, the G protein coupled receptor that mediates sweet taste, and the TRPM5 ion channel have been the focus of discovery programs seeking novel compounds that could be useful in modifying taste. We review in this chapter the hypothesis of gastrointestinal taste signaling and discuss the potential for T1R2/T1R3 and TRPM5 as targets of therapeutic intervention in obesity and diabetes. Critical to the development of a drug discovery program is the creation of libraries that enhance the likelihood of identifying novel compounds that modulate the target of interest. We advocate a computer-based chemoinformatic approach for assembling natural and synthetic compound libraries as well as for supporting optimization of structure activity relationships. Strategies for discovering modulators of T1R2/T1R3 and TRPM5 using methods of chemoinformatics are presented herein. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Gustatory Receptor Neurons in Manduca sexta Contain a TrpA1-Dependent Signaling Pathway that Integrates Taste and Temperature

    PubMed Central

    2013-01-01

    Temperature modulates the peripheral taste response of many animals, in part by activating transient receptor potential (Trp) cation channels. We hypothesized that temperature would also modulate peripheral taste responses in larval Manduca sexta. We recorded excitatory responses of the lateral and medial styloconic sensilla to chemical stimuli at 14, 22, and 30 °C. The excitatory responses to 5 chemical stimuli—a salt (KCl), 3 sugars (sucrose, glucose, and inositol) and an alkaloid (caffeine)—were unaffected by temperature. In contrast, the excitatory response to the aversive compound, aristolochic acid (AA), increased robustly with temperature. Next, we asked whether TrpA1 mediates the thermally dependent taste response to AA. To this end, we 1) identified a TrpA1 gene in M. sexta; 2) demonstrated expression of TrpA1 in the lateral and medial styloconic sensilla; 3) determined that 2 TrpA1 antagonists (HC-030031 and mecamylamine) inhibit the taste response to AA, but not caffeine; and then 4) established that the thermal dependence of the taste response to AA is blocked by HC-030031. Taken together, our results indicate that TrpA1 serves as a molecular integrator of taste and temperature in M. sexta. PMID:23828906

  17. A physiologic role for serotonergic transmission in adult rat taste buds.

    PubMed

    Jaber, Luc; Zhao, Fang-li; Kolli, Tamara; Herness, Scott

    2014-01-01

    Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the afferent signal. Serotonin may thus play a major modulatory role within peripheral taste in shaping the afferent taste signals prior to their transmission across gustatory nerves.

  18. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception.

    PubMed

    Mancuso, Giuseppe; Borgonovo, Gigliola; Scaglioni, Leonardo; Bassoli, Angela

    2015-10-16

    Ruta graveolens (rue) is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels.

  19. Longitudinal Treatment Outcomes of Microsurgical Treatment of Neurosensory Deficit after Lower Third Molar Surgery: A Prospective Case Series.

    PubMed

    Leung, Yiu Yan; Cheung, Lim Kwong

    2016-01-01

    To prospectively evaluate the longitudinal subjective and objective outcomes of the microsurgical treatment of lingual nerve (LN) and inferior alveolar nerve (IAN) injury after third molar surgery. A 1-year longitudinal observational study was conducted on patients who received LN or IAN repair after third molar surgery-induced nerve injury. Subjective assessments ("numbness", "hyperaesthesia", "pain", "taste disturbance", "speech" and "social life impact") and objective assessments (light touch threshold, two-point discrimination, pain threshold, and taste discrimination) were recorded. 12 patients (10 females) with 10 LN and 2 IAN repairs were recruited. The subjective outcomes at post-operative 12 months for LN and IAN repair were improved. "Pain" and "hyperaesthesia" were most drastically improved. Light touch threshold improved from 44.7 g to 1.2 g for LN repair and 2 g to 0.5 g for IAN repair. Microsurgical treatment of moderate to severe LN injury after lower third molar surgery offered significant subjective and objective sensory improvements. 100% FSR was achieved at post-operative 6 months.

  20. Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice

    PubMed Central

    Niki, Mayu; Jyotaki, Masafumi; Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; DiPatrizio, Nicholas V; Piomelli, Daniele; Ninomiya, Yuzo

    2015-01-01

    Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1: AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA administration, while they showed no significant changes in CT responses after AM251. In contrast, db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid (2-arachidonoyl-sn-glycerol (2-AG)) levels in the taste organ, and enhanced expression of a biosynthesizing enzyme (diacylglycerol lipase α (DAGLα)) of 2-AG in taste cells. In DIO mice, the LA effect was gradually decreased and the AM251 effect was increased during the course of obesity. Taken together, our results suggest that circulating leptin, but not local endocannabinoids, may be a dominant modulator for sweet taste in lean mice; however, endocannabinoids may become more effective modulators of sweet taste under conditions of deficient leptin signalling, possibly due to increased production of endocannabinoids in taste tissue. Key points Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor deficient (db/db) and diet-induced obese (DIO) mice. Chorda tympani (CT) nerve responses of lean mice to sweet compounds were increased after administration of leptin antagonist (LA) but not affected by administration of cannabinoid receptor antagonist (AM251). db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid levels in the taste organ, and enhanced expression of a biosynthesizing enzyme of endocannabinoids in taste cells. The effect of LA was gradually decreased and that of AM251 was increased during the course of obesity in DIO mice. These findings suggest that circulating leptin, but not local endocannabinoids, is a dominant modulator for sweet taste in lean mice and endocannabinoids become more effective modulators of sweet taste under conditions of deficient leptin signalling. PMID:25728242

  1. Preferences for salty and sweet tastes are elevated and related to each other during childhood.

    PubMed

    Mennella, Julie A; Finkbeiner, Susana; Lipchock, Sarah V; Hwang, Liang-Dar; Reed, Danielle R

    2014-01-01

    The present study aimed to determine if salty and sweet taste preferences in children are related to each other, to markers of growth, and to genetic differences. We conducted a 2-day, single-blind experimental study using the Monell two-series, forced-choice, paired-comparison tracking method to determine taste preferences. The volunteer sample consisted of a racially/ethnically diverse group of children, 5-10 years of age (n = 108), and their mothers (n = 83). After excluding those mothers who did not meet eligibility and children who did not understand or comply with study procedures, the final sample was 101 children and 76 adults. The main outcome measures were most preferred concentration of salt in broth and crackers; most preferred concentration of sucrose in water and jelly; reported dietary intake of salty and sweet foods; levels of a bone growth marker; anthropometric measurements such as height, weight, and percent body fat; and TAS1R3 (sweet taste receptor) genotype. Children preferred higher concentrations of salt in broth and sucrose in water than did adults, and for both groups, salty and sweet taste preferences were significantly and positively correlated. In children, preference measures were related to reported intake of sodium but not of added sugars. Children who were tall for their age preferred sweeter solutions than did those that were shorter and percent body fat was correlated with salt preference. In mothers but not in children, sweet preference correlated with TAS1R3 genotype. For children, sweet and salty taste preferences were positively correlated and related to some aspects of real-world food intake. Complying with recommendations to reduce added sugars and salt may be more difficult for some children, which emphasizes the need for new strategies to improve children's diets.

  2. Sweet taste exposure and the subsequent acceptance and preference for sweet taste in the diet: systematic review of the published literature.

    PubMed

    Appleton, K M; Tuorila, H; Bertenshaw, E J; de Graaf, C; Mela, D J

    2018-03-01

    There are consistent, evidence-based global public health recommendations to reduce intakes of free sugars. However, the corresponding evidence for recommending reduced exposure to sweetness is less clear. Our aim was to identify and review the published evidence investigating the impact of dietary exposure to sweet-tasting foods or beverages on the subsequent generalized acceptance, preference, or choice of sweet foods and beverages in the diet. Systematic searches were conducted to identify all studies testing relations of variation in exposure to sweetness through foods and beverages with subsequent variation in the generalized acceptance, preference, or choice of sweetened foods or beverages, in humans aged >6 mo. Twenty-one studies met our inclusion criteria, comprising 7 population cohort studies involving 2320 children and 14 controlled trials involving 1113 individuals. These studies were heterogeneous in study design, population, exposure, and outcomes measured, and few were explicitly designed to address our research question. The findings from these were inconsistent. We found equivocal evidence from population cohort studies. The evidence from controlled studies suggests that a higher sweet taste exposure tends to lead to reduced preferences for sweetness in the shorter term, but very limited effects were found in the longer term. A small and heterogeneous body of research currently has considered the impact of varying exposure to sweet taste on subsequent generalized sweet taste preferences, and this evidence is equivocal regarding the presence and possible direction of a relation. Future work should focus on adequately powered studies with well-characterized exposures of sufficient duration. This review was registered with PROSPERO as CRD42016051840, 24 November 2016.

  3. Taste alteration in breast cancer patients treated with taxane chemotherapy: experience, effect, and coping strategies.

    PubMed

    Speck, Rebecca M; DeMichele, Angela; Farrar, John T; Hennessy, Sean; Mao, Jun J; Stineman, Margaret G; Barg, Frances K

    2013-02-01

    This study examined the experience and coping strategies for taste alteration in female breast cancer patients treated with docetaxel or paclitaxel. A purposive sample of 25 patients currently receiving docetaxel or paclitaxel or within 6 months of having completed treatment was recruited. Semi-structured interviews and patient-level data were utilized for this exploratory descriptive study. Interview data were analyzed with the constant comparative method; patient-level data were abstracted from the electronic medical record. Of all side effects reported from taxanes, the most common was taste alteration (8 of 10 docetaxel patients, 3 of 15 paclitaxel patients). Women that experience taste alteration chose not to eat as much, ate on an irregular schedule, and/or lost interest in preparing meals for themselves and/or their family. Women adopted a variety of new behaviors to deal with the taste alteration and its effects, including trying new recipes, eating strongly flavored foods, honoring specific food cravings, eating candy before meals, cutting food with lemon, drinking sweetened drinks, using plastic eating utensils, drinking from a straw, brushing their teeth and tongue before meals, and using baking soda and salt wash or antibacterial mouthwash. Taste alteration affects breast cancer patients' lives, and they develop management strategies to deal with the effect. While some self-management strategies can be seen as positively adaptive, the potential for increased caloric consumption and poor eating behaviors associated with some coping strategies may be a cause for concern given the observation of weight gain during breast cancer treatment and association of obesity with poor treatment outcomes in breast cancer patients. Further studies are warranted to determine the overall burden of this symptom and measurement of cancer and non-cancer-related consequences of these behavioral adaptations.

  4. Exposure to acute stress is associated with attenuated sweet taste.

    PubMed

    Al'Absi, Mustafa; Nakajima, Motohiro; Hooker, Stephanie; Wittmers, Larry; Cragin, Tiffany

    2012-01-01

    This study examined the effects of stress on taste perception. Participants (N = 38; 21 women) completed two laboratory sessions: one stress (public speaking, math, and cold pressor) and one control rest session. The taste perception test was conducted at the end of each session and included rating the intensity and pleasantness of sweet, salty, sour, and savory solutions at suprathreshold concentrations. Cardiovascular, hormonal, and mood measures were collected throughout the sessions. Participants showed the expected changes in cardiovascular, hormonal, and mood measures in response to stress. Reported intensity of the sweet solution was significantly lower on the stress day than on the rest day. Cortisol level poststress predicted reduced intensity of salt and sour, suggesting that stress-related changes in adrenocortical activity were related to reduced taste intensity. Results indicate that acute stress may alter taste perception, and ongoing research investigates the extent to which these changes mediate effects of stress on appetite. Copyright © 2011 Society for Psychophysiological Research.

  5. Sensomics-Assisted Elucidation of the Tastant Code of Cooked Crustaceans and Taste Reconstruction Experiments.

    PubMed

    Meyer, Stefanie; Dunkel, Andreas; Hofmann, Thomas

    2016-02-10

    Sensory-guided fractionation by means of ultrafiltration and cation-exchange chromatography, followed by MS/MS quantitation, and taste re-engineering experiments revealed the key taste molecules coining the characteristic taste profile of the cooked meat of king prawns. Furthermore, quantitative analysis demonstrated that the taste differences between crustaceans are due to quantitative differences in the combinatorial code of tastants, rather than to qualitative differences in the tastant composition. Besides the amino acids glycine, L-proline, and L-alanine, the characteristic seafood-like sweet profile was found to be due to the sweet modulatory action of quaternary ammonium compounds, among which betaine, homarine, stachydrin, and trimethylamine-N-oxide were found as the key contributors on the basis of dose-activity considerations. Knowledge of this combinatorial tastant code provides the foundation for the development of more sophisticated crustacean flavors that are lacking any heavy metal ions and allergenic proteins present when using crustacean extracts for food flavoring.

  6. Application of taste sensing system for characterisation of enzymatic hydrolysates from shrimp processing by-products.

    PubMed

    Cheung, Imelda W Y; Li-Chan, Eunice C Y

    2014-02-15

    The objective of this study was to investigate the potential of an instrumental taste-sensing system to distinguish between shrimp processing by-products hydrolysates produced using different proteases and hydrolysis conditions, and the possible association of taste sensor outputs with human gustatory assessment, salt content, and bioactivity. Principal component analysis of taste sensor output data categorised samples according to the proteases used for hydrolysis. High umami sensor outputs were characteristic of bromelain- and Flavourzyme-produced hydrolysates, compared to low saltiness and high bitterness outputs of Alcalase-produced hydrolysates, and high saltiness and low umami outputs of Protamex-produced hydrolysates. Extensively hydrolysed samples showed higher sourness outputs. Saltiness sensor outputs were correlated with conductivity and sodium content, while umami sensor responses were related to gustatory sweetness, bitterness and umami, as well as angiotensin-I converting enzyme inhibitory activity. Further research should explore the dose dependence and sensitivity of each taste sensor to specific amino acids and peptides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Health and taste related compounds in strawberries under various irrigation regimes and bio-stimulant application.

    PubMed

    Kapur, Burcak; Sarıdaş, Mehmet Ali; Çeliktopuz, Eser; Kafkas, Ebru; Paydaş Kargı, Sevgi

    2018-10-15

    Strawberry has a unique status within the fruit species in terms of health and taste related compounds. This experimental study concerned the application of a bio-stimulant at various drip irrigation levels (IR125, IR100, IR75 and IR50). The effects of the bio-stimulant (seaweed extract) on the eating quality, i.e., the taste-related (TSS, fructose, glucose, sucrose and citric, malic, l-ascorbic acid), and health-related (antioxidant activity, total phenol, myricetin and quercetin) compounds were studied in two strawberry cultivars. The 'Rubygem' with its higher sugar and lower acid content has been more preferable than the 'Kabarla' cultivar. The bio-stimulant contributes to taste by improving the TSS, fructose, sucrose and also to health by increasing the quercetin content of the fruit which is associated to the cardiovascular properties and cancer reducing agents. The experiment conducted revealed significant increases only in the TSS contents and antioxidant activity under the IR50 and IR75 deficit irrigation treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Interventions for the management of taste disturbances.

    PubMed

    Nagraj, Sumanth Kumbargere; Naresh, Shetty; Srinivas, Kandula; Renjith George, P; Shrestha, Ashish; Levenson, David; Ferraiolo, Debra M

    2014-11-26

    The sense of taste is very much essential to the overall health of the individual. It is a necessary component to enjoying one's food, which in turn provides nutrition to an individual. Any disturbance in taste perception can hamper the quality of life in such patients by influencing their appetite, body weight and psychological well-being. Taste disorders have been treated using different modalities of treatment and there is no consensus for the best intervention. Hence this Cochrane systematic review was undertaken. To assess the effects of interventions for the management of patients with taste disturbances. We searched the Cochrane Oral Health Group Trials Register (to 5 March 2014), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 1, 2014), MEDLINE via OVID (1948 to 5 March 2014), EMBASE via OVID (1980 to 5 March 2014), CINAHL via EBSCO (1980 to 5 March 2014) and AMED via OVID (1985 to 5 March 2014). We also searched the relevant clinical trial registries and conference proceedings from the International Association of Dental Research/American Association of Dental Research (to 5 March 2014), Association for Research in Otolaryngology (to 5 March 2014), the US National Institutes of Health Trials Register (to 5 March 2014), metaRegister of Controlled Trials (mRCT) (to 5 March 2014), World Health Organization's International Clinical Trials Registry Platform (WHO ICTRP) (to 5 March 2014) and International Federation of Pharmaceutical Manufacturers and Associations (IFPMA) Clinical Trials Portal (to 5 March 2014). We included all randomised controlled trials (RCTs) comparing any pharmacological agent with a control intervention or any non-pharmacological agent with a control intervention. We also included cross-over trials in the review. Two authors independently, and in duplicate, assessed the quality of trials and extracted data. Wherever possible, we contacted study authors for additional information. We collected adverse events information from the trials. We included nine trials (seven parallel and two cross-over RCTs) with 566 participants. We assessed three trials (33.3%) as having a low risk of bias, four trials (44.5%) at high risk of bias and two trials (22.2%) as having an unclear risk of bias. We only included studies on taste disorders in this review that were either idiopathic, or resulting from zinc deficiency or chronic renal failure.Of these, eight trials with 529 people compared zinc supplements to placebo for patients with taste disorders. The participants in two trials were children and adolescents with respective mean ages of 10 and 11.2 years and the other six trials had adult participants. Out of these eight, two trials assessed the patient reported outcome for improvement in taste acuity using zinc supplements (RR 1.45, 95% CI 1.0 to 2.1; very low quality evidence). We included three trials in the meta-analysis for overall taste improvement (effect size 0.44, 95% CI 0.23 to 0.65; moderate quality evidence). Two other trials described the results as taste acuity improvement and we conducted subgroup analyses due to clinical heterogeneity. One trial described the results as taste recognition improvement for each taste sensation and we analysed this separately. We also analysed one cross-over trial separately using the first half of the results. None of the zinc trials tested taste discrimination. Only one trial tested taste discrimination using acupuncture (effect size 2.80, 95% CI -1.18 to 6.78; low quality evidence).Out of the eight trials using zinc supplementation, four reported adverse events like eczema, nausea, abdominal pain, diarrhoea, constipation, decrease in blood iron, increase in blood alkaline phosphatase, and minor increase in blood triglycerides. No adverse events were reported in the acupuncture trial.None of the included trials could be included in the meta-analysis for health-related quality of life in taste disorder patients. We found very low quality evidence that was insufficient to conclude on the role of zinc supplements to improve taste perception by patients, however we found moderate quality evidence that zinc supplements improve overall taste improvement in patients with zinc deficiency/idiopathic taste disorders. We also found low quality evidence that zinc supplements improve taste acuity in zinc deficient/idiopathic taste disorders and very low quality evidence for taste recognition improvement in children with taste disorders secondary to chronic renal failure. We did not find any evidence to conclude the role of zinc supplements for improving taste discrimination, or any evidence addressing health-related quality of life due to taste disorders.We found low quality evidence that is not sufficient to conclude on the role of acupuncture for improving taste discrimination in cases of idiopathic dysgeusia (distortion of taste) and hypogeusia (reduced ability to taste). We were unable to draw any conclusions regarding the superiority of zinc supplements or acupuncture as none of the trials compared these interventions.

  9. BitterDB: a database of bitter compounds

    PubMed Central

    Wiener, Ayana; Shudler, Marina; Levit, Anat; Niv, Masha Y.

    2012-01-01

    Basic taste qualities like sour, salty, sweet, bitter and umami serve specific functions in identifying food components found in the diet of humans and animals, and are recognized by proteins in the oral cavity. Recognition of bitter taste and aversion to it are thought to protect the organism against the ingestion of poisonous food compounds, which are often bitter. Interestingly, bitter taste receptors are expressed not only in the mouth but also in extraoral tissues, such as the gastrointestinal tract, indicating that they may play a role in digestive and metabolic processes. BitterDB database, available at http://bitterdb.agri.huji.ac.il/bitterdb/, includes over 550 compounds that were reported to taste bitter to humans. The compounds can be searched by name, chemical structure, similarity to other bitter compounds, association with a particular human bitter taste receptor, and so on. The database also contains information on mutations in bitter taste receptors that were shown to influence receptor activation by bitter compounds. The aim of BitterDB is to facilitate studying the chemical features associated with bitterness. These studies may contribute to predicting bitterness of unknown compounds, predicting ligands for bitter receptors from different species and rational design of bitterness modulators. PMID:21940398

  10. Orally disintegrating dosage forms and taste-masking technologies; 2010.

    PubMed

    Douroumis, Dennis

    2011-05-01

    In the last decade the development of orally disintegrating tablets (ODTs) and thin-film platforms has grown enormously in the field of pharmaceutical industry. A wide variety of new masking technologies combined with the aforementioned platforms have been developed in order to mask the taste of bitter active substances and achieve patient compliance. The commercial success and viability of such products requires the development of robust formulations with excellent palatability, disintegration times, physicochemical stability and pharmacokinetic profiles. In this review, emerging taste-masking technologies applied to solid dosage form manufacturing are summarized. The unique features and principles of taste-masking approaches used with ODT platforms are discussed, including the advantages and limitations of each technology. A brief discussion is also included on the taste masking of thin-film technologies, owing to their similar applications and requirements. This review elucidates the unique features of current commercially available or highly promising ODT and thin-film technologies, along with taste-masking approaches used in the manufacturing of oral solid dosage forms. A better understanding of these drug delivery approaches will help researchers to select the appropriate platform, or to develop innovative products with improved safety, compliance and clinical value.

  11. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    PubMed

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  12. THE TASTE OF SUGARS

    PubMed Central

    McCaughey, Stuart A.

    2008-01-01

    Sugars evoke a distinctive perceptual quality (“sweetness” in humans) and are generally highly preferred. The neural basis for these phenomena is reviewed for rodents, in which detailed electrophysiological measurements have been made. A receptor has been identified that binds sweeteners and activates G-protein-mediated signaling in taste receptor cells, which leads to changes in neural firing rates in the brain, where perceptions of taste quality, intensity, and palatability are generated. Most cells in gustatory nuclei are broadly-tuned, so quality perception presumably arises from patterns of activity across neural populations. However, some manipulations affect only the most sugar-oriented cells, making it useful to consider them as a distinct neural subtype. Quality perception may also arise partly due to temporal patterns of activity to sugars, especially within sugar-oriented cells that give large but delayed responses. Non-specific gustatory neurons that are excited by both sugars and unpalatable stimuli project to ventral forebrain areas, where neural responses provide a closer match with behavioral preferences. This transition likely involves opposing excitatory and inhibitory influences by different subgroups of gustatory cells. Sweeteners are generally preferred over water, but the strength of this preference can vary across time or between individuals, and higher preferences for sugars are often associated with larger taste-evoked responses. PMID:18499254

  13. Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid.

    PubMed

    El Shahawy, Maha; Reibring, Claes-Göran; Neben, Cynthia L; Hallberg, Kristina; Marangoni, Pauline; Harfe, Brian D; Klein, Ophir D; Linde, Anders; Gritli-Linde, Amel

    2017-07-01

    The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH) and retinoic acid (RA) signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity.

  14. Bitter taste receptor T2R1 activities were compatible with behavioral sensitivity to bitterness in chickens.

    PubMed

    Hirose, Nozomi; Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2015-05-01

    Clarification of the mechanism of the sense of taste in chickens will provide information useful for creating and improving new feedstuffs for chickens, because the character of the taste receptors in oral tissues affects feeding behavior in animals. In this study, we focused on the sensitivity to bitterness in chickens. We cloned one of the bitter taste receptors, T2R1, from the chicken palate, constructed several biosensor-cells expressing chicken T2R1 (cT2R1), and determined a highly sensitive biosensor of cT2R1 among them. By using Ca(2+) imaging methods, we identified two agonists of cT2R1, dextromethorphan (Dex) and diphenidol (Dip). Dex was a new agonist of cT2R1 that was more potent than Dip. In a behavioral drinking study, the intake volumes of solutions of these compounds were significantly lower than that of water in chickens. These aversive concentrations were identical to the concentrations that could activate cT2R1 in a cell-based assay. These results suggest that the cT2R1 activities induced by these agonists are linked to behavioral sensitivity to bitterness in chickens. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Disruption in the relationship between blood pressure and salty taste thresholds among overweight and obese children

    PubMed Central

    Bobowski, Nuala K.

    2015-01-01

    Background Prevalence of high blood pressure (BP) among American children has increased over the past two decades, due in part to increasing rates of obesity and excessive dietary salt intake. Objective We tested the hypotheses that the relationships among BP, salty taste sensitivity, and salt intake differ between normal-weight and overweight/obese children. Design In an observational study, sodium chloride (NaCl) and monosodium glutamate (MSG) taste detection thresholds were measured using the Monell two-alternative, forced-choice, paired-comparison tracking method. Weight and BP were measured, and salt intake was determined by 24-hour dietary recall. Participants/Setting Eight- to 14-year-olds (N=97; 52% overweight or obese) from the Philadelphia area completed anthropometrics and BP measurements; 97% completed one or both thresholds. Seventy-six percent provided valid dietary recall data. Testing was completed between December 2011 and August 2012. Main outcome measures NaCl and MSG detection thresholds, BP, and dietary salt intake. Statistical analyses Outcome measures were compared between normal-weight and overweight/obese children with t-tests. Relationships among outcome measures within groups were examined with Pearson correlations, and multiple regression analysis was used to examine the relationship between BP and thresholds, controlling for age, BMI-Z score, and dietary salt intake. Results Salt and MSG thresholds were positively correlated (r(71)=0.30, p=0.01) and did not differ between body-weight groups (p>0.20). Controlling for age, BMI-Z score, and salt intake, systolic BP was associated with NaCl thresholds among normal-weight children (p=0.01), but not among overweight/obese children. All children consumed excess salt (>8 g/day). Grain and meat products were the primary source of dietary sodium. Conclusions The apparent disruption in the relationship between salty taste response and BP among overweight/obese children suggests the relationship may be influenced by body weight. Further research is warranted to explore this relationship as a potential measure to prevent development of hypertension. PMID:25843808

  16. Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex.

    PubMed

    Ramírez-Lugo, Leticia; Peñas-Rincón, Ana; Ángeles-Durán, Sandybel; Sotres-Bayon, Francisco

    2016-10-12

    The ability to select an appropriate behavioral response guided by previous emotional experiences is critical for survival. Although much is known about brain mechanisms underlying emotional associations, little is known about how these associations guide behavior when several choices are available. To address this, we performed local pharmacological inactivations of several cortical regions before retrieval of an aversive memory in choice-based versus no-choice-based conditioned taste aversion (CTA) tasks in rats. Interestingly, we found that inactivation of the orbitofrontal cortex (OFC), but not the dorsal or ventral medial prefrontal cortices, blocked retrieval of choice CTA. However, OFC inactivation left retrieval of no-choice CTA intact, suggesting its role in guiding choice, but not in retrieval of CTA memory. Consistently, OFC activity increased in the choice condition compared with no-choice, as measured with c-Fos immunolabeling. Notably, OFC inactivation did not affect choice behavior when it was guided by innate taste aversion. Consistent with an anterior insular cortex (AIC) involvement in storing taste memories, we found that AIC inactivation impaired retrieval of both choice and no-choice CTA. Therefore, this study provides evidence for OFC's role in guiding choice behavior and shows that this is dissociable from AIC-dependent taste aversion memory. Together, our results suggest that OFC is required and recruited to guide choice selection between options of taste associations relayed from AIC. Survival and mental health depend on being able to choose stimuli not associated with danger. This is particularly important when danger is associated with stimuli that we ingest. Although much is known about the brain mechanisms that underlie associations with dangerous taste stimuli, very little is known about how these stored emotional associations guide behavior when it involves choice. By combining pharmacological and immunohistochemistry tools with taste-guided tasks, our study provides evidence for the key role of orbitofrontal cortex activity in choice behavior and shows that this is dissociable from the adjacent insular cortex-dependent taste aversion memory. Understanding the brain mechanisms that underlie the impact that emotional associations have on survival choice behaviors may lead to better treatments for mental disorders characterized by emotional decision-making deficits. Copyright © 2016 the authors 0270-6474/16/3610574-10$15.00/0.

  17. The Bad Taste of Medicines: Overview of Basic Research on Bitter Taste

    PubMed Central

    Mennella, Julie A.; Spector, Alan C.; Reed, Danielle R.; Coldwell, Susan E.

    2013-01-01

    Background Many active pharmaceutical ingredients taste bitter and thus are aversive to children, as well as many adults. Encapsulation of the medicine in pill or tablet form, an effective method for adults to avoid the unpleasant taste, is problematic for children. Many children cannot or will not swallow solid dosage forms. Objective This review highlights basic principles of gustatory function, with a special focus on the science of bitter taste, derived from studies of animal models and human psychophysics. We focus on the set of genes that encode the proteins that function as bitter receptors, as well as the cascade of events that lead to multidimensional aspects of taste function, highlighting the role that animal models played in these discoveries. We also summarize psychophysical approaches to studying bitter taste in adult and pediatric populations, highlighting evidence of the similarities and differences in bitter taste perception and acceptance between adults and children and drawing on useful strategies from animal models. Results Medicine often tastes bitter, and because children are more bitter sensitive than are adults, this creates problems with compliance. Bitter arises from stimulating receptors in taste receptor cells, with signals processed in the taste bud and relayed to the brain. However, there are many gaps in our understanding of how best to measure bitterness and how to ameliorate it, including whether it is more efficiently addressed at the level of receptor and sensory signaling, at the level of central processing, or by masking techniques. All methods of measuring responsiveness to bitter ligands—in animal models, through human psychophysics, or with “electronic tongues”—have limitations. Conclusions Better-tasting medications may enhance pediatric adherence to drug therapy. Sugars, acids, salt, and other substances reduce perceived bitterness of several pharmaceuticals, and although pleasant flavorings may help children consume some medicines, they often are not effective in suppressing bitter tastes. Further development of psychophysical tools for children will help us better understand their sensory worlds. Multiple testing strategies will help us refine methods to assess acceptance and compliance/adherence by various pediatric populations. Research involving animal models, in which the gustatory system can be more invasively manipulated, can elucidate mechanisms, ultimately providing potential targets. These approaches, combined with new technologies and guided by findings from clinical studies, will potentially lead to effective ways to enhance drug acceptance and compliance in pediatric populations. PMID:23886820

  18. Ligand binding modes from low resolution GPCR models and mutagenesis: chicken bitter taste receptor as a test-case.

    PubMed

    Di Pizio, Antonella; Kruetzfeldt, Louisa-Marie; Cheled-Shoval, Shira; Meyerhof, Wolfgang; Behrens, Maik; Niv, Masha Y

    2017-08-15

    Bitter taste is one of the basic taste modalities, warning against consuming potential poisons. Bitter compounds activate members of the bitter taste receptor (Tas2r) subfamily of G protein-coupled receptors (GPCRs). The number of functional Tas2rs is species-dependent. Chickens represent an intriguing minimalistic model, because they detect the bitter taste of structurally different molecules with merely three bitter taste receptor subtypes. We investigated the binding modes of several known agonists of a representative chicken bitter taste receptor, ggTas2r1. Because of low sequence similarity between ggTas2r1 and crystallized GPCRs (~10% identity, ~30% similarity at most), the combination of computational approaches with site-directed mutagenesis was used to characterize the agonist-bound conformation of ggTas2r1 binding site between TMs 3, 5, 6 and 7. We found that the ligand interactions with N93 in TM3 and/or N247 in TM5, combined with hydrophobic contacts, are typically involved in agonist recognition. Next, the ggTas2r1 structural model was successfully used to identify three quinine analogues (epiquinidine, ethylhydrocupreine, quinidine) as new ggTas2r1 agonists. The integrated approach validated here may be applicable to additional cases where the sequence identity of the GPCR of interest and the existing experimental structures is low.

  19. The effect of packaging, branding and labeling on the experience of unhealthy food and drink: A review.

    PubMed

    Skaczkowski, Gemma; Durkin, Sarah; Kashima, Yoshihisa; Wakefield, Melanie

    2016-04-01

    Extrinsic information, such as packaging, branding and labeling, can significantly alter our experience of food and drink through a process of 'sensation transfer', in which extrinsic attributes are transferred to our sensory perception of a product. The aim of this review was to summarize the literature on sensation transfer for unhealthy food and drink and to investigate personal factors that may influence its occurrence. Seventy-eight studies in 69 articles, published between 1966 and 2014 were identified which evaluated sensation transfer. Sixty-five of the 78 studies found an effect of extrinsic information on taste and/or hedonic outcomes, providing strong evidence for sensation transfer. The majority of studies identified that specific extrinsic information influenced particular products or specific sensory outcomes. Study designs incorporating a measure of expectation allowed a tighter assessment of sensation transfer. The results of such studies confirm the hypothesis that these effects occur when extrinsic information elicits an expectation of product taste, which then forms a framework to guide sensory perception. These studies also support the hypothesis that where sensation transfer does not occur, this is likely due to a mismatch between the expectations elicited by the extrinsic information and the sensory characteristics being measured, or the failure of the extrinsic information to elicit an expectation of taste for that product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. I. Effect on TRC volume and Na+ flux.

    PubMed

    Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; DeSimone, John A

    2005-06-01

    The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by the measurement of intracellular Na(+) activity ([Na(+)](i)) in polarized rat fungiform taste receptor cells (TRCs) using fluorescence imaging and by chorda tympani (CT) taste nerve recordings. CT responses were monitored during lingual stimulation with ethanol solutions containing NaCl or KCl. CT responses were recorded in the presence of Bz (a specific blocker of the epithelial Na(+) channel [ENaC]) or the vanilloid receptor-1 (VR-1) antagonists capsazepine or SB-366791, which also block the Bz-insensitive salt taste receptor, a VR-1 variant. CT responses were recorded at 23 degrees C or 42 degrees C (a temperature at which the VR-1 variant salt taste receptor activity is maximally enhanced). In the absence of permeable cations, ethanol induced a transient decrease in TRC volume, and stimulating the tongue with ethanol solutions without added salt elicited only transient phasic CT responses that were insensitive to elevated temperature or SB-366791. Preshrinking TRCs in vivo with hypertonic mannitol (0.5 M) attenuated the magnitude of the phasic CT response, indicating that in the absence of mineral salts, transient phasic CT responses are related to the ethanol-induced osmotic shrinkage of TRCs. In the presence of mineral salts, ethanol increased the Bz-insensitive apical cation flux in TRCs without a change in cell volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a transient phasic component and a sustained tonic component. Ethanol increased the Bz-insensitive NaCl CT response. This effect was further enhanced by elevating the temperature from 23 degrees C to 42 degrees C, and was blocked by SB-366791. We conclude that in the presence of mineral salts, ethanol modulates the Bz-insensitive VR-1 variant salt taste receptor.

  1. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  2. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  3. Chemosensory interaction: acquired olfactory impairment is associated with decreased taste function.

    PubMed

    Landis, Basile N; Scheibe, Mandy; Weber, Cornelia; Berger, Robert; Brämerson, Annika; Bende, Mats; Nordin, Steven; Hummel, Thomas

    2010-08-01

    Olfaction, taste and trigeminal function are three distinct modalities. However, in daily life they are often activated concomitantly. In health and disease, it has been shown that in two of these senses, the trigeminal and olfactory senses, modification of one sense leads to changes in the other sense and vice versa. The objective of the study was to investigate whether and (if so) how, the third modality, taste, is influenced by olfactory impairment. We tested 210 subjects with normal (n = 107) or impaired (n = 103) olfactory function for their taste identification capacities. Validated tests were used for olfactory and gustatory testing (Sniffin' Sticks, Taste Strips). In an additional experiment, healthy volunteers underwent reversible olfactory cleft obstruction to investigate short-time changes of gustatory function after olfactory alteration. Mean gustatory identification (taste strip score) for the subjects with impaired olfaction was 19.4 +/- 0.6 points and 22.9 +/- 0.5 points for those with normal olfactory function (t = 4.6, p < 0.001). The frequencies of both, smell and taste impairments interacted significantly (Chi(2), F = 16.4, p < 0.001), and olfactory and gustatory function correlated (r (210) = 0.30, p < 0.001). Neither age nor olfactory impairment cause effects interfered with this olfactory-gustatory interaction. In contrast, after short-lasting induced olfactory decrease, gustatory function remained unchanged. The present study suggests that longstanding impaired olfactory function is associated with decreased gustatory function. These findings seem to extend previously described mutual chemosensory interactions also to smell and taste. It further raises the question whether chemical senses in general decrease mutually after acquired damage.

