Sample records for taste quality coding

  1. Cracking Taste Codes by Tapping into Sensory Neuron Impulse Traffic

    PubMed Central

    Frank, Marion E.; Lundy, Robert F.; Contreras, Robert J.

    2008-01-01

    Insights into the biological basis for mammalian taste quality coding began with electrophysiological recordings from “taste” nerves and this technique continues to produce essential information today. Chorda tympani (geniculate ganglion) neurons, which are particularly involved in taste quality discrimination, are specialists or generalists. Specialists respond to stimuli characterized by a single taste quality as defined by behavioral cross-generalization in conditioned taste tests. Generalists respond to electrolytes that elicit multiple aversive qualities. Na+-salt (N) specialists in rodents and sweet-stimulus (S) specialists in multiple orders of mammals are well-characterized. Specialists are associated with species’ nutritional needs and their activation is known to be malleable by internal physiological conditions and contaminated external caloric sources. S specialists, associated with the heterodimeric G-protein coupled receptor: T1R, and N specialists, associated with the epithelial sodium channel: ENaC, are consistent with labeled line coding from taste bud to afferent neuron. Yet, S-specialist neurons and behavior are less specific thanT1R2-3 in encompassing glutamate and E generalist neurons are much less specific than a candidate, PDK TRP channel, sour receptor in encompassing salts and bitter stimuli. Specialist labeled lines for nutrients and generalist patterns for aversive electrolytes may be transmitting taste information to the brain side by side. However, specific roles of generalists in taste quality coding may be resolved by selecting stimuli and stimulus levels found in natural situations. T2Rs, participating in reflexes via the glossopharynygeal nerve, became highly diversified in mammalian phylogenesis as they evolved to deal with dangerous substances within specific environmental niches. Establishing the information afferent neurons traffic to the brain about natural taste stimuli imbedded in dynamic complex mixtures will ultimately “crack taste codes.” PMID:18824076

  2. Taste quality decoding parallels taste sensations.

    PubMed

    Crouzet, Sébastien M; Busch, Niko A; Ohla, Kathrin

    2015-03-30

    In most species, the sense of taste is key in the distinction of potentially nutritious and harmful food constituents and thereby in the acceptance (or rejection) of food. Taste quality is encoded by specialized receptors on the tongue, which detect chemicals corresponding to each of the basic tastes (sweet, salty, sour, bitter, and savory [1]), before taste quality information is transmitted via segregated neuronal fibers [2], distributed coding across neuronal fibers [3], or dynamic firing patterns [4] to the gustatory cortex in the insula. In rodents, both hardwired coding by labeled lines [2] and flexible, learning-dependent representations [5] and broadly tuned neurons [6] seem to coexist. It is currently unknown how, when, and where taste quality representations are established in the cortex and whether these representations are used for perceptual decisions. Here, we show that neuronal response patterns allow to decode which of four tastants (salty, sweet, sour, and bitter) participants tasted in a given trial by using time-resolved multivariate pattern analyses of large-scale electrophysiological brain responses. The onset of this prediction coincided with the earliest taste-evoked responses originating from the insula and opercular cortices, indicating that quality is among the first attributes of a taste represented in the central gustatory system. These response patterns correlated with perceptual decisions of taste quality: tastes that participants discriminated less accurately also evoked less discriminated brain response patterns. The results therefore provide the first evidence for a link between taste-related decision-making and the predictive value of these brain response patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. State Dependency of Chemosensory Coding in the Gustatory Thalamus (VPMpc) of Alert Rats

    PubMed Central

    Liu, Haixin

    2015-01-01

    The parvicellular portion of the ventroposteromedial nucleus (VPMpc) is the part of the thalamus that processes gustatory information. Anatomical evidence shows that the VPMpc receives ascending gustatory inputs from the parabrachial nucleus (PbN) in the brainstem and sends projections to the gustatory cortex (GC). Although taste processing in PbN and GC has been the subject of intense investigation in behaving rodents, much less is known on how VPMpc neurons encode gustatory information. Here we present results from single-unit recordings in the VPMpc of alert rats receiving multiple tastants. Thalamic neurons respond to taste with time-varying modulations of firing rates, consistent with those observed in GC and PbN. These responses encode taste quality as well as palatability. Comparing responses to tastants either passively delivered, or self-administered after a cue, unveiled the effects of general expectation on taste processing in VPMpc. General expectation led to an improvement of taste coding by modulating response dynamics, and single neuron ability to encode multiple tastants. Our results demonstrate that the time course of taste coding as well as single neurons' ability to encode for multiple qualities are not fixed but rather can be altered by the state of the animal. Together, the data presented here provide the first description that taste coding in VPMpc is dynamic and state-dependent. SIGNIFICANCE STATEMENT Over the past years, a great deal of attention has been devoted to understanding taste coding in the brainstem and cortex of alert rodents. Thanks to this research, we now know that taste coding is dynamic, distributed, and context-dependent. Alas, virtually nothing is known on how the gustatory thalamus (VPMpc) processes gustatory information in behaving rats. This manuscript investigates taste processing in the VPMpc of behaving rats. Our results show that thalamic neurons encode taste and palatability with time-varying patterns of activity and that thalamic coding of taste is modulated by general expectation. Our data will appeal not only to researchers interested in taste, but also to a broader audience of sensory and systems neuroscientists interested in the thalamocortical system. PMID:26609147

  4. Common sense about taste: from mammals to insects.

    PubMed

    Yarmolinsky, David A; Zuker, Charles S; Ryba, Nicholas J P

    2009-10-16

    The sense of taste is a specialized chemosensory system dedicated to the evaluation of food and drink. Despite the fact that vertebrates and insects have independently evolved distinct anatomic and molecular pathways for taste sensation, there are clear parallels in the organization and coding logic between the two systems. There is now persuasive evidence that tastant quality is mediated by labeled lines, whereby distinct and strictly segregated populations of taste receptor cells encode each of the taste qualities.

  5. Common Sense about Taste: From Mammals to Insects

    PubMed Central

    Yarmolinsky, David A.; Zuker, Charles S.; Ryba, Nicholas J.P.

    2013-01-01

    The sense of taste is a specialized chemosensory system dedicated to the evaluation of food and drink. Despite the fact that vertebrates and insects have independently evolved distinct anatomic and molecular pathways for taste sensation, there are clear parallels in the organization and coding logic between the two systems. There is now persuasive evidence that tastant quality is mediated by labeled lines, whereby distinct and strictly segregated populations of taste receptor cells encode each of the taste qualities. PMID:19837029

  6. Peripheral coding of taste

    PubMed Central

    Liman, Emily R.; Zhang, Yali V.; Montell, Craig

    2014-01-01

    Five canonical tastes, bitter, sweet, umami (amino acid), salty and sour (acid) are detected by animals as diverse as fruit flies and humans, consistent with a near universal drive to consume fundamental nutrients and to avoid toxins or other harmful compounds. Surprisingly, despite this strong conservation of basic taste qualities between vertebrates and invertebrates, the receptors and signaling mechanisms that mediate taste in each are highly divergent. The identification over the last two decades of receptors and other molecules that mediate taste has led to stunning advances in our understanding of the basic mechanisms of transduction and coding of information by the gustatory systems of vertebrates and invertebrates. In this review, we discuss recent advances in taste research, mainly from the fly and mammalian systems, and we highlight principles that are common across species, despite stark differences in receptor types. PMID:24607224

  7. Glucagon-like peptide-1 is specifically involved in sweet taste transmission.

    PubMed

    Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J; Margolskee, Robert F; Ninomiya, Yuzo

    2015-06-01

    Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice. © FASEB.

  8. Ventromedial prefrontal cortex response to concentrated sucrose reflects liking rather than sweet quality coding.

    PubMed

    Rudenga, Kristin J; Small, Dana M

    2013-09-01

    The perception of the pleasantness of sweet tastes varies widely across individuals. Here, we exploit these differences to isolate brain response to sweet-taste pleasantness while controlling for intensity, quality, and physiological significance. Thirty subjects participated in functional MRI scanning while consuming individually calibrated weak and strong sucrose solutions. All subjects found the weak sweet taste to be neutral in pleasantness, but half of the subjects found strong sweet taste pleasant (likers), whereas half found strong sweet taste unpleasant (dislikers). Greater response was observed in the ventromedial prefrontal cortex (vmPFC) to the sucrose when it was rated pleasant versus neutral compared with unpleasant versus neutral. This suggests that response in the vmPFC underlies sweet-taste preference, this region is preferentially sensitive to affectively positive tastes, and it is the positive value rather than physiological significance, quality, or intensity that drives responses here. Likers versus dislikers did not differ in their diet, alcohol use, body weight, gender, or taq1A allele status, but likers were more likely to report emotional eating. None of these factors influenced response in the vmPFC.

  9. Breadth of tuning in taste afferent neurons varies with stimulus strength

    PubMed Central

    Wu, An; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.

    2015-01-01

    Gustatory stimuli are detected by taste buds and transmitted to the hindbrain via sensory afferent neurons. Whether each taste quality (sweet, bitter and so on) is encoded by separate neurons (‘labelled lines') remains controversial. We used mice expressing GCaMP3 in geniculate ganglion sensory neurons to investigate taste-evoked activity. Using confocal calcium imaging, we recorded responses to oral stimulation with prototypic taste stimuli. Up to 69% of neurons respond to multiple tastants. Moreover, neurons tuned to a single taste quality at low concentration become more broadly tuned when stimuli are presented at higher concentration. Responses to sucrose and monosodium glutamate are most related. Although mice prefer dilute NaCl solutions and avoid concentrated NaCl, we found no evidence for two separate populations of sensory neurons that encode this distinction. Altogether, our data suggest that taste is encoded by activity in patterns of peripheral sensory neurons and challenge the notion of strict labelled line coding. PMID:26373451

  10. Glucagon-like peptide-1 is specifically involved in sweet taste transmission

    PubMed Central

    Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J.; Margolskee, Robert F.; Ninomiya, Yuzo

    2015-01-01

    Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice.—Takai, S., Yasumatsu, K., Inoue, M., Iwata, S., Yoshida, R., Shigemura, N., Yanagawa, Y., Drucker, D. J., Margolskee, R. F., Ninomiya, Y. Glucagon-like peptide-1 is specifically involved in sweet taste transmission. PMID:25678625

  11. Bitter Taste Stimuli Induce Differential Neural Codes in Mouse Brain

    PubMed Central

    Wilson, David M.; Boughter, John D.; Lemon, Christian H.

    2012-01-01

    A growing literature suggests taste stimuli commonly classified as “bitter” induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes) was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total), including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA), presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5) were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05) to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05) from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among “bitter” stimuli, data that challenge a strict monoguesia model for the bitter quality. PMID:22844505

  12. Temporal characteristics of gustatory responses in rat parabrachial neurons vary by stimulus and chemosensitive neuron type.

    PubMed

    Geran, Laura; Travers, Susan

    2013-01-01

    It has been demonstrated that temporal features of spike trains can increase the amount of information available for gustatory processing. However, the nature of these temporal characteristics and their relationship to different taste qualities and neuron types are not well-defined. The present study analyzed the time course of taste responses from parabrachial (PBN) neurons elicited by multiple applications of "sweet" (sucrose), "salty" (NaCl), "sour" (citric acid), and "bitter" (quinine and cycloheximide) stimuli in an acute preparation. Time course varied significantly by taste stimulus and best-stimulus classification. Across neurons, the ensemble code for the three electrolytes was similar initially but quinine diverged from NaCl and acid during the second 500 ms of stimulation and all four qualities became distinct just after 1s. This temporal evolution was reflected in significantly broader tuning during the initial response. Metric space analyses of quality discrimination by individual neurons showed that increases in information (H) afforded by temporal factors was usually explained by differences in rate envelope, which had a greater impact during the initial 2s (22.5% increase in H) compared to the later response (9.5%). Moreover, timing had a differential impact according to cell type, with between-quality discrimination in neurons activated maximally by NaCl or citric acid most affected. Timing was also found to dramatically improve within-quality discrimination (80% increase in H) in neurons that responded optimally to bitter stimuli (B-best). Spikes from B-best neurons were also more likely to occur in bursts. These findings suggest that among PBN taste neurons, time-dependent increases in mutual information can arise from stimulus- and neuron-specific differences in response envelope during the initial dynamic period. A stable rate code predominates in later epochs.

  13. Temporal Characteristics of Gustatory Responses in Rat Parabrachial Neurons Vary by Stimulus and Chemosensitive Neuron Type

    PubMed Central

    Geran, Laura; Travers, Susan

    2013-01-01

    It has been demonstrated that temporal features of spike trains can increase the amount of information available for gustatory processing. However, the nature of these temporal characteristics and their relationship to different taste qualities and neuron types are not well-defined. The present study analyzed the time course of taste responses from parabrachial (PBN) neurons elicited by multiple applications of “sweet” (sucrose), “salty” (NaCl), “sour” (citric acid), and “bitter” (quinine and cycloheximide) stimuli in an acute preparation. Time course varied significantly by taste stimulus and best-stimulus classification. Across neurons, the ensemble code for the three electrolytes was similar initially but quinine diverged from NaCl and acid during the second 500ms of stimulation and all four qualities became distinct just after 1s. This temporal evolution was reflected in significantly broader tuning during the initial response. Metric space analyses of quality discrimination by individual neurons showed that increases in information (H) afforded by temporal factors was usually explained by differences in rate envelope, which had a greater impact during the initial 2s (22.5% increase in H) compared to the later response (9.5%). Moreover, timing had a differential impact according to cell type, with between-quality discrimination in neurons activated maximally by NaCl or citric acid most affected. Timing was also found to dramatically improve within-quality discrimination (80% increase in H) in neurons that responded optimally to bitter stimuli (B-best). Spikes from B-best neurons were also more likely to occur in bursts. These findings suggest that among PBN taste neurons, time-dependent increases in mutual information can arise from stimulus- and neuron-specific differences in response envelope during the initial dynamic period. A stable rate code predominates in later epochs. PMID:24124597

  14. The neural processing of taste

    PubMed Central

    Lemon, Christian H; Katz, Donald B

    2007-01-01

    Although there have been many recent advances in the field of gustatory neurobiology, our knowledge of how the nervous system is organized to process information about taste is still far from complete. Many studies on this topic have focused on understanding how gustatory neural circuits are spatially organized to represent information about taste quality (e.g., "sweet", "salty", "bitter", etc.). Arguments pertaining to this issue have largely centered on whether taste is carried by dedicated neural channels or a pattern of activity across a neural population. But there is now mounting evidence that the timing of neural events may also importantly contribute to the representation of taste. In this review, we attempt to summarize recent findings in the field that pertain to these issues. Both space and time are variables likely related to the mechanism of the gustatory neural code: information about taste appears to reside in spatial and temporal patterns of activation in gustatory neurons. What is more, the organization of the taste network in the brain would suggest that the parameters of space and time extend to the neural processing of gustatory information on a much grander scale. PMID:17903281

  15. Neural networks distinguish between taste qualities based on receptor cell population responses.

    PubMed

    Varkevisser, B; Peterson, D; Ogura, T; Kinnamon, S C

    2001-06-01

    Response features of taste receptor cell action potentials were examined using an artificial neural network to determine whether they contain information about taste quality. Using the loose patch technique to record from hamster taste buds in vivo we recorded population responses of single fungiform papillae to NaCl (100 mM), sucrose (200 mM) and the synthetic sweetener NC-00274-01 (NC-01) (200 microM). Features of each response describing both burst and inter-burst characteristics were then presented to an artificial neural network for pairwise classification of taste stimuli. Responses to NaCl could be distinguished from those to both NC-01 and sucrose with accuracies of up to 86%. In contrast, pairwise comparisons between sucrose and NC-01 were not successful, scoring at chance (50%). Also, comparisons between two different concentrations of NaCl, 0.01 and 0.005 M, scored at chance. Pairwise comparisons using only those features that relate to the inter-burst behavior of the response (i.e. bursting rate) did not hinder the performance of the neural network as both sweeteners versus NaCl received scores of 75--85%. Comparisons using features corresponding to each individual burst scored poorly, receiving scores only slightly above chance. We then compared the sweeteners with varying concentrations of NaCl (0.1, 0.01, 0.005 and 0.001 M) using only those features corresponding to bursting rate within a 1 s time window. The neural network was capable of distinguishing between NaCl and NC-01 at all concentrations tested; while comparisons between NaCl and sucrose received high scores at all concentrations except 0.001 M. These results show that two different taste qualities can be distinguished from each other based solely on the bursting rates of action potentials in single taste buds and that this distinction is independent of stimulation intensity down to 0.001 M NaCl. These data suggest that action potentials in taste receptor cells may play a role in taste quality coding.

  16. Taste buds: cells, signals and synapses

    PubMed Central

    Roper, Stephen D.; Chaudhari, Nirupa

    2018-01-01

    The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding. PMID:28655883

  17. Taste buds: cells, signals and synapses.

    PubMed

    Roper, Stephen D; Chaudhari, Nirupa

    2017-08-01

    The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding.

  18. Discrimination of taste qualities among mouse fungiform taste bud cells.

    PubMed

    Yoshida, Ryusuke; Miyauchi, Aya; Yasuo, Toshiaki; Jyotaki, Masafumi; Murata, Yoshihiro; Yasumatsu, Keiko; Shigemura, Noriatsu; Yanagawa, Yuchio; Obata, Kunihiko; Ueno, Hiroshi; Margolskee, Robert F; Ninomiya, Yuzo

    2009-09-15

    Multiple lines of evidence from molecular studies indicate that individual taste qualities are encoded by distinct taste receptor cells. In contrast, many physiological studies have found that a significant proportion of taste cells respond to multiple taste qualities. To reconcile this apparent discrepancy and to identify taste cells that underlie each taste quality, we investigated taste responses of individual mouse fungiform taste cells that express gustducin or GAD67, markers for specific types of taste cells. Type II taste cells respond to sweet, bitter or umami tastants, express taste receptors, gustducin and other transduction components. Type III cells possess putative sour taste receptors, and have well elaborated conventional synapses. Consistent with these findings we found that gustducin-expressing Type II taste cells responded best to sweet (25/49), bitter (20/49) or umami (4/49) stimuli, while all GAD67 (Type III) taste cells examined (44/44) responded to sour stimuli and a portion of them showed multiple taste sensitivities, suggesting discrimination of each taste quality among taste bud cells. These results were largely consistent with those previously reported with circumvallate papillae taste cells. Bitter-best taste cells responded to multiple bitter compounds such as quinine, denatonium and cyclohexamide. Three sour compounds, HCl, acetic acid and citric acid, elicited responses in sour-best taste cells. These results suggest that taste cells may be capable of recognizing multiple taste compounds that elicit similar taste sensation. We did not find any NaCl-best cells among the gustducin and GAD67 taste cells, raising the possibility that salt sensitive taste cells comprise a different population.

  19. Sensomics-Assisted Elucidation of the Tastant Code of Cooked Crustaceans and Taste Reconstruction Experiments.

    PubMed

    Meyer, Stefanie; Dunkel, Andreas; Hofmann, Thomas

    2016-02-10

    Sensory-guided fractionation by means of ultrafiltration and cation-exchange chromatography, followed by MS/MS quantitation, and taste re-engineering experiments revealed the key taste molecules coining the characteristic taste profile of the cooked meat of king prawns. Furthermore, quantitative analysis demonstrated that the taste differences between crustaceans are due to quantitative differences in the combinatorial code of tastants, rather than to qualitative differences in the tastant composition. Besides the amino acids glycine, L-proline, and L-alanine, the characteristic seafood-like sweet profile was found to be due to the sweet modulatory action of quaternary ammonium compounds, among which betaine, homarine, stachydrin, and trimethylamine-N-oxide were found as the key contributors on the basis of dose-activity considerations. Knowledge of this combinatorial tastant code provides the foundation for the development of more sophisticated crustacean flavors that are lacking any heavy metal ions and allergenic proteins present when using crustacean extracts for food flavoring.

  20. A biomimetic bioelectronic tongue: A switch for On- and Off- response of acid sensations.

    PubMed

    Zhang, Wei; Chen, Peihua; Zhou, Lianqun; Qin, Zhen; Gao, Keqiang; Yao, Jia; Li, Chuanyu; Wang, Ping

    2017-06-15

    The perception of sour taste in mammals is important for its basic modality properties and avoiding toxic substances. We explore a biomimetic bioelectronic tongue, which integrate MEA (microelectrode array) and taste receptor cell for acid detection as a switch. However, the acid-sensing mechanism and coding of the taste receptor cells in the periphery is not well understood, with long-standing debate. Therefore, we firstly construct a Hodgkin-Huxley type mathematical model of whole-cell acid-sensing taste receptor cells based on the electrophysiologic patch clamp recordings with different acid sensitive receptor expressing and different acidic stimulations. ASICs and PKDL channels are two most promising candidates for acidic sensation. ASICs channels contribute to the On response, and PKDL channels coding the Offset stimulations respectively, which function as a pair for switch. Therefore, with the advantage of effective and noninvasive detection for MEA, a sour taste biosensor based on MEA and taste receptor cells was designed and established to detect sour response from the elementary acid sensitive taste receptor cells during and after stimulus. From simulation and extracelluar potential recordings, we found the biomimetic bioelectronic tongue was acid-sensitive, as acid stimulation pH decrease, the firing frequency significantly increase. Furthermore, this reliable and effective MEA based bioelectronic tongue functioned as a switch for stimulation On and Off. This study provided a powerful platform to recognize sour stimulation and help elucidate the sour taste sensation and coding mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Differences in taste sensitivity between obese and non-obese children and adolescents.

    PubMed

    Overberg, Johanna; Hummel, Thomas; Krude, Heiko; Wiegand, Susanna

    2012-12-01

    Taste sensitivity varies between individuals. Several studies describe differences between obese and non-obese subjects concerning their taste perception. However, data are partly contradictory and insufficient. Therefore, in this study taste sensitivity of obese and non-obese children/adolescents was analysed. In a cross-sectional study gustatory sensitivity of n=99 obese subjects (body mass index (BMI) >97th percentile) and n=94 normal weight subjects (BMI <90th percentile), 6-18 years of age, was compared. Sensitivity for the taste qualities sweet, sour, salty, umami and bitter was analysed by means of impregnated 'taste strips' in different concentrations. A total score was determined for all taste qualities combined as well as for each separately. Furthermore, the possible influence of sex, age and ethnicity on taste perception was analysed. An intensity rating for sweet was performed on a 5-point rating scale. Obese subjects showed-compared to the control group-a significantly lower ability to identify the correct taste qualities regarding the total score (p<0.001). Regarding individual taste qualities there was a significantly lower detection rate for salty, umami and bitter by obese subjects. Furthermore, the determinants age and sex had a significant influence on taste perception: older age and female sex was associated with better ability to identify taste qualities. Concerning the sweet intensity rating obese children gave significantly lower intensity ratings to three of the four concentrations. Obese and non-obese children and adolescents differ in their taste perception. Obese subjects could identify taste qualities less precisely than children and adolescents of normal weight.

  2. Taste phenotype associates with cardiovascular disease risk factors via diet quality in multivariate modeling.

    PubMed

    Sharafi, Mastaneh; Rawal, Shristi; Fernandez, Maria Luz; Huedo-Medina, Tania B; Duffy, Valerie B

    2018-05-08

    Sensations from foods and beverages drive dietary choices, which in turn, affect risk of diet-related diseases. Perception of these sensation varies with environmental and genetic influences. This observational study aimed to examine associations between chemosensory phenotype, diet and cardiovascular disease (CVD) risk. Reportedly healthy women (n = 110, average age 45 ± 9 years) participated in laboratory-based measures of chemosensory phenotype (taste and smell function, propylthiouracil (PROP) bitterness) and CVD risk factors (waist circumference, blood pressure, serum lipids). Diet variables included preference and intake of sweet/high-fat foods, dietary restraint, and diet quality based on reported preference (Healthy Eating Preference Index-HEPI) and intake (Healthy Eating Index-HEI). We found that females who reported high preference yet low consumption of sweet/high-fat foods had the highest dietary restraint and depressed quinine taste function. PROP nontasters were more likely to report lower diet quality; PROP supertasters more likely to consume but not like a healthy diet. Multivariate structural models were fitted to identify predictors of CVD risk factors. Reliable latent taste (quinine taste function, PROP tasting) and smell (odor intensity) variables were identified, with taste explaining more variance in the CVD risk factors. Lower bitter taste perception was associated with elevated risk. In multivariate models, the HEPI completely mediated the taste-adiposity and taste-HDL associations and partially mediated the taste-triglyceride or taste-systolic blood pressure associations. The taste-LDL pathway was significant and direct. The HEI could not replace HEPI in adequate models. However, using a latent diet quality variable with HEPI and HEI, increased the strength of association between diet quality and adiposity or CVD risk factors. In conclusion, bitter taste phenotype was associated with CVD risk factors via diet quality, particularly when assessed by level of food liking/disliking. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. The Molecular and Cellular Basis of Taste Coding in the Legs of Drosophila

    PubMed Central

    Ling, Frederick; Dahanukar, Anupama; Weiss, Linnea A.; Kwon, Jae Young

    2014-01-01

    To understand the principles of taste coding, it is necessary to understand the functional organization of the taste organs. Although the labellum of the Drosophila melanogaster head has been described in detail, the tarsal segments of the legs, which collectively contain more taste sensilla than the labellum, have received much less attention. We performed a systematic anatomical, physiological, and molecular analysis of the tarsal sensilla of Drosophila. We construct an anatomical map of all five tarsal segments of each female leg. The taste sensilla of the female foreleg are systematically tested with a panel of 40 diverse compounds, yielding a response matrix of ∼500 sensillum–tastant combinations. Six types of sensilla are characterized. One type was tuned remarkably broadly: it responded to 19 of 27 bitter compounds tested, as well as sugars; another type responded to neither. The midleg is similar but distinct from the foreleg. The response specificities of the tarsal sensilla differ from those of the labellum, as do n-dimensional taste spaces constructed for each organ, enhancing the capacity of the fly to encode and respond to gustatory information. We examined the expression patterns of all 68 gustatory receptors (Grs). A total of 28 Gr–GAL4 drivers are expressed in the legs. We constructed a receptor-to-sensillum map of the legs and a receptor-to-neuron map. Fourteen Gr–GAL4 drivers are expressed uniquely in the bitter-sensing neuron of the sensillum that is tuned exceptionally broadly. Integration of the molecular and physiological maps provides insight into the underlying basis of taste coding. PMID:24849350

  4. Comparative sensory and proximate evaluation of spontaneously fermenting kunu-zaki made from germinated and ungerminated composite cereal grains

    PubMed Central

    Oluwajoba, Solakunmi O; Akinyosoye, Felix A; Oyetayo, Olusegun V

    2013-01-01

    This study evaluated the sensory properties, proximate composition, and overall consumer acceptability of kunu-zaki using germinated and ungerminated Sorghum bicolor (sorghum), Pennisetum americanum (millet), and Digitaria exilis (acha) cereal grains. The three cereal grains were used in nongerminated and germinated composite and noncomposite proportions coded A (Acha), S (Sorghum), M (Millet), AS (Acha–Sorghum), AM (Acha–Millet), SM (Sorghum–Millet), ASG (Acha–Sorghum Germinated), AMG (Acha–Millet Germinated), and SMG (Sorghum–Millet Germinated). Proximate analysis determined the moisture content, ash, crude fiber, fat, and crude protein content of the fermented grains. The 9-point hedonic scale was used to judge the sensory parameters of taste, color, and aroma. The paired comparison test was used to judge consumer preference between kunu-zaki made from germinated grains and the ungerminated counterpart. Scores were statistically analyzed using the Kruskal–Wallis test in the SPSS analytical software package. Panelists ranked the ASG-coded drink highest in terms of taste and aroma, the AMG-coded drink highest in terms of color. SM ranked least in terms of taste; SMG ranked least in terms of aroma; and AM ranked the least in terms of color. Preference for each parameter was significantly different (P < 0.001). Panelists ranked overall preference for the drinks from the most liked to the least liked in the order ASG>AMG>A>AS>S>M>SMG>AM>SM. The overall preference for the drinks was also significantly different (P < 0.001). Panelists pairing both ungerminated drinks with the germinated drinks ranked the ungerminated drink AS as most preferred in terms of taste, color, and aroma above its germinated counterpart ASG with preference not significantly dependent on the parameters (P = 0.065 > 0.05). Ungerminated AM was also preferred above the germinated counterpart AMG in terms of taste, color, and aroma with preference not significantly dependent on parameters (P = 0.055 > 0.05). However, panelists showed preference for the taste and aroma of the germinated drink SMG but more preference for the color of the ungerminated drink SM with preference significantly dependent on the parameters (P = 0.028 < 0.05). Crude fiber values were higher – 11.3%, 13.1%, and 17.37% for SMG, AMG and ASG, respectively. Germination increased %Fat values slightly but the %Ash was relatively stable in both germinated and ungerminated drinks. Addition of germinated acha cereal grains to either sorghum or millet prior to fermentation offers desirable sensory and nutritional quality attributes in kunu-zaki. PMID:24804038

  5. Comparative sensory and proximate evaluation of spontaneously fermenting kunu-zaki made from germinated and ungerminated composite cereal grains.

    PubMed

    Oluwajoba, Solakunmi O; Akinyosoye, Felix A; Oyetayo, Olusegun V

    2013-07-01

    This study evaluated the sensory properties, proximate composition, and overall consumer acceptability of kunu-zaki using germinated and ungerminated Sorghum bicolor (sorghum), Pennisetum americanum (millet), and Digitaria exilis (acha) cereal grains. The three cereal grains were used in nongerminated and germinated composite and noncomposite proportions coded A (Acha), S (Sorghum), M (Millet), AS (Acha-Sorghum), AM (Acha-Millet), SM (Sorghum-Millet), ASG (Acha-Sorghum Germinated), AMG (Acha-Millet Germinated), and SMG (Sorghum-Millet Germinated). Proximate analysis determined the moisture content, ash, crude fiber, fat, and crude protein content of the fermented grains. The 9-point hedonic scale was used to judge the sensory parameters of taste, color, and aroma. The paired comparison test was used to judge consumer preference between kunu-zaki made from germinated grains and the ungerminated counterpart. Scores were statistically analyzed using the Kruskal-Wallis test in the SPSS analytical software package. Panelists ranked the ASG-coded drink highest in terms of taste and aroma, the AMG-coded drink highest in terms of color. SM ranked least in terms of taste; SMG ranked least in terms of aroma; and AM ranked the least in terms of color. Preference for each parameter was significantly different (P < 0.001). Panelists ranked overall preference for the drinks from the most liked to the least liked in the order ASG>AMG>A>AS>S>M>SMG>AM>SM. The overall preference for the drinks was also significantly different (P < 0.001). Panelists pairing both ungerminated drinks with the germinated drinks ranked the ungerminated drink AS as most preferred in terms of taste, color, and aroma above its germinated counterpart ASG with preference not significantly dependent on the parameters (P = 0.065 > 0.05). Ungerminated AM was also preferred above the germinated counterpart AMG in terms of taste, color, and aroma with preference not significantly dependent on parameters (P = 0.055 > 0.05). However, panelists showed preference for the taste and aroma of the germinated drink SMG but more preference for the color of the ungerminated drink SM with preference significantly dependent on the parameters (P = 0.028 < 0.05). Crude fiber values were higher - 11.3%, 13.1%, and 17.37% for SMG, AMG and ASG, respectively. Germination increased %Fat values slightly but the %Ash was relatively stable in both germinated and ungerminated drinks. Addition of germinated acha cereal grains to either sorghum or millet prior to fermentation offers desirable sensory and nutritional quality attributes in kunu-zaki.

  6. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    PubMed

    Sun, Chengsan; Hummler, Edith; Hill, David L

    2017-01-18

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. Copyright © 2017 the authors 0270-6474/17/370660-13$15.00/0.

  7. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract

    PubMed Central

    Sun, Chengsan; Hummler, Edith

    2017-01-01

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent “pruning” of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. PMID:28100747

  8. Radiation-induced changes in taste acuity in cancer patients. [. gamma. rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mossman, K.L.; Henkin, R.I.

    1978-01-01

    Changes in taste acuity were measured in 27 patients with various forms of cancer who received radiation to the head and neck region. In 9 of these patients (group I), measurements of taste acuity were made more than 1 year after completion of radiation therapy. In the other 18 patients (group II), taste measurements were made before, during, and approximately 1 month after radiation therapy. Taste acuity was measured for four taste qualities (salt, sweet, sour, and bitter) by a forced choice-three stimulus drop technique which measured detection and recognition thresholds and by a forced scaling technique which measured tastemore » intensity responsiveness. In group II patients, impaired acuity, as indicated by elevated detection and recognition thresholds, was observed approximately 3 weeks after initiation of radiotherapy. The bitter and salt qualities showed the earliest and greatest impairment and the sweet quality the least. Taste intensity responsiveness also was impaired in group II patients. As for thresholds, scaling impairment was most severe for bitter and salt taste qualities. Scaling impairment occurred before changes in either detection or recognition thresholds. Detection and recognition thresholds determined in group I patients also showed salt and bitter qualities were affected more severely than either sweet or sour qualities. Zinc administration to group I patients in an uncontrolled study suggested that zinc therapy may be useful in ameliorating taste impairment in some patients. These results suggest that taste loss may be a factor in the anorexia and weight loss that is observed commonly in patients who have undergone radiation treatment. Correction of this abnormality may be useful in aiding the nutritional status of these patients.« less

  9. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  10. Changes in Gustatory Function and Taste Preference Following Weight Loss.

    PubMed

    Sauer, Helene; Ohla, Kathrin; Dammann, Dirk; Teufel, Martin; Zipfel, Stephan; Enck, Paul; Mack, Isabelle

    2017-03-01

    To investigate taste changes of obese children during an inpatient weight reduction treatment in comparison with normal weight children. Obese (n = 60) and normal weight (n = 27) children aged 9-17 years were assessed for gustatory functions using taste strips (taste identification test for the taste qualities sour, salty, sweet, and bitter), taste preferences, and experienced taste sensitivity. Obese children were examined upon admission (T1) and before discharge (T2). Normal weight children served as the control group. Irrespective of taste quality, obese children exhibited a lower ability to identify taste (total taste score) than normal weight children (P < .01); this overall score remained stable during inpatient treatment in obese children. Group and treatment effects were seen when evaluating individual taste qualities. In comparison with normal weight children, obese children exhibited poorer sour taste identification performance (P < .01). Obese children showed improvement in sour taste identification (P < .001) and deterioration in sweet taste identification (P < .001) following treatment. Subjective reports revealed a lower preference for sour taste in obese children compared with normal weight children (P < .05). The sweet and bitter taste ability at T1 predicted the body mass index z score at T2 (R 2  = .23, P < .01). We identified differences in the ability to discriminate tastes and in subjective taste perception between groups. Our findings of increased sour and reduced sweet taste discrimination after the intervention in obese children are indicative of an exposure-related effect on taste performance, possibly mediated by increased acid and reduced sugar consumption during the intervention. Because the sweet and bitter taste ability at T1 predicted weight loss, addressing gustatory function could be relevant in individualized obesity treatment approaches. Germanctr.de: DRKS00005122. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Interventions for the management of taste disturbances.

    PubMed

    Nagraj, Sumanth Kumbargere; Naresh, Shetty; Srinivas, Kandula; Renjith George, P; Shrestha, Ashish; Levenson, David; Ferraiolo, Debra M

    2014-11-26

    The sense of taste is very much essential to the overall health of the individual. It is a necessary component to enjoying one's food, which in turn provides nutrition to an individual. Any disturbance in taste perception can hamper the quality of life in such patients by influencing their appetite, body weight and psychological well-being. Taste disorders have been treated using different modalities of treatment and there is no consensus for the best intervention. Hence this Cochrane systematic review was undertaken. To assess the effects of interventions for the management of patients with taste disturbances. We searched the Cochrane Oral Health Group Trials Register (to 5 March 2014), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 1, 2014), MEDLINE via OVID (1948 to 5 March 2014), EMBASE via OVID (1980 to 5 March 2014), CINAHL via EBSCO (1980 to 5 March 2014) and AMED via OVID (1985 to 5 March 2014). We also searched the relevant clinical trial registries and conference proceedings from the International Association of Dental Research/American Association of Dental Research (to 5 March 2014), Association for Research in Otolaryngology (to 5 March 2014), the US National Institutes of Health Trials Register (to 5 March 2014), metaRegister of Controlled Trials (mRCT) (to 5 March 2014), World Health Organization's International Clinical Trials Registry Platform (WHO ICTRP) (to 5 March 2014) and International Federation of Pharmaceutical Manufacturers and Associations (IFPMA) Clinical Trials Portal (to 5 March 2014). We included all randomised controlled trials (RCTs) comparing any pharmacological agent with a control intervention or any non-pharmacological agent with a control intervention. We also included cross-over trials in the review. Two authors independently, and in duplicate, assessed the quality of trials and extracted data. Wherever possible, we contacted study authors for additional information. We collected adverse events information from the trials. We included nine trials (seven parallel and two cross-over RCTs) with 566 participants. We assessed three trials (33.3%) as having a low risk of bias, four trials (44.5%) at high risk of bias and two trials (22.2%) as having an unclear risk of bias. We only included studies on taste disorders in this review that were either idiopathic, or resulting from zinc deficiency or chronic renal failure.Of these, eight trials with 529 people compared zinc supplements to placebo for patients with taste disorders. The participants in two trials were children and adolescents with respective mean ages of 10 and 11.2 years and the other six trials had adult participants. Out of these eight, two trials assessed the patient reported outcome for improvement in taste acuity using zinc supplements (RR 1.45, 95% CI 1.0 to 2.1; very low quality evidence). We included three trials in the meta-analysis for overall taste improvement (effect size 0.44, 95% CI 0.23 to 0.65; moderate quality evidence). Two other trials described the results as taste acuity improvement and we conducted subgroup analyses due to clinical heterogeneity. One trial described the results as taste recognition improvement for each taste sensation and we analysed this separately. We also analysed one cross-over trial separately using the first half of the results. None of the zinc trials tested taste discrimination. Only one trial tested taste discrimination using acupuncture (effect size 2.80, 95% CI -1.18 to 6.78; low quality evidence).Out of the eight trials using zinc supplementation, four reported adverse events like eczema, nausea, abdominal pain, diarrhoea, constipation, decrease in blood iron, increase in blood alkaline phosphatase, and minor increase in blood triglycerides. No adverse events were reported in the acupuncture trial.None of the included trials could be included in the meta-analysis for health-related quality of life in taste disorder patients. We found very low quality evidence that was insufficient to conclude on the role of zinc supplements to improve taste perception by patients, however we found moderate quality evidence that zinc supplements improve overall taste improvement in patients with zinc deficiency/idiopathic taste disorders. We also found low quality evidence that zinc supplements improve taste acuity in zinc deficient/idiopathic taste disorders and very low quality evidence for taste recognition improvement in children with taste disorders secondary to chronic renal failure. We did not find any evidence to conclude the role of zinc supplements for improving taste discrimination, or any evidence addressing health-related quality of life due to taste disorders.We found low quality evidence that is not sufficient to conclude on the role of acupuncture for improving taste discrimination in cases of idiopathic dysgeusia (distortion of taste) and hypogeusia (reduced ability to taste). We were unable to draw any conclusions regarding the superiority of zinc supplements or acupuncture as none of the trials compared these interventions.

  12. Neural Coding Mechanisms in Gustation.

    DTIC Science & Technology

    1980-09-15

    world is composed of four primary tastes ( sweet , sour, salty , and bitter), and that each of these is carried by a separate and private neural line, thus...ted sweet -sour- salty -bitter types. The mathematical method of analysis was hierarchical cluster analysis based on the responses of many neurons (20 to...block number) Taste Neural coding Neural organization Stimulus organization Olfaction AB TRACT M~ea -i .rvm~ .1* N necffas and idmatity by block mmnbwc

  13. Single neurons in the nucleus of the solitary tract respond selectively to bitter taste stimuli.

    PubMed

    Geran, Laura C; Travers, Susan P

    2006-11-01

    Molecular data suggest that receptors for all bitter ligands are coexpressed in the same taste receptor cells (TRCs), whereas physiological results indicate that individual TRCs respond to only a subset of bitter stimuli. It is also unclear to what extent bitter-responsive neurons are stimulated by nonbitter stimuli. To explore these issues, single neuron responses were recorded from the rat nucleus of the solitary tract (NST) during whole mouth stimulation with a variety of bitter compounds: 10 microM cycloheximide, 7 mM propylthiouracil, 10 mM denatonium benzoate, and 3 mM quinine hydrochloride at intensities matched for behavioral effectiveness. Stimuli representing the remaining putative taste qualities were also tested. Particular emphasis was given to activating taste receptors in the foliate papillae innervated by the quinine-sensitive glossopharyngeal nerve. This method revealed a novel population of bitter-best (B-best) cells with foliate receptive fields and significant selectivity for bitter tastants. Across all neurons, multidimensional scaling depicted bitter stimuli as loosely clustered yet clearly distinct from nonbitter tastants. When neurons with posterior receptive fields were analyzed alone, bitter stimuli formed a tighter cluster. Nevertheless, responses to bitter stimuli were variable across B-best neurons, with cycloheximide the most, and quinine the least frequent optimal stimulus. These results indicate heterogeneity for the processing of ionic and nonionic bitter tastants, which is dependent on receptive field. Further, they suggest that neurons selective for bitter substances could contribute to taste coding.

  14. A High Throughput In Vivo Assay for Taste Quality and Palatability

    PubMed Central

    Palmer, R. Kyle; Long, Daniel; Brennan, Francis; Buber, Tulu; Bryant, Robert; Salemme, F. Raymond

    2013-01-01

    Taste quality and palatability are two of the most important properties measured in the evaluation of taste stimuli. Human panels can report both aspects, but are of limited experimental flexibility and throughput capacity. Relatively efficient animal models for taste evaluation have been developed, but each of them is designed to measure either taste quality or palatability as independent experimental endpoints. We present here a new apparatus and method for high throughput quantification of both taste quality and palatability using rats in an operant taste discrimination paradigm. Cohorts of four rats were trained in a modified operant chamber to sample taste stimuli by licking solutions from a 96-well plate that moved in a randomized pattern beneath the chamber floor. As a rat’s tongue entered the well it disrupted a laser beam projecting across the top of the 96-well plate, consequently producing two retractable levers that operated a pellet dispenser. The taste of sucrose was associated with food reinforcement by presses on a sucrose-designated lever, whereas the taste of water and other basic tastes were associated with the alternative lever. Each disruption of the laser was counted as a lick. Using this procedure, rats were trained to discriminate 100 mM sucrose from water, quinine, citric acid, and NaCl with 90-100% accuracy. Palatability was determined by the number of licks per trial and, due to intermediate rates of licking for water, was quantifiable along the entire spectrum of appetitiveness to aversiveness. All 96 samples were evaluated within 90 minute test sessions with no evidence of desensitization or fatigue. The technology is capable of generating multiple concentration–response functions within a single session, is suitable for in vivo primary screening of tastant libraries, and potentially can be used to evaluate stimuli for any taste system. PMID:23951319

  15. Suprathreshold measures of taste perception in children - Association with dietary quality and body weight.

    PubMed

    Feeney, Emma L; O'Brien, Sinead A; Scannell, Amalia G M; Markey, Anne; Gibney, Eileen R

    2017-06-01

    Childhood obesity is an increasing problem in the Western world, and is affected by a multitude of interacting factors. Recent evidence suggests that taste perception may differ between obese and normal weight children. Evidence also suggests that perception of sweet and bitter taste is linked to differential food liking of various foods. To date, most studies have focused on single food items or food groups, rather than an overall view of dietary quality, and mainly on bitterness. Thus it is unclear whether taste perception is associated with dietary quality in children. Our objective was to examine the link between taste perception, dietary quality and body weight in Irish school children, in conjunction with other known influences of body weight. Taste perception was measured using the gLMS for bitter, salty and sweet stimuli. Detailed dietary intake data were collected from 525 children aged 7-13 via a 3-day diet history. Energy misreporters were identified and excluded from the dietary analyses, leaving n = 483 children. Dietary quality was assessed using Healthy Eating Index. Salivary DNA was collected and analyzed for variations in the bitter receptor gene TAS2R38. Sex differences were observed whereby intensity perception of sweetness was lower in the overweight/obese males, while no association was observed for sweet taste in the females. Despite the differences in weight status, taste perception was not associated with differences in overall dietary quality, measured via HEI score, in this cohort. Prospective cohort studies in children are necessary to better understand the association between taste intensity, food intake and weight over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Salt taste adaptation: the psychophysical effects of adapting solutions and residual stimuli from prior tastings on the taste of sodium chloride.

    PubMed

    O'Mahony, M

    1979-01-01

    The paper reviews how adaptation to sodium chloride, changing in concentration as a result of various experimental procedures, affects measurements of the sensitivity, intensity, and quality of the salt taste. The development of and evidence for the current model that the salt taste depends on an adaptation level (taste zero) determined by the sodium cation concentration is examined and found to be generally supported, despite great methodological complications. It would seem that lower adaptation levels elicit lower thresholds, higher intensity estimates, and altered quality descriptions with predictable effects on psychophysical measures.

  17. Gustatory sensation of (L)- and (D)-amino acids in humans.

    PubMed

    Kawai, Misako; Sekine-Hayakawa, Yuki; Okiyama, Atsushi; Ninomiya, Yuzo

    2012-12-01

    Amino acids are known to elicit complex taste, but most human psychophysical studies on the taste of amino acids have focused on a single basic taste, such as umami (savory) taste, sweetness, or bitterness. In this study, we addressed the potential relationship between the structure and the taste properties of amino acids by measuring the human gustatory intensity and quality in response to aqueous solutions of proteogenic amino acids in comparison to D-enantiomers. Trained subjects tasted aqueous solution of each amino acid and evaluated the intensities of total taste and each basic taste using a category-ratio scale. Each basic taste of amino acids showed the dependency on its hydrophobicity, size, charge, functional groups on the side chain, and chirality of the alpha carbon. In addition, the overall taste of amino acid was found to be the combination of basic tastes according to the partial structure. For example, hydrophilic non-charged middle-sized amino acids elicited sweetness, and L-enantiomeric hydrophilic middle-sized structure was necessary for umami taste. For example, L-serine had mainly sweet and minor umami taste, and D-serine was sweet. We further applied Stevens' psychophysical function to relate the total-taste intensity and the concentration, and found that the slope values depended on the major quality of taste (e.g., bitter large, sour small).

  18. Non-caloric sweeteners, sweetness modulators, and sweetener enhancers.

    PubMed

    DuBois, Grant E; Prakash, Indra

    2012-01-01

    For a new sweetness technology to realize strong commercial success, it must be safe, exhibit good taste quality, be sufficiently soluble and stable in food and beverage systems, and be cost effective and patentable. Assessments of the commercial promise of eight synthetic and eight natural non-caloric sweeteners are made relevant to these metrics. High-potency (HP) non-caloric sweeteners, both synthetic and natural, are generally limited in taste quality by (a) low maximal sweetness response, (b) "off" tastes, (c) slow-onset sweet tastes that linger, and (d) sweet tastes that adapt or desensitize the gustatory system. Formulation approaches to address these limitations are discussed. Enhancement of the normal sucrose sensory response by action of a sweetener receptor positive allosteric modulator (PAM) has been achieved with very significant calorie reduction and with retention of the taste quality of sucrose. Research on PAM discovery over the past decade is summarized.

  19. Qualitative analysis of MMI raters' scorings of medical school candidates: A matter of taste?

    PubMed

    Christensen, Mette K; Lykkegaard, Eva; Lund, Ole; O'Neill, Lotte D

    2018-05-01

    Recent years have seen leading medical educationalists repeatedly call for a paradigm shift in the way we view, value and use subjectivity in assessment. The argument is that subjective expert raters generally bring desired quality, not just noise, to performance evaluations. While several reviews document the psychometric qualities of the Multiple Mini-Interview (MMI), we currently lack qualitative studies examining what we can learn from MMI raters' subjectivity. The present qualitative study therefore investigates rater subjectivity or taste in MMI selection interview. Taste (Bourdieu 1984) is a practical sense, which makes it possible at a pre-reflective level to apply 'invisible' or 'tacit' categories of perception for distinguishing between good and bad. The study draws on data from explorative in-depth interviews with 12 purposefully selected MMI raters. We find that MMI raters spontaneously applied subjective criteria-their taste-enabling them to assess the candidates' interpersonal attributes and to predict the candidates' potential. In addition, MMI raters seemed to share a taste for certain qualities in the candidates (e.g. reflectivity, resilience, empathy, contact, alikeness, 'the good colleague'); hence, taste may be the result of an ongoing enculturation in medical education and healthcare systems. This study suggests that taste is an inevitable condition in the assessment of students' performance. The MMI set-up should therefore make room for MMI raters' taste and their connoisseurship, i.e. their ability to taste, to improve the quality of their assessment of medical school candidates.

  20. Advanced Taste Sensors Based on Artificial Lipids with Global Selectivity to Basic Taste Qualities and High Correlation to Sensory Scores

    PubMed Central

    Kobayashi, Yoshikazu; Habara, Masaaki; Ikezazki, Hidekazu; Chen, Ronggang; Naito, Yoshinobu; Toko, Kiyoshi

    2010-01-01

    Effective R&D and strict quality control of a broad range of foods, beverages, and pharmaceutical products require objective taste evaluation. Advanced taste sensors using artificial-lipid membranes have been developed based on concepts of global selectivity and high correlation with human sensory score. These sensors respond similarly to similar basic tastes, which they quantify with high correlations to sensory score. Using these unique properties, these sensors can quantify the basic tastes of saltiness, sourness, bitterness, umami, astringency and richness without multivariate analysis or artificial neural networks. This review describes all aspects of these taste sensors based on artificial lipid, ranging from the response principle and optimal design methods to applications in the food, beverage, and pharmaceutical markets. PMID:22319306

  1. Spatiotemporal Coding of Individual Chemicals by the Gustatory System

    PubMed Central

    Reiter, Sam; Campillo Rodriguez, Chelsey; Sun, Kui

    2015-01-01

    Four of the five major sensory systems (vision, olfaction, somatosensation, and audition) are thought to use different but partially overlapping sets of neurons to form unique representations of vast numbers of stimuli. The only exception is gustation, which is thought to represent only small numbers of basic taste categories. However, using new methods for delivering tastant chemicals and making electrophysiological recordings from the tractable gustatory system of the moth Manduca sexta, we found chemical-specific information is as follows: (1) initially encoded in the population of gustatory receptor neurons as broadly distributed spatiotemporal patterns of activity; (2) dramatically integrated and temporally transformed as it propagates to monosynaptically connected second-order neurons; and (3) observed in tastant-specific behavior. Our results are consistent with an emerging view of the gustatory system: rather than constructing basic taste categories, it uses a spatiotemporal population code to generate unique neural representations of individual tastant chemicals. SIGNIFICANCE STATEMENT Our results provide a new view of taste processing. Using a new, relatively simple model system and a new set of techniques to deliver taste stimuli and to examine gustatory receptor neurons and their immediate followers, we found no evidence for labeled line connectivity, or basic taste categories such as sweet, salty, bitter, and sour. Rather, individual tastant chemicals are represented as patterns of spiking activity distributed across populations of receptor neurons. These representations are transformed substantially as multiple types of receptor neurons converge upon follower neurons, leading to a combinatorial coding format that uniquely, rapidly, and efficiently represents individual taste chemicals. Finally, we found that the information content of these neurons can drive tastant-specific behavior. PMID:26338341

  2. Spatiotemporal Coding of Individual Chemicals by the Gustatory System.

    PubMed

    Reiter, Sam; Campillo Rodriguez, Chelsey; Sun, Kui; Stopfer, Mark

    2015-09-02

    Four of the five major sensory systems (vision, olfaction, somatosensation, and audition) are thought to use different but partially overlapping sets of neurons to form unique representations of vast numbers of stimuli. The only exception is gustation, which is thought to represent only small numbers of basic taste categories. However, using new methods for delivering tastant chemicals and making electrophysiological recordings from the tractable gustatory system of the moth Manduca sexta, we found chemical-specific information is as follows: (1) initially encoded in the population of gustatory receptor neurons as broadly distributed spatiotemporal patterns of activity; (2) dramatically integrated and temporally transformed as it propagates to monosynaptically connected second-order neurons; and (3) observed in tastant-specific behavior. Our results are consistent with an emerging view of the gustatory system: rather than constructing basic taste categories, it uses a spatiotemporal population code to generate unique neural representations of individual tastant chemicals. Our results provide a new view of taste processing. Using a new, relatively simple model system and a new set of techniques to deliver taste stimuli and to examine gustatory receptor neurons and their immediate followers, we found no evidence for labeled line connectivity, or basic taste categories such as sweet, salty, bitter, and sour. Rather, individual tastant chemicals are represented as patterns of spiking activity distributed across populations of receptor neurons. These representations are transformed substantially as multiple types of receptor neurons converge upon follower neurons, leading to a combinatorial coding format that uniquely, rapidly, and efficiently represents individual taste chemicals. Finally, we found that the information content of these neurons can drive tastant-specific behavior. Copyright © 2015 the authors 0270-6474/15/3512309-13$15.00/0.

  3. Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats

    PubMed Central

    Fontanini, Alfredo

    2017-01-01

    The integration of gustatory and olfactory information is essential to the perception of flavor. Human neuroimaging experiments have pointed to the gustatory cortex (GC) as one of the areas involved in mediating flavor perception. Although GC's involvement in encoding the chemical identity and hedonic value of taste stimuli is well studied, it is unknown how single GC neurons process olfactory stimuli emanating from the mouth. In this study, we relied on multielectrode recordings to investigate how single GC neurons respond to intraorally delivered tastants and tasteless odorants dissolved in water and whether/how these two modalities converge in the same neurons. We found that GC neurons could either be unimodal, responding exclusively to taste (taste-only) or odor (odor-only), or bimodal, responding to both gustatory and olfactory stimuli. Odor responses were confirmed to result from retronasal olfaction: monitoring respiration revealed that exhalation preceded odor-evoked activity and reversible inactivation of olfactory receptors in the nasal epithelium significantly reduced responses to intraoral odorants but not to tastants. Analysis of bimodal neurons revealed that they encode palatability significantly better than the unimodal taste-only group. Bimodal neurons exhibited similar responses to palatable tastants and odorants dissolved in water. This result suggested that odorized water could be palatable. This interpretation was further supported with a brief access task, where rats avoided consuming aversive taste stimuli and consumed the palatable tastants and dissolved odorants. These results demonstrate the convergence of the chemosensory components of flavor onto single GC neurons and provide evidence for the integration of flavor with palatability coding. SIGNIFICANCE STATEMENT Food perception and choice depend upon the concurrent processing of olfactory and gustatory signals from the mouth. The primary gustatory cortex has been proposed to integrate chemosensory stimuli; however, no study has examined the single-unit responses to intraoral odorant presentation. Here we found that neurons in gustatory cortex can respond either exclusively to tastants, exclusively to odorants, or to both (bimodal). Several differences exist between these groups' responses; notably, bimodal neurons code palatability significantly better than unimodal neurons. This group of neurons might represent a substrate for how odorants gain the quality of tastants. PMID:28077705

  4. Molecular neurobiology of Drosophila taste

    PubMed Central

    Freeman, Erica Gene; Dahanukar, Anupama

    2015-01-01

    Drosophila is a powerful model in which to study the molecular and cellular basis of taste coding. Flies sense tastants via populations of taste neurons that are activated by compounds of distinct categories. The past few years have borne witness to studies that define the properties of taste neurons, identifying functionally distinct classes of sweet and bitter taste neurons that express unique subsets of gustatory receptor (Gr) genes, as well as water, salt, and pheromone sensing neurons that express members of the pickpocket (ppk) or ionotropic receptor (Ir) families. There has also been significant progress in terms of understanding how tastant information is processed and conveyed to higher brain centers, and modulated by prior dietary experience or starvation. PMID:26102453

  5. "Turn Up the Taste": Assessing the Role of Taste Intensity and Emotion in Mediating Crossmodal Correspondences between Basic Tastes and Pitch.

    PubMed

    Wang, Qian Janice; Wang, Sheila; Spence, Charles

    2016-05-01

    People intuitively match basic tastes to sounds of different pitches, and the matches that they make tend to be consistent across individuals. It is, though, not altogether clear what governs such crossmodal mappings between taste and auditory pitch. Here, we assess whether variations in taste intensity influence the matching of taste to pitch as well as the role of emotion in mediating such crossmodal correspondences. Participants were presented with 5 basic tastants at 3 concentrations. In Experiment 1, the participants rated the tastants in terms of their emotional arousal and valence/pleasantness, and selected a musical note (from 19 possible pitches ranging from C2 to C8) and loudness that best matched each tastant. In Experiment 2, the participants made emotion ratings and note matches in separate blocks of trials, then made emotion ratings for all 19 notes. Overall, the results of the 2 experiments revealed that both taste quality and concentration exerted a significant effect on participants' loudness selection, taste intensity rating, and valence and arousal ratings. Taste quality, not concentration levels, had a significant effect on participants' choice of pitch, but a significant positive correlation was observed between individual perceived taste intensity and pitch choice. A significant and strong correlation was also demonstrated between participants' valence assessments of tastants and their valence assessments of the best-matching musical notes. These results therefore provide evidence that: 1) pitch-taste correspondences are primarily influenced by taste quality, and to a lesser extent, by perceived intensity; and 2) such correspondences may be mediated by valence/pleasantness. © The Author 2016. Published by Oxford University Press.

  6. Responses of primate taste cortex neurons to the astringent tastant tannic acid.

    PubMed

    Critchley, H D; Rolls, E T

    1996-04-01

    In order to advance knowledge of the neural control of feeding, we investigated the cortical representation of the taste of tannic acid, which produces the taste of astringency. It is a dietary component of biological importance particularly to arboreal primates. Recordings were made from 74 taste responsive neurons in the orbitofrontal cortex. Single neurons were found that were tuned to respond to 0.001 M tannic acid, and represented a subpopulation of neurons that was distinct from neurons responsive to the tastes of glucose (sweet), NaCl (salty), HCl (sour), quinine (bitter) and monosodium glutamate (umami). In addition, across the population of 74 neurons, tannic acid was as well represented as the tastes of NaCl, HCl quinine or monosodium glutamate. Multidimensional scaling analysis of the neuronal responses to the tastants indicates that tannic acid lies outside the boundaries of the four conventional taste qualities (sweet, sour, bitter and salty). Taken together these data indicate that the astringent taste of tannic acid should be considered as a taste quality, which receives a separate representation from sweet, salt, bitter and sour in the primate cortical taste areas.

  7. Gustatory stimuli representing different perceptual qualities elicit distinct patterns of neuropeptide secretion from taste buds.

    PubMed

    Geraedts, Maartje C P; Munger, Steven D

    2013-04-24

    Taste stimuli that evoke different perceptual qualities (e.g., sweet, umami, bitter, sour, salty) are detected by dedicated subpopulations of taste bud cells that use distinct combinations of sensory receptors and transduction molecules. Here, we report that taste stimuli also elicit unique patterns of neuropeptide secretion from taste buds that are correlated with those perceptual qualities. We measured tastant-dependent secretion of glucagon-like peptide-1 (GLP-1), glucagon, and neuropeptide Y (NPY) from circumvallate papillae of Tas1r3(+/+), Tas1r3(+/-) and Tas1r3 (-/-) mice. Isolated tongue epithelia were mounted in modified Ussing chambers, permitting apical stimulation of taste buds; secreted peptides were collected from the basal side and measured by specific ELISAs. Appetitive stimuli (sweet: glucose, sucralose; umami: monosodium glutamate; polysaccharide: Polycose) elicited GLP-1 and NPY secretion and inhibited basal glucagon secretion. Sweet and umami stimuli were ineffective in Tas1r3(-/-) mice, indicating an obligatory role for the T1R3 subunit common to the sweet and umami taste receptors. Polycose responses were unaffected by T1R3 deletion, consistent with the presence of a distinct polysaccharide taste receptor. The effects of sweet stimuli on peptide secretion also required the closing of ATP-sensitive K(+) (KATP) channels, as the KATP channel activator diazoxide inhibited the effects of glucose and sucralose on both GLP-1 and glucagon release. Both sour citric acid and salty NaCl increased NPY secretion but had no effects on GLP-1 or glucagon. Bitter denatonium showed no effects on these peptides. Together, these results suggest that taste stimuli of different perceptual qualities elicit unique patterns of neuropeptide secretion from taste buds.

  8. Functional diversification of taste cells in vertebrates

    PubMed Central

    Matsumoto, Ichiro; Ohmoto, Makoto; Abe, Keiko

    2012-01-01

    Tastes are senses resulting from the activation of taste cells distributed in oral epithelia. Sweet, umami, bitter, sour, and salty tastes are called the five “basic” tastes, but why five, and why these five? In this review, we dissect the peripheral gustatory system in vertebrates from molecular and cellular perspectives. Recent behavioral and molecular genetic studies have revealed the nature of functional taste receptors and cells and show that different taste qualities are accounted for by the activation of different subsets of taste cells. Based on this concept, the diversity of basic tastes should be defined by the diversity of taste cells in taste buds, which varies among species. PMID:23085625

  9. The molecular basis for attractive salt-taste coding in Drosophila.

    PubMed

    Zhang, Yali V; Ni, Jinfei; Montell, Craig

    2013-06-14

    Below a certain level, table salt (NaCl) is beneficial for animals, whereas excessive salt is harmful. However, it remains unclear how low- and high-salt taste perceptions are differentially encoded. We identified a salt-taste coding mechanism in Drosophila melanogaster. Flies use distinct types of gustatory receptor neurons (GRNs) to respond to different concentrations of salt. We demonstrated that a member of the newly discovered ionotropic glutamate receptor (IR) family, IR76b, functioned in the detection of low salt and was a Na(+) channel. The loss of IR76b selectively impaired the attractive pathway, leaving salt-aversive GRNs unaffected. Consequently, low salt became aversive. Our work demonstrated that the opposing behavioral responses to low and high salt were determined largely by an elegant bimodal switch system operating in GRNs.

  10. “Turn Up the Taste”: Assessing the Role of Taste Intensity and Emotion in Mediating Crossmodal Correspondences between Basic Tastes and Pitch

    PubMed Central

    Wang, Sheila; Spence, Charles

    2016-01-01

    People intuitively match basic tastes to sounds of different pitches, and the matches that they make tend to be consistent across individuals. It is, though, not altogether clear what governs such crossmodal mappings between taste and auditory pitch. Here, we assess whether variations in taste intensity influence the matching of taste to pitch as well as the role of emotion in mediating such crossmodal correspondences. Participants were presented with 5 basic tastants at 3 concentrations. In Experiment 1, the participants rated the tastants in terms of their emotional arousal and valence/pleasantness, and selected a musical note (from 19 possible pitches ranging from C2 to C8) and loudness that best matched each tastant. In Experiment 2, the participants made emotion ratings and note matches in separate blocks of trials, then made emotion ratings for all 19 notes. Overall, the results of the 2 experiments revealed that both taste quality and concentration exerted a significant effect on participants’ loudness selection, taste intensity rating, and valence and arousal ratings. Taste quality, not concentration levels, had a significant effect on participants’ choice of pitch, but a significant positive correlation was observed between individual perceived taste intensity and pitch choice. A significant and strong correlation was also demonstrated between participants’ valence assessments of tastants and their valence assessments of the best-matching musical notes. These results therefore provide evidence that: 1) pitch–taste correspondences are primarily influenced by taste quality, and to a lesser extent, by perceived intensity; and 2) such correspondences may be mediated by valence/pleasantness. PMID:26873934

  11. Recent Advances in Molecular Mechanisms of Taste Signaling and Modifying.

    PubMed

    Shigemura, Noriatsu; Ninomiya, Yuzo

    2016-01-01

    The sense of taste conveys crucial information about the quality and nutritional value of foods before it is ingested. Taste signaling begins with taste cells via taste receptors in oral cavity. Activation of these receptors drives the transduction systems in taste receptor cells. Then particular transmitters are released from the taste cells and activate corresponding afferent gustatory nerve fibers. Recent studies have revealed that taste sensitivities are defined by distinct taste receptors and modulated by endogenous humoral factors in a specific group of taste cells. Such peripheral taste generations and modifications would directly influence intake of nutritive substances. This review will highlight current understanding of molecular mechanisms for taste reception, signal transduction in taste bud cells, transmission between taste cells and nerves, regeneration from taste stem cells, and modification by humoral factors at peripheral taste organs. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Taste Perception of Sweet, Sour, Salty, Bitter, and Umami and Changes Due to l-Arginine Supplementation, as a Function of Genetic Ability to Taste 6-n-Propylthiouracil.

    PubMed

    Melis, Melania; Tomassini Barbarossa, Iole

    2017-05-25

    Behavioral reaction to different taste qualities affects nutritional status and health. 6- n -Propylthiouracil (PROP) tasting has been reported to be a marker of variation in taste perception, food preferences, and eating behavior, but results have been inconsistent. We showed that l-Arg can enhance the bitterness intensity of PROP, whilst others have demonstrated a suppression of the bitterness of quinine. Here, we analyze the taste perception of sweet, sour, salty, bitter, and umami and the modifications caused by l-Arg supplementation, as a function of PROP-taster status. Taste perception was assessed by testing the ability to recognize, and the responsiveness to, representative solutions of the five primary taste qualities, also when supplemented with l-Arg, in subjects classified as PROP-tasting. Super-tasters, who showed high papilla density, gave higher ratings to sucrose, citric acid, caffeine, and monosodium l-glutamate than non-tasters. l-Arg supplementation mainly modified sucrose perception, enhanced the umami taste, increased NaCl saltiness and caffeine bitterness only in tasters, and decreased citric acid sourness. Our findings confirm the role of PROP phenotype in the taste perception of sweet, sour, and bitter and show its role in umami. The results suggest that l-Arg could be used as a strategic tool to specifically modify taste responses related to eating behaviors.

  13. Taste Perception of Sweet, Sour, Salty, Bitter, and Umami and Changes Due to l-Arginine Supplementation, as a Function of Genetic Ability to Taste 6-n-Propylthiouracil

    PubMed Central

    Melis, Melania; Tomassini Barbarossa, Iole

    2017-01-01

    Behavioral reaction to different taste qualities affects nutritional status and health. 6-n-Propylthiouracil (PROP) tasting has been reported to be a marker of variation in taste perception, food preferences, and eating behavior, but results have been inconsistent. We showed that l-Arg can enhance the bitterness intensity of PROP, whilst others have demonstrated a suppression of the bitterness of quinine. Here, we analyze the taste perception of sweet, sour, salty, bitter, and umami and the modifications caused by l-Arg supplementation, as a function of PROP-taster status. Taste perception was assessed by testing the ability to recognize, and the responsiveness to, representative solutions of the five primary taste qualities, also when supplemented with l-Arg, in subjects classified as PROP-tasting. Super-tasters, who showed high papilla density, gave higher ratings to sucrose, citric acid, caffeine, and monosodium l-glutamate than non-tasters. l-Arg supplementation mainly modified sucrose perception, enhanced the umami taste, increased NaCl saltiness and caffeine bitterness only in tasters, and decreased citric acid sourness. Our findings confirm the role of PROP phenotype in the taste perception of sweet, sour, and bitter and show its role in umami. The results suggest that l-Arg could be used as a strategic tool to specifically modify taste responses related to eating behaviors. PMID:28587069

  14. Kansei Biosensor and IT Society

    NASA Astrophysics Data System (ADS)

    Toko, Kiyoshi

    A taste sensor with global selectivity is composed of several kinds of lipid/polymer membranes for transforming information of taste substances into electric signal. The sensor output shows different patterns for chemical substances which have different taste qualities such as saltiness and sourness. Taste interactions such as suppression effect, which occurs between bitterness and sweetness, can be detected and quantified using the taste sensor. The taste and also smell of foodstuffs such as beer, coffee, mineral water, soup and milk can be discussed quantitatively. The taste sensor provides the objective scale for the human sensory expression. Multi-modal communication becomes possible using a taste/smell recognition microchip, which produces virtual taste. We are now standing at the beginning of a new age of communication using digitized taste.

  15. Sensing of Taste

    NASA Astrophysics Data System (ADS)

    Toko, Kiyoshi

    A taste sensor with global selectivity, i. e., electronic tongue, is composed of several kinds of lipid/polymer membranes for transforming information of taste substances into electric signal. The sensor output shows different patterns for chemical substances which have different taste qualities such as saltiness and sourness. Taste interactions such as suppression effect, which occurs between bitterness and sweetness, can be detected and quantified using the taste sensor. Amino acids can be classified into several groups according to their own tastes from sensor outputs. The taste of foodstuffs such as beer, coffee, mineral water and milk can be discussed quantitatively. The taste sensor provides the objective scale for the human sensory expression. We are now standing at the beginning of a new age of communication using digitized taste.

  16. Modulation of sweet responses of taste receptor cells.

    PubMed

    Yoshida, Ryusuke; Niki, Mayu; Jyotaki, Masafumi; Sanematsu, Keisuke; Shigemura, Noriatsu; Ninomiya, Yuzo

    2013-03-01

    Taste receptor cells play a major role in detection of chemical compounds in the oral cavity. Information derived from taste receptor cells, such as sweet, bitter, salty, sour and umami is important for evaluating the quality of food components. Among five basic taste qualities, sweet taste is very attractive for animals and influences food intake. Recent studies have demonstrated that sweet taste sensitivity in taste receptor cells would be affected by leptin and endocannabinoids. Leptin is an anorexigenic mediator that reduces food intake by acting on leptin receptor Ob-Rb in the hypothalamus. Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known as orexigenic mediators that act via cannabinoid receptor 1 (CB1) in the hypothalamus and limbic forebrain to induce appetite and stimulate food intake. At the peripheral gustatory organs, leptin selectively suppresses and endocannabinoids selectively enhance sweet taste sensitivity via Ob-Rb and CB1 expressed in sweet sensitive taste cells. Thus leptin and endocannabinoids not only regulate food intake via central nervous systems but also modulate palatability of foods by altering peripheral sweet taste responses. Such reciprocal modulation of leptin and endocannabinoids on peripheral sweet sensitivity may play an important role in regulating energy homeostasis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice

    PubMed Central

    Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C

    2015-01-01

    Abstract Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca2+ transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. Key points Acute inhibition of purinergic receptors with a selective P2X3 antagonist prevents transmission of information from taste buds to sensory nerves. The P2X3 antagonist has no effect on taste-evoked release of ATP, confirming the effect is postsynaptic. The results confirm previous results with P2X2/3 double knockout mice that ATP is required for transmission of all taste qualities, including sour and salty. Previously, ATP was confirmed to be required for bitter, sweet and umami tastes, but was questioned for salty and sour tastes due to pleomorphic deficits in the double knockout mice. The geniculate ganglion in mouse contains two populations of ganglion cells with different subunit composition of P2X2 and P2X3 receptors making them differently susceptible to pharmacological block and, presumably, desensitization. PMID:25524179

  18. Discrete innervation of murine taste buds by peripheral taste neurons.

    PubMed

    Zaidi, Faisal N; Whitehead, Mark C

    2006-08-09

    The peripheral taste system likely maintains a specific relationship between ganglion cells that signal a particular taste quality and taste bud cells responsive to that quality. We have explored a measure of the receptoneural relationship in the mouse. By injecting single fungiform taste buds with lipophilic retrograde neuroanatomical markers, the number of labeled geniculate ganglion cells innervating single buds on the tongue were identified. We found that three to five ganglion cells innervate a single bud. Injecting neighboring buds with different color markers showed that the buds are primarily innervated by separate populations of geniculate cells (i.e., multiply labeled ganglion cells are rare). In other words, each taste bud is innervated by a population of neurons that only connects with that bud. Palate bud injections revealed a similar, relatively exclusive receptoneural relationship. Injecting buds in different regions of the tongue did not reveal a topographic representation of buds in the geniculate ganglion, despite a stereotyped patterned arrangement of fungiform buds as rows and columns on the tongue. However, ganglion cells innervating the tongue and palate were differentially concentrated in lateral and rostral regions of the ganglion, respectively. The principal finding that small groups of ganglion cells send sensory fibers that converge selectively on a single bud is a new-found measure of specific matching between the two principal cellular elements of the mouse peripheral taste system. Repetition of the experiments in the hamster showed a more divergent innervation of buds in this species. The results indicate that whatever taste quality is signaled by a murine geniculate ganglion neuron, that signal reflects the activity of cells in a single taste bud.

  19. Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats.

    PubMed

    Samuelsen, Chad L; Fontanini, Alfredo

    2017-01-11

    The integration of gustatory and olfactory information is essential to the perception of flavor. Human neuroimaging experiments have pointed to the gustatory cortex (GC) as one of the areas involved in mediating flavor perception. Although GC's involvement in encoding the chemical identity and hedonic value of taste stimuli is well studied, it is unknown how single GC neurons process olfactory stimuli emanating from the mouth. In this study, we relied on multielectrode recordings to investigate how single GC neurons respond to intraorally delivered tastants and tasteless odorants dissolved in water and whether/how these two modalities converge in the same neurons. We found that GC neurons could either be unimodal, responding exclusively to taste (taste-only) or odor (odor-only), or bimodal, responding to both gustatory and olfactory stimuli. Odor responses were confirmed to result from retronasal olfaction: monitoring respiration revealed that exhalation preceded odor-evoked activity and reversible inactivation of olfactory receptors in the nasal epithelium significantly reduced responses to intraoral odorants but not to tastants. Analysis of bimodal neurons revealed that they encode palatability significantly better than the unimodal taste-only group. Bimodal neurons exhibited similar responses to palatable tastants and odorants dissolved in water. This result suggested that odorized water could be palatable. This interpretation was further supported with a brief access task, where rats avoided consuming aversive taste stimuli and consumed the palatable tastants and dissolved odorants. These results demonstrate the convergence of the chemosensory components of flavor onto single GC neurons and provide evidence for the integration of flavor with palatability coding. Food perception and choice depend upon the concurrent processing of olfactory and gustatory signals from the mouth. The primary gustatory cortex has been proposed to integrate chemosensory stimuli; however, no study has examined the single-unit responses to intraoral odorant presentation. Here we found that neurons in gustatory cortex can respond either exclusively to tastants, exclusively to odorants, or to both (bimodal). Several differences exist between these groups' responses; notably, bimodal neurons code palatability significantly better than unimodal neurons. This group of neurons might represent a substrate for how odorants gain the quality of tastants. Copyright © 2017 the authors 0270-6474/17/370244-14$15.00/0.

  20. Flavor characteristics of seven grades of black tea produced in Turkey.

    PubMed

    Alasalvar, Cesarettin; Topal, Bahar; Serpen, Arda; Bahar, Banu; Pelvan, Ebru; Gökmen, Vural

    2012-06-27

    Seven grades of black tea [high-quality black tea (grades 1-3) and low-quality black tea (grades 4-7)], processed by ÇAYKUR Tea Processing Plant (Rize, Turkey), were compared for their differences in descriptive sensory analysis (DSA), aroma-active compounds (volatile compounds), and taste-active compounds (sugar, organic acid, and free amino acid compositions). Ten flavor attributes such as 'after taste', 'astringency', 'bitter', 'caramel-like', 'floral/sweet', 'green/grassy', 'hay-like', 'malty', 'roasty', and 'seaweed' were identified. Intensities for a number of flavor attributes ('after taste', 'caramel-like', 'malty', and 'seaweed') were not significantly different (p > 0.05) among seven grades of black tea. A total of 57 compounds in seven grades of black tea (14 aldehydes, eight alcohols, eight ketones, two esters, four aromatic hydrocarbons, five aliphatic hydrocarbons, nine terpenes, two pyrazines, one furan, two acids, and two miscellaneous compounds) were tentatively identified. Of these, aldeyhdes comprised more than 50% to the total volatile compounds identified. In general, high-grade quality tea had more volatiles than low-grade quality tea. With respect to taste-active compounds, five sugars, six organic acids, and 18 free amino acids were positively identified in seven grades of black tea, of which fructose, tannic acid, and theanine predominated, respectively. Some variations (p < 0.05), albeit to different extents, were observed among volatile compounds, sugars, organic acids, and free amino acids in seven grades of black tea. The present study suggests that a certain flavor attributes correlate well with taste- and aroma-active compounds. High- and low-quality black teas should not be distinguished solely on the basis of their DSA and taste- and aroma-active compounds. The combination of taste-active compounds together with aroma-active compounds renders combination effects that provide the characteristic flavor of each grade of black tea.

  1. Role of the ectonucleotidase NTPDase2 in taste bud function

    PubMed Central

    Vandenbeuch, Aurelie; Anderson, Catherine B.; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C.; Finger, Thomas E.; Kinnamon, Sue C.

    2013-01-01

    Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses. PMID:23959882

  2. Role of the ectonucleotidase NTPDase2 in taste bud function.

    PubMed

    Vandenbeuch, Aurelie; Anderson, Catherine B; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C; Finger, Thomas E; Kinnamon, Sue C

    2013-09-03

    Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses.

  3. Taste transductions in taste receptor cells: basic tastes and moreover.

    PubMed

    Iwata, Shusuke; Yoshida, Ryusuke; Ninomiya, Yuzo

    2014-01-01

    In the oral cavity, taste receptor cells dedicate to detecting chemical compounds in foodstuffs and transmitting their signals to gustatory nerve fibers. Heretofore, five taste qualities (sweet, umami, bitter, salty and sour) are generally accepted as basic tastes. Each of these may have a specific role in the detection of nutritious and poisonous substances; sweet for carbohydrate sources of calories, umami for protein and amino acid contents, bitter for harmful compounds, salty for minerals and sour for ripeness of fruits and spoiled foods. Recent studies have revealed molecular mechanisms for reception and transduction of these five basic tastes. Sweet, umami and bitter tastes are mediated by G-protein coupled receptors (GPCRs) and second-messenger signaling cascades. Salty and sour tastes are mediated by channel-type receptors. In addition to five basic tastes, taste receptor cells may have the ability to detect fat taste, which is elicited by fatty acids, and calcium taste, which is elicited by calcium. Taste compounds eliciting either fat taste or calcium taste may be detected by specific GPCRs expressed in taste receptor cells. This review will focus on transduction mechanisms and cellular characteristics responsible for each of basic tastes, fat taste and calcium taste.

  4. Genetics of Taste Receptors

    PubMed Central

    Bachmanov, Alexander A.; Bosak, Natalia P.; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R.; Nelson, Theodore M.

    2016-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical “tastes” as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications. PMID:23886383

  5. Relations between hydrology, water quality, and taste-and-odor causing organisms and compounds in Lake Houston, Texas, April 2006-September 2008

    USGS Publications Warehouse

    Beussink, Amy M.; Graham, Jennifer L.

    2011-01-01

    Lake Houston is a surface-water-supply reservoir and an important recreational resource for the city of Houston, Texas. Growing concerns over water quality in Lake Houston prompted a detailed assessment of water quality in the reservoir. The assessment focused on water-quality constituents that affect the aesthetic quality of drinking water. The hydrologic and water-quality conditions influencing the occurrence of taste-and-odor causing organisms and compounds in Lake Houston were assessed using discrete and continuously monitored water-quality data collected during April 2006– September 2008. The hydrology of Lake Houston is characterized by rapidly changing conditions. During inflow events, water residence time can change by orders of magnitude within a matter of hours. Likewise, the reservoir can stratify and destratify over a period of several hours, even during non-summer and at relatively short water residence times, given extended periods with warm temperatures and little wind. The rapidly changing hydrology likely influences all other aspects of water quality in Lake Houston, including the occurrence of taste-and-odor causing organisms and compounds. Water quality in Lake Houston varied with respect to season and water residence time but typically was indicative of turbid, eutrophic to hypereutrophic conditions. In general, turbidity and nutrient concentrations were largest during non-summer (October–May) and when water residence times were relatively short (less than 100 days), which reflects the influence of inflow events on water-quality conditions. Large inflow events can cause substantial changes in water-quality conditions over relatively short periods of time (hours). The taste-and-odor causing organisms cyanobacteria and actinomycetes bacteria were always present in Lake Houston. Cyanobacterial biovolume was largest during summer (June– September) and when water residence time was greater than 100 days. Annual maxima in cyanobacterial biovolume occurred during July-September of each year, when temperatures were larger than 27 degrees Celsius and water residence times were longer than 400 days. In contrast, actinomycetes bacteria were most abundant during non-summer and when water residence times were less than 100 days, reflecting the close association between these organisms and transport of suspended sediments. Geosmin and 2-methylisoborneol are the taste-and-odor causing compounds most commonly produced by cyanobacteria and actinomycetes bacteria. Geosmin was detected more frequently (62 percent of samples) than 2-methylisoborneol (29 percent of samples) in Lake Houston. Geosmin exceeded the human detection threshold (10 nanograms per liter) only once during the study period and 2-methylisoborneol exceeded the human detection threshold twice. Manganese is a naturally occurring trace element that can occasionally cause taste-andodor problems in drinking water. Manganese concentrations exceeded the human detection threshold (about 50 micrograms per liter) in about 50 percent of samples collected near the surface and 84 percent of samples collected near the bottom. The cyanotoxin microcystin was detected relatively infrequently (16 percent of samples) and at small concentrations (less than or equal to 0.2 micrograms per liter). The abundance of the taste-and-odor causing organisms cyanobacteria and actinomycetes bacteria in Lake Houston was coupled with inflow events and subsequent changes in water-quality conditions. Cyanobacterial biovolume (biomass) in Lake Houston was largest during warm periods with little inflow and relatively small turbidity values. In contrast, actinomycetes bacteria were most abundant following inflow events when turbidity was relatively large. Severe taste-and-odor problems were not observed during the study period, precluding quantification of the hydrologic and water-quality conditions associated with large concentrations of taste-and-odor causing compounds and development of predictive models. Reservoir inflow (water residence time) and turbidity, variables related to the abundance of potential taste-andodor causing organisms, are currently (2011) continuously measured in Lake Houston, and predictive models could be developed in the future when the hydrologic and water-quality conditions associated with taste-and-odor problems have been better quantified. Seasonal and water residence time influences on water-quality conditions altered relations between hydrologic and water-quality conditions and taste-and-odor causing organisms and compounds. Future data collection and development of predictive models need to account for the variability associated with season and water residence time. 

  6. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice.

    PubMed

    Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C

    2015-03-01

    Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca(2+) transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  7. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    PubMed

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Sweet and bitter taste in the brain of awake behaving animals

    PubMed Central

    Peng, Yueqing; Gillis-Smith, Sarah; Jin, Hao; Tränkner, Dimitri; Ryba, Nicholas J. P.; Zuker, Charles S.

    2015-01-01

    Taste is responsible for evaluating the nutritious content of food, guiding essential appetitive behaviors, preventing the ingestion of toxic substances, and helping ensure the maintenance of a healthy diet. Sweet and bitter are two of the most salient sensory percepts for humans and other animals; sweet taste permits the identification of energy-rich nutrients while bitter warns against the intake of potentially noxious chemicals1. In mammals, information from taste receptor cells in the tongue is transmitted through multiple neural stations to the primary gustatory cortex in the brain2. Recent imaging studies have shown that sweet and bitter are represented in the primary gustatory cortex by neurons organized in a spatial map3,4, with each taste quality encoded by distinct cortical fields4. Here we demonstrate that by manipulating the brain fields representing sweet and bitter taste we directly control an animal’s internal representation, sensory perception, and behavioral actions. These results substantiate the segregation of taste qualities in the cortex, expose the innate nature of appetitive and aversive taste responses, and illustrate the ability of gustatory cortex to recapitulate complex behaviors in the absence of sensory input. PMID:26580015

  9. Taste Quality Confusions: Influences of Age, Smoking, PTC Taster Status, and other Subject Characteristics.

    PubMed

    Doty, Richard L; Chen, Jonathan H; Overend, Jane

    2017-01-01

    Many persons misidentify the quality of taste stimuli, a phenomenon termed "taste confusion." In this study of 1000 persons, we examined the influences of age, sex, causes of chemosensory disturbances, and genetically determined phenylthiocarbamide (PTC) taster status on taste quality confusions for four tastants (sucrose, citric acid, sodium chloride, caffeine). Overall, sour-bitter confusions were most common (19.3%), followed by bitter-sour (11.4%), salty-bitter (7.3%), salty-sour (7.0%), bitter-salty (3.5%), bitter-sweet (3.4), and sour-salty (2.4%) confusions. Confusions for sweet were <1%. Asymmetries were common (e.g., bitter-sour confusions were less frequent than sour-bitter confusions). Women had fewer salty-bitter confusions than did men (5.7% vs. 11.4%). Overall, PTC tasters had fewer confusions than non-tasters except for salty-bitter confusions. Confusions typically increased monotonically with age. Current smokers exhibited more sour-bitter confusions than never smokers (48.9% vs. 32.2%), whereas past smokers had more bitter-sour confusions than never smokers (23.8% vs. 14.2%). Previous head trauma was associated with higher bitter-salty and salty-bitter confusions relative to those of some other etiologies. This study demonstrates, for the first time, that multiple subject factors influence taste confusions and, along with literature accounts, supports the view that there are both biological and psychological determinants of taste quality confusions.

  10. Influence of composition upon the variety of tastes in Cinnamomi cortex.

    PubMed

    Yokomi, Naoka; Ito, Michiho

    2009-07-01

    Cinnamomi cortex, which is normally referred to as cinnamon, is a very popular spice as well as an important natural medicine. High-quality cinnamon is traditionally believed to taste sweet and be strongly pungent without astringency. Cinnamomi cortex with larger amounts of cinnamaldehyde was sweeter in taste comparisons. The contents of tannins and sugars in cinnamon powder had little effect on the taste. Evaluations of the sweetness and pungency of cinnamaldehyde solutions (0.1, 0.25, 0.50, 0.75, 1.0, and 5.0 mg/ml) were performed using volunteers. The scores for sweetness increased significantly from 0.10 to 0.50 mg/ml (P < 0.05, Mann-Whitney U-test), but there was no significant difference above 0.75 mg/ml. The concentration threshold for the sweet taste of cinnamaldehyde appeared to be less than 0.75 mg/ml, and the more concentrated solutions gave excessive pungency. Therefore, two contrastive tastes of Cinnamomi cortex, sweet and pungent, were both attributed to cinnamaldehyde. Consequently, its taste, one of its indices of quality, seems to vary mainly according to the content of cinnamaldehyde.

  11. Understanding taste dysfunction in patients with cancer.

    PubMed

    McLaughlin, Laura; Mahon, Suzanne M

    2012-04-01

    Taste dysfunction is a significant but underestimated issue for patients with cancer. Impaired taste results in changes in diet and appetite, early satiety, and impaired social interactions. Nurses can play a key role in educating patients and families on the pathophysiology of taste dysfunction by suggesting interventions to treat the consequences of taste dysfunction, when available, and offering psychosocial support as patients cope with this often devastating consequence of treatment. Taste recognition helps humans identify the nutritional quality of food and signals the digestive tract to begin secreting enzymes. Spoiled or tainted foods typically are recognized by their bad taste. Along with the other sensory systems, taste is crucial for helping patients treated for cancer feel normal. This article will review the anatomy and physiology of taste; define the different types of taste dysfunction, including the underlying pathophysiologic basis related to cancer treatment; and discuss potential nursing interventions to manage the consequences of taste dysfunction.

  12. E-tongue: a tool for taste evaluation.

    PubMed

    Gupta, Himanshu; Sharma, Aarti; Kumar, Suresh; Roy, Saroj K

    2010-01-01

    Taste has an important role in the development of oral pharmaceuticals. With respect to patient acceptability and compliance, taste is one of the prime factors determining the market penetration and commercial success of oral formulations, especially in pediatric medicine. Taste assessment is one important quality-control parameter for evaluating taste-masked formulations. Hence, pharmaceutical industries invest time, money and resources into developing palatable and pleasant-tasting products. The primary method for the taste measurement of a drug substance or a formulation is by human sensory evaluation, in which tasting a sample is relayed to inspectors. However, this method is impractical for early stage drug development because the test in humans is expensive and the taste of a drug candidate may not be important to the final product. Therefore, taste-sensing analytical devices, which can detect tastes, have been replacing the taste panelists. In the present review we are presenting different aspect of electronic tongue. The review article also discussed some useful patents and instrument with respect to E-tongue.

  13. The sweet taste quality is linked to a cluster of taste fibers in primates: lactisole diminishes preference and responses to sweet in S fibers (sweet best) chorda tympani fibers of M. fascicularis monkey.

    PubMed

    Wang, Yiwen; Danilova, Vicktoria; Cragin, Tiffany; Roberts, Thomas W; Koposov, Alexey; Hellekant, Göran

    2009-02-18

    Psychophysically, sweet and bitter have long been considered separate taste qualities, evident already to the newborn human. The identification of different receptors for sweet and bitter located on separate cells of the taste buds substantiated this separation. However, this finding leads to the next question: is bitter and sweet also kept separated in the next link from the taste buds, the fibers of the taste nerves? Previous studies in non-human primates, P. troglodytes, C. aethiops, M. mulatta, M. fascicularis and C. jacchus, suggest that the sweet and bitter taste qualities are linked to specific groups of fibers called S and Q fibers. In this study we apply a new sweet taste modifier, lactisole, commercially available as a suppressor of the sweetness of sugars on the human tongue, to test our hypothesis that sweet taste is conveyed in S fibers. We first ascertained that lactisole exerted similar suppression of sweetness in M. fascicularis, as reported in humans, by recording their preference of sweeteners and non- sweeteners with and without lactisole in two-bottle tests. The addition of lactisole significantly diminished the preference for all sweeteners but had no effect on the intake of non-sweet compounds or the intake of water. We then recorded the response to the same taste stimuli in 40 single chorda tympani nerve fibers. Comparison between single fiber nerve responses to stimuli with and without lactisole showed that lactisole only suppressed the responses to sweeteners in S fibers. It had no effect on the responses to any other stimuli in all other taste fibers. In M. fascicularis, lactisole diminishes the attractiveness of compounds, which taste sweet to humans. This behavior is linked to activity of fibers in the S-cluster. Assuming that lactisole blocks the T1R3 monomer of the sweet taste receptor T1R2/R3, these results present further support for the hypothesis that S fibers convey taste from T1R2/R3 receptors, while the impulse activity in non-S fibers originates from other kinds of receptors. The absence of the effect of lactisole on the faint responses in some S fibers to other stimuli as well as the responses to sweet and non-sweet stimuli in non-S fibers suggest that these responses originate from other taste receptors.

  14. [Flavouring estimation of quality of grape wines with use of methods of mathematical statistics].

    PubMed

    Yakuba, Yu F; Khalaphyan, A A; Temerdashev, Z A; Bessonov, V V; Malinkin, A D

    2016-01-01

    The questions of forming of wine's flavour integral estimation during the tasting are discussed, the advantages and disadvantages of the procedures are declared. As investigating materials we used the natural white and red wines of Russian manufactures, which were made with the traditional technologies from Vitis Vinifera, straight hybrids, blending and experimental wines (more than 300 different samples). The aim of the research was to set the correlation between the content of wine's nonvolatile matter and wine's tasting quality rating by mathematical statistics methods. The content of organic acids, amino acids and cations in wines were considered as the main factors influencing on the flavor. Basically, they define the beverage's quality. The determination of those components in wine's samples was done by the electrophoretic method «CAPEL». Together with the analytical checking of wine's samples quality the representative group of specialists simultaneously carried out wine's tasting estimation using 100 scores system. The possibility of statistical modelling of correlation of wine's tasting estimation based on analytical data of amino acids and cations determination reasonably describing the wine's flavour was examined. The statistical modelling of correlation between the wine's tasting estimation and the content of major cations (ammonium, potassium, sodium, magnesium, calcium), free amino acids (proline, threonine, arginine) and the taking into account the level of influence on flavour and analytical valuation within fixed limits of quality accordance were done with Statistica. Adequate statistical models which are able to predict tasting estimation that is to determine the wine's quality using the content of components forming the flavour properties have been constructed. It is emphasized that along with aromatic (volatile) substances the nonvolatile matter - mineral substances and organic substances - amino acids such as proline, threonine, arginine influence on wine's flavour properties. It has been shown the nonvolatile components contribute in organoleptic and flavour quality estimation of wines as aromatic volatile substances but they take part in forming the expert's evaluation.

  15. [Application of fuzzy mathematics on modifying taste of oral solution of traditional Chinese drug].

    PubMed

    Wang, Youjie; Feng, Yi; Zhang, Bo

    2009-01-01

    To apply Fuzzy mathematical methods to choose the best taste modifying prescription of oral solution of traditional Chinese drug. Jin-Fukang oral solution was used as a model drug. The oral solution was prepared in different taste modifying prescriptions, whose tastes were evaluated by the fuzzy quality synthetic evaluation system. Compound-sweeteners with Sucralose and Erythritol was the best choice. Fuzzy integrated evaluation can be used to evaluate the taste of traditional Chinese medicinal pharmaceuticals, which overcame the artificial factors and achieve more objective conclusion.

  16. Taguchi experimental design to determine the taste quality characteristic of candied carrot

    NASA Astrophysics Data System (ADS)

    Ekawati, Y.; Hapsari, A. A.

    2018-03-01

    Robust parameter design is used to design product that is robust to noise factors so the product’s performance fits the target and delivers a better quality. In the process of designing and developing the innovative product of candied carrot, robust parameter design is carried out using Taguchi Method. The method is used to determine an optimal quality design. The optimal quality design is based on the process and the composition of product ingredients that are in accordance with consumer needs and requirements. According to the identification of consumer needs from the previous research, quality dimensions that need to be assessed are the taste and texture of the product. The quality dimension assessed in this research is limited to the taste dimension. Organoleptic testing is used for this assessment, specifically hedonic testing that makes assessment based on consumer preferences. The data processing uses mean and signal to noise ratio calculation and optimal level setting to determine the optimal process/composition of product ingredients. The optimal value is analyzed using confirmation experiments to prove that proposed product match consumer needs and requirements. The result of this research is identification of factors that affect the product taste and the optimal quality of product according to Taguchi Method.

  17. Cross-modal Associations between Real Tastes and Colors.

    PubMed

    Saluja, Supreet; Stevenson, Richard J

    2018-06-02

    People make reliable and consistent matches between taste and color. However, in contrast to other cross-modal correspondences, all of the research to date has used only taste words (and often color words too), potentially limiting our understanding of how taste-color matches arise. Here, participants sampled the five basic tastes, at three concentration steps, and selected their best matching color from a color-wheel. This test was repeated, and in addition, participants evaluated the valence of the taste and their color choice, as well as the qualities/intensities of the taste stimuli. Participants were then presented with taste names and asked to generate the best matching color name, as well as reporting how they made their earlier choices. Color selections were reliable and consistent, and closely followed those based on taste word matches obtained in this and prior studies. Most participants reported basing their color choices on their associated taste-object (often foods). There was marked similarity in valence between taste and color choices, and the saturation of color choices was related to tastant concentration. We discuss what drives color-taste pairings, with learning suggested as one possible mechanism.

  18. Sarco/Endoplasmic Reticulum Ca2+-ATPases (SERCA) Contribute to GPCR-Mediated Taste Perception

    PubMed Central

    Iguchi, Naoko; Ohkuri, Tadahiro; Slack, Jay P.; Zhong, Ping; Huang, Liquan

    2011-01-01

    The sense of taste is important for providing animals with valuable information about the qualities of food, such as nutritional or harmful nature. Mammals, including humans, can recognize at least five primary taste qualities: sweet, umami (savory), bitter, sour, and salty. Recent studies have identified molecules and mechanisms underlying the initial steps of tastant-triggered molecular events in taste bud cells, particularly the requirement of increased cytosolic free Ca2+ concentration ([Ca2+]c) for normal taste signal transduction and transmission. Little, however, is known about the mechanisms controlling the removal of elevated [Ca2+]c from the cytosol of taste receptor cells (TRCs) and how the disruption of these mechanisms affects taste perception. To investigate the molecular mechanism of Ca2+ clearance in TRCs, we sought the molecules involved in [Ca2+]c regulation using a single-taste-cell transcriptome approach. We found that Serca3, a member of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) family that sequesters cytosolic Ca2+ into endoplasmic reticulum, is exclusively expressed in sweet/umami/bitter TRCs, which rely on intracellular Ca2+ release for signaling. Serca3-knockout (KO) mice displayed significantly increased aversive behavioral responses and greater gustatory nerve responses to bitter taste substances but not to sweet or umami taste substances. Further studies showed that Serca2 was mainly expressed in the T1R3-expressing sweet and umami TRCs, suggesting that the loss of function of Serca3 was possibly compensated by Serca2 in these TRCs in the mutant mice. Our data demonstrate that the SERCA family members play an important role in the Ca2+ clearance in TRCs and that mutation of these proteins may alter bitter and perhaps sweet and umami taste perception. PMID:21829714

  19. Early milk feeding influences taste acceptance and liking during infancy12345

    PubMed Central

    Mennella, Julie A; Forestell, Catherine A; Morgan, Lindsay K; Beauchamp, Gary K

    2009-01-01

    Background: We identified a model system that exploits the inherent taste variation in early feedings to investigate food preference development. Objective: The objective was to determine whether exposure to differing concentrations of taste compounds in milk and formulas modifies acceptance of exemplars of the 5 basic taste qualities in a familiar food matrix. Specifically, we examined the effects of consuming hydrolyzed casein formulas (HCFs), which have pronounced bitter, sour, and savory tastes compared with breast milk (BM) and bovine milk–based formulas (MFs), in which these taste qualities are weaker. Design: Subgroups of BM-, MF- and HCF-fed infants, some of whom were fed table foods, were studied on 6 occasions to measure acceptance of sweet, salty, bitter, savory, sour, and plain cereals. Results: In infants not yet eating table foods, the HCF group ate significantly more savory-, bitter-, and sour-tasting and plain cereals than did the BM or MF groups. HCF infants displayed fewer facial expressions of distaste while eating the bitter and savory cereals, and they and BM infants were more likely to smile while they were eating the savory cereal. In formula-fed infants eating table foods, preferences for the basic tastes reflected the types of foods they were being fed. In general, those infants who ate more food displayed fewer faces of distaste. Conclusions: The type of formula fed to infants has an effect on their response to taste compounds in cereal before solid food introduction. This model system of research investigation sheds light on sources of individual differences in taste and perhaps cultural food preferences. PMID:19605570

  20. Voltage-gated sodium channels in taste bud cells.

    PubMed

    Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D

    2009-03-12

    Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  1. Examination of the perception of sweet- and bitter-like taste qualities in sucralose preferring and avoiding rats.

    PubMed

    Torregrossa, A-M; Loney, G C; Smith, J C; Eckel, L A

    2015-03-01

    Sucralose avoiding rats detect a bitter-like taste quality in concentrations of sucralose that are strongly preferred over water by sucralose preferring rats. Here, we investigated whether sucralose preferrers (SP) also detect a bitter-like quality in sucralose that may be masked by an increased perception of sucralose's sweet-like quality. A microstructural analysis of sucralose intake revealed that, at concentrations they avoided in preference tests, sucralose avoiders (SA) consumed smaller and fewer bouts of sucralose than SP. Interestingly, the concentration-dependent increase in sucralose preference in SP was not associated with larger bouts or increased lick rate, two measures that are expected to increase with increasing perceived sweetness. This suggests that SP can detect an aversive quality in sucralose, but this perception of a presumably bitter-like quality may be masked by increased salience of a sweet-like quality that sustains high levels of intake in SP. Further evidence for increased sweet-taste perception in SP, relative to SA, was obtained in a second study in which SP consumed more of a palatable sweet-milk diet than SA. These are the first data to suggest that SP are not blind to the bitter-like quality in sucralose, and that there may be differences in sweet-taste perception between SP and SA. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Difference in receptive field features of taste neurons in rat granular and dysgranular insular cortices.

    PubMed

    Ogawa, H; Murayama, N; Hasegawa, K

    1992-01-01

    Receptive fields (RFs) of 59 cortical taste neurons (35 in the granular insular area, area GI, 21 in the dysgranular insular area, area DI, and 3 in the agranular insular area, area AI) were identified in the oral cavity of the rat. The fraction of the neurons with RFs in the anterior oral cavity only was significantly larger in area GI (74.3%) than in area DI (42.9%). On the other hand, the fraction of neurons with RFs in both the anterior and posterior oral cavity was larger in area DI (42.9%) than in area GI (11.4%). On the whole, it is suggested that area GI is involved in discrimination of several taste stimuli in the oral cavity, whereas in area DI taste information originating from various regions of the oral cavity is integrated. When neurons were classified according to the best stimulus which most excited the neuron among the four basic tastes, different categories of taste neurons had RFs in different parts of the oral cavity. It is suggested that, in either taste area, different categories of taste neurons are involved in different sorts of taste coding. The majority of neurons in both areas had bilateral RFs. In area GI, neurons with RFs on single subpopulations of taste buds were significantly more numerous at the rostral region of the cortex than at the caudal region. There was no such relation between RF types and cortical localization in area DI. Otherwise, topographic representation of the oral cavity by taste neurons on the cortical surface was not obvious. RF features of taste neurons did not differ across layers in either cortical area.

  3. Impacts of in utero and early infant taste experiences on later taste acceptance: a systematic review.

    PubMed

    Nehring, Ina; Kostka, Tanja; von Kries, Rüdiger; Rehfuess, Eva A

    2015-06-01

    Dietary behavior exerts a critical influence on health and is the outcome of a broad range of interacting factors, including food and taste acceptance. These may be programmed in utero and during early infancy. We examined the hypothesis that fetuses and infants exposed to sweet, salty, sour, bitter, umami, or specific tastes show greater acceptance of that same taste later in life. We conducted a systematic review of the literature, using comprehensive searches and following established procedures for screening, data extraction, and quality appraisal. We used harvest plots to synthesize the evidence graphically. Twenty studies comprising 38 subgroups that differed by taste, age, medium, and duration of exposure were included. Exposure to bitter and specific tastes increased the acceptance of these tastes. Studies on sweet and salty tastes showed equivocal results. Studies on sour tastes were sparse. Our systematic review clearly shows programming of the acceptance of bitter and specific tastes. For other tastes the results were either equivocal or confined to a few number of studies that precluded us from drawing conclusions. Further research should examine the association of salty and sour taste exposures on later preferences of these tastes. Long-term studies and randomized clinical trials on each type of taste are needed. © 2015 American Society for Nutrition.

  4. Molecular architecture of smell and taste in Drosophila.

    PubMed

    Vosshall, Leslie B; Stocker, Reinhard F

    2007-01-01

    The chemical senses-smell and taste-allow animals to evaluate and distinguish valuable food resources from dangerous substances in the environment. The central mechanisms by which the brain recognizes and discriminates attractive and repulsive odorants and tastants, and makes behavioral decisions accordingly, are not well understood in any organism. Recent molecular and neuroanatomical advances in Drosophila have produced a nearly complete picture of the peripheral neuroanatomy and function of smell and taste in this insect. Neurophysiological experiments have begun to provide insight into the mechanisms by which these animals process chemosensory cues. Given the considerable anatomical and functional homology in smell and taste pathways in all higher animals, experimental approaches in Drosophila will likely provide broad insights into the problem of sensory coding. Here we provide a critical review of the recent literature in this field and comment on likely future directions.

  5. Functional dissociation in sweet taste receptor neurons between and within taste organs of Drosophila

    PubMed Central

    Thoma, Vladimiros; Knapek, Stephan; Arai, Shogo; Hartl, Marion; Kohsaka, Hiroshi; Sirigrivatanawong, Pudith; Abe, Ayako; Hashimoto, Koichi; Tanimoto, Hiromu

    2016-01-01

    Finding food sources is essential for survival. Insects detect nutrients with external taste receptor neurons. Drosophila possesses multiple taste organs that are distributed throughout its body. However, the role of different taste organs in feeding remains poorly understood. By blocking subsets of sweet taste receptor neurons, we show that receptor neurons in the legs are required for immediate sugar choice. Furthermore, we identify two anatomically distinct classes of sweet taste receptor neurons in the leg. The axonal projections of one class terminate in the thoracic ganglia, whereas the other projects directly to the brain. These two classes are functionally distinct: the brain-projecting neurons are involved in feeding initiation, whereas the thoracic ganglia-projecting neurons play a role in sugar-dependent suppression of locomotion. Distinct receptor neurons for the same taste quality may coordinate early appetitive responses, taking advantage of the legs as the first appendages to contact food. PMID:26893070

  6. 21 CFR 874.1500 - Gustometer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sides of the tongue at different taste centers and that provides a galvanic stimulus resulting in taste... the current good manufacturing practice requirements of the quality system regulation in part 820 of...

  7. 21 CFR 874.1500 - Gustometer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sides of the tongue at different taste centers and that provides a galvanic stimulus resulting in taste... the current good manufacturing practice requirements of the quality system regulation in part 820 of...

  8. Modulation of sweet taste by umami compounds via sweet taste receptor subunit hT1R2.

    PubMed

    Shim, Jaewon; Son, Hee Jin; Kim, Yiseul; Kim, Ki Hwa; Kim, Jung Tae; Moon, Hana; Kim, Min Jung; Misaka, Takumi; Rhyu, Mee-Ra

    2015-01-01

    Although the five basic taste qualities-sweet, sour, bitter, salty and umami-can be recognized by the respective gustatory system, interactions between these taste qualities are often experienced when food is consumed. Specifically, the umami taste has been investigated in terms of whether it enhances or reduces the other taste modalities. These studies, however, are based on individual perception and not on a molecular level. In this study we investigated umami-sweet taste interactions using umami compounds including monosodium glutamate (MSG), 5'-mononucleotides and glutamyl-dipeptides, glutamate-glutamate (Glu-Glu) and glutamate-aspartic acid (Glu-Asp), in human sweet taste receptor hT1R2/hT1R3-expressing cells. The sensitivity of sucrose to hT1R2/hT1R3 was significantly attenuated by MSG and umami active peptides but not by umami active nucleotides. Inhibition of sweet receptor activation by MSG and glutamyl peptides is obvious when sweet receptors are activated by sweeteners that target the extracellular domain (ECD) of T1R2, such as sucrose and acesulfame K, but not by cyclamate, which interact with the T1R3 transmembrane domain (TMD). Application of umami compounds with lactisole, inhibitory drugs that target T1R3, exerted a more severe inhibitory effect. The inhibition was also observed with F778A sweet receptor mutant, which have the defect in function of T1R3 TMD. These results suggest that umami peptides affect sweet taste receptors and this interaction prevents sweet receptor agonists from binding to the T1R2 ECD in an allosteric manner, not to the T1R3. This is the first report to define the interaction between umami and sweet taste receptors.

  9. Dried bonito dashi: taste qualities evaluated using conditioned taste aversion methods in wild-type and T1R1 knockout mice.

    PubMed

    Delay, Eugene R; Kondoh, Takashi

    2015-02-01

    The primary taste of dried bonito dashi is thought to be umami, elicited by inosine 5'-monphosphate (IMP) and L-amino acids. The present study compared the taste qualities of 25% dashi with 5 basic tastes and amino acids using conditioned taste aversion methods. Although wild-type C57BL/6J mice with compromised olfactory systems generalized an aversion of dashi to all 5 basic tastes, generalization was greater to sucrose (sweet), citric acid (sour), and quinine (bitter) than to NaCl (salty) or monosodium L-glutamate (umami) with amiloride. At neutral pH (6.5-6.9), the aversion generalized to l-histidine, L-alanine, L-proline, glycine, L-aspartic acid, L-serine, and monosodium L-glutamate, all mixed with IMP. Lowering pH of the test solutions to 5.7-5.8 (matching dashi) with HCl decreased generalization to some amino acids. However, adding lactic acid to test solutions with the same pH increased generalization to 5'-inosine monophosphate, L-leucine, L-phenylalanine, L-valine, L-arginine, and taurine but eliminated generalization to L-histidine. T1R1 knockout mice readily learned the aversion to dashi and generalized the aversion to sucrose, citric acid, and quinine but not to NaCl, glutamate, or any amino acid. These results suggest that dashi elicits a complex taste in mice that is more than umami, and deleting T1R1 receptor altered but did not eliminate their ability to taste dashi. In addition, lactic acid may alter or modulate taste transduction or cell-to-cell signaling. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation

    PubMed Central

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-01-01

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in BdnflacZ/+ mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. PMID:26164656

  11. 5-HT3A -driven green fluorescent protein delineates gustatory fibers innervating sour-responsive taste cells: A labeled line for sour taste?

    PubMed

    Stratford, J M; Larson, E D; Yang, R; Salcedo, E; Finger, T E

    2017-07-01

    Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT 3 receptors on the gustatory nerves. We show here, using 5-HT 3A GFP mice, that 5-HT 3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT 3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT 3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT 3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus. © 2017 Wiley Periodicals, Inc.

  12. Taste information derived from T1R-expressing taste cells in mice.

    PubMed

    Yoshida, Ryusuke; Ninomiya, Yuzo

    2016-03-01

    The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination. © 2016 Authors; published by Portland Press Limited.

  13. (+)-(S)-alapyridaine--a general taste enhancer?

    PubMed

    Soldo, Tomislav; Blank, Imre; Hofmann, Thomas

    2003-06-01

    N-(1-Carboxyethyl)-6-hydroxymethyl-pyridinium-3-ol inner salt (alapyridaine), recently identified in heated sugar/amino acid mixtures as well as in beef bouillon, has been shown to exhibit general taste-enhancing activities, although tasteless on its own. Differing from other taste enhancers reported so far, racemic (R/S)-alapyridaine and, to an even greater extent (+)-(S)-alapyridaine, the physiologically active enantiomer, are able to enhance more than one basic taste quality. The threshold concentrations for the sweet taste of glucose and sucrose, for the umami taste of monosodium L-glutamate (MSG) and guanosine-5'-monophosphate (GMP), as well as the salty taste of NaCl, were significantly decreased when alapyridaine was present. In contrast, perception of the bitter tastes of caffeine and L-phenylalanine, as well as of sour-tasting citric acid, was unaffected. Furthermore, alapyridaine was shown to intensify known taste synergies such as, for example, the enhancing effect of L-arginine on the salty taste of NaCl, as well as that of GMP on the umami taste of MSG. The activity of (+)-(S)-alapyridaine could be observed not only in solutions of single taste compounds, but also in more complex tastant mixtures; for example, the umami, sweet and salty taste of a solution containing MSG, sucrose, NaCl and caffeine was significantly modulated, thus indicating that alapyridaine is a general taste enhancer.

  14. Human biology of taste.

    PubMed

    Gravina, Stephen A; Yep, Gregory L; Khan, Mehmood

    2013-01-01

    Taste or gustation is one of the 5 traditional senses including hearing, sight, touch, and smell. The sense of taste has classically been limited to the 5 basic taste qualities: sweet, salty, sour, bitter, and umami or savory. Advances from the Human Genome Project and others have allowed the identification and determination of many of the genes and molecular mechanisms involved in taste biology. The ubiquitous G protein-coupled receptors (GPCRs) make up the sweet, umami, and bitter receptors. Although less clear in humans, transient receptor potential ion channels are thought to mediate salty and sour taste; however, other targets have been identified. Furthermore, taste receptors have been located throughout the body and appear to be involved in many regulatory processes. An emerging interplay is revealed between chemical sensing in the periphery, cortical processing, performance, and physiology and likely the pathophysiology of diseases such as diabetes.

  15. Electronic tongue: An analytical gustatory tool

    PubMed Central

    Latha, Rewanthwar Swathi; Lakshmi, P. K.

    2012-01-01

    Taste is an important organoleptic property governing acceptance of products for administration through mouth. But majority of drugs available are bitter in taste. For patient acceptability and compliance, bitter taste drugs are masked by adding several flavoring agents. Thus, taste assessment is one important quality control parameter for evaluating taste-masked formulations. The primary method for the taste measurement of drug substances and formulations is by human panelists. The use of sensory panelists is very difficult and problematic in industry and this is due to the potential toxicity of drugs and subjectivity of taste panelists, problems in recruiting taste panelists, motivation and panel maintenance are significantly difficult when working with unpleasant products. Furthermore, Food and Drug Administration (FDA)-unapproved molecules cannot be tested. Therefore, analytical taste-sensing multichannel sensory system called as electronic tongue (e-tongue or artificial tongue) which can assess taste have been replacing the sensory panelists. Thus, e-tongue includes benefits like reducing reliance on human panel. The present review focuses on the electrochemical concepts in instrumentation, performance qualification of E-tongue, and applications in various fields. PMID:22470887

  16. Savouring morality. Moral satisfaction renders food of ethical origin subjectively tastier.

    PubMed

    Bratanova, Boyka; Vauclair, Christin-Melanie; Kervyn, Nicolas; Schumann, Sandy; Wood, Robert; Klein, Olivier

    2015-08-01

    Past research has shown that the experience of taste can be influenced by a range of external cues, especially when they concern food's quality. The present research examined whether food's ethicality - a cue typically unrelated to quality - can also influence taste. We hypothesised that moral satisfaction with the consumption of ethical food would positively influence taste expectations, which in turn will enhance the actual taste experience. This enhanced taste experience was further hypothesised to act as a possible reward mechanism reinforcing the purchase of ethical food. The resulting ethical food → moral satisfaction  → enhanced taste expectations and experience → stronger intentions to buy/willingness to pay model was validated across four studies: one large scale international survey (Study 1) and three experimental studies involving actual food consumption of different type of ethical origin - organic (Study 2), fair trade (Study 3a) and locally produced (Study 3b). Furthermore, endorsement of values relevant to the food's ethical origin moderated the effect of food's origin on moral satisfaction, suggesting that the model is primarily supported for people who endorse these values. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Clinical Significance of Umami Taste and Umami-Related Gene Expression Analysis for the Objective Assessment of Umami Taste Loss.

    PubMed

    Shoji, Noriaki; Satoh-Ku Riwada, Shizuko; Sasano, Takashi

    2016-01-01

    Loss of umami taste sensation affects quality of life and causes weight loss and health problems, particularly in the elderly. We recently expanded the use of the filter paper disc method to include assessment of umami taste sensitivity, using monosodium glutamate as the test solution. This test showed high diagnostic performance for discriminating between normal taste function and disorders in sensation of the umami taste, according to established cut-off values. The test also revealed: (1) some elderly patients suffered from specific loss of umami taste sensation with preservation of the other four taste sensations (sweet, salty, sour, and bitter); (2) umami taste disorder caused a loss of appetite and decline in weight, resulting in poor health; (3) appetite, weight and overall health improved after appropriate treatment for umami taste disorder. Because of the subjective nature of the test, however, it may not be useful for patients who cannot express which taste sensation is induced by a tastant, such as those with dementia. Most recently, using tissue samples collected from the tongue by scraping the foliate papillae, we showed that evaluation of umami taste receptor gene expression may be clinically useful for the objective genetic diagnosis of umami taste disorders.

  18. Microwave processing of gustatory tissues for immunohistochemistry

    PubMed Central

    Bond, Amanda; Kinnamon, John C.

    2013-01-01

    We use immunohistochemistry to study taste cell structure and function as a means to elucidate how taste receptor cells communicate with nerve fibers and adjacent taste cells. This conventional method, however, is time consuming. In the present study we used taste buds from rat circumvallate papillae to compare conventional immunohistochemical tissue processing with microwave processing for the colocalization of several biochemical pathway markers (PLCβ2, syntaxin-1, IP3R3, α-gustducin) and the nuclear stain, Sytox. The results of our study indicate that in microwave versus conventional immunocytochemistry: (1) fixation quality is improved; (2) the amount of time necessary for processing tissue is decreased; (3) antigen retrieval is no longer needed; (4) image quality is superior. In sum, microwave tissue processing of gustatory tissues is faster and superior to conventional immunohistochemical tissue processing for many applications. PMID:23473796

  19. Enhancement of Combined Umami and Salty Taste by Glutathione in the Human Tongue and Brain.

    PubMed

    Goto, Tazuko K; Yeung, Andy Wai Kan; Tanabe, Hiroki C; Ito, Yuki; Jung, Han-Sung; Ninomiya, Yuzo

    2016-09-01

    Glutathione, a natural substance, acts on calcium receptors on the tongue and is known to enhance basic taste sensations. However, the effects of glutathione on brain activity associated with taste sensation on the tongue have not been determined under standardized taste delivery conditions. In this study, we investigated the sensory effect of glutathione on taste with no effect of the smell when glutathione added to a combined umami and salty taste stimulus. Twenty-six volunteers (12 women and 14 men; age 19-27 years) performed a sensory evaluation of taste of a solution of monosodium L-glutamate and sodium chloride, with and without glutathione. The addition of glutathione changed taste qualities and significantly increased taste intensity ratings under standardized taste delivery conditions (P < 0.001). Functional magnetic resonance imaging showed that glutathione itself elicited significant activation in the left ventral insula. These results are the first to demonstrate the enhancing effect of glutathione as reflected by brain data while tasting an umami and salty mixture. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Metabonomics profiling of marinated meat in soy sauce during processing.

    PubMed

    Yang, Yang; Ye, Yangfang; Pan, Daodong; Sun, Yangying; Wang, Ying; Cao, Jinxuan

    2018-03-01

    Marinated meat in soy sauce is one of the most popular traditional cured meat products in China. Its taste quality is directly related to primary and secondary metabolites. Herein, the change of metabolite composition of marinated meat in soy sauce during processing was systematically characterised using 1 H NMR and multivariate data analysis. The marinated meat in soy sauce metabonome was dominated by 26 metabolites, including amino acids, sugars, organic acids, nucleic aides and their derivatives. PC1 and PC2 explained a total of 78.6% and 16.6% of variables, respectively. Amino acids, sugars, acetate, succinate, uracil and inosine increased during marinating, while lactate, creatine, inosine-5'-monophosphate (5'-IMP) and anserine decreased (P < 0.05). After marinating, most of the metabolites decreased except for acetate and alanine (P < 0.05). There was a negative effect on the taste of marinated meat in soy sauce during the late stage of dry-ripening. These findings indicated that the potential of NMR-based metabonomics is of importance for taste quality of marinated meat in soy sauce, which could contribute to a better understanding of the changes of taste compounds in meat products during processing. Shortening the dry-ripening period could be considered to improve the taste quality. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. REVIEW ARTICLE: A taste sensor

    NASA Astrophysics Data System (ADS)

    Toko, Kiyoshi

    1998-12-01

    A multichannel taste sensor, namely an electronic tongue, with global selectivity is composed of several kinds of lipid/polymer membranes for transforming information about substances producing taste into electrical signals, which are input to a computer. The sensor output exhibits different patterns for chemical substances which have different taste qualities such as saltiness, sourness and bitterness, whereas it exhibits similar patterns for chemical substances with similar tastes. The sensor responds to the taste itself, as can be understood from the fact that taste interactions such as the suppression effect, which appears for mixtures of sweet and bitter substances, can be reproduced well. The suppression of the bitterness of quinine and a drug substance by sucrose can be quantified. Amino acids can be classified into several groups according to their own tastes on the basis of sensor outputs. The tastes of foodstuffs such as beer, coffee, mineral water, milk, sake, rice, soybean paste and vegetables can be discussed quantitatively using the taste sensor, which provides the objective scale for the human sensory expression. The flavour of a wine is also discriminated using the taste-odour sensory fusion conducted by combining the taste sensor and an odour-sensor array using conducting polymer elements. The taste sensor can also be applied to measurements of water pollution. Miniaturization of the taste sensor using FET produces the same characteristics as those of the above taste sensor by measuring the gate-source voltage. Use of the taste sensor will lead to a new era of food and environmental sciences.

  2. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    PubMed Central

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  3. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    PubMed

    Kataoka, Shinji; Baquero, Arian; Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C; Finger, Thomas E

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  4. The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse.

    PubMed

    Kataoka, Shinji; Yang, Ruibiao; Ishimaru, Yoshiro; Matsunami, Hiroaki; Sévigny, Jean; Kinnamon, John C; Finger, Thomas E

    2008-03-01

    The transient receptor potential channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCbeta2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1-positive cells are immunoreactive for neural cell adhesion molecule, serotonin, PGP-9.5 (ubiquitin carboxy-terminal transferase), and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about "sour", but have little or no role in transmission of taste information of other taste qualities.

  5. The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse

    PubMed Central

    Kataoka, Shinji; Yang, Ruibiao; Ishimaru, Yoshiro; Matsunami, Hiroaki; Kinnamon, John C.; Finger, Thomas E.

    2008-01-01

    The transient receptor potential (TRP) channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCβ2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1 positive cells are immunoreactive for NCAM, serotonin, PGP-9.5 (ubiquitin carboxy terminal transferase) and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about “sour”, but have little or no role in transmission of taste information of other taste qualities. PMID:18156604

  6. Pre-Treatment with Amifostine Protects against Cyclophosphamide-Induced Disruption of Taste in Mice

    PubMed Central

    Mukherjee, Nabanita; Carroll, Brittany L.; Spees, Jeffrey L.; Delay, Eugene R.

    2013-01-01

    Cyclophosphamide (CYP), a commonly prescribed chemotherapy drug, has multiple adverse side effects including alteration of taste. The effects on taste are a cause of concern for patients as changes in taste are often associated with loss of appetite, malnutrition, poor recovery and reduced quality of life. Amifostine is a cytoprotective agent that was previously shown to be effective in preventing chemotherapy-induced mucositis and nephrotoxicity. Here we determined its ability to protect against chemotherapy-induced damage to taste buds using a mouse model of CYP injury. We conducted detection threshold tests to measure changes in sucrose taste sensitivity and found that administration of amifostine 30 mins prior to CYP injection protected against CYP-induced loss in taste sensitivity. Morphological studies showed that pre-treatment with amifostine prevented CYP-induced reduction in the number of fungiform taste papillae and increased the number of taste buds. Immunohistochemical assays for markers of the cell cycle showed that amifostine administration prevented CYP-induced inhibition of cell proliferation and also protected against loss of mature taste cells after CYP exposure. Our results indicate that treatment of cancer patients with amifostine prior to chemotherapy may improve their sensitivity for taste stimuli and protect the taste system from the detrimental effects of chemotherapy. PMID:23626702

  7. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review.

    PubMed

    Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G

    2016-11-01

    Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology

    PubMed Central

    2017-01-01

    More and more research studies are revealing unexpectedly important roles of taste for health and pathogenesis of various diseases. Only recently it has been shown that taste receptors have many extraoral locations (e.g., stomach, intestines, liver, pancreas, respiratory system, heart, brain, kidney, urinary bladder, pancreas, adipose tissue, testis, and ovary), being part of a large diffuse chemosensory system. The functional implications of these taste receptors widely dispersed in various organs or tissues shed a new light on several concepts used in ayurvedic pharmacology (dravyaguna vijnana), such as taste (rasa), postdigestive effect (vipaka), qualities (guna), and energetic nature (virya). This review summarizes the significance of extraoral taste receptors and transient receptor potential (TRP) channels for ayurvedic pharmacology, as well as the biological activities of various types of phytochemical tastants from an ayurvedic perspective. The relative importance of taste (rasa), postdigestive effect (vipaka), and energetic nature (virya) as ethnopharmacological descriptors within Ayurveda boundaries will also be discussed. PMID:28642799

  9. Quality standards versus nutritional taxes: Health and welfare impacts with strategic firms.

    PubMed

    Réquillart, Vincent; Soler, Louis-Georges; Zang, Yu

    2016-12-01

    The goal of this paper is to better understand firms' strategic reactions to nutritional policies targeting food quality improvements and to derive optimal policies. We propose a model of product differentiation, taking into account the taste and health characteristics of products. We study how two firms react to alternative policies: an MQS policy, linear taxation of the two goods on the market, and taxation of the low-quality good. The MQS and the taxation of the low-quality product are the preferred options by a social planner. If taste is moderately important, the MQS policy is chosen by a populist and a paternalist social planner. If taste is a major component of choice, the populist planner chooses to tax the low-quality product whereas the paternalist planner prefers the MQS policy. Finally, for a paternalist social planner, an MQS-based policy always allows for higher levels of welfare than an information policy alone. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Influence of Pregnancy on Sweet Taste Perception and Plaque Acidogenicity.

    PubMed

    Sonbul, H; Ashi, H; Aljahdali, E; Campus, G; Lingström, P

    2017-05-01

    Objectives Women undergo different physiological and oral changes during pregnancy and this may increase the risk of dental caries and other oral diseases. The aim of the present study was to investigate changes in biofilm acidogenicity and correlate them to sweet taste perception in pregnant and non-pregnant women. Methods Three groups of Saudi women participated in this cross-sectional study: (1) women in early pregnancy (n = 40/mean age 29.6 years/DMFT 10.7), (2) women in late pregnancy (n = 40/29.5 years/DMFT 10.8) and (3) non-pregnant women (n = 41/27.7 years/DMFT 12.3). Changes in plaque pH were determined by using colour-coded indicator strips before and after a 1-min rinse with a 10% sucrose solution. A taste perception test determining sweet preference and threshold levels was also performed. Results A significant difference regarding plaque pH was seen between the early, late and non-pregnant women when calculated as the area under the curve (p < 0.05). Regarding the taste perception tests, taste preference and threshold were correlated (p < 0.001, r = 0.6). Between the three groups, a statistically significant difference was seen in taste threshold and taste preference respectively (p = 0.001 and p < 0.001). Conclusions The findings in this study suggest that pregnant women may undergo taste changes and experience lower plaque pH, which may result in an increased risk of dental caries.

  11. Glucagon signaling modulates sweet taste responsiveness.

    PubMed

    Elson, Amanda E T; Dotson, Cedrick D; Egan, Josephine M; Munger, Steven D

    2010-10-01

    The gustatory system provides critical information about the quality and nutritional value of food before it is ingested. Thus, physiological mechanisms that modulate taste function in the context of nutritional needs or metabolic status could optimize ingestive decisions. We report that glucagon, which plays important roles in the maintenance of glucose homeostasis, enhances sweet taste responsiveness through local actions in the mouse gustatory epithelium. Using immunohistochemistry and confocal microscopy, we found that glucagon and its receptor (GlucR) are coexpressed in a subset of mouse taste receptor cells. Most of these cells also express the T1R3 taste receptor implicated in sweet and/or umami taste. Genetic or pharmacological disruption of glucagon signaling in behaving mice indicated a critical role for glucagon in the modulation of taste responsiveness. Scg5(-/-) mice, which lack mature glucagon, had significantly reduced responsiveness to sucrose as compared to wild-type littermates in brief-access taste tests. No significant differences were seen in responses to prototypical salty, sour, or bitter stimuli. Taste responsiveness to sucrose was similarly reduced upon acute and local disruption of glucagon signaling by the GlucR antagonist L-168,049. Together, these data indicate a role for local glucagon signaling in the peripheral modulation of sweet taste responsiveness.

  12. Effects of Consuming Preloads with Different Energy Density and Taste Quality on Energy Intake and Postprandial Blood Glucose

    PubMed Central

    Tey, Siew Ling; Salleh, Nurhazwani; Forde, Ciaran G.

    2018-01-01

    Consumption of reduced energy dense foods and drink has the potential to reduce energy intake and postprandial blood glucose concentrations. In addition, the taste quality of a meal (e.g., sweet or savoury) may play a role in satiation and food intake. The objective of this randomised crossover study was to examine whether energy density and taste quality has an impact on energy intake and postprandial blood glucose response. Using a preload design, participants were asked to consume a sweet (“Cheng Teng”) or a savoury (broth) preload soup in high energy density (HED; around 0.50 kcal/g; 250 kcal) or low energy density (LED; around 0.12 kcal/g; 50 kcal) in mid-morning and an ad libitum lunch was provided an hour after the preload. Participants recorded their food intake for the rest of the day after they left the study site. Energy compensation and postprandial blood glucose response were measured in 32 healthy lean males (mean age = 28.9 years, mean BMI = 22.1 kg/m2). There was a significant difference in ad libitum lunch intake between treatments (p = 0.012), with higher intake in sweet LED and savoury LED compared to sweet HED and savoury HED. Energy intake at subsequent meals and total daily energy intake did not differ between the four treatments (both p ≥ 0.214). Consumption of HED preloads resulted in a larger spike in postprandial blood glucose response compared with LED preloads, irrespective of taste quality (p < 0.001). Energy density rather than taste quality plays an important role in energy compensation and postprandial blood glucose response. This suggests that regular consumption of low energy-dense foods has the potential to reduce overall energy intake and to improve glycemic control. PMID:29385055

  13. Effects of Consuming Preloads with Different Energy Density and Taste Quality on Energy Intake and Postprandial Blood Glucose.

    PubMed

    Tey, Siew Ling; Salleh, Nurhazwani; Henry, Christiani Jeyakumar; Forde, Ciaran G

    2018-01-31

    Consumption of reduced energy dense foods and drink has the potential to reduce energy intake and postprandial blood glucose concentrations. In addition, the taste quality of a meal (e.g., sweet or savoury) may play a role in satiation and food intake. The objective of this randomised crossover study was to examine whether energy density and taste quality has an impact on energy intake and postprandial blood glucose response. Using a preload design, participants were asked to consume a sweet ("Cheng Teng") or a savoury (broth) preload soup in high energy density (HED; around 0.50 kcal/g; 250 kcal) or low energy density (LED; around 0.12 kcal/g; 50 kcal) in mid-morning and an ad libitum lunch was provided an hour after the preload. Participants recorded their food intake for the rest of the day after they left the study site. Energy compensation and postprandial blood glucose response were measured in 32 healthy lean males (mean age = 28.9 years, mean BMI = 22.1 kg/m²). There was a significant difference in ad libitum lunch intake between treatments ( p = 0.012), with higher intake in sweet LED and savoury LED compared to sweet HED and savoury HED. Energy intake at subsequent meals and total daily energy intake did not differ between the four treatments (both p ≥ 0.214). Consumption of HED preloads resulted in a larger spike in postprandial blood glucose response compared with LED preloads, irrespective of taste quality ( p < 0.001). Energy density rather than taste quality plays an important role in energy compensation and postprandial blood glucose response. This suggests that regular consumption of low energy-dense foods has the potential to reduce overall energy intake and to improve glycemic control.

  14. Recalled taste intensity, liking and habitual intake of commonly consumed foods.

    PubMed

    Cornelis, Marilyn C; Tordoff, Michael G; El-Sohemy, Ahmed; van Dam, Rob M

    2017-02-01

    Taste intensity and quality affect the liking of foods, and determine food choice and consumption. We aimed to 1) classify commonly consumed foods based on recalled taste intensity for bitter, sweet, salty, sour, and fatty taste, and 2) examine the associations among recalled taste intensity, liking, and habitual consumption of foods. In Stage 1, 62 Canadian adults recalled the taste intensity of 120 common foods. Their responses were used to identify sets of 20-25 foods classified as strongly bitter, sweet, salty, sour or fatty-tasting. In Stage 2, 287 U.S. adults validated these selections, and let us reduce them to sets of 11-13 foods. Ratings of recalled taste intensity were consistent across age, sex and overweight status, with the exceptions that sweet, bitter and fatty-tasting foods were rated as more intense by women than by men. The recalled intensity ratings of the most bitter, salty and fatty foods (but not sour or sweet foods) were inversely correlated with liking and intake. The negative correlation between fatty taste intensity and fatty food liking was stronger among normal weight than among overweight participants. Our results suggest that the recalled taste intensity of foods is associated with food liking and habitual consumption, but the strength of these relationships varies by taste. The food lists based on taste intensity ratings provide a resource to efficiently calculate indices of exposure to the different tastes in future studies. Copyright © 2016. Published by Elsevier Ltd.

  15. Recalled taste intensity, liking and habitual intake of commonly consumed foods

    PubMed Central

    Cornelis, Marilyn C.; Tordoff, Michael G.; El-Sohemy, Ahmed; van Dam, Rob M.

    2016-01-01

    Taste intensity and quality affect the liking of foods, and determine food choice and consumption. We aimed to 1) classify commonly consumed foods based on recalled taste intensity for bitter, sweet, salty, sour, and fatty taste, and 2) examine the associations among recalled taste intensity, liking, and habitual consumption of foods. In Stage 1, 62 Canadian adults recalled the taste intensity of 120 common foods. Their responses were used to identify sets of 20–25 foods classified as strongly bitter, sweet, salty, sour or fatty-tasting. In Stage 2, 287 U.S. adults validated these selections, and let us reduce them to sets of 11–13 foods. Ratings of recalled taste intensity were consistent across age, sex and overweight status, with the exceptions that sweet, bitter and fatty-tasting foods were rated as more intense by women than by men. The recalled intensity ratings of the most bitter, salty and fatty foods (but not sour or sweet foods) were inversely correlated with liking and intake. The negative correlation between fatty taste intensity and fatty food liking was stronger among normal weight than among overweight participants. Our results suggest that the recalled taste intensity of foods is associated with food liking and habitual consumption, but the strength of these relationships varies by taste. The food lists based on taste intensity ratings provide a resource to efficiently calculate indices of exposure to the different tastes in future studies. PMID:27915079

  16. Investigations into the sources and removal of taste and odor compounds at two treatment facilities on Eastern Lake Erie and Niagara River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittmeyer, S.; Cap, R.; Lange, C.

    1996-11-01

    Taste and odor problems in drinking water supplies have been a topic of research since the early 1900`s. Studies have identified various taste and odor compounds, including methyl-iso-borneol (MIB), geosmin, trichloranisole, and their potential sources, to include the phytoplankton genera Aphanizomenon, Anabaena, Microcystis, and Dinobryon. Many methods of treatment have been investigated to mitigate taste and odors, including the addition of copper sulfate and various chemical oxidants, as well as the introduction of bacteria capable of metabolizing oil-like organic compounds. Taste and odor problems associated with drinking water supplies have become increasingly important, in part because public awareness of watermore » quality issues such as chlorine and associated disinfection byproducts, and the perception that malodorous water may be associated with pathogens such as the infectious Cryptosporidium parvum. Due to marked increases in customer complaints beginning in 1993, and elevated levels of the taste and odor compounds. MIB and geosmin, in eastern Lake Erie and the Niagara River, the Erie County Water Authority (ECWA) initiated an investigation into the impact of MIB and geosmin on water quality, assessment of various means of effective removal, and potential sources.« less

  17. A taste for ATP: neurotransmission in taste buds

    PubMed Central

    Kinnamon, Sue C.; Finger, Thomas E.

    2013-01-01

    Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells. PMID:24385952

  18. A preference test for sweet taste that uses edible strips.

    PubMed

    Smutzer, Gregory; Patel, Janki Y; Stull, Judith C; Abarintos, Ray A; Khan, Neiladri K; Park, Kevin C

    2014-02-01

    A novel delivery method is described for the rapid determination of taste preferences for sweet taste in humans. This forced-choice paired comparison approach incorporates the non-caloric sweetener sucralose into a set of one-inch square edible strips for the rapid determination of sweet taste preferences. When compared to aqueous sucrose solutions, significantly lower amounts of sucralose were required to identify the preference for sweet taste. The validity of this approach was determined by comparing sweet taste preferences obtained with five different sucralose-containing edible strips to a set of five intensity-matched sucrose solutions. When compared to the solution test, edible strips required approximately the same number of steps to identify the preferred amount of sweet taste stimulus. Both approaches yielded similar distribution patterns for the preferred amount of sweet taste stimulus. In addition, taste intensity values for the preferred amount of sucralose in strips were similar to that of sucrose in solution. The hedonic values for the preferred amount of sucralose were lower than for sucrose, but the taste quality of the preferred sucralose strip was described as sweet. When taste intensity values between sucralose strips and sucralose solutions containing identical amounts of taste stimulus were compared, sucralose strips produced a greater taste intensity and more positive hedonic response. A preference test that uses edible strips for stimulus delivery should be useful for identifying preferences for sweet taste in young children, and in clinical populations. This test should also be useful for identifying sweet taste preferences outside of the lab or clinic. Finally, edible strips should be useful for developing preference tests for other primary taste stimuli and for taste mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. "Taste Strips" - a rapid, lateralized, gustatory bedside identification test based on impregnated filter papers.

    PubMed

    Landis, Basile Nicolas; Welge-Luessen, Antje; Brämerson, Annika; Bende, Mats; Mueller, Christian Albert; Nordin, Steven; Hummel, Thomas

    2009-02-01

    To elaborate normative values for a clinical psychophysical taste test ("Taste Strips"). The "Taste Strips" are a psychophysical chemical taste test. So far, no definitive normative data had been published and only a fairly small sample size has been investigated. In light of this shortcoming for this easy, reliable and quick taste testing device, we attempted to provide normative values suitable for the clinical use. Normative value acquisition study, multicenter study. The investigation involved 537 participants reporting a normal sense of smell and taste (318 female, 219 male, mean age 44 years, age range 18-87 years). The taste test was based on spoon-shaped filter paper strips ("Taste Strips") impregnated with the four (sweet, sour, salty, and bitter) taste qualities in four different concentrations. The strips were placed on the left or right side of the anterior third of the extended tongue, resulting in a total of 32 trials. With their tongue still extended, patients had to identify the taste from a list of four descriptors, i. e., sweet, sour, salty, and bitter (multiple forced-choice). To obtain an impression of overall gustatory function, the number of correctly identified tastes was summed up for a "taste score". Taste function decreased significantly with age. Women exhibited significantly higher taste scores than men which was true for all age groups. The taste score at the 10(th) percentile was selected as a cut-off value to distinguish normogeusia from hypogeusia. Results from a small series of patients with ageusia confirmed the clinical usefulness of the proposed normative values. The present data provide normative values for the "Taste Strips" based on over 500 subjects tested.

  20. A Preference Test for Sweet Taste That Uses Edible Strips

    PubMed Central

    Smutzer, Gregory; Patel, Janki Y.; Stull, Judith C.; Abarintos, Ray A.; Khan, Neiladri K.; Park, Kevin C.

    2014-01-01

    A novel delivery method is described for the rapid determination of taste preferences for sweet taste in humans. This forced-choice paired comparison approach incorporates the non-caloric sweetener sucralose into a set of one-inch square edible strips for the rapid determination of sweet taste preferences. When compared to aqueous sucrose solutions, significantly lower amounts of sucralose were required to identify the preference for sweet taste. The validity of this approach was determined by comparing sweet taste preferences obtained with five different sucralose-containing edible strips to a set of five intensity-matched sucrose solutions. When compared to the solution test, edible strips required approximately the same number of steps to identify the preferred amount of sweet taste stimulus. Both approaches yielded similar distribution patterns for the preferred amount of sweet taste stimulus. In addition, taste intensity values for the preferred amount of sucralose in strips were similar to that of sucrose in solution. The hedonic values for the preferred amount of sucralose were lower than for sucrose, but the taste quality of the preferred sucralose strip was described as sweet. When taste intensity values between sucralose strips and sucralose solutions containing identical amounts of taste stimulus were compared, sucralose strips produced a greater taste intensity and more positive hedonic response. A preference test that uses edible strips for stimulus delivery should be useful for identifying preferences for sweet taste in young children, and in clinical populations. This test should also be useful for identifying sweet taste preferences outside of the lab or clinic. Finally, edible strips should be useful for developing preference tests for other primary taste stimuli and for taste mixtures. PMID:24225255

  1. THE TASTE OF SUGARS

    PubMed Central

    McCaughey, Stuart A.

    2008-01-01

    Sugars evoke a distinctive perceptual quality (“sweetness” in humans) and are generally highly preferred. The neural basis for these phenomena is reviewed for rodents, in which detailed electrophysiological measurements have been made. A receptor has been identified that binds sweeteners and activates G-protein-mediated signaling in taste receptor cells, which leads to changes in neural firing rates in the brain, where perceptions of taste quality, intensity, and palatability are generated. Most cells in gustatory nuclei are broadly-tuned, so quality perception presumably arises from patterns of activity across neural populations. However, some manipulations affect only the most sugar-oriented cells, making it useful to consider them as a distinct neural subtype. Quality perception may also arise partly due to temporal patterns of activity to sugars, especially within sugar-oriented cells that give large but delayed responses. Non-specific gustatory neurons that are excited by both sugars and unpalatable stimuli project to ventral forebrain areas, where neural responses provide a closer match with behavioral preferences. This transition likely involves opposing excitatory and inhibitory influences by different subgroups of gustatory cells. Sweeteners are generally preferred over water, but the strength of this preference can vary across time or between individuals, and higher preferences for sugars are often associated with larger taste-evoked responses. PMID:18499254

  2. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation.

    PubMed

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-09-15

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in Bdnf(lacZ/+) mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Quality of life in patients with nonalcoholic fatty liver disease in combination with essential hypertension considering taste sensitivity to sodium chloride.

    PubMed

    Mashura, Hanna Y; Hanych, Taras M; Rishko, Alexander A

    2016-01-01

    Nonalcoholic fatty liver disease and hypertensive disease - is the most common combination of abnormalities that occur in people suffering from metabolic syndrome. Their combination not only causes concurrent damage of the liver and the heart, caused by common pathogenic beginning, and also mutually complicate the disease course of each other. The leading role in the development of nonalcoholic fatty liver disease belongs to abdominal obesity and insulin resistance, and is seen as a manifestation of liver disease in metabolic syndrome. Genetic predisposition, lifestyle, improper nutrition, including excessive use of sodium chloride, lead to excessive formation of visceral adipose tissue with development of abdominal obesity, which is a likely criterion of insulin resistance. The long course of nonalcoholic fatty liver disease in combination with essential hypertension in excessive consumption of sodium chloride may negatively affect their quality of life. The aim of the study is to find out the features of quality of life in patients with nonalcoholic fatty liver disease in combination with hypertensive disease with different taste sensitivity to sodium chloride. We have investigated the quality of life of 65 patients with nonalcoholic fatty liver disease in combination with hypertensive disease II stage with different taste sensitivity to sodium chloride. Salt taste sensitivity threshold to sodium chloride is determined by the method of R. Henkin. Assessment of quality of life was performed using the Ukrainian version of the questionnaire Medical Outcomes Study Short Form 36 (MO S SF-36). Was revealed that in patients with nonalcoholic fatty liver disease in combination with hypertensive disease II stage with high salt taste sensitivity threshold observed the decline in the quality of life that manifests as a decline in physical condition (especially of the physical functioning, physical role functioning and general health perceptions) and mental health (especially social functioning). Also the increased salt intake and salt appetite in patients with high salt taste sensitivity threshold were noted (p <0,05). Reducing the use of sodium chloride can be a preventive measure easier than a decrease in body weight, and one that will reduce the body weight, especially in people with nonalcoholic fatty liver disease in combination with hypertensive disease, can reduce the risk of complications and improve quality of life in patients.