  4. Activation of human bitter taste receptors by polymethoxylated flavonoids.

    PubMed

    Kuroda, Yuki; Ikeda, Riko; Yamazaki, Toyomi; Ito, Keisuke; Uda, Kazunari; Wakabayashi, Keiji; Watanabe, Tatsuo

    2016-10-01

    Tangeretin and nobiletin are polymethoxylated flavonoids in citrus peel. Both tangeretin and nobiletin are bitter; however, their bitterness has not been evaluated using human bitter taste receptors (hTAS2Rs). We screened 25 kinds of hTAS2Rs and found that hTAS2R14 and hTAS2R46 received both compounds.

  5. Post-Acquisition Release of Glutamate and Norepinephrine in the Amygdala Is Involved in Taste-Aversion Memory Consolidation

    ERIC Educational Resources Information Center

    Guzman-Ramos, Kioko; Osorio-Gomez, Daniel; Moreno-Castilla, Perla; Bermudez-Rattoni, Federico

    2012-01-01

    Amygdala activity mediates the acquisition and consolidation of emotional experiences; we have recently shown that post-acquisition reactivation of this structure is necessary for the long-term storage of conditioned taste aversion (CTA). However, the specific neurotransmitters involved in such reactivation are not known. The aim of the present…

  6. The taste of KCl - What a difference a sugar makes.

    PubMed

    Ben Abu, Natalie; Harries, Daniel; Voet, Hillary; Niv, Masha Y

    2018-07-30

    Dramatic increase in NaCl consumption lead to sodium intake beyond health guidelines. KCl substitution helps reduce sodium intake but results in a bitter-metallic off-taste. Two disaccharides, trehalose and sucrose, were tested in order to untangle the chemical (increase in effective concentration of KCl due to sugar addition) from the sensory effects. The bitter-metallic taste of KCl was reduced by these sugars, while saltiness was enhanced or unaltered. The perceived sweetness of sugar, regardless of its type and concentration, was an important factor in KCl taste modulation. Though KCl was previously shown to increase the chemical activity of trehalose but not of sucrose, we found that it suppressed the perceived sweetness of both sugars. Therefore, sensory integration was the dominant factor in the tested KCl-sugar combinations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Sweet taste transduction in hamster: role of protein kinases.

    PubMed

    Varkevisser, B; Kinnamon, S C

    2000-05-01

    Two different second-messenger pathways have been implicated in sweet taste transduction: sugars produce cyclic AMP (cAMP), whereas synthetic sweeteners stimulate production of inositol 1,4, 5-tris-phosphate (IP(3)) and diacylglycerol (DAG). Both sugars and sweeteners depolarize taste cells by blocking the same resting K(+) conductance, but the intermediate steps in the transduction pathways have not been examined. In this study, the loose-patch recording technique was used to examine the role of protein kinases and other downstream regulatory proteins in the two sweet transduction pathways. Bursts of action currents were elicited from approximately 35% of fungiform taste buds in response to sucrose (200 mM) or NC-00274-01 (NC-01, 200 microM), a synthetic sweetener. To determine whether protein kinase C (PKC) plays a role in sweet transduction, taste buds were stimulated with the PKC activator PDBu (10 microM). In all sweet-responsive taste buds tested (n = 11), PDBu elicited burst of action currents. In contrast, PDBu elicited responses in only 4 of 19 sweet-unresponsive taste buds. Inhibition of PKC by bisindolylmaleimide I (0.15 microM) resulted in inhibition of the NC-01 response by approximately 75%, whereas the response to sucrose either increased or remained unchanged. These data suggest that activation of PKC is required for the transduction of synthetic sweeteners. To determine whether protein kinase A (PKA) is required for the transduction of sugars, sweet responses were examined in the presence of the membrane-permeant PKA inhibitor H-89 (10 and 19 microM). Surprisingly, H-89 did not decrease responses to either sucrose or NC-01. Instead, responses to both compounds were increased in the presence of the inhibitor. These data suggest that PKA is not required for the transduction of sugars, but may play a modulatory role in both pathways, such as adaptation of the response. We also examined whether Ca(2+)-calmodulin dependent cAMP phosphodiesterase (CaM-PDE) plays a role in sweet taste transduction, by examining responses to sucrose and synthetic sweeteners in the presence of the CaM-PDE inhibitor W-7 (100 microM). Inhibition resulted in an increase in the response to sucrose, whereas the response to NC-01 remained unchanged. These data suggest that the pathways for sugars and sweeteners are negatively coupled; the Ca(2+) that is released from intracellular stores during stimulation with synthetic sweeteners may inhibit the response to sucrose by activation of CaM-PDE.

  8. Low-income, pregnant, African American women's views on physical activity and diet.

    PubMed

    Groth, Susan W; Morrison-Beedy, Dianne

    2013-01-01

    This research was conducted to gain insight into how low-income, pregnant, African American women viewed physical activity and approached nutrition during pregnancy. Three focus groups with a total of 26 women were conducted utilizing open-ended questions related to physical activity and diet during pregnancy. Content analysis was used to analyze the verbatim transcripts. Groups were compared and contrasted at the within-group and between-group levels to identify themes. Two themes that related to physical activity during pregnancy were identified: 1) fatigue and low energy dictate activity and 2) motivation to exercise is not there. Three themes were identified that related to diet: 1) despite best intentions, appetite, taste, and cravings drive eating behavior; 2) I'll decide for myself what to eat; and 3) eating out is a way of life. Women reported that being physically active and improving their diets was not easy. Women indicated that their levels of physical activity had decreased since becoming pregnant. Attempts at improving their diets were undermined by frequenting fast food restaurants and cravings for highly dense, palatable foods. Women ceded to the physical aspects of pregnancy, often choosing to ignore the advice of others. A combination of low levels of physical activity and calorie-dense diets increased the risk of excessive gestational weight gain in this sample of women, consequently increasing the risk for weight retention after pregnancy. Health care providers can promote healthy eating and physical activity by building on women's being "in tune with and listening to" their bodies. They can query women about their beliefs regarding physical activity and diet and offer information to ensure understanding of what contributes to healthy pregnancy outcomes. Intervention can focus on factors such as cravings and what tastes good, suggesting ways to manage pregnancy effects within a healthy diet. © 2013 by the American College of Nurse-Midwives.

  9. A Physiologic Role for Serotonergic Transmission in Adult Rat Taste Buds

    PubMed Central

    Jaber, Luc; Zhao, Fang-li; Kolli, Tamara; Herness, Scott

    2014-01-01

    Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the afferent signal. Serotonin may thus play a major modulatory role within peripheral taste in shaping the afferent taste signals prior to their transmission across gustatory nerves. PMID:25386961

  10. Spatiotemporal Coding of Individual Chemicals by the Gustatory System

    PubMed Central

    Reiter, Sam; Campillo Rodriguez, Chelsey; Sun, Kui

    2015-01-01

    Four of the five major sensory systems (vision, olfaction, somatosensation, and audition) are thought to use different but partially overlapping sets of neurons to form unique representations of vast numbers of stimuli. The only exception is gustation, which is thought to represent only small numbers of basic taste categories. However, using new methods for delivering tastant chemicals and making electrophysiological recordings from the tractable gustatory system of the moth Manduca sexta, we found chemical-specific information is as follows: (1) initially encoded in the population of gustatory receptor neurons as broadly distributed spatiotemporal patterns of activity; (2) dramatically integrated and temporally transformed as it propagates to monosynaptically connected second-order neurons; and (3) observed in tastant-specific behavior. Our results are consistent with an emerging view of the gustatory system: rather than constructing basic taste categories, it uses a spatiotemporal population code to generate unique neural representations of individual tastant chemicals. SIGNIFICANCE STATEMENT Our results provide a new view of taste processing. Using a new, relatively simple model system and a new set of techniques to deliver taste stimuli and to examine gustatory receptor neurons and their immediate followers, we found no evidence for labeled line connectivity, or basic taste categories such as sweet, salty, bitter, and sour. Rather, individual tastant chemicals are represented as patterns of spiking activity distributed across populations of receptor neurons. These representations are transformed substantially as multiple types of receptor neurons converge upon follower neurons, leading to a combinatorial coding format that uniquely, rapidly, and efficiently represents individual taste chemicals. Finally, we found that the information content of these neurons can drive tastant-specific behavior. PMID:26338341

  11. Molecular Features Underlying Selectivity in Chicken Bitter Taste Receptors.

    PubMed

    Di Pizio, Antonella; Shy, Nitzan; Behrens, Maik; Meyerhof, Wolfgang; Niv, Masha Y

    2018-01-01

    Chickens sense the bitter taste of structurally different molecules with merely three bitter taste receptors ( Gallus gallus taste 2 receptors, ggTas2rs), representing a minimal case of bitter perception. Some bitter compounds like quinine, diphenidol and chlorpheniramine, activate all three ggTas2rs, while others selectively activate one or two of the receptors. We focus on bitter compounds with different selectivity profiles toward the three receptors, to shed light on the molecular recognition complexity in bitter taste. Using homology modeling and induced-fit docking simulations, we investigated the binding modes of ggTas2r agonists. Interestingly, promiscuous compounds are predicted to establish polar interactions with position 6.51 and hydrophobic interactions with positions 3.32 and 5.42 in all ggTas2rs; whereas certain residues are responsible for receptor selectivity. Lys 3.29 and Asn 3.36 are suggested as ggTas2r1-specificity-conferring residues; Gln 6.55 as ggTas2r2-specificity-conferring residue; Ser 5.38 and Gln 7.42 as ggTas2r7-specificity conferring residues. The selectivity profile of quinine analogs, quinidine, epiquinidine and ethylhydrocupreine, was then characterized by combining calcium-imaging experiments and in silico approaches. ggTas2r models were used to virtually screen BitterDB compounds. ~50% of compounds known to be bitter to human are likely to be bitter to chicken, with 25, 20, 37% predicted to be ggTas2r1, ggTas2r2, ggTas2r7 agonists, respectively. Predicted ggTas2rs agonists can be tested with in vitro and in vivo experiments, contributing to our understanding of bitter taste in chicken and, consequently, to the improvement of chicken feed.

  12. Spatiotemporal Coding of Individual Chemicals by the Gustatory System.

    PubMed

    Reiter, Sam; Campillo Rodriguez, Chelsey; Sun, Kui; Stopfer, Mark

    2015-09-02

    Four of the five major sensory systems (vision, olfaction, somatosensation, and audition) are thought to use different but partially overlapping sets of neurons to form unique representations of vast numbers of stimuli. The only exception is gustation, which is thought to represent only small numbers of basic taste categories. However, using new methods for delivering tastant chemicals and making electrophysiological recordings from the tractable gustatory system of the moth Manduca sexta, we found chemical-specific information is as follows: (1) initially encoded in the population of gustatory receptor neurons as broadly distributed spatiotemporal patterns of activity; (2) dramatically integrated and temporally transformed as it propagates to monosynaptically connected second-order neurons; and (3) observed in tastant-specific behavior. Our results are consistent with an emerging view of the gustatory system: rather than constructing basic taste categories, it uses a spatiotemporal population code to generate unique neural representations of individual tastant chemicals. Our results provide a new view of taste processing. Using a new, relatively simple model system and a new set of techniques to deliver taste stimuli and to examine gustatory receptor neurons and their immediate followers, we found no evidence for labeled line connectivity, or basic taste categories such as sweet, salty, bitter, and sour. Rather, individual tastant chemicals are represented as patterns of spiking activity distributed across populations of receptor neurons. These representations are transformed substantially as multiple types of receptor neurons converge upon follower neurons, leading to a combinatorial coding format that uniquely, rapidly, and efficiently represents individual taste chemicals. Finally, we found that the information content of these neurons can drive tastant-specific behavior. Copyright © 2015 the authors 0270-6474/15/3512309-13$15.00/0.

  13. Restoration of quinine-stimulated Fos-immunoreactive neurons in the central nucleus of the amygdala and gustatory cortex following reinnervation or cross-reinnervation of the lingual taste nerves in rats.

    PubMed

    King, Camille Tessitore; Garcea, Mircea; Spector, Alan C

    2014-08-01

    Remarkably, when lingual gustatory nerves are surgically rerouted to inappropriate taste fields in the tongue, some taste functions recover. We previously demonstrated that quinine-stimulated oromotor rejection reflexes and neural activity (assessed by Fos immunoreactivity) in subregions of hindbrain gustatory nuclei were restored if the posterior tongue, which contains receptor cells that respond strongly to bitter compounds, was cross-reinnervated by the chorda tympani nerve. Such functional recovery was not seen if instead, the anterior tongue, where receptor cells are less responsive to bitter compounds, was cross-reinnervated by the glossopharyngeal nerve, even though this nerve typically responds robustly to bitter substances. Thus, recovery depended more on the taste field being reinnervated than on the nerve itself. Here, the distribution of quinine-stimulated Fos-immunoreactive neurons in two taste-associated forebrain areas was examined in these same rats. In the central nucleus of the amygdala (CeA), a rostrocaudal gradient characterized the normal quinine-stimulated Fos response, with the greatest number of labeled cells situated rostrally. Quinine-stimulated neurons were found throughout the gustatory cortex, but a "hot spot" was observed in its anterior-posterior center in subregions approximating the dysgranular/agranular layers. Fos neurons here and in the rostral CeA were highly correlated with quinine-elicited gapes. Denervation of the posterior tongue eliminated, and its reinnervation by either nerve restored, numbers of quinine-stimulated labeled cells in the rostralmost CeA and in the subregion approximating the dysgranular gustatory cortex. These results underscore the remarkable plasticity of the gustatory system and also help clarify the functional anatomy of neural circuits activated by bitter taste stimulation. © 2014 Wiley Periodicals, Inc.

  14. Impaired associative taste learning and abnormal brain activation in kinase-defective eEF2K mice.

    PubMed

    Gildish, Iness; Manor, David; David, Orit; Sharma, Vijendra; Williams, David; Agarwala, Usha; Wang, Xuemin; Kenney, Justin W; Proud, Chris G; Rosenblum, Kobi

    2012-02-24

    Memory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular consolidation mechanisms involved in translation initiation and elongation have previously been studied in the cortex using taste-learning paradigms. For example, the levels of phosphorylation of eukaryotic elongation factor 2 (eEF2) were found to be correlated with taste learning in the gustatory cortex (GC), minutes following learning. In order to isolate the role of the eEF2 phosphorylation state at Thr-56 in both molecular and system consolidation, we analyzed cortical-dependent taste learning in eEF2K (the only known kinase for eEF2) ki mice, which exhibit reduced levels of eEF2 phosphorylation but normal levels of eEF2 and eEF2K. These mice exhibit clear attenuation of cortical-dependent associative, but not of incidental, taste learning. In order to gain a better understanding of the underlying mechanisms, we compared brain activity as measured by MEMRI (manganese-enhanced magnetic resonance imaging) between eEF2K ki mice and WT mice during conditioned taste aversion (CTA) learning and observed clear differences between the two but saw no differences under basal conditions. Our results demonstrate that adequate levels of phosphorylation of eEF2 are essential for cortical-dependent associative learning and suggest that malfunction of memory processing at the systems level underlies this associative memory impairment. © 2012 Cold Spring Harbor Laboratory Press

  15. Investigating the Predictive Value of Functional MRI to Appetitive and Aversive Stimuli: A Pattern Classification Approach.

    PubMed

    McCabe, Ciara; Rocha-Rego, Vanessa

    2016-01-01

    Dysfunctional neural responses to appetitive and aversive stimuli have been investigated as possible biomarkers for psychiatric disorders. However it is not clear to what degree these are separate processes across the brain or in fact overlapping systems. To help clarify this issue we used Gaussian process classifier (GPC) analysis to examine appetitive and aversive processing in the brain. 25 healthy controls underwent functional MRI whilst seeing pictures and receiving tastes of pleasant and unpleasant food. We applied GPCs to discriminate between the appetitive and aversive sights and tastes using functional activity patterns. The diagnostic accuracy of the GPC for the accuracy to discriminate appetitive taste from neutral condition was 86.5% (specificity = 81%, sensitivity = 92%, p = 0.001). If a participant experienced neutral taste stimuli the probability of correct classification was 92. The accuracy to discriminate aversive from neutral taste stimuli was 82.5% (specificity = 73%, sensitivity = 92%, p = 0.001) and appetitive from aversive taste stimuli was 73% (specificity = 77%, sensitivity = 69%, p = 0.001). In the sight modality, the accuracy to discriminate appetitive from neutral condition was 88.5% (specificity = 85%, sensitivity = 92%, p = 0.001), to discriminate aversive from neutral sight stimuli was 92% (specificity = 92%, sensitivity = 92%, p = 0.001), and to discriminate aversive from appetitive sight stimuli was 63.5% (specificity = 73%, sensitivity = 54%, p = 0.009). Our results demonstrate the predictive value of neurofunctional data in discriminating emotional and neutral networks of activity in the healthy human brain. It would be of interest to use pattern recognition techniques and fMRI to examine network dysfunction in the processing of appetitive, aversive and neutral stimuli in psychiatric disorders. Especially where problems with reward and punishment processing have been implicated in the pathophysiology of the disorder.

  16. Composition, Taste, Aroma, and Antioxidant Activity of Solidified Noncentrifugal Brown Sugars Prepared from Whole Stalk and Separated Pith of Sugarcane (Saccharum officinarum L.).

    PubMed

    Takahashi, Makoto; Ishmael, Mutanda; Asikin, Yonathan; Hirose, Naoto; Mizu, Masami; Shikanai, Takesi; Tamaki, Hajime; Wada, Koji

    2016-10-25

    In this study, 2 types of solidified noncentrifugal brown sugars (W-NCS and P-NCS) were prepared from the whole stalk and separated pith, respectively, of raw sugarcane (Saccharum officinarum L.). These products were discriminated in terms of their quality attributes, including color, sugars and minerals composition, taste, aroma, and antioxidant activity. The brown color of P-NCS was clearly different compared with that of W-NCS with a color difference value (ΔE * ) of 9.36. There was no difference in the sugars and minerals composition between the 2 types of sugar, which led to very similar taste profiles. However, P-NCS had a weaker aroma intensity than W-NCS did. Moreover, P-NCS retained more than 60% of the antioxidant activity of W-NCS. The information gleaned from this study might be used to select appropriate end-uses for these 2 types of sugars. © 2016 Institute of Food Technologists®.

  17. Effects of glycemic control on saliva flow rates and protein composition in non-insulin-dependent diabetes mellitus.

    PubMed

    Dodds, M W; Dodds, A P

    1997-04-01

    The objective of this study was to determine whether improvements in the level of diabetic control in a group of subjects with poorly controlled non-insulin-dependent diabetes mellitus influence salivary output and composition. Repeated whole unstimulated and stimulated parotid saliva samples were collected from diabetic patients attending an outpatient diabetes education program and a matched nondiabetic control group. Saliva was analyzed for flow rates, parotid protein concentration and composition, and amylase activity. Subjective responses to questions about salivary hypofunction were tested. There were no significant differences in whole unstimulated and stimulated parotid flow rates or stimulated parotid protein concentration and composition between diabetics and the control group. Amylase activity was higher in diabetics and decreased with improved glycemic control. Subjects reporting taste alterations had higher mean blood glucose levels than subjects with normal taste sensation. Poorly controlled non-insulin-dependent diabetes mellitus has no influence on saliva output, although amylase activity may be elevated, and there may be taste alterations.

  18. The neural basis of illusory gustatory sensations: two rare cases of lexical-gustatory synaesthesia.

    PubMed

    Jones, C L; Gray, M A; Minati, L; Simner, J; Critchley, H D; Ward, J

    2011-09-01

    Lexical-gustatory synaesthesia is a rare phenomenon in which the individual experiences flavour sensations when they read, hear, or imagine words. In this study, we provide insight into the neural basis of this form of synaesthesia using functional neuroimaging. Words known to evoke pleasant, neutral, and unpleasant synaesthetic tastes and synaesthetically tasteless words were presented to two lexical-gustatory synaesthetes, during fMRI scanning. Ten non-synaesthetic participants were also scanned on the same list of words. The synaesthetic brain displayed a different pattern of activity to words when compared to the non-synaesthetes, with insula activation related to viewing words that elicited tastes that have an associated emotional valence (i.e., pleasant or unpleasant tastes). The subjective intensity of the synaesthesia was correlated with activity in the medial parietal lobes (precuneus/retrosplenial cortex), which are implicated in polymodal imagery and self-directed thought. This region has also previously been activated in studies of lexical-colour synaesthesia, suggesting its role may not be limited to the type of synaesthesia explored here. ©2011 The British Psychological Society.

  19. Promiscuity and selectivity of bitter molecules and their receptors.

    PubMed

    Di Pizio, Antonella; Niv, Masha Y

    2015-07-15

    Bitter taste is essential for survival, as it protects against consuming poisonous compounds, which are often bitter. Bitter taste perception is mediated by bitter taste receptors (TAS2Rs), a subfamily of G-protein coupled receptors (GPCRs). The number of TAS2R subtypes is species-dependent, and varies from 3 in chicken to 50 in frog. TAS2Rs present an intriguing case for studying promiscuity: some of the receptors are still orphan, or have few known agonists, while others can be activated by numerous, structurally dissimilar compounds. The ligands also vary in the repertoire of TAS2Rs that they activate: some bitter compounds are selective toward a single TAS2R, while others activate multiple TAS2Rs. Selectivity/promiscuity profile of bitter taste receptors and their compounds was explored by a chemoinformatic approach. TAS2R-promiscuous and TAS2R-selective bitter molecules were found to differ in chemical features, such as AlogP, E-state, total charge, number of rings, globularity, and heavy atom count. This allowed the prediction of bitter ligand selectivity toward TAS2Rs. Interestingly, while promiscuous TAS2Rs are activated by both TAS2R-promiscuous and TAS2R-selective compounds, almost all selective TAS2Rs in human are activated by promiscuous compounds, which are recognized by other TAS2Rs anyway. Thus, unique ligands, that may have been the evolutionary driving force for development of selective TAS2Rs, still need to be unraveled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Influence of stimulus and oral adaptation temperature on gustatory responses in central taste-sensitive neurons

    PubMed Central

    Li, Jinrong

    2015-01-01

    The temperature of taste stimuli can modulate gustatory processing. Perceptual data indicate that the adapted temperature of oral epithelia also influences gustation, although little is known about the neural basis of this effect. Here, we electrophysiologically recorded orosensory responses (spikes) to 25°C (cool) and 35°C (warm) solutions of sucrose (0.1 and 0.3 M), NaCl (0.004, 0.1, and 0.3 M), and water from taste-sensitive neurons in the nucleus of the solitary tract in mice under varied thermal adaptation of oral epithelia. Conditions included presentation of taste stimuli isothermal to adaptation temperatures of 25°C (constant cooling) and 35°C (constant warming), delivery of 25°C stimuli following 35°C adaptation (relative cooling), and presentation of 35°C stimuli following 25°C adaptation (relative warming). Responses to sucrose in sucrose-oriented cells (n = 15) were enhanced under the constant and relative warming conditions compared with constant cooling, where contiguous cooling across adaptation and stimulus periods induced the lowest and longest latency responses to sucrose. Yet compared with constant warming, cooling sucrose following warm adaptation (relative cooling) only marginally reduced activity to 0.1 M sucrose and did not alter responses to 0.3 M sucrose. Thus, warmth adaptation counteracted the attenuation in sucrose activity associated with stimulus cooling. Analysis of sodium-oriented (n = 25) neurons revealed adaptation to cool water, and cooling taste solutions enhanced unit firing to 0.004 M (perithreshold) NaCl, whereas warmth adaptation and stimulus warming could facilitate activity to 0.3 M NaCl. The concentration dependence of this thermal effect may reflect a dual effect of temperature on the sodium reception mechanism that drives sodium-oriented cells. PMID:25673737

  1. Taste-independent detection of the caloric content of sugar in Drosophila

    PubMed Central

    Dus, Monica; Min, SooHong; Keene, Alex C.; Lee, Ga Young; Suh, Greg S. B.

    2011-01-01

    Feeding behavior is influenced primarily by two factors: nutritional needs and food palatability. However, the role of food deprivation and metabolic needs in the selection of appropriate food is poorly understood. Here, we show that the fruit fly, Drosophila melanogaster, selects calorie-rich foods following prolonged food deprivation in the absence of taste-receptor signaling. Flies mutant for the sugar receptors Gr5a and Gr64a cannot detect the taste of sugar, but still consumed sugar over plain agar after 15 h of starvation. Similarly, pox-neuro mutants that are insensitive to the taste of sugar preferentially consumed sugar over plain agar upon starvation. Moreover, when given a choice between metabolizable sugar (sucrose or d-glucose) and nonmetabolizable (zero-calorie) sugar (sucralose or l-glucose), starved Gr5a; Gr64a double mutants preferred metabolizable sugars. These findings suggest the existence of a taste-independent metabolic sensor that functions in food selection. The preference for calorie-rich food correlates with a decrease in the two main hemolymph sugars, trehalose and glucose, and in glycogen stores, indicating that this sensor is triggered when the internal energy sources are depleted. Thus, the need to replenish depleted energy stores during periods of starvation may be met through the activity of a taste-independent metabolic sensing pathway. PMID:21709242

  2. Taste-independent detection of the caloric content of sugar in Drosophila.

    PubMed

    Dus, Monica; Min, SooHong; Keene, Alex C; Lee, Ga Young; Suh, Greg S B

    2011-07-12

    Feeding behavior is influenced primarily by two factors: nutritional needs and food palatability. However, the role of food deprivation and metabolic needs in the selection of appropriate food is poorly understood. Here, we show that the fruit fly, Drosophila melanogaster, selects calorie-rich foods following prolonged food deprivation in the absence of taste-receptor signaling. Flies mutant for the sugar receptors Gr5a and Gr64a cannot detect the taste of sugar, but still consumed sugar over plain agar after 15 h of starvation. Similarly, pox-neuro mutants that are insensitive to the taste of sugar preferentially consumed sugar over plain agar upon starvation. Moreover, when given a choice between metabolizable sugar (sucrose or D-glucose) and nonmetabolizable (zero-calorie) sugar (sucralose or L-glucose), starved Gr5a; Gr64a double mutants preferred metabolizable sugars. These findings suggest the existence of a taste-independent metabolic sensor that functions in food selection. The preference for calorie-rich food correlates with a decrease in the two main hemolymph sugars, trehalose and glucose, and in glycogen stores, indicating that this sensor is triggered when the internal energy sources are depleted. Thus, the need to replenish depleted energy stores during periods of starvation may be met through the activity of a taste-independent metabolic sensing pathway.

  3. Dissimilar sweet proteins from plants: oddities or normal components?

    PubMed

    Picone, Delia; Temussi, Piero Andrea

    2012-10-01

    The fruits of a few tropical plants contain intensely sweet proteins. Their common property points to a protein family. Generally, proteins belonging to the same family share similar folds, similar sequences and, at least in part, similar function but sweet proteins constitute an exception to this rule. Apart from sharing the rather unusual taste function, they show no obvious similarities either in their sequences or in three-dimensional structures. In this review we describe the nature, structure and mechanism of action of the best known sweet tasting proteins, including two taste modifying proteins. Sweet proteins stand out among sweet molecules because their volume is not compatible with an interaction with orthosteric active sites of the sweet taste receptor. The best explanation of their mechanism of action is the interaction with the external surface of the sweet taste receptor, according to a model that has been named "wedge model". It is hypothesized that this mode of action may be related to the ability of other members of their protein families to inhibit different enzymes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Vasopressin and the Regulation of Thirst.

    PubMed

    Bichet, Daniel G

    2018-01-01

    Recent experiments using optogenetic tools allow the identification and functional analysis of thirst neurons and vasopressin producing neurons. Two major advances provide a detailed anatomy of taste for water and arginine-vasopressin (AVP) release: (1) thirst and AVP release are regulated not only by the classical homeostatic, intero-sensory plasma osmolality negative feedback, but also by novel, extero-sensory, anticipatory signals. These anticipatory signals for thirst and vasopressin release converge on the same homeostatic neurons of circumventricular organs that monitor the composition of the blood; (2) acid-sensing taste receptor cells (which express polycystic kidney disease 2-like 1 protein) on the tongue that were previously suggested as the sour taste sensors also mediate taste responses to water. The tongue has a taste for water. The median preoptic nucleus (MnPO) of the hypothalamus could integrate multiple thirst-generating stimuli including cardiopulmonary signals, osmolality, angiotensin II, oropharyngeal and gastric signals, the latter possibly representing anticipatory signals. Dehydration is aversive and MnPO neuron activity is proportional to the intensity of this aversive state. © 2018 The Author(s) Published by S. Karger AG, Basel.

  5. Artificial sweetener use among children: epidemiology, recommendations, metabolic outcomes, and future directions

    PubMed Central

    Sylvetsky, Allison; Rother, Kristina I.; Brown, Rebecca

    2011-01-01

    Synopsis This review summarizes the existing literature pertaining to the epidemiology and current recommendations for pediatric artificial sweetener use and presents the results of studies investigating metabolic responses to artificial sweeteners among children. Observational and interventional studies testing the effects of artificial sweeteners on body weight, short-term satiety, glycemia, and glucoregulatory hormones are described. In addition, this review touches on the growing body of literature about taste, craving, and addiction to sweet taste. Gaining an understanding of the research previously conducted and the gaps that remain will inform future clinical and translational research, in order to develop evidence-based recommendations for artificial sweetener use in the prevention and treatment of pediatric obesity. PMID:22093863

  6. Autonomic nervous system responses to sweet taste: evidence for habituation rather than pleasure.

    PubMed

    Leterme, A; Brun, L; Dittmar, A; Robin, O

    2008-03-18

    Previous recordings of the variations of autonomic nervous system (ANS) parameters associated with each primary taste (sweet, salty, sour and bitter) showed that sweet taste induced very weak ANS responses, in the same range or weaker than responses evoked by mineral water. The purpose of this study was then to determine whether this weak ANS activation reflects the pleasant hedonic valence of sweet or the habituation of the organism to this innate-accepted taste. Twenty healthy volunteer subjects (8 males and 12 females, mean age=22.85 years) participated in the experiment. Taste stimuli were a solution of 0.3 M sucrose and three sweet flavours (orange juice, coke, lemonade) as "pleasant" sweet stimuli, and a solution of 0.15 M NaCl as an "unpleasant" stimulus. "Evian" mineral water served as the diluent and as a neutral stimulus. Throughout the test, five ANS parameters (skin potential and skin resistance, skin blood flow and skin temperature, instantaneous heart rate) were simultaneously and continuously recorded. After they had tasted each solution, subjects filled out a questionnaire in which they had to evaluate the hedonic dimension and the sweet intensity of each gustative stimulus. The lack of correlation between the mean hedonic scores associated with the four sweet stimuli and the mean values of the autonomic parameter variations tends to indicate that the weak ANS responses induced by the sweet gustative stimuli rather reflect the habituation of the organism to sweet taste than a gradation in sensory pleasure.

  7. The bitter pill: clinical drugs that activate the human bitter taste receptor TAS2R14.

    PubMed

    Levit, Anat; Nowak, Stefanie; Peters, Maximilian; Wiener, Ayana; Meyerhof, Wolfgang; Behrens, Maik; Niv, Masha Y

    2014-03-01

    Bitter taste receptors (TAS2Rs) mediate aversive response to toxic food, which is often bitter. These G-protein-coupled receptors are also expressed in extraoral tissues, and emerge as novel targets for therapeutic indications such as asthma and infection. Our goal was to identify ligands of the broadly tuned TAS2R14 among clinical drugs. Molecular properties of known human bitter taste receptor TAS2R14 agonists were incorporated into pharmacophore- and shape-based models and used to computationally predict additional ligands. Predictions were tested by calcium imaging of TAS2R14-transfected HEK293 cells. In vitro testing of the virtual screening predictions resulted in 30-80% success rates, and 15 clinical drugs were found to activate the TAS2R14. hERG potassium channel, which is predominantly expressed in the heart, emerged as a common off-target of bitter drugs. Despite immense chemical diversity of known TAS2R14 ligands, novel ligands and previously unknown polypharmacology of drugs were unraveled by in vitro screening of computational predictions. This enables rational repurposing of traditional and standard drugs for bitter taste signaling modulation for therapeutic indications.

  8. The Influence of Televised Food Commercials on Children's Food Choices: Evidence from Ventromedial Prefrontal Cortex Activations.

    PubMed

    Bruce, Amanda S; Pruitt, Stephen W; Ha, Oh-Ryeong; Cherry, J Bradley C; Smith, Timothy R; Bruce, Jared M; Lim, Seung-Lark

    2016-10-01

    To investigate how food commercials influence children's food choices. Twenty-three children ages 8-14 years provided taste and health ratings for 60 food items. Subsequently, these children were scanned with the use of functional magnetic resonance imaging while making food choices (ie, "eat" or "not eat") after watching food and nonfood television commercials. Our results show that watching food commercials changes the way children consider the importance of taste when making food choices. Children did not use health values for their food choices, indicating children's decisions were largely driven by hedonic, immediate rewards (ie, "tastiness"); however, children placed significantly more importance on taste after watching food commercials compared with nonfood commercials. This change was accompanied by faster decision times during food commercial trials. The ventromedial prefrontal cortex, a reward valuation brain region, showed increased activity during food choices after watching food commercials compared with after watching nonfood commercials. Overall, our results suggest watching food commercials before making food choices may bias children's decisions based solely on taste, and that food marketing may systematically alter the psychological and neurobiologic mechanisms of children's food decisions. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The Influence of Televised Food Commercials on Children's Food Choices: Evidence from Ventromedial Prefrontal Cortex Activations

    PubMed Central

    Bruce, Amanda S.; Pruitt, Stephen W.; Ha, Oh-Ryeong; Cherry, J. Bradley C.; Smith, Timothy R.; Bruce, Jared M.; Lim, Seung-Lark

    2016-01-01

    Objective To investigate how food commercials influence children's food choices. Study design Twenty-three children ages 8-14 years provided taste and health ratings for 60 food items. Subsequently, these children were scanned with the use of functional magnetic resonance imaging while making food choices (ie, “eat” or “not eat”) after watching food and nonfood television commercials. Results Our results show that watching food commercials changes the way children consider the importance of taste when making food choices. Children did not use health values for their food choices, indicating children's decisions were largely driven by hedonic, immediate rewards (ie, “tastiness”); however, children placed significantly more importance on taste after watching food commercials compared with nonfood commercials. This change was accompanied by faster decision times during food commercial trials. The ventromedial prefrontal cortex, a reward valuation brain region, showed increased activity during food choices after watching food commercials compared with after watching nonfood commercials. Conclusion Overall, our results suggest watching food commercials before making food choices may bias children's decisions based solely on taste, and that food marketing may systematically alter the psychological and neurobiologic mechanisms of children's food decisions. PMID:27526621

  10. Descriptive analysis of the masticatory and salivary functions and gustatory sensitivity in healthy children.

    PubMed

    Marquezin, Maria Carolina Salomé; Pedroni-Pereira, Aline; Araujo, Darlle Santos; Rosar, João Vicente; Barbosa, Taís S; Castelo, Paula Midori

    2016-08-01

    The objective of this study is to better understand salivary and masticatory characteristics, this study evaluated the relationship among salivary parameters, bite force (BF), masticatory performance (MP) and gustatory sensitivity in healthy children. The secondary outcome was to evaluate possible gender differences. One hundred and sixteen eutrophic subjects aged 7-11 years old were evaluated, caries-free and with no definite need of orthodontic treatment. Salivary flow rate and pH, total protein (TP), alpha-amylase (AMY), calcium (CA) and phosphate (PHO) concentrations were determined in stimulated (SS) and unstimulated saliva (US). BF and MP were evaluated using digital gnathodynamometer and fractional sieving method, respectively. Gustatory sensitivity was determined by detecting the four primary tastes (sweet, salty, sour and bitter) in three different concentrations. Data were evaluated using descriptive statistics, Mann-Whitney/t-test, Spearman correlation and multiple regression analysis, considering α = 0.05. Significant positive correlation between taste and age was observed. CA and PHO concentrations correlated negatively with salivary flow and pH; sweet taste scores correlated with AMY concentrations and bitter taste sensitivity correlated with US flow rate (p < 0.05). No significant difference between genders in salivary, masticatory characteristics and gustatory sensitivity was observed. The regression analysis showed a weak relationship between the distribution of chewed particles among the different sieves and BF. The concentration of some analytes was influenced by salivary flow and pH. Age, saliva flow and AMY concentrations influenced gustatory sensitivity. In addition, salivary, masticatory and taste characteristics did not differ between genders, and only a weak relation between MP and BF was observed.