  4. TAS2R38 Predisposition to Bitter Taste Associated with Differential Changes in Vegetable Intake in Response to a Community-Based Dietary Intervention

    PubMed Central

    Calancie, Larissa; Keyserling, Thomas C.; Taillie, Lindsey Smith; Robasky, Kimberly; Patterson, Cam; Ammerman, Alice S.; Schisler, Jonathan C.

    2018-01-01

    Although vegetable consumption associates with decreased risk for a variety of diseases, few Americans meet dietary recommendations for vegetable intake. TAS2R38 encodes a taste receptor that confers bitter taste sensing from chemicals found in some vegetables. Common polymorphisms in TAS2R38 lead to coding substitutions that alter receptor function and result in the loss of bitter taste perception. Our study examined whether bitter taste perception TAS2R38 diplotypes associated with vegetable consumption in participants enrolled in either an enhanced or a minimal nutrition counseling intervention. DNA was isolated from the peripheral blood cells of study participants (N = 497) and analyzed for polymorphisms. Vegetable consumption was determined using the Block Fruit and Vegetable screener. We tested for differences in the frequency of vegetable consumption between intervention and genotype groups over time using mixed effects models. Baseline vegetable consumption frequency did not associate with bitter taste diplotypes (P = 0.937), however after six months of the intervention, we observed an interaction between bitter taste diplotypes and time (P = 0.046). Participants in the enhanced intervention increased their vegetable consumption frequency (P = 0.020) and within this intervention group, the bitter non-tasters and intermediate-bitter tasters had the largest increase in vegetable consumption. In contrast, in the minimal intervention group, the bitter tasting participants reported a decrease in vegetable consumption. Bitter-non tasters and intermediate-bitter tasters increased vegetable consumption in either intervention more than those who perceive bitterness. Future precision medicine applications could consider genetic variation in bitter taste perception genes when designing dietary interventions. PMID:29686110

  5. Intensity of regionally applied tastes in relation to administration method: an investigation based on the "taste strips" test.

    PubMed

    Manzi, Brian; Hummel, Thomas

    2014-02-01

    To compare various methods to apply regional taste stimuli to the tongue. "Taste strips" are a clinical tool to determine gustatory function. How a patient perceives the chemical environment in the mouth is a result of many factors such as taste bud distribution and interactions between the cranial nerves. To date, there have been few studies describing the different approaches to administer taste strips to maximize taste identification accuracy and intensity. This is a normative value acquisition pilot and single-center study. The investigation involved 30 participants reporting a normal sense of smell and taste (18 women, 12 men, mean age 33 years). The taste test was based on spoon-shaped filter paper strips impregnated with four taste qualities (sweet, sour, salty, and bitter) at concentrations shown to be easily detectable by young healthy subjects. The strips were administered in three methods (held stationary on the tip of the tongue, applied across the tongue, held in the mouth), resulting in a total of 12 trials per participant. Subjects identified the taste from a list of four descriptors, (sweet, sour, salty, bitter) and ranked the intensity on a scale from 0 to 10. Statistical analyses were performed on the accuracy of taste identification and rated intensities. The participants perceived in order of most to least intense: salt, sour, bitter, sweet. Of the four tastes, sour consistently was least accurately identified. Presenting the taste strip inside the closed mouth of the participants produced the least accurate taste identification, whereas moving the taste strip across the tongue led to a significant increase in intensity for the sweet taste. In this study of 30 subjects at the second concentration, optimized accuracy and intensity of taste identification was observed through administration of taste strips laterally across the anterior third of the extended tongue. Further studies are required on more subjects and the additional concentrations prior to determining the ideal taste strip application method.

  6. Fabrication of taste sensor for education

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Tahara, Yusuke; Toko, Kiyoshi; Kuriyaki, Hisao

    2017-03-01

    In order to solve the unconcern to usefulness of learning science among high school students in Japan, we developed a simple fabricated taste sensor with sensitivity and selectivity to each taste quality, which can be applied in science class. A commercialized Teflon membrane was used as the polymer membrane holding lipids. In addition, a non-adhesive method is considered to combine the membrane and the sensor electrode using a plastic cap which is easily accessible. The taste sensor for education fabricated in this way showed a good selectivity and sensitivity. By adjusting the composition of trioctylmethylammonium chloride (TOMA) and phosphoric acid di(2-ethylhexyl) ester (PAEE) included in lipid solution, we improved the selectivity of this simple taste sensor to saltiness and sourness. To verify this taste sensor as a useful science teaching material for science class, we applied this taste sensor into a science class for university students. By comparing the results between the sensory test and the sensor response, humans taste showed the same tendency just as the sensor response, which proved the sensor as a useful teaching material for science class.

  7. Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine.

    PubMed

    Hufnagel, Jan Carlos; Hofmann, Thomas

    2008-02-27

    Application of sequential solvent extraction, followed by HPLC combined with the taste dilution analysis, enabled the localization of the most intense velvety astringent, drying, and puckering astringent, as well as bitter-tasting, compounds in red wine, respectively. Isolation of the taste components involving gel adsorption chromatography, ultrafiltration, and synthesis revealed the identification of 26 sensory-active nonvolatiles, among which several hydroxybenzoic acids, hydroxycinnamic acids, flavon-3-ol glycosides, and dihydroflavon-3-ol rhamnosides as well as a structurally undefined polymeric fraction (>5 kDa) were identified as the key astringent components. In contradiction to literature suggestions, flavan-3-ols were found to be not of major importance for astringency and bitter taste, respectively. Surprisingly, a series of hydroxybenzoic acid ethyl esters and hydroxycinnamic acid ethyl esters were identified as bitter compounds in wine. Taste qualities and taste threshold concentrations of the individual wine components were determined by means of a three-alternative forced-choice test and the half-mouth test, respectively.

  8. Molecular and cellular organization of taste neurons in adult Drosophila pharynx

    PubMed Central

    Chen, Yu-Chieh (David); Dahanukar, Anupama

    2017-01-01

    SUMMARY The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The organization of pharyngeal neurons reveals similarities and distinctions in receptor repertoires and neuronal groupings compared to external taste neurons. We validate the mapping results by pinpointing a single pharyngeal neuron required for feeding avoidance of L-canavanine. Inducible activation of pharyngeal taste neurons reveals functional differences between external and internal taste neurons and functional subdivision within pharyngeal sweet neurons. Our results provide road maps of pharyngeal taste organs in an insect model system for probing the role of these understudied neurons in controlling feeding behaviors. PMID:29212040

  9. Water Quality Evaluation of PET Bottled Water by Mineral Balance in the Northeast Asian Region: A Case Study of South Korea

    PubMed Central

    Houri, Daisuke; Koo, Chung Mo

    2015-01-01

    Background The past few years have seen a demand for drinking water in contemporary society with a focus on safety and taste. Mineral water is now marketed as a popular commercial product and, partly due to health concerns, the production. Methods For the study, a comparison was carried out of water samples from 9 types of polyethylene terephthalate (PET) bottled water sold in South Korea as well as from tap water in the cities of Seoul and Chuncheon. These were compared with samples of Japanese PET bottled water in order to determine shared commonalities and identify individual characteristics. To evaluate water quality objectively, we quantified the elements contained in the water samples. Samples were assessed not with the usual sensory evaluation but with the evaluation approach advocated by Hashimoto et al. which employs the Water Index of Taste and the Water Index of Health. The levels of water quality obtained were compared with the “Prerequisites for Tasty Water” and the “Standards for Tasty Water” devised for city water. Results The PET Bottled water varieties analyzed in this study—Seoksu, Icis, Bong Pyong, Soon Soo 100, Dong Won Saem Mul, GI JANG SOO and DIAMOND—showed the Water Index of Taste ≥ 2.0 and the Water Index of Health ≥ 5.2, which we classified as tasty/healthy water. SamDaSoo and NamiNeral can be classified as tasty water due to their values of the Water Index of Taste ≥ 2.0 and the Water Index of Health < 5.2. Conclusion The South Korean PET bottled water studied here fulfills the “Water Index of Taste,” “Water Index of Health,” “Standard for Tasty Water” and “Prerequisites for Tasty Water” that Japanese people value for city water. We can conclude that bottled water which meets water quality requirements will be considered good-tasting by a majority of people. PMID:26538797

  10. Water Quality Evaluation of PET Bottled Water by Mineral Balance in the Northeast Asian Region: A Case Study of South Korea.

    PubMed

    Houri, Daisuke; Koo, Chung Mo

    2015-09-01

    The past few years have seen a demand for drinking water in contemporary society with a focus on safety and taste. Mineral water is now marketed as a popular commercial product and, partly due to health concerns, the production. For the study, a comparison was carried out of water samples from 9 types of polyethylene terephthalate (PET) bottled water sold in South Korea as well as from tap water in the cities of Seoul and Chuncheon. These were compared with samples of Japanese PET bottled water in order to determine shared commonalities and identify individual characteristics. To evaluate water quality objectively, we quantified the elements contained in the water samples. Samples were assessed not with the usual sensory evaluation but with the evaluation approach advocated by Hashimoto et al. which employs the Water Index of Taste and the Water Index of Health. The levels of water quality obtained were compared with the "Prerequisites for Tasty Water" and the "Standards for Tasty Water" devised for city water. The PET Bottled water varieties analyzed in this study-Seoksu, Icis, Bong Pyong, Soon Soo 100, Dong Won Saem Mul, GI JANG SOO and DIAMOND-showed the Water Index of Taste ≥ 2.0 and the Water Index of Health ≥ 5.2, which we classified as tasty/healthy water. SamDaSoo and NamiNeral can be classified as tasty water due to their values of the Water Index of Taste ≥ 2.0 and the Water Index of Health < 5.2. The South Korean PET bottled water studied here fulfills the "Water Index of Taste," "Water Index of Health," "Standard for Tasty Water" and "Prerequisites for Tasty Water" that Japanese people value for city water. We can conclude that bottled water which meets water quality requirements will be considered good-tasting by a majority of people.

  11. Rat Palatability Study for Taste Assessment of Caffeine Citrate Formulation Prepared via Hot-Melt Extrusion Technology

    PubMed Central

    Tiwari, Roshan V.; Polk, Ashley N.; Patil, Hemlata; Ye, Xingyou; Pimparade, Manjeet B.; Repka, Michael A.

    2017-01-01

    Developing a pediatric oral formulation with an age-appropriate dosage form and taste masking of naturally bitter active pharmaceutical ingredients (APIs) are key challenges for formulation scientists. Several techniques are used for taste masking of bitter APIs to improve formulation palatability; however, not all the techniques are applicable to pediatric dosage forms because of the limitations on the kind and concentration of the excipients that can be used. Hot-melt extrusion (HME) technology is used successfully for taste masking of bitter APIs, and overcomes some of the limitations of the existing taste masking techniques. Likewise, analytical taste assessment is an important quality control parameter evaluated by several in vivo and in vitro methods, such as the human taste panel, electrophysiological methods, electronic sensor, and animal preference tests to aid in selecting a taste-masked formulation. However, the most appropriate in-vivo method to assess the taste-masking efficacy of pediatric formulations remains unknown, because it is not known to what extent the human taste panel/electronic tongue can predict the palatability in the pediatric patients. The purpose of this study was to develop taste-masked caffeine citrate extrudates via HME, and to demonstrate the wide applicability of a single bottle-test rat model to record and compare the volume consumed of the taste-masked solutions to that of the pure API. Thus, this rat model can be considered as a low-cost alternative taste-assessment method to the most commonly used expensive human taste panel/electronic tongue method for pediatric formulations. PMID:26573158

  12. Taste perception, associated hormonal modulation, and nutrient intake

    PubMed Central

    Loper, Hillary B.; La Sala, Michael; Dotson, Cedrick

    2015-01-01

    It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as “flavor.” It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension. PMID:26024495

  13. Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.

    PubMed

    Soulika, Marina; Kaushik, Anna-Lila; Mathieu, Benjamin; Lourenço, Raquel; Komisarczuk, Anna Z; Romano, Sebastian Alejo; Jouary, Adrien; Lardennois, Alicia; Tissot, Nicolas; Okada, Shinji; Abe, Keiko; Becker, Thomas S; Kapsimali, Marika

    2016-06-01

    Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly. © 2016. Published by The Company of Biologists Ltd.

  14. Salt taste inhibition by cathodal current.

    PubMed

    Hettinger, Thomas P; Frank, Marion E

    2009-09-28

    Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of -40 microA to -80 microA were applied to human subjects' tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium sulfate, sodium saccharin, sodium acetate and sodium benzoate, which taken together encompass salty, bitter, sour and sweet taste qualities. The taste of NaCl, the salty and bitter tastes of the other chloride salts and the taste of NaNO(3) was inhibited, suggesting the current displaced stimulatory cations from salty and bitter receptors. However, bitter tastes of non-halide sodium salts were not inhibited, likely because other bitter receptors respond to anions. A discharge current at cathode-off ubiquitously evoked a metallic taste reminiscent of anodal taste used in clinical electrogustometry. Analogous effects on ambient NaCl responses were recorded from the hamster chorda tympani nerve. Increases in tastes of the saccharin and benzoate anions were not evoked during current flow, suggesting that cathodal current does not carry stimulatory anions to sweet receptors. Cathodal current may selectively inhibit salty and bitter-salty tastes for which proximal stimuli are cations.

  15. Biological rhythms: the taste-time continuum.

    PubMed

    Krupp, Joshua J; Levine, Joel D

    2010-02-23

    The gustatory system allows the fly to assess food quality, eliciting either acceptance or avoidance behaviors. A new study demonstrates that circadian clocks in gustatory receptor neurons regulate rhythms in taste sensitivity, drive rhythms in appetitive behavior and influence feeding. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Effects of stick design features on perceptions of characteristics of cigarettes.

    PubMed

    Borland, Ron; Savvas, Steven

    2013-09-01

    To examine the extent (if any) that cigarette stick dimension, tipping paper design and other decorative design/branding have on Australian smokers' perceptions of those cigarettes. An internet survey of 160 young Australian adult ever-smokers who were shown computer images of three sets of cigarette sticks--five sticks of different lengths and diameters (set A), five sticks with different tipping paper design (set B) and four sticks of different decorative design (set C). Branding was a between-subjects randomised condition for set C. For each set, respondents ranked sticks on most and least attractive, highest and lowest quality and strongest and weakest taste. Cigarette sticks were perceived as different on attractiveness, quality and strength of taste. Standard stick length/diameter was perceived as the most attractive and highest quality stick, with men more inclined to rate a slim stick as less attractive. A stick with a cork-patterned tipping paper and a gold band was seen as most attractive, of highest quality and strongest in taste compared to other tipping designs. Branded sticks were seen as more attractive, higher in quality and stronger tasting than non-branded designs, regardless of brand, although the effects were stronger for a prestige compared with a budget brand. Characteristics of the cigarette stick affect smokers' perceptions of the attributes of those cigarettes and thus are a potential means by which product differentiation can occur. A comprehensive policy to eliminate promotional aspects of cigarette design and packaging needs to include rules about stick design.

  17. [Differences in taste assessment of sweeteners by normal and overweight persons].

    PubMed

    Mathieu, A; Liebermeister, H; Orlik, P; Wagner, M W

    1976-04-30

    Taste assessment was tested in 20 obese and 20 normal-weight in-patients using watery solutions of saccharose and three synthetic sweeteners. Each patient was asked to assess ten different taste qualities of each solution on a point scale. There were highly significant differences between the two groups of subjects. The difference was especially marked for the categories "synthetic - natural", "unpleasant - very tasty", and "changeable - stable in times". These findings suggest changes in physical or central taste sensation in obese persons. This view is supported by their decreased ability to differentiate between saccharose and any sweetener. The results further support substituting sweetening agents for sugar in reducing diets.

  18. Choosing between an Apple and a Chocolate Bar: the Impact of Health and Taste Labels

    PubMed Central

    Forwood, Suzanna E.; Walker, Alexander D.; Hollands, Gareth J.; Marteau, Theresa M.

    2013-01-01

    Increasing the consumption of fruit and vegetables is a central component of improving population health. Reasons people give for choosing one food over another suggest health is of lower importance than taste. This study assesses the impact of using a simple descriptive label to highlight the taste as opposed to the health value of fruit on the likelihood of its selection. Participants (N=439) were randomly allocated to one of five groups that varied in the label added to an apple: apple; healthy apple; succulent apple; healthy and succulent apple; succulent and healthy apple. The primary outcome measure was selection of either an apple or a chocolate bar as a dessert. Measures of the perceived qualities of the apple (taste, health, value, quality, satiety) and of participant characteristics (restraint, belief that tasty foods are unhealthy, BMI) were also taken. When compared with apple selection without any descriptor (50%), the labels combining both health and taste descriptors significantly increased selection of the apple (’healthy & succulent’ 65.9% and ‘succulent & healthy’ 62.4%), while the use of a single descriptor had no impact on the rate of apple selection (‘healthy’ 50.5% and ‘succulent’ 52%). The strongest predictors of individual dessert choice were the taste score given to the apple, and the lack of belief that healthy foods are not tasty. Interventions that emphasize the taste attributes of healthier foods are likely to be more effective at achieving healthier diets than those emphasizing health alone. PMID:24155964

  19. Importance of taste, nutrition, cost and convenience in relation to diet quality: Evidence of nutrition resilience among US adults using National Health and Nutrition Examination Survey (NHANES) 2007–2010

    PubMed Central

    Aggarwal, Anju; Rehm, Colin D.; Monsivais, Pablo; Drewnowski, Adam

    2017-01-01

    Concerns with taste, nutrition, cost, and convenience are said to be key influences on food choices. This study examined the importance of food-related attitudes in relation to diet quality using US national level data. Interactions by socioeconomic status (SES), gender and race/ethnicity were tested. Analyses of 8957 adults from National Health and Nutrition Examination Survey (NHANES 2007–2010) were conducted in 2014–15. Perceived importance of taste, nutrition, cost, and convenience in dietary choices were assessed using 4-point Likert scales. Education and family income-to-poverty ratio (FIPR) were SES indicators. Healthy Eating Index (HEI-2010), a measure of adherence to 2010 dietary guidelines, was the diet quality measure. Survey-weighted regressions examined associations between attitudes and HEI, and tested for interactions. Taste was rated as “very important” by 77.0% of the US adults, followed by nutrition (59.9%), cost (39.9%), and convenience (29.8%). However, it was the perceived importance of nutrition that most strongly predicted HEI (β: +8.0 HEI scores among “very important” vs. “not at all important”). By contrast, greater importance for taste and convenience had a weak inverse relation with HEI (β: −5.1 and −1.5 respectively), adjusting for SES. Significant interactions were observed by race/ethnicity, but not SES and gender. Those who prioritized nutrition during food shopping had higher-quality diets regardless of gender, education and income in the US. Certain racial/ethnic groups managed to eat healthy despite attaching importance to cost and convenience. This is the first evidence of nutrition resilience among US adults using national data, which has huge implications for nutrition interventions. PMID:27374943

  20. Importance of taste, nutrition, cost and convenience in relation to diet quality: Evidence of nutrition resilience among US adults using National Health and Nutrition Examination Survey (NHANES) 2007-2010.

    PubMed

    Aggarwal, Anju; Rehm, Colin D; Monsivais, Pablo; Drewnowski, Adam

    2016-09-01

    Concerns with taste, nutrition, cost, and convenience are said to be key influences on food choices. This study examined the importance of food-related attitudes in relation to diet quality using US national level data. Interactions by socioeconomic status (SES), gender and race/ethnicity were tested. Analyses of 8957 adults from National Health and Nutrition Examination Survey (NHANES 2007-2010) were conducted in 2014-15. Perceived importance of taste, nutrition, cost, and convenience in dietary choices were assessed using 4-point Likert scales. Education and family income-to-poverty ratio (FIPR) were SES indicators. Healthy Eating Index (HEI-2010), a measure of adherence to 2010 dietary guidelines, was the diet quality measure. Survey-weighted regressions examined associations between attitudes and HEI, and tested for interactions. Taste was rated as "very important" by 77.0% of the US adults, followed by nutrition (59.9%), cost (39.9%), and convenience (29.8%). However, it was the perceived importance of nutrition that most strongly predicted HEI (β: +8.0 HEI scores among "very important" vs. "not at all important"). By contrast, greater importance for taste and convenience had a weak inverse relation with HEI (β: -5.1 and -1.5 respectively), adjusting for SES. Significant interactions were observed by race/ethnicity, but not SES and gender. Those who prioritized nutrition during food shopping had higher-quality diets regardless of gender, education and income in the US. Certain racial/ethnic groups managed to eat healthy despite attaching importance to cost and convenience. This is the first evidence of nutrition resilience among US adults using national data, which has huge implications for nutrition interventions. Published by Elsevier Inc.

  1. Cellular mechanisms of cyclophosphamide-induced taste loss in mice

    PubMed Central

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J.

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system’s capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake. PMID:28950008

  2. Oxaliplatin Alters Expression of T1R2 Receptor and Sensitivity to Sweet Taste in Rats.

    PubMed

    Ohishi, Akihiro; Nishida, Kentaro; Yamanaka, Yuri; Miyata, Ai; Ikukawa, Akiko; Yabu, Miharu; Miyamoto, Karin; Bansho, Saho; Nagasawa, Kazuki

    2016-01-01

    As one of the adverse effects of oxaliplatin, a key agent in colon cancer chemotherapy, a taste disorder is a severe issue in a clinical situation because it decreases the quality of life of patients. However, there is little information on the mechanism underlying the oxaliplatin-induced taste disorder. Here, we examined the molecular and behavioral characteristics of the oxaliplatin-induced taste disorder in rats. Oxaliplatin (4-16 mg/kg) was administered to Sprague-Dawley (SD) rats intraperitoneally for 2 d. Expression levels of mRNA and protein of taste receptors in circumvallate papillae (CP) were measured by real-time quantitative polymerase chain reaction (PCR) and immunohistochemistry, respectively. Taste sensitivity was assessed by their behavioral change using a brief-access test. Morphological change of the taste buds in CP was evaluated by hematoxyline-eosin (HE) staining, and the number of taste cells in taste buds was counted by immunohistochemical analysis. Among taste receptors, the expression levels of mRNA and protein of T1R2, a sweet taste receptor subunit, were increased transiently in CP of oxaliplatin-administered rats on day 7. In a brief-access test, the lick ratio was decreased in oxaliplatin-administered rats on day 7 and the alteration was recovered to the control level on day 14. There was no detectable alteration in the morphology of taste buds, number of taste cells or plasma zinc level in oxaliplatin-administered rats. These results suggest that decreased sensitivity to sweet taste in oxaliplatin-administered rats is due, at least in part, to increased expression of T1R2, while these alterations are reversible.

  3. Cellular mechanisms of cyclophosphamide-induced taste loss in mice.

    PubMed

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J; Delay, Eugene R

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.

  4. Proteins used as sweeteners: a review.

    PubMed

    Li, Xiaojian; Alexander, Kenneth S

    2007-01-01

    For the prevention of obesity, diabetes, dental caries, and some metabolic disorders, ingestion of sugar should be restricted. Although they have high-potency sweetness, artificial low-calorie sweeteners can have severe adverse effects. Public demand for natural and healthy flavors, as well as perceived problems with the toxicity and taste quality of existing synthetic sweeteners, have led to efforts to find natural proteins with high sweetness and tast-modifying properties. Some important properties of natural protein sweeteners and taste-modifying protein sweeteners are discussed in this review.

  5. New perspectives on taste and primate evolution: the dichotomy in gustatory coding for perception of beneficent versus noxious substances as supported by correlations among human thresholds.

    PubMed

    Hladik, Claude-Marcel; Pasquet, P; Simmen, B

    2002-04-01

    In various environments where primates are presently observed, as well as in forests and savannas which have been inhabited by australopithecines and early hominids, there are (or there have been presumably) categories of substances eliciting taste signals associated with stereotyped responses. Such is the case for various soluble sugars of fruits and nectars, attracting consumers, and for several plant compounds in which bitter or strongly astringent properties have a repulsive effect. The occurrence of such classes of tasty substances among natural products appears to be related to the evolutionary trends that shaped primate sensory perception (for detecting either beneficent or potentially noxious substances) in the context of a long history of coevolution between animals and plants. Here, we present original psychophysical data on humans (412 individuals aged 17-59 years) as an analogy with which to test recent evidence from electrophysiology in nonhuman primates (Hellekant et al. [1997] J. Neurophysiol. 77:978-993; Danilova et al. [1998] Ann. N.Y. Acad. Sci. 855:160-164) that taste fibers can be grouped into clusters of "best-responding fibers" with two more specific clusters, one for sugars and one for quinine and tannins. The collinearity found between human taste responses (recognition thresholds) for fructose and sucrose, as well as for quinine and tannins, is presented and discussed as another evidence of the two-direction evolutionary trend determining taste sensitivity. Salt perception appears to be totally independent of these trends. Accordingly, the appreciation of a salty taste seems to be a recent culturally learned response, and not a primary taste perception. The very existence of primary tastes is discussed in the context of evolutionary trends, past and present. Copyright 2002 Wiley-Liss, Inc.

  6. Why do we like sweet taste: A bitter tale?

    PubMed Central

    Beauchamp, Gary K.

    2016-01-01

    Sweet is widely considered to be one of a small number of basic or primary taste qualities. Liking for sweet tasting substances is innate, although postnatal experiences can shape responses. The power of sweet taste to induce consumption and to motivate behavior is profound, suggesting the importance of this sense for many species. Most investigators presume that the ability to identify sweet molecules through the sense of taste evolved to allow organisms to detect sources of readily available glucose from plants. Perhaps the best evidence supporting this presumption are recent discoveries in comparative biology demonstrating that species in the order Carnivora that do not consume plants also do not perceive sweet taste due to the pseudogenization of a component of the primary sweet taste receptor. However, arguing against this idea is the observation that the sweetness of a plant, or the amount of easily metabolizable sugars contained in the plant, provides little quantitative indication of the plant’s energy or broadly conceived food value. Here it is suggested that the perceptual ratio of sweet taste to bitter taste (a signal for toxicity) may be a better gauge of a plant’s broadly conceived food value than sweetness alone and that it is this ratio that helps guide selection or rejection of a potential plant food. PMID:27174610

  7. Mechanical microencapsulation: The best technique in taste masking for the manufacturing scale - Effect of polymer encapsulation on drug targeting.

    PubMed

    Al-Kasmi, Basheer; Alsirawan, Mhd Bashir; Bashimam, Mais; El-Zein, Hind

    2017-08-28

    Drug taste masking is a crucial process for the preparation of pediatric and geriatric formulations as well as fast dissolving tablets. Taste masking techniques aim to prevent drug release in saliva and at the same time to obtain the desired release profile in gastrointestinal tract. Several taste masking methods are reported, however this review has focused on a group of promising methods; complexation, encapsulation, and hot melting. The effects of each method on the physicochemical properties of the drug are described in details. Furthermore, a scoring system was established to evaluate each process using recent published data of selected factors. These include, input, process, and output factors that are related to each taste masking method. Input factors include the attributes of the materials used for taste masking. Process factors include equipment type and process parameters. Finally, output factors, include taste masking quality and yield. As a result, Mechanical microencapsulation obtained the highest score (5/8) along with complexation with cyclodextrin suggesting that these methods are the most preferable for drug taste masking. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Maintenance of Mouse Gustatory Terminal Field Organization Is Disrupted following Selective Removal of Peripheral Sodium Salt Taste Activity at Adulthood

    PubMed Central

    Sun, Chengsan

    2017-01-01

    Neural activity plays a critical role in the development of central circuits in sensory systems. However, the maintenance of these circuits at adulthood is usually not dependent on sensory-elicited neural activity. Recent work in the mouse gustatory system showed that selectively deleting the primary transduction channel for sodium taste, the epithelial sodium channel (ENaC), throughout development dramatically impacted the organization of the central terminal fields of three nerves that carry taste information to the nucleus of the solitary tract. More specifically, deleting ENaCs during development prevented the normal maturation of the fields. The present study was designed to extend these findings by testing the hypothesis that the loss of sodium taste activity impacts the maintenance of the normal adult terminal field organization in male and female mice. To do this, we used an inducible Cre-dependent genetic recombination strategy to delete ENaC function after terminal field maturation occurred. We found that removal of sodium taste neural activity at adulthood resulted in significant reorganization of mature gustatory afferent terminal fields in the nucleus of the solitary tract. Specifically, the chorda tympani and greater superficial petrosal nerve terminal fields were 1.4× and 1.6× larger than age-matched controls, respectively. By contrast, the glossopharyngeal nerve, which is not highly sensitive to sodium taste stimulation, did not undergo terminal field reorganization. These surprising results suggest that gustatory nerve terminal fields remain plastic well into adulthood, which likely impacts central coding of taste information and taste-related behaviors with altered taste experience. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. However, the importance of sensory-driven activity in maintaining these circuits at adulthood, especially in subcortical structures, appears to be much less. Here, we tested whether the loss of sodium taste activity in adult mice impacts the maintenance of how taste nerves project to the first central relay. We found that specific loss of sodium-elicited taste activity at adulthood produced dramatic and selective reorganization of terminal fields in the brainstem. This demonstrates, for the first time, that taste-elicited activity is necessary for the normal maintenance of central gustatory circuits at adulthood and highlights a level of plasticity not seen in other sensory system subcortical circuits. PMID:28676575

  9. Effects of Technology on Experienced Job Characteristics and Job Satisfaction.

    DTIC Science & Technology

    1980-07-01

    Ability to discriminate between odors (sense of smell) 23. Ability to discriminate between salty , sour, sweet (sense of taste ) 24. Ability to remember...Ability to estimate speed Ability to estimate quality Sense of touch Sense of smell Sense of taste Cognitive .833 Ability to remember names Ability to

  10. Active taste compounds in juice from oranges symptomatic for Huanglongbing (HLB) citrus greening disease

    USDA-ARS?s Scientific Manuscript database

    Citrus greening disease, also known as Huanglongbing (HLB), compromises the quality of citrus fruit and juice, causing increased bitterness, metallic taste, astringency and a burning mouthfeel. The chemical basis responsible for these changes remains largely unknown other than the roles of the bitte...

  11. Taste responses in mice lacking taste receptor subunit T1R1

    PubMed Central

    Kusuhara, Yoko; Yoshida, Ryusuke; Ohkuri, Tadahiro; Yasumatsu, Keiko; Voigt, Anja; Hübner, Sandra; Maeda, Katsumasa; Boehm, Ulrich; Meyerhof, Wolfgang; Ninomiya, Yuzo

    2013-01-01

    The T1R1 receptor subunit acts as an umami taste receptor in combination with its partner, T1R3. In addition, metabotropic glutamate receptors (brain and taste variants of mGluR1 and mGluR4) are thought to function as umami taste receptors. To elucidate the function of T1R1 and the contribution of mGluRs to umami taste detection in vivo, we used newly developed knock-out (T1R1−/−) mice, which lack the entire coding region of the Tas1r1 gene and express mCherry in T1R1-expressing cells. Gustatory nerve recordings demonstrated that T1R1−/− mice exhibited a serious deficit in inosine monophosphate-elicited synergy but substantial residual responses to glutamate alone in both chorda tympani and glossopharyngeal nerves. Interestingly, chorda tympani nerve responses to sweeteners were smaller in T1R1−/− mice. Taste cell recordings demonstrated that many mCherry-expressing taste cells in T1R1+/− mice responded to sweet and umami compounds, whereas those in T1R1−/− mice responded to sweet stimuli. The proportion of sweet-responsive cells was smaller in T1R1−/− than in T1R1+/− mice. Single-cell RT-PCR demonstrated that some single mCherry-expressing cells expressed all three T1R subunits. Chorda tympani and glossopharyngeal nerve responses to glutamate were significantly inhibited by addition of mGluR antagonists in both T1R1−/− and T1R1+/− mice. Conditioned taste aversion tests demonstrated that both T1R1−/− and T1R1+/− mice were equally capable of discriminating glutamate from other basic taste stimuli. Avoidance conditioned to glutamate was significantly reduced by addition of mGluR antagonists. These results suggest that T1R1-expressing cells mainly contribute to umami taste synergism and partly to sweet sensitivity and that mGluRs are involved in the detection of umami compounds. PMID:23339178

  12. Is fat taste ready for primetime?

    PubMed Central

    DiPatrizio, Nicholas V.

    2014-01-01

    Mounting evidence suggests that gustation is important for the orosensory detection of dietary fats, and might contribute to preferences that humans, rodents, and possibly other mammals exhibit for fat-rich foods. In contrast to sweet, sour, salty, bitter, and umami, fat is not widely recognized as a primary taste quality. Recent investigations, however, provide a wealth of information that is helping to elucidate the specific molecular, cellular, and neural mechanisms required for fat detection in mammals. The latest evidence supporting a fat taste will be explored in this review, with a particular focus on recent studies that suggest a surprising role for gut-brain endocannabinoid signaling in controlling intake and preference for fats based on their proposed taste properties. PMID:24631296

  13. Inactivation of basolateral amygdala specifically eliminates palatability-related information in cortical sensory responses.

    PubMed

    Piette, Caitlin E; Baez-Santiago, Madelyn A; Reid, Emily E; Katz, Donald B; Moran, Anan

    2012-07-18

    Evidence indirectly implicates the amygdala as the primary processor of emotional information used by cortex to drive appropriate behavioral responses to stimuli. Taste provides an ideal system with which to test this hypothesis directly, as neurons in both basolateral amygdala (BLA) and gustatory cortex (GC)-anatomically interconnected nodes of the gustatory system-code the emotional valence of taste stimuli (i.e., palatability), in firing rate responses that progress similarly through "epochs." The fact that palatability-related firing appears one epoch earlier in BLA than GC is broadly consistent with the hypothesis that such information may propagate from the former to the latter. Here, we provide evidence supporting this hypothesis, assaying taste responses in small GC single-neuron ensembles before, during, and after temporarily inactivating BLA in awake rats. BLA inactivation (BLAx) changed responses in 98% of taste-responsive GC neurons, altering the entirety of every taste response in many neurons. Most changes involved reductions in firing rate, but regardless of the direction of change, the effect of BLAx was epoch-specific: while firing rates were changed, the taste specificity of responses remained stable; information about taste palatability, however, which normally resides in the "Late" epoch, was reduced in magnitude across the entire GC sample and outright eliminated in most neurons. Only in the specific minority of neurons for which BLAx enhanced responses did palatability specificity survive undiminished. Our data therefore provide direct evidence that BLA is a necessary component of GC gustatory processing, and that cortical palatability processing in particular is, in part, a function of BLA activity.

  14. Inactivation of basolateral amygdala specifically eliminates palatability-related information in cortical sensory responses

    PubMed Central

    Piette, Caitlin E.; Baez-Santiago, Madelyn A.; Reid, Emily E.; Katz, Donald B.; Moran, Anan

    2012-01-01

    Evidence indirectly implicates the amygdala as the primary processor of emotional information used by cortex to drive appropriate behavioral responses to stimuli. Taste provides an ideal system with which to test this hypothesis directly, as neurons in both basolateral amygdala (BLA) and gustatory cortex (GC)—anatomically interconnected nodes of the gustatory system—code the emotional valence of taste stimuli (i.e., palatability), in firing rate responses that progress similarly through “epochs.” The fact that palatability-related firing appears one epoch earlier in BLA than GC is broadly consistent with the hypothesis that such information may propagate from the former to the latter. Here, we provide evidence supporting this hypothesis, assaying taste responses in small GC single-neuron ensembles before, during and after temporarily inactivating BLA (BLAx) in awake rats. BLAx changed responses in 98% of taste-responsive GC neurons, altering the entirety of every taste response in many neurons. Most changes involved reductions in firing rate, but regardless of the direction of change, the effect of BLAx was epoch-specific: while firing rates were changed, the taste-specificity of responses remained stable; information about taste palatability, however, which normally resides in the “Late” epoch, was reduced in magnitude across the entire GC sample and outright eliminated in most neurons. Only in the specific minority of neurons for which BLAx enhanced responses did palatability-specificity survive undiminished. Our data therefore provide direct evidence that BLA is a necessary component of GC gustatory processing, and that cortical palatability processing in particular is, in part, a function of BLA activity. PMID:22815512

  15. Taste perception, associated hormonal modulation, and nutrient intake.

    PubMed

    Loper, Hillary B; La Sala, Michael; Dotson, Cedrick; Steinle, Nanette

    2015-02-01

    It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as "flavor." It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Sensory quality of drinking water produced by reverse osmosis membrane filtration followed by remineralisation.

    PubMed

    Vingerhoeds, Monique H; Nijenhuis-de Vries, Mariska A; Ruepert, Nienke; van der Laan, Harmen; Bredie, Wender L P; Kremer, Stefanie

    2016-05-01

    Membrane filtration of ground, surface, or sea water by reverse osmosis results in permeate, which is almost free from minerals. Minerals may be added afterwards, not only to comply with (legal) standards and to enhance chemical stability, but also to improve the taste of drinking water made from permeate. Both the nature and the concentrations of added minerals affect the taste of the water and in turn its acceptance by consumers. The aim of this study was to examine differences in taste between various remineralised drinking waters. Samples selected varied in mineral composition, i.e. tap water, permeate, and permeate with added minerals (40 or 120 mg Ca/L, added as CaCO3, and 4 or 24 mg Mg/L added as MgCl2), as well as commercially available bottled drinking waters, to span a relevant product space in which the remineralised samples could be compared. All samples were analysed with respect to their physical-chemical properties. Sensory profiling was done by descriptive analysis using a trained panel. Significant attributes included taste intensity, the tastes bitter, sweet, salt, metal, fresh and dry mouthfeel, bitter and metal aftertaste, and rough afterfeel. Total dissolved solids (TDS) was a major determinant of the taste perception of water. In general, lowering mineral content in drinking water in the range examined (from <5 to 440 mg/L) shifted the sensory perception of water from fresh towards bitter, dry, and rough sensations. In addition, perceived freshness of the waters correlated positively with calcium concentration. The greatest fresh taste was found for water with a TDS between 190 and 350 mg/L. Remineralisation of water after reverse osmosis can improve drinking quality significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The importance of taste on dietary choice, behaviour and intake in a group of young adults.

    PubMed

    Kourouniotis, S; Keast, R S J; Riddell, L J; Lacy, K; Thorpe, M G; Cicerale, S

    2016-08-01

    The 'taste of food' plays an important role in food choice. Furthermore, foods high in fat, sugar and salt are highly palatable and associated with increased food consumption. Research exploring taste importance on dietary choice, behaviour and intake is limited, particularly in young adults. Therefore, in this study a total of 1306 Australian university students completed questionnaires assessing dietary behaviors (such as how important taste was on food choice) and frequency of food consumption over the prior month. Diet quality was also assessed using a dietary guideline index. Participants had a mean age of 20 ± 5 years, Body Mass Index (BMI) of 22 ± 3 kg/m(2), 79% were female and 84% Australian. Taste was rated as being a very or extremely important factor for food choice by 82% of participants. Participants who rated taste as highly important, had a poorer diet quality (p = 0.001) and were more likely to consume less fruit (p = 0.03) and vegetables (p = 0.05). Furthermore, they were significantly more likely to consume foods high in fat, sugar and salt, including chocolate and confectionary, cakes and puddings, sweet pastries, biscuits, meat pies, pizza, hot chips, potato chips, takeaway meals, soft drink, cordial and fruit juice (p = 0.001-0.02). They were also more likely to consider avoiding adding salt to cooking (p = 0.02) and adding sugar to tea or coffee (p = 0.01) as less important for health. These findings suggest that the importance individuals place on taste plays an important role in influencing food choice, dietary behaviors and intake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Does point-of-purchase nutrition labeling influence meal selections? A test in an Army cafeteria.

    PubMed

    Sproul, Allen D; Canter, Deborah D; Schmidt, Jeffrey B

    2003-07-01

    This study assessed the effectiveness of nutrition labeling on sales of targeted entrees and measured the perceived influence that factors such as taste, quality, appearance, fat content, calorie content, and price had on meal selection behavior within an Army cafeteria. A quasi-experimental design was used to compare targeted entrée sales between a 1-year baseline period and two 30-day postintervention periods, after the placement of entrée nutrition labels. A brief questionnaire, distributed to 149 patrons, measured the perceived influence of the aforementioned factors on selections. Analysis of variance detected no significant differences in sales between baseline and the two intervention periods; the factors of taste and quality were rated most influential to meal selection (p < 0.000). A marketing campaign focusing on the health attributes of targeted entrée items was not successful in boosting sales. Sensory attributes (i.e., taste, quality, and appearance) appear to be more influential to meal selection.

  19. Effects of free-range access on production parameters and meat quality, composition and taste in slow-growing broiler chickens.

    PubMed

    Stadig, Lisanne M; Rodenburg, T Bas; Reubens, Bert; Aerts, Johan; Duquenne, Barbara; Tuyttens, Frank A M

    2016-12-01

    Demand for meat from free-range broiler chickens is increasing in several countries. Consumers are motivated by better animal welfare and other product attributes such as quality and taste. However, scientific literature is not unanimous about whether free-range access influences quality, composition, and taste of the meat. Because chickens normally do not use free-range areas optimally, it is possible that provision of more suitable shelter will lead to more pronounced differences between chickens raised indoors and outdoors. In this study, an experiment with 2 production rounds of 600 slow-growing broilers each was performed. In each round, 200 chickens were raised indoors (IN), 200 had free-range access to grassland with artificial shelter (AS), and 200 had free-range access to short-rotation coppice with willow (SRC). Free-range use, feed intake, and growth were monitored, and after slaughter (d72) meat quality, composition, and taste were assessed. Free-range use was higher in SRC than in AS chickens (42.8 vs. 35.1%, P < 0.001). IN chickens were heavier at d70 than AS and SRC chickens (2.79 vs. 2.66 and 2.68 kg, P = 0.005). However, feed intake and conversion did not differ. Breast meat of chickens with free-range access was darker (P = 0.021) and yellower (P = 0.001) than that of IN chickens. Ultimate pH was lower (5.73 vs. 5.79; P = 0.006) and drip loss higher (1.29 vs. 1.09%; P = 0.05) in IN versus AS chickens. The percentage of polyunsaturated fatty acids was higher in AS than in IN meat (35.84 vs. 34.59%; P = 0.021). The taste panel judged breast meat of SRC chickens to be more tender (P = 0.003) and less fibrous (P = 0.013) compared to that of AS and IN chickens, and juicier compared to the IN chickens (P = 0.017). Overall, free-range access negatively affected slaughter weight, but positively affected meat quality, taste, and composition. Only a few differences between AS and SRC were found, possibly due to limited differences in free-range use. © 2016 Poultry Science Association Inc.

  20. Taste and acceptance of pyrophosphates by rats and mice.

    PubMed

    McCaughey, Stuart A; Giza, Barbara K; Tordoff, Michael G

    2007-06-01

    The palatability and taste quality of pyrophosphates were evaluated in a series of behavioral and electrophysiological experiments. In two-bottle choice tests with water, rats strongly preferred some concentrations of Na3HP2O7 and Na4P2O7, moderately preferred some concentrations of K4P2O7 and Fe4(P2O7)3, and were indifferent to or avoided all concentrations of Ca2P2O7 and Na2H2P2O7. The contribution of sodium to the preference for sodium pyrophosphates was ascertained: 1) Rats with a choice between Na4P2O7 and NaCl preferred 1 mM Na4P2O7 to 4 mM NaCl but preferred 40 or 150 mM NaCl to 10 mM Na4P2O7, 2) blocking salt taste transduction by mixing Na4P2O7 with amiloride reduced preferences but did not eliminate them, and 3) three mouse strains (FVB/J, C57BL/6J, and CBA/J) known to differ in sodium preference had the same rank order of preferences for Na3HP2O7 and NaCl, but peak preferences were higher for Na3HP2O7 than for NaCl. The taste qualities of pyrophosphates were determined by measuring taste-evoked responses of neurons in the nucleus of the solitary tract of rats. Across-neuron patterns of activity for sodium pyrophosphates were similar to that of NaCl but the pattern of Na3HP2O7 plus amiloride was unique from those of sweet, salty, sour, bitter, and umami stimuli. Taken together, the results indicate that the high palatability of some concentrations of Na3HP2O7 and Na4P2O7 is due partially to their salty taste, but there must also be another cause, which may include a novel orosensory component distinct from the five major taste qualities.

  1. Metallic taste in cancer patients treated with chemotherapy.

    PubMed

    IJpma, I; Renken, R J; Ter Horst, G J; Reyners, A K L

    2015-02-01

    Metallic taste is a taste alteration frequently reported by cancer patients treated with chemotherapy. Attention to this side effect of chemotherapy is limited. This review addresses the definition, assessment methods, prevalence, duration, etiology, and management strategies of metallic taste in chemotherapy treated cancer patients. Literature search for metallic taste and chemotherapy was performed in PubMed up to September 2014, resulting in 184 articles of which 13 articles fulfilled the inclusion criteria: English publications addressing metallic taste in cancer patients treated with FDA-approved chemotherapy. An additional search in Google Scholar, in related articles of both search engines, and subsequent in the reference lists, resulted in 13 additional articles included in this review. Cancer patient forums were visited to explore management strategies. Prevalence of metallic taste ranged from 9.7% to 78% among patients with various cancers, chemotherapy treatments, and treatment phases. No studies have been performed to investigate the influence of metallic taste on dietary intake, body weight, and quality of life. Several management strategies can be recommended for cancer patients: using plastic utensils, eating cold or frozen foods, adding strong herbs, spices, sweetener or acid to foods, eating sweet and sour foods, using 'miracle fruit' supplements, and rinsing with chelating agents. Although metallic taste is a frequent side effect of chemotherapy and a much discussed topic on cancer patient forums, literature regarding metallic taste among chemotherapy treated cancer patients is scarce. More awareness for this side effect can improve the support for these patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Tastes associated with products in contact with drinking water.

    PubMed

    Marchesan, M; Morran, J

    2004-01-01

    Over the past 9 years the Australian Water Quality Centre (AWQC) has conducted testing in accordance with Australian and New Zealand Standard AS/NZS 4020--"Products for use in contact with drinking water" (1999). A test included as part of this standard is taste of water extracts. This test assesses the ability of products to impart discernible taste to drinking water using panellists trained in accordance with Standard Methods for the Examination of Water and Wastewater--Flavour Profile Analysis 2170 B (1999). Over 1000 products from companies worldwide, have been assessed at the AWQC in accordance with AS/NZS 4020 including pipes, valves, tap fittings and numerous other products used in contact with water. The products must not impart any discernible taste to obtain compliance and be deemed suitable for use in contact with drinking water. This study compiles the products assessed and the types of tastes obtained from both chlorinated and non-chlorinated extracts. In particular the study focuses on taste associated with polyethylene pipes, coatings and valves, which in some instances have been problematic. Analysis revealed that most taste problems occur when chlorinated water has been used in extraction experiments and this is in line with consumer complaints regarding taste imparted by plumbing products. The collation of this data provides a valuable assessment for manufacturers, the water industry and consumers.

  3. Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes1234

    PubMed Central

    Chen, Qing-Ying; Alarcon, Suzanne; Tharp, Anilet; Ahmed, Osama M; Estrella, Nelsa L; Greene, Tiffani A; Rucker, Joseph; Breslin, Paul AS

    2009-01-01

    Background: The TAS1R1 and TAS1R3 G protein–coupled receptors are believed to function in combination as a heteromeric glutamate taste receptor in humans. Objective: We hypothesized that variations in the umami perception of glutamate would correlate with variations in the sequence of these 2 genes, if they contribute directly to umami taste. Design: In this study, we first characterized the general sensitivity to glutamate in a sample population of 242 subjects. We performed these experiments by sequencing the coding regions of the genomic TAS1R1 and TAS1R3 genes in a separate set of 87 individuals who were tested repeatedly with monopotassium glutamate (MPG) solutions. Last, we tested the role of the candidate umami taste receptor hTAS1R1-hTAS1R3 in a functional expression assay. Results: A subset of subjects displays extremes of sensitivity, and a battery of different psychophysical tests validated this observation. Statistical analysis showed that the rare T allele of single nucleotide polymorphism (SNP) R757C in TAS1R3 led to a doubling of umami ratings of 25 mmol MPG/L. Other suggestive SNPs of TAS1R3 include the A allele of A5T and the A allele of R247H, which both resulted in an approximate doubling of umami ratings of 200 mmol MPG/L. We confirmed the potential role of the human TAS1R1-TAS1R3 heteromer receptor in umami taste by recording responses, specifically to l-glutamate and inosine 5′-monophosphate (IMP) mixtures in a heterologous expression assay in HEK (human embryonic kidney) T cells. Conclusions: There is a reliable and valid variation in human umami taste of l-glutamate. Variations in perception of umami taste correlated with variations in the human TAS1R3 gene. The putative human taste receptor TAS1R1-TAS1R3 responds specifically to l-glutamate mixed with the ribonucleotide IMP. Thus, this receptor likely contributes to human umami taste perception. PMID:19587085

  4. Major taste loss in carnivorous mammals

    PubMed Central

    Jiang, Peihua; Josue, Jesusa; Li, Xia; Glaser, Dieter; Li, Weihua; Brand, Joseph G.; Margolskee, Robert F.; Reed, Danielle R.; Beauchamp, Gary K.

    2012-01-01

    Mammalian sweet taste is primarily mediated by the type 1 taste receptor Tas1r2/Tas1r3, whereas Tas1r1/Tas1r3 act as the principal umami taste receptor. Bitter taste is mediated by a different group of G protein-coupled receptors, the Tas2rs, numbering 3 to ∼66, depending on the species. We showed previously that the behavioral indifference of cats toward sweet-tasting compounds can be explained by the pseudogenization of the Tas1r2 gene, which encodes the Tas1r2 receptor. To examine the generality of this finding, we sequenced the entire coding region of Tas1r2 from 12 species in the order Carnivora. Seven of these nonfeline species, all of which are exclusive meat eaters, also have independently pseudogenized Tas1r2 caused by ORF-disrupting mutations. Fittingly, the purifying selection pressure is markedly relaxed in these species with a pseudogenized Tas1r2. In behavioral tests, the Asian otter (defective Tas1r2) showed no preference for sweet compounds, but the spectacled bear (intact Tas1r2) did. In addition to the inactivation of Tas1r2, we found that sea lion Tas1r1 and Tas1r3 are also pseudogenized, consistent with their unique feeding behavior, which entails swallowing food whole without chewing. The extensive loss of Tas1r receptor function is not restricted to the sea lion: the bottlenose dolphin, which evolved independently from the sea lion but displays similar feeding behavior, also has all three Tas1rs inactivated, and may also lack functional bitter receptors. These data provide strong support for the view that loss of taste receptor function in mammals is widespread and directly related to feeding specializations. PMID:22411809

  5. Maintenance of Mouse Gustatory Terminal Field Organization Is Disrupted following Selective Removal of Peripheral Sodium Salt Taste Activity at Adulthood.

    PubMed

    Skyberg, Rolf; Sun, Chengsan; Hill, David L

    2017-08-09

    Neural activity plays a critical role in the development of central circuits in sensory systems. However, the maintenance of these circuits at adulthood is usually not dependent on sensory-elicited neural activity. Recent work in the mouse gustatory system showed that selectively deleting the primary transduction channel for sodium taste, the epithelial sodium channel (ENaC), throughout development dramatically impacted the organization of the central terminal fields of three nerves that carry taste information to the nucleus of the solitary tract. More specifically, deleting ENaCs during development prevented the normal maturation of the fields. The present study was designed to extend these findings by testing the hypothesis that the loss of sodium taste activity impacts the maintenance of the normal adult terminal field organization in male and female mice. To do this, we used an inducible Cre-dependent genetic recombination strategy to delete ENaC function after terminal field maturation occurred. We found that removal of sodium taste neural activity at adulthood resulted in significant reorganization of mature gustatory afferent terminal fields in the nucleus of the solitary tract. Specifically, the chorda tympani and greater superficial petrosal nerve terminal fields were 1.4× and 1.6× larger than age-matched controls, respectively. By contrast, the glossopharyngeal nerve, which is not highly sensitive to sodium taste stimulation, did not undergo terminal field reorganization. These surprising results suggest that gustatory nerve terminal fields remain plastic well into adulthood, which likely impacts central coding of taste information and taste-related behaviors with altered taste experience. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. However, the importance of sensory-driven activity in maintaining these circuits at adulthood, especially in subcortical structures, appears to be much less. Here, we tested whether the loss of sodium taste activity in adult mice impacts the maintenance of how taste nerves project to the first central relay. We found that specific loss of sodium-elicited taste activity at adulthood produced dramatic and selective reorganization of terminal fields in the brainstem. This demonstrates, for the first time, that taste-elicited activity is necessary for the normal maintenance of central gustatory circuits at adulthood and highlights a level of plasticity not seen in other sensory system subcortical circuits. Copyright © 2017 the authors 0270-6474/17/377619-12$15.00/0.

  6. Food protein-originating peptides as tastants - Physiological, technological, sensory, and bioinformatic approaches.

    PubMed

    Iwaniak, Anna; Minkiewicz, Piotr; Darewicz, Małgorzata; Hrynkiewicz, Monika

    2016-11-01

    Taste is one of the factors based on which the organism makes the selection of what to ingest. It also protects humans from ingesting toxic compounds and is one of the main attributes when thinking about food quality. Five basic taste sensations are recognized by humans: bitter, salty, sour, sweet, and umami. The taste of foods is affected by some molecules of some specific chemical nature. One of them are peptides derived from food proteins. Although they are not the major natural compounds originating from food sources that are responsible for the taste, they are in the area of scientific research due to the specific composition of amino acids which are well-known for their sensory properties. Literature data implicate that sweet, bitter, and umami are the tastes attributable to peptides. Moreover, the bitter peptide tastants are the dominant among the other tastes. Additionally, other biological activities like, e.g., inhibiting enzymes that regulate the body functions and acting as preventive food agents of civilization diseases, are also associated with the taste of peptides. The advance in information technologies has contributed to the elaboration of internet archives (databases) as well as in silico tools for the analysis of biological compounds. It also concerns peptides - namely taste carriers originating from foods. Thus, our paper provides a summary of knowledge about peptides as tastants with special attention paid to the following aspects: a) basis of taste perception, b) taste peptides detected in food protein sequences with special emphasis put on the role of bitter peptides, c) peptides that may enhance/suppress the taste of foods, d) databases as well as bioinformatic approaches suitable to study the taste of peptides, e) taste-taste interactions, f) basis of sensory analysis in the evaluation of the taste of molecules, including peptides, and g) the methodology applied to reduce/eliminate the undesired taste of peptides. The list of taste peptides serving some biological functions is presented in the Supplement file. The information provided includes database resources, whereas peptide sequences are given with InChiKeys, which is aimed at facilitating the Google® search. Our collection of data regarding taste peptides may be supportive for the scientists working with the set of peptide data in the context of structure-function activity of peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A Comparison of Two Electric Taste Stimulation Devices

    PubMed Central

    McClure, Scott T.; Lawless, Harry T.

    2016-01-01

    Electrical stimulation of the tongue, commonly used in clinical evaluations of taste dysfunction, can produce a variety of sensations including reports of metallic taste. Two studies compared responses to a fabricated electrical stimulator (a 1.6 V battery, anode side exposed) and a clinical electrogustometer (Rion TR-06). Batteries placed on the anterior dorsal tongue surface produced sensations similar in intensity and quality to those produced by the clinical electrogustometer, with equal intensity on the tongue tip for the 1.6 V battery in the range of 33 – 56 µA from the electrogustometer. A second study examined responses on three areas of the tongue on each side. Responses declined for areas lower in fungiform papillae for both devices, but at different rates. Higher current levels were required to match the battery in lower density areas, indicating spatial summation for the larger battery surface area. A consistent pattern of lateral differences was seen in only one subject. Quality descriptions were similar in frequency whether or not a word list was provided, with metallic, sour, pain and bitter being the most frequently mentioned words for both electric stimuli. Similarities in response to the battery device and electrogustometer were evident in intensity, qualities evoked, lack of a laterality effect and decreasing response in areas with lower fungiform papillae density. The battery device may provide an inexpensive portable alternative to an electrogustometer for use in clinical testing of taste. PMID:17573078

  8. Tactile interaction with taste localization: influence of gustatory quality and intensity.

    PubMed

    Lim, Juyun; Green, Barry G

    2008-02-01

    Taste is always accompanied by tactile stimulation, but little is known about how touch interacts with taste. One exception is evidence that taste can be "referred" to nearby tactile stimulation. It was recently found (Lim J, and Green BG. 2007. The psychophysical relationship between bitter taste and burning sensation: evidence of qualitative similarity. Chem Senses. 32:31-39) that spatial discrimination of taste was poorer for bitterness than for other tastes when the perceived intensities were matched. We hypothesized that this difference may have been caused by greater referral of bitterness by touch. The present study tested this hypothesis by comparing localization of quinine sulfate and sucrose under conditions that minimized and maximized the opportunity for referral. In both conditions, stimulation was produced by 5 cotton swabs spaced 1 cm apart and arranged in an arc to enable simultaneous contact with the front edge of the tongue. Only one swab contained the taste stimulus, whereas the rest were saturated with deionized water. In both conditions, the swabs were stroked up-and-down against the tongue 5 times. Subjects were asked to identify which swab contained the taste stimulus 1) 5 s after the fifth stroke (touch-removed condition) and 2) immediately at the end of the fifth stroke, with the swabs still in contact with the tongue (touch-maintained condition). Ratings of taste intensity were obtained to assess the possible effect of perceived intensity on spatial localization. Taste localization was surprisingly accurate, especially for sucrose, with errors of localization in the range of 1 cm or less. For both stimuli, localization tended to be poorer when the tactile stimulus was present while subjects made their judgments, but the difference between conditions was significant only for the lower concentration of quinine. The results are discussed in terms of both the surprisingly good spatial acuity of taste and the possibility of having a close perceptual relationship between touch and bitter taste.

  9. Longitudinal study of factors affecting taste sense decline in old-old individuals.

    PubMed

    Ogawa, T; Uota, M; Ikebe, K; Arai, Y; Kamide, K; Gondo, Y; Masui, Y; Ishizaki, T; Inomata, C; Takeshita, H; Mihara, Y; Hatta, K; Maeda, Y

    2017-01-01

    The sense of taste plays a pivotal role for personal assessment of the nutritional value, safety and quality of foods. Although it is commonly recognised that taste sensitivity decreases with age, alterations in that sensitivity over time in an old-old population have not been previously reported. Furthermore, no known studies utilised comprehensive variables regarding taste changes and related factors for assessments. Here, we report novel findings from a 3-year longitudinal study model aimed to elucidate taste sensitivity decline and its related factors in old-old individuals. We utilised 621 subjects aged 79-81 years who participated in the Septuagenarians, Octogenarians, Nonagenarians Investigation with Centenarians Study for baseline assessments performed in 2011 and 2012, and then conducted follow-up assessments 3 years later in 328 of those. Assessment of general health, an oral examination and determination of taste sensitivity were performed for each. We also evaluated cognitive function using Montreal Cognitive Assessment findings, then excluded from analysis those with a score lower than 20 in order to secure the validity and reliability of the subjects' answers. Contributing variables were selected using univariate analysis, then analysed with multivariate logistic regression analysis. We found that males showed significantly greater declines in taste sensitivity for sweet and sour tastes than females. Additionally, subjects with lower cognitive scores showed a significantly greater taste decrease for salty in multivariate analysis. In conclusion, our longitudinal study revealed that gender and cognitive status are major factors affecting taste sensitivity in geriatric individuals. © 2016 John Wiley & Sons Ltd.

  10. Taste Mixture Interactions: Suppression, Additivity, and the Predominance of Sweetness

    PubMed Central

    Green, Barry G.; Lim, Juyun; Osterhoff, Floor; Blacher, Karen; Nachtigal, Danielle

    2010-01-01

    Most of what is known about taste interactions has come from studies of binary mixtures. The primary goal of this study was to determine whether asymmetries in suppression between stimuli in binary mixtures predict the perception of tastes in more complex mixtures (e.g., ternary, quaternary mixtures). Also of interest was the longstanding question of whether overall taste intensity derives from the sum of the tastes perceived within a mixture (perceptual additivity) or from the sum of the perceived intensities of the individual stimuli (stimulus additivity). Using the general Labeled Magnitude Scale together with a sip-and-spit procedure, we asked subjects to rate overall taste intensity and the sweetness, sourness, saltiness and bitterness of approximately equi- intense sucrose, NaCl, citric acid and QSO4 stimuli presented alone and in all possible binary, ternary and quaternary mixtures. The results showed a consistent pattern of mixture suppression in which sucrose sweetness tended to be both the least suppressed quality and the strongest suppressor of other tastes. The overall intensity of mixtures was found to be predicted best by perceptual additivity. A second experiment that was designed to rule out potentially confounding effects of the order of taste ratings and the temperature of taste solutions replicated the main findings of the first experiment. Overall, the results imply that mixture suppression favors perception of sweet carbohydrates in foods at the expense of other potentially harmful ingredients, such as high levels of sodium (saltiness) and potential poisons or spoilage (bitterness, sourness). PMID:20800076

  11. Cross-modal tactile-taste interactions in food evaluations

    PubMed Central

    Slocombe, B. G.; Carmichael, D.A.; Simner, J.

    2016-01-01

    Detecting the taste components within a flavoured substance relies on exposing chemoreceptors within the mouth to the chemical components of ingested food. In our paper, we show that the evaluation of taste components can also be influenced by the tactile quality of the food. We first discuss how multisensory factors might influence taste, flavour and smell for both typical and atypical (synaesthetic) populations and we then present two empirical studies showing tactile-taste interactions in the general population. We asked a group of average adults to evaluate the taste components of flavoured food substances, whilst we presented simultaneous cross-sensory visuo-tactile cues within the eating environment. Specifically, we presented foodstuffs between subjects that were otherwise identical but had a rough versus smooth surface, or were served on a rough versus smooth serving-plate. We found no effect of the serving-plate, but we found the rough/smoothness of the foodstuff itself significantly influenced perception: food was rated as significantly more sour if it had a rough (vs. smooth) surface. In modifying taste perception via ostensibly unrelated dimensions, we demonstrate that the detection of tastes within flavours may be influenced by higher level cross-sensory cues. Finally, we suggest that the direction of our cross-sensory associations may speak to the types of hedonic mapping found both in normal multisensory integration, and in the unusual condition of synaesthesia. PMID:26169315

  12. A crossmodal role for audition in taste perception.

    PubMed

    Yan, Kimberly S; Dando, Robin

    2015-06-01

    Our sense of taste can be influenced by our other senses, with several groups having explored the effects of olfactory, visual, or tactile stimulation on what we perceive as taste. Research into multisensory, or crossmodal perception has rarely linked our sense of taste with that of audition. In our study, 48 participants in a crossover experiment sampled multiple concentrations of solutions of 5 prototypic tastants, during conditions with or without broad spectrum auditory stimulation, simulating that of airline cabin noise. Airline cabins are an unusual environment, in which food is consumed routinely under extreme noise conditions, often over 85 dB, and in which the perceived quality of food is often criticized. Participants rated the intensity of solutions representing varying concentrations of the 5 basic tastes on the general Labeled Magnitude Scale. No difference in intensity ratings was evident between the control and sound condition for salty, sour, or bitter tastes. Likewise, panelists did not perform differently during sound conditions when rating tactile, visual, or auditory stimulation, or in reaction time tests. Interestingly, sweet taste intensity was rated progressively lower, whereas the perception of umami taste was augmented during the experimental sound condition, to a progressively greater degree with increasing concentration. We postulate that this effect arises from mechanostimulation of the chorda tympani nerve, which transits directly across the tympanic membrane of the middle ear. (c) 2015 APA, all rights reserved).

  13. Extraversion and taste sensitivity.

    PubMed

    Zverev, Yuriy; Mipando, Mwapatsa

    2008-03-01

    The rationale for investigating the gustatory reactivity as influenced by personality dimensions was suggested by some prior findings of an association between extraversion and acuity in other sensory systems. Detection thresholds for sweet, salty, and bitter qualities of taste were measured in 60 young healthy male and female volunteers using a two-alternative forced-choice technique. Personality of the responders was assessed using the Eysenck Personality Inventory. Multivariate analysis of variance failed to demonstrate a statistically significant interaction between an extraversion-introversion score, neuroticism score, smoking, gender and age. The only reliable negative association was found between the body mass index (BMI) and taste sensitivity (Roy's largest root = 0.05, F(7436.5) = 8.34, P = 0.003). Possible reasons for lack of differences between introverts and extraverts in the values of taste detection thresholds were discussed.

  14. Rewiring the taste system.

    PubMed

    Lee, Hojoon; Macpherson, Lindsey J; Parada, Camilo A; Zuker, Charles S; Ryba, Nicholas J P

    2017-08-17

    In mammals, taste buds typically contain 50-100 tightly packed taste-receptor cells (TRCs), representing all five basic qualities: sweet, sour, bitter, salty and umami. Notably, mature taste cells have life spans of only 5-20 days and, consequently, are constantly replenished by differentiation of taste stem cells. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (that is, ensuring that a labelled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, and so on), we examined how new connections are specified to retain fidelity of signal transmission. Here we show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (SEMA3A and SEMA7A). We demonstrate that targeted expression of SEMA3A or SEMA7A in different classes of TRCs produces peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered mice with bitter neurons that now responded to sweet tastants, sweet neurons that responded to bitter or sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labelled-line sensory circuit preserves signalling integrity despite rapid and stochastic turnover of receptor cells.

  15. Rewiring the Taste System

    PubMed Central

    Lee, Hojoon; Macpherson, Lindsey J.; Parada, Camilo A.; Zuker, Charles S.; Ryba, Nicholas J.P.

    2018-01-01

    In mammals, taste buds typically contain 50-100 tightly packed taste receptor cells (TRCs) representing all five basic qualities: sweet, sour, bitter, salty and umami1,2. Notably, mature taste cells have life spans of only 5-20 days, and consequently, are constantly replenished by differentiation of taste stem cells3. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (i.e. ensuring that a labeled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, etc.), we examined how new connections are specified to retain fidelity of signal transmission. Our results show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (Sema3A and Sema7A)4-6. Here, we demonstrate that targeted expression of Sema3A or Sema7A in different classes of TRCs produce peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered animals whereby bitter neurons now respond to sweet tastants, sweet neurons respond to bitter, or with sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labeled-line sensory circuit preserves signaling integrity despite rapid and stochastic turnover of receptor cells. PMID:28792937

  16. Whole transcriptome profiling of taste bud cells.

    PubMed

    Sukumaran, Sunil K; Lewandowski, Brian C; Qin, Yumei; Kotha, Ramana; Bachmanov, Alexander A; Margolskee, Robert F

    2017-08-08

    Analysis of single-cell RNA-Seq data can provide insights into the specific functions of individual cell types that compose complex tissues. Here, we examined gene expression in two distinct subpopulations of mouse taste cells: Tas1r3-expressing type II cells and physiologically identified type III cells. Our RNA-Seq libraries met high quality control standards and accurately captured differential expression of marker genes for type II (e.g. the Tas1r genes, Plcb2, Trpm5) and type III (e.g. Pkd2l1, Ncam, Snap25) taste cells. Bioinformatics analysis showed that genes regulating responses to stimuli were up-regulated in type II cells, while pathways related to neuronal function were up-regulated in type III cells. We also identified highly expressed genes and pathways associated with chemotaxis and axon guidance, providing new insights into the mechanisms underlying integration of new taste cells into the taste bud. We validated our results by immunohistochemically confirming expression of selected genes encoding synaptic (Cplx2 and Pclo) and semaphorin signalling pathway (Crmp2, PlexinB1, Fes and Sema4a) components. The approach described here could provide a comprehensive map of gene expression for all taste cell subpopulations and will be particularly relevant for cell types in taste buds and other tissues that can be identified only by physiological methods.

  17. Biomimetic Sensors for the Senses: Towards Better Understanding of Taste and Odor Sensation.

    PubMed

    Wu, Chunsheng; Du, Ya-Wen; Huang, Liquan; Ben-Shoshan Galeczki, Yaron; Dagan-Wiener, Ayana; Naim, Michael; Niv, Masha Y; Wang, Ping

    2017-12-11

    Taste and smell are very important chemical senses that provide indispensable information on food quality, potential mates and potential danger. In recent decades, much progress has been achieved regarding the underlying molecular and cellular mechanisms of taste and odor senses. Recently, biosensors have been developed for detecting odorants and tastants as well as for studying ligand-receptor interactions. This review summarizes the currently available biosensing approaches, which can be classified into two main categories: in vitro and in vivo approaches. The former is based on utilizing biological components such as taste and olfactory tissues, cells and receptors, as sensitive elements. The latter is dependent on signals recorded from animals' signaling pathways using implanted microelectrodes into living animals. Advantages and disadvantages of these two approaches, as well as differences in terms of sensing principles and applications are highlighted. The main current challenges, future trends and prospects of research in biomimetic taste and odor sensors are discussed.

  18. Biomimetic Sensors for the Senses: Towards Better Understanding of Taste and Odor Sensation

    PubMed Central

    Wu, Chunsheng; Du, Ya-Wen; Huang, Liquan; Ben-Shoshan Galeczki, Yaron; Dagan-Wiener, Ayana; Naim, Michael; Wang, Ping

    2017-01-01

    Taste and smell are very important chemical senses that provide indispensable information on food quality, potential mates and potential danger. In recent decades, much progress has been achieved regarding the underlying molecular and cellular mechanisms of taste and odor senses. Recently, biosensors have been developed for detecting odorants and tastants as well as for studying ligand-receptor interactions. This review summarizes the currently available biosensing approaches, which can be classified into two main categories: in vitro and in vivo approaches. The former is based on utilizing biological components such as taste and olfactory tissues, cells and receptors, as sensitive elements. The latter is dependent on signals recorded from animals’ signaling pathways using implanted microelectrodes into living animals. Advantages and disadvantages of these two approaches, as well as differences in terms of sensing principles and applications are highlighted. The main current challenges, future trends and prospects of research in biomimetic taste and odor sensors are discussed. PMID:29232897

  19. Sensory properties, consumer liking and choice determinants of Lucanian dry cured sausages.

    PubMed

    Braghieri, Ada; Piazzolla, Nicoletta; Carlucci, Angela; Bragaglio, Andrea; Napolitano, Fabio

    2016-01-01

    Based on a food choice questionnaire we identified as the most influential aspects affecting consumer choice of Lucanian dry cured sausages: taste, animal health and addition of preservatives. Therefore, as a second step we conducted a study to assess the effect of preservative addition on sausage sensory properties and consumer liking, with a particular emphasis on taste. The addition of preservatives did not change the perception of taste attributes by an experienced panel, whereas differences were detected in terms of odor, texture and color attributes. However, consumers did not express a preference for a particular product in terms of overall liking, taste/flavor liking and texture liking, whereas appearance liking was higher for sausages containing preservatives. Since sausage taste was unaffected by the addition of preservative, in order to prevent the potentially detrimental effect of a label indicating their presence, producers should make an effort to obtain high quality Lucanian dry cured sausages without using them. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Comparative Evaluation of the Effect of Menstruation, Pregnancy and Menopause on Salivary Flow Rate, pH and Gustatory Function.

    PubMed

    Saluja, Pulin; Shetty, Vishwaprakash; Dave, Aparna; Arora, Manpreet; Hans, Vibha; Madan, Ajay

    2014-10-01

    There are five situations in a women's life during which hormone fluctuations make them more susceptible to oral health problems - during puberty, at certain points in the monthly menstrual cycle, when using birth control pills, during pregnancy, and at menopause. The present study aimed at evaluating the effect of menstruation, pregnancy and menopause on salivary flow rate, pH and gustatory function. The study was carried out on 120 patients including 30 controls (with normal menstrual cycle of 28 to 30 d) and 90 cases (30 patients within three days of menstruation, 30 pregnant and 30 postmenopausal). Paraffin-stimulated saliva samples were obtained by expectoration to calculate salivary flow rate, pH was measured electrometically and patients were prospectively evaluated for gustatory function. Then, whole mouth taste test was performed in which the quality identification and intensity ratings of taste solutions were measured. No statistically significant difference was found between the groups with respect to salivary flow rate but pH values were significantly lower in post menopausal women (p<0.05). Regarding correct quality identification the results were non-significant. Intensity for taste perception for sucrose was significantly lower in postmenopausal women than intensity of taste perception for other tastes (p<0.05). Also, postmenopausal women reported change in their dietary habits as all of them expressed liking for sweeter food. Reduced salivary flow rate and pH in postmen-opausal women may make them more prone to the occurrence of oral health problems. Also, pregnant and postmenopausal women appeared to have a reduced perception of sucrose, which can alter eating habits, such as intake of more sweet foods whereas no significant difference is observed in taste perception of NaCl, citric acid and quinine hydrochloride between the subjects.

  1. Dollars and scents: commercial opportunities in olfaction and taste.

    PubMed

    Gilbert, Avery N; Firestein, Stuart

    2002-11-01

    Research successes over the past decade have provided a broad outline of the neuroscience of olfaction and taste. Our understanding of these systems now spans the molecular to the psychological. It will soon reach critical mass and begin to generate a variety of practical applications with commercial potential. Given the ubiquity of smell and taste and their importance to health, nutrition and quality of life, these applications could have a major impact on consumer product markets and create entirely new ones. Sensory biotechnology could be the first post-genomic application to break through to the consumer market. We describe odor modulation technologies with implications for food intake, health care and other arenas. Our deeper understanding of olfaction and taste in animal behavior and reproduction provides opportunities in pest control and animal husbandry, where environmentally neutral interventions are much in demand.

  2. Innate and learned preferences for sweet taste during childhood.

    PubMed

    Ventura, Alison K; Mennella, Julie A

    2011-07-01

    In nature, carbohydrates are a source of energy often equated with sweetness, the detection of which is associated with powerful hedonic appeal. Intakes of processed carbohydrates in the form of added sugars and sugar-sweetened beverages have risen consistently among all age groups over the last two decades. In this review, we describe the biological underpinnings that drive the consumption of sweet-tasting foods among pediatric populations. Scientific literature suggests that children's liking for all that is sweet is not solely a product of modern-day technology and advertising but reflects their basic biology. In fact, heightened preference for sweet-tasting foods and beverages during childhood is universal and evident among infants and children around the world. The liking for sweet tastes during development may have ensured the acceptance of sweet-tasting foods, such as mother's milk and fruits. Moreover, recent research suggests that liking for sweets may be further promoted by the pain-reducing properties of sugars. An examination of the basic biology of sweet taste during childhood provides insight, as well as new perspectives, for how to modify children's preferences for and intakes of sweet foods to improve their diet quality.

  3. BitterDB: a database of bitter compounds

    PubMed Central

    Wiener, Ayana; Shudler, Marina; Levit, Anat; Niv, Masha Y.

    2012-01-01

    Basic taste qualities like sour, salty, sweet, bitter and umami serve specific functions in identifying food components found in the diet of humans and animals, and are recognized by proteins in the oral cavity. Recognition of bitter taste and aversion to it are thought to protect the organism against the ingestion of poisonous food compounds, which are often bitter. Interestingly, bitter taste receptors are expressed not only in the mouth but also in extraoral tissues, such as the gastrointestinal tract, indicating that they may play a role in digestive and metabolic processes. BitterDB database, available at http://bitterdb.agri.huji.ac.il/bitterdb/, includes over 550 compounds that were reported to taste bitter to humans. The compounds can be searched by name, chemical structure, similarity to other bitter compounds, association with a particular human bitter taste receptor, and so on. The database also contains information on mutations in bitter taste receptors that were shown to influence receptor activation by bitter compounds. The aim of BitterDB is to facilitate studying the chemical features associated with bitterness. These studies may contribute to predicting bitterness of unknown compounds, predicting ligands for bitter receptors from different species and rational design of bitterness modulators. PMID:21940398

  4. Interaction model of steviol glycosides from Stevia rebaudiana (Bertoni) with sweet taste receptors: A computational approach.

    PubMed

    Mayank; Jaitak, Vikas

    2015-08-01

    Docking studies were performed on natural sweeteners from Stevia rebaudiana by constructing homology models of T1R2 and T1R3 subunits of human sweet taste receptors. Ramachandran plot, PROCHECK results and ERRAT overall quality factor were used to validate the quality of models. Furthermore, docking results of steviol glycosides (SG's) were correlated significantly with data available in the literature which enabled to predict the exact sweetness rank order of SG's. The binding pattern indicated that Asn 44, Ans 52, Ala 345, Pro 343, Ile 352, Gly 346, Gly 47, Ala 354, Ser 336, Thr 326 and Ser 329 are the main interacting amino acid residues in case of T1R2 and Arg 56, Glu 105, Asp 215, Asp 216, Glu 148, Asp 258, Lys 255, Ser 104, Glu 217, Leu 51, Arg 52 for T1R3, respectively. Amino acids interact with SG's mainly by forming hydrogen bonds with the hydroxyl group of glucose moieties. Significant variation in docked poses of all the SG's were found. In this study, we have proposed the mechanism of the sweetness of the SG's in the form of multiple point stimulation model by considering the diverse binding patterns of various SG's, as well as their structural features. It will give further insight in understanding the differences in the quality of taste and will be used to improve the taste of SG's using semi-synthetic approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. THE EFFECT OF $gamma$-IRRADIATION ON ALCOHOLIC BEVERAGES AND ITS POTENTIALITY FOR PRACTICAL APLICATION (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okazawa, Y.; Namiki, M.; Iida, S.

    Generally, changes in flavor and taste of alcoholic beverages caused by irradiation of Co/sub gamma / rays are remarkable. In the case of Sake (Japanese rice wine), artificial Sake, and wines, occurrence of off-flavor and deterioration in qualities are unavoidable when they are irradiated more than about 5 x 10/sup 4/ r. However, maturing of taste and improvement of qualities by irradiation of relatively lower doses are found. The suitabie dose range for maturing effect depends on the condition of materials exposed to irradiation, and in order to prevent off-flavor development, substitution of gas phase during irradiation seems to bemore » effective. Similar maturing effects are obtained with many distilled liquors. The maturities are markediy promoted with doses of 1 x 10/sup 5/ to 3 x 10/sup 5/ r. As doses become greater, losses of characteristic original flavor and stimulative tastes are observed. Radiation effects are able to improve qualities of Sho-chu spirits (distillates of ferment mashes prepared from rice and sweet potato). The changes of whiskies and brandies caused by gamma irradiation, immediately after distillation and before storage, are of interest. Flavor change is similar to that occurring in the eariy period of storage in barrels, and the maturity is equal to that of beverages stored several years. Chemical analysis of components and measurements of physical properties are carried out in relation with the changes in flavors and taste. (JAIF)« less

  6. Evidence supporting oral sensitivity to complex carbohydrates independent of sweet taste sensitivity in humans.

    PubMed

    Low, Julia Y Q; Lacy, Kathleen E; McBride, Robert L; Keast, Russell S J

    2017-01-01

    Compared to simple sugars, complex carbohydrates have been assumed invisible to taste. However, two recent studies proposed that there may be a perceivable taste quality elicited by complex carbohydrates independent of sweet taste. There is precedent with behavioural studies demonstrating that rats are very attracted to complex carbohydrates, and that complex carbohydrates are preferred to simple sugars at low concentrations. This suggests that rats may have independent taste sensors for simple sugars and complex carbohydrates. The aim of this paper is to investigate oral sensitivities of two different classes of complex carbohydrates (a soluble digestible and a soluble non-digestible complex carbohydrate), and to compare these to other caloric and non-nutritive sweeteners in addition to the prototypical tastes using two commonly used psychophysical measures. There were strong correlations between the detection thresholds and mean intensity ratings for complex carbohydrates (maltodextrin, oligofructose) (r = 0.94, P < 0.001). There were no significant correlations between the detection thresholds of the complex carbohydrates (maltodextrin, oligofructose) and the sweeteners (glucose, fructose, sucralose, Rebaudioside A, erythritol) (all P > 0.05). However, moderate correlations were observed between perceived intensities of complex carbohydrates and sweeteners (r = 0.48-0.61, P < 0.05). These data provide evidence that complex carbohydrates can be sensed in the oral cavity over a range of concentrations independent of sweet taste sensitivity at low concentrations, but with partial overlap with sweet taste intensity at higher concentrations.

  7. Evidence supporting oral sensitivity to complex carbohydrates independent of sweet taste sensitivity in humans

    PubMed Central

    Lacy, Kathleen E.; Keast, Russell S. J.

    2017-01-01

    Compared to simple sugars, complex carbohydrates have been assumed invisible to taste. However, two recent studies proposed that there may be a perceivable taste quality elicited by complex carbohydrates independent of sweet taste. There is precedent with behavioural studies demonstrating that rats are very attracted to complex carbohydrates, and that complex carbohydrates are preferred to simple sugars at low concentrations. This suggests that rats may have independent taste sensors for simple sugars and complex carbohydrates. The aim of this paper is to investigate oral sensitivities of two different classes of complex carbohydrates (a soluble digestible and a soluble non-digestible complex carbohydrate), and to compare these to other caloric and non-nutritive sweeteners in addition to the prototypical tastes using two commonly used psychophysical measures. There were strong correlations between the detection thresholds and mean intensity ratings for complex carbohydrates (maltodextrin, oligofructose) (r = 0.94, P < 0.001). There were no significant correlations between the detection thresholds of the complex carbohydrates (maltodextrin, oligofructose) and the sweeteners (glucose, fructose, sucralose, Rebaudioside A, erythritol) (all P > 0.05). However, moderate correlations were observed between perceived intensities of complex carbohydrates and sweeteners (r = 0.48–0.61, P < 0.05). These data provide evidence that complex carbohydrates can be sensed in the oral cavity over a range of concentrations independent of sweet taste sensitivity at low concentrations, but with partial overlap with sweet taste intensity at higher concentrations. PMID:29281655

  8. A physiologic role for serotonergic transmission in adult rat taste buds.

    PubMed

    Jaber, Luc; Zhao, Fang-li; Kolli, Tamara; Herness, Scott

    2014-01-01

    Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the afferent signal. Serotonin may thus play a major modulatory role within peripheral taste in shaping the afferent taste signals prior to their transmission across gustatory nerves.

  9. Radiation-induced changes in gustatory function comparison of effects of neutron and photon irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mossman, K.L.; Chencharick, J.D.; Scheer, A.C.

    1979-04-01

    Changes in gustatory function were measured in 51 patients with various forms of cancer who received radiation to the head and neck region. Forty patients (group I) were treated with conventional photon radiation (e.g. 66 Gy/7 weeks), and 11 patients (group II) were treated with cyclotron produced fast neutrons (e.g. 22 Gy/7 weeks). Taste acuity was measured for four taste qualities (salt, sweet, sour, and bitter) by a forced choice-three stimulus drop technique which measured detection and recognition thresholds and by a forced scaling technique which measured taste intensity responsiveness. Subjective complaints of anorexia, dysgeusia, taste loss, and xerostomia weremore » also recorded. Patients were studied before, during and up to two months after therapy. Prior to therapy, detection and recognition thresholds, intensity responsiveness, and the frequency of subjective complaints in patients from groups I and II were statistically equivalent. During and up to 2 months after therapy, taste impairment and frequency of subjective complaints increased significantly in neutron and photon treated patients, but were statistically equivalent. Results of this study indicate that gustatory tissue response as measured by taste detection and recognition and intensity responsiveness, and the frequency of subjective complaints related to taste are statistically equivalent in patients before, during, or up 2 months after they were given either neutron or photon radiation for tumors of the head and neck.« less

  10. An assessment of the water quality of drinking water in rural districts in Zimbabwe. The case of Gokwe South, Nkayi, Lupane, and Mwenezi districts

    NASA Astrophysics Data System (ADS)

    Hoko, Zvikomborero

    Zimbabwe generally receives an average rainfall of 675 mm per annum of which only a maximum of 10% finds its way to rivers as runoff. Gokwe, Nkayi, Lupane and Mwenezi are some of the driest districts in Zimbabwe having mean annual runoffs (MAR) in the range 17-70 mm. River flows especially in Nkayi and Lupane are seasonal and often dry in the period June to November every year. The Kalahari sands predominantly found in such areas as Gokwe, Nkayi, and Lupane promote rapid percolation of rainwater leaving little runoff. The main source of water for domestic purposes in these areas is groundwater with very little reliance on surface water. This study analyzed the water quality of water points in Gokwe South, Nkayi, Lupane, and Mwenezi districts. Parameters analyzed were pH, temperature, dissolved oxygen (DO), turbidity and electrical conductivity (EC). Water quality perceptions from the villagers and the research team were investigated and possible correlations studied. Water quality perceptions included, taste and soap consumption and colour. The uses of the water at domestic level as well as available alternatives to borehole water were investigated. The pH generally ranged from 6.5 to 8.0, which is within the Canadian guidelines. DO was 0.3-5.9 mg/l while turbidity ranged from 0 to 259 NTU with Mwenezi having the highest turbidity value. Conductivity ranged from 70 to 9800 μS/cm with the lowest and highest values recorded in Gokwe and Mwenezi. It was found out that the water quality in terms of taste and odour was 97% satisfactory for Gokwe South, 85% Nkayi, 64% Lupane, and 62% for Mwenezi. High soap consumption which is related to hardness was perceived to be least in Lupane (14%) and highest in Mwenezi with 81%. In general taste complaints also corresponded to high soap consumption but the opposite was not true. It was observed that there was no clear correlation between the quality parameters studied and perceived quality as for example satisfactory taste responses were obtained at EC values higher than the threshold minimum value for objection.

  11. Orosensory responsiveness to and preference for hydroxide-containing salts in mice.

    PubMed

    St John, Steven J; Boughter, John D

    2009-07-01

    Historically, taste researchers have considered the possibility that the gustatory system detects basic compounds, such as those containing the hydroxide ion, but evidence for an "alkaline taste" has not been strong. We found that, in 48 h, 2-bottle preference tests, C3HeB/FeJ (C3) mice showed a preference for Ca(OH)(2), whereas SWR/J (SW) mice showed avoidance. Strain differences were also apparent to NaOH but not CaCl(2). Follow-up studies showed that the strain difference for Ca(OH)(2) was stable over time (Experiment 2) but that C3 and SW mice did not differ in their responses to Ca(OH)(2) or NaOH in brief-access tests, where both mice avoided high concentrations of these compounds (Experiment 3). In order to assess the perceived quality of Ca(OH)(2), mice were tested in 2 taste aversion generalization experiments (Experiments 4 and 5). Aversions to Ca(OH)(2) generalized to NaOH but not CaCl(2) in both strains, suggesting that the generalization was based on the hydroxide ion. Both strains also generalized aversions to quinine, suggesting the possibility that the hydroxide ion has a bitter taste quality to these mice, despite the preference shown by C3 mice to middle concentrations in long-term tests.

  12. Males and females show differential brain activation to taste when hungry and sated in gustatory and reward areas

    PubMed Central

    Haase, Lori; Green, Erin; Murphy, Claire

    2011-01-01

    Although males and females differ in eating behavior and prevalence rates for eating disorders and obesity, little is known about gender differences in cortical activation to pleasant and unpleasant pure tastes during the physiological states of hunger and satiety. Twenty-one healthy young adults (12 females and 9 males) underwent two functional magnetic resonance imaging scans. Using four pure tastants of differing qualities (i.e., salty, sour, bitter, sweet), the present study examined gender differences in fMRI activation during two motivational states (hunger and satiety). There was greater change in fMRI activation from hunger to satiety in males than females in response to all tastes within the middle frontal gyrus (BA 10), insula, and cerebellum. Males also had greater change in activation from hunger to satiety, relative to females, in limbic regions including dorsal striatum, amygdala, parahippocampal gyrus, and posterior and anterior cingulate; however, activation was stimulus dependent, despite equivalent ratings in perceived pleasantness and intensity. Interestingly, males and females showed significant change from hunger to satiety in response to citric acid, suggesting that in addition to gender and physiological condition, stimulus quality is an important factor in taste fMRI activation. These gender differences may have implications for the pathophysiology of eating disorders and obesity. PMID:21718731

  13. Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes.

    PubMed

    Espley, Richard V; Bovy, Arnaud; Bava, Christina; Jaeger, Sara R; Tomes, Sumathi; Norling, Cara; Crawford, Jonathan; Rowan, Daryl; McGhie, Tony K; Brendolise, Cyril; Putterill, Jo; Schouten, Henk J; Hellens, Roger P; Allan, Andrew C

    2013-05-01

    Consumers of whole foods, such as fruits, demand consistent high quality and seek varieties with enhanced health properties, convenience or novel taste. We have raised the polyphenolic content of apple by genetic engineering of the anthocyanin pathway using the apple transcription factor MYB10. These apples have very high concentrations of foliar, flower and fruit anthocyanins, especially in the fruit peel. Independent lines were examined for impacts on tree growth, photosynthesis and fruit characteristics. Fruit were analysed for changes in metabolite and transcript levels. Fruit were also used in taste trials to study the consumer perception of such a novel apple. No negative taste attributes were associated with the elevated anthocyanins. Modification with this one gene provides near isogenic material and allows us to examine the effects on an established cultivar, with a view to enhancing consumer appeal independently of other fruit qualities. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  14. Formulation design of taste-masked particles, including famotidine, for an oral fast-disintegrating dosage form.

    PubMed

    Mizumoto, Takao; Tamura, Tetsuya; Kawai, Hitoshi; Kajiyama, Atsushi; Itai, Shigeru

    2008-04-01

    In this study, the taste-masking of famotidine, which could apply to any fast-disintegrating tablet, was investigated using the spray-dry method. The target characteristics of taste-masked particles were set as follows: the dissolution rate is not to be more than 30% at 1 min and not less than 85% at 15 min, and the particle size is not to be more than 150 microm in diameter to avoid a gritty feeling in the mouth. The target dissolution profiles of spray-dried particles consisting of Aquacoat ECD30 and Eudragit NE30D or triacetin was accomplished by the screening of formulas and the appropriate lab-scale manufacturing conditions. Lab-scale testing produced taste-masked particles that met the formulation targets. On the pilot scale, spray-dried particles with attributes, such as dissolution rate and particle size, of the same quality were produced, and reproducibility was also confirmed. This confirmed that the spray-dry method produced the most appropriate taste-masked particles for fast-disintegrating dosage forms.

  15. [Four properties law of nature data of Chinese materia medica in "Chinese herbal medicine (CHM)"].

    PubMed

    Yang, Xue-Mei; Lin, Duan-Yi; Lai, Xin-Mei; Chen, Mei-Mei; Huang, Lu-Qi

    2013-05-01

    In order to provide theoretical clues and data support for the use of Chinese medicine clinical drug, experimental study of Chinese materia medica and development of new resources of Chinese materia medica, the four properties as the core, the relationships of property, flavor, channel tropism and toxicity in nature data of Chinese materia medica were analyzed. The spearman rank correlation method was employed to analyze 8 356 Chinese drugs with characteristic of four properties from " Chinese Herbal Medicine" based on data level coding. It was discovered that four properties showed significant positive correlations with tastes of "pungent and sweet" , channels of "spleen" , "stomach" , "kidney" and "toxicity" , but also showed significant negative correlations with tastes of "bitter" and "light" and six channels such as "large intestine" , "heart", "bladder" , "gallbladder" , "small intestine" and "lung" (in descending order of correlation ) (P <0. 01). It was indicated that the more hot the Chinese medicine nature, the more possible it contained "toxicity" , tastes of "pungent" and "sweet" , and the more possible it was belong to channels of "spleen" , "stomach" and "kidney". As well, the more cold the Chinese medicine nature, the more possible it contained tastes of "bitter" and "light", and the more possible it was belong to six channels such as "large intestine", etc.

  16. Sweet and bitter taste of ethanol in C57BL/6J and DBA2/J mouse strains.

    PubMed

    Blizard, David A

    2007-01-01

    Studies of inbred strains of rats and mice have suggested a positive association between strain variations in sweet taste and ethanol intake. However, strain associations by themselves are insufficient to support a functional link between taste and ethanol intake. We used conditioned taste aversion (CTA) to explore the sweet and bitter taste of ethanol and ability to detect sucrose, quinine and ethanol in C57BL/6J (B6) and DBA/2J (D2) mouse strains that are frequently used in alcohol research. The present study showed that C57BL/6J mice generalized taste aversions from sucrose and quinine solutions to 10% ethanol and, reciprocally, aversions to 10% ethanol generalized to each of these solutions presented separately. Only conditioned aversions to quinine generalized to ethanol in the DBA/2J strain but an aversion conditioned to ethanol did not generalize reciprocally to quinine. Thus, considering these two gustatory qualities, 10% ethanol tastes both sweet and bitter to B6 mice but only bitter to D2. Both strains were able to generalize taste aversions across different concentrations of the same compound. B6 were able to detect lower concentrations of quinine than D2 but both strains were able to detect sucrose and (in contrast to previous findings) ethanol at similar concentrations. The strain-dependent gustatory profiles for ethanol may make an important contribution to the understanding of the undoubtedly complex mechanisms influencing high ethanol preference of B6 and pronounced ethanol avoidance of D2 mice.

  17. Identification of a Drosophila glucose receptor using Ca2+ imaging of single chemosensory neurons.

    PubMed

    Miyamoto, Tetsuya; Chen, Yan; Slone, Jesse; Amrein, Hubert

    2013-01-01

    Evaluation of food compounds by chemosensory cells is essential for animals to make appropriate feeding decisions. In the fruit fly Drosophila melanogaster, structurally diverse chemicals are detected by multimeric receptors composed of members of a large family of Gustatory receptor (Gr) proteins. Putative sugar and bitter receptors are expressed in distinct subsets of Gustatory Receptor Neurons (GRN) of taste sensilla, thereby assigning distinct taste qualities to sugars and bitter tasting compounds, respectively. Here we report a Ca(2+) imaging method that allows association of ligand-mediated responses to a single GRN. We find that different sweet neurons exhibit distinct response profiles when stimulated with various sugars, and likewise, different bitter neurons exhibit distinct response profiles when stimulated with a set of bitter chemicals. These observations suggest that individual neurons within a taste modality are represented by distinct repertoires of sweet and bitter taste receptors, respectively. Furthermore, we employed this novel method to identify glucose as the primary ligand for the sugar receptor Gr61a, which is not only expressed in sweet sensing neurons of classical chemosensory sensilla, but also in two supersensitive neurons of atypical taste sensilla. Thus, single cell Ca(2+) imaging can be employed as a powerful tool to identify ligands for orphan Gr proteins.

  18. T1r3 taste receptor involvement in gustatory neural responses to ethanol and oral ethanol preference.

    PubMed

    Brasser, Susan M; Norman, Meghan B; Lemon, Christian H

    2010-05-01

    Elevated alcohol consumption is associated with enhanced preference for sweet substances across species and may be mediated by oral alcohol-induced activation of neurobiological substrates for sweet taste. Here, we directly examined the contribution of the T1r3 receptor protein, important for sweet taste detection in mammals, to ethanol intake and preference and the neural processing of ethanol taste by measuring behavioral and central neurophysiological responses to oral alcohol in T1r3 receptor-deficient mice and their C57BL/6J background strain. T1r3 knockout and wild-type mice were tested in behavioral preference assays for long-term voluntary intake of a broad concentration range of ethanol, sucrose, and quinine. For neurophysiological experiments, separate groups of mice of each genotype were anesthetized, and taste responses to ethanol and stimuli of different taste qualities were electrophysiologically recorded from gustatory neurons in the nucleus of the solitary tract. Mice lacking the T1r3 receptor were behaviorally indifferent to alcohol (i.e., ∼50% preference values) at concentrations typically preferred by wild-type mice (5-15%). Central neural taste responses to ethanol in T1r3-deficient mice were significantly lower compared with C57BL/6J controls, a strain for which oral ethanol stimulation produced a concentration-dependent activation of sweet-responsive NTS gustatory neurons. An attenuated difference in ethanol preference between knockouts and controls at concentrations >15% indicated that other sensory and/or postingestive effects of ethanol compete with sweet taste input at high concentrations. As expected, T1r3 knockouts exhibited strongly suppressed behavioral and neural taste responses to sweeteners but did not differ from wild-type mice in responses to prototypic salt, acid, or bitter stimuli. These data implicate the T1r3 receptor in the sensory detection and transduction of ethanol taste.

  19. Food for patients at nutritional risk: a model of food sensory quality to promote intake.

    PubMed

    Sorensen, Janice; Holm, Lotte; Frøst, Michael Bom; Kondrup, Jens

    2012-10-01

    The aim was to investigate food sensory quality as experienced and perceived by patients at nutritional risk within the context of establishing a framework to develop foods to develop foods to promote intake. Patients at nutritional risk (NRS-2002; food intake ≤ 75% of requirements) were observed at meals in hospital (food choice, hunger/fullness/appetite scores). This was followed by a semi-structured interview based on the observations and focusing on food sensory perception and eating ability as related to food quality. Two weeks post-discharge, a 3-day food record was taken and interviews were repeated by phone. Interviews were transcribed, coded, and analysed thematically. Patients (N = 22) from departments of gastrointestinal surgery, oncology, infectious medicine, cardiology, and hepatology were interviewed at meals (N = 65) in hospital (82%) and post-discharge (18%). Food sensory perception and eating ability dictated specific food sensory needs (i.e., appearance, aroma, taste, texture, temperature, and variety defining food sensory quality to promote intake) within the context of motivation to eat including: pleasure, comfort, and survival. Patients exhibited large inter- and intra-individual variability in their food sensory needs. The study generated a model for optimising food sensory quality and developing user-driven, innovative foods to promote intake in patients at nutritional risk. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  20. Smell and Taste

    MedlinePlus

    ... Programs Professional Development Home AcademyU Home Study Course Maintenance of Certification Conferences & Events Practice Management Home Resources Quality Clinical Data Registry Research Reimbursement ...

  1. Improving fruit quality and phytochemical content through better nutrient management practices

    USDA-ARS?s Scientific Manuscript database

    Consumer preference quality traits (e.g. taste, texture) of muskmelons (Cucumis melo L.) and many other fruits are strongly influenced by cultivar as well as soil properties, such as soil type and nutrient supply capacity. Among nutrients, potassium (K) has the strongest influence on quality parame...

  2. Expectation or Sensorial Reality? An Empirical Investigation of the Biodynamic Calendar for Wine Drinkers

    PubMed Central

    Parr, Wendy V.; Valentin, Dominique; Reedman, Phil; Grose, Claire; Green, James A.

    2017-01-01

    The study’s aim was to investigate a central tenet of biodynamic philosophy as applied to wine tasting, namely that wines taste different in systematic ways on days determined by the lunar cycle. Nineteen New Zealand wine professionals tasted blind 12 Pinot noir wines at times determined within the biodynamic calendar for wine drinkers as being favourable (Fruit day) and unfavourable (Root day) for wine tasting. Tasters rated each wine four times, twice on a Fruit day and twice on a Root day, using 20 experimenter-provided descriptors. Wine descriptors spanned a range of varietal-relevant aroma, taste, and mouthfeel characteristics, and were selected with the aim of elucidating both qualitative and quantitative aspects of each wine’s perceived aromatic, taste, and structural aspects including overall wine quality and liking. A post-experimental questionnaire was completed by each participant to determine their degree of knowledge about the purpose of the study, and their awareness of the existence of the biodynamic wine drinkers’ calendar. Basic wine physico-chemical parameters were determined for the wines tasted on each of a Fruit day and a Root day. Results demonstrated that the wines were judged differentially on all attributes measured although type of day as determined by the biodynamic calendar for wine drinkers did not influence systematically any of the wine characteristics evaluated. The findings highlight the importance of testing experimentally practices that are based on anecdotal evidence but that lend themselves to empirical investigation. PMID:28046047

  3. Expectation or Sensorial Reality? An Empirical Investigation of the Biodynamic Calendar for Wine Drinkers.

    PubMed

    Parr, Wendy V; Valentin, Dominique; Reedman, Phil; Grose, Claire; Green, James A

    2017-01-01

    The study's aim was to investigate a central tenet of biodynamic philosophy as applied to wine tasting, namely that wines taste different in systematic ways on days determined by the lunar cycle. Nineteen New Zealand wine professionals tasted blind 12 Pinot noir wines at times determined within the biodynamic calendar for wine drinkers as being favourable (Fruit day) and unfavourable (Root day) for wine tasting. Tasters rated each wine four times, twice on a Fruit day and twice on a Root day, using 20 experimenter-provided descriptors. Wine descriptors spanned a range of varietal-relevant aroma, taste, and mouthfeel characteristics, and were selected with the aim of elucidating both qualitative and quantitative aspects of each wine's perceived aromatic, taste, and structural aspects including overall wine quality and liking. A post-experimental questionnaire was completed by each participant to determine their degree of knowledge about the purpose of the study, and their awareness of the existence of the biodynamic wine drinkers' calendar. Basic wine physico-chemical parameters were determined for the wines tasted on each of a Fruit day and a Root day. Results demonstrated that the wines were judged differentially on all attributes measured although type of day as determined by the biodynamic calendar for wine drinkers did not influence systematically any of the wine characteristics evaluated. The findings highlight the importance of testing experimentally practices that are based on anecdotal evidence but that lend themselves to empirical investigation.

  4. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to bitter, sweet, and umami taste stimuli

    PubMed Central

    DeSimone, John A.; Phan, Tam-Hao T.; Ren, ZuoJun; Mummalaneni, Shobha

    2012-01-01

    The relationship between taste receptor cell (TRC) intracellular Ca2+ ([Ca2+]i) and rat chorda tympani (CT) nerve responses to bitter (quinine and denatonium), sweet (sucrose, glycine, and erythritol), and umami [monosodium glutamate (MSG) and MSG + inosine 5′-monophosphate (IMP)] taste stimuli was investigated before and after lingual application of ionomycin (Ca2+ ionophore) + Ca2+, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM; Ca2+ chelator), U73122 (phospholipase C blocker), thapsigargin (Ca2+-ATPase blocker), and diC8-PIP2 (synthetic phosphatidylinositol 4,5-bisphosphate). The phasic CT response to quinine was indifferent to changes in [Ca2+]i. However, a decrease in [Ca2+]i inhibited the tonic part of the CT response to quinine. The CT responses to sweet and umami stimuli were indifferent to changes in TRC [Ca2+]i. However, a decrease in [Ca2+]i attenuated the synergistic effects of ethanol on the CT response to sweet stimuli and of IMP on the glutamate CT response. U73122 and thapsigargin inhibited the phasic and tonic CT responses to bitter, sweet, and umami stimuli. Although diC8-PIP2 increased the CT response to bitter and sweet stimuli, it did not alter the CT response to glutamate but did inhibit the synergistic effect of IMP on the glutamate response. The results suggest that bitter, sweet, and umami taste qualities are transduced by [Ca2+]i-dependent and [Ca2+]i-independent mechanisms. Changes in TRC [Ca2+]i in the BAPTA-sensitive cytosolic compartment regulate quality-specific taste receptors and ion channels that are involved in the neural adaptation and mixture interactions. Changes in TRC [Ca2+]i in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA and ionomycin + Ca2+, are associated with neurotransmitter release. PMID:22993258

  5. Comparative Evaluation of the Effect of Menstruation, Pregnancy and Menopause on Salivary Flow Rate, pH and Gustatory Function

    PubMed Central

    Shetty, Vishwaprakash; Dave, Aparna; Arora, Manpreet; Hans, Vibha; Madan, Ajay

    2014-01-01

    Objective: There are five situations in a women’s life during which hormone fluctuations make them more susceptible to oral health problems – during puberty, at certain points in the monthly menstrual cycle, when using birth control pills, during pregnancy, and at menopause. The present study aimed at evaluating the effect of menstruation, pregnancy and menopause on salivary flow rate, pH and gustatory function. Materials and Methods: The study was carried out on 120 patients including 30 controls (with normal menstrual cycle of 28 to 30 d) and 90 cases (30 patients within three days of menstruation, 30 pregnant and 30 postmenopausal). Paraffin-stimulated saliva samples were obtained by expectoration to calculate salivary flow rate, pH was measured electrometically and patients were prospectively evaluated for gustatory function. Then, whole mouth taste test was performed in which the quality identification and intensity ratings of taste solutions were measured. Results: No statistically significant difference was found between the groups with respect to salivary flow rate but pH values were significantly lower in post menopausal women (p<0.05). Regarding correct quality identification the results were non-significant. Intensity for taste perception for sucrose was significantly lower in postmenopausal women than intensity of taste perception for other tastes (p<0.05). Also, postmenopausal women reported change in their dietary habits as all of them expressed liking for sweeter food. Conclusion: Reduced salivary flow rate and pH in postmen­opausal women may make them more prone to the occurrence of oral health problems. Also, pregnant and postmenopausal women appeared to have a reduced perception of sucrose, which can alter eating habits, such as intake of more sweet foods whereas no significant difference is observed in taste perception of NaCl, citric acid and quinine hydrochloride between the subjects. PMID:25478455

  6. Effects of aroma and taste, independently or in combination, on appetite sensation and subsequent food intake.

    PubMed

    Yin, Wenting; Hewson, Louise; Linforth, Robert; Taylor, Moira; Fisk, Ian D

    2017-07-01

    Food flavour is important in appetite control. The effects of aroma and taste, independently or in combination, on appetite sensation and subsequent food intake, were studied. Twenty-six females (24 ± 4 years, 20.9 ± 1.9 kg⋅m -2 ) consumed, over 15 min period, one of four sample drinks as a preload, followed by an ad libitum consumption of a pasta meal (after 65 min). Sample drinks were: water (S1, 0 kcal), water with strawberry aroma (S2, 0 kcal), water with sucrose and citric acid (S3, 48 kcal) and water with strawberry aroma, sucrose and citric acid (S4, 48 kcal). Appetite sensation did not differ between the S1 (water), S2 (aroma) and S3 (taste) conditions. Compared with S1 (water), S2 (aroma) and S3 (taste), S4 (aroma + taste) suppressed hunger sensation over the 15 min sample drink consumption period (satiation) (p < 0.05). S4 (aroma + taste) further reduced hunger sensation (satiety) more than S1 at 5, 20 and 30 min after the drink was consumed (p < 0.05), more than S2 (aroma) at 5 and 20 min after the drink was consumed (p < 0.05), and more than S3 (taste) at 5 min after the drink was consumed (p < 0.05). Subsequent pasta energy intake did not vary between the sample drink conditions. S4 (aroma + taste) had the strongest perceived flavour. This study suggests that the combination of aroma and taste induced greater satiation and short-term satiety than the independent aroma or taste and water, potentially via increasing the perceived flavour intensity or by enhancing the perceived flavour quality and complexity as a result of aroma-taste cross-modal perception. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. A Physiologic Role for Serotonergic Transmission in Adult Rat Taste Buds

    PubMed Central

    Jaber, Luc; Zhao, Fang-li; Kolli, Tamara; Herness, Scott

    2014-01-01

    Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the afferent signal. Serotonin may thus play a major modulatory role within peripheral taste in shaping the afferent taste signals prior to their transmission across gustatory nerves. PMID:25386961

  8. Wine from the Netherlands: investigating the effect of soil-type on taste

    NASA Astrophysics Data System (ADS)

    Vis, Geert-Jan; Maljers, Denise; Beurskens, Stan

    2016-04-01

    During the last decade professional viticulture has seen a strong increase in the Netherlands, reaching 270 ha in 2015. Although on a European scale this is a small area, the number of prize-winning quality wines is steadily growing. This growth can largely be ascribed to new grape varieties from Germany and Switzerland, that are better adapted to the cooler and moister climate at the northern fringe of the viticultural zone, as well as to increasing viticultural expertise. The distribution of vineyards across the Netherlands shows that they occur on a plethora of substrates. Dutch substrate is dominated by typical lowland deposits such as fluvial and marine sands and clays and aeolian sands. Unlike many European countries, bedrock is scarce. Only in the south-eastern extremity and in the east of the country, carbonate bedrock is present at or near the surface. This wide variety of substrate triggered our interest in the effect of the various soil-types on the smell and taste characteristics of wines. An effect which is often mentioned concerning well-known foreign wines. We wondered whether an Auxerrois wine from carbonate rocks tastes significantly different from a wine from the same grape variety from loess. And how about a Johanniter wine from fluvial deposits versus windblown sands? And what happens if you make wine in exactly the same way with the same grape variety and from the same vineyard, but with three different yeast types? To answer our questions, we selected ten Dutch vineyards with varying soil-types and the grape varieties Auxerrois and Johanniter. In October 2014 we harvested the grapes and wine was made under controlled identical conditions (in a double setup). The wines were scientifically tested at the institute of Viticulture and Oenology in Neustadt, Germany. The results show no significant effect of soil-type on the smell and taste of Dutch wines in our experiment. Varying yeast types (Cryarome, 3079, VL2) used on Souvignier Gris grapes from the same vineyard did show significant differences in the taste characteristics. We conclude that the effect of grape ripening and yeast on the smell and taste of Dutch wines is much stronger than the effect of soil. This implies that from virtually any soil a high-quality wine can be made. The use of geology to promote the quality of a wine is thus merely a marketing tool.

  9. Consumer preferences for beef color and packaging did not affect eating satisfaction.

    PubMed

    Carpenter, C E; Cornforth, D P; Whittier, D

    2001-04-01

    We investigated whether consumer preferences for beef colors (red, purple, and brown) or for beef packaging systems (modified atmosphere, MAP; vacuum skin pack, VSP; or overwrap with polyvinyl chloride, PVC) influenced taste scores of beef steaks and patties. To test beef color effects, boneless beef top loin steaks (choice) and ground beef patties (20% fat) were packaged in different atmospheres to promote development of red, purple, and brown color. To test effects of package type, steaks and patties were pre-treated with carbon monoxide in MAP to promote development of red color, and some meat was repackaged using VSP or PVC overwrap. The differently colored and packaged meats were separately displayed for members of four consumer panels who evaluated appearance and indicated their likelihood to purchase similar meat. Next, the panelists tasted meat samples from what they had been told were the packaging treatments just observed. However, the meat samples actually served were from a single untreated steak or patty. Thus, any difference in taste scores should reflect expectations established during the visual evaluation. The same ballot and sample coding were used for both the visual and taste evaluations. Color and packaging influenced (P<0.001) appearance scores and likelihood to purchase. Appearance scores were rated red>purple >brown and PVC >VSP>MAP. Appearance scores and likelihood to purchase were correlated (r=0.9). However, color or packaging did not affect (P>0.5) taste scores. Thus, consumer preferences for beef color and packaging influenced likelihood to purchase, but did not bias eating satisfaction.

  10. Taste, Enjoyment, and Desire of Flavors Change After Sleeve Gastrectomy-Short Term Results.

    PubMed

    Van Vuuren, Michele A Janse; Strodl, Esben; White, Katherine M; Lockie, Philip David

    2017-06-01

    Laparoscopic sleeve gastrectomy (LSG) incidence continues to increase worldwide because of its efficacy and low surgical risks. This study aimed to investigate satisfaction with eating and the change in taste perception, desire, and enjoyment of flavor changes and associations with extent of percentage excess weight loss (%excess weight loss (EWL)) post-LSG. One hundred six participants completed an online questionnaire 4 to 6 weeks as well as 6 to 8 months post-LSG bariatric surgery. The questionnaire included study-specific questions about changes in taste, desire, and enjoyment of eight major categories of flavor, as well as the Suter Quality of Alimentation Questionnaire to measure satisfaction with eating. The majority of participants reported a post-surgery increase in the intensity of the flavor of sweet (60, 55%) and fatty (57, 70%) at both time points, respectively. Participants also reported a decreased enjoyment for sweet (77, 61%) and fatty (77, 83%) flavors and decreased desire for fatty (83, 84%) and sweet (82, 68%) flavors at both time periods. This study found an increase in intensity of flavor of all eight taste modalities and a decrease in desire and enjoyment of all taste modalities except salty and savory flavors following surgery. Participants reported an increased acuity of spicy flavors and fatty tastes over time, and the desire and enjoyment of sweet, bitter, and metallic flavors increased over time. Changes in savory enjoyment over a 6- to 8-month period post-LSG were weakly associated with extent of % EWL at 6 months post-surgery. The participants reported average (40, 37%), good (33, 42%), and excellent (15, 11%) satisfaction with eating at both time points. This preliminary study indicates that subjective changes in taste, desire, and enjoyment of flavors of eight taste modalities are very common after LSG.

  11. Males and females show differential brain activation to taste when hungry and sated in gustatory and reward areas.

    PubMed

    Haase, Lori; Green, Erin; Murphy, Claire

    2011-10-01

    Although males and females differ in eating behavior and prevalence rates for eating disorders and obesity, little is known about gender differences in cortical activation to pleasant and unpleasant pure tastes during the physiological states of hunger and satiety. Twenty-one healthy young adults (12 females and 9 males) underwent two functional magnetic resonance imaging scans. Using four pure tastants of differing qualities (i.e., salty, sour, bitter, sweet), the present study examined gender differences in fMRI activation during two motivational states (hunger and satiety). There was greater change in fMRI activation from hunger to satiety in males than females in response to all tastes within the middle frontal gyrus (BA 10), insula, and cerebellum. Males also had greater change in activation from hunger to satiety, relative to females, in limbic regions including dorsal striatum, amygdala, parahippocampal gyrus, and posterior and anterior cingulate; however, activation was stimulus dependent, despite equivalent ratings in perceived pleasantness and intensity. Interestingly, males and females showed significant change from hunger to satiety in response to citric acid, suggesting that in addition to gender and physiological condition, stimulus quality is an important factor in taste fMRI activation. These gender differences may have implications for the pathophysiology of eating disorders and obesity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. [Age-related changes of sensory system].

    PubMed

    Iwamoto, Toshihiko; Hanyu, Haruo; Umahara, Takahiko

    2013-10-01

    Pathological processes usually superimpose on physiological aging even in the sensory system including visual, hearing, olfactory, taste and somatosensory functions. Representative changes of age-related changes are presbyopia, cataracts, and presbyacusis. Reduced sense of smell is seen in normal aging, but the prominent reduction detected by the odor stick identification test is noticed especially in early stage of Alzheimer or Parkinson disease. Reduced sense of taste is well-known especially in salty sense, while the changes of sweet, bitter, and sour tastes are different among individuals. Finally, deep sensation of vibration and proprioception is decreased with age as well as superficial sensation (touch, temperature, pain). As a result, impaired sensory system could induce deterioration of the activities of daily living and quality of life in the elderly.

  13. Metastable neural dynamics mediates expectation

    NASA Astrophysics Data System (ADS)

    Mazzucato, Luca; La Camera, Giancarlo; Fontanini, Alfredo

    Sensory stimuli are processed faster when their presentation is expected compared to when they come as a surprise. We previously showed that, in multiple single-unit recordings from alert rat gustatory cortex, taste stimuli can be decoded faster from neural activity if preceded by a stimulus-predicting cue. However, the specific computational process mediating this anticipatory neural activity is unknown. Here, we propose a biologically plausible model based on a recurrent network of spiking neurons with clustered architecture. In the absence of stimulation, the model neural activity unfolds through sequences of metastable states, each state being a population vector of firing rates. We modeled taste stimuli and cue (the same for all stimuli) as two inputs targeting subsets of excitatory neurons. As observed in experiment, stimuli evoked specific state sequences, characterized in terms of `coding states', i.e., states occurring significantly more often for a particular stimulus. When stimulus presentation is preceded by a cue, coding states show a faster and more reliable onset, and expected stimuli can be decoded more quickly than unexpected ones. This anticipatory effect is unrelated to changes of firing rates in stimulus-selective neurons and is absent in homogeneous balanced networks, suggesting that a clustered organization is necessary to mediate the expectation of relevant events. Our results demonstrate a novel mechanism for speeding up sensory coding in cortical circuits. NIDCD K25-DC013557 (LM); NIDCD R01-DC010389 (AF); NSF IIS-1161852 (GL).

  14. 38 CFR 4.87a - Schedule of ratings-other sense organs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ratings—other sense organs. Rating 6275Sense of smell, complete loss 10 6276Sense of taste, complete loss 10 Note: Evaluation will be assigned under diagnostic codes 6275 or 6276 only if there is an anatomical or pathological basis for the condition. (Authority: 38 U.S.C. 1155) [64 FR 25210, May 11, 1999...

  15. Economic Constraints on Taste Formation and the True Cost of Healthy Eating

    PubMed Central

    Daniel, Caitlin

    2015-01-01

    This paper shows how an interaction between economic constraints and children’s taste preferences shapes low-income families’ food decisions. According to studies of eating behavior, children often refuse unfamiliar foods 8 to 15 times before accepting them. Using 80 interviews and 41 grocery-shopping observations with 73 primary caregivers in the Boston area in 2013–2015, I find that many low-income respondents minimize the risk of food waste by purchasing what their children like—often calorie-dense, nutrient-poor foods. High-income study participants, who have greater resources to withstand the cost of uneaten food, are more likely to repeatedly introduce foods that their children initially refuse. Several conditions moderate the relationship between children’s taste aversion and respondents’ risk aversion, including household-level food preferences, respondents’ conceptions of adult authority, and children’s experiences outside of the home. Low-income participants’ risk aversion may affect children’s taste acquisition and eating habits, with implications for socioeconomic disparities in diet quality. This paper proposes that the cost of providing children a healthy diet may include the possible cost of foods that children waste as they acquire new tastes. PMID:26650928

  16. Economic constraints on taste formation and the true cost of healthy eating.

    PubMed

    Daniel, Caitlin

    2016-01-01

    This article shows how an interaction between economic constraints and children's taste preferences shapes low-income families' food decisions. According to studies of eating behavior, children often refuse unfamiliar foods 8 to 15 times before accepting them. Using 80 interviews and 41 grocery-shopping observations with 73 primary caregivers in the Boston area in 2013-2015, I find that many low-income respondents minimize the risk of food waste by purchasing what their children like--often calorie-dense, nutrient-poor foods. High-income study participants, who have greater resources to withstand the cost of uneaten food, are more likely to repeatedly introduce foods that their children initially refuse. Several conditions moderate the relationship between children's taste aversion and respondents' risk aversion, including household-level food preferences, respondents' conceptions of adult authority, and children's experiences outside of the home. Low-income participants' risk aversion may affect children's taste acquisition and eating habits, with implications for socioeconomic disparities in diet quality. This article proposes that the cost of providing children a healthy diet may include the possible cost of foods that children waste as they acquire new tastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Principal component analysis of physicochemical and sensory characteristics of beef rounds extended with gum arabic from Acacia senegal var. kerensis.

    PubMed

    Mwove, Johnson K; Gogo, Lilian A; Chikamai, Ben N; Omwamba, Mary; Mahungu, Symon M

    2018-03-01

    Principal component analysis (PCA) was carried out to study the relationship between 24 meat quality measurements taken from beef round samples that were injected with curing brines containing gum arabic (1%, 1.5%, 2%, 2.5%, and 3%) and soy protein concentrate (SPC) (3.5%) at two injection levels (30% and 35%). The measurements used to describe beef round quality were expressible moisture, moisture content, cook yield, possible injection, achieved gum arabic level in beef round, and protein content, as well as descriptive sensory attributes for flavor, texture, basic tastes, feeling factors, color, and overall acceptability. Several significant correlations were found between beef round quality parameters. The highest significant negative and positive correlations were recorded between color intensity and gray color and between color intensity and brown color, respectively. The first seven principal components (PCs) were extracted explaining over 95% of the total variance. The first PC was characterized by texture attributes (hardness and denseness), feeling factors (chemical taste and chemical burn), and two physicochemical properties (expressible moisture and achieved gum arabic level). Taste attribute (saltiness), physicochemical attributes (cook yield and possible injection), and overall acceptability were useful in defining the second PC, while the third PC was characterized by metallic taste, gray color, brown color, and physicochemical attributes (moisture and protein content). The correlation loading plot showed that the distribution of the samples on the axes of the first two PCs allowed for differentiation of samples injected to 30% injection level which were placed on the upper side of the biplot from those injected to 35% which were placed on the lower side. Similarly, beef samples extended with gum arabic and those containing SPC were also visible when scores for the first and third PCs were plotted. Thus, PCA was efficient in analyzing the quality characteristics of beef rounds extended with gum arabic.

  18. Prenatal alcohol exposure increases postnatal acceptability of nicotine odor and taste in adolescent rats.

    PubMed

    Mantella, Nicole M; Youngentob, Steven L

    2014-01-01

    Human studies indicate that alcohol exposure during gestation not only increases the chance for later alcohol abuse, but also nicotine dependence. The flavor attributes of both alcohol and nicotine can be important determinants of their initial acceptance and they both share the component chemosensory qualities of an aversive odor, bitter taste and oral irritation. There is a growing body of evidence demonstrating epigenetic chemosensory mechanisms through which fetal alcohol exposure increases adolescent alcohol acceptance, in part, by decreasing the aversion to alcohol's bitter and oral irritation qualities, as well as its odor. Given that alcohol and nicotine have noteworthy chemosensory qualities in common, we investigated whether fetal exposure to alcohol increased the acceptability of nicotine's odor and taste in adolescent rats. Study rats were alcohol-exposed during fetal development via the dams' liquid diet. Control animals received ad lib access to an iso-caloric, iso-nutritive diet throughout gestation. Odorant-induced innate behavioral responses to nicotine odor (Experiment 1) or orosensory-mediated responses to nicotine solutions (Experiment 2) were obtained, using whole-body plethysmography and brief access lick tests, respectively. Compared to controls, rats exposed to fetal alcohol showed an enhanced nicotine odor response that was paralleled by increased oral acceptability of nicotine. Given the common aversive component qualities imbued in the flavor profiles of both drugs, our findings demonstrate that like postnatal alcohol avidity, fetal alcohol exposure also influences nicotine acceptance, at a minimum, by decreasing the aversion of both its smell and taste. Moreover, they highlight potential chemosensory-based mechanism(s) by which fetal alcohol exposure increases the later initial risk for nicotine use, thereby contributing to the co-morbid expression with enhanced alcohol avidity. Where common chemosensory mechanisms are at play, our results suggest broader implications related to the consequence of fetal exposure with one substance of abuse and initial acceptability of others.

  19. Prenatal Alcohol Exposure Increases Postnatal Acceptability of Nicotine Odor and Taste in Adolescent Rats

    PubMed Central

    Mantella, Nicole M.; Youngentob, Steven L.

    2014-01-01

    Human studies indicate that alcohol exposure during gestation not only increases the chance for later alcohol abuse, but also nicotine dependence. The flavor attributes of both alcohol and nicotine can be important determinants of their initial acceptance and they both share the component chemosensory qualities of an aversive odor, bitter taste and oral irritation. There is a growing body of evidence demonstrating epigenetic chemosensory mechanisms through which fetal alcohol exposure increases adolescent alcohol acceptance, in part, by decreasing the aversion to alcohol's bitter and oral irritation qualities, as well as its odor. Given that alcohol and nicotine have noteworthy chemosensory qualities in common, we investigated whether fetal exposure to alcohol increased the acceptability of nicotine's odor and taste in adolescent rats. Study rats were alcohol-exposed during fetal development via the dams' liquid diet. Control animals received ad lib access to an iso-caloric, iso-nutritive diet throughout gestation. Odorant-induced innate behavioral responses to nicotine odor (Experiment 1) or orosensory-mediated responses to nicotine solutions (Experiment 2) were obtained, using whole-body plethysmography and brief access lick tests, respectively. Compared to controls, rats exposed to fetal alcohol showed an enhanced nicotine odor response that was paralleled by increased oral acceptability of nicotine. Given the common aversive component qualities imbued in the flavor profiles of both drugs, our findings demonstrate that like postnatal alcohol avidity, fetal alcohol exposure also influences nicotine acceptance, at a minimum, by decreasing the aversion of both its smell and taste. Moreover, they highlight potential chemosensory-based mechanism(s) by which fetal alcohol exposure increases the later initial risk for nicotine use, thereby contributing to the co-morbid expression with enhanced alcohol avidity. Where common chemosensory mechanisms are at play, our results suggest broader implications related to the consequence of fetal exposure with one substance of abuse and initial acceptability of others. PMID:25029285

  20. Molecular basis of fatty acid taste in Drosophila

    PubMed Central

    Ahn, Ji-Eun; Chen, Yan

    2017-01-01

    Behavioral studies have established that Drosophila appetitive taste responses towards fatty acids are mediated by sweet sensing Gustatory Receptor Neurons (GRNs). Here we show that sweet GRN activation requires the function of the Ionotropic Receptor genes IR25a, IR76b and IR56d. The former two IR genes are expressed in several neurons per sensillum, while IR56d expression is restricted to sweet GRNs. Importantly, loss of appetitive behavioral responses to fatty acids in IR25a and IR76b mutant flies can be completely rescued by expression of respective transgenes in sweet GRNs. Interestingly, appetitive behavioral responses of wild type flies to hexanoic acid reach a plateau at ~1%, but decrease with higher concentration, a property mediated through IR25a/IR76b independent activation of bitter GRNs. With our previous report on sour taste, our studies suggest that IR-based receptors mediate different taste qualities through cell-type specific IR subunits. PMID:29231818

  1. Salivary leptin and TAS1R2/TAS1R3 polymorphisms are related to sweet taste sensitivity and carbohydrate intake from a buffet meal in healthy young adults.

    PubMed

    Han, Pengfei; Keast, Russell S J; Roura, Eugeni

    2017-11-01

    The influence of sweet taste sensitivity on food intake is not well understood. We investigated the involvement of salivary leptin and SNP of the sweet taste receptor genes (TAS1R2/TAS1R3) on sweet taste sensitivity, sensory-specific satiety (SSS) and macronutrient intake in healthy human adults. In all, nineteen high sweet sensitivity (HS) and eleven low sweet sensitivity (LS) subjects were classified based on the sweetness perception of one solution (9 mm sucrose) forced-choice triangle test. All participants completed a randomised crossover design experiment where they consumed one of three iso-energetic soup preloads differing in primary taste quality (sweet, non-sweet taste-control or no-taste energy-control). A period of 1 h after the preload, participants were offered a buffet meal consisting of foods varying in taste (sweet or non-sweet) and fat content. Subjective measures included hunger/fullness and SSS for sweetness. Saliva and buccal cells were collected to measure leptin level and to study the TAS1R2/TAS1R3 specific SNP, respectively. Salivary leptin concentrations were significantly higher in LS than HS participants (P<0·05). In addition, HS showed stronger sweet SSS compared with LH participants (P<0·05), and consumed less carbohydrate (% energy) and more non-sweet foods than LS (P<0·01 and P<0·05, respectively). Alleles from each TAS1R2 locus (GG compared with AA alleles of rs12033832, and CT/CC compared with TT alleles of rs35874116) were related to higher consumption of carbohydrates (% energy) and higher amount of sweet foods, respectively (P<0·05). In contrast, no associations were found for the TAS1R3 alleles. These results contribute to understand the links between taste sensitivity, macronutrient appetite and food consumption.

  2. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons.

    PubMed

    Masek, Pavel; Keene, Alex C

    2013-01-01

    Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals suggests that taste for fatty acids (FAs) signals the presence of dietary lipids and promotes feeding. While flies appear to be attracted to fatty acids, the neural basis for fatty acid detection and attraction are unclear. Here, we demonstrate that a range of FAs are detected by the fly gustatory system and elicit a robust feeding response. Flies lacking olfactory organs respond robustly to FAs, confirming that FA attraction is mediated through the gustatory system. Furthermore, flies detect FAs independent of pH, suggesting the molecular basis for FA taste is not due to acidity. We show that low and medium concentrations of FAs serve as an appetitive signal and they are detected exclusively through the same subset of neurons that sense appetitive sweet substances, including most sugars. In mammals, taste perception of sweet and bitter substances is dependent on phospholipase C (PLC) signaling in specialized taste buds. We find that flies mutant for norpA, a Drosophila ortholog of PLC, fail to respond to FAs. Intriguingly, norpA mutants respond normally to other tastants, including sucrose and yeast. The defect of norpA mutants can be rescued by selectively restoring norpA expression in sweet-sensing neurons, corroborating that FAs signal through sweet-sensing neurons, and suggesting PLC signaling in the gustatory system is specifically involved in FA taste. Taken together, these findings reveal that PLC function in Drosophila sweet-sensing neurons is a conserved molecular signaling pathway that confers attraction to fatty acids.

  3. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato.

    PubMed

    Krauss, Sandra; Schnitzler, Wilfried H; Grassmann, Johanna; Woitke, Markus

    2006-01-25

    Irrigation with saline water affects tomato fruit quality. While total fruit yield decreases with salinity, inner quality characterized by taste and health-promoting compounds can be improved. For a detailed description of this relationship, the influence of three different salt levels [electrical conductivity (EC) 3, 6.5, and 10] in hydroponically grown tomatoes was investigated. Rising salinity levels in the nutrient solution significantly increased vitamin C, lycopene, and beta-carotene in fresh fruits up to 35%. The phenol concentration was tendentiously enhanced, and the antioxidative capacity of phenols and carotenoids increased on a fresh weight basis. Additionally, the higher EC values caused an increase of total soluble solids and organic acids, parameters determining the taste of tomatoes. Total fruit yield, single fruit weight, and firmness significantly decreased with rising EC levels. Regression analyses revealed significant correlations between the EC level and the dependent variables single fruit weight, total soluble solids, titrable acids, lycopene, and antioxidative capacities of carotenoids and phenols, whereas vitamin C and phenols correlated best with truss number, and beta-carotene correlated best with temperature. Only pressure firmness showed no correlation with any of the measured parameters. As all desirable characteristics in the freshly produced tomato increased when exposed to salinity, salinity itself constitutes an alternative method of quality improvement. Moreover, it can compensate for the loss of yield by the higher inner quality due to changing demands by the market and the consumer. This investigation is to our knowledge the first comprehensive overview regarding parameters of outer quality (yield and firmness), taste (total soluble solids and acids), nutritional value (vitamin C, carotenoids, and phenolics), as well as antioxidative capacity in tomatoes grown under saline conditions.

  4. Influence of high latitude light conditions on sensory quality and contents of health and sensory-related compounds in swede roots (Brassica napus L. ssp. rapifera Metzg.).

    PubMed

    Mølmann, Jørgen Ab; Hagen, Sidsel Fiskaa; Bengtsson, Gunnar B; Johansen, Tor J

    2018-02-01

    Vegetable growers in Arctic areas must increasingly rely on market strategies based on regional origin and product quality. Swede roots (rutabaga) were grown in a phytotron to investigate the effect of high latitude light conditions on sensory quality and some health and sensory-related compounds. Experimental treatments included modifications of 24 h natural day length (69° 39' N) by moving plants at daily intervals to dark chambers with either no light, fluorescent growth light and/or low intensity photoperiod extension. Shortening the photosynthetic light period to 12 h produced smaller roots than 15.7 h and 18 h, with highest scores for bitter and sulfur taste, and lowest scores for sweetness, acidic taste and fibrousness. The photoperiod in combination with the photosynthetic light period also had an influence on glucosinolate (GLS) contents, with lowest concentrations in 24 h natural light and highest in 12 h natural light. Concentrations of vitamin C, glucose, fructose and sucrose were not significantly influenced by any of the treatments. High latitude light conditions, with long photosynthetic light periods and 24 h photoperiod, can enhance sweet/less bitter taste and reduce GLS contents in swede roots, compared to growth under short day conditions. This influence of light conditions on eating quality may benefit marketing of regional products from high latitudes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. The Economics of Information: A Classroom Experiment.

    ERIC Educational Resources Information Center

    Netusil, Noelwah R.; Haupert, Michael

    1995-01-01

    Describes an economics class experiment where students ranked the quality of baked pies according to limited information. The limited sets of information included brand name and packaging only, price only, advertising only, word-of-mouth, and taste test. Discusses signals of quality and consumer decisions. (MJP)

  6. Quality characteristics of bread and cookies enriched with debittered Moringa oleifera seed flour.

    PubMed

    Ogunsina, B S; Radha, C; Indrani, D

    2011-03-01

    The effects of replacing wheat flour with 0-15% debittered moringa seed (DBMS) flour on the dough rheology of wheat flour and physical, sensory and chemical properties of bread were studied. Incorporation of an increasing amount of DBMS from 0 to 15% decreased farinograph water absorption, dough stability, amylograph peak viscosity and overall quality of bread. The bread with 10% DBMS had a typical moringa seed taste and was acceptable. Addition of combination of additives improved the dough strength and quality of bread with 10% DBMS flour. Replacement of wheat flour with 10%, 20% and 30% DBMS grits was found to affect cookies quality. Cookies with 20% DBMS grits had the nutty taste of moringa seeds and were acceptable. Bread with 10% DBMS flour and cookies with 20% DBMS grits had more protein, iron and calcium. Incorporating moringa seeds in baked foods may be exploited as a means of boosting nutrition in Africa and Asia where malnutrition is prevalent.

  7. Effect of the type of brewing water on the chemical composition, sensory quality and antioxidant capacity of Chinese teas.

    PubMed

    Xu, Yong-Quan; Zou, Chun; Gao, Ying; Chen, Jian-Xin; Wang, Fang; Chen, Gen-Sheng; Yin, Jun-Feng

    2017-12-01

    The physicochemical characteristics, sensory quality, and antioxidant activity of tea infusions prepared with purified water (PW), mineral water (MW), mountain spring water (MSW), and tap water (TW) from Hangzhou were investigated. The results showed that the taste quality, catechin concentration, and antioxidant capacity of green, oolong, and black tea infusions prepared using MW and TW were significantly lower than those prepared using PW. Extraction of catechins and caffeine was reduced with high-conductivity water, while high pH influenced the stability of catechins. PW and MSW were more suitable for brewing green and oolong teas, while MSW, with low pH and moderate ion concentration, was the most suitable water for brewing black tea. Lowering the pH of mineral water partially improved the taste quality and increased the concentration of catechins in the infusions. These results aid selection of the most appropriate water for brewing Chinese teas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Changes in the taste and textural attributes of apples in response to climate change

    PubMed Central

    Sugiura, Toshihiko; Ogawa, Hidekazu; Fukuda, Noriaki; Moriguchi, Takaya

    2013-01-01

    The effects of climate change on the taste and textural attributes of foods remain largely unknown, despite much public interest. On the basis of 30–40 years of records, we provide evidence that the taste and textural attributes of apples have changed as a result of recent global warming. Decreases in both acid concentration, fruit firmness and watercore development were observed regardless of the maturity index used for harvest date (e.g., calendar date, number of days after full bloom, peel colour and starch concentration), whereas in some cases the soluble-solids concentration increased; all such changes may have resulted from earlier blooming and higher temperatures during the maturation period. These results suggest that the qualities of apples in the market are undergoing long-term changes. PMID:23948740

  9. Physicochemical and sensory properties of fresh potato-based pasta (gnocchi).

    PubMed

    Alessandrini, Laura; Balestra, Federica; Romani, Santina; Rocculi, Pietro; Rosa, Marco Dalla

    2010-01-01

    This study dealt with the characterization and quality assessment of 3 kinds of potato-based pasta (gnocchi) made with steam-cooked, potato puree (water added to potato flakes), and reconstituted potatoes as main ingredients. The aim of the research was to evaluate the quality of the products in terms of physicochemical, textural, and sensory characteristics. Water content, water activity, color (L* and h°), and texture (texture profile analysis [TPA] and shearing test) were evaluated on both raw and cooked samples. In addition, on the recovered cooking water the loss of solid substances was determined and on the cooked gnocchi a sensory assessment was performed. Eight sensory attributes (yellowness, hardness, gumminess, adhesiveness, potato taste, sweet taste, flour taste, and sapidity) were investigated. Statistically significant differences among products were obtained, especially concerning textural properties. In fact, sample made with reconstituted potatoes and emulsifiers resulted the hardest (8.53 ± 1.22 N), the gummiest (2.90 ± 0.05 N), and the "chewiest" (2.90 ± 0.58 N) after cooking. Gnocchi made with potato puree or reconstituted potatoes significantly differed from the one produced with steam-cooked potatoes in terms of sensory properties (yellowness, hardness, flour taste, and sapidity). Pearson's correlation analysis between some textural instrumental and sensory parameters showed significant correlation coefficients (0.532 < r < 0.810). Score plot of principal component analysis (PCA) confirmed obtained results from physicochemical and sensory analyses, in terms of high discriminant capacity of colorimetric and textural characteristics. © 2010 Institute of Food Technologists®

  10. Effect of cultivar and roasting technique on sensory quality of Bierzo roasted pepper.

    PubMed

    Guerra, Marcos; Sanz, Miguel A; Valenciano, José B; Casquero, Pedro A

    2011-10-01

    Pepper (Capsicum annuum L.) is one of the main horticultural products in the world. Roasted pepper is a high quality transformed product in the Iberian Peninsula, and obtained the recognition of 'Protected Geographical Indication' (PGI) of 'Pimiento Asado del Bierzo' in 2002. Roasted pepper has been traditionally processed with a steel-sheet hob. However, there are no data available about the effect of roasting technique in the quality of roasted pepper. The objective of this work was to compare the sensory quality of roasted pepper using industrial roasting techniques. Sensory properties that showed significant differences between roasting techniques were colour, thickness and charred remains (appearance descriptors), bitterness (taste descriptor) and smokiness (after-taste descriptor). Higher value of descriptors such as colour, charred remains and smokiness for peppers elaborated in a rotary oven, helped roasted pepper to reach a higher level of overall quality, although rotary oven samples reached the lowest roast yield. Roasting technique, rather than landrace, had the greatest effect on the sensory quality of roasted pepper, so the rotary oven was the roasting technique that achieved the highest quality score. This will contribute to improve sensory quality and marketing of PGI 'Pimiento Asado del Bierzo' in high quality markets. Copyright © 2011 Society of Chemical Industry.

  11. Influence of brewing conditions on taste components in Fuding white tea infusions.

    PubMed

    Zhang, Haihua; Li, Yulin; Lv, Yangjun; Jiang, Yulan; Pan, Junxian; Duan, Yuwei; Zhu, Yuejin; Zhang, Shikang

    2017-07-01

    White tea has received increasing attention of late as a result of its sweet taste and health benefits. During the brewing of white tea, many factors may affect the nutritional and sensory quality of the resulting infusions. The present study aimed to investigate the effect of various infusion conditions on the taste components of Fuding white tea, including infusion time, ratio of tea and water, number of brewing steps, and temperature. Brewing conditions had a strong effect on the taste compound profile and sensory characteristics. The catechin, caffeine, theanine and free amino acid contents generally increased with increasing infusion time and temperature. Conditions comprising an infusion time of 7 min, a brewing temperature of 100 °C, a tea and water ratio of 1:30 or 1:40, and a second brewing step, respectively, were shown to obtain the highest contents of most compounds. Regarding tea sensory evaluation, conditions comprising an infusion time of 3 min, a brewing temperature of 100 °C, a tea and water ratio of 1:50, and a first brewing step, resulted in the highest sensory score for comprehensive behavior of color, aroma and taste. The results of the present study reveal differences in the contents of various taste compounds, including catechins, caffeine, theanine and free amino acids, with respect to different brewing conditions, and sensory scores also varied with brewing conditions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Emotional expressiveness of 5-6 month-old infants born very premature versus full-term at initial exposure to weaning foods.

    PubMed

    Longfier, Laetitia; Soussignan, Robert; Reissland, Nadja; Leconte, Mathilde; Marret, Stéphane; Schaal, Benoist; Mellier, Daniel

    2016-12-01

    Facial expressions of 5-6 month-old infants born preterm and at term were compared while tasting for the first time solid foods (two fruit and two vegetable purées) given by the mother. Videotapes of facial reactions to these foods were objectively coded during the first six successive spoons of each test food using Baby FACS and subjectively rated by naïve judges. Infant temperament was also assessed by the parents using the Infant Behaviour Questionnaire. Contrary to our expectations, infants born preterm expressed fewer negative emotions than infants born full-term. Naïve judges rated infants born preterm as displaying more liking than their full-term counterparts when tasting the novel foods. The analysis of facial expressions during the six spoonfuls of four successive meals (at 1-week intervals) suggested a familiarization effect with the frequency of negative expressions decreasing after tasting the second spoon, regardless of infant age, type of food and order of presentation. Finally, positive and negative dimensions of temperament reported by the parents were related with objective and subjective coding of affective reactions toward foods in infants born preterm or full-term. Our research indicates that premature infants are more accepting of novel foods than term infants and this could be used for supporting the development of healthy eating patterns in premature infants. Further research is needed to clarify whether reduced negativity by infants born prematurely to the exposure to novel solid foods reflects a reduction of an adaptive avoidant behaviour during the introduction of novel foods. Copyright © 2016. Published by Elsevier Ltd.

  13. Characterization of water quality in Bushy Park Reservoir, South Carolina, 2013–15

    USGS Publications Warehouse

    Conrads, Paul A.; Journey, Celeste A.; Petkewich, Matthew D.; Lanier, Timothy H.; Clark, Jimmy M.