  11. The excess choice effect: The role of outcome valence and counterfactual thinking.

    PubMed

    Hafner, Rebecca J; White, Mathew P; Handley, Simon J

    2016-02-01

    Contrary to economic theory, psychological research has demonstrated increased choice can undermine satisfaction. When and why this 'excess choice effect' (ECE) occurs remains unclear. Building on theories of counterfactual thinking we argue the ECE is more likely to occur when people experience counterfactual thought or emotion and that a key trigger is a negative versus positive task outcome. Participants either selected a drink (Experiment 1) or chocolate (Experiment 2) from a limited (6) versus extensive (24) selection (Experiment 1) or were given no choice versus extensive (24) choice (Experiment 2). In both experiments, however, the choice was illusory: Half the participants tasted a 'good' flavour, half a 'bad' flavour. As predicted, extensive choice was only detrimental to satisfaction when participants tasted the 'bad' drink or chocolate, and this was mediated by the experience of counterfactual thought (Experiment 1) or emotion (Experiment 2). When outcomes were positive, participants were similarly satisfied with limited versus extensive and no choice versus extensive choice. Implications for our theoretical understanding of the ECE and for the construction of choice architectures aimed at promoting individual satisfaction and well-being are discussed. © 2015 The British Psychological Society.

  12. Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon.

    PubMed

    Kendig, Derek M; Hurst, Norman R; Bradley, Zachary L; Mahavadi, Sunila; Kuemmerle, John F; Lyall, Vijay; DeSimone, John; Murthy, Karnam S; Grider, John R

    2014-12-01

    Intraluminal nutrients in the gut affect the peristaltic reflex, although the mechanism is not well defined. Recent evidence supports the presence of taste receptors and their signaling components in enteroendocrine cells, although their function is unclear. This study aimed to determine if nutrients modify colonic motility through activation of taste receptors. Colonic sections were immunostained for the umami taste receptor T1R1/T1R3, which mediates the response to umami ligands, such as monosodium glutamate (MSG), in taste cells. Ascending contraction, descending relaxation, and calcitonin gene-related peptide release were measured in three-chamber flat-sheet preparations of rat colon in response to MSG alone or with inosine 5'-monophosphate (IMP). Velocity of artificial fecal pellet propulsion was measured by video recording in guinea pig distal colon. T1R1/T1R3 receptors were present in enteroendocrine cells of colonic sections from human, rat, mouse, and guinea pig. MSG initiated ascending contraction and descending relaxation components of the peristaltic reflex and calcitonin gene-related peptide release in flat-sheet preparations. IMP augmented the MSG-induced effects, suggesting activation of T1R1/T1R3 receptors. In T1R1(-/-) mice, mucosal stroking, but not MSG, elicited a peristaltic reflex. Intraluminal perfusion of MSG enhanced the velocity of artificial fecal pellet propulsion, which was also augmented by IMP. Propulsion was also increased by l-cysteine, but not l-tryptophan, supporting a role of T1R1/T1R3 receptors. We conclude that T1R1/T1R3 activation by luminal MSG or l-cysteine elicits a peristaltic reflex and CGRP release and increases the velocity of pellet propulsion in distal colon. This mechanism may explain how nutrients regulate colonic propulsion. Copyright © 2014 the American Physiological Society.

  13. Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon

    PubMed Central

    Kendig, Derek M.; Hurst, Norman R.; Bradley, Zachary L.; Mahavadi, Sunila; Kuemmerle, John F.; Lyall, Vijay; DeSimone, John; Murthy, Karnam S.

    2014-01-01

    Intraluminal nutrients in the gut affect the peristaltic reflex, although the mechanism is not well defined. Recent evidence supports the presence of taste receptors and their signaling components in enteroendocrine cells, although their function is unclear. This study aimed to determine if nutrients modify colonic motility through activation of taste receptors. Colonic sections were immunostained for the umami taste receptor T1R1/T1R3, which mediates the response to umami ligands, such as monosodium glutamate (MSG), in taste cells. Ascending contraction, descending relaxation, and calcitonin gene-related peptide release were measured in three-chamber flat-sheet preparations of rat colon in response to MSG alone or with inosine 5′-monophosphate (IMP). Velocity of artificial fecal pellet propulsion was measured by video recording in guinea pig distal colon. T1R1/T1R3 receptors were present in enteroendocrine cells of colonic sections from human, rat, mouse, and guinea pig. MSG initiated ascending contraction and descending relaxation components of the peristaltic reflex and calcitonin gene-related peptide release in flat-sheet preparations. IMP augmented the MSG-induced effects, suggesting activation of T1R1/T1R3 receptors. In T1R1−/− mice, mucosal stroking, but not MSG, elicited a peristaltic reflex. Intraluminal perfusion of MSG enhanced the velocity of artificial fecal pellet propulsion, which was also augmented by IMP. Propulsion was also increased by l-cysteine, but not l-tryptophan, supporting a role of T1R1/T1R3 receptors. We conclude that T1R1/T1R3 activation by luminal MSG or l-cysteine elicits a peristaltic reflex and CGRP release and increases the velocity of pellet propulsion in distal colon. This mechanism may explain how nutrients regulate colonic propulsion. PMID:25324508

  14. Improving the palatability of activated charcoal in pediatric patients.

    PubMed

    Cheng, Adam; Ratnapalan, Savithiri

    2007-06-01

    To compare the taste preference and ease of swallowing of activated charcoal among healthy teenagers when mixed separately with 3 different additives: chocolate milk, Coca-Cola, and water. Healthy volunteers between 14 to 19 years of age were selected for the study. Five grams of activated charcoal (25 mL of 0.2 g/mL of Charcodote [Pharma Science, Montreal, Canada]) was mixed with 25 mL of chocolate milk, Coca-Cola, or water individually to make up 50 mL. The volunteers drank the 3 cups of the charcoal-additive mixture separately and then rated taste and ease of swallowing on a 10-cm visual analogue scale. The subjects then indicated their preferred charcoal-additive mixture if he/she had to drink 9 more portions of charcoal (this would estimate the dose of charcoal for a 50-kg child). A total of 44 subjects were recruited (25 boys and 19 girls). The mean scores for taste preference for chocolate milk, Coca-Cola, and water mixtures of charcoal were 5.5, 6.3, and 2.0, respectively, on a 10-cm visual analogue scale. Thus, subjects preferred the taste of charcoal mixed with chocolate milk or Coca-Cola over charcoal mixed with water (P = 0.0003 for both comparisons). The subjects did not show a statistically significant difference for ease of swallowing between the 3 charcoal-additive mixtures. Overall, 48% preferred the chocolate milk mixture, 45% preferred the Coca-Cola mixture, and 7% preferred charcoal mixed with water. Healthy teenaged subjects identified that activated charcoal (Charcodote) mixed with chocolate milk or Coca-Cola (in a 1:1 ratio) improved taste but had no significant effect on improving ease of swallowing. Overall, the addition of chocolate milk or coke improves the palatability of charcoal and is favored over charcoal mixed with water alone.

  15. The human bitter taste receptor TAS2R10 is tailored to accommodate numerous diverse ligands.

    PubMed

    Born, Stephan; Levit, Anat; Niv, Masha Y; Meyerhof, Wolfgang; Behrens, Maik

    2013-01-02

    Bitter taste is a basic taste modality, required to safeguard animals against consuming toxic substances. Bitter compounds are recognized by G-protein-coupled bitter taste receptors (TAS2Rs). The human TAS2R10 responds to the toxic strychnine and numerous other compounds. The mechanism underlying the development of the broad tuning of some TAS2Rs is not understood. Using comparative modeling, site-directed mutagenesis, and functional assays, we identified residues involved in agonist-induced activation of TAS2R10, and investigated the effects of different substitutions on the receptor's response profile. Most interestingly, mutations in S85(3.29) and Q175(5.40) have differential impact on stimulation with different agonists. The fact that single point mutations lead to improved responses for some agonists and to decreased activation by others indicates that the binding site has evolved to optimally accommodate multiple agonists at the expense of reduced potency. TAS2R10 shares the agonist strychnine with TAS2R46, another broadly tuned receptor. Engineering the key determinants for TAS2R46 activation by strychnine in TAS2R10 caused a loss of response to strychnine, indicating that these paralog receptors display different strychnine-binding modes, which suggests independent acquisition of agonist specificities. This implies that the gene duplication event preceding primate speciation was accompanied by independent evolution of the strychnine-binding sites.

  16. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor

    PubMed Central

    Maillet, Emeline L.; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Osman, Roman; Max, Marianna

    2015-01-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2’s VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste. PMID:26377607

  17. Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid

    PubMed Central

    Neben, Cynthia L.; Harfe, Brian D.; Linde, Anders

    2017-01-01

    The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH) and retinoic acid (RA) signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity. PMID:28715412

  18. Discussion of alternatives, risks and benefits in pediatric acute care.

    PubMed

    Cox, Elizabeth D; Raaum, Sonja E

    2008-07-01

    Across adult healthcare, discussions of alternatives, risks and benefits vary in inclusiveness or are even absent. We examine these discussions and their associated factors in pediatric visits. Coders noted speaker and recipient for alternatives, risks and benefits from 98 videotaped visits. Outcomes included discussion of alternatives, risks or benefits (yes/no) and involvement of parent or child in discussions (active or passive). Bivariate techniques were used to relate visit factors to outcomes. Most visits included discussion of alternatives (58% of visits), risks (54%) and benefits (69%). Longer visits were more likely to include risk discussions. For alternatives, active parent/child involvement was more likely with college graduate parents; for risks active involvement was more likely with female and more experienced physicians. Parents and children raised risks more frequently than benefits, often focusing on disadvantages such as taste or frequency/duration of therapy. Most pediatric visits include alternatives, risks and benefits but parent/child involvement in raising these topics is limited. When parents or children initiate these discussions, they often mention risks salient to adherence. Future work could explore whether longer visits or interventions targeted for specific participants could foster such discussions.

  19. Effect of the Dutch school-based education programme 'Taste Lessons' on behavioural determinants of taste acceptance and healthy eating: a quasi-experimental study.

    PubMed

    Battjes-Fries, Marieke C E; Haveman-Nies, Annemien; Renes, Reint-Jan; Meester, Hante J; van 't Veer, Pieter

    2015-08-01

    To assess the effect of the Dutch school-based education programme 'Taste Lessons' on children's behavioural determinants towards tasting unfamiliar foods and eating healthy and a variety of foods. In a quasi-experimental study design, data on behavioural determinants were collected at baseline, four weeks and six months after the intervention in both the intervention and control group. Children completed consecutively three questionnaires in which knowledge, awareness, skills, attitude, emotion, subjective norm and intention towards the two target behaviours were assessed. Teachers implemented on average a third of the programme activities. Multilevel regression analyses were conducted to compare individual changes in the determinants in the intervention group with those in the control group, corrected for children's gender and age. Effect sizes were expressed as Cohen's d. Dutch elementary schools. Forty-nine classes (1183 children, 9-12 years old) in grades 5-8 of twenty-one elementary schools. The intervention group showed a higher increase in knowledge (d=0·26, P<0·01), which persisted after six months (d=0·23, P<0·05). After four weeks, the intervention group showed a higher increase in number of foods known (d=0·22, P<0·05) and tasted (d=0·21, P<0·05), subjective norm of the teacher (d=0·17, P<0·05) and intention (d=0·16, P<0·05) towards the target behaviours. Partial implementation of Taste Lessons during one school year showed small short-term effects on increasing behavioural determinants in relation to tasting unfamiliar foods and eating healthy and a variety of foods. Full and repeated implementation of Taste Lessons in subsequent years might result in larger effects.

  20. Glucose elicits cephalic-phase insulin release in mice by activating KATP channels in taste cells

    PubMed Central

    Frim, Yonina G.; Hochman, Ayelet; Lubitz, Gabrielle S.; Basile, Anthony J.; Sclafani, Anthony

    2017-01-01

    The taste of sugar elicits cephalic-phase insulin release (CPIR), which limits the rise in blood glucose associated with meals. Little is known, however, about the gustatory mechanisms that trigger CPIR. We asked whether oral stimulation with any of the following taste stimuli elicited CPIR in mice: glucose, sucrose, maltose, fructose, Polycose, saccharin, sucralose, AceK, SC45647, or a nonmetabolizable sugar analog. The only taste stimuli that elicited CPIR were glucose and the glucose-containing saccharides (sucrose, maltose, Polycose). When we mixed an α-glucosidase inhibitor (acarbose) with the latter three saccharides, the mice no longer exhibited CPIR. This revealed that the carbohydrates were hydrolyzed in the mouth, and that the liberated glucose triggered CPIR. We also found that increasing the intensity or duration of oral glucose stimulation caused a corresponding increase in CPIR magnitude. To identify the components of the glucose-specific taste-signaling pathway, we examined the necessity of Calhm1, P2X2+P2X3, SGLT1, and Sur1. Among these proteins, only Sur1 was necessary for CPIR. Sur1 was not necessary, however, for taste-mediated attraction to sugars. Given that Sur1 is a subunit of the ATP-sensitive K+ channel (KATP) channel and that this channel functions as a part of a glucose-sensing pathway in pancreatic β-cells, we asked whether the KATP channel serves an analogous role in taste cells. We discovered that oral stimulation with drugs known to increase (glyburide) or decrease (diazoxide) KATP signaling produced corresponding changes in glucose-stimulated CPIR. We propose that the KATP channel is part of a novel signaling pathway in taste cells that mediates glucose-induced CPIR. PMID:28148491

  1. Increased preference for ethanol in the infant rat after prenatal ethanol exposure, expressed on intake and taste reactivity tests.

    PubMed

    Arias, Carlos; Chotro, M Gabriela

    2005-03-01

    Previous studies have shown that prenatal exposure during gestational days 17 to 20 to low or moderate doses of ethanol (1 or 2 g/kg) increases alcohol intake in infant rats. Taking into account that higher consumption does not necessarily suggest a preference for alcohol, in the present study, the hedonic nature of the prenatal experience was analyzed further with the use of a taste reactivity test. General activity, wall climbing, passive drips, paw licking, and mouthing in response to intraoral infusions of alcohol, water, and a sucrose-quinine solution (which resembles alcohol taste in rats) were tested in 161 preweanling 14-day-old rat pups that were prenatally exposed to 0, 1, or 2 g/kg of alcohol during gestational days 17 to 20. Consumption of those substances was measured during the taste reactivity test and on postnatal day 15. Pups that were prenatally exposed to both doses of ethanol displayed lower levels of general activity and wall climbing than controls in response to ethanol. Infant rats that were treated prenatally with both doses of ethanol showed higher intake of the drug and also more mouthing and paw licking in response to ethanol taste. Only pups that were exposed to the higher ethanol dose in utero generalized those responses to the sucrose-quinine compound. These results seem to indicate that for the infant rat, the palatability of ethanol is enhanced after exposure to the drug during the last days of gestation.

  2. Tasting calories differentially affects brain activation during hunger and satiety.

    PubMed

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Discrimination of taste qualities among mouse fungiform taste bud cells.

    PubMed

    Yoshida, Ryusuke; Miyauchi, Aya; Yasuo, Toshiaki; Jyotaki, Masafumi; Murata, Yoshihiro; Yasumatsu, Keiko; Shigemura, Noriatsu; Yanagawa, Yuchio; Obata, Kunihiko; Ueno, Hiroshi; Margolskee, Robert F; Ninomiya, Yuzo

    2009-09-15

    Multiple lines of evidence from molecular studies indicate that individual taste qualities are encoded by distinct taste receptor cells. In contrast, many physiological studies have found that a significant proportion of taste cells respond to multiple taste qualities. To reconcile this apparent discrepancy and to identify taste cells that underlie each taste quality, we investigated taste responses of individual mouse fungiform taste cells that express gustducin or GAD67, markers for specific types of taste cells. Type II taste cells respond to sweet, bitter or umami tastants, express taste receptors, gustducin and other transduction components. Type III cells possess putative sour taste receptors, and have well elaborated conventional synapses. Consistent with these findings we found that gustducin-expressing Type II taste cells responded best to sweet (25/49), bitter (20/49) or umami (4/49) stimuli, while all GAD67 (Type III) taste cells examined (44/44) responded to sour stimuli and a portion of them showed multiple taste sensitivities, suggesting discrimination of each taste quality among taste bud cells. These results were largely consistent with those previously reported with circumvallate papillae taste cells. Bitter-best taste cells responded to multiple bitter compounds such as quinine, denatonium and cyclohexamide. Three sour compounds, HCl, acetic acid and citric acid, elicited responses in sour-best taste cells. These results suggest that taste cells may be capable of recognizing multiple taste compounds that elicit similar taste sensation. We did not find any NaCl-best cells among the gustducin and GAD67 taste cells, raising the possibility that salt sensitive taste cells comprise a different population.

  4. Prior Consumption of a Fat Meal in Healthy Adults Modulates the Brain’s Response to Fat123

    PubMed Central

    Eldeghaidy, Sally; Hort, Joanne; Hollowood, Tracey; Singh, Gulzar; Bush, Debbie; Foster, Tim; Taylor, Andy J; Busch, Johanneke; Spiller, Robin C

    2016-01-01

    Background: The consumption of fat is regulated by reward and homeostatic pathways, but no studies to our knowledge have examined the role of high-fat meal (HFM) intake on subsequent brain activation to oral stimuli. Objective: We evaluated how prior consumption of an HFM or water load (WL) modulates reward, homeostatic, and taste brain responses to the subsequent delivery of oral fat. Methods: A randomized 2-way crossover design spaced 1 wk apart was used to compare the prior consumption of a 250-mL HFM (520 kcal) [rapeseed oil (440 kcal), emulsifier, sucrose, flavor cocktail] or noncaloric WL on brain activation to the delivery of repeated trials of a flavored no-fat control stimulus (CS) or flavored fat stimulus (FS) in 17 healthy adults (11 men) aged 25 ± 2 y and with a body mass index (in kg/m2) of 22.4 ± 0.8. We tested differences in brain activation to the CS and FS and baseline cerebral blood flow (CBF) after the HFM and WL. We also tested correlations between an individual’s plasma cholecystokinin (CCK) concentration after the HFM and blood oxygenation level–dependent (BOLD) activation of brain regions. Results: Compared to the WL, consuming the HFM led to decreased anterior insula taste activation in response to both the CS (36.3%; P < 0.05) and FS (26.5%; P < 0.05). The HFM caused reduced amygdala activation (25.1%; P < 0.01) in response to the FS compared to the CS (fat-related satiety). Baseline CBF significantly reduced in taste (insula: 5.7%; P < 0.01), homeostatic (hypothalamus: 9.2%, P < 0.01; thalamus: 5.1%, P < 0.05), and reward areas (striatum: 9.2%; P < 0.01) after the HFM. An individual’s plasma CCK concentration correlated negatively with brain activation in taste and oral somatosensory (ρ = −0.39; P < 0.05) and reward areas (ρ = −0.36; P < 0.05). Conclusions: Our results in healthy adults show that an HFM suppresses BOLD activation in taste and reward areas compared to a WL. This understanding will help inform the reformulation of reduced-fat foods that mimic the brain’s response to high-fat counterparts and guide future interventions to reduce obesity. PMID:27655761

  5. Prior Consumption of a Fat Meal in Healthy Adults Modulates the Brain's Response to Fat.

    PubMed

    Eldeghaidy, Sally; Marciani, Luca; Hort, Joanne; Hollowood, Tracey; Singh, Gulzar; Bush, Debbie; Foster, Tim; Taylor, Andy J; Busch, Johanneke; Spiller, Robin C; Gowland, Penny A; Francis, Susan T

    2016-11-01

    The consumption of fat is regulated by reward and homeostatic pathways, but no studies to our knowledge have examined the role of high-fat meal (HFM) intake on subsequent brain activation to oral stimuli. We evaluated how prior consumption of an HFM or water load (WL) modulates reward, homeostatic, and taste brain responses to the subsequent delivery of oral fat. A randomized 2-way crossover design spaced 1 wk apart was used to compare the prior consumption of a 250-mL HFM (520 kcal) [rapeseed oil (440 kcal), emulsifier, sucrose, flavor cocktail] or noncaloric WL on brain activation to the delivery of repeated trials of a flavored no-fat control stimulus (CS) or flavored fat stimulus (FS) in 17 healthy adults (11 men) aged 25 ± 2 y and with a body mass index (in kg/m 2 ) of 22.4 ± 0.8. We tested differences in brain activation to the CS and FS and baseline cerebral blood flow (CBF) after the HFM and WL. We also tested correlations between an individual's plasma cholecystokinin (CCK) concentration after the HFM and blood oxygenation level-dependent (BOLD) activation of brain regions. Compared to the WL, consuming the HFM led to decreased anterior insula taste activation in response to both the CS (36.3%; P < 0.05) and FS (26.5%; P < 0.05). The HFM caused reduced amygdala activation (25.1%; P < 0.01) in response to the FS compared to the CS (fat-related satiety). Baseline CBF significantly reduced in taste (insula: 5.7%; P < 0.01), homeostatic (hypothalamus: 9.2%, P < 0.01; thalamus: 5.1%, P < 0.05), and reward areas (striatum: 9.2%; P < 0.01) after the HFM. An individual's plasma CCK concentration correlated negatively with brain activation in taste and oral somatosensory (ρ = -0.39; P < 0.05) and reward areas (ρ = -0.36; P < 0.05). Our results in healthy adults show that an HFM suppresses BOLD activation in taste and reward areas compared to a WL. This understanding will help inform the reformulation of reduced-fat foods that mimic the brain's response to high-fat counterparts and guide future interventions to reduce obesity.

  6. Taste transductions in taste receptor cells: basic tastes and moreover.

    PubMed

    Iwata, Shusuke; Yoshida, Ryusuke; Ninomiya, Yuzo

    2014-01-01

    In the oral cavity, taste receptor cells dedicate to detecting chemical compounds in foodstuffs and transmitting their signals to gustatory nerve fibers. Heretofore, five taste qualities (sweet, umami, bitter, salty and sour) are generally accepted as basic tastes. Each of these may have a specific role in the detection of nutritious and poisonous substances; sweet for carbohydrate sources of calories, umami for protein and amino acid contents, bitter for harmful compounds, salty for minerals and sour for ripeness of fruits and spoiled foods. Recent studies have revealed molecular mechanisms for reception and transduction of these five basic tastes. Sweet, umami and bitter tastes are mediated by G-protein coupled receptors (GPCRs) and second-messenger signaling cascades. Salty and sour tastes are mediated by channel-type receptors. In addition to five basic tastes, taste receptor cells may have the ability to detect fat taste, which is elicited by fatty acids, and calcium taste, which is elicited by calcium. Taste compounds eliciting either fat taste or calcium taste may be detected by specific GPCRs expressed in taste receptor cells. This review will focus on transduction mechanisms and cellular characteristics responsible for each of basic tastes, fat taste and calcium taste.

  7. Preferences for Salty and Sweet Tastes Are Elevated and Related to Each Other during Childhood

    PubMed Central

    Mennella, Julie A.; Finkbeiner, Susana; Lipchock, Sarah V.; Hwang, Liang-Dar; Reed, Danielle R.

    2014-01-01

    Background The present study aimed to determine if salty and sweet taste preferences in children are related to each other, to markers of growth, and to genetic differences. Methods We conducted a 2-day, single-blind experimental study using the Monell two-series, forced-choice, paired-comparison tracking method to determine taste preferences. The volunteer sample consisted of a racially/ethnically diverse group of children, 5–10 years of age (n = 108), and their mothers (n = 83). After excluding those mothers who did not meet eligibility and children who did not understand or comply with study procedures, the final sample was 101 children and 76 adults. The main outcome measures were most preferred concentration of salt in broth and crackers; most preferred concentration of sucrose in water and jelly; reported dietary intake of salty and sweet foods; levels of a bone growth marker; anthropometric measurements such as height, weight, and percent body fat; and TAS1R3 (sweet taste receptor) genotype. Results Children preferred higher concentrations of salt in broth and sucrose in water than did adults, and for both groups, salty and sweet taste preferences were significantly and positively correlated. In children, preference measures were related to reported intake of sodium but not of added sugars. Children who were tall for their age preferred sweeter solutions than did those that were shorter and percent body fat was correlated with salt preference. In mothers but not in children, sweet preference correlated with TAS1R3 genotype. Conclusions and Relevance For children, sweet and salty taste preferences were positively correlated and related to some aspects of real-world food intake. Complying with recommendations to reduce added sugars and salt may be more difficult for some children, which emphasizes the need for new strategies to improve children's diets. PMID:24637844

  8. Extinction of Conditioned Taste Aversion Depends on Functional Protein Synthesis but Not on NMDA Receptor Activation in the Ventromedial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Akirav, Irit; Khatsrinov, Vicktoria; Vouimba, Rose-Marie; Merhav, Maayan; Ferreira, Guillaume; Rosenblum, Kobi; Maroun, Mouna

    2006-01-01

    We investigated the role of the ventromedial prefrontal cortex (vmPFC) in extinction of conditioned taste aversion (CTA) by microinfusing a protein synthesis inhibitor or N-methyl-d-asparate (NMDA) receptors antagonist into the vmPFC immediately following a non-reinforced extinction session. We found that the protein synthesis blocker anisomycin,…

  9. A Novel Regulatory Function of Sweet Taste-Sensing Receptor in Adipogenic Differentiation of 3T3-L1 Cells

    PubMed Central

    Masubuchi, Yosuke; Nakagawa, Yuko; Ma, Jinhui; Sasaki, Tsutomu; Kitamura, Tadahiro; Yamamoto, Yoritsuna; Kurose, Hitoshi; Kojima, Itaru; Shibata, Hiroshi

    2013-01-01

    Background Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. Methodology/Principal Findings In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6). The α subunits of Gs (Gαs) and G14 (Gα14) but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. Conclusions 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism. PMID:23336004

  10. Neural Processing of Calories in Brain Reward Areas Can be Modulated by Reward Sensitivity

    PubMed Central

    van Rijn, Inge; Griffioen-Roose, Sanne; de Graaf, Cees; Smeets, Paul A. M.

    2016-01-01

    A food's reward value is dependent on its caloric content. Furthermore, a food's acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity), however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015), in which participants (n = 30) tasted simple solutions of a non-caloric sweetener with or without a non-sweet carbohydrate (maltodextrin) during hunger and satiety. Secondly, we expanded these analyses to regular drinks by assessing the same relationship in data from a study in which soft drinks sweetened with either sucrose or a non-caloric sweetener were administered during hunger (n = 18) (Griffioen-Roose et al., 2013). First, taste activation by the non-caloric solution/soft drink was subtracted from that by the caloric solution/soft drink to eliminate sweetness effects and retain activation induced by calories. Subsequently, this difference in taste activation was correlated with reward sensitivity as measured with the BAS drive subscale of the Behavioral Activation System (BAS) questionnaire. When participants were hungry and tasted calories from the simple solution, brain activation in the right ventral striatum (caudate), right amygdala and anterior cingulate cortex (bilaterally) correlated negatively with BAS drive scores. In contrast, when participants were satiated, taste responses correlated positively with BAS drive scores in the left caudate. These results were not replicated for soft drinks. Thus, neural responses to oral calories from maltodextrin were modulated by reward sensitivity in reward-related brain areas. This was not the case for sucrose. This may be due to the direct detection of maltodextrin, but not sucrose in the oral cavity. Also, in a familiar beverage, detection of calories per se may be overruled by a conditioned response to its flavor. In conclusion, the brain reward response to calories from a long chain starch sugar (maltodextrin) varies with trait reward sensitivity. The absence of this effect in a familiar beverage warrants further research into its relevance for real life ingestive behavior. PMID:26834598

  11. Immunocytochemical analysis of P2X2 in rat circumvallate taste buds.

    PubMed

    Yang, Ruibiao; Montoya, Alana; Bond, Amanda; Walton, Jenna; Kinnamon, John C

    2012-05-23

    Our laboratory has shown that classical synapses and synaptic proteins are associated with Type III cells. Yet it is generally accepted that Type II cells transduce bitter, sweet and umami stimuli. No classical synapses, however, have been found associated with Type II cells. Recent studies indicate that the ionotropic purinergic receptors P2X2/P2X3 are present in rodent taste buds. Taste nerve processes express the ionotropic purinergic receptors (P2X2/P2X3). P2X2/P2X3(Dbl-/-) mice are not responsive to sweet, umami and bitter stimuli, and it has been proposed that ATP acts as a neurotransmitter in taste buds. The goal of the present study is to learn more about the nature of purinergic contacts in rat circumvallate taste buds by examining immunoreactivity to antisera directed against the purinergic receptor P2X2. P2X2-like immunoreactivity is present in intragemmal nerve processes in rat circumvallate taste buds. Intense immunoreactivity can also be seen in the subgemmal nerve plexuses located below the basal lamina. The P2X2 immunoreactive nerve processes also display syntaxin-1-LIR. The immunoreactive nerves are in close contact with the IP(3)R3-LIR Type II cells and syntaxin-1-LIR and/or 5-HT-LIR Type III cells. Taste cell synapses are observed only from Type III taste cells onto P2X2-LIR nerve processes. Unusually large, "atypical" mitochondria in the Type II taste cells are found only at close appositions with P2X2-LIR nerve processes. P2X2 immunogold particles are concentrated at the membranes of nerve processes at close appositions with taste cells. Based on our immunofluorescence and immunoelectron microscopical studies we believe that both perigemmal and most all intragemmal nerve processes display P2X2-LIR. Moreover, colloidal gold immunoelectron microscopy indicates that P2X2-LIR in nerve processes is concentrated at sites of close apposition with Type II cells. This supports the hypothesis that ATP may be a key neurotransmitter in taste transduction and that Type II cells release ATP, activating P2X2 receptors in nerve processes.

  12. A salty-congruent odor enhances saltiness: functional magnetic resonance imaging study.

    PubMed

    Seo, Han-Seok; Iannilli, Emilia; Hummel, Cornelia; Okazaki, Yoshiro; Buschhüter, Dorothee; Gerber, Johannes; Krammer, Gerhard E; van Lengerich, Bernhard; Hummel, Thomas

    2013-01-01

    Excessive intake of dietary salt (sodium chloride) may increase the risk of chronic diseases. Accordingly, various strategies to reduce salt intake have been conducted. This study aimed to investigate whether a salty-congruent odor can enhance saltiness on the basis of psychophysical (Experiment 1) and neuroanatomical levels (Experiment 2). In Experiment 1, after receiving one of six stimulus conditions: three odor conditions (odorless air, congruent, or incongruent odor) by two concentrations (low or high) of either salty or sweet taste solution, participants were asked to rate taste intensity and pleasantness. In Experiment 2, participants received the same stimuli during the functional magnetic resonance imaging scan. In Experiment 1, compared with an incongruent odor and/or odorless air, a congruent odor enhanced not only taste intensity but also either pleasantness of sweetness or unpleasantness of saltiness. In Experiment 2, a salty-congruent combination of odor and taste produced significantly higher neuronal activations in brain regions associated with odor-taste integration (e.g., insula, frontal operculum, anterior cingulate cortex, and orbitofrontal cortex) than an incongruent combination and/or odorless air with taste solution. In addition, the congruent odor-induced saltiness enhancement was more pronounced in the low-concentrated tastant than in the high-concentrated one. In conclusion, this study demonstrates the congruent odor-induced saltiness enhancement on the basis of psychophysical and neuroanatomical results. These findings support an alternative strategy to reduce excessive salt intake by adding salty-congruent aroma to sodium reduced food. However, there are open questions regarding the salty-congruent odor-induced taste unpleasantness. Copyright © 2011 Wiley Periodicals, Inc.

  13. Inactivation of basolateral amygdala specifically eliminates palatability-related information in cortical sensory responses.

    PubMed

    Piette, Caitlin E; Baez-Santiago, Madelyn A; Reid, Emily E; Katz, Donald B; Moran, Anan

    2012-07-18

    Evidence indirectly implicates the amygdala as the primary processor of emotional information used by cortex to drive appropriate behavioral responses to stimuli. Taste provides an ideal system with which to test this hypothesis directly, as neurons in both basolateral amygdala (BLA) and gustatory cortex (GC)-anatomically interconnected nodes of the gustatory system-code the emotional valence of taste stimuli (i.e., palatability), in firing rate responses that progress similarly through "epochs." The fact that palatability-related firing appears one epoch earlier in BLA than GC is broadly consistent with the hypothesis that such information may propagate from the former to the latter. Here, we provide evidence supporting this hypothesis, assaying taste responses in small GC single-neuron ensembles before, during, and after temporarily inactivating BLA in awake rats. BLA inactivation (BLAx) changed responses in 98% of taste-responsive GC neurons, altering the entirety of every taste response in many neurons. Most changes involved reductions in firing rate, but regardless of the direction of change, the effect of BLAx was epoch-specific: while firing rates were changed, the taste specificity of responses remained stable; information about taste palatability, however, which normally resides in the "Late" epoch, was reduced in magnitude across the entire GC sample and outright eliminated in most neurons. Only in the specific minority of neurons for which BLAx enhanced responses did palatability specificity survive undiminished. Our data therefore provide direct evidence that BLA is a necessary component of GC gustatory processing, and that cortical palatability processing in particular is, in part, a function of BLA activity.

  14. Inactivation of basolateral amygdala specifically eliminates palatability-related information in cortical sensory responses

    PubMed Central

    Piette, Caitlin E.; Baez-Santiago, Madelyn A.; Reid, Emily E.; Katz, Donald B.; Moran, Anan

    2012-01-01

    Evidence indirectly implicates the amygdala as the primary processor of emotional information used by cortex to drive appropriate behavioral responses to stimuli. Taste provides an ideal system with which to test this hypothesis directly, as neurons in both basolateral amygdala (BLA) and gustatory cortex (GC)—anatomically interconnected nodes of the gustatory system—code the emotional valence of taste stimuli (i.e., palatability), in firing rate responses that progress similarly through “epochs.” The fact that palatability-related firing appears one epoch earlier in BLA than GC is broadly consistent with the hypothesis that such information may propagate from the former to the latter. Here, we provide evidence supporting this hypothesis, assaying taste responses in small GC single-neuron ensembles before, during and after temporarily inactivating BLA (BLAx) in awake rats. BLAx changed responses in 98% of taste-responsive GC neurons, altering the entirety of every taste response in many neurons. Most changes involved reductions in firing rate, but regardless of the direction of change, the effect of BLAx was epoch-specific: while firing rates were changed, the taste-specificity of responses remained stable; information about taste palatability, however, which normally resides in the “Late” epoch, was reduced in magnitude across the entire GC sample and outright eliminated in most neurons. Only in the specific minority of neurons for which BLAx enhanced responses did palatability-specificity survive undiminished. Our data therefore provide direct evidence that BLA is a necessary component of GC gustatory processing, and that cortical palatability processing in particular is, in part, a function of BLA activity. PMID:22815512

  15. Acetylcholine is released from taste cells, enhancing taste signalling

    PubMed Central

    Dando, Robin; Roper, Stephen D

    2012-01-01

    Acetylcholine (ACh), a candidate neurotransmitter that has been implicated in taste buds, elicits calcium mobilization in Receptor (Type II) taste cells. Using RT-PCR analysis and pharmacological interventions, we demonstrate that the muscarinic acetylcholine receptor M3 mediates these actions. Applying ACh enhanced both taste-evoked Ca2+ responses and taste-evoked afferent neurotransmitter (ATP) secretion from taste Receptor cells. Blocking muscarinic receptors depressed taste-evoked responses in Receptor cells, suggesting that ACh is normally released from taste cells during taste stimulation. ACh biosensors confirmed that, indeed, taste Receptor cells secrete acetylcholine during gustatory stimulation. Genetic deletion of muscarinic receptors resulted in significantly diminished ATP secretion from taste buds. The data demonstrate a new role for acetylcholine as a taste bud transmitter. Our results imply specifically that ACh is an autocrine transmitter secreted by taste Receptor cells during gustatory stimulation, enhancing taste-evoked responses and afferent transmitter secretion. PMID:22570381

  16. Digestive physiology of the pig symposium: detection of dietary glutamate via gut-brain axis.

    PubMed

    Bannai, M; Torii, K

    2013-05-01

    Gustatory and visceral stimulation from food regulates digestion and nutrient use. Free L-glutamate (Glu) release from digested protein is responsible for umami taste perception in the gut. Moreover, monosodium Glu (MSG) is widely used as a flavor enhancer to add umami taste in various cuisines. Recent studies indicate that dietary Glu sensors and their signal transduction system exist in both gut mucosa and taste cells. Oral Glu sensing has been well studied. In this review, we focus on the role of Glu on digestion and absorption of food. Infusion of Glu into the stomach and intestine increase afferent nerve activity of the gastric and the celiac branches of the vagus nerve, respectively. Luminal Glu also evokes efferent nerve activation of the abdominal vagus nerve branches simultaneously. Additionally, intragastric infusion of Glu activates the insular cortex, limbic system, hypothalamus, nucleus tractus solitaries, and amygdala, as determined by functional magnetic resonance imaging, and is able to induce flavor-preference learning as a result of postingestive effects in rats. These results indicate that Glu signaling via gustatory and visceral pathways plays an important role in the processes of digestion, absorption, metabolism, and other physiological functions via activation of the brain.