    2018-04-25

    The Bushy Park Reservoir is the principal water supply for 400,000 people in the greater Charleston, South Carolina, area, which includes homes as well as businesses and industries in the Bushy Park Industrial Complex. Charleston Water System and the U.S. Geological Survey conducted a cooperative study during 2013–15 to assess the circulation of Bushy Park Reservoir and its effects on water-quality conditions, specifically, recurring taste-and-odor episodes. This report describes the water-quality data collected for the study that included a combination of discrete water-column sampling at seven locations in the reservoir and longitudinal water-quality profiling surveys of the reservoir and tributaries to characterize the temporal and spatial water-quality dynamics of Bushy Park Reservoir. Water-quality profiling surveys were conducted with an autonomous underwater vehicle equipped with a multiparameter water-quality-sonde bulkhead. Data collected by the autonomous underwater vehicle included water temperature, dissolved oxygen, pH, specific conductance, turbidity, total chlorophyll as fluorescence (estimate of algal biomass), and phycocyanin as fluorescence (estimate of cyanobacteria biomass) data.Characterization of the water-quality conditions in the reservoir included comparison to established State nutrient guidelines, identification of any spatial and seasonal variation in water-quality conditions and phytoplankton community structures, and assessment of the degree of influence of water-quality conditions related to Foster Creek and Durham Canal inflows, especially during periods of elevated taste-and-odor concentrations. Depth-profile and autonomous underwater vehicle survey data were used to identify areas within the reservoir where greater phytoplankton and cyanobacteria densities were most likely occurring.Water-quality survey results indicated that Bushy Park Reservoir tended to stratify thermally at a depth of about 20 feet from June to early October. The stratification was limited to the deeper portions of the reservoir near the dam and often dissipated within the reservoir near the CWS intake less than a mile upstream from the dam. Where thermally stratified, a corresponding depletion of dissolved oxygen also occurred at about the same depth and resulted in an anoxic hypolimnion below the 25-foot depth and an increase in specific conductance, likely due to re-mobilized metals and phosphorus under reducing conditions. In general, chlorophyll estimated from fluorescence exhibited some spatial variation, but no strong consistent pattern or “hot spot” was observed. Phycocyanin, estimated from relative fluorescence unit output as blue-green algae cell density, periodically seemed to be greater in the upper portion of the reservoir, but those differences may be attributed to increased turbidity and the potential change in phytoplankton community structure that affects fluorescence. Increased phycocyanin was observed at about the 10-foot depth during the summer months.A constant production of 2-methylisoborneol (MIB) near the dam and geosmin in the middle and upper portions of the reservoir appears to be occurring during the summer and early fall in the reservoir, but concentrations of these compounds tend to be between 10 and 15 nanograms per liter, which is at the Charleston Water System treatment threshold. At the Bushy Park Reservoir intake, the dominant taste-and-odor compound tended to be MIB, measured at a 2- or 3-to-1 ratio with geosmin during the summer and fall. During springtime episodes, however, when taste-and-odor compound concentrations typically are elevated above the Charleston Water System treatment threshold, the spatial distribution of geosmin concentrations greater than 15 nanograms per liter (28 to 38 nanograms per liter) was best explained by in situ production in the lower portion of the Bushy Park Reservoir near the dam rather than transport from Foster Creek. This pattern seems to indicate a possible shift in phytoplankton communities (or, at least, cyanobacteria communities) from MIB producers to geosmin producers.The spatial and seasonal assessment of water-quality conditions in Bushy Park Reservoir identified seasonal differences in water chemistry and spatial differences between the upper and lower portions of the reservoir that correspond to the location of elevated geosmin concentrations. On the basis of the spatial and seasonal assessment of actinomycetes concentrations compared to taste-and-odor compound concentrations, cyanobacteria production likely was the dominant source of the taste-and-odor episodes rather than actinomycetes. The lack of spatial and seasonal patterns in actinomycetes concentrations did not correspond to the springtime geosmin concentrations that were elevated above the Charleston Water System treatment threshold in the lower portion of the reservoir. Additionally, actinomycetes concentrations, although ubiquitous, had a median of about 9 and maximum of about 20 colonies per milliliter, which can be considered low for elevated taste-and-odor compound production. Nonetheless, the potential exists for actinomycetes to be a secondary source of taste-and-odor production and could explain some of the ubiquitous occurrence of low-level taste-and-odor production, such as MIB concentrations, observed throughout the summer and early fall months.When evaluated by biovolume, cyanobacteria were not the dominant phytoplankton group in Bushy Park Reservoir during the study period. Dolichospermum planctonicum (previously Anabaena planktonica ) was the dominant genera of the cyanobacteria group during spring periods. The geosmin-producing genera that were identified in the 2014 and 2015 spring communities in Bushy Park Reservoir were not observed in the 1999 and 2000 algal taxonomic data.A more robust examination of phytoplankton species was conducted by using a multivariate analysis that identified seasonal changes in phytoplankton community structure. These seasonal phytoplankton communities appeared to be explained by seasonal changes in water chemistry and may be responsible for episodes of taste-and-odor occurrence, especially geosmin. The most probable source of geosmin identified during the study was D. planctonicum.In a synoptic sampling event during a taste-and-odor episode in April 2015, cyanobacteria, not acinomycetes, also was indicated to be the more prevalent source of the geosmin. Although the Edisto River intake and its associated supply tunnel to the treatment facility had relatively high actinomycetes concentrations (130 and 140 colonies per milliliter, respectively) compared to the Bushy Park intake and tunnel (2 colonies per milliliter), corresponding geosmin concentrations were below 5 nanograms per liter for source water from the Edisto River intake and tunnel. Elevated geosmin concentrations above the Charleston Water System treatment threshold were identified in source waters from the Bushy Park Reservoir. The cyanobacteria community at the sampled sites in April 2015 was statistically similar to the community in the Bushy Park Reservoir in April 2014, when geosmin concentrations also were elevated. The only geosmin-producing genus identified at the Bushy Park intake, however, was D. planctonicum.

  14. Reconstitution of the flavor signature of Dornfelder red wine on the basis of the natural concentrations of its key aroma and taste compounds.

    PubMed

    Frank, Stephanie; Wollmann, Nadine; Schieberle, Peter; Hofmann, Thomas

    2011-08-24

    By application of aroma extract dilution analysis (AEDA) on the volatile fraction isolated from a Dornfelder red wine, 31 odor-active compounds were identified by means of HRGC-MS and comparison with reference compounds. A total of 27 odorants, judged with high FD factors by means of AEDA, was quantitated by means of stable isotope dilution assays, and acetaldehyde was determined enzymatically. In addition, 36 taste-active compounds were analyzed by means of HPLC-UV, HPLC-MS/MS, and ion chromatography. The quantitative data obtained for the identified aroma and taste compounds enabled for the first time the reconstruction of the overall flavor of the red wine. Sensory evaluation of both the aroma and taste profiles of the authentic red wine and the recombinate revealed that Dornfelder red wine was closely mimicked. Moreover, it was demonstrated that the high molecular weight fraction of red wine is essential for its astringent taste impression. By comparison of the overall odor of the aroma recombinate in ethanol with that of the total flavor recombinate containing all tastants, it was shown for the first time that the nonvolatile tastants had a strong influence on the intensity of certain aroma qualities.

  15. Taste sensing systems (electronic tongues) for pharmaceutical applications.

    PubMed

    Woertz, Katharina; Tissen, Corinna; Kleinebudde, Peter; Breitkreutz, Jörg

    2011-09-30

    Electronic tongues are sensor array systems able to detect single substances as well as complex mixtures by means of particular sensor membranes and electrochemical techniques. Two systems are already commercially available, the Insent taste sensing system and the αAstree electronic tongue. In addition, various laboratory prototype versions exist. Besides the successful use in food industry, the implementation for pharmaceutical purposes has strongly grown within the recent years. A reason for this is the increased interest of developing palatable formulations, especially for children. As taste assessment of drugs comes along with challenges due to possible toxicity and subjectivity of the taste assessors, electronic tongues could offer a safe and objective alternative. In order to provide guidance on the use of these systems, possible fields of interest are presented in this review, as for example, system qualification, quality control, formulation development, comparison between marketed drug products, and the validation of the methods used. Further, different approaches for solid and liquid dosage forms are summarized. But, also the difficulty to obtain absolute statements regarding taste was identified and the need of more validated data was discussed to offer guidance for the next years of research and application of electronic tongues for pharmaceutical applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Topographic organizations of taste-responsive neurons in the parabrachial nucleus of C57BL/6J mice: An electrophysiological mapping study.

    PubMed

    Tokita, K; Boughter, J D

    2016-03-01

    The activities of 178 taste-responsive neurons were recorded extracellularly from the parabrachial nucleus (PbN) in the anesthetized C57BL/6J mouse. Taste stimuli included those representative of five basic taste qualities, sweet, salty, sour, bitter and umami. Umami synergism was represented by all sucrose-best and sweet-sensitive sodium chloride-best neurons. Mediolaterally the PbN was divided into medial, brachium conjunctivum (BC) and lateral subdivisions while rostrocaudally the PbN was divided into rostral and caudal subdivisions for mapping and reconstruction of recording sites. Neurons in the medial and BC subdivisions had a significantly greater magnitude of response to sucrose and to the mixture of monopotassium glutamate and inosine monophosphate than those found in the lateral subdivision. In contrast, neurons in the lateral subdivision possessed a more robust response to quinine hydrochloride. Rostrocaudally no difference was found in the mean magnitude of response. Analysis on the distribution pattern of neuron types classified by their best stimulus revealed that the proportion of neuron types in the medial vs. lateral and BC vs. lateral subdivisions was significantly different, with a greater amount of sucrose-best neurons found medially and within the BC, and a greater amount of sodium chloride-, citric acid- and quinine hydrochloride-best neurons found laterally. There was no significant difference in the neuron-type distribution between rostral and caudal PbN. We also assessed breadth of tuning in these neurons by calculating entropy (H) and noise-to-signal (N/S) ratio. The mean N/S ratio of all neurons (0.43) was significantly lower than that of H value (0.64). Neurons in the caudal PbN had a significantly higher H value than in the rostral PbN. In contrast, mean N/S ratios were not different both mediolaterally and rostrocaudally. These results suggest that although there is overlap in taste quality representation in the mouse PbN, taste-responsive neurons still possessed a topographic organization. Published by Elsevier Ltd.

  17. Is the quality of sushi ruined by freezing raw fish and squid? A randomized double-blind trial with sensory evaluation using discrimination testing.

    PubMed

    Iwata, Kentaro; Fukuchi, Takahiko; Yoshimura, Kenichi

    2015-05-01

    Sushi is a traditional Japanese cuisine enjoyed worldwide. However, using raw fish to make sushi may pose risk of certain parasitic infections, such as anisakidosis, which is most reported in Japan. This risk of infection can be eliminated by freezing fish; however, Japanese people are hesitant to freeze fish because it is believed that freezing ruins sushi's taste. A randomized double-blind trial with discrimination testing was conducted to examine the ability of Japanese individuals to distinguish between frozen and unfrozen sushi. A pair of mackerel and squid sushi, one once frozen and the other not, was provided to the participants, and they were asked to answer which one tasted better. Among 120 rounds of discrimination testing involving the consumption of 240 pieces of mackerel sushi, unfrozen sushi was believed to taste better in 42.5% (51 dishes) of cases, frozen sushi was thought to taste better in 49.2% (59 dishes), and the participants felt the taste was the same in 8.3% (10 dishes). The odds ratio for selecting unfrozen sushi as "tastes better" over frozen sushi was 0.86 (95% confidence interval [CI], .59-1.26; P = .45). For squid, unfrozen sushi was believed to be superior 48.3% of the time (58 dishes), and frozen sushi, 35.0% of the time (42 dishes). They were felt to be the same in 16.7% (20 dishes) (odds ratio, 1.38; 95% CI, .93-2.05; P = .11). Freezing raw fish did not ruin sushi's taste. These findings may encourage the practice of freezing fish before using it in sushi, helping to decrease the incidence of anisakidosis. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  18. Effects of Exogenous Enzymatic Treatment During Processing on the Sensory Quality of Summer Tieguanyin Oolong Tea from the Chinese Anxi County

    PubMed Central

    Zhang, Xue-Bo

    2015-01-01

    Summary In order to attenuate the bitter taste and improve the aroma of the summer tieguanyin oolong tea from the Chinese Anxi county, the effects of processing treatment with exogenous laccase and α-galactosidase on tea sensory quality and related compounds were investigated. The solutions of laccase and/or α-galactosidase were sprayed on the tea leaves before the first drying process. The sensory evaluation results showed that the sensory quality of the tea was significantly enhanced with the enzymatic treatment. The combined application of laccase at 8.25 and α-galactosidase at 22 U per kg of fresh tea shoots achieved the most satisfying sensory quality. Further analysis of flavour-related constituents was carried out by HPLC and GC-MS. The HPLC analysis showed that the contents of catechins and total polyphenols were reduced, compared to the untreated group, by 11.9 and 13.3% respectively, and the total soluble sugars and water extract content were increased by 19.4 and 6.6% respectively, after the treatment with both enzymes. The decrease of catechins and total polyphenols reduced the bitterness and astringency of the summer tea, while the increase of total soluble sugars and water extract content improved the sweetness and mellow taste. The aromatic compound data from GC-MS showed that the total essential oil content in these tea samples co-treated with laccase and α-galactosidase increased significantly, in which aldehydes, alcohols, esters and alkenes increased by 23.28, 37.05, 20.10 and 38.99%, respectively. Our data suggest that the exogenous enzymatic treatment can enhance the summer oolong tea quality, especially its taste and aroma. PMID:27904347

  19. Effects of linoleic acid on sweet, sour, salty, and bitter taste thresholds and intensity ratings of adults.

    PubMed

    Mattes, Richard D

    2007-05-01

    Evidence supporting a taste component for dietary fat has prompted study of plausible transduction mechanisms. One hypothesizes that long-chain, unsaturated fatty acids block selected delayed-rectifying potassium channels, resulting in a sensitization of taste receptor cells to stimulation by other taste compounds. This was tested in 17 male and 17 female adult (mean +/- SE age = 23.4 +/- 0.7 yr) propylthiouracil tasters with normal resting triglyceride concentrations (87.3 +/- 5.6 mg/day) and body mass index (23.3 +/- 0.4 kg/m(2)). Participants were tested during two approximately 30-min test sessions per week for 8 wk. Eight stimuli were assessed in duplicate via an ascending, three-alternative, forced-choice procedure. Qualities were randomized over weeks. Stimuli were presented as room-temperature, 5-ml portions. They included 1% solutions of linoleic acid with added sodium chloride (salty), sucrose (sweet), citric acid (sour), and caffeine (bitter) as well as solutions of these taste compounds alone. Participants also rated the intensity of the five strongest concentrations using the general labeled magnitude scale. The suprathreshold samples were presented in random order with a rinse between each. Subjects made the ratings self-paced while wearing nose clips. It was hypothesized that taste thresholds would be lower and absolute intensity ratings or slopes of intensity functions would be higher for the stimuli mixed with the linoleic acid. Thresholds were compared by paired t-tests and intensity ratings by repeated measures analysis of variance. Thresholds were significantly higher (i.e., lower sensitivity) for the sodium chloride, citric acid, and caffeine solutions with added fatty acid. Sweet, sour, and salty intensity ratings were lower or unchanged by the addition of a fatty acid. The two highest concentrations of caffeine were rated as weaker in the presence of linoleic acid. These data do not support a mechanism for detecting dietary fats whereby fatty acids sensitize taste receptor cells to stimulation by taste compounds.

  20. Health and taste related compounds in strawberries under various irrigation regimes and bio-stimulant application.

    PubMed

    Kapur, Burcak; Sarıdaş, Mehmet Ali; Çeliktopuz, Eser; Kafkas, Ebru; Paydaş Kargı, Sevgi

    2018-10-15

    Strawberry has a unique status within the fruit species in terms of health and taste related compounds. This experimental study concerned the application of a bio-stimulant at various drip irrigation levels (IR125, IR100, IR75 and IR50). The effects of the bio-stimulant (seaweed extract) on the eating quality, i.e., the taste-related (TSS, fructose, glucose, sucrose and citric, malic, l-ascorbic acid), and health-related (antioxidant activity, total phenol, myricetin and quercetin) compounds were studied in two strawberry cultivars. The 'Rubygem' with its higher sugar and lower acid content has been more preferable than the 'Kabarla' cultivar. The bio-stimulant contributes to taste by improving the TSS, fructose, sucrose and also to health by increasing the quercetin content of the fruit which is associated to the cardiovascular properties and cancer reducing agents. The experiment conducted revealed significant increases only in the TSS contents and antioxidant activity under the IR50 and IR75 deficit irrigation treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Dispersive Raman spectroscopy for the nondestructive and rapid assessment of honey quality

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Di Sanzo, R.; Carabetta, S.; Russo, M. T.

    2015-09-01

    Raman spectroscopy performed using optical fibers, with excitation at 1064 nm and a dispersive detection scheme, was utilized to measure a selection of unifloral honeys produced in the Italian region of Calabria. The honey samples had three different botanical origins: chestnut, citrus, and acacia, respectively. A multivariate processing of the spectroscopic data enabled us to distinguish their botanical origin, and to build predictive models for quantifying important nutraceutic indicators such as the main sugars and potassium. Furthermore, the Raman spectra of chestnut honeys were compared with the taste profile measured by an electronic tongue, and a good correlation to bitter/savory taste was obtained. This experiment indicates the excellent potentials of Raman spectroscopy as an analytical tool for the nondestructive and rapid assessment of food-quality indicators.

  2. Weighing In: The Taste-Engineering Frame in Obesity Expert Discourse

    PubMed Central

    Zimmerman, Frederick J.; Gilliam, Franklin D.

    2015-01-01

    Objectives. We sought expert opinion on the problems with 2 dominant obesity-prevention discourse frames—personal responsibility and the environment—and examined alternative frames for understanding and addressing obesity. Methods. We conducted 60-minute, semistructured interviews with 15 US-based obesity experts. We manually coded and entered interview transcripts into software, generating themes and subthematic areas that captured the debate’s essence. Results. Although the environmental frame is the dominant model used in communications with the public and policymakers, several experts found that communicating key messages within this frame was difficult because of the enormity of the obesity problem. A subframe of the environmental frame—the taste-engineering frame—identifies food industry strategies to influence the overconsumption of certain foods and beverages. This emerging frame deconstructs the environmental frame so that causal attributes and responsible agents are more easily identifiable and proposed policies and public health interventions more salient. Conclusions. Expert interviews are an invaluable resource for understanding how experts use frames in discussing their work and in conversations with the public and policymakers. Future empirical studies testing the effectiveness of the taste-engineering frame on public opinion and support for structural-level health policies are needed. PMID:25602888

  3. Weighing in: the taste-engineering frame in obesity expert discourse.

    PubMed

    Ortiz, Selena E; Zimmerman, Frederick J; Gilliam, Franklin D

    2015-03-01

    We sought expert opinion on the problems with 2 dominant obesity-prevention discourse frames-personal responsibility and the environment-and examined alternative frames for understanding and addressing obesity. We conducted 60-minute, semistructured interviews with 15 US-based obesity experts. We manually coded and entered interview transcripts into software, generating themes and subthematic areas that captured the debate's essence. Although the environmental frame is the dominant model used in communications with the public and policymakers, several experts found that communicating key messages within this frame was difficult because of the enormity of the obesity problem. A subframe of the environmental frame--the taste-engineering frame--identifies food industry strategies to influence the overconsumption of certain foods and beverages. This emerging frame deconstructs the environmental frame so that causal attributes and responsible agents are more easily identifiable and proposed policies and public health interventions more salient. Expert interviews are an invaluable resource for understanding how experts use frames in discussing their work and in conversations with the public and policymakers. Future empirical studies testing the effectiveness of the taste-engineering frame on public opinion and support for structural-level health policies are needed.

  4. Structural Estimation of Family Labor Supply with Taxes: Estimating a Continuous Hours Model Using a Direct Utility Specification

    ERIC Educational Resources Information Center

    Heim, Bradley T.

    2009-01-01

    This paper proposes a new method for estimating family labor supply in the presence of taxes. This method accounts for continuous hours choices, measurement error, unobserved heterogeneity in tastes for work, the nonlinear form of the tax code, and fixed costs of work in one comprehensive specification. Estimated on data from the 2001 PSID, the…

  5. Enzymatic mitigation of 5-O-chlorogenic acid for an improved digestibility of coffee.

    PubMed

    Siebert, Mareike; Berger, Ralf G; Nieter, Annabel

    2018-08-30

    A p-coumaroyl esterase from Rhizoctonia solani was used to decrease 5-O-chlorogenic acid (5-CQA) content in coffee powder. HPLC-UV showed a decline of up to 98% of 5-CQA after the enzyme treatment. Effects on aroma were determined by means of aroma extract dilution analysis. Flavour dilution factors of treated and control extract differed in four volatile compounds only. Effect on aroma and taste was evaluated by sensory tests. No significant differences were perceived, and no off-flavour nor off-taste was noted. As chlorogenic acids are suspected to cause stomach irritating effects in sensitive people, the enzyme treatment offers a technically feasible approach to improve the quality of coffee beverages by reducing 5-CQA concentration without significantly affecting the aroma and taste profile. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Adolescent and adult perceptions of traditional and novel smokeless tobacco products and packaging in rural Ohio

    PubMed Central

    Liu, Sherry T.; Nemeth, Julianna M.; Klein, Elizabeth G.; Ferketich, Amy K.; Kwan, Mei-Po; Wewers, Mary Ellen

    2015-01-01

    Objective As smokeless tobacco (ST) marketing increases and new products emerge on the market, very little is known about consumer perceptions of ST products. To inform development of future ST counter-marketing approaches, this qualitative study examined consumer perceptions of traditional and novel ST products and packaging. Methods Focus groups and qualitative interviews were held with adolescent (n=23; mean age of 17 years) and adult (n=38; mean age of 29 years) male ST users from rural Ohio counties. Participants were shown a variety of traditional (e.g., Copenhagen®, Timber Wolf®) and novel (e.g., Camel Snus®, Orbs®) ST products and asked about perceptions of these products and their packaging. Transcriptions were coded independently for common themes by two individuals. Findings Adolescents and adults generally had similar beliefs and reactions about ST products. While participants were familiar with a variety of traditional ST products, Copenhagen® was the most frequently used product. Perceptions of quality and price of traditional products were closely tied to product taste and packaging material. Colors, design, and size of ST packaging appealed to participants and influenced decisions to purchase. Adults believed novel ST products had a weak taste and were targeted to untraditional ST users. While the vast majority was unfamiliar with dissolvable tobacco, adolescents noted that they would be more convenient to use during school than traditional ST. Conclusions Packaging has a significant role in shaping perceptions of ST and consumer behavior. Regulation of product packaging such as shape, size, and images should be part of comprehensive tobacco control. PMID:23047885

  7. Adolescent and adult perceptions of traditional and novel smokeless tobacco products and packaging in rural Ohio.

    PubMed

    Liu, Sherry T; Nemeth, Julianna M; Klein, Elizabeth G; Ferketich, Amy K; Kwan, Mei-Po; Wewers, Mary Ellen

    2014-05-01

    As smokeless tobacco (ST) marketing increases and new products emerge on the market, very little is known about consumer perceptions of ST products. To inform development of future ST counter-marketing approaches, this qualitative study examined consumer perceptions of traditional and novel ST products and packaging. Focus groups and qualitative interviews were held with adolescent (n=23; mean age of 17 years) and adult (n=38; mean age of 29 years) male ST users from rural Ohio counties. Participants were shown a variety of traditional (eg, Copenhagen, Timber Wolf) and novel (eg, Camel Snus, Orbs) ST products and asked about perceptions of these products and their packaging. Transcriptions were coded independently for common themes by two individuals. Adolescents and adults generally had similar beliefs and reactions about ST products. While participants were familiar with a variety of traditional ST products, Copenhagen was the most frequently used product. Perceptions of quality and price of traditional products were closely tied to product taste and packaging material. Colours, design and size of ST packaging appealed to participants and influenced decisions to purchase. Adults believed novel ST products had a weak taste and were targeted at untraditional ST users. While the vast majority was unfamiliar with dissolvable tobacco, adolescents noted that they would be more convenient to use during school than traditional ST. Packaging has a significant role in shaping perceptions of ST and consumer behaviour. Regulation of product packaging such as shape, size and images should be part of comprehensive tobacco control.

  8. Development of taste sensor system for differentiation of Indonesian herbal medicines

    NASA Astrophysics Data System (ADS)

    Kaltsum, U.; Triyana, K.; Siswanta, D.

    2014-09-01

    In Indonesia, herbal medicines are usually produced by small and medium enterprises which are relatively low in quality control. The purpose of this paper is to report that we have developed a taste sensor system with global selectivity, i.e., electronic tongue (e-tongue) for differentiation of Indonesian herbal medicines. The e-tongue was composed of five kinds of ion selective electrodes as working electrodes, data acquisition system, and pattern recognition system. Each ion selective electrode (ISE) was built by attaching lipid/polymer membrane. For this purpose, the five kinds of membranes were built by mixing lipid, plasticizer (nitrophenyl octyl ether/NPOE), polyvinyl chloride (PVC), and tetrahydrofuran (THF). In this study, we employed five kinds of lipid, namely oleic acid (OA), dioctyl phosphate (DOP), decyl alcohol (DA), dodecylamine (DDC), and trioctyl methyl ammonium chloride (TOMA). In this case, the membranes transform information of taste substances into electric signal. The five kinds of Indonesian herbal medicine were purchased from local supermarket in Yogyakarta, i.e., kunyit asam (made from turmeric and tamarind), beras kencur (made from rice and kencur), jahe wangi (made from ginger and fragrance), sirih wangi (made from betel leaf), and temulawak (made from Javanese ginger). Prior to detecting the taste from the Indonesian herbal medicine samples, each ion selective electrode was tested with five basic taste samples, i.e., for saltiness, sweetness, umami, bitterness, and sourness. All ISEs showed global selectivity to all samples. Furthermore, the array of ISEs showed specific response pattern to each Indonesian herbal medicine. For pattern recognition system, we employed principle component analysis (PCA). As a result, the e-tongue was able to differentiate five kinds of Indonesian herbal medicines, proven by the total variance of first and second principle components is about 93%. For the future, the e-tongue may be developed for quality control application in herbal medicine industries.

  9. Development of taste sensor system for differentiation of Indonesian herbal medicines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaltsum, U., E-mail: um-mik@yahoo.co.id; Triyana, K., E-mail: triyana@ugm.ac.id; Siswanta, D., E-mail: triyana@ugm.ac.id

    In Indonesia, herbal medicines are usually produced by small and medium enterprises which are relatively low in quality control. The purpose of this paper is to report that we have developed a taste sensor system with global selectivity, i.e., electronic tongue (e-tongue) for differentiation of Indonesian herbal medicines. The e-tongue was composed of five kinds of ion selective electrodes as working electrodes, data acquisition system, and pattern recognition system. Each ion selective electrode (ISE) was built by attaching lipid/polymer membrane. For this purpose, the five kinds of membranes were built by mixing lipid, plasticizer (nitrophenyl octyl ether/NPOE), polyvinyl chloride (PVC),more » and tetrahydrofuran (THF). In this study, we employed five kinds of lipid, namely oleic acid (OA), dioctyl phosphate (DOP), decyl alcohol (DA), dodecylamine (DDC), and trioctyl methyl ammonium chloride (TOMA). In this case, the membranes transform information of taste substances into electric signal. The five kinds of Indonesian herbal medicine were purchased from local supermarket in Yogyakarta, i.e., kunyit asam (made from turmeric and tamarind), beras kencur (made from rice and kencur), jahe wangi (made from ginger and fragrance), sirih wangi (made from betel leaf), and temulawak (made from Javanese ginger). Prior to detecting the taste from the Indonesian herbal medicine samples, each ion selective electrode was tested with five basic taste samples, i.e., for saltiness, sweetness, umami, bitterness, and sourness. All ISEs showed global selectivity to all samples. Furthermore, the array of ISEs showed specific response pattern to each Indonesian herbal medicine. For pattern recognition system, we employed principle component analysis (PCA). As a result, the e-tongue was able to differentiate five kinds of Indonesian herbal medicines, proven by the total variance of first and second principle components is about 93%. For the future, the e-tongue may be developed for quality control application in herbal medicine industries.« less

  10. What Shape and Color Is the Taste of Sugar?

    ERIC Educational Resources Information Center

    Shaub, William R.

    1970-01-01

    Creative imagination is a quality that can be developed through mental exercise. Teachers, through the use of appropriate classroom techniques, can help students to sharpen their imaginative skills. (CK)

  11. Behavioral Evidence for More than One Taste Signaling Pathway for Sugars in Rats

    PubMed Central

    Schier, Lindsey A.

    2016-01-01

    By conventional behavioral measures, rodents respond to natural sugars, such as glucose and fructose, as though they elicit an identical perceptual taste quality. Beyond that, the metabolic and sensory effects of these two sugars are quite different. Considering the capacity to immediately respond to the more metabolically expedient sugar, glucose, would seem advantageous for energy intake, the present experiment assessed whether experience consuming these two sugars would modify taste-guided ingestive responses to their yet unknown distinguishing orosensory properties. One group (GvF) had randomized access to three concentrations of glucose and fructose (0.316, 0.56, 1.1 m) in separate 30-min single access training sessions, whereas control groups received equivalent exposure to the three glucose or fructose concentrations only, or remained sugar naive. Comparison of the microstructural licking patterns for the two sugars revealed that GvF responded more positively to glucose (increased total intake, increased burst size, decreased number of pauses), relative to fructose, across training. As training progressed, GvF rats began to respond more positively to glucose in the first minute of the session when intake is principally taste-driven. During post-training brief-access taste tests, GvF rats licked more for glucose than for fructose, whereas the other training groups did not respond differentially to the two sugars. Additional brief access testing showed that this did not generalize to Na-saccharin or galactose. Thus, in addition to eliciting a common taste signal, glucose and fructose produce distinct signals that are apparently rendered behaviorally relevant and hedonically distinct through experience. The taste pathway(s) underlying this remain to be identified. SIGNIFICANCE STATEMENT The T1R2+T1R3 heterodimer is thought by many to be the only taste receptor for sugars. Although most sugars have been conventionally shown to correspondingly produce a unitary taste percept (sweet), there is reason to question this model. Here, we demonstrate that rats that repeatedly consumed two metabolically distinct sugars (glucose and fructose), and thus have had the opportunity to associate the tastes of these sugars with their differential postoral consequences, initially respond identically to the orosensory properties of the two sugars but eventually respond more positively to glucose. Thus, in addition to the previously identified common taste pathway, glucose and fructose must engage distinct orosensory pathways, the underlying molecular and neural mechanisms of which now await discovery. PMID:26740654

  12. Chemosensory dysfunction is a primary factor in the evolution of declining nutritional status and quality of life in patients with advanced cancer.

    PubMed

    Hutton, Joanne L; Baracos, Vickie E; Wismer, Wendy V

    2007-02-01

    Alterations in taste and smell functions have been reported in cancer patients. Although these senses are known to be particularly affected by chemotherapy, many features of chemosensory perception in cancer patients remain obscure. The relative importance of chemosensory changes in the etiology of malnutrition and wasting is not known. To assess this relationship, self-perceived taste and smell function were evaluated using a validated questionnaire in 66 patients with advanced cancer receiving palliative care (median survival 7.4 months). Participants also completed 3-day food records to assess dietary intake, and the Functional Assessment of Anorexia/Cachexia Therapy questionnaire to assess quality of life (QOL). Total chemosensory complaint scores ranged from 0 to 14 on a 16-point scale. Only 14% of the subjects reported no chemosensory complaints of any kind, whereas 86% reported some degree of chemosensory abnormality. The most common complaints were persistent bad taste in the mouth, taste distortion, and heightened sensitivity to odors. Subjects with severe chemosensory complaints showed substantially lower energy intakes (by 900-1,100 kcal/day), higher rates of weight loss, and lower QOL scores than subjects with mild or moderate chemosensory complaints. Severe chemosensory dysfunction is persistent well beyond the window of active therapy in patients with advanced cancer and represents a primary factor relating to malnutrition, wasting, and poor QOL. Further research is required to identify appropriate strategies to alleviate this important group of symptoms, to determine whether intervention will improve QOL, and to match foods and diet to the unique chemosensory profile of advanced cancer patients.

  13. Smell and taste function in the visually impaired.

    PubMed

    Smith, R S; Doty, R L; Burlingame, G K; McKeown, D A

    1993-11-01

    Surprisingly few quantitative studies have addressed the question of whether visually impaired individuals evidence, perhaps in compensation for their loss of vision, increased acuteness in their other senses. In this experiment we sought to determine whether blind subjects outperform sighted subjects on a number of basic tests of chemosensory function. Over 50 blind and 75 sighted subjects were administered the following olfactory and gustatory tests: the University of Pennsylvania Smell Identification Test (UPSIT); a 16-item odor discrimination test; and a suprathreshold taste test in which measures of taste-quality identification and ratings of the perceived intensity and pleasantness of sucrose, citric acid, sodium chloride, and caffeine were obtained. In addition, 39 blind subjects and 77 sighted subjects were administered a single staircase phenyl ethyl alcohol (PEA) odor detection threshold test. Twenty-three of the sighted subjects were employed by the Philadelphia Water Department and trained to serve on its water quality evaluation panel. The primary findings of the study were that (a) the blind subjects did not outperform sighted subjects on any test of chemosensory function and (b) the trained subjects significantly outperformed the other two groups on the odor detection, odor discrimination, and taste identification tests, and nearly outperformed the blind subjects on the UPSIT. The citric acid concentrations received larger pleasantness ratings from the trained panel members than from the blind subjects, whose ratings did not differ significantly from those of the untrained sighted subjects. Overall, the data imply that blindness, per se, has little influence on chemosensory function and add further support to the notion that specialized training enhances performance on a number of chemosensory tasks.

  14. Influence of alkalinity, hardness and dissolved solids on drinking water taste: A case study of consumer satisfaction.

    PubMed

    Lou, Jie-Chung; Lee, Wei-Li; Han, Jia-Yun

    2007-01-01

    Two surveys of consumer satisfaction with drinking water conducted by Taiwan Water Supply Corp. are presented in this study. The study results show that although a lot of money was invested to modify traditional treatment processes, over 60% of local residents still avoided drinking tap water. Over half of the respondents felt that sample TT (from the traditional treatment process) was not a good drinking water, whether in the first or second survey, whereas almost 60% of respondents felt that samples PA, PB, CCL and CT (from advanced treatment processes) were good to drink. For all drinking water samples, respondent satisfaction with a sample primarily depended on it having no unpleasant flavors. Taiwan Environmental Protection Administration plans to revise the drinking water quality standards for TH and TDS in the near future. The new standards require a lower TH concentration (from currently 400mg/L (as CaCO(3)) to 150mg/L (as CaCO(3))), and a lower TDS maximum admissible concentration from the current guideline of 600 to 250mg/L. Therefore, this study also evaluated the impacts on drinking water tastes caused by variations in TH and TDS concentrations, and assessed the need to issue more strict drinking water quality standards for TH and TDS. The research results showed that most respondents could not tell the difference in water taste among water samples with different TDS, TH and alkalinity. Furthermore, hardness was found to be inversely associated with cardiovascular diseases and cancers, and complying with more strict standards would lead most water facilities to invest billions of dollars to upgrade their treatment processes. Consequently, in terms of drinking water tastes alone, this study suggested that Taiwan Environmental Protection Administration should conduct more thorough reviews of the scientific literature that provides the rationale for setting standards and reconsider if it is necessary to revise drinking water quality standards for TH and TDS.

  15. Variables affecting the propensity to buy branded beef among groups of Australian beef buyers.

    PubMed

    Morales, L Emilio; Griffith, Garry; Wright, Victor; Fleming, Euan; Umberger, Wendy; Hoang, Nam

    2013-06-01

    Australian beef consumers have different preferences given their characteristics and the effect on expected quality of cues related to health, production process and eating experience. Beef brands using Meat Standards Australia (MSA) grades can help to signal quality and reduce consumers' uncertainty when shopping. The objective of this study is to identify the characteristics of beef buyers and their perceptions about product attributes that affect the propensity to buy branded beef. Binary logistic models were applied identifying differences between all respondents and the potential target market, including buyers in medium to high income segments, and between buyers in the target market who would buy branded beef for taste and health reasons. Variables increasing the propensity to buy branded beef include previous experience, appreciation for branded cuts and concern about quality more than size. Finally, variations in preferences for marbling and cut were found between buyers who would buy branded beef for taste and health reasons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Instant noodles: processing, quality, and nutritional aspects.

    PubMed

    Gulia, Neelam; Dhaka, Vandana; Khatkar, B S

    2014-01-01

    Noodles are one of the staple foods consumed in many Asian countries. Instant noodles have become internationally recognized food, and worldwide consumption is on the rise. The properties of instant noodles like taste, nutrition, convenience, safety, longer shelf-life, and reasonable price have made them popular. Quality factors important for instant noodles are color, flavor, and texture, cooking quality, rehydration rates during final preparation, and the presence or absence of rancid taste after extended storage. Microstructure of dough and noodles has been studied to understand the influence of ingredients and processing variables on the noodle quality by employing scanning electron microscopy. Applications of newer techniques like confocal laser scanning microscopy and epifluorescence light microscopy employed to understand the microstructure changes in dough and noodles have also been discussed. Sincere efforts of researchers are underway to improve the formulation, extend the shelf life, and promote universal fortification of instant noodles. Accordingly, many researchers are exploring the potential of noodle fortification as an effective public health intervention and improve its nutritional properties. This review focuses on the functionality of ingredients, unit operations involved, quality criteria for evaluation, recent trends in fortification, and current knowledge in relation to instant noodles.

  17. Organic food consumption in Poland: Motives and barriers.

    PubMed

    Bryła, Paweł

    2016-10-01

    This paper aims to investigate selected aspects of organic food consumption in Poland. We conducted a survey in a representative sample of 1000 consumers. Polish consumers are convinced that organic food is more expensive, healthier, more environmentally friendly, more tasty and more authentic than conventional food. They believe its arouses more trust, has a better quality, is subject to more strict controls, and is produced in a more traditional way. According to Polish consumers, the most important characteristics of organic food are healthiness and high quality. The perceived authenticity of organic food depends on its natural taste, product quality, labelling, in particular having a European quality sign, as well as the retailer type and a separate exposition place in the points of purchase (merchandising). The critical barrier to the development of the organic food market in Poland is the high price, followed by an insufficient consumer awareness, low availability of organic products, short expiry dates and low visibility in the shop. The principal motives of organic food selection in Poland include: healthiness, ecological character of the product, food safety considerations, superior taste, and quality assurance. We identified the motives for and barriers to organic food consumption in Poland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    PubMed

    Murovets, Vladimir O; Bachmanov, Alexander A; Zolotarev, Vasiliy A

    2015-01-01

    The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  19. An Alternative Laboratory Designed to Address Ethical Concerns Associated with Traditional "TAS2R38" Student Genotyping

    ERIC Educational Resources Information Center

    LaBonte, Michelle L.; Beers, Melissa A.

    2015-01-01

    The "TAS2R38" alleles that code for the PAV/AVI T2R38 proteins have long been viewed as benign taste receptor variants. However, recent studies have demonstrated an expanding and medically relevant role for "TAS2R38." The AVI variant of T2R38 is associated with an increased risk of both colorectal cancer and "Pseudomonas…

  20. National Recommended Water Quality Criteria - Organoleptic Effects

    EPA Pesticide Factsheets

    These criteria are based on organoleptic (taste and odor) effects. Because of variations in chemical nomenclature systems, this listing of pollutants does not duplicate the listing in Appendix A of 40 CFR Part 423.

  1. Ultrasound Applications in Food Processing

    NASA Astrophysics Data System (ADS)

    Bermúdez-Aguirre, Daniela; Mobbs, Tamara; Barbosa-Cánovas, Gustavo V.

    Food scientists today are focused on the development of not only microbiologically safe products with a long storage life, but, at the same time, products that have fresh-like characteristics and a high quality in taste, flavor, and texture. This focus is based on the needs of the consumer, which is one of the main reasons for constant research in the so-called area of emerging technologies. Traditionally, thermal treatments have been used to produce safe food products. Pasteurization of juice, milk, beer, and wine is a common process in which the final product has a storage life of some weeks (generally under refrigeration). However, vitamins, taste, color, and other sensorial characteristics are decreased with this treatment. High temperature is responsible for these effects and can be observed in the loss of nutritional components and changes in flavor, taste, and texture, often creating the need for additives to improve the product.

  2. Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries

    NASA Astrophysics Data System (ADS)

    Candia-Muñoz, N.; Ramirez-Bunster, M.; Vargas-Hernández, Y.; Gaete-Garretón, L.

    Interest in high quality foods: good taste and a high content of nutrients with healthy beneficial effects are increasing. Fruits have good properties but, they are lost because the oxidation process, additionally, for different reasons a 40% of harvested fruit are lost. To conserve the fruit properties an ultrasonic assisted spray dryer was developed and tested, comparing its results with microwave-vacuum drying technology. Results did shown taste, color, smell, particle shape and size distribution better than the conventional one. The antioxidants conservation were quite good except in the anthocyanins, in which the microwave and vacuum technology shown best results.

  3. Attributes of quality in audiovisual materials for health professionals.

    PubMed

    Suter, E; Waddell, W H

    1981-07-01

    Utilizing a series of meetings and incorporating individual efforts of producers, evaluators, and users of audiovisual materials; an attempt has been made to define the quality of an instructional item. Attributes of quality in content, instructional design, technical production, and packaging of audiovisual materials are addressed through questions about general criteria that permit expression of individual dictates off creativity and taste. These attributes of quality are intended for use by the producers and evaluators of audiovisual instruction.

  4. Physicochemical parameters affecting the perception of borehole water quality in Ghana.

    PubMed

    Kulinkina, Alexandra V; Plummer, Jeanine D; Chui, Kenneth K H; Kosinski, Karen C; Adomako-Adjei, Theodora; Egorov, Andrey I; Naumova, Elena N

    2017-08-01

    Rural Ghanaian communities continue using microbiologically contaminated surface water sources due in part to undesirable organoleptic characteristics of groundwater from boreholes. Our objective was to identify thresholds of physical and chemical parameters associated with consumer complaints related to groundwater. Water samples from 94 boreholes in the dry season and 68 boreholes in the rainy season were analyzed for 18 parameters. Interviews of consumers were conducted at each borehole regarding five commonly expressed water quality problems (salty taste, presence of particles, unfavorable scent, oily sheen formation on the water surface, and staining of starchy foods during cooking). Threshold levels of water quality parameters predictive of complaints were determined using the Youden index maximizing the sum of sensitivity and specificity. The probability of complaints at various parameter concentrations was estimated using logistic regression. Exceedances of WHO guidelines were detected for pH, turbidity, chloride, iron, and manganese. Concentrations of total dissolved solids (TDS) above 172mg/L were associated with salty taste complaints. Although the WHO guideline is 1000mg/L, even at half the guideline, the likelihood of salty taste complaint was 75%. Iron concentrations above 0.11, 0.14 and 0.43mg/L (WHO guideline value 0.3mg/L) were associated with complaints of unfavorable scent, oily sheen, and food staining, respectively. Iron and TDS concentrations exhibited strong spatial clustering associated with specific geological formations. Improved groundwater sources in rural African communities that technically meet WHO water quality guidelines may be underutilized in preference of unimproved sources for drinking and domestic uses, compromising human health and sustainability of improved water infrastructure. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. The role of production process and information on quality expectations and perceptions of sparkling wines.

    PubMed

    Vecchio, Riccardo; Lisanti, Maria Tiziana; Caracciolo, Francesco; Cembalo, Luigi; Gambuti, Angelita; Moio, Luigi; Siani, Tiziana; Marotta, Giuseppe; Nazzaro, Concetta; Piombino, Paola

    2018-05-28

    The present research aims to analyse, by combining sensory and experimental economics techniques, to what extent production process, and the information about it, may affect consumer preferences. Sparkling wines produced by Champenoise and Charmat methods were the object of the study. A quantitative descriptive sensory analysis with a trained panel and non-hypothetical auctions combined with hedonic ratings involving young wine consumers (N=100), under different information scenarios(Blind, Info and Info Taste), were performed. Findings show that the production process impacts both the sensory profile of sparkling wines and consumer expectations. In particular, the hedonic ratings revealed that when tasting the products, both with no information on the production process (Blind) and with such information (Info Taste), the consumers preferred the Charmat wines. On the contrary, when detailed information on the production methods was given without tasting (Info), consumers liked more the two Champenoise wines. It can be concluded that sensory and non-sensory attributes of sparkling wines affect consumers' preferences. Specifically, the study suggests that production process information strongly impacts liking expectations, while not affecting informed liking. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Effect of cultivation line and peeling on food composition, taste characteristic, aroma profile, and antioxidant activity of Shiikuwasha (Citrus depressa Hayata) juice.

    PubMed

    Asikin, Yonathan; Fukunaga, Hibiki; Yamano, Yoshimasa; Hou, De-Xing; Maeda, Goki; Wada, Koji

    2014-09-01

    Shiikuwasha (Citrus depressa Hayata) juice from four main cultivation lines subjected to two peeling practices (with or without peeling) were discriminated in terms of quality attributes, represented by sugar and organic acid composition, taste characteristic, aroma profile, and antioxidant activity. Shiikuwasha juice from these lines had diverse food compositions; 'Izumi kugani' juice had lower acidity but contained more ascorbic acid than that of other cultivation lines. The composition of volatile aroma components was influenced by fruit cultivation line, whereas its content was affected by peeling process (20.26-53.73 mg L(-1) in whole juice versus 0.82-1.58 mg L(-1) in flesh juice). Peeling also caused Shiikuwasha juice to be less astringent and acidic bitter and to lose its antioxidant activity. Moreover, the total phenolic and ascorbic acid content of Shiikuwasha juice positively influenced its antioxidant activity. Each fruit cultivation line had a distinct food composition, taste characteristic, and aroma profile. Peeling in Shiikuwasha juice production might reduce aftertaste, and thus might improve its palatability. Comprehensive information on the effect of cultivation line and peeling on quality attributes will be useful for Shiikuwasha juice production, and can be applied to juice production of similar small citrus fruits. © 2014 Society of Chemical Industry.

  7. Alterations of sucrose preference after Roux-en-Y gastric bypass.

    PubMed

    Bueter, M; Miras, A D; Chichger, H; Fenske, W; Ghatei, M A; Bloom, S R; Unwin, R J; Lutz, T A; Spector, A C; le Roux, C W

    2011-10-24

    Roux-en-Y gastric bypass (gastric bypass) patients reportedly have changes in perception and consumption of sweet-tasting foods. This study aimed to further investigate alterations in sweet food intake in rats and sucrose detection in humans after gastric bypass. Wistar rats were randomized to gastric bypass or sham-operations and preference for sucrose (sweet), sodium chloride (salty), citric acid (sour) and quinine hydrochloride (bitter) was assessed with standard two-bottle intake tests (vs. water). Intestinal T1R2 and T1R3 expression and plasma levels of glucagon-like-peptide 1 (GLP-1) and peptide YY (PYY) were measured. Furthermore, obese patients and normal weight controls were tested for sucrose taste detection thresholds pre- and postoperatively. Visual analogue scales measuring hedonic perception were used to determine the sucrose concentration considered by patients and controls as "just about right" pre- and postoperatively. Gastric bypass reduced the sucrose intake relative to water in rats (p<0.001). Preoperative sucrose exposure reduced this effect. Preference or aversion for compounds representative of other taste qualities in naïve rats remained unaffected. Intestinal T1R2 and T1R3 expression was significantly decreased in the alimentary limb while plasma levels of GLP-1 and PYY were elevated after bypass in rats (p=0.01). Bypass patients showed increased taste sensitivity to low sucrose concentrations compared with controls (p<0.05), but both groups considered the same sucrose concentration as "just about right" postoperatively. In conclusion, gastric bypass reduces sucrose intake relative to water in sucrose-naïve rats, but preoperative sucrose experience attenuates this effect. Changes in sucrose taste detection do not predict hedonic taste ratings of sucrose in bypass patients which remain unchanged. Thus, factors other than the unconditional affective value of the taste may also play a role in determining food preferences after gastric bypass. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Sip and spit or sip and swallow: Choice of method differentially alters taste intensity estimates across stimuli.

    PubMed

    Running, Cordelia A; Hayes, John E

    2017-11-01

    While the myth of the tongue map has been consistently and repeatedly debunked in controlled studies, evidence for regional differences in suprathreshold intensity has been noted by multiple research groups. Given differences in physiology between the anterior and posterior tongue (fungiform versus foliate and circumvallate papillae) and differences in total area stimulated (anterior only versus whole tongue, pharynx, and epiglottis), small methodological changes (sip and spit versus sip and swallow) have the potential to substantially influence data. We hypothesized instructing participants to swallow solutions would result in greater intensity ratings for taste versus expectorating the solutions, particularly for umami and bitter, as these qualities were previously found to elicit regional differences in perceived intensity. Two experiments were conducted: one with model taste solutions [sucrose (sweet), a monosodium glutamate/inosine monophosphate (MSG/IMP) mixture (savory/umami), isolone (a bitter hop extract), and quinine HCl (bitter)], and a second with actual food products (grapefruit juice, salty vegetable stock, savory vegetable stock, iced coffee, and a green tea sweetened with acesulfame-potassium and sucralose). In a counterbalanced crossover design, participants (n=66 in experiment 1 and 64 in experiment 2) rated the stimuli for taste intensities both when swallowing and when spitting out the stimuli. Results suggest swallowing may lead to greater reported bitterness versus spitting out the stimulus, but that this effect was not consistent across all samples. Thus, explicit instructions to spit out or swallow samples should be given to participants in studies investigating differences in taste intensities, as greater intensity may sometimes, but not always, be observed when swallowing various taste stimuli. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Using Fish Sauce as a Substitute for Sodium Chloride in Culinary Sauces and Effects on Sensory Properties.

    PubMed

    Huynh, Hue Linh; Danhi, Robert; Yan, See Wan

    2016-01-01

    Historically, fish sauce has been a standard condiment and ingredient in various Southeast Asian cuisines. Moreover, fish sauce imparts umami taste, which may enhance perceived saltiness in food. This quality suggests that fish sauce may be used as a partial substitute for sodium chloride (NaCl) in food preparation, which may present a valuable option for health-conscious and salt-restricted consumers. However, the degree to which NaCl can be decreased in food products without compromising taste and consumer acceptance has not been determined. We hypothesized that NaCl content in food may be reduced by partial replacement with fish sauce without diminishing palatability and consumer acceptance. Preparations of 3 types of food were assessed to test this hypothesis: chicken broth (n = 72); tomato sauce (n = 73); and coconut curry (n = 70). In the first session, the percentage of NaCl that could be replaced with fish sauce without a significant change in overall taste intensity was determined for each type of food using the 2-Alternative Forced Choice method. In the second session, subjects rated 5 samples for each food with varying NaCl and/or fish sauce content on 3 sensory attributes: deliciousness; taste intensity; and saltiness. Our results demonstrate that NaCl reduction was possible in chicken broth, tomato sauce, and coconut curry at 25%, 16%, and 10%, respectively, without a significant loss (P < 0.05) in deliciousness and overall taste intensity. These results suggest that it is possible to replace NaCl in foods with fish sauce without reducing overall taste intensity and consumer acceptance. © 2015 Institute of Food Technologists®

  10. Fate and transport of cyanobacteria and associated toxins and taste-and-odor compounds from upstream reservoir releases in the Kansas River, Kansas, September and October 2011

    USGS Publications Warehouse

    Graham, Jennifer L.; Ziegler, Andrew C.; Loving, Brian L.; Loftin, Keith A.

    2012-01-01

    Cyanobacteria cause a multitude of water-quality concerns, including the potential to produce toxins and taste-and-odor compounds. Toxins and taste-and-odor compounds may cause substantial economic and public health concerns and are of particular interest in lakes, reservoirs, and rivers that are used for drinking-water supply, recreation, or aquaculture. The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Water released from Milford Lake to the Kansas River during a toxic cyanobacterial bloom in late August 2011 prompted concerns about cyanobacteria and associated toxins and taste-and-odor compounds in downstream drinking-water supplies. During September and October 2011 water-quality samples were collected to characterize the transport of cyanobacteria and associated compounds from upstream reservoirs to the Kansas River. This study is one of the first to quantitatively document the transport of cyanobacteria and associated compounds during reservoir releases and improves understanding of the fate and transport of cyanotoxins and taste-and-odor compounds downstream from reservoirs. Milford Lake was the only reservoir in the study area with an ongoing cyanobacterial bloom during reservoir releases. Concentrations of cyanobacteria and associated toxins and taste-and-odor compounds in Milford Lake (upstream from the dam) were not necessarily indicative of outflow conditions (below the dam). Total microcystin concentrations, one of the most commonly occurring cyanobacterial toxins, in Milford Lake were 650 to 7,500 times higher than the Kansas Department of Health and Environment guidance level for a public health warning (20 micrograms per liter) for most of September 2011. By comparison, total microcystin concentrations in the Milford Lake outflow generally were less than 10 percent of the concentrations in surface accumulations, and never exceeded 20 micrograms per liter. The Republican River, downstream from Milford Lake, was the only Kansas River tributary with detectable microcystin concentrations throughout the study period, and concentrations exceeded 1 microgram per liter for most of September 2011. Microcystin was detected periodically in other tributaries, but concentrations were low (less than 0.3 micrograms per liter). In contrast, the taste-and-odor compounds geosmin and 2-methylisoborneol (MIB) were detected in all tributaries located immediately downstream from reservoirs and total concentrations generally exceeded the human detection threshold (5 to 10 nanograms per liter) from September through mid-October. Microcystin, geosmin, and MIB were not detected in the Smoky Hill River upstream from the confluence with the Republican River that forms the Kansas River. Within a week after initial reservoir releases, microcystin, geosmin, and MIB were detected throughout a 173-mile reach of the Kansas River; these compounds remained detectable throughout the reach until mid-October. Losses to groundwater when streamflows in the Kansas River were increasing indicate the potential for reservoir releases to affect groundwater quality as well as surface-water quality. Total microcystin concentrations in the Kansas River generally were highest within about 24 miles of the confluence of the Smoky Hill and Republican Rivers, and decreased downstream; concentrations exceeded 1 microgram per liter in the Kansas River upstream from Topeka during the first 2 weeks of September. Patterns in microcystin occurrence and concentration at Kansas River tributary and main-stem sites indicate that Milford Lake was the source of microcystin in the Kansas River; however, the source of taste-and-odor compounds was not as evident, possibly because multiple tributaries contributed taste-and-odor compounds to the Kansas River. Microcystin and taste-and-odor compounds co-occurred in 56 percent of samples collected, indicating co-occurrence was common. Despite frequent co-occurrence, the spatial and temporal patterns in microcystin, geosmin, and MIB were unique and did not necessarily match patterns in cyanobacterial abundance. Use of a single compound or cyanobacterial abundance alone cannot necessarily be used as an indicator of the presence or concentration of these compounds. Measured concentrations of cyanobacteria and associated compounds were substantially higher than expected concentrations based on simple dilution models at some sites and substantially lower at others, though spatial and temporal patterns were unique for individual compounds. Data were not collected in such a way to determine whether differences between measured and expected concentrations were statistically significant. Results, however, indicate that simple dilution models were not sufficient to describe the downstream transport of cyanobacteria and associated compounds in the Kansas River.

  11. Quality Characteristics and Antioxidant Activity of Yogurt Supplemented with Aronia (Aronia melanocarpa) Juice.

    PubMed

    Nguyen, Linh; Hwang, Eun-Sun

    2016-12-01

    We investigated the quality characteristics and antioxidant activities of yogurt supplemented with 1%, 2%, and 3% aronia juice and fermented for 24 h at 37°C. The total acidity increased with increasing levels of aronia juice and incubation time. Lightness and yellowness of the yogurt decreased, but redness increased, with increasing aronia juice content and incubation time. The number of lactic acid bacteria (LAB) increased with increased incubation time, and yogurt containing 2% and 3% aronia juice showed higher LAB counts than 1% aroinia juice-supplemented yogurt. The total polyphenol and flavonoid contents increased proportionally with increasing levels of aronia juice. Antioxidant activity of aronia-containing yogurt was significantly higher than that of the control and increased proportionally with aronia juice concentration. Yogurt with 2% aronia juice had the best taste ( P <0.05). Aronia juice may be a useful additive for improving the taste and antioxidant potential of yogurt.

  12. Studies on physico-chemical changes during artificial ripening of banana (Musa sp) variety 'Robusta'.

    PubMed

    Kulkarni, Shyamrao Gururao; Kudachikar, V B; Keshava Prakash, M N

    2011-12-01

    Banana (Musa sp var 'Robusta') fruits harvested at 75-80% maturity were dip treated with different concentrations of ethrel (250-1,000 ppm) solution for 5 min. Ethrel at 500 ppm induced uniform ripening without impairing taste and flavour of banana. Untreated control banana fruits remained shriveled, green and failed to ripen evenly even after 8 days of storage. Fruits treated with 500 ppm of ethrel ripened well in 6 days at 20 ± 1 °C. Changes in total soluble solids, acidity, total sugars and total carotenoids showed increasing trends up to 6 days during ripening whereas fruit shear force values, pulp pH and total chlorophyll in peel showed decreasing trends. Sensory quality of ethrel treated banana fruits (fully ripe) were excellent with respect to external colour, taste, flavour and overall quality.

  13. Quality Characteristics and Antioxidant Activity of Yogurt Supplemented with Aronia (Aronia melanocarpa) Juice

    PubMed Central

    Nguyen, Linh; Hwang, Eun-Sun

    2016-01-01

    We investigated the quality characteristics and antioxidant activities of yogurt supplemented with 1%, 2%, and 3% aronia juice and fermented for 24 h at 37°C. The total acidity increased with increasing levels of aronia juice and incubation time. Lightness and yellowness of the yogurt decreased, but redness increased, with increasing aronia juice content and incubation time. The number of lactic acid bacteria (LAB) increased with increased incubation time, and yogurt containing 2% and 3% aronia juice showed higher LAB counts than 1% aroinia juice-supplemented yogurt. The total polyphenol and flavonoid contents increased proportionally with increasing levels of aronia juice. Antioxidant activity of aronia-containing yogurt was significantly higher than that of the control and increased proportionally with aronia juice concentration. Yogurt with 2% aronia juice had the best taste (P<0.05). Aronia juice may be a useful additive for improving the taste and antioxidant potential of yogurt. PMID:28078255

  14. Quinoa flour in baked products.

    PubMed

    Lorenz, K; Coulter, L

    1991-07-01

    The performance of quinoa-wheat flour blends (5/95, 10/90, 20/80, 30/70) were evaluated in breads, cakes and cookies. Breads baked with 5% and 10% quinoa flour were of good quality. Loaf volume decreased, crumb grain became more open and the texture slightly harsh at higher usage levels of quinoa flour. A bitter after taste was noted at the 30% level. Cake quality was acceptable with 5% and 10% of quinoa flour. Cake grain became more open and the texture less silky as the level of quinoa substitution increased. Cake taste improved with either 5% or 10% quinoa flour in the blend. Cookie spread and top grain scores decreased with increasing levels of quinoa flour blended with high-spread cookie flour. Flavor improved up to 20% quinoa flour in the blend. Cookie spread and cookie appearance was improved with a quinoa/low-spread flour blend by using 2% lecithin.

  15. New protocol for αAstree electronic tongue enabling full performance qualification according to ICH Q2.

    PubMed

    Pein, Miriam; Eckert, Carolin; Preis, Maren; Breitkreutz, Jörg

    2013-09-01

    Performance qualification (PQ) of taste sensing systems is mandatory for their use in pharmaceutical industry. According to ICH Q2 (R1) and a recent adaptation for taste sensing systems, non-specificity, log-linear relationships between the concentration of analytes and the sensor signal as well as a repeatability with relative standard deviation (RSD) values <4% were defined as basic requirements to pass a PQ. In the present work, the αAstree taste sensing system led to a successful PQ procedure by the use of recent sensor batches for pharmaceutical applications (sensor set #2) and a modified measurement protocol. Log-linear relationships between concentration and responses of each sensor were investigated for different bitter tasting active pharmaceutical ingredients (APIs). Using the new protocol, RSD values <2.1% were obtained in the repeatability study. Applying the visual evaluation approach, detection and quantitation limit could be determined for caffeine citrate with every sensor (LOD 0.05-0.5 mM, LOQ: 0.1-0.5 mM). In addition, the sensor set marketed for food applications (sensor set #5) was proven to show beneficial effects regarding the log-linear relationship between the concentration of quinine hydrochloride and the sensor signal. By the use of our proposed protocol, it is possible to implement the αAstree taste sensing system as a tool to assure quality control in the pharmaceutical industry. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Contrasting metabolic profiles of tasty Andean varieties of tomato fruit in comparison with commercial ones.

    PubMed

    D'Angelo, Matilde; Zanor, María I; Sance, María; Cortina, Pablo R; Boggio, Silvana B; Asprelli, Pablo; Carrari, Fernando; Santiago, Ana N; Asís, Ramón; Peralta, Iris E; Valle, Estela M

    2018-02-02

    The fruits of most commercial tomato cultivars (Solanum lycopersicum L.) are deficient in flavour. In contrast, traditional 'criollo' tomato varieties are appreciated for fruit of excellent organoleptic quality. Small farmers from the Andean valleys in Argentina have maintained their own tomato varieties, which were selected mainly for flavour. This work aims to correlate the chemical composition of the fruit with the sensory attributes of eight heirloom tomato varieties. The long-term goal is to identify potential candidate genes capable of altering the chemicals involved in flavour. A sensory analysis was conducted and the metabolomics of fruit were determined. The data revealed that defined tomato aroma and sourness correlated with citrate and several volatile organic compounds (VOC), such as α-terpineol, p-menth-1-en-9-al, linalool and 3,6-dimethyl-2,3,3a,4,5,7a-hexahydrobenzofuran (DMHEX), a novel volatile recently identified in tomato. Two sensory attributes - sweetness and a not-acidic taste - correlated with the characteristic tomato taste, and also with fructose, glucose, and two VOCs, benzaldehyde, and 2-methyl-2-octen-4-one. These data provide new evidence of the complex chemical combination that induced the flavour and aroma of the good-tasting 'criollo' tomato fruit. That is, the compounds that correlated with defined tomato aroma and acidic taste did not correlate with sweetness, or with characteristic tomato taste. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  17. Fetal ethanol exposure increases ethanol intake by making it smell and taste better

    PubMed Central

    Youngentob, Steven L.; Glendinning, John I.

    2009-01-01

    Human epidemiologic studies reveal that fetal ethanol exposure is highly predictive of adolescent ethanol avidity and abuse. Little is known about how fetal exposure produces these effects. It is hypothesized that fetal ethanol exposure results in stimulus-induced chemosensory plasticity. Here, we asked whether gestational ethanol exposure increases postnatal ethanol avidity in rats by altering its taste and odor. Experimental rats were exposed to ethanol in utero via the dam's diet, whereas control rats were either pair-fed an iso-caloric diet or given food ad libitum. We found that fetal ethanol exposure increased the taste-mediated acceptability of both ethanol and quinine hydrochloride (bitter), but not sucrose (sweet). Importantly, a significant proportion of the increased ethanol acceptability could be attributed directly to the attenuated aversion to ethanol's quinine-like taste quality. Fetal ethanol exposure also enhanced ethanol intake and the behavioral response to ethanol odor. Notably, the elevated intake of ethanol was also causally linked to the enhanced odor response. Our results demonstrate that fetal exposure specifically increases ethanol avidity by, in part, making it taste and smell better. More generally, they establish an epigenetic chemosensory mechanism by which maternal patterns of drug use can be transferred to offspring. Given that many licit (e.g., tobacco products) and illicit (e.g., marijuana) drugs have noteworthy chemosensory components, our findings have broad implications for the relationship between maternal patterns of drug use, child development, and postnatal vulnerability. PMID:19273846

  18. Fetal ethanol exposure increases ethanol intake by making it smell and taste better.

    PubMed

    Youngentob, Steven L; Glendinning, John I

    2009-03-31

    Human epidemiologic studies reveal that fetal ethanol exposure is highly predictive of adolescent ethanol avidity and abuse. Little is known about how fetal exposure produces these effects. It is hypothesized that fetal ethanol exposure results in stimulus-induced chemosensory plasticity. Here, we asked whether gestational ethanol exposure increases postnatal ethanol avidity in rats by altering its taste and odor. Experimental rats were exposed to ethanol in utero via the dam's diet, whereas control rats were either pair-fed an iso-caloric diet or given food ad libitum. We found that fetal ethanol exposure increased the taste-mediated acceptability of both ethanol and quinine hydrochloride (bitter), but not sucrose (sweet). Importantly, a significant proportion of the increased ethanol acceptability could be attributed directly to the attenuated aversion to ethanol's quinine-like taste quality. Fetal ethanol exposure also enhanced ethanol intake and the behavioral response to ethanol odor. Notably, the elevated intake of ethanol was also causally linked to the enhanced odor response. Our results demonstrate that fetal exposure specifically increases ethanol avidity by, in part, making it taste and smell better. More generally, they establish an epigenetic chemosensory mechanism by which maternal patterns of drug use can be transferred to offspring. Given that many licit (e.g., tobacco products) and illicit (e.g., marijuana) drugs have noteworthy chemosensory components, our findings have broad implications for the relationship between maternal patterns of drug use, child development, and postnatal vulnerability.

  19. Primary expectations of secondary metabolites

    USDA-ARS?s Scientific Manuscript database

    My program examines the plant secondary metabolites (i.e. phenolics) important for human health, and which impart the organoleptic properties that are quality indicators for fresh and processed foods. Consumer expectations such as appearance, taste, or texture influence their purchasing decisions; a...

  20. Sweet neutron crystallography.

    PubMed

    Teixeira, S C M; Blakeley, M P; Leal, R M F; Gillespie, S M; Mitchell, E P; Forsyth, V T

    2010-11-01

    Extremely sweet proteins isolated from tropical fruit extracts are promising healthy alternatives to sugar and synthetic sweeteners. Sweetness and taste in general are, however, still poorly understood. The engineering of stable sweet proteins with tailored properties is made difficult by the lack of supporting high-resolution structural data. Experimental information on charge distribution, protonation states and solvent structure are vital for an understanding of the mechanism through which sweet proteins interact with taste receptors. Neutron studies of the crystal structures of sweet proteins allow a detailed study of these biophysical properties, as illustrated by a neutron study on the native protein thaumatin in which deuterium labelling was used to improve data quality.

  1. Physical and sensory quality of hommos preserved with combined gamma radiation and refrigeration

    NASA Astrophysics Data System (ADS)

    Amr, A.; Al-Qadiri, H.; Saleh, M.; Shahein, M.

    2018-03-01

    Hommos was treated with gamma radiation and stored at 4 °C for a period of five weeks with the aim of extending its shelf life under refrigeration. Viscosity and colour of the product were evaluated instrumentally at 5-day intervals, and its sensory quality was evaluated by a taste panel at the beginning and end of the storage period. The results indicate that irradiation combined with storage caused reduction of the ΔE*ab, a*, b* and L* colour values, but have no such an effect on the apparent viscosity, flow behavior index (n) or consistency coefficient (k) of the product which exhibited a non-Newtonian, pseudoplastic behavior. Neither irradiation dose nor storage time affected the overall acceptability, flavor, smoothness, mouth- feel and colour of the product when evaluated by a taste panel. The product irradiated with 1.5 or 2.5 kGy can be stored at 4 °C for 35 days and still maintain its sensory and physical qualities indicating that the shelf life of this product, like other irradiated foods, can be extended by this combined treatment.

  2. Impact of lysine and liquid smoke as flavor enhancers on the quality of low-fat Bologna-type sausages with 50% replacement of NaCl by KCl.

    PubMed

    Dos Santos Alves, Larissa Aparecida Agostinho; Lorenzo, José Manuel; Gonçalves, Carlos Antonio Alvarenga; Dos Santos, Bibiana Alves; Heck, Rosane Teresinha; Cichoski, Alexandre José; Campagnol, Paulo Cezar Bastianello

    2017-01-01

    Low-fat Bologna-type sausages were produced with 50% of NaCl replaced by KCl and with addition of lysine and/or liquid smoke as flavor enhancers. The influence of sodium reduction on technological, physicochemical, and microbiological properties was determined. In addition, the sensory properties were evaluated using a Check all that apply questionnaire (CATA) and a consumer study. The partial replacement of NaCl by KCl did not have negative impacts on physicochemical, technological, and microbiological properties. However, the addition of KCl affected the sensory acceptance, as consumers identified by CATA questionnaire a reduction in salty taste and an increase in bitter, astringent, and metallic taste. The isolated or combined addition of lysine and liquid smoke reduced the sensory quality defects caused by the addition of KCl. Therefore, high quality low-fat Bologna-type sausages with sodium reduction close to 50% can be produced by replacing 50% NaCl by KCl and with addition of 1% lysine and/or 0.1% liquid smoke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of high-dose irradiation and autoclave treatment on microbial safety and quality of ready-to-eat Bulgogi sauce

    NASA Astrophysics Data System (ADS)

    Park, Jin-Gyu; Song, Beom-Seok; Kim, Jae-Hun; Han, In-Jun; Yoon, Yohan; Chung, Hyung-Wook; Kim, Eun-Jeong; Gao, Meixu; Lee, Ju-Woon

    2012-08-01

    In Korea, commercialized sauce for ready-to-eat (RTE) Bulgogi is usually manufactured using heat treatment to ensure that it has a long shelf-life. However, heat treatment may adversely affect the taste and flavor of the sauce, thus, the development of suitable sterilizing methods for RTE sauces is necessary to preserve the quality of the sauce during long storage periods. In this study, total bacterial growth, the viscosity, and the sensory properties of Bulgogi sauce were compared between sterilization with gamma irradiation (0-40 kGy) and autoclave treatment during storage at 35 °C for 90 days. No bacterial growth was observed following irradiation at more than 10 kGy or after autoclave treatment. However, the viscosity and sensory properties of samples gamma-irradiated at above 10 kGy or autoclave-treated were significantly changed, even though autoclave treatment induced a burnt taste and flavor. Therefore, a gamma irradiation of 10 kGy was effective to prepare ready-to-eat Bulgogi sauce with microbial safety and original sensory qualities.

  4. Applicability of salt reduction strategies in pizza crust.

    PubMed

    Mueller, Eva; Koehler, Peter; Scherf, Katharina Anne

    2016-02-01

    In an effort to reduce population-wide sodium intake from processed foods, due to major health concerns, several different strategies for sodium reduction in pizza crust without any topping were evaluated by sensory analyses. It was possible to reduce sodium by 10% in one single step or to replace 30% of NaCl by KCl without a noticeable loss of salty taste. The late addition of coarse-grained NaCl (crystal size: 0.4-1.4 mm) to pizza dough led to an enhancement of saltiness through taste contrast and an accelerated sodium delivery measured in the mouth and in a model mastication simulator. Likewise, the application of an aqueous salt solution to one side of the pizza crust led to an enhancement of saltiness perception through faster sodium availability, leading to a greater contrast in sodium concentration. Each of these two strategies allowed a sodium reduction of up to 25% while maintaining taste quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Composition, Taste, Aroma, and Antioxidant Activity of Solidified Noncentrifugal Brown Sugars Prepared from Whole Stalk and Separated Pith of Sugarcane (Saccharum officinarum L.).

    PubMed

    Takahashi, Makoto; Ishmael, Mutanda; Asikin, Yonathan; Hirose, Naoto; Mizu, Masami; Shikanai, Takesi; Tamaki, Hajime; Wada, Koji

    2016-10-25

    In this study, 2 types of solidified noncentrifugal brown sugars (W-NCS and P-NCS) were prepared from the whole stalk and separated pith, respectively, of raw sugarcane (Saccharum officinarum L.). These products were discriminated in terms of their quality attributes, including color, sugars and minerals composition, taste, aroma, and antioxidant activity. The brown color of P-NCS was clearly different compared with that of W-NCS with a color difference value (ΔE * ) of 9.36. There was no difference in the sugars and minerals composition between the 2 types of sugar, which led to very similar taste profiles. However, P-NCS had a weaker aroma intensity than W-NCS did. Moreover, P-NCS retained more than 60% of the antioxidant activity of W-NCS. The information gleaned from this study might be used to select appropriate end-uses for these 2 types of sugars. © 2016 Institute of Food Technologists®.

  6. Gender and race are significant determinants of students' food choices on a college campus.

    PubMed

    Boek, Stacey; Bianco-Simeral, Stephanie; Chan, Kenny; Goto, Keiko

    2012-01-01

    To examine the roles of gender and race in students' determinants of food choices on a college campus. A total of 405 college students participated in a survey entitled "Campus Food: You Tell Us!" Chi-square and logistic regression were used to examine associations between demographics and food choice determinants. Gender and race appeared to play a significant role in determinants of students' food dislikes. Males were significantly more likely to choose cost, taste, and poor quality over poor nutrition as determinants. White students were significantly less likely to choose cost, inconvenience, and taste over poor nutrition than students of other races. Gender was also a significant factor associated with student preferences for campus dining location and determinants of unhealthful food. Future marketing may be more effective if tailored to gender and race. Nutrition educators should consider addressing taste and convenience when attempting to influence students' food choices. Copyright © 2012 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  7. Knowledge extraction from evolving spiking neural networks with rank order population coding.

    PubMed

    Soltic, Snjezana; Kasabov, Nikola

    2010-12-01

    This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.

  8. Molecular cloning and evolutionary analysis of captive forest musk deer bitter taste receptor gene T2R16.

    PubMed

    Zhao, G J; Wu, N; Li, D Y; Zeng, D J; Chen, Q; Lu, L; Feng, X L; Zhang, C L; Zheng, C L; Jie, H

    2015-12-08

    Sensing bitter tastes is crucial for most animals because it can prevent them from ingesting harmful food. This process is mainly mediated by the bitter taste receptors (T2R) that are largely expressed in the taste buds. Previous studies have identified some T2R gene repertoires. Marked variation in repertoire size has been noted among species. However, research on T2Rs is still limited and the mechanisms underlying the evolution of vertebrate T2Rs remain poorly understood. In the present study, we analyzed the structure and features of the protein encoded by the forest musk deer (Moschus berezovskii) T2R16 and submitted the gene sequence to NCBI GenBank. The results showed that the full coding DNA sequence (CDS) of musk deer T2R16 (GenBank accession No. KP677279) was 906 bp, encoding 301 amino acids, which contained ATG start codon and TGA stop codon, with a calculated molecular weight of 35.03 kDa and an isoelectric point of 9.56. The T2R16 protein receptor had seven conserved transmembrane regions. Hydrophobicity analysis showed that most amino acid residues in T2R16 protein were hydrophobic, and the grand average of hydrophobicity (GRAVY) was 0.657. Phylogenetic analysis based on this gene revealed that forest musk deer had the closest association with sheep (Ovis aries), as compared to cow (Bos taurus), Tursiops truncatus, and other species, whereas it was genetically farthest from humans (Homo sapiens). We hope these results would complement the existing data on T2R16 and encourage further research in this respect.

  9. Development of taste masked caffeine citrate formulations utilizing hot melt extrusion technology and in vitro-in vivo evaluations

    PubMed Central

    Pimparade, Manjeet. B.; Morott, Joseph T.; Park, Jun-Bom; Kulkarni, Vijay I.; Majumdar, Soumyajit; Murthy, S. N.; Lian, Zhuoyang; Pinto, Elanor; Bi, Vivian; Durig, Thomas; Murthy, Reena; Shivakumar, H.N; Vanaja, K.; Kumar, C. P; Repka, Michael A.

    2015-01-01

    The objective of this study was to develop caffeine citrate orally disintegrating tablet (ODT) formulations utilizing hot-melt extrusion technology and evaluate the ability of the formulation composition to mask the unpleasant bitter taste of the drug using in vitro and in vivo methods. Ethylcellulose, along with a suitable plasticizer, was used as a polymeric carrier. Pore forming agents were incorporated into the extruded matrix to enhance drug release. A modified screw configuration was applied to improve the extrusion processability and to preserve the crystallinity of the API. The milled extrudates were subjected to dissolution testing in an artificial salivary fluid and investigations using e-tongue, to assess the extent of masking of bitter taste of the API. There was an insignificant amount of drug released from the formulation in the salivary medium while over 80% of drug released within 30 min in 0.1 N HCl. ODTs were also developed with the extrudate mixed with mannitol and crospovidone. The quality properties such as friability and disintegration time of the ODTs met the USP specifications. The lead extrudate formulations and the ODTs prepared using this formulation were subjected to human gustatory evaluation. The formulations were found to mask the unpleasant taste of caffeine citrate significantly. PMID:25888797

  10. Orosensory Responsiveness to and Preference for Hydroxide-Containing Salts in Mice

    PubMed Central

    St. John, Steven J.; Boughter, John D.

    2009-01-01

    Historically, taste researchers have considered the possibility that the gustatory system detects basic compounds, such as those containing the hydroxide ion, but evidence for an “alkaline taste” has not been strong. We found that, in 48 h, 2-bottle preference tests, C3HeB/FeJ (C3) mice showed a preference for Ca(OH)2, whereas SWR/J (SW) mice showed avoidance. Strain differences were also apparent to NaOH but not CaCl2. Follow-up studies showed that the strain difference for Ca(OH)2 was stable over time (Experiment 2) but that C3 and SW mice did not differ in their responses to Ca(OH)2 or NaOH in brief-access tests, where both mice avoided high concentrations of these compounds (Experiment 3). In order to assess the perceived quality of Ca(OH)2, mice were tested in 2 taste aversion generalization experiments (Experiments 4 and 5). Aversions to Ca(OH)2 generalized to NaOH but not CaCl2 in both strains, suggesting that the generalization was based on the hydroxide ion. Both strains also generalized aversions to quinine, suggesting the possibility that the hydroxide ion has a bitter taste quality to these mice, despite the preference shown by C3 mice to middle concentrations in long-term tests. PMID:19423656

  11. Acetylcholine is released from taste cells, enhancing taste signalling

    PubMed Central

    Dando, Robin; Roper, Stephen D

    2012-01-01

    Acetylcholine (ACh), a candidate neurotransmitter that has been implicated in taste buds, elicits calcium mobilization in Receptor (Type II) taste cells. Using RT-PCR analysis and pharmacological interventions, we demonstrate that the muscarinic acetylcholine receptor M3 mediates these actions. Applying ACh enhanced both taste-evoked Ca2+ responses and taste-evoked afferent neurotransmitter (ATP) secretion from taste Receptor cells. Blocking muscarinic receptors depressed taste-evoked responses in Receptor cells, suggesting that ACh is normally released from taste cells during taste stimulation. ACh biosensors confirmed that, indeed, taste Receptor cells secrete acetylcholine during gustatory stimulation. Genetic deletion of muscarinic receptors resulted in significantly diminished ATP secretion from taste buds. The data demonstrate a new role for acetylcholine as a taste bud transmitter. Our results imply specifically that ACh is an autocrine transmitter secreted by taste Receptor cells during gustatory stimulation, enhancing taste-evoked responses and afferent transmitter secretion. PMID:22570381

  12. The effects of finishing diet and postmortem ageing on the eating quality of the M. longissimus thoracis of electrically stimulated Brahman steer carcasses.

    PubMed

    Bruce, H L; Stark, J L; Beilken, S L

    2004-06-01

    Beef from cattle finished on grass will be of similar quality to that from cattle finished on grain when their carcasses are processed using best practice protocols. To test this hypothesis, carcasses of twenty Brahman steers, finished to 400 kg live weight on either Buffel grass pasture (n=10) or grain (n=10), were electrically stimulated with 400 V for 50 s 45 min postmortem, and their beef quality assessed 1 and 14 days postmortem. Hot weight, rump subcutaneous fat thickness and animal rate of growth in the 205 days preceding slaughter were recorded for each carcass as potential influences on beef quality. Quality of the M. longissimus thoracis (LT) at 1 and 14 days postmortem was evaluated using peak Warner-Bratzler shear force, compression, pH, cooking loss and taste panel acceptability, as well as by moisture and crude fat contents measured at 1 day postmortem. Results showed that steers finished on pasture grew the slowest and had the least subcutaneous fat at the same carcass weight. LT from carcasses of steers finished on pasture also had the shortest mean sarcomere lengths, suggesting these muscles may have been cold-affected, but there was no effect of diet on peak shear force. LT from carcasses of steers finished on pasture had the highest mean compression value, possibly because of increased collagen cross-linking associated with slow growth or increased exercise. Ageing significantly decreased LT peak shear force and compression values and increased cooking loss, L (∗), a (∗) and b (∗) values. Taste panellists rated the aged, grass-finished beef the most tender and the best quality; however, the taste panel in this study may have favoured LT from grass-finished steers because it was significantly juicier than LT from the grain-finished steer carcasses. These results indicated that carcass composition and processing conditions interact to exert a greater effect on LT toughness and sensory acceptability than finishing diet. Ageing LT from steers finished on grass improved its colour, and thus may enhance its consumer acceptability.

  13. Bitter-responsive brainstem neurons: characteristics and functions.

    PubMed

    Travers, Susan P; Geran, Laura C

    2009-07-14

    The sensation that humans describe as "bitter" is evoked by a large group of chemically diverse ligands. Bitter stimuli are avoided by a range of species and elicit reflex rejection, behaviors considered adaptations to the toxicity of many of these compounds. We review novel evidence for neurons that are narrowly tuned to bitter ligands at the initial stages of central processing. These "B-best" neurons in the nucleus of the solitary tract (NST) and parabrachial nucleus (PBN) respond to multiple types of bitter stimuli and exhibit average responses to bitter tastants that are 6-8 times larger than to moderate concentrations of compounds representing other qualities. However, in the PBN B-best units are appreciably activated by intense salt and acid. Neurons broadly sensitive to salts and acids ("AN" neurons) also responded to bitter stimuli. This sensitivity appeared restricted to stronger intensities of ionic bitters, as cycloheximide remained ineffective across concentrations. In addition to chemosensitive profile, B-best neurons were also distinctive with regard to their posterior receptive fields, long latencies, slow firing rates and projection status. Compared to B-best NST cells, those in the PBN received increased convergence from anterior and posterior receptive fields and responded to a greater number of bitter stimuli. We conclude that B-best neurons likely contribute to pathways underlying gaping, aversive hedonic quality and taste coding. The differential responsiveness of B-best and AN neurons to ionic and nonionic bitter ligands also suggests a potential substrate for discrimination within this quality.

  14. Kombucha brewing under the Food and Drug Administration model Food Code: risk analysis and processing guidance.

    PubMed

    Nummer, Brian A

    2013-11-01

    Kombucha is a fermented beverage made from brewed tea and sugar. The taste is slightly sweet and acidic and it may have residual carbon dioxide. Kombucha is consumed in many countries as a health beverage and it is gaining in popularity in the U.S. Consequently, many retailers and food service operators are seeking to brew this beverage on site. As a fermented beverage, kombucha would be categorized in the Food and Drug Administration model Food Code as a specialized process and would require a variance with submission of a food safety plan. This special report was created to assist both operators and regulators in preparing or reviewing a kombucha food safety plan.

  15. Algal and water-quality data for Rapid Creek and Canyon Lake near Rapid City, South Dakota, 2007

    USGS Publications Warehouse

    Hoogestraat, Galen K.; Putnam, Larry D.; Graham, Jennifer L.

    2008-01-01

    This report summarizes the results of algae and water-quality sampling on Rapid Creek and Canyon Lake during May and September 2007. The overall purpose of the study was to determine the algal community composition of Rapid Creek and Canyon Lake in relation to organisms that are known producers of unwanted tastes and odors in drinking-water supplies. Algal assemblage structure (phytoplankton and periphyton) was examined at 16 sites on Rapid Creek and Canyon Lake during May and September 2007, and actinomycetes bacteria were sampled at the Rapid City water treatment plant intake in May 2007, to determine if taste-and-odor producing organisms were present. During the May 2007 sampling, 3 Rapid Creek sites and 4 Canyon Lake sites were quantitatively sampled for phytoplankton in the water column, 7 Rapid Creek sites were quantitatively sampled for attached periphyton, and 4 lake and retention pond sites were qualitatively sampled for periphyton. Five Rapid Creek sites were sampled for geosmin and 2-methylisoborneol, two common taste-and-odor causing compounds known to affect water supplies. During the September 2007 sampling, 4 Rapid Creek sites were quantitatively sampled for attached periphyton, and 3 Canyon Lake sites were qualitatively sampled for periphyton. Water temperature, dissolved oxygen, pH, and specific conductance were measured during each sampling event. Methods of collection and sample analysis are presented for the various types of biological and chemical constituent samples. Diatoms comprised 91-100 percent of the total algal biovolume in periphyton samples collected during May and September. Cyanobacteria (also called blue-green algae) were detected in 7 of the 11 quantitative periphyton samples and ranged from 0.01 to 2.0 percent of the total biovolume. Cyanobacteria were present in 3 of the 7 phytoplankton samples collected in May, but the relative biovolumes were small (0.01-0.2 percent). Six of seven qualitative samples collected from Canyon Lake and retention ponds during May and September also contained cyanobacteria. Geosmin and 2-methylisoborneol concentrations were less than detection limits (0.005 ug/L) in all five of the Rapid Creek samples collected in May. Actinomycetes bacteria were present at the water treatment plant intake in May 2007, at a concentration of 6 colonies per milliliter. During this study, no taste-and-odor problems with the drinking water within the study area were reported. However, the presence of cyanobacterial taxa known to contain taste-and-odor producing strains (such as Leptolyngbya, Phormidium, and Anabaena) indicates the potential for taste-and-odor problems under certain physical and chemical conditions.

  16. Taste identification in adults with autism spectrum conditions.

    PubMed

    Tavassoli, T; Baron-Cohen, S

    2012-07-01

    Sensory issues are widely reported in Autism Spectrum Conditions (ASC). Since taste perception is one of the least studied senses in ASC we explored taste identification in adults with ASC (12 males, 11 females) compared to control participants (14 males, 12 females). 'Taste strips' were used to measure taste identification overall, as well as bitter, sour, sweet and salty tastes. Results revealed lower taste scores overall in the ASC group, as well as for bitter, sour and sweet tastes. Salty taste scores did not differ between the groups. Examining error types showed that adults with ASC more often misidentified a taste as salty or as no taste. Future studies should investigate underlying mechanisms of taste identification difficulties in ASC.

  17. Different Polar Metabolites and Protein Profiles between High- and Low-Quality Japanese Ginjo Sake

    PubMed Central

    Takahashi, Kei; Kohno, Hiromi

    2016-01-01

    Japanese ginjo sake is a premium refined sake characterized by a pleasant fruity apple-like flavor and a sophisticated taste. Because of technical difficulties inherent in brewing ginjo sake, off-flavors sometimes occur. However, the metabolites responsible for off-flavors as well as those present or absent in higher quality ginjo sake remain uncertain. Here, the relationship between 202 polar chemical compounds in sake identified using capillary electrophoresis coupled with time-of-flight mass spectrometry and its organoleptic properties, such as quality and off-flavor, was examined. First, we found that some off-flavored sakes contained higher total amounts of metabolites than other sake samples. The results also identified that levels of 2-oxoglutaric acid and fumaric acid, metabolites in the tricarboxylic acid cycle, were highly but oppositely correlated with ginjo sake quality. Similarly, pyridoxine and pyridoxamine, co-enzymes for amino transferase, were also highly but oppositely correlated with ginjo sake quality. Additionally, pyruvic acid levels were associated with good quality as well. Compounds involved in the methionine salvage cycle, oxidative glutathione derivatives, and amino acid catabolites were correlated with low quality. Among off-flavors, an inharmonious bitter taste appeared attributable to polyamines. Furthermore, protein analysis displayed that a diversity of protein components and yeast protein (triosephosphate isomerase, TPI) leakage was linked to the overall metabolite intensity in ginjo sake. This research provides insight into the relationship between sake components and organoleptic properties. PMID:26939054

  18. Taste Bud Homeostasis in Health, Disease, and Aging

    PubMed Central

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8–12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552

  19. Taste bud homeostasis in health, disease, and aging.

    PubMed

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.

  20. Participation of the peripheral taste system in aging-dependent changes in taste sensitivity.

    PubMed

    Narukawa, Masataka; Kurokawa, Azusa; Kohta, Rie; Misaka, Takumi

    2017-09-01

    Previous studies have shown that aging modifies taste sensitivity. However, the factors affecting the changes in taste sensitivity remain unclear. To investigate the cause of the age-related changes in taste sensitivity, we compared the peripheral taste detection systems in young and old mice. First, we examined whether taste sensitivity varied according to age using behavioral assays. We confirmed that the taste sensitivities to salty and bitter tastes decreased with aging. In other assays, the gustatory nerve responses to salty and sweet tastes increased significantly with aging, while those to bitter taste did not change. Thus, the profile of the gustatory nerve responses was inconsistent with the profile of the behavioral responses. Next, we evaluated the expressions of taste-related molecules in the taste buds. Although no apparent differences in the expressions of representative taste receptors were observed between the two age groups, the mRNA expressions of signaling effectors were slightly, but significantly, decreased in old mice. No significant differences in the turnover rates of taste bud cells were observed between the two age groups. Thus, we did not observe any large decreases in the expressions of taste-related molecules and turnover rates of taste bud cells with aging. Based on these findings, we conclude that changes in taste sensitivity with aging were not caused by aging-related degradation of peripheral taste organs. Meanwhile, the concentrations of several serum components that modify taste responses changed with age. Thus, taste signal-modifying factors such as serum components may have a contributing role in aging-related changes in taste sensitivity. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Associations Between Thematic Content and Industry Self-Regulation Code Violations in Beer Advertising Broadcast During the U.S. NCAA Basketball Tournament.

    PubMed

    Noel, Jonathan K; Xuan, Ziming; Babor, Thomas F

    2017-07-03

    Beer marketing in the United States is controlled through self-regulation, whereby the beer industry has created a marketing code and enforces its use. We performed a thematic content analysis on beer ads broadcast during a U.S. college athletic event and determined which themes are associated with violations of a self-regulated alcohol marketing code. 289 beer ads broadcast during the U.S. NCAA Men's and Women's 1999-2008 basketball tournaments were assessed for the presence of 23 thematic content areas. Associations between themes and violations of the U.S. Beer Institute's Marketing and Advertising Code were determined using generalized linear models. Humor (61.3%), taste (61.0%), masculinity (49.2%), and enjoyment (36.5%) were the most prevalent content areas. Nine content areas (i.e., conformity, ethnicity, sensation seeking, sociability, romance, special occasions, text responsibility messages, tradition, and individuality) were positively associated with code violations (p < 0.001-0.042). There were significantly more content areas positively associated with code violations than content areas negatively associated with code violations (p < 0.001). Several thematic content areas were positively associated with code violations. The results can inform existing efforts to revise self-regulated alcohol marketing codes to ensure better protection of vulnerable populations. The use of several themes is concerning in relation to adolescent alcohol use and health disparities.

  2. Worms taste bitter: ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans

    PubMed Central

    Hilliard, Massimo A; Bergamasco, Carmela; Arbucci, Salvatore; Plasterk, Ronald HA; Bazzicalupo, Paolo

    2004-01-01

    An animal's ability to detect and avoid toxic compounds in the environment is crucial for survival. We show that the nematode Caenorhabditis elegans avoids many water-soluble substances that are toxic and that taste bitter to humans. We have used laser ablation and a genetic cell rescue strategy to identify sensory neurons involved in the avoidance of the bitter substance quinine, and found that ASH, a polymodal nociceptive neuron that senses many aversive stimuli, is the principal player in this response. Two G protein α subunits GPA-3 and ODR-3, expressed in ASH and in different, nonoverlapping sets of sensory neurons, are necessary for the response to quinine, although the effect of odr-3 can only be appreciated in the absence of gpa-3. We identified and cloned a new gene, qui-1, necessary for quinine and SDS avoidance. qui-1 codes for a novel protein with WD-40 domains and which is expressed in the avoidance sensory neurons ASH and ADL. PMID:14988722

  3. Harvest discrimination of pomegranate fruit: postharvest quality changes and relationships between instrumental and sensory attributes during shelf life.

    PubMed

    Fawole, Olaniyi Amos; Opara, Umezuruike Linus

    2013-08-01

    Harvest maturity discrimination was carried out for "Ruby" pomegranate cultivar in simulated handling conditions for long distant supply chains. Fruit were harvested at 3 different maturities along days after full bloom (DAFB); Harvest 1 (H1) at 133 DAFB, H2 at 143 DAFB, and H3 at 157 DAFB. The effects of harvest maturity and storage duration on fruit quality attributes during a 6-wk period of cold storage (5°C, 95% RH) and subsequent 5 d of shelf life (20°C, 75% RH) were investigated. Instrumental evaluation of aril color, juice content, juice absorbance (520 nm), total soluble solids (TSS), pH, titratable acids (TA), and phytochemical components including total phenolics, flavonoids, and anthocyanins were carried out. Textural properties of arils which included hardness, toughness, bioyield point, and Young's modulus were also investigated. During the shelf life period, arils from individual fruit were rated by a trained sensory panel based on appearance, taste, and texture. Relationships between the instrumental and descriptive sensory data were explored and fruit harvest maturities were discriminated using discriminant analysis. Among the attributes evaluated, TSS : TA, sweet taste, and the CIE hue angle (h°) were the most decisive attributes distinguishing the harvest maturities. The optimum time for harvesting was at 143 DAFB (H2) when fruit TSS : TA ratio was > 55, which coincided with significantly higher rating for sweet taste in fruit at H2 than at H1 and H3 during shelf life. The harvest index proposed in the current study could be used as a guide to establish a reliable harvest maturity index to assist in assuring fruit quality in consideration of long supply chains for the investigated cultivar. © 2013 Institute of Food Technologists®

  4. Moments of joy and delight: the meaning of traditional food in dementia care.

    PubMed

    Hanssen, Ingrid; Kuven, Britt Moene

    2016-03-01

    To learn about the meaning of traditional food to institutionalised patients with dementia. Traditional food strengthens the feelings of belonging, identity and heritage, which help persons with dementia to hold on to and reinforce their cultural identity and quality of life. Taste is more cultural than physiological. Dietary habits are established early in life and may be difficult to change. Being served unfamiliar dishes may lead to disappointment and a feeling of being betrayed and unloved. The three studies presented have a qualitative design. In-depth interviews of family members and nurses experienced in dementia care were conducted in South Africa and among ethnic Norwegians and the Sami in Norway. Content-focused analysis, hermeneutic in character, was used to enable the exploration of the thoughts, feelings and cultural meaning described. Traditional foods created a feeling of belonging and joy. Familiar tastes and smells awoke pleasant memories in patients and boosted their sense of well-being, identity and belonging, even producing words in those who usually did not speak. In persons with dementia, dishes remembered from their childhood may help maintain and strengthen cultural identity, create joy and increase patients' feeling of belonging, being respected and cared for. Traditional food furthermore improves patients' appetite, nutritional intake and quality of life. To serve traditional meals in nursing homes demands extra planning and resources, traditional knowledge, creativity and knowledge of patients' personal tastes. This study provides insight into culture-sensitive dietary needs of institutionalised patients with dementia. The cultural significance of food for feeling contentment and social and physical well-being is discussed. Besides helping to avoid undernutrition, being served traditional dishes may be very important to reminiscence, joy, thriving and quality of life. © 2016 John Wiley & Sons Ltd.

  5. Effect of Salt Reduction on Consumer Acceptance and Sensory Quality of Food

    PubMed Central

    Hoppu, Ulla; Hopia, Anu; Pohjanheimo, Terhi; Rotola-Pukkila, Minna; Mäkinen, Sari; Pihlanto, Anne

    2017-01-01

    Reducing salt (NaCl) intake is an important public health target. The food industry and catering services are searching for means to reduce the salt content in their products. This review focuses on options for salt reduction in foods and the sensory evaluation of salt-reduced foods. Simple salt reduction, mineral salts and flavor enhancers/modifiers (e.g., umami compounds) are common options for salt reduction. In addition, the modification of food texture and odor-taste interactions may contribute to enhanced salty taste perception. Maintaining consumer acceptance of the products is a challenge, and recent examples of the consumer perception of salt-reduced foods are presented. PMID:29186893

  6. An assessment of quality of water from boreholes in Bindura District, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Hoko, Zvikomborero

    This study assessed the water quality of 144 boreholes in Bindura District in Mashonaland Province of Zimbabwe as part of a borehole rehabilitation project implemented by a local NGO. In previous studies it has been observed that some boreholes are not used for domestic purposes because of consumer perceived poor water quality. Consequently, communities have resorted to unsafe alternative water sources thus creating health risks. The study was carried out in June 2005. The objectives of the study were to assess the levels of parameters associated with the aesthetics of the water and to compare them with guideline values for drinking water. The study also investigated the relationship between some of the measured water quality and the consumer perceived water quality. Measured water quality parameters included pH, temperature, electrical conductivity (EC), turbidity, calcium (Ca), magnesium (Mg) and iron (Fe). All parameters were measured in the field except Ca, Mg and Fe, which were measured in a laboratory using a spectrophotometer. Consumer perceptions on water quality were investigated through interviews with the consumer community. Turbidity was found to be 0.75-428(20.8 ± 59.2; n = 144) NTU, pH 5.7-9.3 (6.88 ± 0.46; n = 144), temperature 18-26.8 (22.6 ± 2.1; n = 144) °C. EC 26-546 (199 ± 116; n = 144) μS/cm, Ca 6-71.6 (26.9 ± 14.1; n = 81) mg/l, Mg 1.2-49.6 (12.3 ± 10.0; n = 81) mg/l and Fe 0.08-9.60 (0.56 ± 1.15; n = 81) mg/l. Some 23% of the samples had pH outside the recommended range of 6.5-8.5, whilst 59% of the samples had turbidity values exceeding the 5NTU WHO limit. For EC, all samples had values less than the WHO derived limit of 1380 μS/cm. All Ca and magnesium values were within the common and recommended levels of 100 mg/l and 70 mg/l respectively. Iron had values greater than the WHO and SAZ limit of 0.3 mg/l in 36% of the samples. Water quality was deemed satisfactory for taste and soap consumption by 95% and 72% of the respondents respectively. Satisfaction was higher for drinking compared to soap consumption meaning that generally hard waters may still be acceptable for drinking purposes. The water quality met the stipulated standard or guideline value from a minimum of 41% (turbidity) to a maximum of 100% (EC, Ca and Mg). There was no correlation between taste and conductivity as some 5% of the respondents suggested the water was unsatisfactory although all EC values were far below the maximum limit. Again there was no correlation between iron and taste as iron had 36% of the samples above the threshold of 0.3 mg/l whilst objectionable taste perception was only in 5% of the cases. It is recommended that priority in future projects should be given to repairs of boreholes whose water quality is acceptable according to consumer perceptions obtained at project planning stage. Low cost household treatment aimed at improving quality should be investigated.

  7. AP1 transcription factors are required to maintain the peripheral taste system.

    PubMed

    Shandilya, Jayasha; Gao, Yankun; Nayak, Tapan K; Roberts, Stefan G E; Medler, Kathryn F

    2016-10-27

    The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance.

  8. AP1 transcription factors are required to maintain the peripheral taste system

    PubMed Central

    Shandilya, Jayasha; Gao, Yankun; Nayak, Tapan K; Roberts, Stefan G E; Medler, Kathryn F

    2016-01-01

    The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance. PMID:27787515

  9. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development

    PubMed Central

    Thirumangalathu, Shoba; Barlow, Linda A.

    2015-01-01

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh+ placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh+ precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. PMID:26525674

  10. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to salty and sour taste stimuli

    PubMed Central

    DeSimone, John A.; Ren, ZuoJun; Phan, Tam-Hao T.; Heck, Gerard L.; Mummalaneni, Shobha

    2012-01-01

    The relationship between taste receptor cell (TRC) Ca2+ concentration ([Ca2+]i) and rat chorda tympani (CT) nerve responses to salty [NaCl and NaCl+benzamil (Bz)] and sour (HCl, CO2, and acetic acid) taste stimuli was investigated before and after lingual application of ionomycin+Ca2+, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM), U73122 (phospholipase C blocker), and thapsigargin (Ca2+-ATPase inhibitor) under open-circuit or lingual voltage-clamp conditions. An increase in TRC [Ca2+]i attenuated the tonic Bz-sensitive NaCl CT response and the apical membrane Na+ conductance. A decrease in TRC [Ca2+]i enhanced the tonic Bz-sensitive and Bz-insensitive NaCl CT responses and apical membrane Na+ conductance but did not affect CT responses to KCl or NH4Cl. An increase in TRC [Ca2+]i did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. A decrease in [Ca2+]i did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. In a subset of TRCs, a positive relationship between [H+]i and [Ca2+]i was obtained using in vitro imaging techniques. U73122 inhibited the tonic CT responses to NaCl, and thapsigargin inhibited the tonic CT responses to salty and sour stimuli. The results suggest that salty and sour taste qualities are transduced by [Ca2+]i-dependent and [Ca2+]i-independent mechanisms. Changes in TRC [Ca2+]i in a BAPTA-sensitive cytosolic compartment regulate ion channels and cotransporters involved in the salty and sour taste transduction mechanisms and in neural adaptation. Changes in TRC [Ca2+]i in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA, are associated with neurotransmitter release. PMID:22956787

  11. "I like the sound of that!" Wine descriptions influence consumers' expectations, liking, emotions and willingness to pay for Australian white wines.

    PubMed

    Danner, Lukas; Johnson, Trent E; Ristic, Renata; Meiselman, Herbert L; Bastian, Susan E P

    2017-09-01

    This study investigated how information, typically presented on wine back-labels or wine company websites, influences consumers' expected liking, informed liking, wine-evoked emotions and willingness to pay for Australian white wines. Regular white wine consumers (n=126) evaluated the same set of three commercially available white wines (mono-varietal Chardonnay, Riesling, Sauvignon Blanc) under three information levels. Session 1, blind tasting (no information provided) and Session 2, informed tasting (held at least 1week later) with both basic (sensory description of the wines) and elaborate (sensory plus high wine quality and favourable winery information) descriptions followed by liking, wine-evoked emotions (measured with the Australian Wine Evoked Emotions Lexicon (AWEEL)) and willingness to pay evaluations. Before tasting the wine in session 2, consumers also rated expected liking. Results showed that information level had a significant effect on all investigated variables. The elaborate information level evoked higher expectations before tasting the wines, plus resulted in higher liking ratings, elicitation of more intense positive (e.g. contented, happy and warm-hearted) and less intense negative emotions (e.g. embarrassed and unfulfilled), and a substantial increase in willingness to pay after tasting the wines compared to the blind condition, with the basic condition ranging in-between. These results were consistent across the three wine samples. Furthermore, if the liking rating after tasting the wines matched the expected liking or exceeded the expectations by 1 point on a 9-point hedonic scale, participants felt the most intense positive emotions and the least intense negative emotions. Whereas, if the expectations were not met or the actual liking exceeded the expectations by >2 points, participants felt less intense positive and more intense negative emotions. This highlights not only the importance of well written and accurate wine descriptions, but also that information can influence consumers' wine drinking experience and behaviour. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Age-Related Changes in Mouse Taste Bud Morphology, Hormone Expression, and Taste Responsivity

    PubMed Central

    Shin, Yu-Kyong; Cong, Wei-na; Cai, Huan; Kim, Wook; Maudsley, Stuart; Martin, Bronwen

    2012-01-01

    Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact. PMID:22056740

  13. Quantitative analysis of taste bud cell numbers in fungiform and soft palate taste buds of mice.

    PubMed

    Ohtubo, Yoshitaka; Yoshii, Kiyonori

    2011-01-07

    Mammalian taste bud cells (TBCs) consist of several cell types equipped with different taste receptor molecules, and hence the ratio of cell types in a taste bud constitutes the taste responses of the taste bud. Here we show that the population of immunohistochemically identified cell types per taste bud is proportional to the number of total TBCs in the taste bud or the area of the taste bud in fungiform papillae, and that the proportions differ among cell types. This result is applicable to soft palate taste buds. However, the density of almost all cell types, the population of cell types divided by the area of the respective taste buds, is significantly higher in soft palates. These results suggest that the turnover of TBCs is regulated to keep the ratio of each cell type constant, and that taste responsiveness is different between fungiform and soft palate taste buds. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Age-related changes in mouse taste bud morphology, hormone expression, and taste responsivity.

    PubMed

    Shin, Yu-Kyong; Cong, Wei-na; Cai, Huan; Kim, Wook; Maudsley, Stuart; Egan, Josephine M; Martin, Bronwen

    2012-04-01

    Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact.

  15. Methodology for designing psychological habitability for the space station.

    PubMed

    Komastubara, A

    2000-09-01

    Psychological habitability is a critical quality issue for the International Space Station because poor habitability degrades performance shaping factors (PSFs) and increases human errors. However, habitability often receives rather limited design attention based on someone's superficial tastes because systematic design procedures lack habitability quality. To improve design treatment of psychological habitability, this paper proposes and discusses a design methodology for designing psychological habitability for the International Space Station.

  16. Effect of sex and carcass weight on sensory quality of goat meat of Cabrito Transmontano.

    PubMed

    Rodrigues, S; Teixeira, A

    2009-02-01

    The main purpose of this work was the characterization of Cabrito Transmontana goat kid carcass and meat, which is a Protected Origin Designation product. The effects of sex and carcass weight were studied. Sensory attributes of toughness, juiciness, flavor intensity, flavor quality, odor intensity, fiber presence (stringy), sweet intensity, and overall acceptability were evaluated in 60 males and females allocated to 3 carcass weight groups: 4, 6, and 8 kg. Sensory quality of meat was evaluated by a trained taste panel of 11 experts in 5 sessions. Generalized Procrustes analysis was performed, and 93% of total variability was explained by the 2 first factors (axes). Correlation between sensory traits and factors 1 and 2 allowed the factors to be renamed as toughness/aroma and juiciness/acceptability, respectively. Procrustes analysis indicated that a sex effect was detected by experts. Meat from males presented greater juiciness, flavor quality, and general acceptability than did meat from females. Cabrito Transmontano Protected Origin Designation includes animals from 4 to 9 kg of carcass weight. However, differences among them can be important, because the taste panel found differences between animals from distinct carcass weight ranges. Lighter weight carcasses were considered more tender with less flavor and odor intensity than heavier carcasses.

  17. Sensory quality and fatty acid content of springbok (Antidorcas marsupialis) meat: influence of farm location and sex.

    PubMed

    Neethling, Jeannine; Muller, Magdalena; van der Rijst, Marieta; Hoffman, Louwrens C

    2018-05-01

    Springbok are harvested for meat production irrespective of farm location or sex from which the meat is derived. The present study investigated the influence of farm location (three farms containing different vegetation types) and sex on the sensory quality of springbok longissimus thoracis et lumborum muscle. The sensory profile (aroma, flavour and texture) was determined by descriptive sensory analysis, in addition to determination of the physical meat quality, proximate and fatty acid composition. Farm location had a significant influence on the sensory quality (gamey and liver-like aroma; beef, liver-like, lamb-like and herbaceous flavour; sweet taste; tenderness; residue; mealiness; Warner-Bratzler shear force; moisture, protein and intramuscular lipid content) and fatty acid content (oleic acid; α-linolenic acid; total saturated and monounsaturated fatty acids; polyunsaturated to saturated fatty acid ratio; total omega-3 polyunsaturated fatty acid; and omega-6 to omega-3 polyunsaturated fatty acid ratio) of springbok meat. Sex influenced the chemical composition of springbok meat; however, the influence on the sensory profile was minor (sweet taste; P < 0.001). Farm location could influence the sensory quality and composition of springbok meat and should be considered when harvesting for meat production. Sex does not have to be considered for the marketing of springbok meat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Identification of protein-damaging mutations in 10 swine taste receptors and 191 appetite-reward genes.

    PubMed

    Clop, Alex; Sharaf, Abdoallah; Castelló, Anna; Ramos-Onsins, Sebastián; Cirera, Susanna; Mercadé, Anna; Derdak, Sophia; Beltran, Sergi; Huisman, Abe; Fredholm, Merete; van As, Pieter; Sánchez, Armand

    2016-08-26

    Taste receptors (TASRs) are essential for the body's recognition of chemical compounds. In the tongue, TASRs sense the sweet and umami and the toxin-related bitter taste thus promoting a particular eating behaviour. Moreover, their relevance in other organs is now becoming evident. In the intestine, they regulate nutrient absorption and gut motility. Upon ligand binding, TASRs activate the appetite-reward circuitry to signal the nervous system and keep body homeostasis. With the aim to identify genetic variation in the swine TASRs and in the genes from the appetite and the reward pathways, we have sequenced the exons of 201 TASRs and appetite-reward genes from 304 pigs belonging to ten breeds, wild boars and to two phenotypically extreme groups from a F2 resource with data on growth and fat deposition. We identified 2,766 coding variants 395 of which were predicted to have a strong impact on protein sequence and function. 334 variants were present in only one breed and at predicted alternative allele frequency (pAAF) ≥ 0.1. The Asian pigs and the wild boars showed the largest proportion of breed specific variants. We also compared the pAAF of the two F2 groups and found that variants in TAS2R39 and CD36 display significant differences suggesting that these genes could influence growth and fat deposition. We developed a 128-variant genotyping assay and confirmed 57 of these variants. We have identified thousands of variants affecting TASRs as well as genes involved in the appetite and the reward mechanisms. Some of these genes have been already associated to taste preferences, appetite or behaviour in humans and mouse. We have also detected indications of a potential relationship of some of these genes with growth and fat deposition, which could have been caused by changes in taste preferences, appetite or reward and ultimately impact on food intake. A genotyping array with 57 variants in 31 of these genes is now available for genotyping and start elucidating the impact of genetic variation in these genes on pig biology and breeding.

  19. Efficacy of supercritical carbon dioxide for inactivating Lactobacillus plantarum in apple cider

    USDA-ARS?s Scientific Manuscript database

    Juice makers have traditionally used thermal pasteurization to prevent deterioration by spoilage bacteria such as Lactobacillus plantarum; however this thermal processing causes adverse effects on product quality such as undesirable taste and destruction of heat sensitive nutrients. For this reason,...

  20. Inactivation of microorganisms in apple cider and orange juice using supercritical carbon dioxide

    USDA-ARS?s Scientific Manuscript database

    Juice processors have traditionally used thermal pasteurization to prevent deterioration by spoilage bacteria such as Lactobacillus plantarum and Saccharomyces cerevisiae; however, thermal processing may cause adverse effects on product quality such as undesirable taste and destruction of heat sensi...

  1. Setting the Stage for California Coffee Farming

    USDA-ARS?s Scientific Manuscript database

    Traditional coffee farming has occurred worldwide at equatorial latitudes below 25° under very specific growing conditions with acidic soils, warm temperatures and high humidity. Environmental conditions have been found to have large impacts on the quality and taste of the berry, which in turn affec...

  2. A test for measuring gustatory function.

    PubMed

    Smutzer, Gregory; Lam, Si; Hastings, Lloyd; Desai, Hetvi; Abarintos, Ray A; Sobel, Marc; Sayed, Nabil

    2008-08-01

    The purpose of this study was to determine the usefulness of edible taste strips for measuring human gustatory function. The physical properties of edible taste strips were examined to determine their potential for delivering threshold and suprathreshold amounts of taste stimuli to the oral cavity. Taste strips were then assayed by fluorescence to analyze the uniformity and distribution of bitter tastant in the strips. Finally, taste recognition thresholds for sweet taste were examined to determine whether or not taste strips could detect recognition thresholds that were equal to or better than those obtained from aqueous tests. Edible strips were prepared from pullulan-hydroxypropyl methylcellulose solutions that were dried to a thin film. The maximal amount of a tastant that could be incorporated in a 2.54 cm2 taste strip was identified by including representative taste stimuli for each class of tastant (sweet, sour, salty, bitter, and umami) during strip formation. Distribution of the bitter tastant quinine hydrochloride in taste strips was assayed by fluorescence emission spectroscopy. The efficacy of taste strips for evaluating human gustatory function was examined by using a single series ascending method of limits protocol. Sucrose taste recognition threshold data from edible strips was then compared with results that were obtained from a standard "sip and spit" recognition threshold test. Edible films that formed from a pullulan-hydroxypropyl methylcellulose polymer mixture can be used to prepare clear, thin strips that have essentially no background taste and leave no physical presence after release of tastant. Edible taste strips could uniformly incorporate up to 5% of their composition as tastant. Taste recognition thresholds for sweet taste were over one order of magnitude lower with edible taste strips when compared with an aqueous taste test. Edible taste strips are a highly sensitive method for examining taste recognition thresholds in humans. This new means of presenting taste stimuli should have widespread applications for examining human taste function in the laboratory, in the clinic, or at remote locations.

  3. Utilization of sorghum, rice, corn flours with potato starch for the preparation of gluten-free pasta.

    PubMed

    Ferreira, Sila Mary Rodrigues; de Mello, Ana Paula; de Caldas Rosa dos Anjos, Mônica; Krüger, Cláudia Carneiro Hecke; Azoubel, Patrícia Moreira; de Oliveira Alves, Márcia Aurelina

    2016-01-15

    The aim of this study was to evaluate the use of mixture of sorghum-rice-corn flour and potato starch in the development of gluten-free pasta for celiac disease patients. The experiment was designed according to simplex-lattice method and different types of gluten-free flours were used, such as sorghum, rice, corn, and potato starch. The fifteen formulations were subjected to sensory analysis (Mixed Structured Scale - MSS) and seven formulations were selected in respect to taste and grittiness. These formulations were subjected to Quantitative Descriptive Analysis (QDA), which evaluated the attributes: appearance, color, odor, hardness, elasticity, stickiness, grittiness, taste, residual bitterness and overall quality. Results showed significant difference in appearance, color and hardness. The formulations that showed the best sensory results were submitted to chemical analysis and cooking quality of pasta. It was observed that the best results for mixing is sorghum flour, rice flour and potato starch. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. [Water and health-related problems, local perception and quality of water sources in a Toba (qom) community in the Impenetrable (Chaco, Argentina)].

    PubMed

    Martínez, Gustavo J; Beccaglia, Ana M; Llinares, Analía

    2014-08-01

    We present a transdisciplinary study centering on aspects of environmental health of the Toba (qom) communities that relate to water and health problems of the Impenetrable Chaco region. Information was obtained through the methods and tools of participatory research, household participant observation, and ethnobotanical documentation of species related to water management and use. Vernacular terms referring to the suitability and taste of the water, as well as representations, attitudes and practices related to water collection and purification were recorded. In addition, a microbiological and physicochemical analysis of the water was performed and compared with the perceptual categories. It was observed that perceptual aspects were in tension with the hygienic quality of water. We documented phreatophyte plants, indicative of the presence of water, as well as plants that store water, act as flocculants, refresh the water or improve taste. The results of this research are discussed from an ecosystem approach and its relationship to the development of proposals for intervention.

  5. Consumer satisfaction with pork meat and derived products in five European countries.

    PubMed

    Resano, Helena; Perez-Cueto, Federico J A; de Barcellos, Marcia D; Veflen-Olsen, Nina; Grunert, Klaus G; Verbeke, Wim

    2011-02-01

    This paper investigates consumers' satisfaction level with pork meat and derived products in five European countries. Data were collected through a cross-sectional web-based survey in Belgium, Denmark, Germany, Greece, and Poland during January 2008 with a total sample of 2437 consumers. Data included socio-demographics and questions regarding satisfaction with 27 common pork-based products; classified into fresh pork, processed pork and pork meat products. Satisfaction was evaluated in terms of overall satisfaction, as well as satisfaction with health-giving qualities, price, convenience and taste. Logistic regression analyses showed taste as the main determinant of satisfaction, followed by convenience. Healthfulness is not a significant driver of overall satisfaction. Price influences satisfaction with fresh pork more than with processed products. Tasty pork, easy to prepare and consume, with adequate promotion of its healthfulness, and with a good price/quality relationship appears to be the key factor to satisfy pork consumers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development.

    PubMed

    Thirumangalathu, Shoba; Barlow, Linda A

    2015-12-15

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh(+) placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh(+) precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. © 2015. Published by The Company of Biologists Ltd.

  7. Expression of the synaptic exocytosis-regulating molecule complexin 2 in taste buds and its participation in peripheral taste transduction.

    PubMed

    Kurokawa, Azusa; Narukawa, Masataka; Ohmoto, Makoto; Yoshimoto, Joto; Abe, Keiko; Misaka, Takumi

    2015-06-01

    Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2-knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2-knockout mice were significantly lower than those in wild-type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons. A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2- knockout mice were significantly lower than those in wild-type mice. These suggested that CPLX2 participated in synaptic taste transduction. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.

  8. Contribution of different taste cells and signaling pathways to the discrimination of "bitter" taste stimuli by an insect.

    PubMed

    Glendinning, John I; Davis, Adrienne; Ramaswamy, Sudha

    2002-08-15

    Animals can discriminate among many different types of foods. This discrimination process involves multiple sensory systems, but the sense of taste is known to play a central role. We asked how the taste system contributes to the discrimination of different "bitter" taste stimuli in Manduca sexta caterpillars. This insect has approximately eight bilateral pairs of taste cells that respond selectively to bitter taste stimuli. Each bilateral pair of bitter-sensitive taste cells has a different molecular receptive range (MRR); some of these taste cells also contain two signaling pathways with distinctive MRRs and temporal patterns of spiking. To test for discrimination, we habituated the caterpillar's taste-mediated aversive response to one bitter taste stimulus (salicin) and then asked whether this habituation phenomenon generalized to four other bitter taste stimuli (caffeine, aristolochic acid, Grindelia extract, and Canna extract). We inferred that the two compounds were discriminable if the habituation phenomenon failed to generalize (e.g., from salicin to aristolochic acid). We found that M. sexta could discriminate between salicin and those bitter taste stimuli that activate (1) different populations of bitter-sensitive taste cells (Grindelia extract and Canna extract) or (2) different signaling pathways within the same bitter-sensitive taste cell (aristolochic acid). M. sexta could not discriminate between salicin and a bitter taste stimulus that activates the same signaling pathway within the same bitter-sensitive taste cell (caffeine). We propose that the heterogeneous population of bitter-sensitive taste cells and signaling pathways within this insect facilitates the discrimination of bitter taste stimuli.

  9. Processing umami and other tastes in mammalian taste buds.

    PubMed

    Roper, Stephen D; Chaudhari, Nirupa

    2009-07-01

    Neuroscientists are now coming to appreciate that a significant degree of information processing occurs in the peripheral sensory organs of taste prior to signals propagating to the brain. Gustatory stimulation causes taste bud cells to secrete neurotransmitters that act on adjacent taste bud cells (paracrine transmitters) as well as on primary sensory afferent fibers (neurocrine transmitters). Paracrine transmission, representing cell-cell communication within the taste bud, has the potential to shape the final signal output that taste buds transmit to the brain. The following paragraphs summarize current thinking about how taste signals generally, and umami taste in particular, are processed in taste buds.

  10. Exploring taste hyposensitivity in Japanese senior high school students.

    PubMed

    Ohnuki, Mari; Shinada, Kayoko; Ueno, Masayuki; Zaitsu, Takashi; Wright, Fredrick Allan Clive; Kawaguchi, Yoko

    2012-02-01

    The main objective of this study was to investigate the prevalence of taste hyposensitivity and the relationships between sex, oral health status, and eating habits with taste hyposensitivity in Japanese senior high school students. Oral examinations, sweet and salt whole-mouth taste tests, and a questionnaire about eating habits were conducted on 234 senior high school students. Factors affecting taste hyposensitivity were investigated using a multivariate analysis. Sweet-taste hyposensitivity was observed in 7.3% of the students, and salt-taste hyposensitivity in 22.2%. Approximately 3% of the students had both sweet- and salt-taste hyposensitivity, and 22.6% had either sweet- or salt-taste hyposensitivity. In total, 26% had a taste hyposensitivity. There were significant relationships between the intake of instant noodles with sweet-taste hyposensitivity, and the intake of vegetables or isotonic drinks with salt-taste hyposensitivity. There was a significant association between eating habits and taste hyposensitivity in Japanese senior high school students. Taste tests would be a helpful adjunct for students to recognize variations in taste sensitivity, and a questionnaire about their eating habits might provide an effective self-review of their eating habits, and therefore, provide motivation to change. © 2011 Blackwell Publishing Asia Pty Ltd.

  11. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.

    PubMed

    Gaillard, Dany; Bowles, Spencer G; Salcedo, Ernesto; Xu, Mingang; Millar, Sarah E; Barlow, Linda A

    2017-08-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.

  12. Preparation before colonoscopy: a randomized controlled trial comparing different regimes.

    PubMed

    Jansen, Sita V; Goedhard, Jelle G; Winkens, Bjorn; van Deursen, Cees Th B M

    2011-10-01

    A good bowel preparation is essential for optimal visualization of the large intestine. Several preparations with a difference in composition and volume are available. We compared five methods for bowel cleansing quality and patients' acceptability. Adult ambulatory outpatients scheduled for elective colonoscopy were randomized to receive 4-l polyethylene glycol (PEG) solution (Klean-prep), 2-l PEG solution+ascorbic acid (Moviprep), or a sodium phosphate (NaP) solution, Phosphoral. Patients with the PEG solutions were also randomized to receive simethicone (Aeropax), to investigate whether this improves the bowel cleansing efficacy. Before colonoscopy patients completed a questionnaire about the acceptability and tolerability of the preparation. Endoscopists blinded to the type of preparation gave a bowel cleansing score. Data were available for 461 patients. 2-l PEG+ascorbic acid was noninferior to 4-l PEG in bowel cleansing quality of rectosigmoid and colon. NaP was noninferior to 4-l PEG in bowel cleansing quality of rectosigmoid but inferior for the whole colon. Compliance was significantly less in the group with 4-l PEG compared with the 2-l PEG and NaP group. No difference was found for abdominal cramps. Taste was significantly better in the 2-l PEG group. Simethicone did not improve the bowel cleansing quality. 2-l PEG+ascorbic acid was noninferior to the 4-l PEG solution in bowel cleansing quality and was better in taste and compliance. NaP was inferior to 4-l PEG in bowel cleansing quality. Addition of simethicone gave no improvement.

  13. Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.

    PubMed

    Mistretta, Charlotte M; Kumari, Archana

    2017-02-10

    The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

  14. The human sweet tooth.

    PubMed

    Reed, Danielle R; McDaniel, Amanda H

    2006-06-15

    Humans love the taste of sugar and the word "sweet" is used to describe not only this basic taste quality but also something that is desirable or pleasurable, e.g., la dolce vita. Although sugar or sweetened foods are generally among the most preferred choices, not everyone likes sugar, especially at high concentrations. The focus of my group's research is to understand why some people have a sweet tooth and others do not. We have used genetic and molecular techniques in humans, rats, mice, cats and primates to understand the origins of sweet taste perception. Our studies demonstrate that there are two sweet receptor genes (TAS1R2 and TAS1R3), and alleles of one of the two genes predict the avidity with which some mammals drink sweet solutions. We also find a relationship between sweet and bitter perception. Children who are genetically more sensitive to bitter compounds report that very sweet solutions are more pleasant and they prefer sweet carbonated beverages more than milk, relative to less bitter-sensitive peers. Overall, people differ in their ability to perceive the basic tastes, and particular constellations of genes and experience may drive some people, but not others, toward a caries-inducing sweet diet. Future studies will be designed to understand how a genetic preference for sweet food and drink might contribute to the development of dental caries.

  15. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    PubMed Central

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  16. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  17. The Role of Cholecystokinin in Peripheral Taste Signaling in Mice

    PubMed Central

    Yoshida, Ryusuke; Shin, Misa; Yasumatsu, Keiko; Takai, Shingo; Inoue, Mayuko; Shigemura, Noriatsu; Takiguchi, Soichi; Nakamura, Seiji; Ninomiya, Yuzo

    2017-01-01

    Cholecystokinin (CCK) is a gut hormone released from enteroendocrine cells. CCK functions as an anorexigenic factor by acting on CCK receptors expressed on the vagal afferent nerve and hypothalamus with a synergistic interaction between leptin. In the gut, tastants such as amino acids and bitter compounds stimulate CCK release from enteroendocrine cells via activation of taste transduction pathways. CCK is also expressed in taste buds, suggesting potential roles of CCK in taste signaling in the peripheral taste organ. In the present study, we focused on the function of CCK in the initial responses to taste stimulation. CCK was coexpressed with type II taste cell markers such as Gα-gustducin, phospholipase Cβ2, and transient receptor potential channel M5. Furthermore, a small subset (~30%) of CCK-expressing taste cells expressed a sweet/umami taste receptor component, taste receptor type 1 member 3, in taste buds. Because type II taste cells are sweet, umami or bitter taste cells, the majority of CCK-expressing taste cells may be bitter taste cells. CCK-A and -B receptors were expressed in both taste cells and gustatory neurons. CCK receptor knockout mice showed reduced neural responses to bitter compounds compared with wild-type mice. Consistently, intravenous injection of CCK-Ar antagonist lorglumide selectively suppressed gustatory nerve responses to bitter compounds. Intravenous injection of CCK-8 transiently increased gustatory nerve activities in a dose-dependent manner whereas administration of CCK-8 did not affect activities of bitter-sensitive taste cells. Collectively, CCK may be a functionally important neurotransmitter or neuromodulator to activate bitter nerve fibers in peripheral taste tissues. PMID:29163209

  18. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells.

    PubMed

    Cohn, Zachary J; Kim, Agnes; Huang, Liquan; Brand, Joseph; Wang, Hong

    2010-06-10

    The mammalian taste bud, a complex collection of taste sensory cells, supporting cells, and immature basal cells, is the structural unit for detecting taste stimuli in the oral cavity. Even though the cells of the taste bud undergo constant turnover, the structural homeostasis of the bud is maintained by balancing cell proliferation and cell death. Compared with nongustatory lingual epithelial cells, taste cells express higher levels of several inflammatory receptors and signalling proteins. Whether inflammation, an underlying condition in some diseases associated with taste disorders, interferes with taste cell renewal and turnover is unknown. Here we report the effects of lipopolysaccharide (LPS)-induced inflammation on taste progenitor cell proliferation and taste bud cell turnover in mouse taste tissues. Intraperitoneal injection of LPS rapidly induced expression of several inflammatory cytokines, including tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, and interleukin (IL)-6, in mouse circumvallate and foliate papillae. TNF-alpha and IFN-gamma immunoreactivities were preferentially localized to subsets of cells in taste buds. LPS-induced inflammation significantly reduced the number of 5-bromo-2'-deoxyuridine (BrdU)-labeled newborn taste bud cells 1-3 days after LPS injection, suggesting an inhibition of taste bud cell renewal. BrdU pulse-chase experiments showed that BrdU-labeled taste cells had a shorter average life span in LPS-treated mice than in controls. To investigate whether LPS inhibits taste cell renewal by suppressing taste progenitor cell proliferation, we studied the expression of Ki67, a cell proliferation marker. Quantitative real-time RT-PCR revealed that LPS markedly reduced Ki67 mRNA levels in circumvallate and foliate epithelia. Immunofluorescent staining using anti-Ki67 antibodies showed that LPS decreased the number of Ki67-positive cells in the basal regions surrounding circumvallate taste buds, the niche for taste progenitor cells. PCR array experiments showed that the expression of cyclin B2 and E2F1, two key cell cycle regulators, was markedly downregulated by LPS in the circumvallate and foliate epithelia. Our results show that LPS-induced inflammation inhibits taste progenitor cell proliferation and interferes with taste cell renewal. LPS accelerates cell turnover and modestly shortens the average life span of taste cells. These effects of inflammation may contribute to the development of taste disorders associated with infections.

  19. Substance P as a putative efferent transmitter mediates GABAergic inhibition in mouse taste buds.

    PubMed

    Huang, Anthony Y; Wu, Sandy Y

    2018-04-01

    Capsaicin-mediated modulation of taste nerve responses is thought to be produced indirectly by the actions of neuropeptides, for example, CGRP and substance P (SP), on taste cells implying they play a role in taste sensitivity. During the processing of gustatory information in taste buds, CGRP shapes peripheral taste signals via serotonergic signalling. The underlying assumption has been that SP exerts its effects on taste transmitter secretion in taste buds of mice. To test this assumption, we investigated the net effect of SP on taste-evoked ATP secretion from mouse taste buds, using functional calcium imaging with CHO cells expressing high-affinity transmitter receptors as cellular biosensors. Our results showed that SP elicited PLC activation-dependent intracellular Ca 2+ transients in taste cells via neurokinin 1 receptors, most likely on glutamate-aspartate transporter-expressing Type I cells. Furthermore, SP caused Type I cells to secrete GABA. Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the current results indicate that SP elicited secretion of GABA, which provided negative feedback onto Type II (receptor) cells to reduce taste-evoked ATP secretion. These findings are consistent with a role for SP as an inhibitory transmitter that shapes the peripheral taste signals, via GABAergic signalling, during the processing of gustatory information in taste buds. Notably, the results suggest that SP is intimately associated with GABA in mammalian taste signal processing and demonstrate an unanticipated route for sensory information flow within the taste bud. © 2018 The British Pharmacological Society.

  20. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium

    PubMed Central

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J.; Klein, Ophir D.; Barlow, Linda A.

    2014-01-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. PMID:24993944

  1. 40 CFR 230.50 - Municipal and private water supplies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality of water supplies with respect to color, taste, odor, chemical content and suspended particulate... water supplies. In addition, certain commonly used water treatment chemicals have the potential for combining with some suspended or dissolved substances from dredged -or fill material to form other prod-ucts...

  2. The Process of Residential Real Estate Development

    DTIC Science & Technology

    1993-01-01

    Having quality model homes and well planned home shows is important. The marketing strategy must be adaptable and flexible to changing market conditions...As the tastes of consumers change, so too does the success of many a project. The marketing strategy must incorporate these changes and provide the

  3. DRINKING WATER QUALITY DETERIORATION IN DISTRIBUTION SYSTEMS: COLORED WATER FORMATION AND ITS CONTROL

    EPA Science Inventory

    The release of iron from drinking water distribution systems is a common source of drinking water distribution system consumer complaints. Suspended iron particles result in colored (red) water and metallic tasting water. Iron release results from both physical and chemical mec...

  4. Profile of sodium phenylbutyrate granules for the treatment of urea-cycle disorders: patient perspectives.

    PubMed

    Peña-Quintana, Luis; Llarena, Marta; Reyes-Suárez, Desiderio; Aldámiz-Echevarria, Luis

    2017-01-01

    Urea-cycle disorders are a group of rare hereditary metabolic diseases characterized by deficiencies of one of the enzymes and transporters involved in the urea cycle, which is necessary for the removal of nitrogen produced from protein breakdown. These hereditary metabolic diseases are characterized by hyperammonemia and life-threatening hyperammonemic crises. Pharmacological treatment of urea-cycle disorders involves alternative nitrogen-scavenging pathways. Sodium benzoate combines with glycine and phenylacetate/phenylbutyrate with glutamine, forming, respectively, hippuric acid and phenylacetylglutamine, which are eliminated in the urine. Among the ammonia-scavenging drugs, sodium phenylbutyrate is a well-known long-term treatment of urea-cycle disorders. It has been used since 1987 as an investigational new drug, and was approved for marketing in the US in 1996 and the EU in 1999. However, sodium phenylbutyrate has an aversive odor and taste, which may compromise patients' compliance, and many patients have reported difficulty in taking this drug. Sodium phenylbutyrate granules are a new tasteless and odor-free formulation of sodium phenylbutyrate, which is indicated in the treatment of urea-cycle disorders. This recently developed taste-masked formulation of sodium phenylbutyrate granules was designed to overcome the considerable issues that taste has on adherence to therapy. Several studies have reported the clinical experience of patients with urea-cycle disorders treated with this new tasteless formulation of sodium phenylbutyrate. Analysis of the data indicated that this taste-masked formulation of sodium phenylbutyrate granules improved quality of life for urea-cycle disorder patients. Furthermore, a postmarketing report on the use of the product has confirmed the previous observations of improved compliance, efficacy, and safety with this taste-masked formulation of sodium phenylbutyrate.

  5. Food packaging cues influence taste perception and increase effort provision for a recommended snack product in children.

    PubMed

    Enax, Laura; Weber, Bernd; Ahlers, Maren; Kaiser, Ulrike; Diethelm, Katharina; Holtkamp, Dominik; Faupel, Ulya; Holzmüller, Hartmut H; Kersting, Mathilde

    2015-01-01

    Food marketing research shows that child-directed marketing cues have pronounced effects on food preferences and consumption, but are most often placed on products with low nutritional quality. Effects of child-directed marketing strategies for healthy food products remain to be studied in more detail. Previous research suggests that effort provision explains additional variance in food choice. This study investigated the effects of packaging cues on explicit preferences and effort provision for healthy food items in elementary school children. Each of 179 children rated three, objectively identical, recommended yogurt-cereal-fruit snacks presented with different packaging cues. Packaging cues included a plain label, a label focusing on health aspects of the product, and a label that additionally included unknown cartoon characters. The children were asked to state the subjective taste-pleasantness of the respective food items. We also used a novel approach to measure effort provision for food items in children, namely handgrip strength. Results show that packaging cues significantly induce a taste-placebo effect in 88% of the children, i.e., differences in taste ratings for objectively identical products. Taste ratings were highest for the child-directed product that included cartoon characters. Also, applied effort to receive the child-directed product was significantly higher. Our results confirm the positive effect of child-directed marketing strategies also for healthy snack food products. Using handgrip strength as a measure to determine the amount of effort children are willing to provide for a product may explain additional variance in food choice and might prove to be a promising additional research tool for field studies and the assessment of public policy interventions.

  6. Food packaging cues influence taste perception and increase effort provision for a recommended snack product in children

    PubMed Central

    Enax, Laura; Weber, Bernd; Ahlers, Maren; Kaiser, Ulrike; Diethelm, Katharina; Holtkamp, Dominik; Faupel, Ulya; Holzmüller, Hartmut H.; Kersting, Mathilde

    2015-01-01

    Food marketing research shows that child-directed marketing cues have pronounced effects on food preferences and consumption, but are most often placed on products with low nutritional quality. Effects of child-directed marketing strategies for healthy food products remain to be studied in more detail. Previous research suggests that effort provision explains additional variance in food choice. This study investigated the effects of packaging cues on explicit preferences and effort provision for healthy food items in elementary school children. Each of 179 children rated three, objectively identical, recommended yogurt-cereal-fruit snacks presented with different packaging cues. Packaging cues included a plain label, a label focusing on health aspects of the product, and a label that additionally included unknown cartoon characters. The children were asked to state the subjective taste-pleasantness of the respective food items. We also used a novel approach to measure effort provision for food items in children, namely handgrip strength. Results show that packaging cues significantly induce a taste-placebo effect in 88% of the children, i.e., differences in taste ratings for objectively identical products. Taste ratings were highest for the child-directed product that included cartoon characters. Also, applied effort to receive the child-directed product was significantly higher. Our results confirm the positive effect of child-directed marketing strategies also for healthy snack food products. Using handgrip strength as a measure to determine the amount of effort children are willing to provide for a product may explain additional variance in food choice and might prove to be a promising additional research tool for field studies and the assessment of public policy interventions. PMID:26191012

  7. Central representation of postingestive chemosensory cues in mice that lack the ability to taste.

    PubMed

    Stratford, Jennifer M; Finger, Thomas E

    2011-06-22

    The gustatory nerves of mice lacking P2X2 and P2X3 purinergic receptor subunits (P2X-dblKO) are unresponsive to taste stimulation (Finger et al., 2005). Surprisingly, P2X-dblKO mice show residual behavioral responses to concentrated tastants, presumably via postingestive detection. Therefore, the current study tested whether postingestive signaling is functional in P2X-dblKO mice and if so, whether it activates the primary viscerosensory nucleus of the medulla, the nucleus of the solitary tract (nTS). Like WT animals, P2X-dblKO mice learned to prefer a flavor paired with 150 mm monosodium glutamate (MSG) over a flavor paired with water. This preference shows that, even in the absence of taste sensory input, postingestive cues are detected and associated with a flavor in P2X-dblKO mice. MSG-evoked neuronal activation in the nTS was measured by expression of the immediate early gene c-Fos [c-Fos-like immunoreactivity (Fos-LI)]. In rostral, gustatory nTS, P2X-dblKO animals, unlike WT animals, showed no taste quality-specific labeling of neurons. Furthermore, MSG-evoked Fos-LI was significantly less in P2X-dblKO mice compared with WT animals. In contrast, in more posterior, viscerosensory nTS, MSG-induced Fos-LI was similar in WT and P2X-dblKO mice. Together, these results suggest that P2X-dblKO mice can form preferences based on postingestive cues and that postingestive detection of MSG does not rely on the same purinergic signaling that is crucial for taste.

  8. Profile of sodium phenylbutyrate granules for the treatment of urea-cycle disorders: patient perspectives

    PubMed Central

    Peña-Quintana, Luis; Llarena, Marta; Reyes-Suárez, Desiderio; Aldámiz-Echevarria, Luis

    2017-01-01

    Urea-cycle disorders are a group of rare hereditary metabolic diseases characterized by deficiencies of one of the enzymes and transporters involved in the urea cycle, which is necessary for the removal of nitrogen produced from protein breakdown. These hereditary metabolic diseases are characterized by hyperammonemia and life-threatening hyperammonemic crises. Pharmacological treatment of urea-cycle disorders involves alternative nitrogen-scavenging pathways. Sodium benzoate combines with glycine and phenylacetate/phenylbutyrate with glutamine, forming, respectively, hippuric acid and phenylacetylglutamine, which are eliminated in the urine. Among the ammonia-scavenging drugs, sodium phenylbutyrate is a well-known long-term treatment of urea-cycle disorders. It has been used since 1987 as an investigational new drug, and was approved for marketing in the US in 1996 and the EU in 1999. However, sodium phenylbutyrate has an aversive odor and taste, which may compromise patients’ compliance, and many patients have reported difficulty in taking this drug. Sodium phenylbutyrate granules are a new tasteless and odor-free formulation of sodium phenylbutyrate, which is indicated in the treatment of urea-cycle disorders. This recently developed taste-masked formulation of sodium phenylbutyrate granules was designed to overcome the considerable issues that taste has on adherence to therapy. Several studies have reported the clinical experience of patients with urea-cycle disorders treated with this new tasteless formulation of sodium phenylbutyrate. Analysis of the data indicated that this taste-masked formulation of sodium phenylbutyrate granules improved quality of life for urea-cycle disorder patients. Furthermore, a postmarketing report on the use of the product has confirmed the previous observations of improved compliance, efficacy, and safety with this taste-masked formulation of sodium phenylbutyrate. PMID:28919721

  9. Consumer Acceptance and Preference Study (CAPS) on brown and undermilled Indian rice varieties in Chennai, India.

    PubMed

    Sudha, Vasudevan; Spiegelman, Donna; Hong, Biling; Malik, Vasanti; Jones, Clara; Wedick, Nicole M; Hu, Frank B; Willett, Walter; Bai, Mookambika Ramya; Ponnalagu, Muthu Mariyammal; Arumugam, Kokila; Mohan, Viswanathan

    2013-01-01

    To study consumer acceptance of unmilled brown and undermilled rice among urban south Indians. Overweight and normal weight adults living in slum and nonslum residences in Chennai participated (n = 82). Bapatla (BPT) and Uma (red pigmented) rice varieties were chosen. These rice varieties were dehusked (unmilled, 0% polish) and further milled to 2.3% and 4.4% polishing (undermilled). Thus, 9 rice samples in both raw and parboiled forms were provided for consumer tasting over a period of 3 days. A 7-point hedonic scale was used to rate consumer preferences. A validated questionnaire was used to collect demographic, anthropometric, medical history, physical activity, dietary intake data, and willingness of the consumers to switch over to brown rice. Consumers reported that the color, appearance, texture, taste, and overall quality of the 4.4% polished rice was strongly preferred in both varieties and forms. Ratings for 0% polished (brown rice) were substantially lower than those of 2.3% polished rice, which were intermediate in ratings between 0% and 4.4% polishing. However, most of the consumers (93%) expressed a willingness to substitute brown or 2.3% polished rice, if affordable, after the taste tests and education on nutritional and health benefits of whole grains. Though most consumers preferred polished white rice, education regarding health benefits may help this population switch to brown or undermilled rice. Cooking quality and appearance of the grains were perceived as the most important factors to consider when purchasing rice among Chennai urban adults.

  10. Consumer Perception and Preference of Drinking Water Sources

    PubMed Central

    Sajjadi, Seyed Ali; Alipour, Vali; Matlabi, Mohammad; Biglari, Hamed

    2016-01-01

    Introduction Understanding consumer perception of drinking water can contribute to improvements in water management and consumer satisfaction. The aim of this study was to assess the consumer perception of tap water quality and other drinking water sources in Gonabad as a small semiarid city. Methods This study was performed in autumn and winter 2013. For collection data a researcher-made a questionnaire consisting of nine questions, based on demographic information prepared. Questions were asked for participants to provide information regarding household drinking water usage and patterns, opinion about tap water safety, taste and reasons for purchasing bottled water. For statistical analysis, analysis of variance (ANOVA) using SPSS version 16 was applied in this study. Results Results showed that demographic variables had a significant relationship with consumer satisfaction (p < 0.05). Office employees, women and poor families had the most satisfaction from tap water quality. Peoples’ preferences for tap water, commercial softener, domestic softener, ghanat (a type of underground cistern) and bottled water were 27.8, 19, 27.8, 40.4 and 3.5% respectively. Dissatisfaction from production of foam, unsuitable taste, unacceptable appearance and other problems in tap water was 11.1, 95.6, 27.8 and 0.4% respectively. Consumer reasons for using domestic water softeners are: suitable taste (80%), easy availability (71%), economical (56%) and low health side effects (34%). Conclusion According to these results it was clear that each consumer group, based on self-condition, prefers using a specific drinking water source. PMID:28070256

  11. Consumer Perception and Preference of Drinking Water Sources.

    PubMed

    Sajjadi, Seyed Ali; Alipour, Vali; Matlabi, Mohammad; Biglari, Hamed

    2016-11-01

    Understanding consumer perception of drinking water can contribute to improvements in water management and consumer satisfaction. The aim of this study was to assess the consumer perception of tap water quality and other drinking water sources in Gonabad as a small semiarid city. This study was performed in autumn and winter 2013. For collection data a researcher-made a questionnaire consisting of nine questions, based on demographic information prepared. Questions were asked for participants to provide information regarding household drinking water usage and patterns, opinion about tap water safety, taste and reasons for purchasing bottled water. For statistical analysis, analysis of variance (ANOVA) using SPSS version 16 was applied in this study. Results showed that demographic variables had a significant relationship with consumer satisfaction (p < 0.05). Office employees, women and poor families had the most satisfaction from tap water quality. Peoples' preferences for tap water, commercial softener, domestic softener, ghanat (a type of underground cistern) and bottled water were 27.8, 19, 27.8, 40.4 and 3.5% respectively. Dissatisfaction from production of foam, unsuitable taste, unacceptable appearance and other problems in tap water was 11.1, 95.6, 27.8 and 0.4% respectively. Consumer reasons for using domestic water softeners are: suitable taste (80%), easy availability (71%), economical (56%) and low health side effects (34%). According to these results it was clear that each consumer group, based on self-condition, prefers using a specific drinking water source.

  12. Sensory evaluation of selected formulated milk barberry drinks using the fuzzy approach.

    PubMed

    Tahsiri, Zahra; Niakousari, Mehrdad; Khoshnoudi-Nia, Sara; Hosseini, Seyed Mohamad H

    2017-05-01

    Amid rigid competition in marketing to accomplish customers' needs, the cost of disappointment is too high. In an effort to escape market disappointment, one of the options to be considered is probing for customer satisfaction through sensory evaluation. This study aims to rank the six selected milk-barberry drink formulae out of 24 (code numbers S3, S4, S15, S16, S17 and S18) each having different milk:barberry:pectin amount (7: 3: 0.2; 6: 4: 0.2; 7: 3: 0.4, 6: 4: 0.4, 5: 5: 0.4 and 6: 4: 0.4), respectively, and to determine the best of quality attribute through sensory evaluation, using the fuzzy decision-making model. The selection was based on pH, total solid content, and degree of serum separation and rheological properties of the drinks. The results showed that the S4 had the highest acceptability, rated under the "very good" category, whereas the lowest acceptability was reported for the S3 which was classified under the "satisfactory" category. In summary, the ranking of the milk-barberry drinks was S4 >  S17 >  S16 >  S15 >  S18 >  S3. Furthermore, quality attributes were ranked as taste > mouth feel > aroma > color. Results suggest that the fuzzy approach could be appropriately used to evaluate this type of sensory data.