  17. Oral sensory nerve damage: Causes and consequences.

    PubMed

    Snyder, Derek J; Bartoshuk, Linda M

    2016-06-01

    Oral sensations (i.e., taste, oral somatosensation, retronasal olfaction) are integrated into a composite sense of flavor, which guides dietary choices with long-term health impact. The nerves carrying this input are vulnerable to peripheral damage from multiple sources (e.g., otitis media, tonsillectomy, head injury), and this regional damage can boost sensations elsewhere in the mouth because of central interactions among nerve targets. Mutual inhibition governs this compensatory process, but individual differences lead to variation in whole-mouth outcomes: some individuals are unaffected, others experience severe loss, and some encounter sensory increases that may (if experienced early in life) elevate sweet-fat palatability and body mass. Phantom taste, touch, or pain sensations (e.g., burning mouth syndrome) may also occur, particularly in those expressing the most taste buds. To identify and treat these conditions effectively, emerging clinical tests measure regional vs. whole-mouth sensation, stimulated vs. phantom cues, and oral anatomy. Scaling methods allowing valid group comparisons have strongly aided these efforts. Overall, advances in measuring oral sensory function in health and disease show promise for understanding the varied clinical consequences of nerve damage.

  18. Oral Sensory Nerve Damage: Causes and Consequences

    PubMed Central

    Snyder, Derek J.; Bartoshuk, Linda M.

    2016-01-01

    Oral sensations (i.e., taste, oral somatosensation, retronasal olfaction) are integrated into a composite sense of flavor, which guides dietary choices with long-term health impact. The nerves carrying this input are vulnerable to peripheral damage from multiple sources (e.g., otitis media, tonsillectomy, head injury), and this regional damage can boost sensations elsewhere in the mouth because of central interactions among nerve targets. Mutual inhibition governs this compensatory process, but individual differences lead to variation in whole-mouth outcomes: some individuals are unaffected, others experience severe loss, and some encounter sensory increases that may (if experienced early in life) elevate sweet-fat palatability and body mass. Phantom taste, touch, or pain sensations (e.g., burning mouth syndrome) may also occur, particularly in those expressing the most taste buds. To identify and treat these conditions effectively, emerging clinical tests measure regional vs. whole-mouth sensation, stimulated vs. phantom cues, and oral anatomy. Scaling methods allowing valid group comparisons have strongly aided these efforts. Overall, advances in measuring oral sensory function in health and disease show promise for understanding the varied clinical consequences of nerve damage. PMID:27511471

  19. Bitter taste receptors in the wrong place: novel airway smooth muscle targets for treating asthma.

    PubMed

    Liggett, Stephen B

    2014-01-01

    There is a need to expand the classes of drugs used to treat obstructive lung diseases to achieve better outcomes. With only one class of direct bronchodilators (β-agonists), we sought to find receptors on human airway smooth muscle (ASM) that act via a unique mechanism to relax the muscle, have a diverse agonist binding profile to enhance the probability of finding new therapeutics, and relax ASM with equal or greater efficacy than β-agonists. We have found that human and mouse ASM express six bitter taste receptor (TAS2R) subtypes, previously thought only to exist in taste buds of the tongue. Agonists acting at TAS2Rs evoke profound bronchodilation via a Ca(2+)-dependent mechanism. TAS2R function is not altered in asthma models, undergoes minimal tachyphylaxis upon repetitive dosing, and relaxes even under extreme desensitization of relaxation by β-agonists. Taken together, TAS2Rs on ASM represent a novel pathway to consider for development of agonists in the treatment of asthma and chronic obstructive lung disease.

  20. Biosensor analysis of natural and artificial sweeteners in intact taste epithelium.

    PubMed

    Zhang, Fenni; Zhang, Qian; Zhang, Diming; Lu, Yanli; Liu, Qingjun; Wang, Ping

    2014-04-15

    Sweeteners are commonly used as food additives in our daily life, which, however, have been causing a number of undesirable diseases since the last century. Therefore, the detection and quantification of sweeteners are of great value for food safety. In this study, we used a taste biosensor to measure and analyze different sweeteners, both natural and artificial sweeteners included. Electrophysiological activities from taste epithelium were detected by the multi-channel biosensors and analyzed with spatiotemporal methods. The longtime signal result showed different temporal-frequency properties with stimulations of individual sweeteners such as glucose, sucrose, saccharin, and cyclamate, while the multi-channel results in our study revealed the spatial expression of taste epithelium to sweet stimuli. Furthermore, in the analysis of sweetener with different concentrations, the result showed obvious dose-dependent increases in signal responses of the taste epithelium, which indicated promising applications in sweetness evaluation. Besides, the mixture experiment of two natural sweeteners with a similar functional unit (glucose and sucrose) presented two signal patterns, which turned out to be similar with responses of each individual stimulus involved. The biosensor analysis of common sweeteners provided new approaches for both natural and artificial sweeteners evaluation. © 2013 Published by Elsevier B.V.

  1. Eating in response to exercise cues: Role of self-control fatigue, exercise habits, and eating restraint.

    PubMed

    Stein, Aliza T; Greathouse, Lee J; Otto, Michael W

    2016-01-01

    Identifying moderators of compensatory eating is important for understanding the failure of many people to lose weight in response to increased exercise levels. A previous study demonstrated that individuals shown action words (e.g., "active" or "go") were primed by these words to increase energy intake. Further studies have demonstrated that individual differences (e.g. differences in body mass) affect susceptibility to relevant priming cues. Based on these findings, this study examined individual differences, including exercise habits, tendencies toward compensatory eating, dietary restraint, and body mass that may serve as moderators of compensatory eating in the context of conceptual priming. A 2 × 2 design was utilized to analyze the effects of both priming and a self-control task on energy intake. Participants were presented with several snack foods under the guise of a taste test, with energy intake (kcal) during this taste test as the primary outcome variable. Results of this study indicate that, among those with higher baseline levels of exercise, lower energy intake was found for those exposed to exercise cues relative to those who did not receive these cues. In addition, the influence of the self-control fatigue condition was dependent on body mass index. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effect of Norbinaltorphimine on Δ9-Tetrahydrocannabinol (THC)-Induced Taste Avoidance in Adolescent and Adult Sprague-Dawley Rats

    PubMed Central

    Flax, Shaun M.; Wakeford, Alison G.P.; Cheng, Kejun; Rice, Kenner C.; Riley, Anthony L.

    2017-01-01

    Rationale The aversive effects of Δ9-tetrahydrocannabinol (THC) are mediated by activity at the kappa opioid receptor (KOR) as assessed in adult animals; however, no studies have assessed KOR involvement in the aversive effects of THC in adolescents. Given that adolescents have been reported to be insensitive to the aversive effects induced by KOR agonists, a different mechanism might mediate the aversive effects of THC in this age group. Objectives The present study was designed to assess the impact of KOR antagonism on the aversive effects of THC in adolescent and adult rats using the conditioned taste avoidance (CTA) procedure. Methods Following a single pretreatment injection of norbinaltorphimine (norBNI; 15 mg/kg), CTAs induced by THC (0, 0.56, 1.0, 1.8 and 3.2 mg/kg) were assessed in adolescent (n = 84) and adult (n = 83) Sprague Dawley rats. Results The KOR antagonist, norBNI, had weak and inconsistent effects on THC-induced taste avoidance in adolescent rats in that norBNI both attenuated and strengthened taste avoidance dependent on dose and trial. norBNI had limited impact on the final one-bottle avoidance and no effects on the two-bottle preference test. Interestingly, norBNI had no effect on THC-induced taste avoidance in adult rats as well. Conclusions That norBNI had no significant effect on THC-induced avoidance in adults and a minor and inconsistent effect in adolescents demonstrates that the aversive effects of THC are not mediated by KOR activity as assessed by the CTA design in Sprague Dawley rats. PMID:26025420

  3. Effect of norbinaltorphimine on ∆⁹-tetrahydrocannabinol (THC)-induced taste avoidance in adolescent and adult Sprague-Dawley rats.

    PubMed

    Flax, Shaun M; Wakeford, Alison G P; Cheng, Kejun; Rice, Kenner C; Riley, Anthony L

    2015-09-01

    The aversive effects of ∆(9)-tetrahydrocannabinol (THC) are mediated by activity at the kappa opioid receptor (KOR) as assessed in adult animals; however, no studies have assessed KOR involvement in the aversive effects of THC in adolescents. Given that adolescents have been reported to be insensitive to the aversive effects induced by KOR agonists, a different mechanism might mediate the aversive effects of THC in this age group. The present study was designed to assess the impact of KOR antagonism on the aversive effects of THC in adolescent and adult rats using the conditioned taste avoidance (CTA) procedure. Following a single pretreatment injection of norbinaltorphimine (norBNI; 15 mg/kg), CTAs induced by THC (0, 0.56, 1.0, 1.8, and 3.2 mg/kg) were assessed in adolescent (n = 84) and adult (n = 83) Sprague-Dawley rats. The KOR antagonist, norBNI, had weak and inconsistent effects on THC-induced taste avoidance in adolescent rats in that norBNI both attenuated and strengthened taste avoidance dependent on dose and trial. norBNI had limited impact on the final one-bottle avoidance and no effects on the two-bottle preference test. Interestingly, norBNI had no effect on THC-induced taste avoidance in adult rats as well. That norBNI had no significant effect on THC-induced avoidance in adults, and a minor and inconsistent effect in adolescents demonstrates that the aversive effects of THC are not mediated by KOR activity as assessed by the CTA design in Sprague-Dawley rats.

  4. The Role of Pre-Exposure to Novel Food Tastes in Activity-Based Conditioned Taste Avoidance

    ERIC Educational Resources Information Center

    Heth, C. Donald; Pierce, W. David

    2007-01-01

    Rats were given differential exposure to three distinct and novel foods. One of these foods was exposed for 7 days; another for 2 days, and the last was not exposed. Next, half of the rats received six daily sessions in which a compound of the three flavors was followed by opportunities to run in wheels. The other rats received the food compound…

  5. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor.

    PubMed

    Maillet, Emeline L; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Margolskee, Robert F; Osman, Roman; Max, Marianna

    2015-10-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2's VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The spike generator in the labellar taste receptors of the blowfly is differently affected by 4-aminopyridine and 5-hydroxytryptamine.

    PubMed

    Sollai, Giorgia; Solari, Paolo; Corda, Valentina; Masala, Carla; Crnjar, Roberto

    2012-12-01

    In taste chemoreception of invertebrates the interaction of taste stimuli with specific membrane receptors and/or ion channels located in the apical membrane of taste receptor cells results in the generation of a receptor potential which, in turn, activates the 'encoder' region to produce action potentials which propagate to the CNS. This study investigates, in the labellar chemosensilla of the blowfly, Protophormia terraenovae, the voltage-gated K(+) currents involved in the action potential repolarization and repetitive firing of the neurons by way of the K(v) channel inhibitors, 4-aminopyridine and 5-hydroxytryptamine. The receptor potential and the spike activity were simultaneously recorded from the 'salt', 'sugar' and 'deterrent' cells, by means of the extracellular side-wall technique, in response to 150 mM NaCl, 100 mM sucrose and 1 mM quinine HCl, before, 0÷10 min after apical administration of 4-AP (0.01-10 mM) or 5-HT (0.1-100 mM). The results show that the receptor potential in all three cells is neither affected by 4-AP nor by 5-HT. Instead, spike activity is significantly decreased, by way of blocking different K(v) channel types: an inactivating A-type K(+) current (KA) modulating repetitive firing of the cells and responsible for the after hyperpolarization, and a sustained K(+) current that resembles the delayed rectifier (DKR) and contributes to action potential repolarization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Identification of the key bitter compounds in our daily diet is a prerequisite for the understanding of the hTAS2R gene polymorphisms affecting food choice.

    PubMed

    Hofmann, Thomas

    2009-07-01

    In order to decode genetic variations affecting food choice and to determine whether to accept or to reject certain food products, it is a necessary prerequisite to deorphanize the hTAS2R/ligand pairs using the key bitter compounds in foods as stimuli rather than doing this either by using artificial molcules, to which the normal consumer had never been exposed, or by using food-born molecules which do not at all contribute to the overall bitterness. Therefore, the chemical structure of the most active bitter molecules in foods needs to be unequivocally determined in order to be sure that hTAS2R polymorphisms are related to the key molecules which really contribute to the overall bitterness perception of food products. As most studies focused primarily on quantitatively predominating compounds, rather than selecting the target compounds to be identified with regard to taste-activity, it seems that yet unknown components play a key role in evoking the bitter taste of food products. Driven by the need to discover the key players inducing the food taste, the research area "sensomics" made tremendous efforts in recent years to map the sensometabolome and to identify the most intense taste-active metabolites in fresh and processed foods. The present article summarizes recent studies on the identification of orphan key bitter stimuli in fresh, fermented, and thermally processed foods using carrots, cheese, and roasted coffee as examples.

  8. Taste identification in adults with autism spectrum conditions.

    PubMed

    Tavassoli, T; Baron-Cohen, S

    2012-07-01

    Sensory issues are widely reported in Autism Spectrum Conditions (ASC). Since taste perception is one of the least studied senses in ASC we explored taste identification in adults with ASC (12 males, 11 females) compared to control participants (14 males, 12 females). 'Taste strips' were used to measure taste identification overall, as well as bitter, sour, sweet and salty tastes. Results revealed lower taste scores overall in the ASC group, as well as for bitter, sour and sweet tastes. Salty taste scores did not differ between the groups. Examining error types showed that adults with ASC more often misidentified a taste as salty or as no taste. Future studies should investigate underlying mechanisms of taste identification difficulties in ASC.

  9. Taste Bud Homeostasis in Health, Disease, and Aging

    PubMed Central

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8–12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552

  10. Taste bud homeostasis in health, disease, and aging.

    PubMed

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.

  11. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae.

    PubMed

    Müller, Caroline; van Loon, Joop; Ruschioni, Sara; De Nicola, Gina Rosalinda; Olsen, Carl Erik; Iori, Renato; Agerbirk, Niels

    2015-10-01

    Isothiocyanates (ITCs), released from Brassicales plants after hydrolysis of glucosinolates, are known for their negative effects on herbivores but mechanisms have been elusive. The ITCs are initially present in dissolved form at the site of herbivore feeding, but volatile ITCs may subsequently enter the gas phase and all ITCs may react with matrix components. Deterrence to herbivores resulting from topically applied volatile ITCs in artificial feeding assays may hence lead to ambiguous conclusions. In the present study, the non-volatile ITC moringin (4-(α-L-rhamnopyranosyloxy)benzyl ITC) and its glucosinolate precursor glucomoringin were examined for effects on behaviour and taste physiology of specialist insect herbivores of Brassicales. In feeding bioassays, glucomoringin was not deterrent to larvae of Pieris napi (Lepidoptera: Pieridae) and Athalia rosae (Hymenoptera: Tenthredinidae), which are adapted to glucosinolates. Glucomoringin stimulated feeding of larvae of the related Pieris brassicae (Lepidoptera: Pieridae) and also elicited electrophysiological activity from a glucosinolate-sensitive gustatory neuron in the lateral maxillary taste sensilla. In contrast, the ITC moringin was deterrent to P. napi and P. brassicae at high levels and to A. rosae at both high and low levels when topically applied to cabbage leaf discs (either 12, 120 or 1200 nmol moringin per leaf disc of 1cm diameter). Survival of A. rosae was also significantly reduced when larvae were kept on leaves treated with moringin for several days. Furthermore, moringin elicited electrophysiological activity in a deterrent-sensitive neuron in the medial maxillary taste sensillum of P. brassicae, providing a sensory mechanism for the deterrence and the first known ITC taste response of an insect. In simulated feeding assays, recovery of moringin was high, in accordance with its non-volatile nature. Our results demonstrate taste-mediated deterrence of a non-volatile, natural ITC to glucosinolate-adapted insects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Investigating the Predictive Value of Functional MRI to Appetitive and Aversive Stimuli: A Pattern Classification Approach

    PubMed Central

    McCabe, Ciara; Rocha-Rego, Vanessa

    2016-01-01

    Background Dysfunctional neural responses to appetitive and aversive stimuli have been investigated as possible biomarkers for psychiatric disorders. However it is not clear to what degree these are separate processes across the brain or in fact overlapping systems. To help clarify this issue we used Gaussian process classifier (GPC) analysis to examine appetitive and aversive processing in the brain. Method 25 healthy controls underwent functional MRI whilst seeing pictures and receiving tastes of pleasant and unpleasant food. We applied GPCs to discriminate between the appetitive and aversive sights and tastes using functional activity patterns. Results The diagnostic accuracy of the GPC for the accuracy to discriminate appetitive taste from neutral condition was 86.5% (specificity = 81%, sensitivity = 92%, p = 0.001). If a participant experienced neutral taste stimuli the probability of correct classification was 92. The accuracy to discriminate aversive from neutral taste stimuli was 82.5% (specificity = 73%, sensitivity = 92%, p = 0.001) and appetitive from aversive taste stimuli was 73% (specificity = 77%, sensitivity = 69%, p = 0.001). In the sight modality, the accuracy to discriminate appetitive from neutral condition was 88.5% (specificity = 85%, sensitivity = 92%, p = 0.001), to discriminate aversive from neutral sight stimuli was 92% (specificity = 92%, sensitivity = 92%, p = 0.001), and to discriminate aversive from appetitive sight stimuli was 63.5% (specificity = 73%, sensitivity = 54%, p = 0.009). Conclusions Our results demonstrate the predictive value of neurofunctional data in discriminating emotional and neutral networks of activity in the healthy human brain. It would be of interest to use pattern recognition techniques and fMRI to examine network dysfunction in the processing of appetitive, aversive and neutral stimuli in psychiatric disorders. Especially where problems with reward and punishment processing have been implicated in the pathophysiology of the disorder. PMID:27870866

  13. Taste information derived from T1R-expressing taste cells in mice.

    PubMed

    Yoshida, Ryusuke; Ninomiya, Yuzo

    2016-03-01

    The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination. © 2016 Authors; published by Portland Press Limited.

  14. Participation of the peripheral taste system in aging-dependent changes in taste sensitivity.

    PubMed

    Narukawa, Masataka; Kurokawa, Azusa; Kohta, Rie; Misaka, Takumi

    2017-09-01

    Previous studies have shown that aging modifies taste sensitivity. However, the factors affecting the changes in taste sensitivity remain unclear. To investigate the cause of the age-related changes in taste sensitivity, we compared the peripheral taste detection systems in young and old mice. First, we examined whether taste sensitivity varied according to age using behavioral assays. We confirmed that the taste sensitivities to salty and bitter tastes decreased with aging. In other assays, the gustatory nerve responses to salty and sweet tastes increased significantly with aging, while those to bitter taste did not change. Thus, the profile of the gustatory nerve responses was inconsistent with the profile of the behavioral responses. Next, we evaluated the expressions of taste-related molecules in the taste buds. Although no apparent differences in the expressions of representative taste receptors were observed between the two age groups, the mRNA expressions of signaling effectors were slightly, but significantly, decreased in old mice. No significant differences in the turnover rates of taste bud cells were observed between the two age groups. Thus, we did not observe any large decreases in the expressions of taste-related molecules and turnover rates of taste bud cells with aging. Based on these findings, we conclude that changes in taste sensitivity with aging were not caused by aging-related degradation of peripheral taste organs. Meanwhile, the concentrations of several serum components that modify taste responses changed with age. Thus, taste signal-modifying factors such as serum components may have a contributing role in aging-related changes in taste sensitivity. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Social selection and peer influence in an online social network.

    PubMed

    Lewis, Kevin; Gonzalez, Marco; Kaufman, Jason

    2012-01-03

    Disentangling the effects of selection and influence is one of social science's greatest unsolved puzzles: Do people befriend others who are similar to them, or do they become more similar to their friends over time? Recent advances in stochastic actor-based modeling, combined with self-reported data on a popular online social network site, allow us to address this question with a greater degree of precision than has heretofore been possible. Using data on the Facebook activity of a cohort of college students over 4 years, we find that students who share certain tastes in music and in movies, but not in books, are significantly likely to befriend one another. Meanwhile, we find little evidence for the diffusion of tastes among Facebook friends-except for tastes in classical/jazz music. These findings shed light on the mechanisms responsible for observed network homogeneity; provide a statistically rigorous assessment of the coevolution of cultural tastes and social relationships; and suggest important qualifications to our understanding of both homophily and contagion as generic social processes.

  16. Decoding the Nonvolatile Sensometabolome of Orange Juice ( Citrus sinensis).

    PubMed

    Glabasnia, Anneke; Dunkel, Andreas; Frank, Oliver; Hofmann, Thomas

    2018-03-14

    Activity-guided fractionation in combination with the taste dilution analysis, followed by liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance experiments, led to the identification of 10 polymethoxylated flavones (PMFs), 6 limonoid glucosides, and 2 limonoid aglycones as the key bitterns of orange juice. Quantitative studies and calculation of dose-over-threshold factors, followed by taste re-engineering, demonstrated for the first time 25 sensometabolites to be sufficient to reconstruct the typical taste profile of orange juices and indicated that not a single compound can be considered a suitable marker for juice bitterness. Intriguingly, the taste percept of orange juice seems to be created by a rather complex interplay of limonin, limonoid glucosides, PMFs, organic acids, and sugars. For the first time, sub-threshold concentrations of PMFs were shown to enhance the perceived bitterness of limonoids. Moreover, the influence of sugars on the perceived bitterness of limonoids and PMFs in orange juice relevant concentration ranges was quantitatively elucidated.

  17. Affective forecasting in an orangutan: predicting the hedonic outcome of novel juice mixes.

    PubMed

    Sauciuc, Gabriela-Alina; Persson, Tomas; Bååth, Rasmus; Bobrowicz, Katarzyna; Osvath, Mathias

    2016-11-01

    Affective forecasting is an ability that allows the prediction of the hedonic outcome of never-before experienced situations, by mentally recombining elements of prior experiences into possible scenarios, and pre-experiencing what these might feel like. It has been hypothesised that this ability is uniquely human. For example, given prior experience with the ingredients, but in the absence of direct experience with the mixture, only humans are said to be able to predict that lemonade tastes better with sugar than without it. Non-human animals, on the other hand, are claimed to be confined to predicting-exclusively and inflexibly-the outcome of previously experienced situations. Relying on gustatory stimuli, we devised a non-verbal method for assessing affective forecasting and tested comparatively one Sumatran orangutan and ten human participants. Administered as binary choices, the test required the participants to mentally construct novel juice blends from familiar ingredients and to make hedonic predictions concerning the ensuing mixes. The orangutan's performance was within the range of that shown by the humans. Both species made consistent choices that reflected independently measured taste preferences for the stimuli. Statistical models fitted to the data confirmed the predictive accuracy of such a relationship. The orangutan, just like humans, thus seems to have been able to make hedonic predictions concerning never-before experienced events.

  18. Examining the relationships between posttraumatic stress disorder symptoms, positive smoking outcome expectancies, and cigarette smoking in people with substance use disorders: a multiple mediator model.

    PubMed

    Hruska, Bryce; Bernier, Jennifer; Kenner, Frank; Kenne, Deric R; Boros, Alec P; Richardson, Christopher J; Delahanty, Douglas L

    2014-01-01

    Cigarette smoking is highly prevalent in people with substance use disorders (SUDs) and is associated with significant physical health problems. Posttraumatic stress disorder (PTSD) is also highly associated with both SUDs and cigarette smoking and may serve as a barrier to smoking cessation efforts. In addition, people with PTSD are more likely to hold positive smoking outcome expectancies (i.e., beliefs that smoking cigarettes results in positive outcomes); these beliefs may contribute to cigarette smoking in people with SUDs experiencing PTSD symptoms. The present study examined the relationship between PTSD symptoms and typical daily cigarette smoking/cigarette dependence symptoms in a sample of 227 trauma-exposed current smokers with SUDs (59.9% male, 89.4% Caucasian) seeking detoxification treatment services. Additionally, the indirect effects of multiple types of positive smoking outcome expectancies on these relationships were examined. Participants completed questionnaires assessing PTSD symptoms, positive smoking outcome expectancies, cigarette consumption, and cigarette dependence symptoms. Results indicated that PTSD symptoms were not directly related to cigarette consumption or cigarette dependence symptoms. However, negative affect reduction outcome expectancies were shown to have a significant indirect effect between PTSD symptoms and cigarette consumption, while negative affect reduction, boredom reduction, and taste-sensorimotor manipulation outcome expectancies were all found to have significant indirect effects between PTSD symptoms and cigarette dependence symptoms. The indirect effect involving negative affect reduction outcome expectancies was statistically larger than that of taste sensorimotor manipulation outcome expectancies, while negative affect reduction and boredom reduction outcome expectancies were comparable in magnitude. These results suggest that expectancies that smoking can manage negative affective experiences are related to cigarette smoking in people with SUDs experiencing PTSD symptoms and suggest that effective smoking cessation treatments should take into account these expectancies. © 2013.

  19. Age-Related Changes in Mouse Taste Bud Morphology, Hormone Expression, and Taste Responsivity

    PubMed Central

    Shin, Yu-Kyong; Cong, Wei-na; Cai, Huan; Kim, Wook; Maudsley, Stuart; Martin, Bronwen

    2012-01-01

    Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact. PMID:22056740

  20. Genetics of Taste Receptors

    PubMed Central

    Bachmanov, Alexander A.; Bosak, Natalia P.; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R.; Nelson, Theodore M.

    2016-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical “tastes” as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications. PMID:23886383

  1. Quantitative analysis of taste bud cell numbers in fungiform and soft palate taste buds of mice.

    PubMed

    Ohtubo, Yoshitaka; Yoshii, Kiyonori

    2011-01-07

    Mammalian taste bud cells (TBCs) consist of several cell types equipped with different taste receptor molecules, and hence the ratio of cell types in a taste bud constitutes the taste responses of the taste bud. Here we show that the population of immunohistochemically identified cell types per taste bud is proportional to the number of total TBCs in the taste bud or the area of the taste bud in fungiform papillae, and that the proportions differ among cell types. This result is applicable to soft palate taste buds. However, the density of almost all cell types, the population of cell types divided by the area of the respective taste buds, is significantly higher in soft palates. These results suggest that the turnover of TBCs is regulated to keep the ratio of each cell type constant, and that taste responsiveness is different between fungiform and soft palate taste buds. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Age-related changes in mouse taste bud morphology, hormone expression, and taste responsivity.

    PubMed

    Shin, Yu-Kyong; Cong, Wei-na; Cai, Huan; Kim, Wook; Maudsley, Stuart; Egan, Josephine M; Martin, Bronwen

    2012-04-01

    Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact.

  3. Age differences in the brain mechanisms of good taste.

    PubMed

    Rolls, Edmund T; Kellerhals, Michele B; Nichols, Thomas E

    2015-06-01

    There is strong evidence demonstrating age-related differences in the acceptability of foods and beverages. To examine the neural foundations underlying these age-related differences in the acceptability of different flavors and foods, we performed an fMRI study to investigate brain and hedonic responses to orange juice, orange soda, and vegetable juice in three different age groups: Young (22), Middle (40) and Elderly (60 years). Orange juice and orange soda were found to be liked by all age groups, while vegetable juice was disliked by the Young, but liked by the Elderly. In the insular primary taste cortex, the activations to these stimuli were similar in the 3 age groups, indicating that the differences in liking for these stimuli between the 3 groups were not represented in this first stage of cortical taste processing. In the agranular insula (anterior to the insular primary taste cortex) where flavor is represented, the activations to the stimuli were similar in the Elderly, but in the Young the activations were larger to the vegetable juice than to the orange drinks; and the activations here were correlated with the unpleasantness of the stimuli. In the anterior midcingulate cortex, investigated as a site where the activations were correlated with the unpleasantness of the stimuli, there was again a greater activation to the vegetable than to the orange stimuli in the Young but not in the Elderly. In the amygdala (and orbitofrontal cortex), investigated as sites where the activations were correlated with the pleasantness of the stimuli, there was a smaller activation to the vegetable than to the orange stimuli in the Young but not in the Elderly. The Middle group was intermediate with respect to the separation of their activations to the stimuli in the brain areas that represent the pleasantness or unpleasantness of flavors. Thus age differences in the activations to different flavors can in some brain areas be related to, and probably cause, the differences in pleasantness of foods as they differ for people of different ages. This novel work provides a foundation for understanding the underlying neural bases for differences in food acceptability between age groups. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    PubMed Central

    2011-01-01

    Background Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. Methods We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP). Results Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Conclusions Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens. PMID:21232137

  5. Expression of taste receptors in solitary chemosensory cells of rodent airways.

    PubMed

    Tizzano, Marco; Cristofoletti, Mirko; Sbarbati, Andrea; Finger, Thomas E

    2011-01-13

    Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP). Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens.

  6. Carbon dioxide-sensing in organisms and its implications for human disease

    PubMed Central

    Cummins, Eoin P.; Selfridge, Andrew C.; Sporn, Peter H.; Sznajder, Jacob I.; Taylor, Cormac T.

    2013-01-01

    The capacity of organisms to sense changes in the levels of internal and external gases and to respond accordingly is central to a range of physiologic and pathophysiologic processes. Carbon dioxide, a primary product of oxidative metabolism is one such gas that can be sensed by both prokaryotic and eukaryotic cells and in response to altered levels, elicit the activation of multiple adaptive pathways. The outcomes of activating CO2-sensitive pathways in various species include increased virulence of fungal and bacterial pathogens, prey-seeking behavior in insects as well as taste perception, lung function, and the control of immunity in mammals. In this review, we discuss what is known about the mechanisms underpinning CO2 sensing across a range of species and consider the implications of this for physiology, disease progression, and the possibility of developing new therapeutics for inflammatory and infectious disease. PMID:24045706

  7. Salty taste deficits in CALHM1 knockout mice.

    PubMed

    Tordoff, Michael G; Ellis, Hillary T; Aleman, Tiffany R; Downing, Arnelle; Marambaud, Philippe; Foskett, J Kevin; Dana, Rachel M; McCaughey, Stuart A

    2014-07-01

    Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. II. Effect on chorda tympani salt responses.

    PubMed

    Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; Desimone, John A

    2005-06-01

    The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by direct measurement of intracellular Na(+) activity ([Na(+)](i)) using fluorescence imaging in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. CT responses to KCl and NaCl were recorded in Sprague-Dawley rats, and in wild-type (WT) and vanilloid receptor-1 (VR-1) knockout mice (KO). CT responses were monitored in the presence of Bz, a specific blocker of the epithelial Na(+) channel (ENaC). CT responses were also recorded in the presence of agonists (resiniferatoxin and elevated temperature) and antagonists (capsazepine and SB-366791) of VR-1 that similarly modulate the Bz-insensitive VR-1 variant salt taste receptor. In the absence of mineral salts, ethanol induced a transient decrease in TRC volume and elicited only transient phasic CT responses. In the presence of mineral salts, ethanol increased the apical cation flux in TRCs without a change in volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a phasic component and a sustained tonic component. At concentrations <50%, ethanol enhanced responses to KCl and NaCl, while at ethanol concentrations >50%, those CT responses were inhibited. Resiniferatoxin and elevated temperature increased the sensitivity of the CT response to ethanol in salt-containing media, and SB-366791 inhibited the effect of ethanol, resiniferatoxin, and elevated temperature on the CT responses to mineral salts. VR-1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to ethanol. We conclude that ethanol increases salt taste sensitivity by its direct action on the Bz-insensitive VR-1 variant salt taste receptor.

  9. A comparison between taste avoidance and conditioned disgust reactions induced by ethanol and lithium chloride in preweanling rats.

    PubMed

    Arias, Carlos; Pautassi, Ricardo Marcos; Molina, Juan Carlos; Spear, Norman E

    2010-09-01

    Adult rats display taste avoidance and disgust reactions when stimulated with gustatory stimuli previously paired with aversive agents such as lithium chloride (LiCl). By the second postnatal week of life, preweanling rats also display specific behaviors in response to a tastant conditioned stimulus (CS) that predicts LiCl-induced malaise. The present study compared conditioned disgust reactions induced by LiCl or ethanol (EtOH) in preweanling rats. In Experiment 1 we determined doses of ethanol and LiCl that exert similar levels of conditioned taste avoidance. After having equated drug dosage in terms of conditioned taste avoidance, 13-day-old rats were given a single pairing of a novel taste (saccharin) and either LiCl or ethanol (2.5 g/kg; Experiment 2). Saccharin intake and emission of disgust reactions were assessed 24 and 48 hr after training. Pups given paired presentations of saccharin and the aversive agents (ethanol or LiCl) consumed less saccharin during the first testing day than controls. These pups also showed more aversive behavioral reactions to the gustatory CS than controls. Specifically, increased amounts of grooming, general activity, head shaking, and wall climbing as well as reduced mouthing were observed in response to the CS. Conditioned aversive reactions but not taste avoidance were still evident on the second testing day. In conclusion, a taste CS paired with postabsorptive effects of EtOH and LiCl elicited a similar pattern of conditioned rejection reactions in preweanling rats. These results suggest that similar mechanisms may be underlying CTAs induced by LiCl and a relatively high EtOH dose.

  10. [Age-related changes of sensory system].

    PubMed

    Iwamoto, Toshihiko; Hanyu, Haruo; Umahara, Takahiko

    2013-10-01

    Pathological processes usually superimpose on physiological aging even in the sensory system including visual, hearing, olfactory, taste and somatosensory functions. Representative changes of age-related changes are presbyopia, cataracts, and presbyacusis. Reduced sense of smell is seen in normal aging, but the prominent reduction detected by the odor stick identification test is noticed especially in early stage of Alzheimer or Parkinson disease. Reduced sense of taste is well-known especially in salty sense, while the changes of sweet, bitter, and sour tastes are different among individuals. Finally, deep sensation of vibration and proprioception is decreased with age as well as superficial sensation (touch, temperature, pain). As a result, impaired sensory system could induce deterioration of the activities of daily living and quality of life in the elderly.

  11. A test for measuring gustatory function.

    PubMed

    Smutzer, Gregory; Lam, Si; Hastings, Lloyd; Desai, Hetvi; Abarintos, Ray A; Sobel, Marc; Sayed, Nabil

    2008-08-01

    The purpose of this study was to determine the usefulness of edible taste strips for measuring human gustatory function. The physical properties of edible taste strips were examined to determine their potential for delivering threshold and suprathreshold amounts of taste stimuli to the oral cavity. Taste strips were then assayed by fluorescence to analyze the uniformity and distribution of bitter tastant in the strips. Finally, taste recognition thresholds for sweet taste were examined to determine whether or not taste strips could detect recognition thresholds that were equal to or better than those obtained from aqueous tests. Edible strips were prepared from pullulan-hydroxypropyl methylcellulose solutions that were dried to a thin film. The maximal amount of a tastant that could be incorporated in a 2.54 cm2 taste strip was identified by including representative taste stimuli for each class of tastant (sweet, sour, salty, bitter, and umami) during strip formation. Distribution of the bitter tastant quinine hydrochloride in taste strips was assayed by fluorescence emission spectroscopy. The efficacy of taste strips for evaluating human gustatory function was examined by using a single series ascending method of limits protocol. Sucrose taste recognition threshold data from edible strips was then compared with results that were obtained from a standard "sip and spit" recognition threshold test. Edible films that formed from a pullulan-hydroxypropyl methylcellulose polymer mixture can be used to prepare clear, thin strips that have essentially no background taste and leave no physical presence after release of tastant. Edible taste strips could uniformly incorporate up to 5% of their composition as tastant. Taste recognition thresholds for sweet taste were over one order of magnitude lower with edible taste strips when compared with an aqueous taste test. Edible taste strips are a highly sensitive method for examining taste recognition thresholds in humans. This new means of presenting taste stimuli should have widespread applications for examining human taste function in the laboratory, in the clinic, or at remote locations.