  13. Effect of addition of olive leaves before fruits extraction process to some monovarietal Tunisian extra-virgin olive oils using chemometric analysis.

    PubMed

    Sonda, Ammar; Akram, Zribi; Boutheina, Gargouri; Guido, Flamini; Mohamed, Bouaziz

    2014-01-08

    The analysis of the effect of cultivar and olive leaves addition before the extraction on the different analytical values revealed significant differences (p < 0.05) in some parameters, mainly in peroxide value, phenols and tocopherol contents, and oxidative stability. Aroma profiles were also influenced by the different varieties and the addition of different amounts (0% and 3%) of olive leaves. Twenty-three compounds were characterized, representing 86.1-99.2% of the total volatiles. Chétoui cultivar has the highest amount of (E)-2-hexenal, followed by Chemlali cultivar, whereas (E)-2-hexen-1-ol was the major constituent of Zalmati and crossbreeding Chemlali by Zalmati cultivars. Sensory analysis showed that Chemlali and Chétoui Zarzis possessed a high fruity, bitter, and pungent taste, whereas the Zalmati and crossbreeding Chemlali by Zalmati had a 'green' taste among its attributes. Indeed, the taste panel found an improvement of the oil quality when an amount of olive leaves (3%) added to the olives fruits.

  14. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice

    PubMed Central

    Gaillard, Dany; Xu, Mingang; Millar, Sarah E.

    2017-01-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. PMID:28846687

  15. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes.

    PubMed

    Taruno, Akiyuki; Vingtdeux, Valérie; Ohmoto, Makoto; Ma, Zhongming; Dvoryanchikov, Gennady; Li, Ang; Adrien, Leslie; Zhao, Haitian; Leung, Sze; Abernethy, Maria; Koppel, Jeremy; Davies, Peter; Civan, Mortimer M; Chaudhari, Nirupa; Matsumoto, Ichiro; Hellekant, Göran; Tordoff, Michael G; Marambaud, Philippe; Foskett, J Kevin

    2013-03-14

    Recognition of sweet, bitter and umami tastes requires the non-vesicular release from taste bud cells of ATP, which acts as a neurotransmitter to activate afferent neural gustatory pathways. However, how ATP is released to fulfil this function is not fully understood. Here we show that calcium homeostasis modulator 1 (CALHM1), a voltage-gated ion channel, is indispensable for taste-stimuli-evoked ATP release from sweet-, bitter- and umami-sensing taste bud cells. Calhm1 knockout mice have severely impaired perceptions of sweet, bitter and umami compounds, whereas their recognition of sour and salty tastes remains mostly normal. Calhm1 deficiency affects taste perception without interfering with taste cell development or integrity. CALHM1 is expressed specifically in sweet/bitter/umami-sensing type II taste bud cells. Its heterologous expression induces a novel ATP permeability that releases ATP from cells in response to manipulations that activate the CALHM1 ion channel. Knockout of Calhm1 strongly reduces voltage-gated currents in type II cells and taste-evoked ATP release from taste buds without affecting the excitability of taste cells by taste stimuli. Thus, CALHM1 is a voltage-gated ATP-release channel required for sweet, bitter and umami taste perception.

  16. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    PubMed

    Huang, Yijen A; Grant, Jeff; Roper, Stephen

    2012-01-01

    Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  17. Musical Taste Cultures and Tase Publics

    ERIC Educational Resources Information Center

    Fox, William A.; Wince, Michael H.

    1975-01-01

    An analysis of the material tastes of college students support Gan's concepts of taste culture and taste public. While Gan's contention that class has a major effect upon involvement with taste culture, this requires qualification where musical tastes of college students are concerned. (Author/AM)

  18. Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance.

    PubMed

    Castillo-Azofeifa, David; Losacco, Justin T; Salcedo, Ernesto; Golden, Erin J; Finger, Thomas E; Barlow, Linda A

    2017-09-01

    The integrity of taste buds is intimately dependent on an intact gustatory innervation, yet the molecular nature of this dependency is unknown. Here, we show that differentiation of new taste bud cells, but not progenitor proliferation, is interrupted in mice treated with a hedgehog (Hh) pathway inhibitor (HPI), and that gustatory nerves are a source of sonic hedgehog (Shh) for taste bud renewal. Additionally, epithelial taste precursor cells express Shh transiently, and provide a local supply of Hh ligand that supports taste cell renewal. Taste buds are minimally affected when Shh is lost from either tissue source. However, when both the epithelial and neural supply of Shh are removed, taste buds largely disappear. We conclude Shh supplied by taste nerves and local taste epithelium act in concert to support continued taste bud differentiation. However, although neurally derived Shh is in part responsible for the dependence of taste cell renewal on gustatory innervation, neurotrophic support of taste buds likely involves a complex set of factors. © 2017. Published by The Company of Biologists Ltd.

  19. Gli3 is a negative regulator of Tas1r3-expressing taste cells

    PubMed Central

    Jyotaki, Masafumi; Redding, Kevin; Jiang, Peihua

    2018-01-01

    Mouse taste receptor cells survive from 3–24 days, necessitating their regeneration throughout adulthood. In anterior tongue, sonic hedgehog (SHH), released by a subpopulation of basal taste cells, regulates transcription factors Gli2 and Gli3 in stem cells to control taste cell regeneration. Using single-cell RNA-Seq we found that Gli3 is highly expressed in Tas1r3-expressing taste receptor cells and Lgr5+ taste stem cells in posterior tongue. By PCR and immunohistochemistry we found that Gli3 was expressed in taste buds in all taste fields. Conditional knockout mice lacking Gli3 in the posterior tongue (Gli3CKO) had larger taste buds containing more taste cells than did control wild-type (Gli3WT) mice. In comparison to wild-type mice, Gli3CKO mice had more Lgr5+ and Tas1r3+ cells, but fewer type III cells. Similar changes were observed ex vivo in Gli3CKO taste organoids cultured from Lgr5+ taste stem cells. Further, the expression of several taste marker and Gli3 target genes was altered in Gli3CKO mice and/or organoids. Mirroring these changes, Gli3CKO mice had increased lick responses to sweet and umami stimuli, decreased lick responses to bitter and sour taste stimuli, and increased glossopharyngeal taste nerve responses to sweet and bitter compounds. Our results indicate that Gli3 is a suppressor of stem cell proliferation that affects the number and function of mature taste cells, especially Tas1r3+ cells, in adult posterior tongue. Our findings shed light on the role of the Shh pathway in adult taste cell regeneration and may help devise strategies for treating taste distortions from chemotherapy and aging. PMID:29415007

  20. Hedgehog pathway blockade with the cancer drug LDE225 disrupts taste organs and taste sensation.

    PubMed

    Kumari, Archana; Ermilov, Alexandre N; Allen, Benjamin L; Bradley, Robert M; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2015-02-01

    Taste sensation on the anterior tongue requires chorda tympani nerve function and connections with continuously renewing taste receptor cells. However, it is unclear which signaling pathways regulate the receptor cells to maintain chorda tympani sensation. Hedgehog (HH) signaling controls cell proliferation and differentiation in numerous tissues and is active in taste papillae and taste buds. In contrast, uncontrolled HH signaling drives tumorigenesis, including the common skin cancer, basal cell carcinoma. Systemic HH pathway inhibitors (HPIs) lead to basal cell carcinoma regression, but these drugs cause severe taste disturbances. We tested the hypothesis that taste disruption by HPIs reflects a direct requirement for HH signaling in maintaining taste organs and gustatory sensation. In mice treated with the HPI LDE225 up to 28 days, HH-responding cells were lost in fungiform papilla epithelium, and papillae acquired a conical apex. Taste buds were either absent or severely reduced in size in more than 90% of aberrant papillae. Taste bud remnants expressed the taste cell marker keratin 8, and papillae retained expression of nerve markers, neurofilament and P2X3. Chorda tympani nerve responses to taste stimuli were markedly reduced or absent in LDE225-treated mice. Responses to touch were retained, however, whereas cold responses were retained after 16 days of treatment but lost after 28 days. These data identify a critical, modality-specific requirement for HH signaling in maintaining taste papillae, taste buds and neurophysiological taste function, supporting the proposition that taste disturbances in HPI-treated patients are an on-target response to HH pathway blockade in taste organs. Copyright © 2015 the American Physiological Society.

  1. Targeted taste cell-specific overexpression of brain-derived neurotrophic factor in adult taste buds elevates phosphorylated TrkB protein levels in taste cells, increases taste bud size, and promotes gustatory innervation.

    PubMed

    Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A

    2012-05-11

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.

  2. Distribution of α-Gustducin and Vimentin in premature and mature taste buds in chickens.

    PubMed

    Venkatesan, Nandakumar; Rajapaksha, Prasangi; Payne, Jason; Goodfellow, Forrest; Wang, Zhonghou; Kawabata, Fuminori; Tabata, Shoji; Stice, Steven; Beckstead, Robert; Liu, Hong-Xiang

    2016-10-14

    The sensory organs for taste in chickens (Gallus sp.) are taste buds in the oral epithelium of the palate, base of the oral cavity, and posterior tongue. Although there is not a pan-taste cell marker that labels all chicken taste bud cells, α-Gustducin and Vimentin each label a subpopulation of taste bud cells. In the present study, we used both α-Gustducin and Vimentin to further characterize chicken taste buds at the embryonic and post-hatching stages (E17-P5). We found that both α-Gustducin and Vimentin label distinct and overlapping populations of, but not all, taste bud cells. A-Gustducin immunosignals were observed as early as E18 and were consistently distributed in early and mature taste buds in embryos and hatchlings. Vimentin immunoreactivity was initially sparse at the embryonic stages then became apparent in taste buds after hatch. In hatchlings, α-Gustducin and Vimentin immunosignals largely co-localized in taste buds. A small subset of taste bud cells were labeled by either α-Gustducin or Vimentin or were not labeled. Importantly, each of the markers was observed in all of the examined taste buds. Our data suggest that the early onset of α-Gustducin in taste buds might be important for enabling chickens to respond to taste stimuli immediately after hatch and that distinctive population of taste bud cells that are labeled by different molecular markers might represent different cell types or different phases of taste bud cells. Additionally, α-Gustducin and Vimentin can potentially be used as molecular markers of all chicken taste buds in whole mount tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Targeted Taste Cell-specific Overexpression of Brain-derived Neurotrophic Factor in Adult Taste Buds Elevates Phosphorylated TrkB Protein Levels in Taste Cells, Increases Taste Bud Size, and Promotes Gustatory Innervation*

    PubMed Central

    Nosrat, Irina V.; Margolskee, Robert F.; Nosrat, Christopher A.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system. PMID:22442142

  4. Innervation of single fungiform taste buds during development in rat.

    PubMed

    Krimm, R F; Hill, D L

    1998-08-17

    To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. Importantly, taste bud morphology and innervation were highly related. Namely, the number of labeled geniculate ganglion cells that innervated a taste bud was highly correlated with the size of the taste bud (r = 0.91, P < .0003): The larger the taste bud, the more geniculate ganglion cells that innervated it. The relationship between ganglion cell number and taste bud volume emerged during the first 40 days postnatal. Whereas there was no difference in the average number of ganglion cells that innervated individual taste buds in rats aged 10 days postnatal through adulthood, taste bud volumes increased progressively between 10 and 40 days postnatal, at which age taste bud volumes were similar to adults. The maturation of taste bud size was accompanied by the emergence of the relationship between taste bud volume and number of innervating neurons. Specifically, there was no correlation between taste bud size and number of innervating geniculate ganglion cells in 10-, 20-, or 30-day-old rats, whereas taste bud size and the number of innervating ganglion cells in 40-day-old rats were positively correlated (r = .80, P < .002). Therefore, the relationship between taste bud size and number of innervating ganglion cells develops over a prolonged postnatal period and is established when taste buds grow to their adult size.

  5. Fungiform taste bud degeneration in C57BL/6J mice following chorda-lingual nerve transection.

    PubMed

    Guagliardo, Nick A; Hill, David L

    2007-09-10

    Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were smaller and more abundant on the anterior tip (<1 mm) of the tongue. By 5 days after nerve transection taste buds were smaller and fewer on the side of the tongue ipsilateral to the transection and continued to decrease in both size and number until 15 days posttransection. Degenerating fungiform taste buds were smaller due to a loss of taste bud cells rather than changes in taste bud morphology. While almost all taste buds disappeared in more posterior fungiform papillae by 15 days posttransection, the anterior tip of the tongue retained nearly half of its taste buds compared to intact mice. Surviving taste buds could not be explained by an apparent innervation from the remaining intact nerves. Contralateral effects of nerve transection were also observed; taste buds were larger due to an increase in the number of taste bud cells. These data are the first to characterize adult mouse fungiform taste buds and subsequent degeneration after unilateral nerve transection. They provide the basis for more mechanistic studies in which genetically engineered mice can be used. (c) 2007 Wiley-Liss, Inc.

  6. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium.

    PubMed

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J; Klein, Ophir D; Barlow, Linda A

    2014-08-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. © 2014. Published by The Company of Biologists Ltd.

  7. The number of taste buds is related to bitter taste sensitivity in layer and broiler chickens.

    PubMed

    Kudo, Ken-ichi; Shiraishi, Jun-ichi; Nishimura, Shotaro; Bungo, Takashi; Tabata, Shoji

    2010-04-01

    The relationship between taste sensitivity and the number of taste buds using a bitter tastant, quinine hydrochloride, was investigated in White Leghorn, Rhode Island Red, and broiler chickens. The White Leghorn and Rhode Island Red strains were able to perceive 2.0 mmol/L quinine hydrochloride, but the taste sensitivity of Rhode Island Red chickens was higher than that of White Leghorn chickens. Broiler chickens perceived 0.5 mmol/L quinine hydrochloride. The number of taste buds in the White Leghorn strain was the lowest, then the Rhode Island Red strain, with the number of taste buds highest in the broiler chickens. The number of taste buds was well correlated with bitter taste sensitivity. Therefore, we suggest that the number of taste buds is a vital factor in the perception of bitter taste and may be useful in selecting appropriate feeds for chickens.

  8. Application of diet-derived taste active components for clinical nutrition: perspectives from ancient Ayurvedic medical science, space medicine, and modern clinical nutrition.

    PubMed

    Kulkarni, Anil D; Sundaresan, Alamelu; Rashid, Muhammad J; Yamamoto, Shigeru; Karkow, Francisco

    2014-01-01

    The principal objective of this paper is to demonstrate the role of taste and flavor in health from the ancient science of Ayurveda to modern medicine; specifically their mechanisms and roles in space medicine and their clinical relevance in modern heath care. It also describes the brief history of the use of the monosodium glutamate or flavor enhancers ("Umami substance") that improve the quality of food intake by stimulating chemosensory perception. In addition, the dietary nucleotides are known to be the components of "Umami substance" and the benefit of their use has been proposed in various types of patients with cancer, radiation therapy, organ transplantation, and for application in space medicine.

  9. Conditioned taste aversions: From poisons to pain to drugs of abuse.

    PubMed

    Lin, Jian-You; Arthurs, Joe; Reilly, Steve

    2017-04-01

    Learning what to eat and what not to eat is fundamental to our well-being, quality of life, and survival. In particular, the acquisition of conditioned taste aversions (CTAs) protects all animals (including humans) against ingesting foods that contain poisons or toxins. Counterintuitively, CTAs can also develop in situations in which we know with absolute certainty that the food did not cause the subsequent aversive systemic effect. Recent nonhuman animal research, analyzing palatability shifts, has indicated that a wider range of stimuli than has been traditionally acknowledged can induce CTAs. This article integrates these new findings with a reappraisal of some known characteristics of CTA and presents a novel conceptual analysis that is broader and more comprehensive than previous accounts of CTA learning.

  10. Conditioned taste aversions: From poisons to pain to drugs of abuse

    PubMed Central

    Lin, Jian-You; Arthurs, Joe; Reilly, Steve

    2018-01-01

    Learning what to eat and what not to eat is fundamental to our well-being, quality of life and survival. In particular, the acquisition of conditioned taste aversions (CTAs) protects all animals (including humans) against ingesting foods that contain poisons or toxins. Counterintuitively, CTAs can also develop in situations where we know with absolute certainty that the food did not cause the subsequent aversive systemic effect. Recent non-human animal research, analyzing palatability shifts, indicates that a wider range of stimuli than traditionally acknowledged can induce CTAs. This article integrates these new findings with a reappraisal of some known characteristics of CTA, and presents a novel conceptual analysis that is broader and more comprehensive than other accounts of CTA learning. PMID:27301407

  11. Expression and Secretion of TNF-α in Mouse Taste Buds: A Novel Function of a Specific Subset of Type II Taste Cells

    PubMed Central

    Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong

    2012-01-01

    Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2−/−/TLR4−/− double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions. PMID:22905218

  12. Expression and secretion of TNF-α in mouse taste buds: a novel function of a specific subset of type II taste cells.

    PubMed

    Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong

    2012-01-01

    Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2(-/-)/TLR4(-/-) double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions.

  13. A qualitative study of motivators and barriers to healthy eating in pregnancy for low-income, overweight, african-american mothers

    PubMed Central

    Reyes, Naomi R.; Klotz, Alicia A.; Herring, Sharon J.

    2013-01-01

    Poor diet quality is common among low-income, overweight, African-American mothers, placing them at high risk for adverse pregnancy outcomes. We sought to better understand the contextual factors that may influence low-income African-American mothers' diet quality during pregnancy. In 2011, we conducted semi-structured interviews with 21 overweight/obese, pregnant African Americans in Philadelphia, all of whom received Medicaid and were eligible for the Supplemental Nutrition Program for Women, Infants, and Children. Two readers independently coded the interview transcripts to identify recurrent themes. We identified ten themes around motivators and barriers to healthy eating in pregnancy. Mothers believed that consuming healthy foods, like fruits and vegetables, would lead to healthy babies and limit the physical discomforts of pregnancy. However, more often than not, mothers chose foods that were high in fats and sugars because of taste, cost, and convenience. Additionally, mothers had several misconceptions about the definition of healthy (e.g., “juice is good for baby”), which led to overconsumption. Many mothers feared they might “starve” their babies if they didn't get enough to eat, promoting persistent snacking and larger portions. Living in multigenerational households and sharing resources also limited mothers' control over food choices and made consuming healthy foods especially difficult. Despite the good intentions of low-income African-American mothers to improve diet quality during pregnancy, multiple factors worked together as barriers to healthy eating. Interventions which emphasize tasty and affordable healthy food substitutes, address misconceptions, and counsel mothers about true energy needs in pregnancy may improve low-income, African-American, overweight/obese mothers' diet quality. PMID:23871106

  14. A qualitative study of motivators and barriers to healthy eating in pregnancy for low-income, overweight, African-American mothers.

    PubMed

    Reyes, Naomi R; Klotz, Alicia A; Herring, Sharon J

    2013-09-01

    Poor diet quality is common among low-income, overweight, African-American mothers, placing them at high risk for adverse pregnancy outcomes. We sought to better understand the contextual factors that may influence low-income African-American mothers' diet quality during pregnancy. In 2011, we conducted semi-structured interviews with 21 overweight/obese, pregnant African Americans in Philadelphia, PA, all of whom received Medicaid and were eligible for the Special Supplemental Nutrition Program for Women, Infants, and Children. Two readers independently coded the interview transcripts to identify recurrent themes. We identified 10 themes around motivators and barriers to healthy eating in pregnancy. Mothers believed that consuming healthy foods, like fruits and vegetables, would lead to healthy babies and limit the physical discomforts of pregnancy. However, more often than not, mothers chose foods that were high in fats and sugars because of taste, cost, and convenience. In addition, mothers had several misconceptions about the definition of healthy (eg, "juice is good for baby"), which led to overconsumption. Many mothers feared they might "starve" their babies if they did not get enough to eat, promoting persistent snacking and larger portions. Living in multigenerational households and sharing resources also limited the mothers' control over food choices and made consuming healthy foods especially difficult. Despite the good intentions of low-income African-American mothers to improve diet quality during pregnancy, multiple factors worked together as barriers to healthy eating. Interventions that emphasize tasty and affordable healthy food substitutes, address misconceptions, and counsel mothers about true energy needs in pregnancy may improve low-income, African-American, overweight/obese mothers' diet quality. Copyright © 2013 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  15. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling.

    PubMed

    Ermilov, Alexandre N; Kumari, Archana; Li, Libo; Joiner, Ariell M; Grachtchouk, Marina A; Allen, Benjamin L; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2016-11-01

    For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste alterations in cancer patients using systemic Hedgehog pathway inhibitors result principally from interruption of signaling activity in taste papillae.

  16. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling

    PubMed Central

    Mistretta, Charlotte M.

    2016-01-01

    For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste alterations in cancer patients using systemic Hedgehog pathway inhibitors result principally from interruption of signaling activity in taste papillae. PMID:27893742

  17. Water quality and relation to taste-and-odor compounds in North Fork Ninnescah River and Cheney Reservoir, south-central Kansas, 1997-2003

    USGS Publications Warehouse

    Christensen, Victoria G.; Graham, Jennifer L.; Milligan, Chad R.; Pope, Larry M.; Ziegler, Andrew C.

    2006-01-01

    Regression models were developed between geosmin and the physical property measurements continuously recorded by water-quality monitors at each site. The geosmin regression model was applied to water-quality monitor measurements, providing a continuous estimate of geosmin for 2003. The city of Wichita will be able to use this type of analysis to determine the probability of when concentrations of geosmin are likely to be at or above the human detection level of 0.01 microgram per liter.

  18. Papaya fruit quality management during the postharvest supply chain

    USDA-ARS?s Scientific Manuscript database

    Papayas are popular in tropical and subtropical regions and are being exported in large volumes to Europe, the U.S. and Japan. The fruit has excellent taste, exotic flavor and nutritional properties, being rich in vitamins A, C, and antioxidants. However, due to its highly perishable nature it has n...

  19. Statistical approaches to optimize detection of MIB off-flavor in aquaculture raised channel catfish

    USDA-ARS?s Scientific Manuscript database

    The catfish industry prides itself on preventing inadvertent sale of off-flavor fish. Typically, several fish are taste tested over several weeks before pond harvest to confirm good fish flavor quality. We collected several data sets of analytically measured off-flavor concentrations in catfish to...

  20. Update on sensory evaluation of University of Florida strawberry selections

    USDA-ARS?s Scientific Manuscript database

    The University of Florida strawberry breeding program has evaluated eating quality of fruit from advanced selections using sensory taste panels. Selections FL 05-107, FL 06-38 and FL 09-127 were compared with the commercial cultivars ‘Strawberry Festival’ and FLorida Radiance’ during two consecutive...

  1. An Interview with Food Policy Researcher Caitlin Boon

    ERIC Educational Resources Information Center

    Sullivan, Megan

    2010-01-01

    From safety to nutrition, food policy researchers work to improve what we eat. They examine evidence found by experts in food science, consumer behavior, taste perception, nutrition, and many other related fields. Using this information, these scientists help the food industry, government, and public improve the quality, safety, and sustainability…

  2. Final comprehensive report of overall activities of AEC contract AT(30-1)- 3269 from its initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1973-01-01

    Research accomplishments are reported for the following projects: determination of the minimum level of x radiation in rats to alter the taste threshold; determination of the permanency of such alteration; determination of the dose and time dependency of the alteration; changes in hypothalamic function following low doses of ionizing radiation; development of new behavioral technique for determination of taste thresholds; correlation of taste sensitivity changes with alteration in taste bud morphology; effects of olfaction on taste thresholds; properties of taste material that influence x radiation effects on taste; determination of effects of in utero x-irradiation on taste function in themore » adult rat; and effects of ingestion of heavy metals on taste acuity and response of taste sensitivity to x radiation. (HLW)« less

  3. [Influence of a high-carbohydrate meal on taste perception].

    PubMed

    Suchecka, Wanda; Klimacka-Nawrot, Ewa; Gałazka, Andrzej; Hartman, Magdalena; Błońska-Fajfrowska, Barbara

    2011-01-01

    Taste sensitivity varies greatly in individuals and depends on many external and metabolic conditions. The studied group consisted of healthy, non-smoking 41 women and 40 men, aged 19-29. The volunteers were examined in fasting state and after a high-carbohydrate meal. Taste sensitivity to sweet, salty and sour as well as hedonic response to taste were examined by means of gustometry examination recommended by Polski Komitet Normalizacyjny (Polish Committee for Standardization). It has been shown that in women the meal did not influence the intensity of sweet taste perception of saccharose solutions or the hedonic response to taste, whereas in men it caused a statistically significant decrease in the intensity of taste perception and in the hedonic response to the sweet taste of suprathreshold saccharose solutions. The meal did not influence the salty taste perception in a statistically significant way, neither in men nor in women. After the meal, the women perceived the sour taste with more intensity than in fasting state, whereas in men such influence was not observed. 1. The consumption of a high-carbohydrate meal influences the sweet and sour taste perception and the effect is sex-dependent: - in men, both the taste sensitivity to saccharose and the hedonic response to sweet taste were decreased, whereas in women such influence was not observed; - in women, the taste sensitivity to citric acid increased and the hedonic response to sour taste decreased, whereas in men such influence was not observed. 2. There is negative correlation between the intensity of taste perception and the hedonic response to the sweet taste both in men and in women after a high-carbohydrate meal, whereas in fasting state such correlation was not observed.

  4. Adenosine enhances sweet taste through A2B receptors in the taste bud

    PubMed Central

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.

    2012-01-01

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (Type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca2+ mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 µM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (Type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 µM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell RT-PCR on isolated vallate taste cells, we show that many Receptor cells express adenosine receptors, Adora2b, while Presynaptic (Type III) and Glial-like (Type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5′-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase (ACPP). Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste. PMID:22219293

  5. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    PubMed

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  6. Inflammation activates the interferon signaling pathways in taste bud cells.

    PubMed

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-10-03

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.

  7. New Thermal Taste Actuation Technology for Future Multisensory Virtual Reality and Internet.

    PubMed

    Karunanayaka, Kasun; Johari, Nurafiqah; Hariri, Surina; Camelia, Hanis; Bielawski, Kevin Stanley; Cheok, Adrian David

    2018-04-01

    Today's virtual reality (VR) applications such as gaming, multisensory entertainment, remote dining, and online shopping are mainly based on audio, visual, and touch interactions between humans and virtual worlds. Integrating the sense of taste into VR is difficult since humans are dependent on chemical-based taste delivery systems. This paper presents the 'Thermal Taste Machine', a new digital taste actuation technology that can effectively produce and modify thermal taste sensations on the tongue. It modifies the temperature of the surface of the tongue within a short period of time (from 25°C to 40 °C while heating, and from 25°C to 10 °C while cooling). We tested this device on human subjects and described the experience of thermal taste using 20 known (taste and non-taste) sensations. Our results suggested that rapidly heating the tongue produces sweetness, fatty/oiliness, electric taste, warmness, and reduces the sensibility for metallic taste. Similarly, cooling the tongue produced mint taste, pleasantness, and coldness. By conducting another user study on the perceived sweetness of sucrose solutions after the thermal stimulation, we found that heating the tongue significantly enhances the intensity of sweetness for both thermal tasters and non-thermal tasters. Also, we found that faster temperature rises on the tongue produce more intense sweet sensations for thermal tasters. This technology will be useful in two ways: First, it can produce taste sensations without using chemicals for the individuals who are sensitive to thermal taste. Second, the temperature rise of the device can be used as a way to enhance the intensity of sweetness. We believe that this technology can be used to digitally produce and enhance taste sensations in future virtual reality applications. The key novelties of this paper are as follows: 1. Development of a thermal taste actuation technology for stimulating the human taste receptors, 2. Characterization of the thermal taste produced by the device using taste-related sensations and non-taste related sensations, 3. Research on enhancing the intensity for sucrose solutions using thermal stimulation, 4. Research on how different speeds of heating affect the intensity of sweetness produced by thermal stimulation.

  8. Discriminating aging and protein-to-fat ratio in Cheddar cheese using sensory analysis and a potentiometric electronic tongue.

    PubMed

    Lipkowitz, Jackie B; Ross, Carolyn F; Diako, Charles; Smith, Denise M

    2018-03-01

    The objectives of this study were to evaluate the flavor and taste attributes of full-fat Cheddar cheeses with different protein-to-fat ratios (PFR) over aging time using a descriptive sensory analysis panel and a consumer panel, and to correlate these attributes with instrumental parameters obtained by the potentiometric electronic tongue. Three Cheddar cheese formulations (PFR of 0.74, 0.85, and 1.01) were produced in triplicate and composition was verified. Cheese was aged at 7.2°C and evaluated at 2, 5, 8, 10, 11, and 12 mo by a trained panel (n = 10) for 8 flavor and 5 taste attributes and using an electronic tongue for 7 nonvolatile taste attributes. Cheese aged for 12 mo was also evaluated by a consumer sensory panel for liking and intensity attributes. Principal component analysis was performed to discriminate cheese based on aging time and PFR, whereas correlation between sensory and instrumental attributes was assessed using partial least squares regression. Descriptive sensory analysis of flavor and taste attributes differentiated Cheddar cheeses over aging time, but not among PFR formulations. The electronic tongue distinguished changes among cheese samples due to PFR formulation and aging time. The electronic tongue proved successful in characterizing the nonvolatile flavor components in Cheddar cheese and correlated with taste perceptions measured by descriptive sensory analysis. Consumer evaluations showed distinctive attribute profiles for the 3 PFR Cheddar cheese formulations. Overall, higher fat content was associated with increased flavor intensities in Cheddar cheese and drove consumer acceptability and purchase intent ratings. The electronic tongue detected smaller changes in tastes (bitter, metallic, salty, sour, spicy, sweet, and umami) of the 3 PFR formulations over time when compared with the trained panelists, who detected no differences, suggesting that the electronic tongue may be more sensitive to tastants than humans and may have the capability for early detection or identification of problems in a batch of cheese during aging. Results suggest taste quality of cheese may be monitored using the electronic tongue with greater sensitivity than a trained panel, and may be more objective, rapid, and cost effective than human panelists. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Consumers' quality perception of national branded, national store branded, and imported store branded beef.

    PubMed

    Banović, Marija; Grunert, Klaus G; Barreira, Maria Madalena; Fontes, Magda Aguiar

    2010-01-01

    This study investigated the differences in the consumers' quality perception of national branded, national store branded, and imported store branded beef. Partial Least Squares analysis is used for modelling the quality perception process. Results show that consumers perceived national branded Carnalentejana beef, as better on all quality cues and quality aspects than the other two store branded beefs. Preference for Carnalentejana beef stayed highly consistent even after the blind test, where consumers differentiated this beef from the other two beef brands on all sensory dimensions: taste, tenderness, and juiciness, and chose it as the preferred one. Consumers utilized more perceived intrinsic cues to infer expected eating quality of store branded beefs.

  10. Umami Responses in Mouse Taste Cells Indicate More than One Receptor

    PubMed Central

    Maruyama, Yutaka; Pereira, Elizabeth; Margolskee, Robert F.; Chaudhari, Nirupa; Roper, Stephen D.

    2013-01-01

    A number of gustatory receptors have been proposed to underlie umami, the taste of L-glutamate, and certain other amino acids and nucleotides. However, the response profiles of these cloned receptors have not been validated against responses recorded from taste receptor cells that are the native detectors of umami taste. We investigated umami taste responses in mouse circumvallate taste buds in an intact slice preparation, using confocal calcium imaging. Approximately 5% of taste cells selectively responded to L-glutamate when it was focally applied to the apical chemosensitive tips of receptor cells. The concentration–response range for L-glutamate fell approximately within the physiologically relevant range for taste behavior in mice, namely 10 mM and above. Inosine monophosphate enhanced taste cell responses to L-glutamate, a characteristic feature of umami taste. Using pharmacological agents, ion substitution, and immunostaining, we showed that intracellular pathways downstream of receptor activation involve phospholipase C β2. Each of the above features matches those predicted by studies of cloned and expressed receptors. However, the ligand specificity of each of the proposed umami receptors [taste metabotropic glutamate receptor 4, truncated metabotropic glutamate receptor 1, or taste receptor 1 (T1R1) and T1R3 dimers], taken alone, did not appear to explain the taste responses observed in mouse taste cells. Furthermore, umami responses were still observed in mutant mice lacking T1R3. A full explanation of umami taste transduction may involve novel combinations of the proposed receptors and/or as-yet-undiscovered taste receptors. PMID:16495449

  11. Taste bud cell dynamics during normal and sodium-restricted development.

    PubMed

    Hendricks, Susan J; Brunjes, Peter C; Hill, David L

    2004-04-26

    Taste bud volume increases over the postnatal period to match the number of neurons providing innervation. To clarify age-related changes in fungiform taste bud volume, the current study investigated developmental changes in taste bud cell number, proliferation rate, and life span. Taste bud growth can largely be accounted for by addition of cytokeratin-19-positive taste bud cells. Examination of taste bud cell kinetics with 3H-thymidine autoradiography revealed that cell life span and turnover periods were not altered during normal development but that cells were produced more rapidly in young rats, a prominent modification that could lead to increased taste bud size. By comparison, dietary sodium restriction instituted during pre- and postnatal development results in small taste buds at adulthood as a result of fewer cytokeratin-19-positive cells. The dietary manipulation also had profound influences on taste bud growth kinetics, including an increased latency for cells to enter the taste bud and longer life span and turnover periods. These studies provide fundamental, new information about taste bud development under normal conditions and after environmental manipulations that impact nerve/target matching. Copyright 2004 Wiley-Liss, Inc.

  12. A National Test of Taste and Smell

    MedlinePlus

    ... Javascript on. Feature: Taste, Smell, Hearing, Language, Voice, Balance At Last: A National Test of Taste and ... smell. Read More "Taste, Smell, Hearing, Language, Voice, Balance" Articles At Last: A National Test of Taste ...

  13. The Taste of Caffeine

    PubMed Central

    Tordoff, Michael G.

    2017-01-01

    Many people avidly consume foods and drinks containing caffeine, despite its bitter taste. Here, we review what is known about caffeine as a bitter taste stimulus. Topics include caffeine's action on the canonical bitter taste receptor pathway and caffeine's action on noncanonical receptor-dependent and -independent pathways in taste cells. Two conclusions are that (1) caffeine is a poor prototypical bitter taste stimulus because it acts on bitter taste receptor-independent pathways, and (2) caffeinated products most likely stimulate “taste” receptors in nongustatory cells. This review is relevant for taste researchers, manufacturers of caffeinated products, and caffeine consumers. PMID:28660093

  14. Soy sauce and its umami taste: a link from the past to current situation.

    PubMed

    Lioe, Hanifah Nuryani; Selamat, Jinap; Yasuda, Masaaki

    2010-04-01

    Soy sauce taste has become a focus of umami taste research. Umami taste is a 5th basic taste, which is associated to a palatable and pleasurable taste of food. Soy sauce has been used as an umami seasoning since the ancient time in Asia. The complex fermentation process occurred to soy beans, as the raw material in the soy sauce production, gives a distinct delicious taste. The recent investigation on Japanese and Indonesian soy sauces revealed that this taste is primarily due to umami components which have molecular weights lower than 500 Da. Free amino acids are the low molecular compounds that have an important role to the taste, in the presence of sodium salt. The intense umami taste found in the soy sauces may also be a result from the interaction between umami components and other tastants. Small peptides are also present, but have very low, almost undetected umami taste intensities investigated in their fractions.

  15. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid.

    PubMed

    Aihara, Eitaro; Mahe, Maxime M; Schumacher, Michael A; Matthis, Andrea L; Feng, Rui; Ren, Wenwen; Noah, Taeko K; Matsu-ura, Toru; Moore, Sean R; Hong, Christian I; Zavros, Yana; Herness, Scott; Shroyer, Noah F; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A; Montrose, Marshall H

    2015-11-24

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5(+)) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5(+) cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration.

  16. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid

    PubMed Central

    Aihara, Eitaro; Mahe, Maxime M.; Schumacher, Michael A.; Matthis, Andrea L.; Feng, Rui; Ren, Wenwen; Noah, Taeko K.; Matsu-ura, Toru; Moore, Sean R.; Hong, Christian I.; Zavros, Yana; Herness, Scott; Shroyer, Noah F.; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A.; Montrose, Marshall H.

    2015-01-01

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5+) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5+ cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration. PMID:26597788

  17. BDNF is required for taste axon regeneration following unilateral chorda tympani nerve section.

    PubMed

    Meng, Lingbin; Huang, Tao; Sun, Chengsan; Hill, David L; Krimm, Robin

    2017-07-01

    Taste nerves readily regenerate to reinnervate denervated taste buds; however, factors required for regeneration have not yet been identified. When the chorda tympani nerve is sectioned, expression of brain-derived neurotrophic factor (BDNF) remains high in the geniculate ganglion and lingual epithelium, despite the loss of taste buds. These observations suggest that BDNF is present in the taste system after nerve section and may support taste nerve regeneration. To test this hypothesis, we inducibly deleted Bdnf during adulthood in mice. Shortly after Bdnf gene recombination, the chorda tympani nerve was unilaterally sectioned causing a loss of both taste buds and neurons, irrespective of BDNF levels. Eight weeks after nerve section, however, regeneration was differentially affected by Bdnf deletion. In control mice, there was regeneration of the chorda tympani nerve and taste buds reappeared with innervation. In contrast, few taste buds were reinnervated in mice lacking normal Bdnf expression such that taste bud number remained low. In all genotypes, taste buds that were reinnervated were normal-sized, but non-innervated taste buds remained small and atrophic. On the side of the tongue contralateral to the nerve section, taste buds for some genotypes became larger and all taste buds remained innervated. Our findings suggest that BDNF is required for nerve regeneration following gustatory nerve section. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Light and electron microscopic observation of regenerated fungiform taste buds in patients with recovered taste function after severing chorda tympani nerve.

    PubMed

    Saito, Takehisa; Ito, Tetsufumi; Narita, Norihiko; Yamada, Takechiyo; Manabe, Yasuhiro

    2011-11-01

    The aim of this study was to evaluate the mean number of regenerated fungiform taste buds per papilla and perform light and electron microscopic observation of taste buds in patients with recovered taste function after severing the chorda tympani nerve during middle ear surgery. We performed a biopsy on the fungiform papillae (FP) in the midlateral region of the dorsal surface of the tongue from 5 control volunteers (33 total FP) and from 7 and 5 patients with and without taste recovery (34 and 29 FP, respectively) 3 years 6 months to 18 years after surgery. The specimens were observed by light and transmission electron microscopy. The taste function was evaluated by electrogustometry. The mean number of taste buds in the FP of patients with completely recovered taste function was significantly smaller (1.9 +/- 1.4 per papilla; p < 0.01) than that of the control subjects (3.8 +/- 2.2 per papilla). By transmission electron microscopy, 4 distinct types of cell (type I, II, III, and basal cells) were identified in the regenerated taste buds. Nerve fibers and nerve terminals were also found in the taste buds. It was clarified that taste buds containing taste cells and nerve endings do regenerate in the FP of patients with recovered taste function.

  19. Duplex Bioelectronic Tongue for Sensing Umami and Sweet Tastes Based on Human Taste Receptor Nanovesicles.

    PubMed

    Ahn, Sae Ryun; An, Ji Hyun; Song, Hyun Seok; Park, Jin Wook; Lee, Sang Hun; Kim, Jae Hyun; Jang, Jyongsik; Park, Tai Hyun

    2016-08-23

    For several decades, significant efforts have been made in developing artificial taste sensors to recognize the five basic tastes. So far, the well-established taste sensor is an E-tongue, which is constructed with polymer and lipid membranes. However, the previous artificial taste sensors have limitations in various food, beverage, and cosmetic industries because of their failure to mimic human taste reception. There are many interactions between tastants. Therefore, detecting the interactions in a multiplexing system is required. Herein, we developed a duplex bioelectronic tongue (DBT) based on graphene field-effect transistors that were functionalized with heterodimeric human umami taste and sweet taste receptor nanovesicles. Two types of nanovesicles, which have human T1R1/T1R3 for the umami taste and human T1R2/T1R3 for the sweet taste on their membranes, immobilized on micropatterned graphene surfaces were used for the simultaneous detection of the umami and sweet tastants. The DBT platform led to highly sensitive and selective recognition of target tastants at low concentrations (ca. 100 nM). Moreover, our DBT was able to detect the enhancing effect of taste enhancers as in a human taste sensory system. This technique can be a useful tool for the detection of tastes instead of sensory evaluation and development of new artificial tastants in the food and beverage industry.

  20. Preexposure to Salty and Sour Taste Enhances Conditioned Taste Aversion to Novel Sucrose

    ERIC Educational Resources Information Center

    Flores, Veronica L.; Moran, Anan; Bernstein, Max; Katz, Donald B.

    2016-01-01

    Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty--the fact that preexposure to the taste conditioned stimulus (CS)…

  1. On the quality of commercial boneless skinless broiler breast meat.

    PubMed

    Lee, Y S; Owens, C M; Meullenet, J F

    2008-08-01

    This study was conducted to assess the overall quality of commercial broiler breast meat products representing several brands and various industry practices (that is, chilling or enhancement procedures). Six different broiler breast products were evaluated by 75 consumers for 11 attributes related to appearance, flavor, tenderness, and juiciness, including overall acceptance. Twenty-three sensory attributes representing basic taste, flavor, texture, and appearance were evaluated by 11 trained descriptive panelists. Tenderness of cooked meat was instrumentally predicted by the Meullenet-Owens razor shear (MORS). Water holding capacity (cook loss) of cooked meat was also evaluated, and color and pH of raw meat were determined. Significant variations in quality among products tested were reported, indicating a broad range of product quality in the marketplace. One air-chilled and 1 water-chilled/enhanced product were found to be most liked by consumers. Tenderness of products tested was rated in average between "neither tough nor tender" and "very tender" by consumers. Cook loss of the 2 air-chilled products (13.5% to 19.1%, respectively) was significantly lower than that of water-chilled products (18.7% to 24.1%). Partial least squares regression revealed that 4 sensory texture attributes (hardness, hardness of mass, cohesiveness of mass, and tooth pack) and 1 basic taste (sour) were the major attributes driving consumer overall liking of commercial broiler breast meat products.

  2. Mediation of psychosocial determinants in the relation between socio-economic status and adolescents' diet quality.

    PubMed

    Michels, Nathalie; Vynckier, Lisa; Moreno, Luis A; Beghin, Laurent; de la O, Alex; Forsner, Maria; Gonzalez-Gross, Marcela; Huybrechts, Inge; Iguacel, Isabel; Kafatos, Antonio; Kersting, Mathilde; Leclercq, Catherine; Manios, Yannis; Marcos, Ascension; Molnar, Denes; Sjöström, Michael; Widhalm, Kurt; De Henauw, Stefaan

    2018-04-01

    To examine the underlying reasons for the positive relation between socio-economic status (SES) and the diet quality of adolescents. In 2081 adolescents (12.5-17.5 years) of the European HELENA study, a continuous variable on diet quality via 2-day 24-h recalls was available. SES was reflected by parental education, parental occupation and family affluence. Mediation by several psychosocial determinants was tested: self-efficacy, availability at school and home, social support, barriers, benefits, awareness and some self-reported influencers (parents, school, taste, health, friends, food readily available, easy preparation, hunger, price and habits). Multiple mediation analyses were adjusted for age, sex and country. The availability of soft drinks and fruit at home, social support, parental influence, barriers, price influence, taste influence, health influence and food being readily available were significant mediators. The multiple mediation indirect effect accounted for 23-64% of the total effect. Both occupation and education and both maternal and paternal factors could be explained by the mediation. The unavailability of soft drinks was the strongest mediator (17-44% of the total effect). Up to 64% of the positive relation between SES and the diet quality in adolescence could be explained by several healthy eating determinants. Focusing on these factors in low-SES populations can minimize social inequalities in diet and health by improving the diet of these specific adolescents.

  3. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo

    PubMed Central

    Ren, Wenwen; Lewandowski, Brian C.; Watson, Jaime; Aihara, Eitaro; Iwatsuki, Ken; Bachmanov, Alexander A.; Margolskee, Robert F.; Jiang, Peihua

    2014-01-01

    Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homologs (e.g., Lgr6) mark adult stem cells in multiple tissues. Recently, we and others have shown that Lgr5 marks adult taste stem/progenitor cells in posterior tongue. However, the regenerative potential of Lgr5-expressing (Lgr5+) cells and the identity of adult taste stem/progenitor cells that regenerate taste tissue in anterior tongue remain elusive. In the present work, we describe a culture system in which single isolated Lgr5+ or Lgr6+ cells from taste tissue can generate continuously expanding 3D structures (“organoids”). Many cells within these taste organoids were cycling and positive for proliferative cell markers, cytokeratin K5 and Sox2, and incorporated 5-bromo-2’-deoxyuridine. Importantly, mature taste receptor cells that express gustducin, carbonic anhydrase 4, taste receptor type 1 member 3, nucleoside triphosphate diphosphohydrolase-2, or cytokeratin K8 were present in the taste organoids. Using calcium imaging assays, we found that cells grown out from taste organoids derived from isolated Lgr5+ cells were functional and responded to tastants in a dose-dependent manner. Genetic lineage tracing showed that Lgr6+ cells gave rise to taste bud cells in taste papillae in both anterior and posterior tongue. RT-PCR data demonstrated that Lgr5 and Lgr6 may mark the same subset of taste stem/progenitor cells both anteriorly and posteriorly. Together, our data demonstrate that functional taste cells can be generated ex vivo from single Lgr5+ or Lgr6+ cells, validating the use of this model for the study of taste cell generation. PMID:25368147

  4. The glossopharyngeal nerve controls epithelial expression of Sprr2a and Krt13 around taste buds in the circumvallate papilla.

    PubMed

    Miura, Hirohito; Kusakabe, Yuko; Hashido, Kento; Hino, Akihiro; Ooki, Makoto; Harada, Shuitsu

    2014-09-19

    Tastants reach the tip of taste bud cells through taste pores which are openings in the epithelium. We found Sprr2a is selectively expressed in the upper layer of the epithelium surrounding taste buds in the circumvallate papilla (CV) where the epithelium is organized into taste pores. Sprr2a is a member of a small proline-rich protein family, which is suggested to be involved in the restitution/migration phase of epithelial wound healing. The expression of Sprr2a was restricted to the upper layer and largely segregated with Ptch1 expression that is restricted to the basal side of the epithelium around the taste buds. Denervation resulted in the gradual loss of Sprr2a-expressing cells over 10 days similarly to that of taste bud cells which is in contrast to the rapid loss of Ptch1 expression. We also found that denervation caused an increase of Keratin (Krt)13 expression around taste buds that corresponded with the disappearance of Sprr2a and Ptch1 expression. Taste buds were surrounded by Krt13-negative cells in the CV in control mice. However, at 6 days post-denervation, taste buds were tightly surrounded by Krt13-positive cells. During taste bud development, taste bud cells emerged together with Krt13-negtive cells, and Sprr2a expression was increased along with the progress of taste bud development. These results demonstrate that regional gene expression surrounding taste buds is associated with taste bud formation and controlled by the innervating taste nerve. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo.

    PubMed

    Ren, Wenwen; Lewandowski, Brian C; Watson, Jaime; Aihara, Eitaro; Iwatsuki, Ken; Bachmanov, Alexander A; Margolskee, Robert F; Jiang, Peihua

    2014-11-18

    Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homologs (e.g., Lgr6) mark adult stem cells in multiple tissues. Recently, we and others have shown that Lgr5 marks adult taste stem/progenitor cells in posterior tongue. However, the regenerative potential of Lgr5-expressing (Lgr5(+)) cells and the identity of adult taste stem/progenitor cells that regenerate taste tissue in anterior tongue remain elusive. In the present work, we describe a culture system in which single isolated Lgr5(+) or Lgr6(+) cells from taste tissue can generate continuously expanding 3D structures ("organoids"). Many cells within these taste organoids were cycling and positive for proliferative cell markers, cytokeratin K5 and Sox2, and incorporated 5-bromo-2'-deoxyuridine. Importantly, mature taste receptor cells that express gustducin, carbonic anhydrase 4, taste receptor type 1 member 3, nucleoside triphosphate diphosphohydrolase-2, or cytokeratin K8 were present in the taste organoids. Using calcium imaging assays, we found that cells grown out from taste organoids derived from isolated Lgr5(+) cells were functional and responded to tastants in a dose-dependent manner. Genetic lineage tracing showed that Lgr6(+) cells gave rise to taste bud cells in taste papillae in both anterior and posterior tongue. RT-PCR data demonstrated that Lgr5 and Lgr6 may mark the same subset of taste stem/progenitor cells both anteriorly and posteriorly. Together, our data demonstrate that functional taste cells can be generated ex vivo from single Lgr5(+) or Lgr6(+) cells, validating the use of this model for the study of taste cell generation.

  6. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets

    PubMed Central

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F.; Payne, Jason; Swetenburg, Raymond L.; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J.; Stice, Steven L.; Beckstead, Robert; Liu, Hong-Xiang

    2016-01-01

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240–360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors. PMID:27853250

  7. Developing and regenerating a sense of taste

    PubMed Central

    Barlow, Linda A.; Klein, Ophir D.

    2015-01-01

    Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depends on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero. PMID:25662267

  8. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets.

    PubMed

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F; Payne, Jason; Swetenburg, Raymond L; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J; Stice, Steven L; Beckstead, Robert; Liu, Hong-Xiang

    2016-11-17

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240-360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors.

  9. Tasting

    MedlinePlus Videos and Cool Tools

    ... about 10,000 taste buds. The taste buds are linked to the brain by nerve fibers. Food particles are detected by the taste buds, which send nerve ... to the brain. Certain areas of the tongue are more sensitive to certain tastes, like bitter, sour, ...

  10. [Periods for growth and quality improvement of fish in context of animal welfare compliant management of commercial fish ponds--a literature review].

    PubMed

    Pietrock, Michael; Brämick, Uwe

    2016-01-01

    In Germany, management of commercial fish ponds requires consideration of animal welfare legislation. In particular, it is forbidden to immediately catch fish that have recently been stocked into put-and-take fishponds. Rather, after stocking is completed, a short-term fishing ban period needs to be adhered to that allows the fishes the opportunity to grow and/or significantly improve in overall quality. The duration of the fishing ban varies considerably among German federal states. A literature review, therefore, was undertaken to identify the amount of time required by adult fish to reach changes in various parameters of quality (proximate composition, fillet colour, odour/taste, stress response), and growth.The literature search revealed that some of the selected parameters (odour/taste, stress response) can change within 24 hours, potentially resulting in improved fish flesh quality. With a time span of about four weeks, feeding-induced changes in proximate composition took the longest among the parameters tested to realize significant changes in fish flesh quality. Transportation-related reductions in body mass are overcome and succeeded by net growth within one to two weeks depending on food availability. Maintaining the fish under species-specific conditions and providing the optimal environment to meet their physiological demands, however, are critical prerequisites for growth and quality improvement. In conclusion there is science-based justification for fishing ban periods ranging from 24 hours to four weeks. Final determination of its duration, therefore, remains a careful balancing of values.

  11. Norepinephrine is coreleased with serotonin in mouse taste buds.

    PubMed

    Huang, Yijen A; Maruyama, Yutaka; Roper, Stephen D

    2008-12-03

    ATP and serotonin (5-HT) are neurotransmitters secreted from taste bud receptor (type II) and presynaptic (type III) cells, respectively. Norepinephrine (NE) has also been proposed to be a neurotransmitter or paracrine hormone in taste buds. Yet, to date, the specific stimulus for NE release in taste buds is not well understood, and the identity of the taste cells that secrete NE is not known. Chinese hamster ovary cells were transfected with alpha(1A) adrenoceptors and loaded with fura-2 ("biosensors") to detect NE secreted from isolated mouse taste buds and taste cells. Biosensors responded to low concentrations of NE (>or=10 nm) with a reliable fura-2 signal. NE biosensors did not respond to stimulation with KCl or taste compounds. However, we recorded robust responses from NE biosensors when they were positioned against mouse circumvallate taste buds and the taste buds were stimulated with KCl (50 mm) or a mixture of taste compounds (cycloheximide, 10 microm; saccharin, 2 mm; denatonium, 1 mm; SC45647, 100 microm). NE biosensor responses evoked by stimulating taste buds were reversibly blocked by prazosin, an alpha(1A) receptor antagonist. Together, these findings indicate that taste bud cells secrete NE when they are stimulated. We isolated individual taste bud cells to identify the origin of NE release. NE was secreted only from presynaptic (type III) taste cells and not receptor (type II) cells. Stimulus-evoked NE release depended on Ca(2+) in the bathing medium. Using dual biosensors (sensitive to 5-HT and NE), we found all presynaptic cells secrete 5-HT and 33% corelease NE with 5-HT.

  12. Do polymorphisms in the TAS1R1 gene contribute to broader differences in human taste intensity?

    PubMed

    Rawal, Shristi; Hayes, John E; Wallace, Margaret R; Bartoshuk, Linda M; Duffy, Valerie B

    2013-10-01

    The TAS1R genes encode heterodimeric receptors that mediate umami (hTAS1R1 + hTAS1R3) and sweet (hTAS1R2 + hTAS1R3) sensations. The question of interest for this study is if TAS1R1 variation associates with differences in overall taste intensity. We leveraged an existing database of adults (n = 92, primarily European American) to test associations between 2 TAS1R1 single nucleotide polymorphisms (SNPs) (intronic rs17492553, C/T and exonic rs34160967, G/A) and intensity of 4 prototypical tastants (NaCl, sucrose, citric acid, and quinine), applied regionally to fungiform and circumvallate loci, and sampled with the whole mouth. Both SNPs were associated with modest shifts in perceived intensities across all taste qualities. Three genotype groups were represented for the intronic SNP-minor allele homozygotes (TT) averaged 40% lower intensities than did CC homozygotes for all regionally applied tastants, as well as whole-mouth NaCl and citric acid. Similar, but less pronounced, intensity differences were seen for the exonic SNP (GG homozygotes reported greater intensities than did the AA/AG group). Our predominantly European American cohort had a low frequency of AA homozygotes, which may have attenuated the SNP-related differences in perceived intensity. These preliminary findings, if replicated, could add TAS1R1 polymorphisms to the repertoire of genotypic and phenotypic markers of heightened taste sensation.

  13. Do Polymorphisms in the TAS1R1 Gene Contribute to Broader Differences in Human Taste Intensity?

    PubMed Central

    2013-01-01

    The TAS1R genes encode heterodimeric receptors that mediate umami (hTAS1R1 + hTAS1R3) and sweet (hTAS1R2 + hTAS1R3) sensations. The question of interest for this study is if TAS1R1 variation associates with differences in overall taste intensity. We leveraged an existing database of adults (n = 92, primarily European American) to test associations between 2 TAS1R1 single nucleotide polymorphisms (SNPs) (intronic rs17492553, C/T and exonic rs34160967, G/A) and intensity of 4 prototypical tastants (NaCl, sucrose, citric acid, and quinine), applied regionally to fungiform and circumvallate loci, and sampled with the whole mouth. Both SNPs were associated with modest shifts in perceived intensities across all taste qualities. Three genotype groups were represented for the intronic SNP—minor allele homozygotes (TT) averaged 40% lower intensities than did CC homozygotes for all regionally applied tastants, as well as whole-mouth NaCl and citric acid. Similar, but less pronounced, intensity differences were seen for the exonic SNP (GG homozygotes reported greater intensities than did the AA/AG group). Our predominantly European American cohort had a low frequency of AA homozygotes, which may have attenuated the SNP-related differences in perceived intensity. These preliminary findings, if replicated, could add TAS1R1 polymorphisms to the repertoire of genotypic and phenotypic markers of heightened taste sensation. PMID:24000232

  14. Sensing marine biomolecules: smell, taste, and the evolutionary transition from aquatic to terrestrial life

    PubMed Central

    Mollo, Ernesto; Fontana, Angelo; Roussis, Vassilios; Polese, Gianluca; Amodeo, Pietro; Ghiselin, Michael T.

    2014-01-01

    The usual definition of smell and taste as distance and contact forms of chemoreception, respectively, has resulted in the belief that, during the shift from aquatic to terrestrial life, odorant receptors (ORs) were selected mainly to recognize airborne hydrophobic ligands, instead of the hydrophilic molecules involved in marine remote-sensing. This post-adaptive evolutionary scenario, however, neglects the fact that marine organisms 1) produce and detect a wide range of small hydrophobic and volatile molecules, especially terpenoids, and 2) contain genes coding for ORs that are able to bind those compounds. These apparent anomalies can be resolved by adopting an alternative, pre-adaptive scenario. Before becoming airborne on land, small molecules, almost insoluble in water, already played a key role in aquatic communication, but acting in “contact” forms of olfaction that did not require major molecular innovations to become effective at a distance in air. Rather, when air was “invaded” by volatile marine terpenoids, an expansion of the spatial range of olfaction was an incidental consequence rather than an adaptation. PMID:25360437

  15. Heterogeneity of fish taste bud ultrastructure as demonstrated in the holosteans Amia calva and Lepisosteus oculatus.

    PubMed Central

    Reutter, K; Boudriot, F; Witt, M

    2000-01-01

    Taste buds are the peripheral sensory organs of the gustatory system. They occur in all taxa of vertebrates and are pear-shaped intra-epithelial organs of about 80 microm height and 50 microm width. Taste buds mainly consist of specialized epithelial cells, which synapse at their bases and therefore are secondary sensory cells. Taste buds have been described based on studies of teleostean species, but it turned out that the ultrastructure of teleostean taste buds may differ between distinct systematic groups and that this description is not representative of those taste buds in other main taxa of fishes, such as selachians, holosteans and dipnoans. Furthermore, it is not known how variable the micromorphologies of non-teleostean taste buds are. For this reason the taste buds of two holosteans, Lepisosteus oculatus and Amia calva, were investigated and compared. While in both species the taste buds are of the same shapes and sizes, the cellular components of their sensory epithelia differ: in Lepisosteus taste buds comprise two types of elongated light cells and one type of dark cells. In contrast, Amia taste buds contain only one type of light, but two types of dark elongated cells. Afferent synapses are common in the buds of both species, efferent synapses occur only in Lepisosteus taste buds. These differences show that even in the small group of holostean fishes the taste buds are differently organized. Consequently, a representative type of fish taste buds does not exist. PMID:11079403

  16. Heterogeneity of fish taste bud ultrastructure as demonstrated in the holosteans Amia calva and Lepisosteus oculatus.

    PubMed

    Reutter, K; Boudriot, F; Witt, M

    2000-09-29

    Taste buds are the peripheral sensory organs of the gustatory system. They occur in all taxa of vertebrates and are pear-shaped intra-epithelial organs of about 80 microm height and 50 microm width. Taste buds mainly consist of specialized epithelial cells, which synapse at their bases and therefore are secondary sensory cells. Taste buds have been described based on studies of teleostean species, but it turned out that the ultrastructure of teleostean taste buds may differ between distinct systematic groups and that this description is not representative of those taste buds in other main taxa of fishes, such as selachians, holosteans and dipnoans. Furthermore, it is not known how variable the micromorphologies of non-teleostean taste buds are. For this reason the taste buds of two holosteans, Lepisosteus oculatus and Amia calva, were investigated and compared. While in both species the taste buds are of the same shapes and sizes, the cellular components of their sensory epithelia differ: in Lepisosteus taste buds comprise two types of elongated light cells and one type of dark cells. In contrast, Amia taste buds contain only one type of light, but two types of dark elongated cells. Afferent synapses are common in the buds of both species, efferent synapses occur only in Lepisosteus taste buds. These differences show that even in the small group of holostean fishes the taste buds are differently organized. Consequently, a representative type of fish taste buds does not exist.

  17. The Impact of Pregnancy on Taste Function.

    PubMed

    Choo, Ezen; Dando, Robin

    2017-05-01

    It is common for women to report a change in taste (for instance an increased bitter or decreased sweet response) during pregnancy, however specifics of any variation in taste with pregnancy remain elusive. Here we review studies of taste in pregnancy, and discuss how physiological changes occurring during pregnancy may influence taste signaling. We aim to consolidate studies of human pregnancy and "taste function" (studies of taste thresholds, discrimination, and intensity perception, rather than hedonic response or self-report), discussing differences in methodology and findings. Generally, the majority of studies report either no change, or an increase in threshold/decrease in perceived taste intensity, particularly in the early stages of pregnancy, suggesting a possible decrease in taste acuity when pregnant. We further discuss several non-human studies of taste and pregnancy that may extend our understanding. Findings demonstrate that taste buds express receptors for many of the same hormones and circulating factors that vary with pregnancy. Circulating gonadal hormones or other contributions from the endocrine system, as well as physiological changes in weight and immune response could all bear some responsibility for such a modulation of taste during pregnancy. Given our growing understanding of taste, we propose that a change in taste function during pregnancy may not be solely driven by hormonal fluctuations of progesterone and estrogen, as many have suggested. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Quality of recording of diabetes in the UK: how does the GP's method of coding clinical data affect incidence estimates? Cross-sectional study using the CPRD database

    PubMed Central

    Tate, A Rosemary; Dungey, Sheena; Glew, Simon; Beloff, Natalia; Williams, Rachael; Williams, Tim

    2017-01-01

    Objective To assess the effect of coding quality on estimates of the incidence of diabetes in the UK between 1995 and 2014. Design A cross-sectional analysis examining diabetes coding from 1995 to 2014 and how the choice of codes (diagnosis codes vs codes which suggest diagnosis) and quality of coding affect estimated incidence. Setting Routine primary care data from 684 practices contributing to the UK Clinical Practice Research Datalink (data contributed from Vision (INPS) practices). Main outcome measure Incidence rates of diabetes and how they are affected by (1) GP coding and (2) excluding ‘poor’ quality practices with at least 10% incident patients inaccurately coded between 2004 and 2014. Results Incidence rates and accuracy of coding varied widely between practices and the trends differed according to selected category of code. If diagnosis codes were used, the incidence of type 2 increased sharply until 2004 (when the UK Quality Outcomes Framework was introduced), and then flattened off, until 2009, after which they decreased. If non-diagnosis codes were included, the numbers continued to increase until 2012. Although coding quality improved over time, 15% of the 666 practices that contributed data between 2004 and 2014 were labelled ‘poor’ quality. When these practices were dropped from the analyses, the downward trend in the incidence of type 2 after 2009 became less marked and incidence rates were higher. Conclusions In contrast to some previous reports, diabetes incidence (based on diagnostic codes) appears not to have increased since 2004 in the UK. Choice of codes can make a significant difference to incidence estimates, as can quality of recording. Codes and data quality should be checked when assessing incidence rates using GP data. PMID:28122831

  19. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.

    PubMed

    Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D

    2008-06-15

    Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.

  20. Water resources of the Big Sioux River Valley near Sioux Falls, South Dakota

    USGS Publications Warehouse

    Jorgensen, Donald G.; Ackroyd, Earl A.

    1973-01-01

    Water from the river is generally less mineralized, softer, and easier to treat than ground water. Water pumped from wells near the river is similar in quality to the river water, but does not have the objectionable odors or tastes often present in water from the river.

  1. Physicochemical properties and aroma volatile profiles in a diverse collection of California-grown pomegranate (Punica granatum L.) germplasm

    USDA-ARS?s Scientific Manuscript database

    There are thousands of pomegranate accessions and more than 500 known pomegranate cultivars with around 50 available commercially, exhibiting different growing characteristics and quality attributes; such as fruit size, color, shape, seed hardness, taste and flavor traits which are sometimes not wel...

  2. Oxytocin signaling in mouse taste buds.

    PubMed

    Sinclair, Michael S; Perea-Martinez, Isabel; Dvoryanchikov, Gennady; Yoshida, Masahide; Nishimori, Katsuhiko; Roper, Stephen D; Chaudhari, Nirupa

    2010-08-05

    The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e. sucrose, saccharin) solutions. We asked if OXT might also act on taste buds via its receptor, OXTR. Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I) taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM). OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II) nor Presynaptic (Type III) cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene. We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I) taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I) taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of appetite regulation that employ circulating homeostatic and satiety signals.

  3. The flavor of pomegranate fruit: a review.

    PubMed

    Mayuoni-Kirshinbaum, Lina; Porat, Ron

    2014-01-15

    Despite the increasing commercial importance of pomegranate, especially because of its recently discovered health-promoting benefits, relatively little is yet known regarding its sensory quality and flavor preferences, or about the biochemical constituents that determine its sensory characteristics. The perceived flavor of pomegranate fruit results from the combination of various taste, aroma and mouthfeel sensations. The taste is governed mainly by the presence of sugars (glucose and fructose) and organic acids (primarily citric and malic acids). The aroma evolves from the presence of dozens of volatiles, including alcohols, aldehydes, ketones, and terpenes, which provide a mixture of various 'green', 'woody', 'earthy', 'fruity', 'floral', 'sweet' and 'musty' notes. In addition, the sensory satisfaction during the eating of pomegranate arils is complemented by various mouthfeel sensations, including seed hardness and astringency sensations. In the present review we will describe the sensory quality and flavor preferences of pomegranate fruit, including the genetic diversity in flavor characteristics among distinct varieties. In addition, we will describe the dynamic changes that occur in fruit flavor during fruit ripening and postharvest storage. © 2013 Society of Chemical Industry.

  4. Sensory descriptors, hedonic perception and consumer’s attitudes to Sangiovese red wine deriving from organically and conventionally grown grapes

    PubMed Central

    Pagliarini, Ella; Laureati, Monica; Gaeta, Davide

    2013-01-01

    In recent years, produce obtained from organic farming methods (i.e., a system that minimizes pollution and avoids the use of synthetic fertilizers and pesticides) has rapidly increased in developed countries. This may be explained by the fact that organic food meets the standard requirements for quality and healthiness. Among organic products, wine has greatly attracted the interest of the consumers. In the present study, trained assessors and regular wine consumers were respectively required to identify the sensory properties (e.g., odor, taste, flavor, and mouthfeel sensations) and to evaluate the hedonic dimension of red wines deriving from organically and conventionally grown grapes. Results showed differences related mainly to taste (sour and bitter) and mouthfeel (astringent) sensations, with odor and flavor playing a minor role. However, these differences did not influence liking, as organic and conventional wines were hedonically comparable. Interestingly, 61% of respondents would be willing to pay more for organically produced wines, which suggests that environmentally sustainable practices related to wine quality have good market prospects. PMID:24348447

  5. Sensory descriptors, hedonic perception and consumer's attitudes to Sangiovese red wine deriving from organically and conventionally grown grapes.

    PubMed

    Pagliarini, Ella; Laureati, Monica; Gaeta, Davide

    2013-01-01

    In recent years, produce obtained from organic farming methods (i.e., a system that minimizes pollution and avoids the use of synthetic fertilizers and pesticides) has rapidly increased in developed countries. This may be explained by the fact that organic food meets the standard requirements for quality and healthiness. Among organic products, wine has greatly attracted the interest of the consumers. In the present study, trained assessors and regular wine consumers were respectively required to identify the sensory properties (e.g., odor, taste, flavor, and mouthfeel sensations) and to evaluate the hedonic dimension of red wines deriving from organically and conventionally grown grapes. Results showed differences related mainly to taste (sour and bitter) and mouthfeel (astringent) sensations, with odor and flavor playing a minor role. However, these differences did not influence liking, as organic and conventional wines were hedonically comparable. Interestingly, 61% of respondents would be willing to pay more for organically produced wines, which suggests that environmentally sustainable practices related to wine quality have good market prospects.

  6. Effect of γ-irradiation on the physicochemical and sensory properties of hazelnuts ( Corylus avellana L.)

    NASA Astrophysics Data System (ADS)

    Mexis, S. F.; Kontominas, M. G.

    2009-06-01

    The present study evaluated the quality of hazelnuts as a function of irradiation dose to determine dose levels causing minimal undesirable changes to hazelnuts. Physicochemical (color, peroxide value (PV), hexanal content, fatty acid composition and volatile compounds) and sensory (color, texture, odor and taste) properties were determined. Results showed a twenty fold increase in peroxide value and twenty-eight fold increase in hexanal content after irradiation at a dose of 7 kGy. An increase was also observed in saturated fatty acids (10%-23%) with a parallel decrease in unsaturated fatty acids (90-77%). Volatile compounds such as ketones, alkanes, alcohols, aldehydes, furans, aromatic hydrocarbons, bicyclic monoterpenes and acids were produced mostly comprising secondary oxidation products of hazelnut lipids after irradiation. Color parameter b* increased ( p<0.05) after irradiation at a dose of ⩾5 kGy, while color parameters L* and a* remained unchanged by irradiation. Sensory evaluation showed that texture and color were not affected by irradiation. Taste, the most sensitive sensory attribute showed that hazelnuts retain acceptable sensory quality when irradiated up to a dose of 1.5 kGy.

  7. Consumer Acceptance and Preference Study [CAPS] on Brown and Under Milled Indian Rice Varieties in Chennai, India

    PubMed Central

    Sudha, Vasudevan; Spiegelman, Donna; Hong, Biling; Malik, Vasanti; Jones, Clara; Wedick, Nicole M.; Hu, Frank B.; Willett, Walter; Bai, Mookambika Ramya; Ponnalagu, Muthu Mariyammal; Arumugam, Kokila; Mohan, Viswanathan

    2013-01-01

    Objectives To study consumer acceptance of unmilled brown and under milled rice among urban south Indians. Methods Overweight and normal weight adults living in slum and non-slum residences in Chennai participated (n=82). Bapatla (BPT) and Uma (red pigmented) rice varieties were chosen. These rice varieties were dehusked (unmilled, 0% polish) and further milled to 2.3% and 4.4% polishing (under milled). Thus nine rice samples in both raw and parboiled forms were provided for consumer tasting over a period of three days. A hedonic 7-point scale was used to rate the consumer preferences. A validated questionnaire was used to collect demographic, anthropometric, medical history, physical activity, dietary intake data and willingness of the consumers to switch over to brown rice. Results Consumers reported that the color, appearance, texture, taste and overall quality of the 4.4% polished rice was strongly preferred in both varieties and forms. Ratings for 0% polished (brown rice) were substantially lower than those of 2.3% polished rice, which were intermediate in ratings between 0% and 4.4% polishing. However, most of the consumers (93%) expressed willingness to substitute brown or 2.3% polished rice if affordable after the taste tests and education on nutritional and health benefits of whole grains. Conclusion While most consumers’ preferred polished white rice, education regarding health benefits may help this population switch to brown or under milled rice. Cooking quality and appearance of the grains were perceived as the most important factors to consider when purchasing rice among Chennai urban adults. PMID:24015699

  8. Developing and regenerating a sense of taste.

    PubMed

    Barlow, Linda A; Klein, Ophir D

    2015-01-01

    Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depend on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero. © 2015 Elsevier Inc. All rights reserved.

  9. Longitudinal analysis of calorie restriction on rat taste bud morphology and expression of sweet taste modulators.

    PubMed

    Cai, Huan; Daimon, Caitlin M; Cong, Wei-Na; Wang, Rui; Chirdon, Patrick; de Cabo, Rafael; Sévigny, Jean; Maudsley, Stuart; Martin, Bronwen

    2014-05-01

    Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste-related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste-related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR.