  12. Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro

    PubMed Central

    Gulbransen, Brian D; Clapp, Tod R; Kinnamon, Sue C; Finger, Thomas E

    2009-01-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by epithelial solitary chemoreceptor (chemosensory) cells (SCCs), but the exact role of these cells in chemoreception is unclear (Finger et al. 2003). Histological evidence suggests that SCCs express elements of the bitter taste transduction pathway including T2R (bitter taste) receptors, the G protein α-gustducin, PLCβ2, and TRPM5, leading to speculation that SCCs are the receptor cells that mediate trigeminal nerve responses to bitter taste receptor ligands. To test this hypothesis, we used calcium imaging to determine whether SCCs respond to classic bitter-tasting or trigeminal stimulants. SCCs from the anterior nasal cavity were isolated from transgenic mice in which green fluorescent protein (GFP) expression was driven by either TRPM5 or gustducin. Isolated cells were exposed to a variety of test stimuli to determine which substances caused an increase in intracellular Ca2+ ([Ca2+]i). GFP positive cells respond with increased [Ca2+]i to the bitter receptor ligand denatonium, and this response is blocked by the PLC inhibitor U73122. In addition GFP+ cells respond to the PLC activator 3M3FBS, the neuromodulators ATP and ACh, but only very rarely to other bitter-tasting or trigeminal stimuli. Our results demonstrate that TRPM5- and gustducin-expressing nasal SCCs respond to the T2R agonist, denatonium via a PLC-coupled transduction cascade typical of T2Rs in the taste system. PMID:18417634

  13. Expression of the synaptic exocytosis-regulating molecule complexin 2 in taste buds and its participation in peripheral taste transduction.

    PubMed

    Kurokawa, Azusa; Narukawa, Masataka; Ohmoto, Makoto; Yoshimoto, Joto; Abe, Keiko; Misaka, Takumi

    2015-06-01

    Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2-knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2-knockout mice were significantly lower than those in wild-type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons. A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2- knockout mice were significantly lower than those in wild-type mice. These suggested that CPLX2 participated in synaptic taste transduction. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.

  14. Taste buds: cells, signals and synapses

    PubMed Central

    Roper, Stephen D.; Chaudhari, Nirupa

    2018-01-01

    The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding. PMID:28655883

  15. Taste buds: cells, signals and synapses.

    PubMed

    Roper, Stephen D; Chaudhari, Nirupa

    2017-08-01

    The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding.

  16. Cortical Activation in Response to Pure Taste Stimuli During the Physiological States of Hunger and Satiety

    PubMed Central

    Haase, Lori; Cerf-Ducastel, Barbara; Murphy, Claire

    2009-01-01

    This event-related functional magnetic resonance imaging (er-fMRI) study investigated BOLD signal change in response to a series of pure gustatory stimuli that varied in stimulus quality when subjects were hungry and sated with a nutritional preload. Group analyses showed significant differences in activation in the hunger minus satiety condition in response to sucrose, caffeine, saccharin, and citric acid within the thalamus, hippocampus, and parahippocampus. When examining the hunger and satiety conditions, activation varied as a function of stimulus, with the majority of the stimuli exhibiting significantly greater activation in the hunger state within the insula, thalamus, and substantia nigra, in contrast to decreased activation in the satiated state within the parahippocampus, hippocampus, amygdala, and anterior cingulate. Region of interest (ROI) analysis revealed two significant interactions, ROI by physiology and ROI by physiology by stimulus. In the satiety condition, the primary (inferior and superior insulae) and secondary (OFC 11 and OFC 47) taste regions exhibited significantly greater brain activation in response to all stimuli than regions involved in processing eating behavior (hypothalamus), affect (amygdala), and memory (hippocampus, parahippocampus and entorhinal cortex). These same regions demonstrated significantly greater activation within the hunger condition than the satiety condition, with the exception of the superior insula. Furthermore, the patterns of activation differed as a function taste stimulus, with greater activation in response to sucrose than to the other stimuli. These differential patterns of activation suggest that the physiological states of hunger and satiety produce divergent activation in multiple brain areas in response to different pure gustatory stimuli. PMID:19007893

  17. Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety.

    PubMed

    Haase, Lori; Cerf-Ducastel, Barbara; Murphy, Claire

    2009-02-01

    This event-related functional magnetic resonance imaging (er-fMRI) study investigated BOLD signal change in response to a series of pure gustatory stimuli that varied in stimulus quality when subjects were hungry and sated with a nutritional pre-load. Group analyses showed significant differences in activation in the hunger minus satiety condition in response to sucrose, caffeine, saccharin, and citric acid within the thalamus, hippocampus, and parahippocampus. When examining the hunger and satiety conditions, activation varied as a function of stimulus, with the majority of the stimuli exhibiting significantly greater activation in the hunger state within the insula, thalamus, and substantia nigra, in contrast to decreased activation in the satiated state within the parahippocampus, hippocampus, amygdala, and anterior cingulate. Region of interest (ROI) analysis revealed two significant interactions, ROI by physiology and ROI by physiology by stimulus. In the satiety condition, the primary (inferior and superior insulae) and secondary (OFC 11 and OFC 47) taste regions exhibited significantly greater brain activation in response to all stimuli than regions involved in processing eating behavior (hypothalamus), affect (amygdala), and memory (hippocampus, parahippocampus and entorhinal cortex). These same regions demonstrated significantly greater activation within the hunger condition than the satiety condition, with the exception of the superior insula. Furthermore, the patterns of activation differed as a function taste stimulus, with greater activation in response to sucrose than to the other stimuli. These differential patterns of activation suggest that the physiological states of hunger and satiety produce divergent activation in multiple brain areas in response to different pure gustatory stimuli.

  18. Processing umami and other tastes in mammalian taste buds.

    PubMed

    Roper, Stephen D; Chaudhari, Nirupa

    2009-07-01

    Neuroscientists are now coming to appreciate that a significant degree of information processing occurs in the peripheral sensory organs of taste prior to signals propagating to the brain. Gustatory stimulation causes taste bud cells to secrete neurotransmitters that act on adjacent taste bud cells (paracrine transmitters) as well as on primary sensory afferent fibers (neurocrine transmitters). Paracrine transmission, representing cell-cell communication within the taste bud, has the potential to shape the final signal output that taste buds transmit to the brain. The following paragraphs summarize current thinking about how taste signals generally, and umami taste in particular, are processed in taste buds.

  19. Exploring taste hyposensitivity in Japanese senior high school students.

    PubMed

    Ohnuki, Mari; Shinada, Kayoko; Ueno, Masayuki; Zaitsu, Takashi; Wright, Fredrick Allan Clive; Kawaguchi, Yoko

    2012-02-01

    The main objective of this study was to investigate the prevalence of taste hyposensitivity and the relationships between sex, oral health status, and eating habits with taste hyposensitivity in Japanese senior high school students. Oral examinations, sweet and salt whole-mouth taste tests, and a questionnaire about eating habits were conducted on 234 senior high school students. Factors affecting taste hyposensitivity were investigated using a multivariate analysis. Sweet-taste hyposensitivity was observed in 7.3% of the students, and salt-taste hyposensitivity in 22.2%. Approximately 3% of the students had both sweet- and salt-taste hyposensitivity, and 22.6% had either sweet- or salt-taste hyposensitivity. In total, 26% had a taste hyposensitivity. There were significant relationships between the intake of instant noodles with sweet-taste hyposensitivity, and the intake of vegetables or isotonic drinks with salt-taste hyposensitivity. There was a significant association between eating habits and taste hyposensitivity in Japanese senior high school students. Taste tests would be a helpful adjunct for students to recognize variations in taste sensitivity, and a questionnaire about their eating habits might provide an effective self-review of their eating habits, and therefore, provide motivation to change. © 2011 Blackwell Publishing Asia Pty Ltd.

  20. Changes in Gustatory Function and Taste Preference Following Weight Loss.

    PubMed

    Sauer, Helene; Ohla, Kathrin; Dammann, Dirk; Teufel, Martin; Zipfel, Stephan; Enck, Paul; Mack, Isabelle

    2017-03-01

    To investigate taste changes of obese children during an inpatient weight reduction treatment in comparison with normal weight children. Obese (n = 60) and normal weight (n = 27) children aged 9-17 years were assessed for gustatory functions using taste strips (taste identification test for the taste qualities sour, salty, sweet, and bitter), taste preferences, and experienced taste sensitivity. Obese children were examined upon admission (T1) and before discharge (T2). Normal weight children served as the control group. Irrespective of taste quality, obese children exhibited a lower ability to identify taste (total taste score) than normal weight children (P < .01); this overall score remained stable during inpatient treatment in obese children. Group and treatment effects were seen when evaluating individual taste qualities. In comparison with normal weight children, obese children exhibited poorer sour taste identification performance (P < .01). Obese children showed improvement in sour taste identification (P < .001) and deterioration in sweet taste identification (P < .001) following treatment. Subjective reports revealed a lower preference for sour taste in obese children compared with normal weight children (P < .05). The sweet and bitter taste ability at T1 predicted the body mass index z score at T2 (R 2  = .23, P < .01). We identified differences in the ability to discriminate tastes and in subjective taste perception between groups. Our findings of increased sour and reduced sweet taste discrimination after the intervention in obese children are indicative of an exposure-related effect on taste performance, possibly mediated by increased acid and reduced sugar consumption during the intervention. Because the sweet and bitter taste ability at T1 predicted weight loss, addressing gustatory function could be relevant in individualized obesity treatment approaches. Germanctr.de: DRKS00005122. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Development of Full Sweet, Umami, and Bitter Taste Responsiveness Requires Regulator of G protein Signaling-21 (RGS21).

    PubMed

    Schroer, Adam B; Gross, Joshua D; Kaski, Shane W; Wix, Kim; Siderovski, David P; Vandenbeuch, Aurelie; Setola, Vincent

    2018-05-23

    The mammalian tastes of sweet, umami, and bitter are initiated by activation of G protein-coupled receptors (GPCRs) of the T1R and T2R families on taste receptor cells. GPCRs signal via nucleotide exchange and hydrolysis, the latter hastened by GTPase-accelerating proteins (GAPs) that include the Regulators of G protein Signaling (RGS) protein family. We previously reported that RGS21, uniquely expressed in Type II taste receptor cells, decreases the potency of bitter-stimulated T2R signaling in cultured cells, consistent with its in vitro GAP activity. However, the role of RGS21 in organismal responses to GPCR-mediated tastants was not established. Here, we characterized mice lacking the Rgs21 fifth exon. Eliminating Rgs21 expression had no effect on body mass accumulation (a measure of alimentation), fungiform papillae number and morphology, circumvallate papillae morphology, and taste bud number. Two-bottle preference tests, however, revealed that Rgs21-null mice have blunted aversion to quinine and denatonium, and blunted preference for monosodium glutamate, the sweeteners sucrose and SC45647, and (surprisingly) NaCl. Observed reductions in GPCR-mediated tastant responses upon Rgs21 loss are opposite to original expectations, given that loss of RGS21-a GPCR signaling negative regulator-should lead to increased responsiveness to tastant-mediated GPCR signaling (all else being equal). Yet, reduced organismal tastant responses are consistent with observations of reduced chorda tympani nerve recordings in Rgs21-null mice. Reduced tastant-mediated responses and behaviors exhibited by adult mice lacking Rgs21 expression since birth have thus revealed an underappreciated requirement for a GPCR GAP to establish the full character of tastant signaling.

  2. The taste of toxicity: A quantitative analysis of bitter and toxic molecules.

    PubMed

    Nissim, Ido; Dagan-Wiener, Ayana; Niv, Masha Y

    2017-12-01

    The role of bitter taste-one of the few basic taste modalities-is commonly assumed to signal toxicity and alert animals against consuming harmful compounds. However, it is known that some toxic compounds are not bitter and that many bitter compounds have negligible toxicity while having important health benefits. Here we apply a quantitative analysis of the chemical space to shed light on the bitterness-toxicity relationship. Using the BitterDB dataset of bitter molecules, The BitterPredict prediction tool, and datasets of toxic compounds, we quantify the identity and similarity between bitter and toxic compounds. About 60% of the bitter compounds have documented toxicity and only 56% of the toxic compounds are known or predicted to be bitter. The LD 50 value distributions suggest that most of the bitter compounds are not very toxic, but there is a somewhat higher chance of toxicity for known bitter compounds compared to known nonbitter ones. Flavonoids and alpha acids are more common in the bitter dataset compared with the toxic dataset. In contrast, alkaloids are more common in the toxic datasets compared to the bitter dataset. Interestingly, no trend linking LD 50 values with the number of activated bitter taste receptors (TAS2Rs) subtypes is apparent in the currently available data. This is in accord with the newly discovered expression of TAS2Rs in several extra-oral tissues, in which they might be activated by yet unknown endogenous ligands and play non-gustatory physiological roles. These results suggest that bitter taste is not a very reliable marker for toxicity, and is likely to have other physiological roles. © 2017 IUBMB Life, 69(12):938-946, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  3. Central representation of postingestive chemosensory cues in mice that lack the ability to taste.

    PubMed

    Stratford, Jennifer M; Finger, Thomas E

    2011-06-22

    The gustatory nerves of mice lacking P2X2 and P2X3 purinergic receptor subunits (P2X-dblKO) are unresponsive to taste stimulation (Finger et al., 2005). Surprisingly, P2X-dblKO mice show residual behavioral responses to concentrated tastants, presumably via postingestive detection. Therefore, the current study tested whether postingestive signaling is functional in P2X-dblKO mice and if so, whether it activates the primary viscerosensory nucleus of the medulla, the nucleus of the solitary tract (nTS). Like WT animals, P2X-dblKO mice learned to prefer a flavor paired with 150 mm monosodium glutamate (MSG) over a flavor paired with water. This preference shows that, even in the absence of taste sensory input, postingestive cues are detected and associated with a flavor in P2X-dblKO mice. MSG-evoked neuronal activation in the nTS was measured by expression of the immediate early gene c-Fos [c-Fos-like immunoreactivity (Fos-LI)]. In rostral, gustatory nTS, P2X-dblKO animals, unlike WT animals, showed no taste quality-specific labeling of neurons. Furthermore, MSG-evoked Fos-LI was significantly less in P2X-dblKO mice compared with WT animals. In contrast, in more posterior, viscerosensory nTS, MSG-induced Fos-LI was similar in WT and P2X-dblKO mice. Together, these results suggest that P2X-dblKO mice can form preferences based on postingestive cues and that postingestive detection of MSG does not rely on the same purinergic signaling that is crucial for taste.

  4. Effect of acute stress on taste perception: in relation with baseline anxiety level and body weight.

    PubMed

    Ileri-Gurel, Esin; Pehlivanoglu, Bilge; Dogan, Murat

    2013-01-01

    We aimed to determine the effect of acute stress on taste perception and its modulation in relation to body weight and baseline anxiety in this study. The anxiety of the participants, randomly allocated to stress (n = 35) or control (n = 16) groups, was assessed by State Trait Anxiety Inventory. Stroop color-word interference and cold pressor tests were applied as stress protocol. Glucose and salt taste detection thresholds were evaluated before and after the stress protocol in the stress group and corresponding times in the control group. Stress protocol increased heart rate and blood pressure as an indicator of stress system activation. Following stress glucose and salt thresholds decreased in the stress group, unchanged in the control group. Prestress salt thresholds were positively and decrements in salt thresholds were negatively correlated with trait anxiety scores of participants. The state anxiety levels of stress group positively correlated with the decrease in glucose thresholds. Waist-to-hip ratio was negatively correlated with prestress salt thresholds of the subjects. Our results revealed that thresholds for sweet and salty tastes are modulated during stressful conditions. Our data also demonstrated a relationship between taste perception and baseline anxiety levels of healthy individuals, which may be important to understand the appetite alterations in individuals under stressful conditions.

  5. Taste Masking of Griseofulvin and Caffeine Anhydrous Using Kleptose Linecaps DE17 by Hot Melt Extrusion.

    PubMed

    Juluri, Abhishek; Popescu, Carmen; Zhou, Leon; Murthy, Reena N; Gowda, Vanaja K; Chetan Kumar, P; Pimparade, Manjeet B; Repka, Michael A; Murthy, S Narasimha

    2016-02-01

    The objective of this project was to investigate the potential of Kleptose Linecaps DE17 (KLD) in masking the unpleasant/bitter taste of therapeutic agents by hot melt extrusion (HME). Griseofulvin (GRI) and caffeine anhydrous (CA) were used as a bitter active pharmaceutical ingredient (API) model drugs. Thermogravimetric studies confirmed the stability of GRI, CA, and KLD at the employed extrusion temperatures. The differential scanning calorimetry (DSC) studies revealed a characteristic melting endotherm of GRI at 218-220°C and CA at 230-232°C in the physical mixtures as well as in all extrudates over the period of study, indicating the crystalline nature of drug. HME of KLD was achieved only in the presence of plasticizer. Among the several plasticizers investigated, xylitol showed improved processability of KLD at 15% w/w concentration. Dissolution studies of HME extrudates using simulated salivary medium exhibited ∼threefold less release compared to physical mixture at the end of 5 min (the lesser drug release, better the taste masking efficiency). Furthermore, the results from the sensory evaluation of products in human panel demonstrated strong bitter taste in the case of physical mixture compared to the HME formulation, suggesting the potential of Kleptose Linecaps DE17 as taste masking polymer in melt extruded form.

  6. The cultural currency of a 'good' sense of humour: British comedy and new forms of distinction.

    PubMed

    Friedman, Sam

    2011-06-01

    Traditionally considered lowbrow art par excellence, British comedy has grown steadily in legitimacy since the 'Alternative Comedy Movement' of the early 1980s. Yet while there might be evidence of a transformation in British comic production, there is little understanding of how this has been reflected in patterns of consumption. Indeed, there is a remarkable absence of studies probing comedy taste in British cultural sociology, most notably in Bennett et al's (2009) recent and otherwise exhaustive mapping of cultural taste and participation. This paper aims to plug this gap in the literature by examining contemporary comedy taste cultures in Britain. Drawing on a large-scale survey and in-depth interviews carried out at the Edinburgh Festival Fringe, it argues that comedy now represents an emerging field for the culturally privileged to activate their cultural capital resources. However, unlike previous studies on cultural capital and taste, this research finds that field-specific 'comic cultural capital' is mobilized less through taste for certain legitimate 'objects' of comedy and more through the expression of rarefied and somewhat 'disinterested'styles of comic appreciation. In short, it is 'embodied' rather than 'objectified' forms of cultural capital that largely distinguish the privileged in the field of comedy. © London School of Economics and Political Science 2011.

  7. Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in bourbon whiskey and oak-matured red wines.

    PubMed

    Glabasnia, Arne; Hofmann, Thomas

    2006-05-03

    Aimed at increasing our knowledge on the sensory-active nonvolatiles migrating from oak wood into alcoholic beverages upon cooperaging, an aqueous ethanolic extract prepared from oak wood chips (Quercus alba L.) was screened for its key taste compounds by application of the taste dilution analysis. Purification of the compounds perceived with the highest sensory impacts, followed by liquid chromatography/mass spectrometry as well as one-dimensional and two-dimensional NMR experiments, revealed the ellagitannins vescalagin, castalagin, and grandinin, the roburins A-E, and 33-deoxy-33-carboxyvescalagin as the key molecules imparting an astringent oral sensation. To the best of our knowledge, 33-deoxy-33-carboxyvescalagin has as yet not been reported as a phytochemical in Q. alba L. In addition, the sensory activity of these ellagitannins was determined for the first time on the basis of their human threshold concentrations and dose/response functions. Furthermore, the ellagitannins have been quantitatively determined in extracts prepared from Q. alba L. and Quercus robur L., respectively, as well as in bourbon whiskey and oak-matured red wines, and the sensory contribution of the individual compounds has been evaluated for the first time on the basis of dose/activity considerations.

  8. Effect of cultivation line and peeling on food composition, taste characteristic, aroma profile, and antioxidant activity of Shiikuwasha (Citrus depressa Hayata) juice.

    PubMed

    Asikin, Yonathan; Fukunaga, Hibiki; Yamano, Yoshimasa; Hou, De-Xing; Maeda, Goki; Wada, Koji

    2014-09-01

    Shiikuwasha (Citrus depressa Hayata) juice from four main cultivation lines subjected to two peeling practices (with or without peeling) were discriminated in terms of quality attributes, represented by sugar and organic acid composition, taste characteristic, aroma profile, and antioxidant activity. Shiikuwasha juice from these lines had diverse food compositions; 'Izumi kugani' juice had lower acidity but contained more ascorbic acid than that of other cultivation lines. The composition of volatile aroma components was influenced by fruit cultivation line, whereas its content was affected by peeling process (20.26-53.73 mg L(-1) in whole juice versus 0.82-1.58 mg L(-1) in flesh juice). Peeling also caused Shiikuwasha juice to be less astringent and acidic bitter and to lose its antioxidant activity. Moreover, the total phenolic and ascorbic acid content of Shiikuwasha juice positively influenced its antioxidant activity. Each fruit cultivation line had a distinct food composition, taste characteristic, and aroma profile. Peeling in Shiikuwasha juice production might reduce aftertaste, and thus might improve its palatability. Comprehensive information on the effect of cultivation line and peeling on quality attributes will be useful for Shiikuwasha juice production, and can be applied to juice production of similar small citrus fruits. © 2014 Society of Chemical Industry.

  9. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells.

    PubMed

    Cohn, Zachary J; Kim, Agnes; Huang, Liquan; Brand, Joseph; Wang, Hong

    2010-06-10

    The mammalian taste bud, a complex collection of taste sensory cells, supporting cells, and immature basal cells, is the structural unit for detecting taste stimuli in the oral cavity. Even though the cells of the taste bud undergo constant turnover, the structural homeostasis of the bud is maintained by balancing cell proliferation and cell death. Compared with nongustatory lingual epithelial cells, taste cells express higher levels of several inflammatory receptors and signalling proteins. Whether inflammation, an underlying condition in some diseases associated with taste disorders, interferes with taste cell renewal and turnover is unknown. Here we report the effects of lipopolysaccharide (LPS)-induced inflammation on taste progenitor cell proliferation and taste bud cell turnover in mouse taste tissues. Intraperitoneal injection of LPS rapidly induced expression of several inflammatory cytokines, including tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, and interleukin (IL)-6, in mouse circumvallate and foliate papillae. TNF-alpha and IFN-gamma immunoreactivities were preferentially localized to subsets of cells in taste buds. LPS-induced inflammation significantly reduced the number of 5-bromo-2'-deoxyuridine (BrdU)-labeled newborn taste bud cells 1-3 days after LPS injection, suggesting an inhibition of taste bud cell renewal. BrdU pulse-chase experiments showed that BrdU-labeled taste cells had a shorter average life span in LPS-treated mice than in controls. To investigate whether LPS inhibits taste cell renewal by suppressing taste progenitor cell proliferation, we studied the expression of Ki67, a cell proliferation marker. Quantitative real-time RT-PCR revealed that LPS markedly reduced Ki67 mRNA levels in circumvallate and foliate epithelia. Immunofluorescent staining using anti-Ki67 antibodies showed that LPS decreased the number of Ki67-positive cells in the basal regions surrounding circumvallate taste buds, the niche for taste progenitor cells. PCR array experiments showed that the expression of cyclin B2 and E2F1, two key cell cycle regulators, was markedly downregulated by LPS in the circumvallate and foliate epithelia. Our results show that LPS-induced inflammation inhibits taste progenitor cell proliferation and interferes with taste cell renewal. LPS accelerates cell turnover and modestly shortens the average life span of taste cells. These effects of inflammation may contribute to the development of taste disorders associated with infections.

  10. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium

    PubMed Central

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J.; Klein, Ophir D.; Barlow, Linda A.

    2014-01-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. PMID:24993944

  11. Effects of pramipexole on the processing of rewarding and aversive taste stimuli.

    PubMed

    McCabe, Ciara; Harwood, James; Brouwer, Sietske; Harmer, Catherine J; Cowen, Philip J

    2013-07-01

    Pramipexole, a D2/D3 dopamine receptor agonist, has been implicated in the development of impulse control disorders in patients with Parkinson's disease. Investigation of single doses of pramipexole in healthy participants in reward-based learning tasks has shown inhibition of the neural processing of reward, presumptively through stimulation of dopamine autoreceptors. This study aims to examine the effects of pramipexole on the neural response to the passive receipt of rewarding and aversive sight and taste stimuli. We used functional magnetic resonance imaging to examine the neural responses to the sight and taste of pleasant (chocolate) and aversive (mouldy strawberry) stimuli in 16 healthy volunteers who received a single dose of pramipexole (0.25 mg) and placebo in a double-blind, within-subject, design. Relative to placebo, pramipexole treatment reduced blood oxygen level-dependent activation to the chocolate stimuli in the areas known to play a key role in reward, including the ventromedial prefrontal cortex, the orbitofrontal cortex, striatum, thalamus and dorsal anterior cingulate cortex. Pramipexole also reduced activation to the aversive condition in the dorsal anterior cingulate cortex. There were no effects of pramipexole on the subjective ratings of the stimuli. Our results are consistent with an ability of acute, low-dose pramipexole to diminish dopamine-mediated responses to both rewarding and aversive taste stimuli, perhaps through an inhibitory action of D2/3 autoreceptors on phasic burst activity of midbrain dopamine neurones. The ability of pramipexole to inhibit aversive processing might potentiate its adverse behavioural effects and could also play a role in its proposed efficacy in treatment-resistant depression.

  12. Altered processing of sweet taste in the brain of diet soda drinkers

    PubMed Central

    Green, Erin; Murphy, Claire

    2012-01-01

    Artificially sweetened beverage consumption has been linked to obesity, and it has been hypothesized that considerable exposure to nonnutritive sweeteners may be associated with impaired energy regulation. The reward system plays an integral role in modulating energy intake, but little is known about whether habitual use of artificial sweetener (i.e., diet soda consumption) may be related to altered reward processing of sweet taste in the brain. To investigate this, we examined fMRI response after a 12-hour fast to sucrose (a nutritive sweetener) and saccharin (a nonnutritive sweetener) during hedonic evaluation in young adult diet soda drinkers and non-diet soda drinkers. Diet soda drinkers demonstrated greater activation to sweet taste in the dopaminergic midbrain (including ventral tegmental area) and right amygdala. Saccharin elicited a greater response in the right orbitofrontal cortex (Brodmann Area 47) relative to sucrose in non-diet soda drinkers. There was no difference in fMRI response to the nutritive or nonnutritive sweetener for diet soda drinkers. Within the diet soda drinkers, fMRI activation of the right caudate head in response to saccharin was negatively associated with the amount of diet sodas consumed per week; individuals who consumed a greater number of diet sodas had reduced caudate head activation. These findings suggest that there are alterations in reward processing of sweet taste in individuals who regularly consume diet soda, and this is associated with the degree of consumption. These findings may provide some insight into the link between diet soda consumption and obesity. PMID:22583859

  13. Gustatory sensation of (L)- and (D)-amino acids in humans.

    PubMed

    Kawai, Misako; Sekine-Hayakawa, Yuki; Okiyama, Atsushi; Ninomiya, Yuzo

    2012-12-01

    Amino acids are known to elicit complex taste, but most human psychophysical studies on the taste of amino acids have focused on a single basic taste, such as umami (savory) taste, sweetness, or bitterness. In this study, we addressed the potential relationship between the structure and the taste properties of amino acids by measuring the human gustatory intensity and quality in response to aqueous solutions of proteogenic amino acids in comparison to D-enantiomers. Trained subjects tasted aqueous solution of each amino acid and evaluated the intensities of total taste and each basic taste using a category-ratio scale. Each basic taste of amino acids showed the dependency on its hydrophobicity, size, charge, functional groups on the side chain, and chirality of the alpha carbon. In addition, the overall taste of amino acid was found to be the combination of basic tastes according to the partial structure. For example, hydrophilic non-charged middle-sized amino acids elicited sweetness, and L-enantiomeric hydrophilic middle-sized structure was necessary for umami taste. For example, L-serine had mainly sweet and minor umami taste, and D-serine was sweet. We further applied Stevens' psychophysical function to relate the total-taste intensity and the concentration, and found that the slope values depended on the major quality of taste (e.g., bitter large, sour small).

  14. Introduction

    NASA Astrophysics Data System (ADS)

    Zuidam, Nicolaas Jan; Nedović, Viktor A.

    Consumers prefer food products that are tasty, healthy and convenient. Encapsulation, a process to entrap active agents into particles, is an important way to meet these demands by delivering food ingredients at the right time and place. For example, this technology may allow taste and aroma differentiation, mask bad tasting or bad smelling components, stabilize food ingredients and/or increase their bioavailability. Encapsulation may also be used to immobilize cells or enzymes in the production of food materials or products, as in fermentation or metabolite production.

  15. Effects of binary taste stimuli on the neural activity of the hamster chorda tympani

    PubMed Central

    1980-01-01

    Binary mixtures of taste stimuli were applied to the tongue of the hamster and the reaction of the whole corda tympani was recorded. Some of the chemicals that were paired in mixtures (HCl, NH4Cl, NaCl, CaCl2, sucrose, and D-phenylalanine) have similar tastes to human and/or hamster, and/or common stimulatory effects on individual fibers of the hamster chorda tympani; other pairs of these chemicals have dissimilar tastes and/or distinct neural stimulatory effects. The molarity of each chemical with approximately the same effect on the activity of the nerve as 0.01 M NaCl was selected, and an established relation between stimulus concentration and response allowed estimation of the effect of a "mixture" of two concentrations of one chemical. Each mixture elicited a response that was smaller than the sum of the responses to its components. However, responses to some mixtures approached this sum, and responses to other mixtures closely approached the response to a "mixture" of two concentrations of one chemical. Responses of the former variety were generated by mixtures of an electrolyte and a nonelectrolyte and the latter by mixtures of two electrolytes or two nonelectrolytes. But, beyond the distinction between electrolytes and nonelectrolytes, the whole-nerve response to a mixture could not be predicted from the known neural or psychophysical effects of its components. PMID:7411114

  16. Intensity of regionally applied tastes in relation to administration method: an investigation based on the "taste strips" test.

    PubMed

    Manzi, Brian; Hummel, Thomas

    2014-02-01

    To compare various methods to apply regional taste stimuli to the tongue. "Taste strips" are a clinical tool to determine gustatory function. How a patient perceives the chemical environment in the mouth is a result of many factors such as taste bud distribution and interactions between the cranial nerves. To date, there have been few studies describing the different approaches to administer taste strips to maximize taste identification accuracy and intensity. This is a normative value acquisition pilot and single-center study. The investigation involved 30 participants reporting a normal sense of smell and taste (18 women, 12 men, mean age 33 years). The taste test was based on spoon-shaped filter paper strips impregnated with four taste qualities (sweet, sour, salty, and bitter) at concentrations shown to be easily detectable by young healthy subjects. The strips were administered in three methods (held stationary on the tip of the tongue, applied across the tongue, held in the mouth), resulting in a total of 12 trials per participant. Subjects identified the taste from a list of four descriptors, (sweet, sour, salty, bitter) and ranked the intensity on a scale from 0 to 10. Statistical analyses were performed on the accuracy of taste identification and rated intensities. The participants perceived in order of most to least intense: salt, sour, bitter, sweet. Of the four tastes, sour consistently was least accurately identified. Presenting the taste strip inside the closed mouth of the participants produced the least accurate taste identification, whereas moving the taste strip across the tongue led to a significant increase in intensity for the sweet taste. In this study of 30 subjects at the second concentration, optimized accuracy and intensity of taste identification was observed through administration of taste strips laterally across the anterior third of the extended tongue. Further studies are required on more subjects and the additional concentrations prior to determining the ideal taste strip application method.

  17. Musical Taste Cultures and Tase Publics

    ERIC Educational Resources Information Center

    Fox, William A.; Wince, Michael H.

    1975-01-01

    An analysis of the material tastes of college students support Gan's concepts of taste culture and taste public. While Gan's contention that class has a major effect upon involvement with taste culture, this requires qualification where musical tastes of college students are concerned. (Author/AM)

  18. Personality and dietary habits.

    PubMed

    Kikuchi, Y; Watanabe, S

    2000-05-01

    The personality of healthy individuals has not been well studied in relation to health consciousness, dietary habits and actual food intake, simultaneously. Our objective was to study the association between personality and dietary habits. Information on dietary habits, including taste preferences and the frequency of food consumption, was collected through a questionnaire from 76 male and 394 female students. The personality of students was determined by a modified NEO-FFI test. Health status, height, body weight, body fat percentage and blood pressure were measured by physical examination. Main outcome measures were personality scores as indicators of a healthy dietary pattern. Food intake was influenced by neuroticism (N), extraversion (E), openness (O) and agreeableness (A) of personality. Taste preferences and receptivity to dietary advice were also influenced by personality: the odds ratios (ORs) between the high and low tertiary points of the NEO-FFI scores for salty and sweet taste preferences were significantly higher in the group that scored high for neuroticism (N) (salty taste preference: OR = 2.25, NS in males and OR = 2.39, 95%CI = 1.16-4.93 in females; sweet taste preference: OR = 21.00, 95%CI = 2.40-183.99 in males and OR = 3.33, 95%CI = 1.61-6.91 in females). On the other hand, the groups with high scorer for O and A did not like salty tastes. The groups with high scores for A and C were receptive to dietary advice. High scores of each N, E, O, A, and C factor were characterized by distinguishable, dietary habits and lifestyle. For nutritional or health education, group classes are sufficient for high A and O. High C scorer displayed discrepancies between health consciousness and dietary habits, so intervention or a close follow-up by medical professionals would be necessary to improve the health of individuals in this group. High E scorer possessed a confident attitude towards their health, but they were not interested in developing healthy habits. High N scorer was adverse to receiving health information and learning healthy dietary habits. Personality determined by NEO-FFI test was related to dietary habits and health attitude. Effective health education methods must take the personality of the targeted individuals into consideration.

  19. Molecular Imaging of Phosphorylation Events for Drug Development

    PubMed Central

    Chan, C. T.; Paulmurugan, R.; Reeves, R. E.; Solow-Cordero, D.; Gambhir, S. S.

    2014-01-01

    Purpose Protein phosphorylation mediated by protein kinases controls numerous cellular processes. A genetically encoded, generalizable split firefly luciferase (FL)-assisted complementation system was developed for noninvasive monitoring phosphorylation events and efficacies of kinase inhibitors in cell culture and in small living subjects by optical bioluminescence imaging. Procedures An Akt sensor (AST) was constructed to monitor Akt phosphorylation and the effect of different PI-3K and Akt inhibitors. Specificity of AST was determined using a non-phosphorylable mutant sensor containing an alanine substitution (ASA). Results The PI-3K inhibitor LY294002 and Akt kinase inhibitor perifosine led to temporal- and dose-dependent increases in complemented FL activities in 293T human kidney cancer cells stably expressing AST (293T/AST) but not in 293T/ASA cells. Inhibition of endogenous Akt phosphorylation and kinase activities by perifosine also correlated with increase in complemented FL activities in 293T/AST cells but not in 293T/ASA cells. Treatment of nude mice bearing 293T/AST xenografts with perifosine led to a 2-fold increase in complemented FL activities compared to that of 293T/ASA xenografts. Our system was used to screen a small chemical library for novel modulators of Akt kinase activity. Conclusion This generalizable approach for noninvasive monitoring of phosphorylation events will accelerate the discovery and validation of novel kinase inhibitors and modulators of phosphorylation events. PMID:19048345

  20. Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance.

    PubMed

    Castillo-Azofeifa, David; Losacco, Justin T; Salcedo, Ernesto; Golden, Erin J; Finger, Thomas E; Barlow, Linda A

    2017-09-01

    The integrity of taste buds is intimately dependent on an intact gustatory innervation, yet the molecular nature of this dependency is unknown. Here, we show that differentiation of new taste bud cells, but not progenitor proliferation, is interrupted in mice treated with a hedgehog (Hh) pathway inhibitor (HPI), and that gustatory nerves are a source of sonic hedgehog (Shh) for taste bud renewal. Additionally, epithelial taste precursor cells express Shh transiently, and provide a local supply of Hh ligand that supports taste cell renewal. Taste buds are minimally affected when Shh is lost from either tissue source. However, when both the epithelial and neural supply of Shh are removed, taste buds largely disappear. We conclude Shh supplied by taste nerves and local taste epithelium act in concert to support continued taste bud differentiation. However, although neurally derived Shh is in part responsible for the dependence of taste cell renewal on gustatory innervation, neurotrophic support of taste buds likely involves a complex set of factors. © 2017. Published by The Company of Biologists Ltd.

  1. Gli3 is a negative regulator of Tas1r3-expressing taste cells

    PubMed Central

    Jyotaki, Masafumi; Redding, Kevin; Jiang, Peihua

    2018-01-01

    Mouse taste receptor cells survive from 3–24 days, necessitating their regeneration throughout adulthood. In anterior tongue, sonic hedgehog (SHH), released by a subpopulation of basal taste cells, regulates transcription factors Gli2 and Gli3 in stem cells to control taste cell regeneration. Using single-cell RNA-Seq we found that Gli3 is highly expressed in Tas1r3-expressing taste receptor cells and Lgr5+ taste stem cells in posterior tongue. By PCR and immunohistochemistry we found that Gli3 was expressed in taste buds in all taste fields. Conditional knockout mice lacking Gli3 in the posterior tongue (Gli3CKO) had larger taste buds containing more taste cells than did control wild-type (Gli3WT) mice. In comparison to wild-type mice, Gli3CKO mice had more Lgr5+ and Tas1r3+ cells, but fewer type III cells. Similar changes were observed ex vivo in Gli3CKO taste organoids cultured from Lgr5+ taste stem cells. Further, the expression of several taste marker and Gli3 target genes was altered in Gli3CKO mice and/or organoids. Mirroring these changes, Gli3CKO mice had increased lick responses to sweet and umami stimuli, decreased lick responses to bitter and sour taste stimuli, and increased glossopharyngeal taste nerve responses to sweet and bitter compounds. Our results indicate that Gli3 is a suppressor of stem cell proliferation that affects the number and function of mature taste cells, especially Tas1r3+ cells, in adult posterior tongue. Our findings shed light on the role of the Shh pathway in adult taste cell regeneration and may help devise strategies for treating taste distortions from chemotherapy and aging. PMID:29415007

  2. Distribution of α-Gustducin and Vimentin in premature and mature taste buds in chickens.

    PubMed

    Venkatesan, Nandakumar; Rajapaksha, Prasangi; Payne, Jason; Goodfellow, Forrest; Wang, Zhonghou; Kawabata, Fuminori; Tabata, Shoji; Stice, Steven; Beckstead, Robert; Liu, Hong-Xiang

    2016-10-14

    The sensory organs for taste in chickens (Gallus sp.) are taste buds in the oral epithelium of the palate, base of the oral cavity, and posterior tongue. Although there is not a pan-taste cell marker that labels all chicken taste bud cells, α-Gustducin and Vimentin each label a subpopulation of taste bud cells. In the present study, we used both α-Gustducin and Vimentin to further characterize chicken taste buds at the embryonic and post-hatching stages (E17-P5). We found that both α-Gustducin and Vimentin label distinct and overlapping populations of, but not all, taste bud cells. A-Gustducin immunosignals were observed as early as E18 and were consistently distributed in early and mature taste buds in embryos and hatchlings. Vimentin immunoreactivity was initially sparse at the embryonic stages then became apparent in taste buds after hatch. In hatchlings, α-Gustducin and Vimentin immunosignals largely co-localized in taste buds. A small subset of taste bud cells were labeled by either α-Gustducin or Vimentin or were not labeled. Importantly, each of the markers was observed in all of the examined taste buds. Our data suggest that the early onset of α-Gustducin in taste buds might be important for enabling chickens to respond to taste stimuli immediately after hatch and that distinctive population of taste bud cells that are labeled by different molecular markers might represent different cell types or different phases of taste bud cells. Additionally, α-Gustducin and Vimentin can potentially be used as molecular markers of all chicken taste buds in whole mount tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Innervation of single fungiform taste buds during development in rat.

    PubMed

    Krimm, R F; Hill, D L

    1998-08-17

    To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. Importantly, taste bud morphology and innervation were highly related. Namely, the number of labeled geniculate ganglion cells that innervated a taste bud was highly correlated with the size of the taste bud (r = 0.91, P < .0003): The larger the taste bud, the more geniculate ganglion cells that innervated it. The relationship between ganglion cell number and taste bud volume emerged during the first 40 days postnatal. Whereas there was no difference in the average number of ganglion cells that innervated individual taste buds in rats aged 10 days postnatal through adulthood, taste bud volumes increased progressively between 10 and 40 days postnatal, at which age taste bud volumes were similar to adults. The maturation of taste bud size was accompanied by the emergence of the relationship between taste bud volume and number of innervating neurons. Specifically, there was no correlation between taste bud size and number of innervating geniculate ganglion cells in 10-, 20-, or 30-day-old rats, whereas taste bud size and the number of innervating ganglion cells in 40-day-old rats were positively correlated (r = .80, P < .002). Therefore, the relationship between taste bud size and number of innervating ganglion cells develops over a prolonged postnatal period and is established when taste buds grow to their adult size.

  4. Kansei Biosensor and IT Society

    NASA Astrophysics Data System (ADS)

    Toko, Kiyoshi

    A taste sensor with global selectivity is composed of several kinds of lipid/polymer membranes for transforming information of taste substances into electric signal. The sensor output shows different patterns for chemical substances which have different taste qualities such as saltiness and sourness. Taste interactions such as suppression effect, which occurs between bitterness and sweetness, can be detected and quantified using the taste sensor. The taste and also smell of foodstuffs such as beer, coffee, mineral water, soup and milk can be discussed quantitatively. The taste sensor provides the objective scale for the human sensory expression. Multi-modal communication becomes possible using a taste/smell recognition microchip, which produces virtual taste. We are now standing at the beginning of a new age of communication using digitized taste.

  5. Sensing of Taste

    NASA Astrophysics Data System (ADS)

    Toko, Kiyoshi

    A taste sensor with global selectivity, i. e., electronic tongue, is composed of several kinds of lipid/polymer membranes for transforming information of taste substances into electric signal. The sensor output shows different patterns for chemical substances which have different taste qualities such as saltiness and sourness. Taste interactions such as suppression effect, which occurs between bitterness and sweetness, can be detected and quantified using the taste sensor. Amino acids can be classified into several groups according to their own tastes from sensor outputs. The taste of foodstuffs such as beer, coffee, mineral water and milk can be discussed quantitatively. The taste sensor provides the objective scale for the human sensory expression. We are now standing at the beginning of a new age of communication using digitized taste.

  6. Fungiform taste bud degeneration in C57BL/6J mice following chorda-lingual nerve transection.

    PubMed

    Guagliardo, Nick A; Hill, David L

    2007-09-10

    Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were smaller and more abundant on the anterior tip (<1 mm) of the tongue. By 5 days after nerve transection taste buds were smaller and fewer on the side of the tongue ipsilateral to the transection and continued to decrease in both size and number until 15 days posttransection. Degenerating fungiform taste buds were smaller due to a loss of taste bud cells rather than changes in taste bud morphology. While almost all taste buds disappeared in more posterior fungiform papillae by 15 days posttransection, the anterior tip of the tongue retained nearly half of its taste buds compared to intact mice. Surviving taste buds could not be explained by an apparent innervation from the remaining intact nerves. Contralateral effects of nerve transection were also observed; taste buds were larger due to an increase in the number of taste bud cells. These data are the first to characterize adult mouse fungiform taste buds and subsequent degeneration after unilateral nerve transection. They provide the basis for more mechanistic studies in which genetically engineered mice can be used. (c) 2007 Wiley-Liss, Inc.

  7. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium.

    PubMed

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J; Klein, Ophir D; Barlow, Linda A

    2014-08-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. © 2014. Published by The Company of Biologists Ltd.

  8. E-tongue: a tool for taste evaluation.

    PubMed

    Gupta, Himanshu; Sharma, Aarti; Kumar, Suresh; Roy, Saroj K

    2010-01-01

    Taste has an important role in the development of oral pharmaceuticals. With respect to patient acceptability and compliance, taste is one of the prime factors determining the market penetration and commercial success of oral formulations, especially in pediatric medicine. Taste assessment is one important quality-control parameter for evaluating taste-masked formulations. Hence, pharmaceutical industries invest time, money and resources into developing palatable and pleasant-tasting products. The primary method for the taste measurement of a drug substance or a formulation is by human sensory evaluation, in which tasting a sample is relayed to inspectors. However, this method is impractical for early stage drug development because the test in humans is expensive and the taste of a drug candidate may not be important to the final product. Therefore, taste-sensing analytical devices, which can detect tastes, have been replacing the taste panelists. In the present review we are presenting different aspect of electronic tongue. The review article also discussed some useful patents and instrument with respect to E-tongue.

  9. Mechanosensory neurons control sweet sensing in Drosophila

    PubMed Central

    Jeong, Yong Taek; Oh, Soo Min; Shim, Jaewon; Seo, Jeong Taeg; Kwon, Jae Young; Moon, Seok Jun

    2016-01-01

    Animals discriminate nutritious food from toxic substances using their sense of taste. Since taste perception requires taste receptor cells to come into contact with water-soluble chemicals, it is a form of contact chemosensation. Concurrent with that contact, mechanosensitive cells detect the texture of food and also contribute to the regulation of feeding. Little is known, however, about the extent to which chemosensitive and mechanosensitive circuits interact. Here, we show Drosophila prefers soft food at the expense of sweetness and that this preference requires labellar mechanosensory neurons (MNs) and the mechanosensory channel Nanchung. Activation of these labellar MNs causes GABAergic inhibition of sweet-sensing gustatory receptor neurons, reducing the perceived intensity of a sweet stimulus. These findings expand our understanding of the ways different sensory modalities cooperate to shape animal behaviour. PMID:27641708

  10. REVIEW ARTICLE: A taste sensor

    NASA Astrophysics Data System (ADS)

    Toko, Kiyoshi

    1998-12-01

    A multichannel taste sensor, namely an electronic tongue, with global selectivity is composed of several kinds of lipid/polymer membranes for transforming information about substances producing taste into electrical signals, which are input to a computer. The sensor output exhibits different patterns for chemical substances which have different taste qualities such as saltiness, sourness and bitterness, whereas it exhibits similar patterns for chemical substances with similar tastes. The sensor responds to the taste itself, as can be understood from the fact that taste interactions such as the suppression effect, which appears for mixtures of sweet and bitter substances, can be reproduced well. The suppression of the bitterness of quinine and a drug substance by sucrose can be quantified. Amino acids can be classified into several groups according to their own tastes on the basis of sensor outputs. The tastes of foodstuffs such as beer, coffee, mineral water, milk, sake, rice, soybean paste and vegetables can be discussed quantitatively using the taste sensor, which provides the objective scale for the human sensory expression. The flavour of a wine is also discriminated using the taste-odour sensory fusion conducted by combining the taste sensor and an odour-sensor array using conducting polymer elements. The taste sensor can also be applied to measurements of water pollution. Miniaturization of the taste sensor using FET produces the same characteristics as those of the above taste sensor by measuring the gate-source voltage. Use of the taste sensor will lead to a new era of food and environmental sciences.

  11. Learning to (dis)like: The effect of evaluative conditioning with tastes and faces on odor valence assessed by implicit and explicit measurements.

    PubMed

    van den Bosch, I; van Delft, J M; de Wijk, R A; de Graaf, C; Boesveldt, S

    2015-11-01

    Evaluative conditioning may be an important mechanism for learning food preferences and aversions; however, in both real life and experimental settings it has not been consistently successful. The current study aimed to gain more insight into which underlying factors may contribute to a successful outcome of olfactory evaluative conditioning. Two groups of 18 participants came in on three consecutive days, and were repeatedly exposed to four novel, neutral odors (CS) coupled to varying disliked, neutral, liked, or no stimuli (taste and/or pictures, US), following a 50% reinforcement schedule, leading to 40 odor presentations per session. Liking ratings, as well as changes in the autonomic nervous system were assessed before, during and after conditioning. We were able to induce negative, but not positive, affective changes by pairing neutral odors with tastes and pictures differing in valence. Negative as well as multimodal stimuli appear to be more potent US, since they may be considered more salient. Lastly, results of the current study imply that heart rate is responsive to changes in valence of olfactory stimuli, and perhaps even more sensitive than explicit ratings of liking. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Understanding taste dysfunction in patients with cancer.

    PubMed

    McLaughlin, Laura; Mahon, Suzanne M

    2012-04-01

    Taste dysfunction is a significant but underestimated issue for patients with cancer. Impaired taste results in changes in diet and appetite, early satiety, and impaired social interactions. Nurses can play a key role in educating patients and families on the pathophysiology of taste dysfunction by suggesting interventions to treat the consequences of taste dysfunction, when available, and offering psychosocial support as patients cope with this often devastating consequence of treatment. Taste recognition helps humans identify the nutritional quality of food and signals the digestive tract to begin secreting enzymes. Spoiled or tainted foods typically are recognized by their bad taste. Along with the other sensory systems, taste is crucial for helping patients treated for cancer feel normal. This article will review the anatomy and physiology of taste; define the different types of taste dysfunction, including the underlying pathophysiologic basis related to cancer treatment; and discuss potential nursing interventions to manage the consequences of taste dysfunction.

  13. The number of taste buds is related to bitter taste sensitivity in layer and broiler chickens.

    PubMed

    Kudo, Ken-ichi; Shiraishi, Jun-ichi; Nishimura, Shotaro; Bungo, Takashi; Tabata, Shoji

    2010-04-01

    The relationship between taste sensitivity and the number of taste buds using a bitter tastant, quinine hydrochloride, was investigated in White Leghorn, Rhode Island Red, and broiler chickens. The White Leghorn and Rhode Island Red strains were able to perceive 2.0 mmol/L quinine hydrochloride, but the taste sensitivity of Rhode Island Red chickens was higher than that of White Leghorn chickens. Broiler chickens perceived 0.5 mmol/L quinine hydrochloride. The number of taste buds in the White Leghorn strain was the lowest, then the Rhode Island Red strain, with the number of taste buds highest in the broiler chickens. The number of taste buds was well correlated with bitter taste sensitivity. Therefore, we suggest that the number of taste buds is a vital factor in the perception of bitter taste and may be useful in selecting appropriate feeds for chickens.

  14. Expression and Secretion of TNF-α in Mouse Taste Buds: A Novel Function of a Specific Subset of Type II Taste Cells

    PubMed Central

    Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong

    2012-01-01

    Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2−/−/TLR4−/− double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions. PMID:22905218

  15. Expression and secretion of TNF-α in mouse taste buds: a novel function of a specific subset of type II taste cells.

    PubMed

    Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong

    2012-01-01

    Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2(-/-)/TLR4(-/-) double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions.

  16. Does reading keep you thin? Leisure activities, cultural tastes, and body weight in comparative perspective

    PubMed Central

    Pampel, Fred C.

    2011-01-01

    While sedentary leisure-time activities such as reading, going to movies, attending cultural events, attending sporting events, watching TV, listening to music, and socializing with friends would seem to contribute to excess weight, a perspective focusing on SES differences in cultural tastes suggests the opposite, that some sedentary activities are associated with lower rather than higher body weight. This study aims to test theories of cultural distinction by examining relationships between leisure-time activities and body weight. Using 2007 data on 17 nations from the International Social Survey Program, the analysis estimates relationships between the body mass index and varied leisure-time activities while controlling for SES, physical activities, and sociodemographic variables. Net of controls for SES and physical activities, participation time in cultural activities is associated with lower rather than higher body weight, particularly in high-income nations. The results suggest that both cultural activities and body weight reflect forms of distinction that separate SES-based lifestyles. PMID:21707664

  17. [Influence of a high-carbohydrate meal on taste perception].

    PubMed

    Suchecka, Wanda; Klimacka-Nawrot, Ewa; Gałazka, Andrzej; Hartman, Magdalena; Błońska-Fajfrowska, Barbara

    2011-01-01

    Taste sensitivity varies greatly in individuals and depends on many external and metabolic conditions. The studied group consisted of healthy, non-smoking 41 women and 40 men, aged 19-29. The volunteers were examined in fasting state and after a high-carbohydrate meal. Taste sensitivity to sweet, salty and sour as well as hedonic response to taste were examined by means of gustometry examination recommended by Polski Komitet Normalizacyjny (Polish Committee for Standardization). It has been shown that in women the meal did not influence the intensity of sweet taste perception of saccharose solutions or the hedonic response to taste, whereas in men it caused a statistically significant decrease in the intensity of taste perception and in the hedonic response to the sweet taste of suprathreshold saccharose solutions. The meal did not influence the salty taste perception in a statistically significant way, neither in men nor in women. After the meal, the women perceived the sour taste with more intensity than in fasting state, whereas in men such influence was not observed. 1. The consumption of a high-carbohydrate meal influences the sweet and sour taste perception and the effect is sex-dependent: - in men, both the taste sensitivity to saccharose and the hedonic response to sweet taste were decreased, whereas in women such influence was not observed; - in women, the taste sensitivity to citric acid increased and the hedonic response to sour taste decreased, whereas in men such influence was not observed. 2. There is negative correlation between the intensity of taste perception and the hedonic response to the sweet taste both in men and in women after a high-carbohydrate meal, whereas in fasting state such correlation was not observed.

  18. Adenosine enhances sweet taste through A2B receptors in the taste bud

    PubMed Central

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.

    2012-01-01

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (Type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca2+ mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 µM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (Type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 µM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell RT-PCR on isolated vallate taste cells, we show that many Receptor cells express adenosine receptors, Adora2b, while Presynaptic (Type III) and Glial-like (Type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5′-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase (ACPP). Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste. PMID:22219293

  19. A preference test for sweet taste that uses edible strips.

    PubMed

    Smutzer, Gregory; Patel, Janki Y; Stull, Judith C; Abarintos, Ray A; Khan, Neiladri K; Park, Kevin C

    2014-02-01

    A novel delivery method is described for the rapid determination of taste preferences for sweet taste in humans. This forced-choice paired comparison approach incorporates the non-caloric sweetener sucralose into a set of one-inch square edible strips for the rapid determination of sweet taste preferences. When compared to aqueous sucrose solutions, significantly lower amounts of sucralose were required to identify the preference for sweet taste. The validity of this approach was determined by comparing sweet taste preferences obtained with five different sucralose-containing edible strips to a set of five intensity-matched sucrose solutions. When compared to the solution test, edible strips required approximately the same number of steps to identify the preferred amount of sweet taste stimulus. Both approaches yielded similar distribution patterns for the preferred amount of sweet taste stimulus. In addition, taste intensity values for the preferred amount of sucralose in strips were similar to that of sucrose in solution. The hedonic values for the preferred amount of sucralose were lower than for sucrose, but the taste quality of the preferred sucralose strip was described as sweet. When taste intensity values between sucralose strips and sucralose solutions containing identical amounts of taste stimulus were compared, sucralose strips produced a greater taste intensity and more positive hedonic response. A preference test that uses edible strips for stimulus delivery should be useful for identifying preferences for sweet taste in young children, and in clinical populations. This test should also be useful for identifying sweet taste preferences outside of the lab or clinic. Finally, edible strips should be useful for developing preference tests for other primary taste stimuli and for taste mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    PubMed

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  1. "Taste Strips" - a rapid, lateralized, gustatory bedside identification test based on impregnated filter papers.

    PubMed

    Landis, Basile Nicolas; Welge-Luessen, Antje; Brämerson, Annika; Bende, Mats; Mueller, Christian Albert; Nordin, Steven; Hummel, Thomas

    2009-02-01

    To elaborate normative values for a clinical psychophysical taste test ("Taste Strips"). The "Taste Strips" are a psychophysical chemical taste test. So far, no definitive normative data had been published and only a fairly small sample size has been investigated. In light of this shortcoming for this easy, reliable and quick taste testing device, we attempted to provide normative values suitable for the clinical use. Normative value acquisition study, multicenter study. The investigation involved 537 participants reporting a normal sense of smell and taste (318 female, 219 male, mean age 44 years, age range 18-87 years). The taste test was based on spoon-shaped filter paper strips ("Taste Strips") impregnated with the four (sweet, sour, salty, and bitter) taste qualities in four different concentrations. The strips were placed on the left or right side of the anterior third of the extended tongue, resulting in a total of 32 trials. With their tongue still extended, patients had to identify the taste from a list of four descriptors, i. e., sweet, sour, salty, and bitter (multiple forced-choice). To obtain an impression of overall gustatory function, the number of correctly identified tastes was summed up for a "taste score". Taste function decreased significantly with age. Women exhibited significantly higher taste scores than men which was true for all age groups. The taste score at the 10(th) percentile was selected as a cut-off value to distinguish normogeusia from hypogeusia. Results from a small series of patients with ageusia confirmed the clinical usefulness of the proposed normative values. The present data provide normative values for the "Taste Strips" based on over 500 subjects tested.

  2. A Preference Test for Sweet Taste That Uses Edible Strips

    PubMed Central

    Smutzer, Gregory; Patel, Janki Y.; Stull, Judith C.; Abarintos, Ray A.; Khan, Neiladri K.; Park, Kevin C.

    2014-01-01

    A novel delivery method is described for the rapid determination of taste preferences for sweet taste in humans. This forced-choice paired comparison approach incorporates the non-caloric sweetener sucralose into a set of one-inch square edible strips for the rapid determination of sweet taste preferences. When compared to aqueous sucrose solutions, significantly lower amounts of sucralose were required to identify the preference for sweet taste. The validity of this approach was determined by comparing sweet taste preferences obtained with five different sucralose-containing edible strips to a set of five intensity-matched sucrose solutions. When compared to the solution test, edible strips required approximately the same number of steps to identify the preferred amount of sweet taste stimulus. Both approaches yielded similar distribution patterns for the preferred amount of sweet taste stimulus. In addition, taste intensity values for the preferred amount of sucralose in strips were similar to that of sucrose in solution. The hedonic values for the preferred amount of sucralose were lower than for sucrose, but the taste quality of the preferred sucralose strip was described as sweet. When taste intensity values between sucralose strips and sucralose solutions containing identical amounts of taste stimulus were compared, sucralose strips produced a greater taste intensity and more positive hedonic response. A preference test that uses edible strips for stimulus delivery should be useful for identifying preferences for sweet taste in young children, and in clinical populations. This test should also be useful for identifying sweet taste preferences outside of the lab or clinic. Finally, edible strips should be useful for developing preference tests for other primary taste stimuli and for taste mixtures. PMID:24225255

  3. Dietary fat induces sustained reward response in the human brain without primary taste cortex discrimination

    PubMed Central

    Tzieropoulos, Hélène; Rytz, Andreas; Hudry, Julie; le Coutre, Johannes

    2013-01-01

    To disentangle taste from reward responses in the human gustatory cortex, we combined high density electro-encephalography with a gustometer delivering tastant puffs to the tip of the tongue. Stimuli were pure tastants (salt solutions at two concentrations), caloric emulsions (two milk preparations identical in composition except for fat content) and a mixture of high fat milk with the lowest salt concentration. Early event-related potentials (ERPs) showed a dose-response effect for increased taste intensity, with higher amplitude and shorter latency for high compared to low salt concentration, but not for increased fat content. However, the amplitude and distribution of late potentials were modulated by fat content independently of reported intensity and discrimination. Neural source estimation revealed a sustained activation of reward areas to the two high-fat stimuli. The results suggest calorie detection through specific sensors on the tongue independent of perceived taste. Finally, amplitude variation of the first peak in the event-related potential to the different stimuli correlated with papilla density, suggesting a higher discrimination power for subjects with more fungiform papillae. PMID:23430280

  4. Social selection and peer influence in an online social network

    PubMed Central

    Lewis, Kevin; Gonzalez, Marco; Kaufman, Jason

    2012-01-01

    Disentangling the effects of selection and influence is one of social science's greatest unsolved puzzles: Do people befriend others who are similar to them, or do they become more similar to their friends over time? Recent advances in stochastic actor-based modeling, combined with self-reported data on a popular online social network site, allow us to address this question with a greater degree of precision than has heretofore been possible. Using data on the Facebook activity of a cohort of college students over 4 years, we find that students who share certain tastes in music and in movies, but not in books, are significantly likely to befriend one another. Meanwhile, we find little evidence for the diffusion of tastes among Facebook friends—except for tastes in classical/jazz music. These findings shed light on the mechanisms responsible for observed network homogeneity; provide a statistically rigorous assessment of the coevolution of cultural tastes and social relationships; and suggest important qualifications to our understanding of both homophily and contagion as generic social processes. PMID:22184242

  5. New Thermal Taste Actuation Technology for Future Multisensory Virtual Reality and Internet.

    PubMed

    Karunanayaka, Kasun; Johari, Nurafiqah; Hariri, Surina; Camelia, Hanis; Bielawski, Kevin Stanley; Cheok, Adrian David

    2018-04-01

    Today's virtual reality (VR) applications such as gaming, multisensory entertainment, remote dining, and online shopping are mainly based on audio, visual, and touch interactions between humans and virtual worlds. Integrating the sense of taste into VR is difficult since humans are dependent on chemical-based taste delivery systems. This paper presents the 'Thermal Taste Machine', a new digital taste actuation technology that can effectively produce and modify thermal taste sensations on the tongue. It modifies the temperature of the surface of the tongue within a short period of time (from 25°C to 40 °C while heating, and from 25°C to 10 °C while cooling). We tested this device on human subjects and described the experience of thermal taste using 20 known (taste and non-taste) sensations. Our results suggested that rapidly heating the tongue produces sweetness, fatty/oiliness, electric taste, warmness, and reduces the sensibility for metallic taste. Similarly, cooling the tongue produced mint taste, pleasantness, and coldness. By conducting another user study on the perceived sweetness of sucrose solutions after the thermal stimulation, we found that heating the tongue significantly enhances the intensity of sweetness for both thermal tasters and non-thermal tasters. Also, we found that faster temperature rises on the tongue produce more intense sweet sensations for thermal tasters. This technology will be useful in two ways: First, it can produce taste sensations without using chemicals for the individuals who are sensitive to thermal taste. Second, the temperature rise of the device can be used as a way to enhance the intensity of sweetness. We believe that this technology can be used to digitally produce and enhance taste sensations in future virtual reality applications. The key novelties of this paper are as follows: 1. Development of a thermal taste actuation technology for stimulating the human taste receptors, 2. Characterization of the thermal taste produced by the device using taste-related sensations and non-taste related sensations, 3. Research on enhancing the intensity for sucrose solutions using thermal stimulation, 4. Research on how different speeds of heating affect the intensity of sweetness produced by thermal stimulation.

  6. Taste bud cell dynamics during normal and sodium-restricted development.

    PubMed

    Hendricks, Susan J; Brunjes, Peter C; Hill, David L

    2004-04-26

    Taste bud volume increases over the postnatal period to match the number of neurons providing innervation. To clarify age-related changes in fungiform taste bud volume, the current study investigated developmental changes in taste bud cell number, proliferation rate, and life span. Taste bud growth can largely be accounted for by addition of cytokeratin-19-positive taste bud cells. Examination of taste bud cell kinetics with 3H-thymidine autoradiography revealed that cell life span and turnover periods were not altered during normal development but that cells were produced more rapidly in young rats, a prominent modification that could lead to increased taste bud size. By comparison, dietary sodium restriction instituted during pre- and postnatal development results in small taste buds at adulthood as a result of fewer cytokeratin-19-positive cells. The dietary manipulation also had profound influences on taste bud growth kinetics, including an increased latency for cells to enter the taste bud and longer life span and turnover periods. These studies provide fundamental, new information about taste bud development under normal conditions and after environmental manipulations that impact nerve/target matching. Copyright 2004 Wiley-Liss, Inc.

  7. Cross-modal Associations between Real Tastes and Colors.

    PubMed

    Saluja, Supreet; Stevenson, Richard J

    2018-06-02

    People make reliable and consistent matches between taste and color. However, in contrast to other cross-modal correspondences, all of the research to date has used only taste words (and often color words too), potentially limiting our understanding of how taste-color matches arise. Here, participants sampled the five basic tastes, at three concentration steps, and selected their best matching color from a color-wheel. This test was repeated, and in addition, participants evaluated the valence of the taste and their color choice, as well as the qualities/intensities of the taste stimuli. Participants were then presented with taste names and asked to generate the best matching color name, as well as reporting how they made their earlier choices. Color selections were reliable and consistent, and closely followed those based on taste word matches obtained in this and prior studies. Most participants reported basing their color choices on their associated taste-object (often foods). There was marked similarity in valence between taste and color choices, and the saturation of color choices was related to tastant concentration. We discuss what drives color-taste pairings, with learning suggested as one possible mechanism.

  8. How Are Preferences Revealed?

    PubMed Central

    Beshears, John; Choi, James J.; Laibson, David; Madrian, Brigitte C.

    2009-01-01

    Revealed preferences are tastes that rationalize an economic agent’s observed actions. Normative preferences represent the agent’s actual interests. It sometimes makes sense to assume that revealed preferences are identical to normative preferences. But there are many cases where this assumption is violated. We identify five factors that increase the likelihood of a disparity between revealed preferences and normative preferences: passive choice, complexity, limited personal experience, third-party marketing, and intertemporal choice. We then discuss six approaches that jointly contribute to the identification of normative preferences: structural estimation, active decisions, asymptotic choice, aggregated revealed preferences, reported preferences, and informed preferences. Each of these approaches uses consumer behavior to infer some property of normative preferences without equating revealed and normative preferences. We illustrate these issues with evidence from savings and investment outcomes. PMID:24761048

  9. A National Test of Taste and Smell

    MedlinePlus

    ... Javascript on. Feature: Taste, Smell, Hearing, Language, Voice, Balance At Last: A National Test of Taste and ... smell. Read More "Taste, Smell, Hearing, Language, Voice, Balance" Articles At Last: A National Test of Taste ...

  10. The Taste of Caffeine

    PubMed Central

    Tordoff, Michael G.

    2017-01-01

    Many people avidly consume foods and drinks containing caffeine, despite its bitter taste. Here, we review what is known about caffeine as a bitter taste stimulus. Topics include caffeine's action on the canonical bitter taste receptor pathway and caffeine's action on noncanonical receptor-dependent and -independent pathways in taste cells. Two conclusions are that (1) caffeine is a poor prototypical bitter taste stimulus because it acts on bitter taste receptor-independent pathways, and (2) caffeinated products most likely stimulate “taste” receptors in nongustatory cells. This review is relevant for taste researchers, manufacturers of caffeinated products, and caffeine consumers. PMID:28660093

  11. Salicin from Willow Bark can Modulate Neurite Outgrowth in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Wölfle, Ute; Haarhaus, Birgit; Kersten, Astrid; Fiebich, Bernd; Hug, Martin J; Schempp, Christoph M

    2015-10-01

    Salicin from willow bark has been used throughout centuries in China and Europe for the treatment of pain, headache, and inflammatory conditions. Recently, it could be demonstrated that salicin binds and activates the bitter taste receptor TAS2R16. Studies on rodent tissues showed the general expression of bitter taste receptors (TAS2Rs) in rodent brain. Here, we demonstrate the expression of hTAS2R16 in human neuronal tissues and the neuroblastoma cell line SH-SY5Y. The functionality was analyzed in the neuroblastoma cell line SH-SY5Y after stimulation with salicin, a known TAS2R16 agonist. In this setting salicin induced in SH-SY5Y cells phosphorylation of ERK and CREB, the key transcription factor of neuronal differentiation. PD98059, an inhibitor of the ERK pathway, as well as probenecid, a TAS2R16 antagonist, inhibited receptor phosphorylation as well as neurite outgrowth. These data show that salicin might modulate neurite outgrowth by bitter taste receptor activation. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Nonvolatile Taste Components and Antioxidant Properties of Fruiting Body and Mycelium with High Ergothioneine Content from the Culinary-Medicinal Golden Oyster Mushroom Pleurotus citrinopileatus (Agaricomycetes).

    PubMed

    Lin, Shin-Yi; Chien, Shih-Chang; Wang, Sheng-Yang; Mau, Jeng-Leun

    2016-01-01

    Pleurotus citrinopileatus mycelium was prepared with high ergothioneine (Hi-Ergo) content and its proximate composition, nonvolatile taste components, and antioxidant properties were studied. The ergothioneine contents of fruiting bodies and Hi-Ergo and regular mycelia were 3.89, 14.57, and 0.37 mg/g dry weight, respectively. Hi-Ergo mycelium contained more dietary fiber, soluble polysaccharides, and ash but less carbohydrates, reducing sugar, fiber, and fat than regular mycelium. However, Hi-Ergo mycelium contained the smallest amounts of total sugars and polyols (47.43 mg/g dry weight). In addition, Hi-Ergo mycelium showed the most intense umami taste. On the basis of the half-maximal effective concentration values obtained, the 70% ethanolic extract from Hi-Ergo mycelium showed the most effective antioxidant activity, reducing power, and scavenging ability, whereas the fruiting body showed the most effective antioxidant activity, chelating ability, and Trolox-equivalent antioxidant capacity. Overall, Hi-Ergo mycelium could be beneficially used as a food-flavoring material or as a nutritional supplement.

  13. Control of bromate and THM precursors using ozonation combined system.

    PubMed

    Xie, Shu-Guang; Shi, Dong-Wen; Wen, Dong-Hui; Wang, Rui; Xi, Dan-Li

    2007-06-01

    To investigate the feasibility of reducing THM precursors and controlling bromate taste and odor in drinking water taken from the Yellow River by an ozonation combined system. The appropriate ozone dosage was determined, and then the changes of TOC, UV254 and THM formation potential (THMFP) in the combined system were evaluated. One mg/L ozone could effectively remove taste and odor and meet the maximum allowable bromate level in drinking water. The pre-ozonation increased THMFP, but the conventional treatment system could effectively reduce the odor. The bio-ceramic filter could partly reduce CHCl3FP, but sometimes might increase CHCl2BrFP and CHClBr2FP. The biological activated carbon (BAC) filter could effectively reduce CHCl3FP and CHCl2BrFP, but increase CHClBr2FP. Compared with other filters, the fresh activated carbon (FAC) filter performed better in reducing THMFP and even reduced CHClBr2FP. The combined system can effectively reduce taste, odor, CHCl3FP, and CHCl2BrFP and also bring bromate under control.

  14. An Exemplary Case of Promotion Activities and Taste Panels from the Perspective of Tobacco Control

    PubMed Central

    Mutlu, Erdem İlker; Seydioğulları, Mustafa; Aslan, Dilek

    2015-01-01

    The Framework Convention on Tobacco Control is a multilateral international agreement which has been generated to protect the health of nationals and nations against the hazards/risks of tobacco and its products. All high contracting parties to the Convention undertake the international responsibility to fulfill all the requirements of the Convention’s articles in national legal systems. The Framework Convention on Tobacco Control has a considerable place among other international conventions on health. Within the self-executing desing/system of the Convention, a vital regulation focuses on banning the advertisement, promotion, and sponsorship of tobacco products. Because they are one of the various components of tobacco advertisement, promotion, and sponsorship, taste panels should be assessed within the content of the Convention. Thus, banning taste panel activities is an important step in tobacco control and it is one of the basic areas where medical and law sciences should collaborate. In this article, a comprehensive frame has been drawn to the issue and recommendations have been developed for the future. PMID:29404102

  15. Soy sauce and its umami taste: a link from the past to current situation.

    PubMed

    Lioe, Hanifah Nuryani; Selamat, Jinap; Yasuda, Masaaki

    2010-04-01

    Soy sauce taste has become a focus of umami taste research. Umami taste is a 5th basic taste, which is associated to a palatable and pleasurable taste of food. Soy sauce has been used as an umami seasoning since the ancient time in Asia. The complex fermentation process occurred to soy beans, as the raw material in the soy sauce production, gives a distinct delicious taste. The recent investigation on Japanese and Indonesian soy sauces revealed that this taste is primarily due to umami components which have molecular weights lower than 500 Da. Free amino acids are the low molecular compounds that have an important role to the taste, in the presence of sodium salt. The intense umami taste found in the soy sauces may also be a result from the interaction between umami components and other tastants. Small peptides are also present, but have very low, almost undetected umami taste intensities investigated in their fractions.