  10. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells

    PubMed Central

    Gaillard, Dany; Barlow, Linda A.

    2012-01-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of type I, II and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25 week-old mice compared to 10 week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. PMID:21328519

  11. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells.

    PubMed

    Gaillard, Dany; Barlow, Linda A

    2011-04-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of Type I, II, and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25-week-old mice compared with 10-week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. Copyright © 2011 Wiley-Liss, Inc.

  12. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection.

    PubMed

    Li, Yi-Ke; Yang, Juan-Mei; Huang, Yi-Bo; Ren, Dong-Dong; Chi, Fang-Lu

    2015-06-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  13. Effects of streptozotocin-induced diabetes on taste buds in rat vallate papillae.

    PubMed

    Pai, Man-Hui; Ko, Tsui-Ling; Chou, Hsiu-Chu

    2007-01-01

    Some studies have documented taste changes in patients with diabetes mellitus (DM). In order to understand the relationships between taste disorders caused by DM and the innervation and morphologic changes in the taste buds, we studied the vallate papillae and their taste buds in rats with DM. DM was induced in these rats with streptozotocin (STZ), which causes the death of beta cells of the pancreas. The rats were sacrificed and the vallate papillae were dissected for morphometric and quantitative immunohistochemical analyses. The innervations of the vallate papillae and taste buds in diabetic and control rats were detected using immunohistochemistry employing antibodies directed against protein gene product 9.5 (PGP 9.5) and calcitonin gene-related peptide (CGRP). The results showed that PGP 9.5- and CGRP-immunoreactive nerve fibers in the trench wall of diabetic vallate papillae, as well as taste cells in the taste buds, gradually decreased both intragemmally and intergemmally. The morphometry revealed no significant difference in papilla size between the control and diabetic groups, but there were fewer taste buds per papilla (per animal). The quantification of innervation in taste buds of the diabetic rats supported the visual assessment of immunohistochemical labeling, that the innervation of taste cells was significantly reduced in diabetic animals. These findings suggest that taste impairment in diabetic subjects may be caused by neuropathy defects and/or morphological changes in the taste buds.

  14. Preexposure to salty and sour taste enhances conditioned taste aversion to novel sucrose

    PubMed Central

    Flores, Veronica L.; Moran, Anan; Bernstein, Max

    2016-01-01

    Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty—the fact that preexposure to the taste conditioned stimulus (CS) reduces its associability. The effect of exposure to tastes other than the CS has, in contrast, received little investigation. Here, we exposed rats to sodium chloride (N) and citric acid (C), either before or within a conditioning session involving novel sucrose (S). Presentation of this taste array within the conditioning session weakened the resultant S aversion, as expected. The opposite effect, however, was observed when exposure to the taste array was provided in sessions that preceded conditioning: such experience enhanced the eventual S aversion—a result that was robust to differences in CS delivery method and number of tastes presented in conditioning sessions. This “non-CS preexposure effect” scaled with the number of tastes in the exposure array (experience with more stimuli was more effective than experience with fewer) and with the amount of exposure sessions (three preexposure sessions were more effective than two). Together, our results provide evidence that exposure and experience with the realm of tastes changes an animal's future handling of even novel tastes. PMID:27084929

  15. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds.

    PubMed

    Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M

    2015-02-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  16. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds

    PubMed Central

    Yang, Hyekyung; Cong, Wei-na; Yoon, Jeong Seon; Egan, Josephine M

    2015-01-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. PMID:25354792

  17. Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice.

    PubMed

    Wilson, Courtney E; Finger, Thomas E; Kinnamon, Sue C

    2017-10-31

    Activation of Type III cells in mammalian taste buds is implicated in the transduction of acids (sour) and salty stimuli. Several lines of evidence suggest that function of Type III cells in the anterior taste fields may differ from that of Type III cells in posterior taste fields. Underlying anatomy to support this observation is, however, scant. Most existing immunohistochemical data characterizing this cell type focus on circumvallate taste buds in the posterior tongue. Equivalent data from anterior taste fields-fungiform papillae and soft palate-are lacking. Here, we compare Type III cells in four taste fields: fungiform, soft palate, circumvallate, and foliate in terms of reactivity to four canonical markers of Type III cells: polycystic kidney disease 2-like 1 (PKD2L1), synaptosomal associated protein 25 (SNAP25), serotonin (5-HT), and glutamate decarboxylase 67 (GAD67). Our findings indicate that while PKD2L1, 5-HT, and SNAP25 are highly coincident in posterior taste fields, they diverge in anterior taste fields. In particular, a subset of taste cells expresses PKD2L1 without the synaptic markers, and a subset of SNAP25 cells lacks expression of PKD2L1. In posterior taste fields, GAD67-positive cells are a subset of PKD2L1 expressing taste cells, but anterior taste fields also contain a significant population of GAD67-only expressing cells. These differences in expression patterns may underlie the observed functional differences between anterior and posterior taste fields. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Allelic variation of the Tas1r3 taste receptor gene selectively affects taste responses to sweeteners: evidence from 129.B6-Tas1r3 congenic mice

    PubMed Central

    Inoue, Masashi; Glendinning, John I.; Theodorides, Maria L.; Harkness, Sarah; Li, Xia; Bosak, Natalia; Beauchamp, Gary K.; Bachmanov, Alexander A.

    2008-01-01

    The Tas1r3 gene encodes the T1R3 receptor protein, which is involved in sweet taste transduction. To characterize ligand specificity of the T1R3 receptor and the genetic architecture of sweet taste responsiveness, we analyzed taste responses of 129.B6-Tas1r3 congenic mice to a variety of chemically diverse sweeteners and glucose polymers with three different measures: consumption in 48-h two-bottle preference tests, initial licking responses, and responses of the chorda tympani nerve. The results were generally consistent across the three measures. Allelic variation of the Tas1r3 gene influenced taste responsiveness to nonnutritive sweeteners (saccharin, acesulfame-K, sucralose, SC-45647), sugars (sucrose, maltose, glucose, fructose), sugar alcohols (erythritol, sorbitol), and some amino acids (d-tryptophan, d-phenylalanine, l-proline). Tas1r3 genotype did not affect taste responses to several sweet-tasting amino acids (l-glutamine, l-threonine, l-alanine, glycine), glucose polymers (Polycose, maltooligosaccharide), and nonsweet NaCl, HCl, quinine, monosodium glutamate, and inosine 5′-monophosphate. Thus Tas1r3 polymorphisms affect taste responses to many nutritive and nonnutritive sweeteners (all of which must interact with a taste receptor involving T1R3), but not to all carbohydrates and amino acids. In addition, we found that the genetic architecture of sweet taste responsiveness changes depending on the measure of taste response and the intensity of the sweet taste stimulus. Variation in the T1R3 receptor influenced peripheral taste responsiveness over a wide range of sweetener concentrations, but behavioral responses to higher concentrations of some sweeteners increasingly depended on mechanisms that could override input from the peripheral taste system. PMID:17911381

  19. Modulation of taste sensitivity by GLP-1 signaling in taste buds.

    PubMed

    Martin, Bronwen; Dotson, Cedrick D; Shin, Yu-Kyong; Ji, Sunggoan; Drucker, Daniel J; Maudsley, Stuart; Munger, Steven D

    2009-07-01

    Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we found that GLP-1 signaling plays an important role in the modulation of taste sensitivity: GLP-1R knockout mice exhibit a dramatic reduction in sweet taste sensitivity as well as an enhanced sensitivity to umami-tasting stimuli. Together, these findings suggest a novel paracrine mechanism for the hormonal modulation of taste function in mammals.

  20. Profiling the quality characteristics of the butter of Pentadesma butyracea with reference to shea butter.

    PubMed

    Ayegnon, Bernolde P; Kayodé, Adéchola Pp; Tchobo, Fidèle P; Azokpota, Paulin; Soumanou, Mohamed M; Hounhouigan, D Joseph

    2015-12-01

    Pentadesma butyracea is a tropical plant species. Its kernels are rich in edible butter similar to shea butter. This study evaluated the quality characteristics of the Pentadesma butter produced by cottage enterprises in Benin, using a quantitative survey approach and physicochemical and sensorial analysis methods. The butter of Pentadesma is mostly used for food preparation, cosmetic and therapeutic applications. It is characterized by a yellow colour, a hard texture, a relatively sweet taste and a bright appearance. Consumers preferred Pentadesma butter to shea butter for colour, taste, texture and appearance. Instrumental analysis showed that the average water content (6.5 g kg(-1) ) and peroxide value (0.74 mEq O2 kg(-1) ) of Pentadesma butter were lower than those of shea butter, for which average water content and peroxide values were 20.7g kg(-1) and 2.09 mEq O2 kg(-1) respectively. The fatty acid profile of Pentadesma butter is similar to that of shea butter. This study showed that the Pentadesma butyracea butter produced by cottage enterprises in Benin exhibited quality characteristics which are better than that of shea butter. The data generated can be used for a better exploitation of the butter in food and cosmetic industries. © 2014 Society of Chemical Industry.

  1. Progress and renewal in gustation: new insights into taste bud development

    PubMed Central

    Barlow, Linda A.

    2015-01-01

    The sense of taste, or gustation, is mediated by taste buds, which are housed in specialized taste papillae found in a stereotyped pattern on the surface of the tongue. Each bud, regardless of its location, is a collection of ∼100 cells that belong to at least five different functional classes, which transduce sweet, bitter, salt, sour and umami (the taste of glutamate) signals. Taste receptor cells harbor functional similarities to neurons but, like epithelial cells, are rapidly and continuously renewed throughout adult life. Here, I review recent advances in our understanding of how the pattern of taste buds is established in embryos and discuss the cellular and molecular mechanisms governing taste cell turnover. I also highlight how these findings aid our understanding of how and why many cancer therapies result in taste dysfunction. PMID:26534983

  2. Calcitonin Gene-Related Peptide Reduces Taste-Evoked ATP Secretion from Mouse Taste Buds.

    PubMed

    Huang, Anthony Y; Wu, Sandy Y

    2015-09-16

    Immunoelectron microscopy revealed that peripheral afferent nerve fibers innervating taste buds contain calcitonin gene-related peptide (CGRP), which may be as an efferent transmitter released from peripheral axon terminals. In this report, we determined the targets of CGRP within taste buds and studied what effect CGRP exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura-2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings showed that a subset of Presynaptic (Type III) taste cells (53%) responded to 0.1 μm CGRP with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 0.1 μm CGRP. Using pharmacological tools, the actions of CGRP were probed and elucidated by the CGRP receptor antagonist CGRP(8-37). We demonstrated that this effect of CGRP was dependent on phospholipase C activation and was prevented by the inhibitor U73122. Moreover, applying CGRP caused taste buds to secrete serotonin (5-HT), a Presynaptic (Type III) cell transmitter, but not ATP, a Receptor (Type II) cell transmitter. Further, our previous studies showed that 5-HT released from Presynaptic (Type III) cells provides negative paracrine feedback onto Receptor (Type II) cells by activating 5-HT1A receptors, and reducing ATP secretion. Our data showed that CGRP-evoked 5-HT release reduced taste-evoked ATP secretion. The findings are consistent with a role for CGRP as an inhibitory transmitter that shapes peripheral taste signals via serotonergic signaling during processing gustatory information in taste buds. The taste sensation is initiated with a highly complex set of interactions between a variety of cells located within the taste buds before signal propagation to the brain. Afferent signals from the oral cavity are carried to the brain in chemosensory fibers that contribute to chemesthesis, the general chemical sensitivity of the mucus membranes in the oronasal cavities and being perceived as pungency, irritation, or heat. This is a study of a fundamental question in neurobiology: how are signals processed in sensory end organs, taste buds? More specifically, taste-modifying interactions, via transmitters, between gustatory and chemosensory afferents inside taste buds will help explain how a coherent output is formed before being transmitted to the brain. Copyright © 2015 the authors 0270-6474/15/3512714-11$15.00/0.

  3. What Are Taste Buds?

    MedlinePlus

    ... on your tongue and allow you to experience tastes that are sweet, salty, sour, and bitter. How exactly do your taste ... send messages to the brain about how something tastes, so you know if it's sweet, sour, bitter, or salty. The average person has about 10,000 taste ...

  4. Quantitative anatomical study of taste buds in fungiform papillae of young and old Fischer rats.

    PubMed

    Mistretta, C M; Oakley, I A

    1986-05-01

    To determine if differences in neural taste responses relate to taste bud loss in old age, taste buds were counted in fungiform papillae of Fischer 344 rats aged 4 to 6 months, 20 to 24 months, and 30 to 37 months. Papillae anterior to the intermolar eminence on one half of the tongue were examined in serial sections. Presence or absence of a taste bud was noted and taste bud diameter was measured. Average percentages of papillae that contained a taste bud in the three groups were 99.6, 99.3, and 94.7%. This is a significant age-related difference but actual number of taste buds lost in the oldest rats was small. Taste bud diameter did not differ with age and general anatomical characteristics of buds were similar in all groups. Thus, anatomical observations on taste bud maintenance in rats over a wide age range, coupled with neurophysiological data, demonstrate that the integrity of the peripheral gustatory system is not altered greatly in old age.

  5. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds

    PubMed Central

    Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F.

    2015-01-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor–deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. PMID:26116698

  6. Improvement in taste sensitivity following pulmonary rehabilitation in patients with chronic obstructive pulmonary disease.

    PubMed

    Ito, Kumiko; Kohzuki, Masahiro; Takahashi, Tamao; Ebihara, Satoru

    2014-10-01

    Weight loss is common in patients with chronic obstructive pulmonary disease (COPD). Anorexia, postulated to be associated with alteration in taste sensitivity, may contribute to weight loss in these patients. Pulmonary rehabilitation is known to lead to improved exercise performance in patients with COPD. However, the relationship between pulmonary rehabilitation and taste sensitivity has not been evaluated. The objective of this study was to compare taste sensitivity before and after pulmonary rehabilitation in patients with COPD. Single-group intervention trial. Twenty-two patients with COPD. The six-min walk distance (6MWD), COPD assessment test, body mass index, fat mass index, fat-free mass index and taste test were conducted before and after 4-week pulmonary rehabilitation. Taste sensitivity was evaluated using the filter-paper disc method for 4 taste stimuli. Taste stimuli were salty, sweet, sour, and bitter tastes. Taste sensitivity was evaluated before and after pulmonary rehabilitation using the taste recognition threshold. Following pulmonary rehabilitation, the 6MWD, COPD assessment test, salty recognition threshold, sweet recognition threshold and bitter recognition threshold improved significantly, whereas there were no significant improvements in body mass index, fat mass index, fat-free mass index or sour recognition threshold. Pulmonary rehabilitation may improve taste sensitivity in patients with COPD.

  7. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates

    PubMed Central

    Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E.; Barlow, Linda A.

    2015-01-01

    Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells. PMID:26020789

  8. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    PubMed

    Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E; Barlow, Linda A

    2015-05-01

    Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  9. Long-term Follow-up Results of Regeneration Process of Fungiform Taste Buds After Severing the Chorda Tympani Nerve During Middle Ear Surgery.

    PubMed

    Saito, Takehisa; Ito, Tetsufumi; Ito, Yumi; Manabe, Yasuhiro

    2016-05-01

    To elucidate the regeneration process of fungiform taste buds after severing the chorda tympani nerve (CTN) by confocal laser scanning microscopy in vivo. In 7 consecutive patients whose CTN was severed during tympanoplasty, an average of 10 fungiform papillae in the midlateral region of the tongue were periodically observed, and the number of taste buds was counted until 12 to 24 months after surgery. Gustatory function was assessed by EGM. EGM thresholds showed no response within 1 month after surgery in any patient. All taste buds had disappeared until 13 to 71 days after surgery. Regenerated taste buds were first detected 5 to 8 months after surgery in 5 of the 7 patients. EGM thresholds recovered to their preoperative values in 2 patients. In these 2 patients, the number of regenerated taste buds gradually increased in combination with a recovered taste function. However, a time lag existed between taste bud regeneration and taste function recovery. EGM thresholds did not recover in the other 3 patients with regenerated taste buds, suggesting that these taste buds were immature without gustatory function. The long-term regeneration process of fungiform taste buds could be clarified using confocal laser scanning microscopy. © The Author(s) 2015.

  10. Influence of the perceived taste intensity of chemesthetic stimuli on swallowing parameters given age and genetic taste differences in healthy adult women.

    PubMed

    Pelletier, Cathy A; Steele, Catriona M

    2014-02-01

    This study examined whether the perceived taste intensity of liquids with chemesthetic properties influenced lingua-palatal pressures and submental surface electromyography (sEMG) in swallowing, compared with water. Swallowing was studied in 80 healthy women, stratified by age group and genetic taste status. General Labeled Magnitude Scale ratings of taste intensity were collected for deionized water; carbonated water; 2.7% w/v citric acid; and diluted ethanol. These stimuli were swallowed, with measurement of tongue-palate pressures and submental sEMG. Path analysis differentiated stimulus, genetic taste status, age, and perceived taste intensity effects on swallowing. Signal amplitude during effortful saliva swallowing served as a covariate representing participant strength. Significant differences (p < .05) in taste intensity were seen across liquids: citric acid > ethanol > carbonated water > water. Supertasters perceived greater taste intensity than did nontasters. Lingua-palatal pressure and sEMG amplitudes were correlated with the strength covariate. Anterior palate pressures and sEMG amplitudes were significantly higher for the citric acid stimulus. Perceived taste intensity was a significant mediator of stimulus differences. These data provide confirmatory evidence that high-intensity sour stimuli do influence swallowing behaviors. In addition, taste genetics influence the perception of taste intensity for stimuli with chemesthetic properties, which modulates behavioral responses.

  11. Effectiveness of Taste Lessons with and without additional experiential learning activities on children's willingness to taste vegetables.

    PubMed

    Battjes-Fries, Marieke C E; Haveman-Nies, Annemien; Zeinstra, Gertrude G; van Dongen, Ellen J I; Meester, Hante J; van den Top-Pullen, Rinelle; Van't Veer, Pieter; de Graaf, Kees

    2017-02-01

    This study assessed the effectiveness of the Dutch school programme Taste Lessons with and without additional experiential learning activities on children's willingness to taste unfamiliar vegetables. Thirty-three primary schools (877 children in grades 6-7 with a mean age of 10.3 years) participated in Taste Lessons Vegetable Menu (TLVM, lessons and extra activities), Taste Lessons (TL, lessons), or a control group. A baseline and follow-up measurement was used to assess for each child: number of four familiar and four unfamiliar vegetables tasted, quantity tasted, choice of vegetable of which to eat more, and number of vegetables willing to taste again later. Furthermore, children filled out a questionnaire on daily vegetable intake and food neophobia. Multilevel and Cox regression analyses were conducted to compare changes in the outcome measures between the three study groups. No significant intervention effects were found on willingness to taste unfamiliar vegetables. Neither were effects found on familiar vegetables, except for number of familiar vegetables tasted (p < 0.05). Furthermore, no significant intervention effects were found on daily vegetable consumption and food neophobia. These results indicate that more intensive school-based nutrition education activities are needed to increase children's willingness to taste unfamiliar vegetables and increase their vegetable intake. Copyright © 2016. Published by Elsevier Ltd.

  12. Tongue and taste organ development in the ontogeny of direct-developing salamander Plethodon cinereus (Lissamphibia: Plethodontidae).

    PubMed

    Budzik, Karolina A; Żuwała, Krystyna; Kerney, Ryan

    2016-07-01

    The latest research on direct developing caecilian and anuran species indicate presence of only one generation of taste organs during their ontogeny. This is distinct from indirect developing batrachians studied thus far, which possess taste buds in larvae and anatomically distinct taste discs in metamorphs. This study is a description of the tongue and taste organ morphology and development in direct developing salamander Plethodon cinereus (Plethodontidae) using histology and electron microscopy techniques. The results reveal two distinct stages tongue morphology (primary and secondary), similar to metamorphic urodeles, although only one stage of taste organ morphology. Taste disc sensory zones emerge on the surface of the oropharyngeal epithelium by the end of embryonic development, which coincides with maturation of the soft tongue. Taste organs occur in the epithelium of the tongue pad (where they are situated on the dermal papillae), the palate and the inner surface of the mandible and the maxilla. Plethodon cinereus embryos only possess taste disc type taste organs. Similar to the direct developing anuran Eleutherodactylus coqui (Eleutherodactylidae), these salamanders do not recapitulate larval taste bud morphology as an embryo. The lack of taste bud formation is probably a broadly distributed feature characteristic to direct developing batrachians. J. Morphol. 277:906-915, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Short-term perception of and conditioned taste aversion to umami taste, and oral expression patterns of umami taste receptors in chickens.

    PubMed

    Yoshida, Yuta; Kawabata, Fuminori; Kawabata, Yuko; Nishimura, Shotaro; Tabata, Shoji

    2018-07-01

    Umami taste is one of the five basic tastes (sweet, umami, bitter, sour, and salty), and is elicited by l-glutamate salts and 5'-ribonucleotides. In chickens, the elucidation of the umami taste sense is an important step in the production of new feedstuff for the animal industry. Although previous studies found that chickens show a preference for umami compounds in long-term behavioral tests, there are limitations to our understanding of the role of the umami taste sense in chicken oral tissues because the long-term tests partly reflected post-ingestive effects. Here, we performed a short-term test and observed agonists of chicken umami taste receptor, l-alanine and l-serine, affected the solution intakes of chickens. Using this method, we found that chickens could respond to umami solutions containing monosodium l-glutamate (MSG) + inosine 5'-monophosphate (IMP) within 5 min. We also demonstrated that chickens were successfully conditioned to avoid umami solution by the conditioned taste aversion test. It is noted that conditioning to umami solution was generalized to salty and sweet solutions. Thus, chickens may perceive umami taste as a salty- and sweet-like taste. In addition, we found that umami taste receptor candidates were differentially expressed in different regions of the chicken oral tissues. Taken together, the present results strongly suggest that chickens have a sense of umami taste and have umami taste receptors in their oral tissue. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Study of Odours and taste for Space Food

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Space Agriculture Task Force; Nakata, Seiichi; Teranishi, Masaaki; Sone, Michihiko; Nakashima, Tsutomu; Hamajima, Nobuyuki; Ito, Yoshihiro

    2012-07-01

    The sense of taste and smell come under some kind of influences in the space environment. In the space, the astronaut was changed their food habits from light taste and smell food to like strong taste and smells food. When an astronaut live in the space comes to have weak bone like osteoporosis. It may become the physiologic condition like the old man on the earth. Therefore this study performed fact-finding of the smell and the taste in the old man on the earth as test bed of astronaut in space. Based on this finding, it was intended to predict the taste and the olfactory change of the astronaut in the space. The study included 179 males and 251 females aged 30-90 years in Yakumo Town, Hokkaido, Japan. Odours were tested using a ``standard odours by odour stick identification''method of organoleptic testing. Taste were tested using a ``standard taste by taste disc identification'' method of chemical testing. Correct answers for identification odours consisted of average 6.0±3.0 in male subjects and average 6.9±2.8 in female subjects. Correct answers for identification of sweet taste consisted of 81% males and 87% females, salty taste consisted of 86% males and 91%, sour taste consisted of 75% males and 78% females, bitter taste consisted of 76% males and 88% females. It became clear that overall approximately 20% were in some kind of abnormality in sense of smell and taste. I want to perform the investigation that continued more in future.

  15. The effect of imiquimod on taste bud calcium transients and transmitter secretion.

    PubMed

    Huang, Anthony Y; Wu, Sandy Y

    2016-11-01

    Imiquimod is an immunomodulator approved for the treatment of basal cell carcinoma and has adverse side effects, including taste disturbances. Paracrine transmission, representing cell-cell communication within taste buds, has the potential to shape the final signals that taste buds transmit to the brain. Here, we tested the underlying assumption that imiquimod modifies taste transmitter secretion in taste buds of mice. Taste buds were isolated from C57BL/6J mice. The effects of imiquimod on transmitter release in taste buds were measured using calcium imaging with cellular biosensors, and examining the net effect of imiquimod on taste-evoked ATP secretion from mouse taste buds. Up to 72% of presynaptic (Type III) taste cells responded to 100 μM imiquimod with an increase in intracellular Ca 2+ concentrations. These Ca 2 + responses were inhibited by thapsigargin, an inhibitor of the sarco/endoplasmic reticulum Ca 2 + -ATPase, and by U73122, a PLC inhibitor, suggesting that the Ca 2 + mobilization elicited by imiquimod was dependent on release from internal Ca 2 + stores. Moreover, combining studies of Ca 2 + imaging with cellular biosensors showed that imiquimod evoked secretion of 5-HT, which then provided negative feedback onto receptor (Type II) cells to reduce taste-evoked ATP secretion. Our results provide evidence that there is a subset of taste cells equipped with a range of intracellular mechanisms that respond to imiquimod. The findings are also consistent with a role of imiquimod as an immune response modifier, which shapes peripheral taste responses via 5-HT signalling. © 2016 The British Pharmacological Society.

  16. Sweets and fats tasting in patients with anorexia nervosa: the role of the thought-shape fusion cognitive distortion.

    PubMed

    Monje Moreno, José Manuel; Alvarez Amor, Leticia; Ruiz-Prieto, Inmaculada; Bolaños-Ríos, Patricia; Jáuregui-Lobera, Ignacio

    2014-05-01

    It has been found that the olfactorygustatory function is altered in patients with eating disorders, with an impairment affecting the perception of olfactory and gustatory stimuli. The aim was to explore the subjective reactivity after the exposure and tasting of foods with different gradient of sweetness and different fats textures. In addition, changes in the thought-shape fusion (TSF) cognitive distortion were assessed after tasting those different presentations as well as the correlations between the initial scores on TSF-Questionnaire (TSF-Q) and the different responses after that tasting. A total of 15 healthy controls and 23 outpatients with anorexia nervosa underwent two sessions of tasting (sweets with different gradient of sweetness and fats with different textures) and they filled several questionnaires (pre- and post-tasting) to measure their responses after tasting. Participants showed less "self-control" after tasting sweets. The score on TSF-Q increased significantly after the sweets tasting in the patients group. Patients had the worst response after tasting presentations with more quantity of glucose (less gradient of sweetness) than after tasting those with more amount of sucrose (much more sweetness). With respect to the fats, patients showed the worst reaction after tasting the most unfamiliar texture. Pre fats tasting TSF-Q scores correlated significantly with all responses in the patients group. Both psychological and biological (e.g. genetic) factors could be involved in the reactions of patients with anorexia nervosa after tasting sweets and fats. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  17. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells.

    PubMed

    Yee, Karen K; Sukumaran, Sunil K; Kotha, Ramana; Gilbertson, Timothy A; Margolskee, Robert F

    2011-03-29

    Although the heteromeric combination of type 1 taste receptors 2 and 3 (T1r2 + T1r3) is well established as the major receptor for sugars and noncaloric sweeteners, there is also evidence of T1r-independent sweet taste in mice, particularly so for sugars. Before the molecular cloning of the T1rs, it had been proposed that sweet taste detection depended on (a) activation of sugar-gated cation channels and/or (b) sugar binding to G protein-coupled receptors to initiate second-messenger cascades. By either mechanism, sugars would elicit depolarization of sweet-responsive taste cells, which would transmit their signal to gustatory afferents. We examined the nature of T1r-independent sweet taste; our starting point was to determine if taste cells express glucose transporters (GLUTs) and metabolic sensors that serve as sugar sensors in other tissues. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we determined that several GLUTs (GLUT2, GLUT4, GLUT8, and GLUT9), a sodium-glucose cotransporter (SGLT1), and two components of the ATP-gated K(+) (K(ATP)) metabolic sensor [sulfonylurea receptor (SUR) 1 and potassium inwardly rectifying channel (Kir) 6.1] were expressed selectively in taste cells. Consistent with a role in sweet taste, GLUT4, SGLT1, and SUR1 were expressed preferentially in T1r3-positive taste cells. Electrophysiological recording determined that nearly 20% of the total outward current of mouse fungiform taste cells was composed of K(ATP) channels. Because the overwhelming majority of T1r3-expressing taste cells also express SUR1, and vice versa, it is likely that K(ATP) channels constitute a major portion of K(+) channels in the T1r3 subset of taste cells. Taste cell-expressed glucose sensors and K(ATP) may serve as mediators of the T1r-independent sweet taste of sugars.

  18. Espin cytoskeletal proteins in the sensory cells of rodent taste buds

    PubMed Central

    Sekerková, Gabriella; Freeman, David; Mugnaini, Enrico; Bartles, James R.

    2010-01-01

    Espins are multifunctional actin-bundling proteins that are highly enriched in the microvilli of certain chemosensory and mechanosensory cells, where they are believed to regulate the integrity and/or dimensions of the parallel-actin-bundle cytoskeletal scaffold. We have determined that, in rats and mice, affinity purified espin antibody intensely labels the lingual and palatal taste buds of the oral cavity and taste buds in the pharyngo-laryngeal region. Intense immunolabeling was observed in the apical, microvillar region of taste buds, while the level of cytoplasmic labeling in taste bud cells was considerably lower. Taste bud cells contain tightly packed collections of sensory cells (light, or type II plus type III) and supporting cells (dark, or type I), which can be distinguished by microscopic features and cell type-specific markers. On the basis of results obtained using an antigen-retrieval method in conjunction with double immunofluorescence for espin and sensory taste cell-specific markers, we propose that espins are expressed predominantly in the sensory cells of rat circumvallate taste buds. In confocal images, we counted 21.5±0.3 espin-positive cells/taste bud, in agreement with a previous report showing 20.7±1.3 light cells/taste bud when counted at the ultrastructural level. The espin antibody labeled spindle-shaped cells with round nuclei and showed 100% colocalization with cell-specific markers recognizing all type II [inositol 1,4,5-trisphosphate receptor type III (IP3R3),α-gustducin, protein-specific gene product 9.5 (PGP9.5)] and a subpopulation of type III (IP3R3, PGP9.5) taste cells. On average, 72%, 50%, and 32% of the espin-positive taste cells were labeled with antibodies to IP3R3, α-gustducin, and PGP9.5, respectively. Upon sectional analysis, the taste buds of rat circumvallate papillae commonly revealed a multi-tiered, espin-positive apical cytoskeletal apparatus. One espin-positive zone, a collection of ~3 μm-long microvilli occupying the taste pore, was separated by an espin-depleted zone from a second espin-positive zone situated lower within the taste pit. This latter zone included espin-positive rod-like structures that occasionally extended basally to a depth of 10-12 μm into the cytoplasm of taste cells. We propose that the espin-positive zone in the taste pit coincides with actin bundles in association with the microvilli of type II taste cells, whereas the espin-positive microvilli in the taste pore are the single microvilli of type III taste cells. PMID:16841162

  19. Systematic tracking, visualizing, and interpreting of consumer feedback for drinking water quality.

    PubMed

    Dietrich, Andrea M; Phetxumphou, Katherine; Gallagher, Daniel L

    2014-12-01

    Consumer feedback and complaints provide utilities with useful data about consumer perceptions of aesthetic water quality in the distribution system. This research provides a systematic approach to interpret consumer complaint water quality data provided by four water utilities that recorded consumer complaints, but did not routinely process the data. The utilities tended to write down a myriad of descriptors that were too numerous or contained a variety of spellings so that electronic "harvesting" was not possible and much manual labor was required to categorize the complaints into majors areas, such as suggested by the Drinking Water Taste and Odor Wheel or existing check-sheets. When the consumer complaint data were categorized and visualized using spider (or radar) and run-time plots, major taste, odor, and appearance patterns emerged that clarified the issue and could provide guidance to the utility on the nature and extent of the problem. A caveat is that while humans readily identify visual issues with the water, such as color, cloudiness, or rust, describing specific tastes and odors in drinking water is acknowledged to be much more difficult for humans to achieve without training. This was demonstrated with two utility groups and a group of consumers identifying the odors of orange, 2-methylisoborneol, and dimethyl trisulfide. All three groups readily and succinctly identified the familiar orange odor. The two utility groups were much more able to identify the musty odor of 2-methylisoborneol, which was likely familiar to them from their work with raw and finished water. Dimethyl trisulfide, a garlic-onion odor associated with sulfur compounds in drinking water, was the least familiar to all three groups, although the laboratory staff did best. These results indicate that utility personnel should be tolerant of consumers who can assuredly say the water is different, but cannot describe the problem. Also, it indicates that a T&O program at a utility would benefit from identification of aesthetic issues in water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Desalinated drinking water in the GCC countries - The need to address consumer perceptions.

    PubMed

    Shomar, Basem; Hawari, Jalal

    2017-10-01

    The Gulf Cooperation Council (GCC) countries consist of Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates. These countries depend mainly on seawater desalination to meet their water needs. Although great emphasis is given to characterize desalinated water for its physicochemical and microbial properties, e.g. presence of metals, other organic contaminants and for bacteria, sensorial characteristics including smell, taste and color have not received the same attention. This is possibly attributed to the fact that inhabitants of GCC States do not use desalinated tap water for drinking consumption, rather they depend on locally produced or imported bottled water where color, taste and odor are not problematic. To address the consumer needs and perceptions of drinking desalinated water in GCC countries, water quality standards and guidelines, should respond to the public concern about other sensorial characteristics (organoleptic properties) including taste, odor, and trigeminal sensations. Often the root causes of color and smell in water are attributed to the presence of organic and inorganic contaminants and to bacterial growth which is frequently accompanied by the production of metabolites and byproducts that are obnoxious. The unpleasant sensorial problems associated with desalinated drinking tap water may constitute the driving force for most people in GCC countries to depend on bottled water. To encourage people in the GCC countries to consume desalinated tap water, it is essential that water testing include measurements of physicochemical properties, biofilm presence and organoleptic parameters to improve overall water quality. This review highlights the contribution of organoleptics for consumers of desalinated tap water. It extends water quality research to be addressed by standards for organoleptic parameters in desalinated drinking water. Accordingly, consumer awareness and outreach campaigns should be implemented to encourage people to drink tap water in the GCC countries. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Bitter-sweet processing in larval Drosophila.

    PubMed

    König, Christian; Schleyer, Michael; Leibiger, Judith; El-Keredy, Amira; Gerber, Bertram

    2014-07-01

    "Sweet-" and "bitter-" tasting substances distinctively support attractive and aversive choice behavior, respectively, and therefore are thought to be processed by distinct pathways. Interestingly, electrophysiological recordings in adult Drosophila suggest that bitter and salty tastants, in addition to activating bitter, salt, or bitter/salt sensory neurons, can also inhibit sweet-sensory neurons. However, the behavioral significance of such a potential for combinatorial coding is little understood. Using larval Drosophila as a study case, we find that the preference towards fructose is inhibited when assayed in the background of the bitter tastant quinine. When testing the influence of quinine on the preference to other, equally preferred sweet tastants, we find that these sweet tastants differ in their susceptibility to be inhibited by quinine. Such stimulus specificity argues that the inhibitory effect of quinine is not due to general effects on locomotion or nausea. In turn, not all bitter tastants have the same potency to inhibit sweet preference; notably, their inhibitory potency is not determined by the strength of the avoidance of them. Likewise, equally avoided concentrations of sodium chloride differ in their potency to inhibit sugar preference. Furthermore, Gr33a-Gal4-positive neurons, while being necessary for bitter avoidance, are dispensable for inhibition of the sweet pathway. Thus, interactions across taste modalities are behaviorally significant and, as we discuss, arguably diverse in mechanism. These results suggest that the coding of tastants and the organization of gustatory behavior may be more combinatorial than is generally acknowledged. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Slight Fermentation with Lactobacillus fermentium Improves the Taste (Sugar:Acid Ratio) of Citrus (Citrus reticulata cv. chachiensis) Juice.

    PubMed

    Yu, Yuanshan; Xiao, Gengsheng; Xu, Yujuan; Wu, Jijun; Fu, Manqin; Wen, Jing

    2015-11-01

    The aim of this study was to evaluate the hypothesis that fermentation with Lactobacillus fermentium, which can metabolize citric acid, could be applied in improving the taste (sugar:acid ratio) of citrus juice. During fermentation, the strain of L. fermentium can preferentially utilize citric acid of citrus (Citrus reticulata cv. Chachiensis) juice to support the growth without the consumption of sugar. After 6 h of fermentation with L. fermentium at 30 °C, the sugar:acid ratio of citrus juice increased to 22:1 from 12:1, which resulted in that the hedonic scores of sweetness, acidity and overall acceptability of fermented-pasteurized citrus juice were higher than the unfermented-pasteurized citrus juice. Compared with unfermented-pasteurized citrus juice, the ORAC value and total amino acid showed a reduction, and no significant change (P > 0.05) in the L*, a*, b*, total soluble phenolics and ascorbic acid (Vc) content in the fermented-pasteurized citrus juice was observed as compared with unfermented-pasteurized citrus juice. Hence, slight fermentation with L. fermentium can be used for improving the taste (sugar:acid ratio) of citrus juice with the well retaining of quality. © 2015 Institute of Food Technologists®

  3. 18O stable isotope labeling, quantitative model experiments, and molecular dynamics simulation studies on the trans-specific degradation of the bitter tasting iso-alpha-acids of beer.

    PubMed

    Intelmann, Daniel; Demmer, Oliver; Desmer, Nina; Hofmann, Thomas

    2009-11-25

    The typical bitterness of fresh beer is well-known to decrease in intensity and to change in quality with increasing age. This phenomenon was recently shown to be caused by the conversion of bitter tasting trans-iso-alpha-acids into lingering and harsh bitter tasting tri- and tetracyclic degradation products such as tricyclocohumol, tricyclocohumene, isotricyclocohumene, tetracyclocohumol, and epitetracyclocohumol. Interestingly, the formation of these compounds was shown to be trans-specific and the corresponding cis-iso-alpha-acids were found to be comparatively stable. Application of 18O stable isotope labeling as well as quantitative model studies combined with LC-MS/MS experiments, followed by computer-based molecular dynamics simulations revealed for the first time a conclusive mechanism explaining the stereospecific transformation of trans-iso-alpha-acids into the tri- and tetracyclic degradation products. This transformation was proposed to be induced by a proton-catalyzed carbon/carbon bond formation between the carbonyl atom C(1') of the isohexenoyl moiety and the alkene carbon C(2'') of the isoprenyl moiety of the trans-iso-alpha-acids.

  4. Taste Receptor Cells That Discriminate Between Bitter Stimuli

    PubMed Central

    Caicedo, Alejandro; Roper, Stephen D.

    2013-01-01

    Recent studies showing that single taste bud cells express multiple bitter taste receptors have reignited a long-standing controversy over whether single gustatory receptor cells respond selectively or broadly to tastants. We examined calcium responses of rat taste receptor cells in situ to a panel of bitter compounds to determine whether individual cells distinguish between bitter stimuli. Most bitter-responsive taste cells were activated by only one out of five compounds tested. In taste cells that responded to multiple stimuli, there were no significant associations between any two stimuli. Bitter sensation does not appear to occur through the activation of a homogeneous population of broadly tuned bitter-sensitive taste cells. Instead, different bitter stimuli may activate different subpopulations of bitter-sensitive taste cells. PMID:11222863

  5. A comparison of English and Japanese taste languages: taste descriptive methodology, codability and the umami taste.

    PubMed

    O'Mahony, M; Ishii, R

    1986-05-01

    Everyday taste descriptions for a range of stimuli were obtained from selected groups of American and Japanese subjects, using a variety of stimuli, stimulus presentation procedures and response conditions. In English there was a tendency to use a quadrapartite classification system: 'sweet', 'sour', 'salty' and 'bitter'. The Japanese had a different strategy, adding a fifth label: 'Ajinomoto', referring to the taste of monosodium glutamate. This label was generally replaced by umami--the scientific term--by Japanese who were workers or trained tasters involved with glutamate manufacture. Cultural differences in taste language have consequences for taste psychophysicists who impose a quadrapartite restriction on allowable taste descriptions. Stimulus presentation by filter-paper or aqueous solution elicited the same response trends. Language codability was only an indicator of degree of taste mixedness/singularity if used statistically with samples of sufficient size; it had little value as an indicator for individual subjects.

  6. Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury.

    PubMed

    Takeda, Norifumi; Jain, Rajan; Li, Deqiang; Li, Li; Lu, Min Min; Epstein, Jonathan A

    2013-01-01

    Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.

  7. Progress and renewal in gustation: new insights into taste bud development.

    PubMed

    Barlow, Linda A

    2015-11-01

    The sense of taste, or gustation, is mediated by taste buds, which are housed in specialized taste papillae found in a stereotyped pattern on the surface of the tongue. Each bud, regardless of its location, is a collection of ∼100 cells that belong to at least five different functional classes, which transduce sweet, bitter, salt, sour and umami (the taste of glutamate) signals. Taste receptor cells harbor functional similarities to neurons but, like epithelial cells, are rapidly and continuously renewed throughout adult life. Here, I review recent advances in our understanding of how the pattern of taste buds is established in embryos and discuss the cellular and molecular mechanisms governing taste cell turnover. I also highlight how these findings aid our understanding of how and why many cancer therapies result in taste dysfunction. © 2015. Published by The Company of Biologists Ltd.

  8. Discriminating the stimulus elements during human odor-taste learning: a successful analytic stance does not eliminate learning.

    PubMed

    Stevenson, Richard J; Mahmut, Mehmet K

    2011-10-01

    Odor "sweetness" may arise from experiencing odors and tastes together, resulting in a flavor memory that is later reaccessed by the odor. Forming a flavor memory may be impaired if the taste and odor elements are apparent during exposure, suggesting that configural processing may underpin learning. Using a new procedure, participants made actual flavor discriminations for one odor-taste pair (e.g., Taste A vs. Odor X-Taste A) and mock discriminations for another (e.g., Odor Y-Taste B vs. Odor Y-Taste B). Participants, who were successful at detecting the actual flavor discriminations, demonstrated equal amounts of learning for both odor-taste pairings. These results suggest that although a capacity to discriminate flavor into its elements may be necessary to support learning, whether participants experience a configural or elemental flavor representation may not.

  9. Genomic and Genetic Evidence for the Loss of Umami Taste in Bats

    PubMed Central

    Zhao, Huabin; Xu, Dong; Zhang, Shuyi; Zhang, Jianzhi

    2012-01-01

    Umami taste is responsible for sensing monosodium glutamate, nucleotide enhancers, and other amino acids that are appetitive to vertebrates and is one of the five basic tastes that also include sour, salty, sweet, and bitter. To study how ecological factors, especially diets, impact the evolution of the umami taste, we examined the umami taste receptor gene Tas1r1 in a phylogenetically diverse group of bats including fruit eaters, insect eaters, and blood feeders. We found that Tas1r1 is absent, unamplifiable, or pseudogenized in each of the 31 species examined, including the genome sequences of two species, suggesting the loss of the umami taste in most, if not all, bats regardless of their food preferences. Most strikingly, vampire bats have also lost the sweet taste receptor gene Tas1r2 and the gene required for both umami and sweet tastes (Tas1r3), being the first known mammalian group to lack two of the five tastes. The puzzling absence of the umami taste in bats calls for a better understanding of the roles that this taste plays in the daily life of vertebrates. PMID:22117084

  10. Genetics of sweet taste preferences†

    PubMed Central

    Bachmanov, Alexander A; Bosak, Natalia P; Floriano, Wely B; Inoue, Masashi; Li, Xia; Lin, Cailu; Murovets, Vladimir O; Reed, Danielle R; Zolotarev, Vasily A; Beauchamp, Gary K

    2011-01-01

    Sweet taste is a powerful factor influencing food acceptance. There is considerable variation in sweet taste perception and preferences within and among species. Although learning and homeostatic mechanisms contribute to this variation in sweet taste, much of it is genetically determined. Recent studies have shown that variation in the T1R genes contributes to within- and between-species differences in sweet taste. In addition, our ongoing studies using the mouse model demonstrate that a significant portion of variation in sweetener preferences depends on genes that are not involved in peripheral taste processing. These genes are likely involved in central mechanisms of sweet taste processing, reward and/or motivation. Genetic variation in sweet taste not only influences food choice and intake, but is also associated with proclivity to drink alcohol. Both peripheral and central mechanisms of sweet taste underlie correlation between sweet-liking and alcohol consumption in animal models and humans. All these data illustrate complex genetics of sweet taste preferences and its impact on human nutrition and health. Identification of genes responsible for within- and between-species variation in sweet taste can provide tools to better control food acceptance in humans and other animals. PMID:21743773

  11. Bioelectronic tongue of taste buds on microelectrode array for salt sensing.

    PubMed

    Liu, Qingjun; Zhang, Fenni; Zhang, Diming; Hu, Ning; Wang, Hua; Hsia, K Jimmy; Wang, Ping

    2013-02-15

    Taste has received great attention for its potential applications. In this work, we combine the biological tissue with micro-chips to establish a novel bioelectronic tongue system for salt taste detection. Before experiment, we established a computational model of action potential in salt taste receptor cell, simulating the responsive results to natural salt stimuli of NaCl solution with various concentrations. Then 36-channel microelectrode arrays (MEA) with the diameter of 30 μm were fabricated on the glass substrate, and taste epithelium was stripped from rat and fixed on MEA. When stimulated by the salt stimuli, electrophysiological activities of taste receptor cells in taste buds were measured through a multi-channel recording system. Both simulation and experiment results showed a dose-dependent increase in NaCl-induced potentials of taste receptor cells, which indicated good applications in salt measurements. The multi-channel analysis demonstrated that different groups of MEA channels were activated during stimulations, indicating non-overlapping populations of receptor cells in taste buds involved in salt taste perception. The study provides an effective and reliable biosensor platform to help recognize and distinguish salt taste components. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. “What’s Your Taste in Music?” A Comparison of the Effectiveness of Various Soundscapes in Evoking Specific Tastes

    PubMed Central

    Woods, Andy T.; Spence, Charles

    2015-01-01

    We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences. PMID:27551365

  13. "What's Your Taste in Music?" A Comparison of the Effectiveness of Various Soundscapes in Evoking Specific Tastes.

    PubMed

    Wang, Qian Janice; Woods, Andy T; Spence, Charles

    2015-12-01

    We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences.

  14. Effect of Age and Severity of Facial Palsy on Taste Thresholds in Bell's Palsy Patients

    PubMed Central

    Park, Jung Min; Kim, Myung Gu; Jung, Junyang; Kim, Sung Su; Jung, A Ra; Kim, Sang Hoon

    2017-01-01

    Background and Objectives To investigate whether taste thresholds, as determined by electrogustometry (EGM) and chemical taste tests, differ by age and the severity of facial palsy in patients with Bell's palsy. Subjects and Methods This study included 29 patients diagnosed with Bell's palsy between January 2014 and May 2015 in our hospital. Patients were assorted into age groups and by severity of facial palsy, as determined by House-Brackmann Scale, and their taste thresholds were assessed by EGM and chemical taste tests. Results EGM showed that taste thresholds at four locations on the tongue and one location on the central soft palate, 1 cm from the palatine uvula, were significantly higher in Bell's palsy patients than in controls (p<0.05). In contrast, chemical taste tests showed no significant differences in taste thresholds between the two groups (p>0.05). The severity of facial palsy did not affect taste thresholds, as determined by both EGM and chemical taste tests (p>0.05). The overall mean electrical taste thresholds on EGM were higher in younger Bell's palsy patients than in healthy subjects, with the difference at the back-right area of the tongue differing significantly (p<0.05). In older individuals, however, no significant differences in taste thresholds were observed between Bell's palsy patients and healthy subjects (p>0.05). Conclusions Electrical taste thresholds were higher in Bell's palsy patients than in controls. These differences were observed in younger, but not in older, individuals. PMID:28417103

  15. Mechanisms of taste bud cell loss after head and neck irradiation.

    PubMed

    Nguyen, Ha M; Reyland, Mary E; Barlow, Linda A

    2012-03-07

    Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of x-ray irradiation to the head and neck, and analyzed taste epithelium at 1-21 d postirradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1-3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5-7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5-6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using 5-bromo-2-deoxyuridine birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1-2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. In contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement, underlies taste loss after irradiation.

  16. Mechanisms of taste bud cell loss after head and neck irradiation

    PubMed Central

    Nguyen, Ha M.; Reyland, Mary E.; Barlow, Linda A.

    2012-01-01

    Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on a progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of X-ray irradiation to the head and neck, and analyzed taste epithelium at 1–21 days post-irradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1–3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5–7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5–6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using BrdU birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1–2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. By contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement underlies taste loss after irradiation. PMID:22399770

  17. Lateral Hypothalamus Contains Two Types of Palatability-Related Taste Responses with Distinct Dynamics

    PubMed Central

    Yoshida, Takashi; Monk, Kevin J.; Katz, Donald B.

    2013-01-01

    The taste of foods, in particular the palatability of these tastes, exerts a powerful influence on our feeding choices. Although the lateral hypothalamus (LH) has long been known to regulate feeding behavior, taste processing in LH remains relatively understudied. Here, we examined single-unit LH responses in rats subjected to a battery of taste stimuli that differed in both chemical composition and palatability. Like neurons in cortex and amygdala, LH neurons produced a brief epoch of nonspecific responses followed by a protracted period of taste-specific firing. Unlike in cortex, however, where palatability-related information only appears 500 ms after the onset of taste-specific firing, taste specificity in LH was dominated by palatability-related firing, consistent with LH's role as a feeding center. Upon closer inspection, taste-specific LH neurons fell reliably into one of two subtypes: the first type showed a reliable affinity for palatable tastes, low spontaneous firing rates, phasic responses, and relatively narrow tuning; the second type showed strongest modulation to aversive tastes, high spontaneous firing rates, protracted responses, and broader tuning. Although neurons producing both types of responses were found within the same regions of LH, cross-correlation analyses suggest that they may participate in distinct functional networks. Our data shed light on the implementation of palatability processing both within LH and throughout the taste circuit, and may ultimately have implications for LH's role in the formation and maintenance of taste preferences and aversions. PMID:23719813

  18. Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics.

    PubMed

    Li, Jennifer X; Yoshida, Takashi; Monk, Kevin J; Katz, Donald B

    2013-05-29

    The taste of foods, in particular the palatability of these tastes, exerts a powerful influence on our feeding choices. Although the lateral hypothalamus (LH) has long been known to regulate feeding behavior, taste processing in LH remains relatively understudied. Here, we examined single-unit LH responses in rats subjected to a battery of taste stimuli that differed in both chemical composition and palatability. Like neurons in cortex and amygdala, LH neurons produced a brief epoch of nonspecific responses followed by a protracted period of taste-specific firing. Unlike in cortex, however, where palatability-related information only appears 500 ms after the onset of taste-specific firing, taste specificity in LH was dominated by palatability-related firing, consistent with LH's role as a feeding center. Upon closer inspection, taste-specific LH neurons fell reliably into one of two subtypes: the first type showed a reliable affinity for palatable tastes, low spontaneous firing rates, phasic responses, and relatively narrow tuning; the second type showed strongest modulation to aversive tastes, high spontaneous firing rates, protracted responses, and broader tuning. Although neurons producing both types of responses were found within the same regions of LH, cross-correlation analyses suggest that they may participate in distinct functional networks. Our data shed light on the implementation of palatability processing both within LH and throughout the taste circuit, and may ultimately have implications for LH's role in the formation and maintenance of taste preferences and aversions.

  19. Qualitative Application of the Theory of Planned Behavior to Understand Beverage Behaviors among Adults

    PubMed Central

    Krzeski, Erin; Harden, Samantha; Cook, Emily; Allen, Kacie; Estabrooks, Paul A.

    2012-01-01

    Despite strong scientific data indicating associations among sugar-sweetened beverages (SSB) and numerous adverse health outcomes, little is known about culturally specific beliefs and potential individual-level behavioral strategies to reduce SSB intake. The primary objective of this formative study targeting adults residing in rural southwest Virginia was to apply the Theory of Planned Behavior (TPB) to investigate culturally specific attitudes, subjective norms and perceived behavioral control constructs related to the consumption of SSB, water, and artificially sweetened beverages. Using a homogenous sampling strategy, eight focus groups were conducted with 54 adult participants who exceeded recommendations of <1 cup of SSB/day. An experienced moderator and co-moderator utilized a semi-structured script, grounded in the TPB, to execute the focus group. All focus groups were audio taped and transcribed verbatim. Three researchers independently coded meaning units (MU) to the major themes and subsequently met to gain consensus in coding. Important beverage specific themes emerged for attitudes, subjective norms, perceived behavioral control, and intentions. Across all beverages, the most notable themes included taste (n= 161 MU), availability/convenience (n= 95 MU), habit/addiction (n=57 MU), and cost (n= 28 MU). Health consequences associated with beverages and water quality issues also surfaced, as well as normative beliefs including the influence of doctors and peers. The identified themes and sub-themes provides critical insight into understanding culturally-relevant context and beliefs associated with beverage behaviors and helps inform the development and evaluation of future intervention efforts targeting SSB consumption in the health disparate region of southwest Virginia. PMID:23102176

  20. Dietary customs and food availability shape the preferences for basic tastes: A cross-cultural study among Polish, Tsimane' and Hadza societies.

    PubMed

    Sorokowska, Agnieszka; Pellegrino, Robert; Butovskaya, Marina; Marczak, Michalina; Niemczyk, Agnieszka; Huanca, Tomas; Sorokowski, Piotr

    2017-09-01

    Biological significance of food components suggests that preferences for basic tastes should be similar across cultures. On the other hand, cultural factors play an important role in diet and can consequently influence individual preference for food. To date, very few studies have compared basic tastes preferences among populations of very diverse environmental and cultural conditions, and research rather did not involve traditional populations for whom the biological significance of different food components might be the most pronounced. Hence, our study focused on basic taste preferences in three populations, covering a broad difference in diet due to environmental and cultural conditions, market availability, dietary habits and food acquirement: 1) a modern society (Poles, n = 200), 2) forager-horticulturalists from Amazon/Bolivia (Tsimane', n = 138), and 3) hunter-gatherers from Tanzania (Hadza, n = 85). The preferences for basic tastes were measured with sprays containing supra-threshold levels of sweet, sour, bitter, salty, and umami taste solutions. We observed several interesting differences between participating societies. We found that Tsimane' and Polish participants liked the sweet taste more than other tastes, while Hadza participants liked salty and sour tastes more than the remaining tastes. Further, Polish people found bitter taste particularly aversive, which was not observed in the traditional societies. Interestingly, no cross-cultural differences were observed for relative liking of umami taste - it was rated closely to neutral by members of all participating societies. Additionally, Hadza showed a pattern to like basic tastes that are more common to their current diet than societies with access to different food sources. These findings demonstrate the impact of diet and market availability on preference for basic tastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells.

    PubMed

    Kist, Ralf; Watson, Michelle; Crosier, Moira; Robinson, Max; Fuchs, Jennifer; Reichelt, Julia; Peters, Heiko

    2014-10-01

    In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.

  2. Expression of the voltage-gated potassium channel KCNQ1 in mammalian taste bud cells and the effect of its null-mutation on taste preferences.

    PubMed

    Wang, Hong; Iguchi, Naoko; Rong, Qi; Zhou, Minliang; Ogunkorode, Martina; Inoue, Masashi; Pribitkin, Edmund A; Bachmanov, Alexander A; Margolskee, Robert F; Pfeifer, Karl; Huang, Liquan

    2009-01-20

    Vertebrate taste buds undergo continual cell turnover. To understand how the gustatory progenitor cells in the stratified lingual epithelium migrate and differentiate into different types of mature taste cells, we sought to identify genes that were selectively expressed in taste cells at different maturation stages. Here we report the expression of the voltage-gated potassium channel KCNQ1 in mammalian taste buds of mouse, rat, and human. Immunohistochemistry and nuclear staining showed that nearly all rodent and human taste cells express this channel. Double immunostaining with antibodies against type II and III taste cell markers validated the presence of KCNQ1 in these two types of cells. Co-localization studies with cytokeratin 14 indicated that KCNQ1 is also expressed in type IV basal precursor cells. Null mutation of the kcnq1 gene in mouse, however, did not alter the gross structure of taste buds or the expression of taste signaling molecules. Behavioral assays showed that the mutant mice display reduced preference to some umami substances, but not to any other taste compounds tested. Gustatory nerve recordings, however, were unable to detect any significant change in the integrated nerve responses of the mutant mice to umami stimuli. These results suggest that although it is expressed in nearly all taste bud cells, the function of KCNQ1 is not required for gross taste bud development or peripheral taste transduction pathways, and the reduced preference of kcnq1-null mice in the behavioral assays may be attributable to the deficiency in the central nervous system or other organs.

  3. Interleukin-10 Is Produced by a Specific Subset of Taste Receptor Cells and Critical for Maintaining Structural Integrity of Mouse Taste Buds

    PubMed Central

    Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan

    2014-01-01

    Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system. PMID:24523558

  4. Interleukin-10 is produced by a specific subset of taste receptor cells and critical for maintaining structural integrity of mouse taste buds.

    PubMed

    Feng, Pu; Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan; Wang, Hong

    2014-02-12

    Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system.

  5. In-vitro and in-vivo evaluation of taste-masked cetirizine hydrochloride formulated in oral lyophilisates.

    PubMed

    Preis, Maren; Grother, Leon; Axe, Philip; Breitkreutz, Jörg

    2015-08-01

    The use of solid oral dosage forms is typically favored with regard to stability and ease of administration. The aim of this study was to investigate whether cyclodextrins (CD) or ion exchange resins (IER) could be used to taste-mask cetirizine HCl when formulated in a freeze-dried oral formulation. The oral lyophilisates were produced using the Zydis(®) technology that offer the opportunity to produce the dosage form directly in the aluminum laminate blister packs. This study confirmed that a pre-formed resinate of cetirizine HCl and various cyclodextrins can be successfully incorporated into the Zydis(®) oral lyophilisate. A chemically stable product with acceptable release profile was obtained in the case of cyclodextrin. This study has also demonstrated that the Insent(®) taste sensing system is a useful technique for predicting the taste-masking potential of Zydis(®) formulations. The electronic taste sensing system (e-tongue) data can be used to provide guidance on the selection of taste-masked formulations. Principal component analysis (PCA) of sensor data by plotting the PCA scores revealed the effects of used taste-masking techniques on the e-tongue sensors, indicating the successful taste improvement. The PCA plot of the taste sensor data revealed larger distances between the non-taste-masked sample and the CD- and IER-loaded samples, and the shift toward the drug-free formulations and excipient signals indicates a modification of the product taste. The human taste trial confirms the acceptability of the selected promising formulations. The taste evaluation results showed that an effectively taste-masked formulation has been achieved using β-cyclodextrin and cherry/sucralose flavor system with over 80% of volunteers finding the tablet to be acceptable. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Postnatal development of bitter taste avoidance behavior in mice is associated with ACTIN-dependent localization of bitter taste receptors to the microvilli of taste cells.

    PubMed

    Yamashita, Atsuko; Kondo, Kaori; Kunishima, Yoshimi; Iseki, Sachiko; Kondo, Takashi; Ota, Masato S

    2018-01-22

    Bitter taste avoidance behavior (BAB) plays a fundamental role in the avoidance of toxic substances with a bitter taste. However, the molecular basis underlying the development of BAB is unknown. To study critical developmental events by which taste buds turn into functional organs with BAB, we investigated the early phase development of BAB in postnatal mice in response to bitter-tasting compounds, such as quinine and thiamine. Postnatal mice started to exhibit BAB for thiamine and quinine at postnatal day 5 (PD5) and PD7, respectively. Histological analyses of taste buds revealed the formation of microvilli in the taste pores starting at PD5 and the localization of type 2 taste receptor 119 (TAS2R119) at the microvilli at PD6. Treatment of the tongue epithelium with cytochalasin D (CytD), which disturbs ACTIN polymerization in the microvilli, resulted in the loss of TAS2R119 localization at the microvilli and the loss of BAB for quinine and thiamine. The release of ATP from the circumvallate papillae tissue due to taste stimuli was also declined following CytD treatment. These results suggest that the localization of TAS2R119 at the microvilli of taste pores is critical for the initiation of BAB. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Volumetry of human taste buds using laser scanning microscopy.

    PubMed

    Just, T; Srur, E; Stachs, O; Pau, H W

    2009-10-01

    In vivo laser scanning confocal microscopy is a relatively new, non-invasive method for assessment of oral cavity epithelia. The penetration depth of approximately 200-400 microm allows visualisation of fungiform papillae and their taste buds. This paper describes the technique of in vivo volumetry of human taste buds. Confocal laser scanning microscopy used a diode laser at 670 nm for illumination. Digital laser scanning confocal microscopy equipment consisted of the Heidelberg Retina Tomograph HRTII and the Rostock Cornea Module. Volume scans of fungiform papillae were used for three-dimensional reconstruction of the taste bud. This technique supplied information on taste bud structure and enabled measurement and calculation of taste bud volume. Volumetric data from a 23-year-old man over a nine-day period showed only a small deviation in values. After three to four weeks, phenomenological changes in taste bud structures were found (i.e. a significant increase in volume, followed by disappearance of the taste bud and appearance of a new taste bud). The data obtained indicate the potential application of this non-invasive imaging modality: to evaluate variation of taste bud volume in human fungiform papillae with ageing; to study the effects of chorda tympani nerve transection on taste bud volume; and to demonstrate recovery of taste buds in patients with a severed chorda tympani nerve who show recovery of gustatory sensibility after surgery.

  8. Taste acuity of the human palate. III. Studies with taste solutions on subjects in different age groups.

    PubMed

    Nilsson, B

    1979-01-01

    The taste acuity at the midline of the hard and soft palate near their junction and, for comparison, on representative areas of the tongue was determined in 80 subjects aged 11-79 years by applying test solutions of the four basic tastes. Twenty-one subjects (26%) could identify at least one taste on the hard palate but none could recognize all four tastes. Seventy subjects (87%) could identify at least one taste on the soft palate and 37 subjects (46%) could recognize all four tastes. Taste thresholds were much higher on the hard palate than on the tongue and were in most cases higher on the soft palate than on the tongue. The ability to recognize all four tastes was less frequent in older than in younger subjects and the difference was greatest on the soft palate and least at the foliate papillae. The differences were greatest for citric acid and least for sucrose. There was a tendency to lower thresholds for women compared to men for all four tastes on all areas examined which was most pronounced on the soft palate. No differences in taste thresholds were found between denture wearers and subjects with natural dentition. Smokers had higher thresholds than non-smokers only for salt on the soft palate and the base of the tongue.

  9. Differences in taste between two polyethylene glycol preparations.

    PubMed

    Szojda, Maria M; Mulder, Chris J J; Felt-Bersma, Richelle J F

    2007-12-01

    Polyethylene glycol preparations (PEG) are increasingly used for chronic constipation in both adults and children. There are some suggestions that PEG 4000 with orange flavour (Forlax) tastes better than PEG 3350 which contains salt (Movicolon). Poor taste is an important factor for non-compliance and is one of the leading causes of therapy failure. The aim of the study was to compare the taste of two commonly used PEG preparations, PEG 4000 and PEG 3350. A double-blind, cross over randomised trial. A hundred people were recruited by advertisement. All tasted both preparations without swallowing and after tasting each of the preparations, they rinsed their mouths. Then a score, on a 5-point scale, was given for both preparations. 100 volunteers were included (27 males and 73 females, mean age 36). The taste score for PEG 4000 (mean 3.9, SD 0.7) was significantly better than for PEG 3350 (mean 2.7, SD 0.7) (p<0.0001, Wilcoxon matched pairs test). No difference in gender or age was observed. The volunteers which tasted PEG 3350 liked it more, when they tasted it first rather than when they tasted it after PEG 4000 (p<0.0001). The order in which volunteers tested PEG 4000 had no influence on the taste results. PEG 4000 tastes better than PEG 3350. This may have implications for patient compliance and effectiveness of treatment in patients with chronic constipation.

  10. Taste Identification in Adults with Autism Spectrum Conditions

    ERIC Educational Resources Information Center

    Tavassoli, T.; Baron-Cohen, S.

    2012-01-01

    Sensory issues are widely reported in Autism Spectrum Conditions (ASC). Since taste perception is one of the least studied senses in ASC we explored taste identification in adults with ASC (12 males, 11 females) compared to control participants (14 males, 12 females). "Taste strips" were used to measure taste identification overall, as well as…

  11. Failure of Serial Taste-Taste Compound Presentations to Produce Overshadowing of Extinction of Conditioned Taste Aversion

    ERIC Educational Resources Information Center

    Pineno, Oskar

    2010-01-01

    Two experiments were conducted to study overshadowing of extinction in a conditioned taste aversion preparation. In both experiments, aversive conditioning with sucrose was followed by extinction treatment with either sucrose alone or in compound with another taste, citric acid. Experiment 1 employed a simultaneous compound extinction treatment…

  12. Temporary Basolateral Amygdala Lesions Disrupt Acquisition of Socially Transmitted Food Preferences in Rats

    ERIC Educational Resources Information Center

    Fontanini, Alfredo; Katz, Donald B.; Wang, Yunyan

    2006-01-01

    Lesions of the basolateral amygdala (BLA) have long been associated with abnormalities of taste-related behaviors and with failure in a variety of taste- and odor-related learning paradigms, including taste-potentiated odor aversion, conditioned taste preference, and conditioned taste aversion. Still, the general role of the amygdala in…

  13. Quality of recording of diabetes in the UK: how does the GP's method of coding clinical data affect incidence estimates? Cross-sectional study using the CPRD database.

    PubMed

    Tate, A Rosemary; Dungey, Sheena; Glew, Simon; Beloff, Natalia; Williams, Rachael; Williams, Tim

    2017-01-25

    To assess the effect of coding quality on estimates of the incidence of diabetes in the UK between 1995 and 2014. A cross-sectional analysis examining diabetes coding from 1995 to 2014 and how the choice of codes (diagnosis codes vs codes which suggest diagnosis) and quality of coding affect estimated incidence. Routine primary care data from 684 practices contributing to the UK Clinical Practice Research Datalink (data contributed from Vision (INPS) practices). Incidence rates of diabetes and how they are affected by (1) GP coding and (2) excluding 'poor' quality practices with at least 10% incident patients inaccurately coded between 2004 and 2014. Incidence rates and accuracy of coding varied widely between practices and the trends differed according to selected category of code. If diagnosis codes were used, the incidence of type 2 increased sharply until 2004 (when the UK Quality Outcomes Framework was introduced), and then flattened off, until 2009, after which they decreased. If non-diagnosis codes were included, the numbers continued to increase until 2012. Although coding quality improved over time, 15% of the 666 practices that contributed data between 2004 and 2014 were labelled 'poor' quality. When these practices were dropped from the analyses, the downward trend in the incidence of type 2 after 2009 became less marked and incidence rates were higher. In contrast to some previous reports, diabetes incidence (based on diagnostic codes) appears not to have increased since 2004 in the UK. Choice of codes can make a significant difference to incidence estimates, as can quality of recording. Codes and data quality should be checked when assessing incidence rates using GP data. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Calcium Signaling in Taste Cells

    PubMed Central

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  15. Galvanic Tongue Stimulation Inhibits Five Basic Tastes Induced by Aqueous Electrolyte Solutions.

    PubMed

    Aoyama, Kazuma; Sakurai, Kenta; Sakurai, Satoru; Mizukami, Makoto; Maeda, Taro; Ando, Hideyuki

    2017-01-01

    Galvanic tongue stimulation (GTS) modulates taste sensation. However, the effect of GTS is contingent on the electrode polarity in the proximity of the tongue. If an anodal electrode is attached in the proximity of the tongue, an electrical or metallic taste is elicited. On the other hand, if only cathodal electrode is attached in the proximity of the tongue, the salty taste, which is induced by electrolyte materials, is inhibited. The mechanism of this taste inhibition is not adequately understood. In this study, we aim to demonstrate that the inhibition is cause by ions, which elicit taste and which migrate from the taste sensors on the tongue by GTS. We verified the inhibitory effect of GTS on all five basic tastes induced by electrolyte materials. This technology is effective for virtual reality systems and interfaces to support dietary restrictions. Our findings demonstrate that cathodal-GTS inhibits all the five basic tastes. The results also support our hypothesis that the effects of cathodal-GTS are caused by migrating tasting ions in the mouth.

  16. The discovery and mechanism of sweet taste enhancers.

    PubMed

    Li, Xiaodong; Servant, Guy; Tachdjian, Catherine

    2011-08-01

    Excess sugar intake posts several health problems. Artificial sweeteners have been used for years to reduce dietary sugar content, but they are not ideal substitutes for sugar owing to their off-taste. A new strategy focused on allosteric modulation of the sweet taste receptor led to identification of sweet taste 'enhancers' for the first time. The enhancer molecules do not taste sweet, but greatly potentiate the sweet taste of sucrose and sucralose selectively. Following a similar mechanism as the natural umami taste enhancers, the sweet enhancer molecules cooperatively bind with the sweeteners to the Venus flytrap domain of the human sweet taste receptor and stabilize the active conformation. Now that the approach has proven successful, enhancers for other sweeteners and details of the molecular mechanism for the enhancement are being actively pursued.

  17. Using Single Colors and Color Pairs to Communicate Basic Tastes.

    PubMed

    Woods, Andy T; Spence, Charles

    2016-01-01

    Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  18. Functional cell types in taste buds have distinct longevities.

    PubMed

    Perea-Martinez, Isabel; Nagai, Takatoshi; Chaudhari, Nirupa

    2013-01-01

    Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.

  19. Functional Cell Types in Taste Buds Have Distinct Longevities

    PubMed Central

    Perea-Martinez, Isabel; Nagai, Takatoshi; Chaudhari, Nirupa

    2013-01-01

    Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8–12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2′-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells. PMID:23320081

  20. Effects of zinc deficiency on the vallate papillae and taste buds in rats.

    PubMed

    Chou, H C; Chien, C L; Huang, H L; Lu, K S

    2001-05-01

    Zinc deficiency is associated with multiple clinical complications, including taste disturbance, anorexia, growth retardation, skin changes, and hypogonadism. We investigated the zinc-deficiency-induced morphologic changes in the vallate taste buds of weanling and young adult male Wistar rats. A total of 24 weanling and 30 young adult rats were used. Each age group was further divided into a control group fed a zinc-adequate (50 ppm) diet, a zinc-deficient (< 1 ppm) diet group, and a zinc-adequate pair-fed group who were fed the same amount of food as that taken by the zinc-deficient group. Weanling rats were fed for 4 weeks and young adult rats were fed for 6 weeks. The morphometry and morphologic changes of vallate taste buds were analyzed using light and transmission electron microscopy. Light microscopy revealed no significant difference in papilla size and morphology among the various groups. In both weanling and young adult rats in the zinc-deficient diet and pair-fed groups, the number of taste buds per papilla (per animal) and the average profile area of the taste bud were significantly smaller than those of the corresponding controls (p < 0.05). Ultrastructural changes were seen only in the taste buds of weanling rats fed the zinc-deficient diet, with derangement of the architecture of the taste bud and widening of the intercellular space between taste bud cells. The proportion of type I taste bud cells in the taste buds of weanling rats fed the zinc-deficient diet decreased from 59% to 39%, and that of type II taste bud cells decreased from 25% to 12%. No obvious changes in the ultrastructure of type III taste bud cells were observed. The main effects of zinc deficiency in weanling and young adult rats and in adequate diet pair-fed rats were changes in the number and size of taste buds, and fine structure changes in the taste bud cells, especially during the accelerated growth stage after weaning.

Top