  16. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid.

    PubMed

    Aihara, Eitaro; Mahe, Maxime M; Schumacher, Michael A; Matthis, Andrea L; Feng, Rui; Ren, Wenwen; Noah, Taeko K; Matsu-ura, Toru; Moore, Sean R; Hong, Christian I; Zavros, Yana; Herness, Scott; Shroyer, Noah F; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A; Montrose, Marshall H

    2015-11-24

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5(+)) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5(+) cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration.

  17. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid

    PubMed Central

    Aihara, Eitaro; Mahe, Maxime M.; Schumacher, Michael A.; Matthis, Andrea L.; Feng, Rui; Ren, Wenwen; Noah, Taeko K.; Matsu-ura, Toru; Moore, Sean R.; Hong, Christian I.; Zavros, Yana; Herness, Scott; Shroyer, Noah F.; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A.; Montrose, Marshall H.

    2015-01-01

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5+) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5+ cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration. PMID:26597788

  18. BDNF is required for taste axon regeneration following unilateral chorda tympani nerve section.

    PubMed

    Meng, Lingbin; Huang, Tao; Sun, Chengsan; Hill, David L; Krimm, Robin

    2017-07-01

    Taste nerves readily regenerate to reinnervate denervated taste buds; however, factors required for regeneration have not yet been identified. When the chorda tympani nerve is sectioned, expression of brain-derived neurotrophic factor (BDNF) remains high in the geniculate ganglion and lingual epithelium, despite the loss of taste buds. These observations suggest that BDNF is present in the taste system after nerve section and may support taste nerve regeneration. To test this hypothesis, we inducibly deleted Bdnf during adulthood in mice. Shortly after Bdnf gene recombination, the chorda tympani nerve was unilaterally sectioned causing a loss of both taste buds and neurons, irrespective of BDNF levels. Eight weeks after nerve section, however, regeneration was differentially affected by Bdnf deletion. In control mice, there was regeneration of the chorda tympani nerve and taste buds reappeared with innervation. In contrast, few taste buds were reinnervated in mice lacking normal Bdnf expression such that taste bud number remained low. In all genotypes, taste buds that were reinnervated were normal-sized, but non-innervated taste buds remained small and atrophic. On the side of the tongue contralateral to the nerve section, taste buds for some genotypes became larger and all taste buds remained innervated. Our findings suggest that BDNF is required for nerve regeneration following gustatory nerve section. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Light and electron microscopic observation of regenerated fungiform taste buds in patients with recovered taste function after severing chorda tympani nerve.

    PubMed

    Saito, Takehisa; Ito, Tetsufumi; Narita, Norihiko; Yamada, Takechiyo; Manabe, Yasuhiro

    2011-11-01

    The aim of this study was to evaluate the mean number of regenerated fungiform taste buds per papilla and perform light and electron microscopic observation of taste buds in patients with recovered taste function after severing the chorda tympani nerve during middle ear surgery. We performed a biopsy on the fungiform papillae (FP) in the midlateral region of the dorsal surface of the tongue from 5 control volunteers (33 total FP) and from 7 and 5 patients with and without taste recovery (34 and 29 FP, respectively) 3 years 6 months to 18 years after surgery. The specimens were observed by light and transmission electron microscopy. The taste function was evaluated by electrogustometry. The mean number of taste buds in the FP of patients with completely recovered taste function was significantly smaller (1.9 +/- 1.4 per papilla; p < 0.01) than that of the control subjects (3.8 +/- 2.2 per papilla). By transmission electron microscopy, 4 distinct types of cell (type I, II, III, and basal cells) were identified in the regenerated taste buds. Nerve fibers and nerve terminals were also found in the taste buds. It was clarified that taste buds containing taste cells and nerve endings do regenerate in the FP of patients with recovered taste function.

  20. Duplex Bioelectronic Tongue for Sensing Umami and Sweet Tastes Based on Human Taste Receptor Nanovesicles.

    PubMed

    Ahn, Sae Ryun; An, Ji Hyun; Song, Hyun Seok; Park, Jin Wook; Lee, Sang Hun; Kim, Jae Hyun; Jang, Jyongsik; Park, Tai Hyun

    2016-08-23

    For several decades, significant efforts have been made in developing artificial taste sensors to recognize the five basic tastes. So far, the well-established taste sensor is an E-tongue, which is constructed with polymer and lipid membranes. However, the previous artificial taste sensors have limitations in various food, beverage, and cosmetic industries because of their failure to mimic human taste reception. There are many interactions between tastants. Therefore, detecting the interactions in a multiplexing system is required. Herein, we developed a duplex bioelectronic tongue (DBT) based on graphene field-effect transistors that were functionalized with heterodimeric human umami taste and sweet taste receptor nanovesicles. Two types of nanovesicles, which have human T1R1/T1R3 for the umami taste and human T1R2/T1R3 for the sweet taste on their membranes, immobilized on micropatterned graphene surfaces were used for the simultaneous detection of the umami and sweet tastants. The DBT platform led to highly sensitive and selective recognition of target tastants at low concentrations (ca. 100 nM). Moreover, our DBT was able to detect the enhancing effect of taste enhancers as in a human taste sensory system. This technique can be a useful tool for the detection of tastes instead of sensory evaluation and development of new artificial tastants in the food and beverage industry.

  1. Identification of functional bitter taste receptors and their antagonist in chickens.

    PubMed

    Dey, Bapon; Kawabata, Fuminori; Kawabata, Yuko; Yoshida, Yuta; Nishimura, Shotaro; Tabata, Shoji

    2017-01-22

    Elucidation of the taste sense of chickens is important not only for the development of chicken feedstuffs for the chicken industry but also to help clarify the evolution of the taste sense among animals. There are three putative chicken bitter taste receptors, chicken T2R1 (cT2R1), cT2R2 and cT2R7, which were identified using genome information and cell-based assays. Previously, we have shown that cT2R1 is a functional bitter taste receptor through both cell-based assays and behavioral tests. In this study, therefore, we focused on the sensitivities of the other two bitter receptors, cT2R2 and cT2R7, by using their agonists in behavioral tests. We tested three agonists of cT2R2 and three agonists of cT2R7. In a 10-min drinking study, the intakes of cT2R2 agonist solutions were not different from that of water. On the other hand, the intakes of cT2R7 agonist solutions were significantly lower compared to water. In addition, we constructed cT2R1-and cT2R7-expressing cells in order to search for an antagonist for these functional bitter taste receptors. By using Ca 2+ imaging methods, we found that 6-methoxyflavanone (6-meth) can inhibit the activities of both cT2R1 and cT2R7. Moreover, 6-meth also inhibited the reduction of the intake of bitter solutions containing cT2R1 or cT2R7 agonists in behavioral tests. Taken together, these results suggested that cT2R7 is a functional bitter taste receptor like cT2R1, but that cT2R2 is not, and that 6-meth is an antagonist for these two functional chicken bitter taste receptors. This is the first identification of an antagonist of chicken bitter receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Preexposure to Salty and Sour Taste Enhances Conditioned Taste Aversion to Novel Sucrose

    ERIC Educational Resources Information Center

    Flores, Veronica L.; Moran, Anan; Bernstein, Max; Katz, Donald B.

    2016-01-01

    Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty--the fact that preexposure to the taste conditioned stimulus (CS)…

  3. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo

    PubMed Central

    Ren, Wenwen; Lewandowski, Brian C.; Watson, Jaime; Aihara, Eitaro; Iwatsuki, Ken; Bachmanov, Alexander A.; Margolskee, Robert F.; Jiang, Peihua

    2014-01-01

    Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homologs (e.g., Lgr6) mark adult stem cells in multiple tissues. Recently, we and others have shown that Lgr5 marks adult taste stem/progenitor cells in posterior tongue. However, the regenerative potential of Lgr5-expressing (Lgr5+) cells and the identity of adult taste stem/progenitor cells that regenerate taste tissue in anterior tongue remain elusive. In the present work, we describe a culture system in which single isolated Lgr5+ or Lgr6+ cells from taste tissue can generate continuously expanding 3D structures (“organoids”). Many cells within these taste organoids were cycling and positive for proliferative cell markers, cytokeratin K5 and Sox2, and incorporated 5-bromo-2’-deoxyuridine. Importantly, mature taste receptor cells that express gustducin, carbonic anhydrase 4, taste receptor type 1 member 3, nucleoside triphosphate diphosphohydrolase-2, or cytokeratin K8 were present in the taste organoids. Using calcium imaging assays, we found that cells grown out from taste organoids derived from isolated Lgr5+ cells were functional and responded to tastants in a dose-dependent manner. Genetic lineage tracing showed that Lgr6+ cells gave rise to taste bud cells in taste papillae in both anterior and posterior tongue. RT-PCR data demonstrated that Lgr5 and Lgr6 may mark the same subset of taste stem/progenitor cells both anteriorly and posteriorly. Together, our data demonstrate that functional taste cells can be generated ex vivo from single Lgr5+ or Lgr6+ cells, validating the use of this model for the study of taste cell generation. PMID:25368147

  4. The glossopharyngeal nerve controls epithelial expression of Sprr2a and Krt13 around taste buds in the circumvallate papilla.

    PubMed

    Miura, Hirohito; Kusakabe, Yuko; Hashido, Kento; Hino, Akihiro; Ooki, Makoto; Harada, Shuitsu

    2014-09-19

    Tastants reach the tip of taste bud cells through taste pores which are openings in the epithelium. We found Sprr2a is selectively expressed in the upper layer of the epithelium surrounding taste buds in the circumvallate papilla (CV) where the epithelium is organized into taste pores. Sprr2a is a member of a small proline-rich protein family, which is suggested to be involved in the restitution/migration phase of epithelial wound healing. The expression of Sprr2a was restricted to the upper layer and largely segregated with Ptch1 expression that is restricted to the basal side of the epithelium around the taste buds. Denervation resulted in the gradual loss of Sprr2a-expressing cells over 10 days similarly to that of taste bud cells which is in contrast to the rapid loss of Ptch1 expression. We also found that denervation caused an increase of Keratin (Krt)13 expression around taste buds that corresponded with the disappearance of Sprr2a and Ptch1 expression. Taste buds were surrounded by Krt13-negative cells in the CV in control mice. However, at 6 days post-denervation, taste buds were tightly surrounded by Krt13-positive cells. During taste bud development, taste bud cells emerged together with Krt13-negtive cells, and Sprr2a expression was increased along with the progress of taste bud development. These results demonstrate that regional gene expression surrounding taste buds is associated with taste bud formation and controlled by the innervating taste nerve. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo.

    PubMed

    Ren, Wenwen; Lewandowski, Brian C; Watson, Jaime; Aihara, Eitaro; Iwatsuki, Ken; Bachmanov, Alexander A; Margolskee, Robert F; Jiang, Peihua

    2014-11-18

    Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homologs (e.g., Lgr6) mark adult stem cells in multiple tissues. Recently, we and others have shown that Lgr5 marks adult taste stem/progenitor cells in posterior tongue. However, the regenerative potential of Lgr5-expressing (Lgr5(+)) cells and the identity of adult taste stem/progenitor cells that regenerate taste tissue in anterior tongue remain elusive. In the present work, we describe a culture system in which single isolated Lgr5(+) or Lgr6(+) cells from taste tissue can generate continuously expanding 3D structures ("organoids"). Many cells within these taste organoids were cycling and positive for proliferative cell markers, cytokeratin K5 and Sox2, and incorporated 5-bromo-2'-deoxyuridine. Importantly, mature taste receptor cells that express gustducin, carbonic anhydrase 4, taste receptor type 1 member 3, nucleoside triphosphate diphosphohydrolase-2, or cytokeratin K8 were present in the taste organoids. Using calcium imaging assays, we found that cells grown out from taste organoids derived from isolated Lgr5(+) cells were functional and responded to tastants in a dose-dependent manner. Genetic lineage tracing showed that Lgr6(+) cells gave rise to taste bud cells in taste papillae in both anterior and posterior tongue. RT-PCR data demonstrated that Lgr5 and Lgr6 may mark the same subset of taste stem/progenitor cells both anteriorly and posteriorly. Together, our data demonstrate that functional taste cells can be generated ex vivo from single Lgr5(+) or Lgr6(+) cells, validating the use of this model for the study of taste cell generation.

  6. Clinical Significance of Umami Taste and Umami-Related Gene Expression Analysis for the Objective Assessment of Umami Taste Loss.

    PubMed

    Shoji, Noriaki; Satoh-Ku Riwada, Shizuko; Sasano, Takashi

    2016-01-01

    Loss of umami taste sensation affects quality of life and causes weight loss and health problems, particularly in the elderly. We recently expanded the use of the filter paper disc method to include assessment of umami taste sensitivity, using monosodium glutamate as the test solution. This test showed high diagnostic performance for discriminating between normal taste function and disorders in sensation of the umami taste, according to established cut-off values. The test also revealed: (1) some elderly patients suffered from specific loss of umami taste sensation with preservation of the other four taste sensations (sweet, salty, sour, and bitter); (2) umami taste disorder caused a loss of appetite and decline in weight, resulting in poor health; (3) appetite, weight and overall health improved after appropriate treatment for umami taste disorder. Because of the subjective nature of the test, however, it may not be useful for patients who cannot express which taste sensation is induced by a tastant, such as those with dementia. Most recently, using tissue samples collected from the tongue by scraping the foliate papillae, we showed that evaluation of umami taste receptor gene expression may be clinically useful for the objective genetic diagnosis of umami taste disorders.

  7. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets

    PubMed Central

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F.; Payne, Jason; Swetenburg, Raymond L.; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J.; Stice, Steven L.; Beckstead, Robert; Liu, Hong-Xiang

    2016-01-01

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240–360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors. PMID:27853250

  8. Developing and regenerating a sense of taste

    PubMed Central

    Barlow, Linda A.; Klein, Ophir D.

    2015-01-01

    Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depends on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero. PMID:25662267

  9. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets.

    PubMed

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F; Payne, Jason; Swetenburg, Raymond L; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J; Stice, Steven L; Beckstead, Robert; Liu, Hong-Xiang

    2016-11-17

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240-360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors.

  10. Tasting

    MedlinePlus Videos and Cool Tools

    ... about 10,000 taste buds. The taste buds are linked to the brain by nerve fibers. Food particles are detected by the taste buds, which send nerve ... to the brain. Certain areas of the tongue are more sensitive to certain tastes, like bitter, sour, ...

  11. Caffeine May Reduce Perceived Sweet Taste in Humans, Supporting Evidence That Adenosine Receptors Modulate Taste.

    PubMed

    Choo, Ezen; Picket, Benjamin; Dando, Robin

    2017-09-01

    Multiple recent reports have detailed the presence of adenosine receptors in sweet sensitive taste cells of mice. These receptors are activated by endogenous adenosine in the plasma to enhance sweet signals within the taste bud, before reporting to the primary afferent. As we commonly consume caffeine, a powerful antagonist for such receptors, in our daily lives, an intriguing question we sought to answer was whether the caffeine we habitually consume in coffee can inhibit the perception of sweet taste in humans. 107 panelists were randomly assigned to 2 groups, sampling decaffeinated coffee supplemented with either 200 mg of caffeine, about the level found in a strong cup of coffee, or an equally bitter concentration of quinine. Participants subsequently performed sensory testing, with the session repeated in the alternative condition in a second session on a separate day. Panelists rated both the sweetened coffee itself and subsequent sucrose solutions as less sweet in the caffeine condition, despite the treatment having no effect on bitter, sour, salty, or umami perception. Panelists were also unable to discern whether they had consumed the caffeinated or noncaffeinated coffee, with ratings of alertness increased equally, but no significant improvement in reaction times, highlighting coffee's powerful placebo effect. This work validates earlier observations in rodents in a human population. © 2017 Institute of Food Technologists®.

  12. Taste, olfactory, and food reward value processing in the brain.

    PubMed

    Rolls, Edmund T

    2015-04-01

    Complementary neuronal recordings in primates, and functional neuroimaging in humans, show that the primary taste cortex in the anterior insula provides separate and combined representations of the taste, temperature, and texture (including fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in a second tier of processing, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by associative learning with olfactory and visual inputs, and these neurons encode food reward value on a continuous scale in that they only respond to food when hungry, and in that activations correlate linearly with subjective pleasantness. Cognitive factors, including word-level descriptions, and selective attention to affective value, modulate the representation of the reward value of taste and olfactory stimuli in the orbitofrontal cortex and a region to which it projects, the anterior cingulate cortex, a tertiary taste cortical area. The food reward representations formed in this way play an important role in the control of appetite, and food intake. Individual differences in these reward representations may contribute to obesity, and there are age-related differences in these value representations that shape the foods that people in different age groups find palatable. In a third tier of processing in medial prefrontal cortex area 10, decisions between stimuli of different reward value are taken, by attractor decision-making networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Signs of taste for science: a methodology for studying the constitution of interest in the science classroom

    NASA Astrophysics Data System (ADS)

    Anderhag, P.; Wickman, P.-O.; Hamza, K. M.

    2015-06-01

    In this paper we present a methodological approach for analyzing the transformation of interest in science through classroom talk and action. To this end, we use the construct of taste for science as a social and communicative operationalization, or proxy, to the more psychologically oriented construct of interest. To gain a taste for science as part of school science activities means developing habits of performing and valuing certain distinctions about ways to talk, act and be that are jointly construed as belonging in the school science classroom. In this view, to learn science is not only about learning the curriculum content, but also about learning a normative and aesthetic content in terms of habits of distinguishing and valuing. The approach thus complements previous studies on students' interest in science, by making it possible to analyze how taste for science is constituted, moment-by-moment, through talk and action in the science classroom. In developing the method, we supplement theoretical constructs coming from pragmatism and Pierre Bourdieu with empirical data from a lower secondary science classroom. The application of the method to this classroom demonstrates the potential that the approach has for analyzing how conceptual, normative, and aesthetic distinctions within the science classroom interact in the constitution of taste for, and thereby potentially also in the development of interest in science among students.

  14. Let's Play: Learning Games for Infants and Toddlers.

    ERIC Educational Resources Information Center

    Moore, Phyllis Jack

    2000-01-01

    Recommends play activities in which children look, listen, taste, smell, and touch. Includes appropriate ages for activities and gives directions for several games, including peek and seek, water play, bean bags, and hot potato. (DLH)

  15. Dorsal medial prefrontal cortex contributes to conditioned taste aversion memory consolidation and retrieval.

    PubMed

    Gonzalez, Maria Carolina; Villar, Maria Eugenia; Igaz, Lionel M; Viola, Haydée; Medina, Jorge H

    2015-12-01

    The medial prefrontal cortex (mPFC) is known for its role in decision making and memory processing, including the participation in the formation of extinction memories. However, little is known regarding its contribution to aversive memory consolidation. Here we demonstrate that neural activity and protein synthesis are required in the dorsal mPFC for memory formation of a conditioned taste aversion (CTA) task and that this region is involved in the retrieval of recent and remote long-term CTA memory. In addition, both NMDA receptor and CaMKII activity in dorsal mPFC are needed for CTA memory consolidation, highlighting the complexity of mPFC functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Astringency is a trigeminal sensation that involves the activation of G protein-coupled signaling by phenolic compounds.

    PubMed

    Schöbel, Nicole; Radtke, Debbie; Kyereme, Jessica; Wollmann, Nadine; Cichy, Annika; Obst, Katja; Kallweit, Kerstin; Kletke, Olaf; Minovi, Amir; Dazert, Stefan; Wetzel, Christian H; Vogt-Eisele, Angela; Gisselmann, Günter; Ley, Jakob P; Bartoshuk, Linda M; Spehr, Jennifer; Hofmann, Thomas; Hatt, Hanns

    2014-07-01

    Astringency is an everyday sensory experience best described as a dry mouthfeel typically elicited by phenol-rich alimentary products like tea and wine. The neural correlates and cellular mechanisms of astringency perception are still not well understood. We explored taste and astringency perception in human subjects to study the contribution of the taste as well as of the trigeminal sensory system to astringency perception. Subjects with either a lesion or lidocaine anesthesia of the Chorda tympani taste nerve showed no impairment of astringency perception. Only anesthesia of both the lingual taste and trigeminal innervation by inferior alveolar nerve block led to a loss of astringency perception. In an in vitro model of trigeminal ganglion neurons of mice, we studied the cellular mechanisms of astringency perception. Primary mouse trigeminal ganglion neurons showed robust responses to 8 out of 19 monomeric phenolic astringent compounds and 8 polymeric red wine polyphenols in Ca(2+) imaging experiments. The activating substances shared one or several galloyl moieties, whereas substances lacking the moiety did not or only weakly stimulate responses. The responses depended on Ca(2+) influx and voltage-gated Ca(2+) channels, but not on transient receptor potential channels. Responses to the phenolic compound epigallocatechin gallate as well as to a polymeric red wine polyphenol were inhibited by the Gαs inactivator suramin, the adenylate cyclase inhibitor SQ, and the cyclic nucleotide-gated channel inhibitor l-cis-diltiazem and displayed sensitivity to blockers of Ca(2+)-activated Cl(-) channels. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Explorative Placebo-Controlled Double-Blind Intervention Study with Low Doses of Inhaled Δ9-Tetrahydrocannabinol and Cannabidiol Reveals No Effect on Sweet Taste Intensity Perception and Liking in Humans.

    PubMed

    de Bruijn, Suzanne E M; de Graaf, Cees; Witkamp, Renger F; Jager, Gerry

    2017-01-01

    Introduction: The endocannabinoid system (ECS) plays an important role in food reward. For example, in humans, liking of palatable foods is assumed to be modulated by endocannabinoid activity. Studies in rodents suggest that the ECS also plays a role in sweet taste intensity perception, but it is unknown to what extent this can be extrapolated to humans. Therefore, this study aimed at elucidating whether Δ9-tetrahydrocannabinol (THC) or cannabidiol (CBD) affects sweet taste intensity perception and liking in humans, potentially resulting in alterations in food preferences. Materials and Methods: In a randomized placebo-controlled, double-blind crossover study, 10 healthy males participated in three test sessions that were 2 weeks apart. During the test sessions, participants received THC-rich, CBD-rich, or placebo Cannabis by inhalation divided over two doses (4 + 1 mg THC; 25 + 10 mg CBD). Participants tasted seven chocolate milk-like drinks that differed in sugar concentration and they rated sweet taste intensity and liking of the drinks. They were then asked to rank the seven drinks according to how much they liked the drinks and were offered ad libitum access to their favorite drink. In addition, they completed a computerized food preference task and completed an appetite questionnaire at the start, midway, and end of the test sessions. Results: Inhalation of the Cannabis preparations did not affect sweet taste intensity perception and liking, ranking order, or ad libitum consumption of the favorite drink. In addition, food preferences were not influenced by the interventions. Reported fullness was lower, whereas desire to eat was higher throughout the THC compared to the CBD condition. Conclusions: These results suggest that administration of Cannabis preparations at the low doses tested does not affect sweet taste intensity perception and liking, nor does it influence food preferences in humans.

  18. Sensory receptors of the larynx.

    PubMed

    Bradley, R M

    2000-03-06

    The larynx is a highly reflexogenic area, and stimulation with mechanical and chemical stimuli results in a number of protective reflexes. Investigators have used anatomical, behavioral, and neurophysiological techniques to examine the receptors responsible for initiating these reflex responses. Histologic examination has revealed the presence of free nerve endings, Merkel cells, Meissner corpuscles, and taste buds. Mechanoreceptors have been classified in several different ways and are located either in the superficial mucosa or in muscles and laryngeal joints. Recordings from afferent fibers innervating laryngeal mechanoreceptors have revealed that some of them are spontaneously active whereas others are silent until stimulated. Laryngeal mechanoreceptors respond to stimulation with either a rapidly adapting or a slowly adapting response pattern. Often the mechanoreceptors respond to respiratory movement of the larynx, giving bursts of action potentials during inspiration. A large number of taste buds that are anatomically similar to lingual taste buds populates the laryngeal surface of the epiglottis. Taste buds of the larynx respond to a number of chemical stimuli and to water. They do not respond to NaCl solutions close to physiological concentrations (0.154 M) but do respond at both a lower and higher concentration. When water is the solvent for the chemical stimuli, most chemicals initiate a response in laryngeal taste buds. However, when 0.154 M saline is used as a solvent, chemicals that taste bitter or sweet when applied to the tongue are ineffective stimuli. Taste buds of the larynx tend to be stimulated by the pH and tonicity of the stimulating solution and not by the gustatory properties. These results reveal a fundamental difference between the chemoreceptors of the oral cavity and larynx and result in the conclusion that chemoreceptors of the larynx do not play a role in gustation but are adapted to detect chemicals that are not saline-like in composition.

  19. Norepinephrine is coreleased with serotonin in mouse taste buds.

    PubMed

    Huang, Yijen A; Maruyama, Yutaka; Roper, Stephen D

    2008-12-03

    ATP and serotonin (5-HT) are neurotransmitters secreted from taste bud receptor (type II) and presynaptic (type III) cells, respectively. Norepinephrine (NE) has also been proposed to be a neurotransmitter or paracrine hormone in taste buds. Yet, to date, the specific stimulus for NE release in taste buds is not well understood, and the identity of the taste cells that secrete NE is not known. Chinese hamster ovary cells were transfected with alpha(1A) adrenoceptors and loaded with fura-2 ("biosensors") to detect NE secreted from isolated mouse taste buds and taste cells. Biosensors responded to low concentrations of NE (>or=10 nm) with a reliable fura-2 signal. NE biosensors did not respond to stimulation with KCl or taste compounds. However, we recorded robust responses from NE biosensors when they were positioned against mouse circumvallate taste buds and the taste buds were stimulated with KCl (50 mm) or a mixture of taste compounds (cycloheximide, 10 microm; saccharin, 2 mm; denatonium, 1 mm; SC45647, 100 microm). NE biosensor responses evoked by stimulating taste buds were reversibly blocked by prazosin, an alpha(1A) receptor antagonist. Together, these findings indicate that taste bud cells secrete NE when they are stimulated. We isolated individual taste bud cells to identify the origin of NE release. NE was secreted only from presynaptic (type III) taste cells and not receptor (type II) cells. Stimulus-evoked NE release depended on Ca(2+) in the bathing medium. Using dual biosensors (sensitive to 5-HT and NE), we found all presynaptic cells secrete 5-HT and 33% corelease NE with 5-HT.

  20. Impact of trehalose on the activity of sodium and potassium chloride in aqueous solutions: Why trehalose is worth its salt.

    PubMed

    Poplinger, Michal; Shumilin, Ilan; Harries, Daniel

    2017-12-15

    Trehalose is revered for its multiple unique impacts on solution properties, including the ability to modulate the salty and bitter tastes of sodium and potassium salts. However, the molecular mechanisms underlying trehalose's effect on taste perception are unknown. Here we focus on the physico-chemical effect of trehalose to alter the activity of monovalent salts in aqueous solution. Using a modified isopiestic methodology that relies on contemporary vapor pressure osmometry, we elucidate how trehalose modifies the thermodynamic chemical activity of sodium and potassium chloride, as well as the effect of the salts on the sugar's activity. We find that trehalose has a specific impact on potassium chloride that is unlike that of other sugars or polyols. Remarkably, especially at low salt concentrations, trehalose considerably elevates the activity (or chemical potential) of KCl, raising the salt activity coefficient as high as ∼1.5 its value in the absence of the sugar. Moreover, in contrast to their action on other known carbohydrates, both KCl and NaCl act as salting-out agents towards trehalose, as seen in the elevated activity coefficient compared with its value in pure water (up to ∼1.5 higher at low sugar and salt concentrations). We discuss the possible relevance of our findings to the mechanism of trehalose taste perception modification, and point to necessary future directed sensory experiments needed to resolve the possible link between our findings and the emerging biochemical or physiological mechanisms involved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Olfactory Hallucinations without Clinical Motor Activity: A Comparison of Unirhinal with Birhinal Phantosmia

    PubMed Central

    Henkin, Robert I.; Potolicchio, Samuel J.; Levy, Lucien M.

    2013-01-01

    Olfactory hallucinations without subsequent myoclonic activity have not been well characterized or understood. Herein we describe, in a retrospective study, two major forms of olfactory hallucinations labeled phantosmias: one, unirhinal, the other, birhinal. To describe these disorders we performed several procedures to elucidate similarities and differences between these processes. From 1272, patients evaluated for taste and smell dysfunction at The Taste and Smell Clinic, Washington, DC with clinical history, neurological and otolaryngological examinations, evaluations of taste and smell function, EEG and neuroradiological studies 40 exhibited cyclic unirhinal phantosmia (CUP) usually without hyposmia whereas 88 exhibited non-cyclic birhinal phantosmia with associated symptomology (BPAS) with hyposmia. Patients with CUP developed phantosmia spontaneously or after laughing, coughing or shouting initially with spontaneous inhibition and subsequently with Valsalva maneuvers, sleep or nasal water inhalation; they had frequent EEG changes usually ipsilateral sharp waves. Patients with BPAS developed phantosmia secondary to several clinical events usually after hyposmia onset with few EEG changes; their phantosmia could not be initiated or inhibited by any physiological maneuver. CUP is uncommonly encountered and represents a newly defined clinical syndrome. BPAS is commonly encountered, has been observed previously but has not been clearly defined. Mechanisms responsible for phantosmia in each group were related to decreased gamma-aminobutyric acid (GABA) activity in specific brain regions. Treatment which activated brain GABA inhibited phantosmia in both groups. PMID:24961619

  2. Sweet taste preference in binge-eating disorder: A preliminary investigation.

    PubMed

    Goodman, Erica L; Breithaupt, Lauren; Watson, Hunna J; Peat, Christine M; Baker, Jessica H; Bulik, Cynthia M; Brownley, Kimberly A

    2018-01-01

    Research suggests that individuals with high liking for sweets are at increased risk for binge eating, which has been minimally investigated in individuals with binge-eating disorder (BED). Forty-one adults (85% female, 83% white) with binge eating concerns completed a sweet taste test and measures of eating disorder behaviors and food cravings. A subset of participants with BED completed an oral glucose tolerance test (OGTT; N=21) and a 24-hour dietary recall (N=26). Regression models were used to compare highest sweet preferers (HSP [N=18]) to other sweet preferers (OSP [N=23]) and were used to assess associations between sweet taste preference and outcome variables. Effect sizes (ηp 2 ) for differences between HSP and OSP ranged from small (≤0.01) to large (≥0.24); group differences were statistically nonsignificant except for 24-hour caloric intake (ηp 2 =0.16, p=0.04), protein intake (ηp 2 =0.16, p=0.04), and insulin sensitivity index (ηp 2 =0.24, p=0.04), which were higher in HSP, and postprandial insulin, which was smaller in HSP (ηp 2 =0.27, p=0.03). Continuous analyses replicated postprandial insulin response. Compared with OSP, HSP reported numerically higher binge-eating frequency (ηp 2 =0.04), over-eating frequency (ηp 2 =0.06), and carbohydrate intake (ηp 2 =0.14), and they exhibited numerically smaller postprandial glucose AUC (ηp 2 =0.16). Sweet taste preference may have implications for glucose regulation, binge-eating frequency, and nutrient intake in BED. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Recalled taste intensity, liking and habitual intake of commonly consumed foods.

    PubMed

    Cornelis, Marilyn C; Tordoff, Michael G; El-Sohemy, Ahmed; van Dam, Rob M

    2017-02-01

    Taste intensity and quality affect the liking of foods, and determine food choice and consumption. We aimed to 1) classify commonly consumed foods based on recalled taste intensity for bitter, sweet, salty, sour, and fatty taste, and 2) examine the associations among recalled taste intensity, liking, and habitual consumption of foods. In Stage 1, 62 Canadian adults recalled the taste intensity of 120 common foods. Their responses were used to identify sets of 20-25 foods classified as strongly bitter, sweet, salty, sour or fatty-tasting. In Stage 2, 287 U.S. adults validated these selections, and let us reduce them to sets of 11-13 foods. Ratings of recalled taste intensity were consistent across age, sex and overweight status, with the exceptions that sweet, bitter and fatty-tasting foods were rated as more intense by women than by men. The recalled intensity ratings of the most bitter, salty and fatty foods (but not sour or sweet foods) were inversely correlated with liking and intake. The negative correlation between fatty taste intensity and fatty food liking was stronger among normal weight than among overweight participants. Our results suggest that the recalled taste intensity of foods is associated with food liking and habitual consumption, but the strength of these relationships varies by taste. The food lists based on taste intensity ratings provide a resource to efficiently calculate indices of exposure to the different tastes in future studies. Copyright © 2016. Published by Elsevier Ltd.

  4. Recalled taste intensity, liking and habitual intake of commonly consumed foods

    PubMed Central

    Cornelis, Marilyn C.; Tordoff, Michael G.; El-Sohemy, Ahmed; van Dam, Rob M.

    2016-01-01

    Taste intensity and quality affect the liking of foods, and determine food choice and consumption. We aimed to 1) classify commonly consumed foods based on recalled taste intensity for bitter, sweet, salty, sour, and fatty taste, and 2) examine the associations among recalled taste intensity, liking, and habitual consumption of foods. In Stage 1, 62 Canadian adults recalled the taste intensity of 120 common foods. Their responses were used to identify sets of 20–25 foods classified as strongly bitter, sweet, salty, sour or fatty-tasting. In Stage 2, 287 U.S. adults validated these selections, and let us reduce them to sets of 11–13 foods. Ratings of recalled taste intensity were consistent across age, sex and overweight status, with the exceptions that sweet, bitter and fatty-tasting foods were rated as more intense by women than by men. The recalled intensity ratings of the most bitter, salty and fatty foods (but not sour or sweet foods) were inversely correlated with liking and intake. The negative correlation between fatty taste intensity and fatty food liking was stronger among normal weight than among overweight participants. Our results suggest that the recalled taste intensity of foods is associated with food liking and habitual consumption, but the strength of these relationships varies by taste. The food lists based on taste intensity ratings provide a resource to efficiently calculate indices of exposure to the different tastes in future studies. PMID:27915079

  5. Heterogeneity of fish taste bud ultrastructure as demonstrated in the holosteans Amia calva and Lepisosteus oculatus.

    PubMed Central

    Reutter, K; Boudriot, F; Witt, M

    2000-01-01

    Taste buds are the peripheral sensory organs of the gustatory system. They occur in all taxa of vertebrates and are pear-shaped intra-epithelial organs of about 80 microm height and 50 microm width. Taste buds mainly consist of specialized epithelial cells, which synapse at their bases and therefore are secondary sensory cells. Taste buds have been described based on studies of teleostean species, but it turned out that the ultrastructure of teleostean taste buds may differ between distinct systematic groups and that this description is not representative of those taste buds in other main taxa of fishes, such as selachians, holosteans and dipnoans. Furthermore, it is not known how variable the micromorphologies of non-teleostean taste buds are. For this reason the taste buds of two holosteans, Lepisosteus oculatus and Amia calva, were investigated and compared. While in both species the taste buds are of the same shapes and sizes, the cellular components of their sensory epithelia differ: in Lepisosteus taste buds comprise two types of elongated light cells and one type of dark cells. In contrast, Amia taste buds contain only one type of light, but two types of dark elongated cells. Afferent synapses are common in the buds of both species, efferent synapses occur only in Lepisosteus taste buds. These differences show that even in the small group of holostean fishes the taste buds are differently organized. Consequently, a representative type of fish taste buds does not exist. PMID:11079403

  6. Heterogeneity of fish taste bud ultrastructure as demonstrated in the holosteans Amia calva and Lepisosteus oculatus.

    PubMed

    Reutter, K; Boudriot, F; Witt, M

    2000-09-29

    Taste buds are the peripheral sensory organs of the gustatory system. They occur in all taxa of vertebrates and are pear-shaped intra-epithelial organs of about 80 microm height and 50 microm width. Taste buds mainly consist of specialized epithelial cells, which synapse at their bases and therefore are secondary sensory cells. Taste buds have been described based on studies of teleostean species, but it turned out that the ultrastructure of teleostean taste buds may differ between distinct systematic groups and that this description is not representative of those taste buds in other main taxa of fishes, such as selachians, holosteans and dipnoans. Furthermore, it is not known how variable the micromorphologies of non-teleostean taste buds are. For this reason the taste buds of two holosteans, Lepisosteus oculatus and Amia calva, were investigated and compared. While in both species the taste buds are of the same shapes and sizes, the cellular components of their sensory epithelia differ: in Lepisosteus taste buds comprise two types of elongated light cells and one type of dark cells. In contrast, Amia taste buds contain only one type of light, but two types of dark elongated cells. Afferent synapses are common in the buds of both species, efferent synapses occur only in Lepisosteus taste buds. These differences show that even in the small group of holostean fishes the taste buds are differently organized. Consequently, a representative type of fish taste buds does not exist.

  7. The Impact of Pregnancy on Taste Function.

    PubMed

    Choo, Ezen; Dando, Robin

    2017-05-01

    It is common for women to report a change in taste (for instance an increased bitter or decreased sweet response) during pregnancy, however specifics of any variation in taste with pregnancy remain elusive. Here we review studies of taste in pregnancy, and discuss how physiological changes occurring during pregnancy may influence taste signaling. We aim to consolidate studies of human pregnancy and "taste function" (studies of taste thresholds, discrimination, and intensity perception, rather than hedonic response or self-report), discussing differences in methodology and findings. Generally, the majority of studies report either no change, or an increase in threshold/decrease in perceived taste intensity, particularly in the early stages of pregnancy, suggesting a possible decrease in taste acuity when pregnant. We further discuss several non-human studies of taste and pregnancy that may extend our understanding. Findings demonstrate that taste buds express receptors for many of the same hormones and circulating factors that vary with pregnancy. Circulating gonadal hormones or other contributions from the endocrine system, as well as physiological changes in weight and immune response could all bear some responsibility for such a modulation of taste during pregnancy. Given our growing understanding of taste, we propose that a change in taste function during pregnancy may not be solely driven by hormonal fluctuations of progesterone and estrogen, as many have suggested. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Differential modulation of the lactisole ‘Sweet Water Taste’ by sweeteners

    PubMed Central

    Alvarado, Cynthia; Nachtigal, Danielle; Slack, Jay P.

    2017-01-01

    Pre-exposure to taste stimuli and certain chemicals can cause water to have a taste. Here we studied further the ‘sweet water taste’ (SWT) perceived after exposure to the sweet taste inhibitor lactisole. Experiment 1 investigated an incidental observation that presenting lactisole in mixture with sucrose reduced the intensity of the SWT. The results confirmed this observation and also showed that rinsing with sucrose after lactisole could completely eliminate the SWT. The generalizability of these findings was investigated in experiment 2 by presenting 5 additional sweeteners before, during, or after exposure to lactisole. The results found with sucrose were replicated with fructose and cyclamate, but the 3 other sweeteners were less effective suppressors of the SWT, and the 2 sweeteners having the highest potency initially enhanced it. A third experiment investigated these interactions on the tongue tip and found that the lactisole SWT was perceived only when water was actively flowed across the tongue. The same experiment yielded evidence against the possibility that suppression of the SWT following exposure to sweeteners is an aftereffect of receptor activation while providing additional support for a role of sweetener potency. Collectively these results provide new evidence that complex inhibitory and excitatory interactions occur between lactisole and agonists of the sweet taste receptor TAS1R2-TAS1R3. Receptor mechanisms that may be responsible for these interactions are discussed in the context of the current model of the SWT and the possible contribution of allosteric modulation. PMID:28700634

  9. Caenorhabditis elegans TRPV Channels Function in a Modality-Specific Pathway to Regulate Response to Aberrant Sensory Signaling

    PubMed Central

    Ezak , Meredith J.; Hong , Elizabeth; Chaparro-Garcia , Angela; Ferkey , Denise M.

    2010-01-01

    Olfaction and some forms of taste (including bitter) are mediated by G protein-coupled signal transduction pathways. Olfactory and gustatory ligands bind to chemosensory G protein-coupled receptors (GPCRs) in specialized sensory cells to activate intracellular signal transduction cascades. G protein-coupled receptor kinases (GRKs) are negative regulators of signaling that specifically phosphorylate activated GPCRs to terminate signaling. Although loss of GRK function usually results in enhanced cellular signaling, Caenorhabditis elegans lacking GRK-2 function are not hypersensitive to chemosensory stimuli. Instead, grk-2 mutant animals do not chemotax toward attractive olfactory stimuli or avoid aversive tastes and smells. We show here that loss-of-function mutations in the transient receptor potential vanilloid (TRPV) channels OSM-9 and OCR-2 selectively restore grk-2 behavioral avoidance of bitter tastants, revealing modality-specific mechanisms for TRPV channel function in the regulation of C. elegans chemosensation. Additionally, a single amino acid point mutation in OCR-2 that disrupts TRPV channel-mediated gene expression, but does not decrease channel function in chemosensory primary signal transduction, also restores grk-2 bitter taste avoidance. Thus, loss of GRK-2 function may lead to changes in gene expression, via OSM-9/OCR-2, to selectively alter the levels of signaling components that transduce or regulate bitter taste responses. Our results suggest a novel mechanism and multiple modality-specific pathways that sensory cells employ in response to aberrant signal transduction. PMID:20176974

  10. μ-Opioid modulation in the rostral solitary nucleus and reticular formation alters taste reactivity: evidence for a suppressive effect on consummatory behavior.

    PubMed

    Kinzeler, Nicole R; Travers, Susan P

    2011-09-01

    The neural control of feeding involves many neuromodulators, including the endogenous opioids that bind μ-opioid receptors (MORs). Injections of the MOR agonist, Damgo, into limbic and hypothalamic forebrain sites increase intake, particularly of palatable foods. Indeed, forebrain Damgo injections increase sucrose-elicited licking but reduce aversive responding (gaping) to quinine, suggesting that MOR activation may enhance taste palatability. A μ-opioid influence on taste reactivity has not been assessed in the brain stem. However, MORs are present in the first-order taste relay, the rostral nucleus of the solitary tract (rNST), and in the immediately subjacent reticular formation (RF), a region known to be essential for consummatory responses. Thus, to evaluate the consequences of rNST/dorsal RF Damgo in this region, we implanted rats with intraoral cannulas, electromyographic electrodes, and brain cannulas aimed at the ventral border of the rNST. Licking and gaping elicited with sucrose, water, and quinine were assessed before and after intramedullary Damgo and saline infusions. Damgo slowed the rate, increased the amplitude, and decreased the size of fluid-induced lick and gape bouts. In addition, the neutral stimulus water, which typically elicits licks, began to evoke gapes. Thus, the current results demonstrate that μ-opioid activation in the rNST/dorsal RF exerts complex effects on oromotor responding that contrast with forebrain effects and are more indicative of a suppressive, rather than a facilitatory effect on ingestion.

  11. Oxytocin signaling in mouse taste buds.

    PubMed

    Sinclair, Michael S; Perea-Martinez, Isabel; Dvoryanchikov, Gennady; Yoshida, Masahide; Nishimori, Katsuhiko; Roper, Stephen D; Chaudhari, Nirupa

    2010-08-05

    The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e. sucrose, saccharin) solutions. We asked if OXT might also act on taste buds via its receptor, OXTR. Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I) taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM). OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II) nor Presynaptic (Type III) cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene. We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I) taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I) taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of appetite regulation that employ circulating homeostatic and satiety signals.

  12. Developing and regenerating a sense of taste.

    PubMed

    Barlow, Linda A; Klein, Ophir D

    2015-01-01

    Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depend on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero. © 2015 Elsevier Inc. All rights reserved.

  13. Longitudinal analysis of calorie restriction on rat taste bud morphology and expression of sweet taste modulators.

    PubMed

    Cai, Huan; Daimon, Caitlin M; Cong, Wei-Na; Wang, Rui; Chirdon, Patrick; de Cabo, Rafael; Sévigny, Jean; Maudsley, Stuart; Martin, Bronwen

    2014-05-01

    Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste-related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste-related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR.

  14. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection.

    PubMed

    Li, Yi-Ke; Yang, Juan-Mei; Huang, Yi-Bo; Ren, Dong-Dong; Chi, Fang-Lu

    2015-06-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  15. Effects of streptozotocin-induced diabetes on taste buds in rat vallate papillae.

    PubMed

    Pai, Man-Hui; Ko, Tsui-Ling; Chou, Hsiu-Chu

    2007-01-01

    Some studies have documented taste changes in patients with diabetes mellitus (DM). In order to understand the relationships between taste disorders caused by DM and the innervation and morphologic changes in the taste buds, we studied the vallate papillae and their taste buds in rats with DM. DM was induced in these rats with streptozotocin (STZ), which causes the death of beta cells of the pancreas. The rats were sacrificed and the vallate papillae were dissected for morphometric and quantitative immunohistochemical analyses. The innervations of the vallate papillae and taste buds in diabetic and control rats were detected using immunohistochemistry employing antibodies directed against protein gene product 9.5 (PGP 9.5) and calcitonin gene-related peptide (CGRP). The results showed that PGP 9.5- and CGRP-immunoreactive nerve fibers in the trench wall of diabetic vallate papillae, as well as taste cells in the taste buds, gradually decreased both intragemmally and intergemmally. The morphometry revealed no significant difference in papilla size between the control and diabetic groups, but there were fewer taste buds per papilla (per animal). The quantification of innervation in taste buds of the diabetic rats supported the visual assessment of immunohistochemical labeling, that the innervation of taste cells was significantly reduced in diabetic animals. These findings suggest that taste impairment in diabetic subjects may be caused by neuropathy defects and/or morphological changes in the taste buds.

  16. Preexposure to salty and sour taste enhances conditioned taste aversion to novel sucrose

    PubMed Central

    Flores, Veronica L.; Moran, Anan; Bernstein, Max

    2016-01-01

    Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty—the fact that preexposure to the taste conditioned stimulus (CS) reduces its associability. The effect of exposure to tastes other than the CS has, in contrast, received little investigation. Here, we exposed rats to sodium chloride (N) and citric acid (C), either before or within a conditioning session involving novel sucrose (S). Presentation of this taste array within the conditioning session weakened the resultant S aversion, as expected. The opposite effect, however, was observed when exposure to the taste array was provided in sessions that preceded conditioning: such experience enhanced the eventual S aversion—a result that was robust to differences in CS delivery method and number of tastes presented in conditioning sessions. This “non-CS preexposure effect” scaled with the number of tastes in the exposure array (experience with more stimuli was more effective than experience with fewer) and with the amount of exposure sessions (three preexposure sessions were more effective than two). Together, our results provide evidence that exposure and experience with the realm of tastes changes an animal's future handling of even novel tastes. PMID:27084929

  17. Cue-elicited food seeking is eliminated with aversive outcomes following outcome devaluation.

    PubMed

    Eder, Andreas B; Dignath, David

    2016-01-01

    In outcome-selective Pavlovian-to-instrumental transfer (PIT), stimuli that are predictive of specific outcomes prime instrumental responses that are associated with these outcomes. Previous human studies yielded mixed evidence in respect to whether the PIT effect is affected by a posttraining devaluation of an outcome, with the PIT effect being preserved after a devaluation of a primary reinforcer (food, drugs) but not following the devaluation of a secondary reinforcer (money). The present research examined whether outcome-selective transfer is eliminated when the devaluation of a primary (liquid) reinforcer is strong and aversive. Experiment 1 confirmed these expectations following a devaluation with bad tasting Tween 20. However, outcome-selective transfer was still observed when the earned (devalued) outcome was not consumed immediately after each test (Experiment 2). These results suggest that the capacity of a Pavlovian cue to motivate a specific response is affected by the incentive value of the shared outcome only when the devaluation yields an aversive outcome that is consumed immediately.

  18. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds.

    PubMed

    Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M

    2015-02-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  19. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds

    PubMed Central

    Yang, Hyekyung; Cong, Wei-na; Yoon, Jeong Seon; Egan, Josephine M

    2015-01-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. PMID:25354792

  20. Allelic variation of the Tas1r3 taste receptor gene selectively affects taste responses to sweeteners: evidence from 129.B6-Tas1r3 congenic mice

    PubMed Central

    Inoue, Masashi; Glendinning, John I.; Theodorides, Maria L.; Harkness, Sarah; Li, Xia; Bosak, Natalia; Beauchamp, Gary K.; Bachmanov, Alexander A.

    2008-01-01

    The Tas1r3 gene encodes the T1R3 receptor protein, which is involved in sweet taste transduction. To characterize ligand specificity of the T1R3 receptor and the genetic architecture of sweet taste responsiveness, we analyzed taste responses of 129.B6-Tas1r3 congenic mice to a variety of chemically diverse sweeteners and glucose polymers with three different measures: consumption in 48-h two-bottle preference tests, initial licking responses, and responses of the chorda tympani nerve. The results were generally consistent across the three measures. Allelic variation of the Tas1r3 gene influenced taste responsiveness to nonnutritive sweeteners (saccharin, acesulfame-K, sucralose, SC-45647), sugars (sucrose, maltose, glucose, fructose), sugar alcohols (erythritol, sorbitol), and some amino acids (d-tryptophan, d-phenylalanine, l-proline). Tas1r3 genotype did not affect taste responses to several sweet-tasting amino acids (l-glutamine, l-threonine, l-alanine, glycine), glucose polymers (Polycose, maltooligosaccharide), and nonsweet NaCl, HCl, quinine, monosodium glutamate, and inosine 5′-monophosphate. Thus Tas1r3 polymorphisms affect taste responses to many nutritive and nonnutritive sweeteners (all of which must interact with a taste receptor involving T1R3), but not to all carbohydrates and amino acids. In addition, we found that the genetic architecture of sweet taste responsiveness changes depending on the measure of taste response and the intensity of the sweet taste stimulus. Variation in the T1R3 receptor influenced peripheral taste responsiveness over a wide range of sweetener concentrations, but behavioral responses to higher concentrations of some sweeteners increasingly depended on mechanisms that could override input from the peripheral taste system. PMID:17911381

  1. Modulation of taste sensitivity by GLP-1 signaling in taste buds.

    PubMed

    Martin, Bronwen; Dotson, Cedrick D; Shin, Yu-Kyong; Ji, Sunggoan; Drucker, Daniel J; Maudsley, Stuart; Munger, Steven D

    2009-07-01

    Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we found that GLP-1 signaling plays an important role in the modulation of taste sensitivity: GLP-1R knockout mice exhibit a dramatic reduction in sweet taste sensitivity as well as an enhanced sensitivity to umami-tasting stimuli. Together, these findings suggest a novel paracrine mechanism for the hormonal modulation of taste function in mammals.

  2. Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes

    PubMed Central

    Malki, Agne; Fiedler, Julia; Fricke, Kristina; Ballweg, Ines; Pfaffl, Michael W.; Krautwurst, Dietmar

    2015-01-01

    Our cellular immune system has to cope constantly with foodborne substances that enter the bloodstream postprandially. Here, they may activate leukocytes via specific but yet mostly unknown receptors. Ectopic RNA expression out of gene families of chemosensory receptors, i.e., the ∼400 ORs, ∼25 TAS2R bitter-taste receptors, and the TAS1R umami- and sweet-taste receptor dimers by which we typically detect foodborne substances, has been reported in a variety of peripheral tissues unrelated to olfaction or taste. In the present study, we have now discovered, by gene-specific RT-PCR experiments, the mRNA expression of most of the Class I ORs (TAS1R) and TAS2R in 5 different types of blood leukocytes. Surprisingly, we did not detect Class II OR mRNA. By RT-qPCR, we show the mRNA expression of human chemosensory receptors and their cow orthologs in PMN, thus suggesting an evolutionary concept. By immunocytochemistry, we demonstrate that some olfactory and taste receptors are expressed, on average, in 40–60% of PMN and T or B cells and largely coexpress in the same subpopulation of PMN. The mRNA expression and the size of subpopulations expressing certain chemosensory receptors varied largely among individual blood samples, suggesting a regulated expression of olfactory and taste receptors in these cells. Moreover, we show mRNA expression of their downstream signaling molecules and demonstrate that PTX abolishes saccharin- or 2-PEA-induced PMN chemotactic migration, indicating a role for Gi-type proteins. In summary, our data suggest "chemosensory"-type subpopulations of circulating leukocytes. PMID:25624459

  3. Lesion of medial prefrontal dopamine terminals abolishes habituation of accumbens shell dopamine responsiveness to taste stimuli.

    PubMed

    Bimpisidis, Zisis; De Luca, Maria Antonietta; Pisanu, Augusta; Di Chiara, Gaetano

    2013-02-01

    Taste stimuli increase extracellular dopamine (DA) in the nucleus accumbens (NAc) and in the medial prefrontal cortex (mPFC). This effect shows single-trial habituation in NAc shell but not in core or in mPFC. Morphine sensitization abolishes habituation of DA responsiveness in NAc shell but induces it in mPFC. These observations support the hypothesis of an inhibitory influence of mPFC DA on NAc DA. To test this hypothesis, we used in vivo microdialysis to investigate the effect of mPFC 6-hydroxy-dopamine (6-OHDA) lesions on the NAc DA responsiveness to taste stimuli. 6-OHDA was infused bilaterally in the mPFC of rats implanted with guide cannulae. After 1 week, rats were implanted with an intraoral catheter, microdialysis probes were inserted into the guide cannulae, and dialysate DA was monitored in NAc shell/core after intraoral chocolate. 6-OHDA infusion reduced tissue DA in the mPFC by 75%. Tyrosine hydroxylase immunohistochemistry showed that lesions were confined to the mPFC. mPFC 6-OHDA lesion did not affect the NAc shell DA responsiveness to chocolate in naive rats but abolished habituation in rats pre-exposed to the taste. In the NAc core, mPFC lesion potentiated, delayed and prolonged the stimulatory DA response to taste but failed to affect DA in pre-exposed rats. Behavioural taste reactions and motor activity were not affected. The results indicate a top-down control of NAc DA by mPFC and a reciprocal relationship between DA transmission in these two areas. Moreover, habituation of DA responsiveness in the NAc shell is dependent upon an intact DA input to the mPFC. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. Salty Taste Deficits in CALHM1 Knockout Mice

    PubMed Central

    Ellis, Hillary T.; Aleman, Tiffany R.; Downing, Arnelle; Marambaud, Philippe; Foskett, J. Kevin; Dana, Rachel M.; McCaughey, Stuart A.

    2014-01-01

    Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein–coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste–related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH4Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH4Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. PMID:24846212

  5. Allelic Variation of the Tas1r3 Taste Receptor Gene Selectively Affects Behavioral and Neural Taste Responses to Sweeteners in the F2 Hybrids between C57BL/6ByJ and 129P3/J Mice

    PubMed Central

    Inoue, Masashi; Reed, Danielle R.; Li, Xia; Tordoff, Michael G.; Beauchamp, Gary K.; Bachmanov, Alexander A.

    2006-01-01

    Recent studies have shown that the T1R3 receptor protein encoded by the Tas1r3 gene is involved in transduction of sweet taste. To assess ligand specificity of the T1R3 receptor, we analyzed the association of Tas1r3 allelic variants with taste responses in mice. In the F2 hybrids between the C57BL/6ByJ (B6) and 129P3/J (129) inbred mouse strains, we determined genotypes of markers on chromosome 4, where Tas1r3 resides, measured consumption of taste solutions presented in two-bottle preference tests, and recorded integrated responses of the chorda tympani gustatory nerve to lingual application of taste stimuli. For intakes and preferences, significant linkages to Tas1r3 were found for the sweeteners sucrose, saccharin, and d-phenylalanine but not glycine. For chorda tympani responses, significant linkages to Tas1r3 were found for the sweeteners sucrose, saccharin, d-phenylalanine, d-tryptophan, and SC-45647 but not glycine, l-proline, l-alanine, or l-glutamine. No linkages to distal chromosome 4 were detected for behavioral or neural responses to non-sweet quinine, citric acid, HCl, NaCl, KCl, monosodium glutamate, inosine 5′-monophosphate, or ammonium glutamate. These results demonstrate that allelic variation of the Tas1r3 gene affects gustatory neural and behavioral responses to some, but not all, sweeteners. This study describes the range of ligand sensitivity of the T1R3 receptor using an in vivo approach and, to our knowledge, is the first genetic mapping study of activity in gustatory nerves. PMID:14999080

  6. Progress and renewal in gustation: new insights into taste bud development

    PubMed Central

    Barlow, Linda A.

    2015-01-01

    The sense of taste, or gustation, is mediated by taste buds, which are housed in specialized taste papillae found in a stereotyped pattern on the surface of the tongue. Each bud, regardless of its location, is a collection of ∼100 cells that belong to at least five different functional classes, which transduce sweet, bitter, salt, sour and umami (the taste of glutamate) signals. Taste receptor cells harbor functional similarities to neurons but, like epithelial cells, are rapidly and continuously renewed throughout adult life. Here, I review recent advances in our understanding of how the pattern of taste buds is established in embryos and discuss the cellular and molecular mechanisms governing taste cell turnover. I also highlight how these findings aid our understanding of how and why many cancer therapies result in taste dysfunction. PMID:26534983

  7. What Are Taste Buds?

    MedlinePlus

    ... on your tongue and allow you to experience tastes that are sweet, salty, sour, and bitter. How exactly do your taste ... send messages to the brain about how something tastes, so you know if it's sweet, sour, bitter, or salty. The average person has about 10,000 taste ...

  8. Quantitative anatomical study of taste buds in fungiform papillae of young and old Fischer rats.

    PubMed

    Mistretta, C M; Oakley, I A

    1986-05-01

    To determine if differences in neural taste responses relate to taste bud loss in old age, taste buds were counted in fungiform papillae of Fischer 344 rats aged 4 to 6 months, 20 to 24 months, and 30 to 37 months. Papillae anterior to the intermolar eminence on one half of the tongue were examined in serial sections. Presence or absence of a taste bud was noted and taste bud diameter was measured. Average percentages of papillae that contained a taste bud in the three groups were 99.6, 99.3, and 94.7%. This is a significant age-related difference but actual number of taste buds lost in the oldest rats was small. Taste bud diameter did not differ with age and general anatomical characteristics of buds were similar in all groups. Thus, anatomical observations on taste bud maintenance in rats over a wide age range, coupled with neurophysiological data, demonstrate that the integrity of the peripheral gustatory system is not altered greatly in old age.

  9. Glucagon-like peptide-1 is specifically involved in sweet taste transmission.

    PubMed

    Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J; Margolskee, Robert F; Ninomiya, Yuzo

    2015-06-01

    Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice. © FASEB.

  10. Improvement in taste sensitivity following pulmonary rehabilitation in patients with chronic obstructive pulmonary disease.

    PubMed

    Ito, Kumiko; Kohzuki, Masahiro; Takahashi, Tamao; Ebihara, Satoru

    2014-10-01

    Weight loss is common in patients with chronic obstructive pulmonary disease (COPD). Anorexia, postulated to be associated with alteration in taste sensitivity, may contribute to weight loss in these patients. Pulmonary rehabilitation is known to lead to improved exercise performance in patients with COPD. However, the relationship between pulmonary rehabilitation and taste sensitivity has not been evaluated. The objective of this study was to compare taste sensitivity before and after pulmonary rehabilitation in patients with COPD. Single-group intervention trial. Twenty-two patients with COPD. The six-min walk distance (6MWD), COPD assessment test, body mass index, fat mass index, fat-free mass index and taste test were conducted before and after 4-week pulmonary rehabilitation. Taste sensitivity was evaluated using the filter-paper disc method for 4 taste stimuli. Taste stimuli were salty, sweet, sour, and bitter tastes. Taste sensitivity was evaluated before and after pulmonary rehabilitation using the taste recognition threshold. Following pulmonary rehabilitation, the 6MWD, COPD assessment test, salty recognition threshold, sweet recognition threshold and bitter recognition threshold improved significantly, whereas there were no significant improvements in body mass index, fat mass index, fat-free mass index or sour recognition threshold. Pulmonary rehabilitation may improve taste sensitivity in patients with COPD.

  11. Long-term Follow-up Results of Regeneration Process of Fungiform Taste Buds After Severing the Chorda Tympani Nerve During Middle Ear Surgery.

    PubMed

    Saito, Takehisa; Ito, Tetsufumi; Ito, Yumi; Manabe, Yasuhiro

    2016-05-01

    To elucidate the regeneration process of fungiform taste buds after severing the chorda tympani nerve (CTN) by confocal laser scanning microscopy in vivo. In 7 consecutive patients whose CTN was severed during tympanoplasty, an average of 10 fungiform papillae in the midlateral region of the tongue were periodically observed, and the number of taste buds was counted until 12 to 24 months after surgery. Gustatory function was assessed by EGM. EGM thresholds showed no response within 1 month after surgery in any patient. All taste buds had disappeared until 13 to 71 days after surgery. Regenerated taste buds were first detected 5 to 8 months after surgery in 5 of the 7 patients. EGM thresholds recovered to their preoperative values in 2 patients. In these 2 patients, the number of regenerated taste buds gradually increased in combination with a recovered taste function. However, a time lag existed between taste bud regeneration and taste function recovery. EGM thresholds did not recover in the other 3 patients with regenerated taste buds, suggesting that these taste buds were immature without gustatory function. The long-term regeneration process of fungiform taste buds could be clarified using confocal laser scanning microscopy. © The Author(s) 2015.

  12. The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse.

    PubMed

    Kataoka, Shinji; Yang, Ruibiao; Ishimaru, Yoshiro; Matsunami, Hiroaki; Sévigny, Jean; Kinnamon, John C; Finger, Thomas E

    2008-03-01

    The transient receptor potential channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCbeta2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1-positive cells are immunoreactive for neural cell adhesion molecule, serotonin, PGP-9.5 (ubiquitin carboxy-terminal transferase), and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about "sour", but have little or no role in transmission of taste information of other taste qualities.

  13. The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse

    PubMed Central

    Kataoka, Shinji; Yang, Ruibiao; Ishimaru, Yoshiro; Matsunami, Hiroaki; Kinnamon, John C.; Finger, Thomas E.

    2008-01-01

    The transient receptor potential (TRP) channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCβ2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1 positive cells are immunoreactive for NCAM, serotonin, PGP-9.5 (ubiquitin carboxy terminal transferase) and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about “sour”, but have little or no role in transmission of taste information of other taste qualities. PMID:18156604

  14. Influence of the perceived taste intensity of chemesthetic stimuli on swallowing parameters given age and genetic taste differences in healthy adult women.

    PubMed

    Pelletier, Cathy A; Steele, Catriona M

    2014-02-01

    This study examined whether the perceived taste intensity of liquids with chemesthetic properties influenced lingua-palatal pressures and submental surface electromyography (sEMG) in swallowing, compared with water. Swallowing was studied in 80 healthy women, stratified by age group and genetic taste status. General Labeled Magnitude Scale ratings of taste intensity were collected for deionized water; carbonated water; 2.7% w/v citric acid; and diluted ethanol. These stimuli were swallowed, with measurement of tongue-palate pressures and submental sEMG. Path analysis differentiated stimulus, genetic taste status, age, and perceived taste intensity effects on swallowing. Signal amplitude during effortful saliva swallowing served as a covariate representing participant strength. Significant differences (p < .05) in taste intensity were seen across liquids: citric acid > ethanol > carbonated water > water. Supertasters perceived greater taste intensity than did nontasters. Lingua-palatal pressure and sEMG amplitudes were correlated with the strength covariate. Anterior palate pressures and sEMG amplitudes were significantly higher for the citric acid stimulus. Perceived taste intensity was a significant mediator of stimulus differences. These data provide confirmatory evidence that high-intensity sour stimuli do influence swallowing behaviors. In addition, taste genetics influence the perception of taste intensity for stimuli with chemesthetic properties, which modulates behavioral responses.

  15. Pre-Treatment with Amifostine Protects against Cyclophosphamide-Induced Disruption of Taste in Mice

    PubMed Central

    Mukherjee, Nabanita; Carroll, Brittany L.; Spees, Jeffrey L.; Delay, Eugene R.

    2013-01-01

    Cyclophosphamide (CYP), a commonly prescribed chemotherapy drug, has multiple adverse side effects including alteration of taste. The effects on taste are a cause of concern for patients as changes in taste are often associated with loss of appetite, malnutrition, poor recovery and reduced quality of life. Amifostine is a cytoprotective agent that was previously shown to be effective in preventing chemotherapy-induced mucositis and nephrotoxicity. Here we determined its ability to protect against chemotherapy-induced damage to taste buds using a mouse model of CYP injury. We conducted detection threshold tests to measure changes in sucrose taste sensitivity and found that administration of amifostine 30 mins prior to CYP injection protected against CYP-induced loss in taste sensitivity. Morphological studies showed that pre-treatment with amifostine prevented CYP-induced reduction in the number of fungiform taste papillae and increased the number of taste buds. Immunohistochemical assays for markers of the cell cycle showed that amifostine administration prevented CYP-induced inhibition of cell proliferation and also protected against loss of mature taste cells after CYP exposure. Our results indicate that treatment of cancer patients with amifostine prior to chemotherapy may improve their sensitivity for taste stimuli and protect the taste system from the detrimental effects of chemotherapy. PMID:23626702

  16. Tongue and taste organ development in the ontogeny of direct-developing salamander Plethodon cinereus (Lissamphibia: Plethodontidae).

    PubMed

    Budzik, Karolina A; Żuwała, Krystyna; Kerney, Ryan

    2016-07-01

    The latest research on direct developing caecilian and anuran species indicate presence of only one generation of taste organs during their ontogeny. This is distinct from indirect developing batrachians studied thus far, which possess taste buds in larvae and anatomically distinct taste discs in metamorphs. This study is a description of the tongue and taste organ morphology and development in direct developing salamander Plethodon cinereus (Plethodontidae) using histology and electron microscopy techniques. The results reveal two distinct stages tongue morphology (primary and secondary), similar to metamorphic urodeles, although only one stage of taste organ morphology. Taste disc sensory zones emerge on the surface of the oropharyngeal epithelium by the end of embryonic development, which coincides with maturation of the soft tongue. Taste organs occur in the epithelium of the tongue pad (where they are situated on the dermal papillae), the palate and the inner surface of the mandible and the maxilla. Plethodon cinereus embryos only possess taste disc type taste organs. Similar to the direct developing anuran Eleutherodactylus coqui (Eleutherodactylidae), these salamanders do not recapitulate larval taste bud morphology as an embryo. The lack of taste bud formation is probably a broadly distributed feature characteristic to direct developing batrachians. J. Morphol. 277:906-915, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Short-term perception of and conditioned taste aversion to umami taste, and oral expression patterns of umami taste receptors in chickens.

    PubMed

    Yoshida, Yuta; Kawabata, Fuminori; Kawabata, Yuko; Nishimura, Shotaro; Tabata, Shoji

    2018-07-01

    Umami taste is one of the five basic tastes (sweet, umami, bitter, sour, and salty), and is elicited by l-glutamate salts and 5'-ribonucleotides. In chickens, the elucidation of the umami taste sense is an important step in the production of new feedstuff for the animal industry. Although previous studies found that chickens show a preference for umami compounds in long-term behavioral tests, there are limitations to our understanding of the role of the umami taste sense in chicken oral tissues because the long-term tests partly reflected post-ingestive effects. Here, we performed a short-term test and observed agonists of chicken umami taste receptor, l-alanine and l-serine, affected the solution intakes of chickens. Using this method, we found that chickens could respond to umami solutions containing monosodium l-glutamate (MSG) + inosine 5'-monophosphate (IMP) within 5 min. We also demonstrated that chickens were successfully conditioned to avoid umami solution by the conditioned taste aversion test. It is noted that conditioning to umami solution was generalized to salty and sweet solutions. Thus, chickens may perceive umami taste as a salty- and sweet-like taste. In addition, we found that umami taste receptor candidates were differentially expressed in different regions of the chicken oral tissues. Taken together, the present results strongly suggest that chickens have a sense of umami taste and have umami taste receptors in their oral tissue. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Differences in taste sensitivity between obese and non-obese children and adolescents.

    PubMed

    Overberg, Johanna; Hummel, Thomas; Krude, Heiko; Wiegand, Susanna

    2012-12-01

    Taste sensitivity varies between individuals. Several studies describe differences between obese and non-obese subjects concerning their taste perception. However, data are partly contradictory and insufficient. Therefore, in this study taste sensitivity of obese and non-obese children/adolescents was analysed. In a cross-sectional study gustatory sensitivity of n=99 obese subjects (body mass index (BMI) >97th percentile) and n=94 normal weight subjects (BMI <90th percentile), 6-18 years of age, was compared. Sensitivity for the taste qualities sweet, sour, salty, umami and bitter was analysed by means of impregnated 'taste strips' in different concentrations. A total score was determined for all taste qualities combined as well as for each separately. Furthermore, the possible influence of sex, age and ethnicity on taste perception was analysed. An intensity rating for sweet was performed on a 5-point rating scale. Obese subjects showed-compared to the control group-a significantly lower ability to identify the correct taste qualities regarding the total score (p<0.001). Regarding individual taste qualities there was a significantly lower detection rate for salty, umami and bitter by obese subjects. Furthermore, the determinants age and sex had a significant influence on taste perception: older age and female sex was associated with better ability to identify taste qualities. Concerning the sweet intensity rating obese children gave significantly lower intensity ratings to three of the four concentrations. Obese and non-obese children and adolescents differ in their taste perception. Obese subjects could identify taste qualities less precisely than children and adolescents of normal weight.

  19. Study of Odours and taste for Space Food

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Space Agriculture Task Force; Nakata, Seiichi; Teranishi, Masaaki; Sone, Michihiko; Nakashima, Tsutomu; Hamajima, Nobuyuki; Ito, Yoshihiro

    2012-07-01

    The sense of taste and smell come under some kind of influences in the space environment. In the space, the astronaut was changed their food habits from light taste and smell food to like strong taste and smells food. When an astronaut live in the space comes to have weak bone like osteoporosis. It may become the physiologic condition like the old man on the earth. Therefore this study performed fact-finding of the smell and the taste in the old man on the earth as test bed of astronaut in space. Based on this finding, it was intended to predict the taste and the olfactory change of the astronaut in the space. The study included 179 males and 251 females aged 30-90 years in Yakumo Town, Hokkaido, Japan. Odours were tested using a ``standard odours by odour stick identification''method of organoleptic testing. Taste were tested using a ``standard taste by taste disc identification'' method of chemical testing. Correct answers for identification odours consisted of average 6.0±3.0 in male subjects and average 6.9±2.8 in female subjects. Correct answers for identification of sweet taste consisted of 81% males and 87% females, salty taste consisted of 86% males and 91%, sour taste consisted of 75% males and 78% females, bitter taste consisted of 76% males and 88% females. It became clear that overall approximately 20% were in some kind of abnormality in sense of smell and taste. I want to perform the investigation that continued more in future.

  20. The effect of imiquimod on taste bud calcium transients and transmitter secretion.

    PubMed

    Huang, Anthony Y; Wu, Sandy Y

    2016-11-01

    Imiquimod is an immunomodulator approved for the treatment of basal cell carcinoma and has adverse side effects, including taste disturbances. Paracrine transmission, representing cell-cell communication within taste buds, has the potential to shape the final signals that taste buds transmit to the brain. Here, we tested the underlying assumption that imiquimod modifies taste transmitter secretion in taste buds of mice. Taste buds were isolated from C57BL/6J mice. The effects of imiquimod on transmitter release in taste buds were measured using calcium imaging with cellular biosensors, and examining the net effect of imiquimod on taste-evoked ATP secretion from mouse taste buds. Up to 72% of presynaptic (Type III) taste cells responded to 100 μM imiquimod with an increase in intracellular Ca 2+ concentrations. These Ca 2 + responses were inhibited by thapsigargin, an inhibitor of the sarco/endoplasmic reticulum Ca 2 + -ATPase, and by U73122, a PLC inhibitor, suggesting that the Ca 2 + mobilization elicited by imiquimod was dependent on release from internal Ca 2 + stores. Moreover, combining studies of Ca 2 + imaging with cellular biosensors showed that imiquimod evoked secretion of 5-HT, which then provided negative feedback onto receptor (Type II) cells to reduce taste-evoked ATP secretion. Our results provide evidence that there is a subset of taste cells equipped with a range of intracellular mechanisms that respond to imiquimod. The findings are also consistent with a role of imiquimod as an immune response modifier, which shapes peripheral taste responses via 5-HT signalling. © 2016 The British Pharmacological Society.

Top